Spring Data JPA - Reference
Documentation

Oliver Gierke, Thomas Darimont, Christoph Strobl

Version 1.7.3.RELEASE
2015-07-01

Table of Contents

| = Lol PP PP 1
O o) [=Te 1 L = o - L - R PP 2
Reference DOCUIMENTATION t.ouiuiuiuiiiiiiininiiiiiiiii ettt s ettt e easasas it s enenensasans 2
2. JPA REPOSITOTIES «uvuineniniiitieinineii ittt ettt et e e ettt raaasatnenetetetsasnsnenensetotsesnsnenentoresses 3
/70 R 1 o Te L0 ot 5[) o N 3
2.1.1. SPTING NAIMIESPACE «.etutneentteeeten et et aneet et aaeetataeeaeetataeentaatatanetaaeananeaeaneananennsnenes 3
2.1.2. Annotation based CONfigUIatioNciieiiireiiiiiiieiii ettt r e eereeenes 4

2.2. PerSISTING ENTITIES t.vuiutieinininiiiiteieii ittt ettt et e ettt e taenenenteteesasnenenearorsesnsnan 6
2.2.1. SAVINE EIITITIES t.vuteiiet et tete ettt ettt et e et e tee e e e eateeentaaeatasentrasananeeaneanenennsnenes 6

R T 018 (<) 8 4 T=1 U 4 Lo o PP 6
2.3.1. QUETY LOOKUD StTatEIOS .. euinierereinieiteteireteteetetetaereteneeereerernsnenenreransesasnenensorannes 6

AR IR 010 1<) o VA o= 1 (o) PP 7
2.3.3. USING JPA NaIMEAQUETIES ...uutnentinetineietteteneneenteteereetanetaeeatenentrasaseneneensaneneansnenes 8
2.3.4. USINE @ QUBTY . .eneintntentteetee ettt e et ettt et et taeetaeeettaetasaettaetasaeenansanrneananennes 10
2.3.5. USING NAMEd PATAINIETETS .euvurnreretnenenteteererntneneareraerernenenearorsesesasnenseroneesassnensonanns 11
2.3.6. USING SPEL EXPIESSIONS .uueuintnttieinenenetitretntnenentetetretneeentetsesesstensetereesasenenserenns 11
2.3.7. MOIfYING QUETIES . tutuerinenentetreeerneneneneetreeeenensneasarensesnenssnsorsesssnsnensassnsesnsnsnsnsannnns 13
2.3.8. APPLYING QUETY DINTS .. et ettt e e e e e e eas 14
2.3.9. Configuring Fetch- and LoadGraphscceveveieiiiiiiiiiiireere et eeeeeeene 14

2.4, STOTEA PIOCEAUIES ..ueuinintneteintnenettretetatnentetetetsetaeneneatetaesesstnenentetsssesatnensnteronsesasnenenes 15
2.5, SPECIIICATIONS +uvririnieitetreeeienenerteereeeeneenteeaeaereenenenssessnsesnensnsnsensesssnsnsnsnsorsnsssnsnsnsnes 17
2.6. TranSaCtIOMALITY . cue ettt ettt ettt et et et et ea e e aan 19
2.6.1. Transactional qUery Methodsv.eieriiiiieiiiiiieer e eree e e s s eeeeeeane 20

2.7 LOCKITIE 1 neutiitiei ittt ettt e e ettt st e ettt a s et e e ettt e satneneaetetsasnsnenenan 21
2.8 JPA AUGITING .. neneeieii ettt ettt ettt e e e e e eaens 22
2.8.1. General auditing CONFIGUIATION ...vviuiuiniiiiereinieiieeieererneeeareererernrnenserarsesasnsnsnsannens 22

3. MISCEIIAMEOUS ..euvuininininieiiiiii ettt ettt sttt e ea st s ettt enensasasatenenensnss 24
3.1. Merging PersiSteICE UIMITS ..uuuiuiuiuiniiiiieieiieiititrei ettt ttete e eeeeeteerataenenentersesasnenenss 24
3.1.1. Classpath scanning for @Entity classes and JPA mapping filescccccveverriiinineninennnnnn. 24

RV 610 B 1L LT =a - LU o) R PP PPPPPR 25

PN 0] 015] 4 o - PRSPPI 26
Appendix A: Frequently asked qUESTIONSuiuiuiniiiiiiitieiiieiieiereiieeite e teeneetetsesaenenenes 27
070 1411010) 0 N 27
INETASIIUCTUTE «.euininieie ittt e e it st sttt e et e s e et e e ensas e aenens 27

F N (o L 1 = PP 27

APPENAIX B GlOSSATY .t uinininiiiiiiiii ittt ettt s et e e ettt e st e ettt e raaenenas 29

© 2008-2014 The original authors.

Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for
such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

NOTE

Preface

Chapter 1. Project metadata

* Version control - http://github.com/spring-projects/spring-data-jpa
* Bugtracker - https://jira.spring.io/browse/DATAJPA

* Release repository - https://repo.spring.io/libs-release

* Milestone repository - https://repo.spring.io/libs-milestone

* Snapshot repository - https://repo.spring.io/libs-snapshot

Reference Documentation

http://github.com/spring-projects/spring-data-jpa
https://jira.spring.io/browse/DATAJPA
https://repo.spring.io/libs-release
https://repo.spring.io/libs-milestone
https://repo.spring.io/libs-snapshot

Chapter 2. JPA Repositories

This chapter will point out the specialties for repository support for JPA. This builds on the core
repository support explained in [repositories]. So make sure you’ve got a sound understanding of the
basic concepts explained there.

2.1. Introduction

2.1.1. Spring namespace

The JPA module of Spring Data contains a custom namespace that allows defining repository beans. It
also contains certain features and element attributes that are special to JPA. Generally the JPA
repositories can be set up using the repositories element:

Example 1. Setting up JPA repositories using the namespace

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<jpa:repositories base-package="com.acme.repositories" />

</beans>

Using this element looks up Spring Data repositories as described in [repositories.create-instances].
Beyond that it activates persistence exception translation for all beans annotated with @Repository to
let exceptions being thrown by the JPA persistence providers be converted into Spring’s
DataAccessException hierarchy.

Custom namespace attributes

Beyond the default attributes of the repositories element the JPA namespace offers additional
attributes to gain more detailed control over the setup of the repositories:

Table 1. Custom JPA-specific attributes of the repositories element

entity-manager-factory-ref Explicitly wire the EntityManagerFactory to be used
with the repositories being detected by the
repositories element. Usually used if multiple
EntityManagerFactory beans are used within the
application. If not configured we will
automatically lookup the EntityManagerFactory
bean with the name entityManagerFactory in the
ApplicationContext.

transaction-manager-ref Explicitly wire the PlatformTransactionManager to
be used with the repositories being detected by
the repositories element. Usually only necessary
if multiple transaction managers and/or
EntityManagerFactory beans have been configured.
Default to a single defined
PlatformTransactionManager inside the current
ApplicationContext.

Note that we require a PlatformTransactionManager bean named transactionManager to be present if no
explicit transaction-manager-ref is defined.

2.1.2. Annotation based configuration

The Spring Data JPA repositories support cannot only be activated through an XML namespace but also
using an annotation through JavaConfig.

Example 2. Spring Data JPA repositories using JavaConfig

class ApplicationConfig {

public DataSource dataSource() {

EmbeddedDatabaseBuilder builder = new EmbeddedDatabaseBuilder();
return builder.setType(EmbeddedDatabaseType.HSQL).build();
}

public EntityManagerFactory entityManagerFactory() {

HibernateJpaVendorAdapter vendorAdapter = new HibernatelpaVendorAdapter();
vendorAdapter.setGenerateDd1l(true);

LocalContainerEntityManagerFactoryBean factory = new
LocalContainerEntityManagerFactoryBean();
factory.setJpaVendorAdapter(vendorAdapter);
factory.setPackagesToScan("com.acme.domain");
factory.setDataSource(dataSource());
factory.afterPropertiesSet();

return factory.getObject();
}

public PlatformTransactionManager transactionManager() {

JpaTransactionManager txManager = new JpaTransactionManager();
txManager.setEntityManagerFactory(entityManagerFactory());
return txManager;

}
}

The just shown configuration class sets up an embedded HSQL database using the
EmbeddedDatabaseBuilder API of spring-jdbc. We then set up a EntityManagerFactory and use Hibernate
as sample persistence provider. The last infrastructure component declared here is the
JpaTransactionManager. We finally activate Spring Data JPA repositories using the
@EnableJpaRepositories annotation which essentially carries the same attributes as the XML
namespace does. If no base package is configured it will use the one the configuration class resides in.

2.2. Persisting entities

2.2.1. Saving entities

Saving an entity can be performed via the CrudRepository.save()-Method. It will persist or merge the
given entity using the underlying JPA EntityManager. If the entity has not been persisted yet Spring Data
JPA will save the entity via a call to the entityManager.persist() method, otherwise the

entityManager.merge() method will be called.

Entity state detection strategies

Spring Data JPA offers the following strategies to detect whether an entity is new or not:

Table 2. Options for detection whether an entity is new in Spring Data JPA

Id-Property inspection (default)

Implementing Persistable

Implementing EntityInformation

2.3. Query methods

2.3.1. Query lookup strategies

By default Spring Data JPA inspects the identifier
property of the given entity. If the identifier
property is null, then the entity will be assumed
as new, otherwise as not new.

If an entity implements Persistable, Spring Data
JPA will delegate the new detection to the

isNew() method of the entity. See the JavaDoc for
details.

You can customize the EntityInformation
abstraction used in the SimpleJpaRepository
implementation by creating a subclass of
JpaRepositoryFactory and overriding the
getEntityInformation() method accordingly. You
then have to register the custom implementation
of JpaRepositoryFactory as a Spring bean. Note
that this should be rarely necessary. See the
JavaDoc for details.

The JPA module supports defining a query manually as String or have it being derived from the

method name.

Declared queries

Although getting a query derived from the method name is quite convenient, one might face the
situation in which either the method name parser does not support the keyword one wants to use or
the method name would get unnecessarily ugly. So you can either use JPA named queries through a

http://docs.spring.io/spring-data/data-commons/docs/current/api/index.html?org/springframework/data/domain/Persistable.html
http://docs.spring.io/spring-data/data-jpa/docs/current/api/index.html?org/springframework/data/jpa/repository/support/JpaRepositoryFactory.html

naming convention (see Using JPA NamedQueries for more information) or rather annotate your query
method with @Query (see Using @Query for details).

2.3.2. Query creation

Generally the query creation mechanism for JPA works as described in [repositories.query-methods].
Here’s a short example of what a JPA query method translates into:

Example 3. Query creation from method names

public interface UserRepository extends Repository<User, Long> {

List<User> findByEmailAddressAndLastname(String emailAddress, String lastname);
}

We will create a query using the JPA criteria API from this but essentially this translates into the
following query: select u from User u where u.emailAddress = ?1 and u.lastname = ?72. Spring
Data JPA will do a property check and traverse nested properties as described in
[repositories.query-methods.query-property-expressions]. Here’s an overview of the keywords
supported for JPA and what a method containing that keyword essentially translates to.

Table 3. Supported keywords inside method names

Keyword Sample JPQL snippet

And findByLastnameAndFirstname where x.lastname = ?1 and
x.firstname = 72

Or findByLastnameOrFirstname where x.lastname = ?1 or
x.firstname = 72

Is,Equals findByFirstname,findByFirstname where x.firstname = 17

Is,findByFirstnameEquals

Between findByStartDateBetween where x.startDate between 17
and 72

LessThan findByAgelLessThan where x.age < 71

LessThanEqual findByAgeLessThanEqual where x.age 71

GreaterThan findByAgeGreaterThan where x.age > 71

GreaterThanEqual findByAgeGreaterThanEqual where x.age >= 71

After findByStartDateAfter where x.startDate > 71

Before findByStartDateBefore where x.startDate < 71

IsNull findByAgeIsNull where x.age is null

IsNotNull,NotNull findByAge(Is)NotNull where x.age not null

Like findByFirstnamelike where x.firstname like 71

Keyword Sample JPQL snippet

NotLike findByFirstnameNotLike where x.firstname not like
71

StartingWith findByFirstnameStartingWith where x.firstname like ?1
(parameter bound with
appended %)

EndingWith findByFirstnameEndingWith where x.firstname like ?1
(parameter bound with
prepended %)

Containing findByFirstnameContaining where x.firstname like ?1

(parameter bound wrapped in %)

OrderBy findByAgeOrderByLastnameDesc where x.age = 71 order by
x.lastname desc
Not findByLastnameNot where x.lastname <> 71
In findByAgeIn(Collection<Age> where x.age in ?1
ages)
NotIn findByAgeNotIn(Collection<Age> where x.age not in ?1
age)
True findByActiveTrue() where x.active = true
False findByActiveFalse() where x.active = false
IgnoreCase findByFirstnameIgnoreCase where UPPER(x.firstame) =
UPPER(?1)

In and NotIn also take any subclass of Collection as parameter as well as arrays or
NOTE varargs. For other syntactical versions of the very same logical operator check
[repository-query-keywords].

2.3.3. Using JPA NamedQueries

The examples use simple <named-query /> element and @NamedQuery annotation. The
queries for these configuration elements have to be defined in JPA query language. Of

NOTE course you can use <named-native-query /> or @NamedNativeQuery too. These elements
allow you to define the query in native SQL by losing the database platform
independence.

XML named query definition

To use XML configuration simply add the necessary <named-query /> element to the orm.xml JPA
configuration file located in META-INF folder of your classpath. Automatic invocation of named queries
is enabled by using some defined naming convention. For more details see below.

Example 4. XML named query configuration

<named-query name="User.findByLastname">
<query>select u from User u where u.lastname = ?1</query>
</named-query>

As you can see the query has a special name which will be used to resolve it at runtime.

Annotation configuration

Annotation configuration has the advantage of not needing another configuration file to be edited,
probably lowering maintenance costs. You pay for that benefit by the need to recompile your domain
class for every new query declaration.

Example 5. Annotation based named query configuration

(name = "User.findByEmailAddress",
query = "select u from User u where u.emailAddress = ?1")
public class User {

}

Declaring interfaces

To allow execution of these named queries all you need to do is to specify the UserRepository as
follows:

Example 6. Query method declaration in UserRepository

public interface UserRepository extends JpaRepository<User, Long> {
List<User> findByLastname(String lastname);

User findByEmailAddress(String emailAddress);
}

Spring Data will try to resolve a call to these methods to a named query, starting with the simple name
of the configured domain class, followed by the method name separated by a dot. So the example here
would use the named queries defined above instead of trying to create a query from the method name.

2.3.4. Using @Query

Using named queries to declare queries for entities is a valid approach and works fine for a small
number of queries. As the queries themselves are tied to the Java method that executes them you
actually can bind them directly using the Spring Data JPA @Query annotation rather than annotating
them to the domain class. This will free the domain class from persistence specific information and co-
locate the query to the repository interface.

Queries annotated to the query method will take precedence over queries defined using @NamedQuery or
named queries declared in orm. xml.

Example 7. Declare query at the query method using @Query

public interface UserRepository extends JpaRepository<User, Long> {

("select u from User u where u.emailAddress = ?1")
User findByEmailAddress(String emailAddress);
}

Using advanced LIKE expressionsThe query execution mechanism for manually defined queries using
@Query allow the definition of advanced LIKE expressions inside the query definition.

Example 8. Advanced like-expressions in @Query

public interface UserRepository extends JpaRepository<User, Long> {

("select u from User u where u.firstname like %?1")
List<User> findByFirstnameEndsWith(String firstname);

}

In the just shown sample LIKE delimiter character % is recognized and the query transformed into a
valid JPQL query (removing the %). Upon query execution the parameter handed into the method call
gets augmented with the previously recognized LIKE pattern.

Native queriesThe @Query annotation allows to execute native queries by setting the nativeQuery flag to
true. Note, that we currently don’t support execution of pagination or dynamic sorting for native
queries as we’d have to manipulate the actual query declared and we cannot do this reliably for native
SQL.

Example 9. Declare a native query at the query method using @Query

public interface UserRepository extends JpaRepository<User, Long> {

(value = "SELECT * FROM USERS WHERE EMAIL_ADDRESS = 70", nativeQuery = true)
User findByEmailAddress(String emailAddress);
}

2.3.5. Using named parameters

By default Spring Data JPA will use position based parameter binding as described in all the samples
above. This makes query methods a little error prone to refactoring regarding the parameter position.
To solve this issue you can use @Param annotation to give a method parameter a concrete name and
bind the name in the query.

Example 10. Using named parameters

public interface UserRepository extends JpaRepository<User, Long> {

("select u from User u where u.firstname = :firstname or u.lastname =
:lastname")
User findByLastnameOrFirstname(("lastname") String lastname,
("firstname") String firstname);

Note that the method parameters are switched according to the occurrence in the query defined.

2.3.6. Using SpEL expressions

As of Spring Data JPA release 1.4 we support the usage of restricted SpEL template expressions in
manually defined queries via @Query. Upon query execution these expressions are evaluated against a
predefined set of variables. We support the following list of variables to be used in a manual query.

Table 4. Supported variables inside SpEL based query templates

Variable Usage Description

entityName select x from #{#entityName} x Inserts the entityName of the
domain type associated with the
given Repository. The entityName
is resolved as follows: If the
domain type has set the name
property on the @Entity
annotation then it will be used.
Otherwise the simple class-name
of the domain type will be used.

The following example demonstrates one use case for the #{#entityName} expression in a query string
where you want to define a repository interface with a query method with a manually defined query.
In order not to have to state the actual entity name in the query string of a @Query annotation one can
use the #{#entityName} Variable.

The entityName can be customized via the @Entity annotation. Customizations via

NOTE .
orm.xml are not supported for the SpEL expressions.

Example 11. Using SpEL expressions in repository query methods - entityName

public class User {

Long id;

String lastname;

}

public interface UserRepository extends JpaRepository<User,Long> {

("select u from #{#entityName} u where u.lastname = ?1")
List<User> findByLastname(String lastname);

}

Of course you could have just used User in the query declaration directly but that would require you to
change the query as well. The reference to #entityName will pick up potential future remappings of the
User class to a different entity name (e.g. by using @Entity(name = "MyUser").

Another use case for the #{#entityName} expression in a query string is if you want to define a generic
repository interface with specialized repository interfaces for a concrete domain type. In order not to
have to repeat the definition of custom query methods on the concrete interfaces you can use the

entity name expression in the query string of the @Query annotation in the generic repository interface.

Example 12. Using SpEL expressions in repository query methods - entityName with inheritance

@MappedSuperclass
public abstract class AbstractMappedType {

String attribute
¥

@Entity
public class ConcreteType extends AbstractMappedType { }

@NoRepositoryBean
public interface MappedTypeRepository<T extends AbstractMappedType>
extends Repository<T, Long> {

@Query("select t from #{#entityName} t where t.attribute = ?1")
List<T> findA11ByAttribute(String attribute);
+

public interface ConcreteRepository
extends MappedTypeRepository<ConcreteType> { }

In the example the interface MappedTypeRepository is the common parent interface for a few domain
types extending AbstractMappedType. It also defines the generic method findAl1ByAttribute() which
can be wused on instances of the specialized repository interfaces. If you now invoke
findByAllAttribute() on ConcreteRepository the query being executed will be select t from
ConcreteType t where t.attribute = 71.

2.3.7. Modifying queries

All the sections above describe how to declare queries to access a given entity or collection of entities.
Of course you can add custom modifying behaviour by wusing facilities described in
[repositories.custom-implementations]. As this approach is feasible for comprehensive custom
functionality, you can achieve the execution of modifying queries that actually only need parameter
binding by annotating the query method with @Modifying:

Example 13. Declaring manipulating queries
@Modifying

@Query("update User u set u.firstname = ?1 where u.lastname = 72")
int setFixedFirstnameFor(String firstname, String lastname);

This will trigger the query annotated to the method as updating query instead of a selecting one. As the
EntityManager might contain outdated entities after the execution of the modifying query, we do not
automatically clear it (see JavaDoc of EntityManager.clear() for details) since this will effectively drop
all non-flushed changes still pending in the EntityManager. If you wish the EntityManager to be cleared
automatically you can set @Modifying annotation’s clearAutomatically attribute to true.

2.3.8. Applying query hints

To apply JPA query hints to the queries declared in your repository interface you can use the
@QueryHints annotation. It takes an array of JPA @QueryHint annotations plus a boolean flag to
potentially disable the hints applied to the addtional count query triggered when applying pagination.

Example 14. Using QueryHints with a repository method

public interface UserRepository extends Repository<User, Long> {

(value = { (name = "name", value = "value")},
forCounting = false)
Page<User> findByLastname(String lastname, Pageable pageable);
}

The just shown declaration would apply the configured @QueryHint for that actually query but omit
applying it to the count query triggered to calculate the total number of pages.

2.3.9. Configuring Fetch- and LoadGraphs

The JPA 2.1 specification introduced support for specifiying Fetch- and LoadGraphs that we also
support via the @EntityGraph annotation which allows to reference a @NamedEntityGraph definition, that
can be annotated on an entity, to be used to configure the fetch plan of the resulting query. The type
(Fetch / Load) of the fetching can be configured via the type attribute on the @EntityGraph annotation.
Please have a look at the JPA 2.1 Spec 3.7.4 for further reference.

Example 15. Defining a named entity graph on an entity.

(name = "GroupInfo.detail"”,
attributeNodes = ("members"))
public class GroupInfo {

// default fetch mode is lazy.

List<GroupMember> members = new ArraylList<GroupMember>();

Example 16. Referencing a named entity graph definition on an repository query method.

public interface GroupRepository extends CrudRepository<GroupInfo, String> {

(value = "GroupInfo.detail", type = EntityGraphType.LOAD)
GroupInfo getByGroupName(String name);

2.4. Stored procedures

The JPA 2.1 specification introduced support for calling stored procedures via the JPA criteria query
API. We Introduced the @Procedure annotation for declaring stored procedure metadata on a repository
method.

Example 17. The definition of the puslinout procedure in HSQL DB.

/5
DROP procedure IF EXISTS pluslinout
/5
CREATE procedure plustlinout (IN arg int, OUT res int)
BEGIN ATOMIC
set res = arg

Metadata for stored procedures can be configured via the NamedStoredProcedureQuery annotation on an

entity type.

Example 18. StoredProcedure metadata definitions on an entity.

(name = "User.plus1", procedureName = "plusTinout”,
parameters = {

(mode = ParameterMode.IN, name = "arg", type = Integer
.class),

ParameterMode.OUT, name = "res”, type = Integer

(mode
.class) })
public class User {}

Stored procedures can be referenced from a repository method in multiple ways. The stored procedure
to be called can either be defined directly via the value or procedureName attribute of the @Procedure
annotation or indirectly via the name attribute. If no name is configured the name of the repository
method is used as a fallback.

Example 19. Referencing explicitly mapped procedure with name "pluslinout” in database.

("plusTinout")
Integer explicitlyNamedPlusTinout(Integer arg);

Example 20. Referencing implicitly mapped procedure with name "pluslinout” in database via
procedureName alias.

(procedureName = "plusTinout")
Integer pluslinout(Integer arg);

Example 21. Referencing explicitly mapped named stored procedure "User.plus110" in EntityManager.

(name = "User.plus1I0")
Integer entityAnnotatedCustomNamedProcedurePlus1I0(("arg") Integer arg);

Example 22. Referencing implicitly mapped named stored procedure "User.plus1" in EntityManager via
method-name.

Integer plusi(("arg") Integer arg);

2.5. Specifications

JPA 2 introduces a criteria API that can be used to build queries programmatically. Writing a criteria
you actually define the where-clause of a query for a domain class. Taking another step back these
criteria can be regarded as predicate over the entity that is described by the JPA criteria API
constraints.

Spring Data JPA takes the concept of a specification from Eric Evans' book "Domain Driven Design",
following the same semantics and providing an API to define such specifications using the JPA criteria
APL. To support specifications you can extend your repository interface with the
JpaSpecificationExecutor interface:

public interface CustomerRepository extends CrudRepository<Customer, Long>,
JpaSpecificationExecutor {

}

The additional interface carries methods that allow you to execute specifications in a variety of ways.
For example, the findA1l method will return all entities that match the specification:

List<T> findA11(Specification<T> spec);
The Specification interface is defined as follows:

public interface Specification<T> {
Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,
CriteriaBuilder builder);

Okay, so what is the typical use case? Specifications can easily be used to build an extensible set of
predicates on top of an entity that then can be combined and used with JpaRepository without the need
to declare a query (method) for every needed combination. Here’s an example:

Example 23. Specifications for a Customer

public class CustomerSpecs {

public static Specification<Customer> isLongTermCustomer() {
return new Specification<Customer>() {
public Predicate toPredicate(Root<Customer> root, CriteriaQuery<?> query,
CriteriaBuilder builder) {

LocalDate date = new LocalDate().minusYears(2);
return builder.lessThan(root.get(_Customer.createdAt), date);
}
s
}

public static Specification<Customer> hasSalesOfMoreThan(MontaryAmount value) {
return new Specification<Customer>() {
public Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,
CriteriaBuilder builder) {

// build query here

Admittedly the amount of boilerplate leaves room for improvement (that will hopefully be reduced by
Java 8 closures) but the client side becomes much nicer as you will see below. The _Customer type is a
metamodel type generated using the JPA Metamodel generator (see the Hibernate implementation’s
documentation for example). So the expression _Customer.createdAt is asuming the Customer having a
createdAt attribute of type Date. Besides that we have expressed some criteria on a business
requirement abstraction level and created executable Specifications. So a client might use a
Specification as follows:

Example 24. Using a simple Specification

List<Customer> customers = customerRepository.findAll(isLongTermCustomer());

Okay, why not simply create a query for this kind of data access? You’re right. Using a single
Specification does not gain a lot of benefit over a plain query declaration. The power of specifications
really shines when you combine them to create new Specification objects. You can achieve this
through the Specifications helper class we provide to build expressions like this:

http://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/en-US/html_single/#whatisit
http://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/en-US/html_single/#whatisit

Example 25. Combined Specifications

MonetaryAmount amount = new MonetaryAmount(200.0, Currencies.DOLLAR);
List<Customer> customers = customerRepository.findAl1(
where(isLongTermCustomer()).or(hasSalesOfMoreThan(amount)));

As you can see, Specifications offers some glue-code methods to chain and combine Specification
instances. Thus extending your data access layer is just a matter of creating new Specification
implementations and combining them with ones already existing.

2.6. Transactionality

CRUD methods on repository instances are transactional by default. For reading operations the
transaction configuration readOnly flag is set to true, all others are configured with a plain
@Transactional so that default transaction configuration applies. For details see JavaDoc of
CrudRepository. If you need to tweak transaction configuration for one of the methods declared in a
repository simply redeclare the method in your repository interface as follows:

Example 26. Custom transaction configuration for CRUD

public interface UserRepository extends CrudRepository<User, Long> {

(timeout = 10)
public List<User> findAll();

// Further query method declarations

}

This will cause the findA11() method to be executed with a timeout of 10 seconds and without the
readOnly flag.

Another possibility to alter transactional behaviour is using a facade or service implementation that
typically covers more than one repository. Its purpose is to define transactional boundaries for non-
CRUD operations:

Example 27. Using a facade to define transactions for multiple repository calls

class UserManagementImpl implements UserManagement {

private final UserRepository userRepository;
private final RoleRepository roleRepository;

public UserManagementImpl(UserRepository userRepository,
RoleRepository roleRepository) {
this.userRepository = userRepository;
this.roleRepository = roleRepository;

}

public void addRoleToAllUsers(String roleName) {
Role role = roleRepository.findByName(roleName);

for (User user : userRepository.findAl1()) {
user.addRole(role);
userRepository.save(user);

}

This will cause call to addRoleToAllUsers() to run inside a transaction (participating in an
existing one or create a new one if none already running). The transaction configuration at the
repositories will be neglected then as the outer transaction configuration determines the actual
one used. Note that you will have to activate <tx:annotation-driven /> or use
@EnableTransactionManagement explicitly to get annotation based configuration at facades working.
The example above assumes you are using component scanning.

2.6.1. Transactional query methods

To allow your query methods to be transactional simply use @Transactional at the repository interface
you define.

Example 28. Using @Transactional at query methods

(readOnly = true)
public interface UserRepository extends JpaRepository<User, Long> {

List<User> findByLastname(String lastname);

("delete from User u where u.active = false")
void deleteInactiveUsers();

}

Typically you will want the readOnly flag set to true as most of the query methods will only read
data. In contrast to that deletelnactiveUsers() makes use of the @Modifying annotation and
overrides the transaction configuration. Thus the method will be executed with readOnly flag set to
false.

It’s definitely reasonable to use transactions for read only queries and we can mark
them as such by setting the readOnly flag. This will not, however, act as check that you
do not trigger a manipulating query (although some databases reject INSERT and UPDATE
statements inside a read only transaction). The readOnly flag instead is propagated as

NOTE hint to the underlying JDBC driver for performance optimizations. Furthermore, Spring
will perform some optimizations on the underlying JPA provider. E.g. when used with
Hibernate the flush mode is set to NEVER when you configure a transaction as readOnly
which causes Hibernate to skip dirty checks (a noticeable improvement on large object
trees).

2.7. Locking

To specify the lock mode to be used the @Lock annotation can be used on query methods:

Example 29. Defining lock metadata on query methods

interface UserRepository extends Repository<User, Long> {

// Plain query method
(LockModeType.READ)
List<User> findByLastname(String lastname);

}

This method declaration will cause the query being triggered to be equipped with the LockModeType

READ. You can also define locking for CRUD methods by redeclaring them in your repository interface
and adding the @Lock annotation:

Example 30. Defining lock metadata on CRUD methods

interface UserRepository extends Repository<User, Long> {

// Redeclaration of a CRUD method
@Lock(LockModeType.READ);
List<User> findAll();

}

2.8. JPA Auditing

2.8.1. General auditing configuration

Spring Data JPA ships with an entity listener that can be used to trigger capturing auditing information.
So first you have to register the AuditingEntityListener inside your orm.xml to be used for all entities in

your persistence contexts:
Note that the auditing feature requires spring-aspects.jar to be on the classpath.

Example 31. Auditing configuration orm.xml

<persistence-unit-metadata>
<persistence-unit-defaults>
<entity-listeners>
<entity-listener class=" .data.jpa.domain.support.AuditingEntitylListener" />

</entity-listeners>
</persistence-unit-defaults>
</persistence-unit-metadata>

Now activating auditing functionality is just a matter of adding the Spring Data JPA auditing
namespace element to your configuration:

Example 32. Activating auditing using XML configuration

<jpa:auditing auditor-aware-ref="yourAuditorAwareBean" />

As of Spring Data JPA 1.5, auditing can be enabled by annotating a configuration class with the

@EnableJpaAuditing annotation.

Example 33. Activating auditing via Java configuration

class Config {

public AuditorAware<AuditableUser> auditorProvider() {
return new AuditorAwareImpl();

}
}

If you expose a bean of type AuditorAware to the ApplicationContext, the auditing infrastructure will
pick it up automatically and use it to determine the current user to be set on domain types. If you have
multiple implementations registered in the ApplicationContext, you can select the one to be used by
explicitly setting the auditorAwareRef attribute of @EnableJpaAuditing.

Chapter 3. Miscellaneous

3.1. Merging persistence units

Spring supports having multiple persistence units out of the box. Sometimes, however, you might want
to modularize your application but still make sure that all these modules run inside a single
persistence unit at runtime. To do so Spring Data JPA offers a PersistenceUnitManager implementation
that automatically merges persistence units based on their name.

Example 34. Using MergingPersistenceUnitmanager

<bean class=" .lLocalContainerEntityManagerFactoryBean">
<property name="persistenceUnitManager">
<bean class=" .MergingPersistenceUnitManager" />
</property>
</bean>

3.1.1. Classpath scanning for @Entity classes and JPA mapping files

A plain JPA setup requires all annotation mapped entity classes listed in orm.xml. Same applies to XML
mapping files. Spring Data JPA provides a ClasspathScanningPersistenceUnitPostProcessor that gets a
base package configured and optionally takes a mapping filename pattern. It will then scan the given
package for classes annotated with @Entity or @MappedSuperclass and also loads the configuration
files matching the filename pattern and hands them to the JPA configuration. The PostProcessor has to
be configured like this:

Example 35. Using ClasspathScanningPersistenceUnitPostProcessor

<bean class=" .lLocalContainerEntityManagerFactoryBean">
<property name="persistenceUnitPostProcessors">
<list>

<bean class=
"org.springframework.data.jpa.support.ClasspathScanningPersistenceUnitPostProcessor">
<constructor-arg value="com.acme.domain" />
<property name="mappingFileNamePattern" value="**/*Mapping.xml" />
</bean>
</list>
</property>
</bean>

As of Spring 3.1 a package to scan can be configured on the
NOTE LocalContainerEntityManagerFactoryBean directly to enable classpath scanning for
entity classes. See the JavaDoc for details.

3.2. CDI integration

Instances of the repository interfaces are usually created by a container, which Spring is the most
natural choice when working with Spring Data. There’s sophisticated support to easily set up Spring to
create bean instances documented in [repositories.create-instances]. As of version 1.1.0 Spring Data
JPA ships with a custom CDI extension that allows using the repository abstraction in CDI
environments. The extension is part of the JAR so all you need to do to activate it is dropping the Spring
Data JPA JAR into your classpath.

You can now set up the infrastructure by implementing a CDI Producer for the EntityManagerFactory
and EntityManager:

class EntityManagerFactoryProducer {

public EntityManagerFactory createEntityManagerFactory() {
return Persistence.createEntityManagerFactory("my-presistence-unit");

}

public void close(EntityManagerFactory entityManagerFactory) {
entityManagerFactory.close();

}

public EntityManager createEntityManager(EntityManagerFactory entityManagerFactory) {
return entityManagerFactory.createEntityManager();

}

public void close(EntityManager entityManager) {
entityManager.close();
}
¥

The necessary setup can vary depending on the JavaEE environment you run in. It might also just be
enough to redeclare a EntityManager as CDI bean as follows:

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/jpa/LocalContainerEntityManagerFactoryBean.html#setPackagesToScan(java.lang.String...)

class CdiConfig {

public EntityManager entityManager;
¥

In this example, the container has to be capable of creating JPA EntityManagers itself. All the
configuration does is re-exporting the JPA EntityManager as CDI bean.

The Spring Data JPA CDI extension will pick up all EntityManagers availables as CDI beans and create a
proxy for a Spring Data repository whenever an bean of a repository type is requested by the
container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an @Injected

property:

class RepositoryClient {

PersonRepository repository;

public void businessMethod() {
List<Person> people = repository.findAll();

}
}

Appendix

Appendix A: Frequently asked questions

Common

I’d like to get more detailed logging information on what methods are called inside JpaRepository, e.g.
How can I gain them?

You can make use of CustomizableTraceInterceptor provided by Spring:

<bean id="customizableTracelnterceptor" class="
org.springframework.aop.interceptor.CustomizableTraceInterceptor">
<property name="enterMessage" value="Entering $[methodName]($[arguments])"/>
<property name="exitMessage" value="Leaving $[methodName](): $[returnValue]"/>
</bean>

<aop:config>
<aop:advisor advice-ref="customizableTraceInterceptor"
pointcut="execution(public *
org.springframework.data.jpa.repository.JpaRepository+.*(..))"/>
</aop:config>

Infrastructure

Currently I have implemented a repository layer based on HibernateDaoSupport. I create a SessionFactory
by using Spring’s AnnotationSessionFactoryBean. How do I get Spring Data repositories working in this
environment?

You have to replace AnnotationSessionFactoryBean with the HibernateJpaSessionFactoryBean as
follows:

Example 36. Looking up a SessionFactory from a HibernateEntityManagerFactory

<bean id="sessionFactory" class=
"org.springframework.orm.jpa.vendor.HibernateJpaSessionFactoryBean">

<property name="entityManagerFactory" ref="entityManagerFactory"/>
</bean>

Auditing

I'want to use Spring Data JPA auditing capabilities but have my database already set up to set
modification and creation date on entities. How to prevent Spring Data from setting the date
programmatically.

Just use the set-dates attribute of the auditing namespace element to false.

Appendix B: Glossary

AOP

Aspect oriented programming

Commons DBCP

Commons DataBase Connection Pools - Library of the Apache foundation offering pooling
implementations of the DataSource interface.

CRUD

Create, Read, Update, Delete - Basic persistence operations

DAO

Data Access Object - Pattern to separate persisting logic from the object to be persisted

Dependency Injection
Pattern to hand a component’s dependency to the component from outside, freeing the component
to lookup the dependant itself. For more information see
http://en.wikipedia.org/wiki/Dependency_Injection.

EclipseLink

Object relational mapper implementing JPA - http://www.eclipselink.org

Hibernate

Object relational mapper implementing JPA - http://www.hibernate.org

JPA

Java Persistence API

Spring

Java application framework - http://projects.spring.io/spring-framework

http://en.wikipedia.org/wiki/Dependency_Injection
http://www.eclipselink.org
http://www.hibernate.org
http://projects.spring.io/spring-framework

	Spring Data JPA - Reference Documentation
	Table of Contents
	Preface
	Chapter 1. Project metadata

	Reference Documentation
	Chapter 2. JPA Repositories
	2.1. Introduction
	2.1.1. Spring namespace
	2.1.2. Annotation based configuration

	2.2. Persisting entities
	2.2.1. Saving entities

	2.3. Query methods
	2.3.1. Query lookup strategies
	2.3.2. Query creation
	2.3.3. Using JPA NamedQueries
	2.3.4. Using @Query
	2.3.5. Using named parameters
	2.3.6. Using SpEL expressions
	2.3.7. Modifying queries
	2.3.8. Applying query hints
	2.3.9. Configuring Fetch- and LoadGraphs

	2.4. Stored procedures
	2.5. Specifications
	2.6. Transactionality
	2.6.1. Transactional query methods

	2.7. Locking
	2.8. JPA Auditing
	2.8.1. General auditing configuration

	Chapter 3. Miscellaneous
	3.1. Merging persistence units
	3.1.1. Classpath scanning for @Entity classes and JPA mapping files

	3.2. CDI integration

	Appendix
	Appendix A: Frequently asked questions
	Common
	Infrastructure
	Auditing

	Appendix B: Glossary

