
Spring Data Key-Value - Reference Documentation

1.0.0.M3

Costin Leau (SpringSource), Jon Brisbin (SpringSource)

Copyright © 2010-2011

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

Preface .. iii
I. Introduction .. 1

1. Why Spring Data - Key Value? .. 2
2. Requirements .. 3
3. Getting Started .. 4

3.1. First Steps .. 4
3.1.1. Knowing Spring .. 4
3.1.2. Knowing NoSQL and Key Value stores .. 4
3.1.3. Trying Out The Samples .. 4

3.2. Need Help? .. 4
3.2.1. Community Support .. 4
3.2.2. Professional Support .. 5

3.3. Following Development ... 5
II. Reference Documentation ... 6

4. Redis support .. 7
4.1. Redis Requirements .. 7
4.2. Redis Support High Level View .. 7
4.3. Connecting to Redis ... 7

4.3.1. RedisConnection and RedisConnectionFactory .. 7
4.3.2. Configuring Jedis connector ... 8
4.3.3. Configuring JRedis connector .. 9

4.4. Working with Objects through RedisTemplate .. 9
4.5. String-focused convenience classes ... 11
4.6. Serializers .. 11
4.7. Redis Messaging/PubSub .. 12

4.7.1. Sending/Publishing messages ... 12
4.7.2. Receiving/Subscribing for messages ... 12

4.8. Support Classes .. 15
4.9. Roadmap ahead .. 15

5. Riak Support .. 16
5.1. Configuring the RiakTemplate .. 16

5.1.1. Advanced Template Configuration ... 17
5.2. Working with Objects using the RiakTemplate .. 17

5.2.1. Saving data into Riak ... 18
5.2.2. Retrieving data from Riak .. 18

5.3. Linking Entries .. 19
5.3.1. Link Walking .. 19

5.4. Map/Reduce .. 20
5.4.1. Specifying Inputs .. 20
5.4.2. Defining Phases .. 20
5.4.3. Executing and Working with the Result .. 21

5.5. Managing Bucket Properties ... 21
5.6. Asynchronous Access ... 22

5.6.1. Template Configuration ... 22
5.6.2. Callbacks .. 22

5.7. Groovy Builder Support .. 23
5.7.1. Riak DSL Usage .. 23

5.8. Working with streams ... 25
III. Appendixes ... 26

A. Spring Data Key Value Schema(s) .. 27

Spring Data Key Value (1.0.0.M3) ii

Preface
The Spring Data Key-Value project applies core Spring concepts to the development of solutions using a
key-value style data store. We provide a "template" as a high-level abstraction for sending and receiving
messages. You will notice similarities to the JDBC support in the Spring Framework.

Spring Data Key Value (1.0.0.M3) iii

Part I. Introduction

This document is the reference guide for Spring Data - Key Value Support. It explains Key Value module
concepts and semantics and the syntax for various stores namespaces.

For an introduction to key value stores or Spring, or Spring Data examples, please refer to Chapter 3, Getting
Started - this documentation refers only to Spring Data Key Value Support and assumes the user is familiar
with the key value storages and Spring concepts.

Spring Data Key Value (1.0.0.M3) 1

Chapter 1. Why Spring Data - Key Value?
The Spring Framework is the leading full-stack Java/JEE application framework. It provides a lightweight
container and a non-invasive programming model enabled by the use of dependency injection, AOP, and
portable service abstractions.

NoSQL storages provide an alternative to classical RDBMS for horizontal scalability and speed. In terms of
implementation, Key Value stores represent one of the largest (and oldest) member in the NoSQL space.

The Spring Data Key Value (or SDKV) framework makes it easy to write Spring applications that use a Key
Value store by eliminating the redundant tasks and boiler place code required for interacting with the store
through Spring's excellent infrastructure support.

Spring Data Key Value (1.0.0.M3) 2

http://en.wikipedia.org/wiki/NoSQL

Chapter 2. Requirements
Spring Data Key Value 1.x binaries requires JDK level 6.0 and above, and Spring Framework 3.0.x and above.

In terms of key value stores, Redis 2.0.x and Riak 0.13 are required.

Spring Data Key Value (1.0.0.M3) 3

http://www.springsource.org/documentation
http://code.google.com/p/redis/
http://www.basho.com/Riak.html

Chapter 3. Getting Started
Learning a new framework is not always straight forward. In this section, we (the Spring Data team) tried to
provide, what we think is, an easy to follow guide for starting with Spring Data Key Value module. Of course,
feel free to create your own learning 'path' as you see fit and, if possible, please report back any improvements
to the documentation that can help others.

3.1. First Steps

As explained in Chapter 1, Why Spring Data - Key Value?, Spring Data Key Value (SDKV) provides
integration between Spring framework and key value (KV) stores. Thus, it is important to become acquainted
with both of these frameworks (storages or environments depending on how you want to name them).
Throughout the SDKV documentation, each section provides links to resources relevant however, it is best to
become familiar with these topics beforehand.

3.1.1. Knowing Spring

Spring Data uses heavily Spring framework's core functionality, such as the IoC container, resource abstract or
AOP infrastructure. While it is not important to know the Spring APIs, understanding the concepts behind them
is. At a minimum, the idea behind IoC should be familiar. These being said, the more knowledge one has about
the Spring, the faster she will pick Spring Data Key Value. Besides the very comprehensive (and sometimes
disarming) documentation that explains in detail the Spring Framework, there are a lot of articles, blog entries
and books on the matter - take a look at the Spring framework home page for more information. In general, this
should be the starting point for developers wanting to try Spring DKV.

3.1.2. Knowing NoSQL and Key Value stores

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of solutions, terms and
patterns (to make things worth even the term itself has multiple meanings). While some of the principles are
common, it is crucial that the user is familiar to some degree with the stores supported by SDKV. The best way
to get acquainted to this solutions is to read their documentation and follow their examples - it usually doesn't
take more then 5-10 minutes to go through them and if you are coming from an RDMBS-only background
many times these exercises can be an eye opener.

3.1.3. Trying Out The Samples

Unfortunately the SDKV project is very young and there are no samples available yet. However we are
working on them and plan to make them available as soon as possible. In the meantime however, one can use
our test suite as a code example (assuming the documentation is not enough) - we provide extensive integration
tests for our code base.

3.2. Need Help?

If you encounter issues or you are just looking for an advice, feel free to use one of the links below:

3.2.1. Community Support

Spring Data Key Value (1.0.0.M3) 4

http://static.springframework.org/spring/docs/3.0.x/reference/spring-core.html
http://static.springframework.org/spring/docs/3.0.x/reference/beans.html
http://static.springframework.org/spring/docs/3.0.x/reference/resources.html
http://static.springframework.org/spring/docs/3.0.x/reference/aop.html
http://www.springsource.org/documentation
http://www.google.com/search?q=nosoql+acronym

The Spring Data forum is a message board for all Spring Data (not just Key Value) users to share information
and help each other. Note that registration is needed only for posting.

3.2.2. Professional Support

Professional, from-the-source support, with guaranteed response time, is available from SpringSource, the
company behind Spring Data and Spring.

3.3. Following Development

For information on the Spring Data source code repository, nightly builds and snapshot artifacts please see the
Spring Data home page.

You can help make Spring Data best serve the needs of the Spring community by interacting with developers
through the Spring Community forums.

If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring Data issue
tracker.

To stay up to date with the latest news and announcements in the Spring eco system, subscribe to the Spring
Community Portal.

Lastly, you can follow the SpringSource Data blog or the project team on Twitter (Costin)

Getting Started

Spring Data Key Value (1.0.0.M3) 5

http://forum.springframework.org/forumdisplay.php?f=80
http://www.springsource.com
http://www.springsource.org/spring-data
http://forum.springsource.org
https://jira.springframework.org/browse/DATAKV
http://www.springframework.org/
http://blog.springsource.com/category/data-access/
http://twitter.com/costinl

Part II. Reference Documentation

Document structure
This part of the reference documentation explains the core functionality offered by Spring Data Key Value.

Chapter 4, Redis support introduces the Redis module feature set.

Chapter 5, Riak Support introduces the Riak module feature set.

Spring Data Key Value (1.0.0.M3) 6

Chapter 4. Redis support
One of the key value stores supported by SDKV is Redis. To quote the project home page: “ Redis is an
advanced key-value store. It is similar to memcached but the dataset is not volatile, and values can be strings,
exactly like in memcached, but also lists, sets, and ordered sets. All this data types can be manipulated with
atomic operations to push/pop elements, add/remove elements, perform server side union, intersection,
difference between sets, and so forth. Redis supports different kind of sorting abilities.”

Spring Data Key Value provides easy configuration and access to Redis from Spring application. Offers both
low-level and high-level abstraction for interacting with the store, freeing the user from infrastructural
concerns.

4.1. Redis Requirements

SDKV requires Redis 2.0 or above (Redis 2.2 is recommended) and Java SE 6.0 or above. In terms of language
bindings (or connectors), SDKV integrates with Jedis, JRedis and RJC, three popular open source Java libraries
for Redis. If you are aware of any other connector that we should be integrating is, please send us feedback.

4.2. Redis Support High Level View

The Redis support provides several components (in order of dependencies):

• Low-Level Abstractions - for configuring and handling communication with Redis through the various
connector libraries supported as described in Section 4.3, “Connecting to Redis”.

• High-Level Abstractions - providing a generified, user friendly template classes for interacting with Redis.
Section 4.4, “Working with Objects through RedisTemplate” explains the abstraction builds on top of the
low-level Connection API to handle the infrastructural concerns and object conversion.

• Support Classes - that offer reusable components (built on the aforementioned abstractions) such as
java.util.Collection backed by Redis as documented in Section 4.8, “Support Classes”

For most tasks, the high-level abstractions and support services are the best choice. Note that at any point, one
can move between layers - for example, it's very easy to get a hold of the low level connection (or even the
native libray) to communicate directly with Redis.

4.3. Connecting to Redis

One of the first tasks when using Redis and Spring is to connect to the store through the IoC container. To do
that, a Java connector (or binding) is required; currently SDKV has support for Jedis and JRedis. No matter the
library one chooses, there only one set of SDKV API that one needs to use that behaves consistently across all
connectors, namely the org.springframework.data.keyvalue.redis.connection package and its
RedisConnection and RedisConnectionFactory interfaces for working respectively for retrieving active
connection to Redis.

4.3.1. RedisConnection and RedisConnectionFactory

RedisConnection provides the building block for Redis communication as it handles the communication with

Spring Data Key Value (1.0.0.M3) 7

http://redis.io
http://github.com/xetorthio/jedis
http://github.com/alphazero/jredis
https://github.com/e-mzungu/rjc

the Redis back-end. It also automatically translates the underlying connecting library exceptions to Spring's
consistent DAO exception hierarchy so one can switch the connectors without any code changes as the
operation semantics remain the same.

Note
For the corner cases where the native library API is required, RedisConnection provides a
dedicated method getNativeConnection which returns the raw, underlying object used for
communication.

Active RedisConnection are created through RedisConnectionFactory. In addition, the factories act as
PersistenceExceptionTranslator meaning once declared, allow one to do transparent exception translation
for example through the use of the @Repository annotation and AOP. For more information see the dedicated
section in Spring Framework documentation.

Note
Depending on the underlying configuration, the factory can return a new connection or an existing
connection (in case a pool is used).

The easiest way to work with a RedisConnectionFactory is to configure the appropriate connector through the
IoC container and inject it into the using class.

Connector features

Unfortunately, currently, not connectors support all of Redis features - in particular JRedis does not have
support for hashes yet though this is currently being worked on. When invoking a method on the
Connection API that is unsupported by the underlying library, a UnsupportedOperationException is
thrown. This situation is likely to be fixed in the future, as the various connectors mature.

4.3.2. Configuring Jedis connector

Jedis is one of the connectors supported by the Key Value module through the
org.springframework.data.keyvalue.redis.connection.jedis package. In its simples form, the Jedis
configuration looks as follow:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

<!-- Jedis ConnectionFactory -->
<bean id="jedisConnectionFactory" class="org.springframework.data.keyvalue.redis.connection.jedis.JedisConnectionFactory"/>

</beans>

For production use however, one might want to tweak the settings such as the host or password:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="jedisConnectionFactory" class="org.springframework.data.keyvalue.redis.connection.jedis.JedisConnectionFactory"
p:host-name="server" p:port="6379"/>

</beans>

Redis support

Spring Data Key Value (1.0.0.M3) 8

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/dao.html#dao-exceptions
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/orm.html#orm-exception-translation
http://github.com/xetorthio/jedis

4.3.3. Configuring JRedis connector

JRedis is another popular, open-source connector supported by SDKV through the
org.springframework.data.keyvalue.redis.connection.jredis package.

Note
Since JRedis itself does not support (yet) Redis 2.x commands, SDKV uses an updated fork
available here.

A typical JRedis configuration can looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="jredisConnectionFactory" class="org.springframework.data.keyvalue.redis.connection.jredis.JredisConnectionFactory"
p:host-name="server" p:port="6379"/>

</beans>

As one can note, the configuration is quite similar to the Jedis one.

Important

Currently, JRedis does not have support for binary keys. This forces the JredisConnection to
perform encoding internally (through base64 schema). In practice, this means it's safe to read/write
arbitrary data however the Redis key stored values will differ from the decoded ones, even in the
simplest cases, since everything (no matter the format) is encoded. This will not be the case for
Redis values.

This issue is currently being addressed in the JRedis project and once fixed, will be incorporated by
Spring Data Redis.

4.4. Working with Objects through RedisTemplate

Most users are likely to use RedisTemplate and its coresponding package
org.springframework.data.keyvalue.redis.core - the template is in fact the central class of the Redis
module due to its rich feature set. The template offers a high-level abstraction for Redis interaction - while
RedisConnection offer low level methods that accept and return binary values (byte arrays), the template takes
care of serialization and connection management, freeing the user from dealing with such details.

Moreover, the template provides operations views (following the grouping from Redis command reference) that
offer rich, generified interfaces for working against a certain type or certain key (through the KeyBound

interfaces) as described below:

Table 4.1. Operational views

Interface Description

Key Type Operations

ValueOperations Redis string (or value) operations

Redis support

Spring Data Key Value (1.0.0.M3) 9

http://github.com/alphazero/jredis
http://github.com/anthonylauzon/jredis
http://en.wikipedia.org/wiki/Base64
http://redis.io/commands

Interface Description

ListOperations Redis list operations

SetOperations Redis set operations

ZSetOperations Redis zset (or sorted set) operations

HashOperations Redis hash operations

Key Bound Operations

BoundValueOperations Redis string (or value) key bound operations

BoundListOperations Redis list key bound operations

BoundSetOperations Redis set key bound operations

BoundZSetOperations Redis zset (or sorted set) key bound operations

BoundHashOperations Redis hash key bound operations

Once configured, the template is thread-safe and can be reused across multiple instances.

Out of the box, RedisTemplate uses a Java-based serializer for most of its operations. This means that any
object written or read by the template will be serializer/deserialized through Java. The serialization mechanism
can be easily changed on the template and the Redis module offers several implementations available in the
org.springframework.data.keyvalue.redis.serializer package - see Section 4.6, “Serializers” for more
information. Note that the template requires all keys to be non-null - values can be null as long as the
underlying serializer accepts them; read the javadoc of each serializer for more information.

For cases where a certain template view is needed, one the view as a dependency and inject the template: the
container will automatically perform the conversion eliminating the opsFor[X] calls:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="jedisConnectionFactory" class="org.springframework.data.keyvalue.redis.connection.jedis.JedisConnectionFactory"
p:use-pool="true"/>

<!-- redis template definition -->
<bean id="redisTemplate" class="org.springframework.data.keyvalue.redis.core.RedisTemplate"
p:connection-factory-ref="jedisConnectionFactory"/>

...
</beans>

public class Example {

// inject the actual template
@Autowired
private RedisTemplate<String, String> template;

// inject the template as ListOperations
@Autowired
private ListOperations<String, String> listOps;

public void addLink(String userId, URL url) {
listOps.leftPush(userId, url.toExternalForm());

}
}

Redis support

Spring Data Key Value (1.0.0.M3) 10

4.5. String-focused convenience classes

Since it's quite the keys and values stored in Redis can be java.lang.String, the Redis modules provides two
extensions to RedisConnection and RedisTemplate respectively the StringRedisConnection (and its
DefaultStringRedisConnection implementation) and StringRedisTemplate as a convenient one-stop
solution for intensive String operations. In addition to be bound to String keys, the template and the
connection use the StringRedisSerializer underneath which means the stored keys and values are human
readable (assuming the same encoding is used both in Redis and your code). For example:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="jedisConnectionFactory" class="org.springframework.data.keyvalue.redis.connection.jedis.JedisConnectionFactory"
p:use-pool="true"/>

<bean id="stringRedisTemplate" class="org.springframework.data.keyvalue.redis.core.StringRedisTemplate"
p:connection-factory-ref="jedisConnectionFactory"/>

...
</beans>

public class Example {

@Autowired
private StringRedisTemplate redisTemplate;

public void addLink(String userId, URL url) {
redisTemplate.opsForList().leftPush(userId, url.toExternalForm());

}
}

As with the other Spring templates, RedisTemplate and StringRedisTemplate allow the developer to talk
directly to Redis through the RedisCallback interface: this gives complete control to the developer as it talks
directly to the RedisConnection.

public void useCallback() {
redisTemplate.execute(new RedisCallback<Object>() {

public Object doInRedis(RedisConnection connection) throws DataAccessException {
Long size = connection.dbSize();
...

}
});

}

4.6. Serializers

From the framework perspective, the data stored in Redis are just bytes. While Redis itself supports various
types, for the most part these refer to the way the data is stored rather then what it represents. It is up to the user
to decide whether the information gets translated into Strings or any other objects. The conversion between the
user (custom) types and raw data (and vice-versa) is handled in SDKV Redis through the RedisSerializer

interface (package org.springframework.data.keyvalue.redis.serializer) which as the name implies,
takes care of the serialization process. Multiple implementations are available out of the box, two of which
have been already mentioned before in this documentation: the StringRedisSerializer and the
JdkSerializationRedisSerializer. However one can use OxmSerializer for Object/XML mapping through

Redis support

Spring Data Key Value (1.0.0.M3) 11

Spring 3 OXM support or JacksonJsonRedisSerializer for storing data in JSON format. Do note that the
storage format is not limited only to values - it can be used for keys, values or hashes without any restrictions.

4.7. Redis Messaging/PubSub

Spring Data provides dedicated messaging integration for Redis, very similar in functionality and naming to the
JMS integration in Spring Framework; in fact, users familiar with the JMS support in Spring, should feel right
at home.

Redis messaging can be roughly divided into two areas of functionality, namely the production or publication
and consumption or subscription of messages, hence the shortcut pubsub (Publish/Subscribe). The
RedisTemplate class is used for message production. For asynchronous reception similar to Java EE's
message-driven bean style, Spring Data provides a dedicated message listener containers that is used to create
Message-Driven POJOs (MDPs) and for synchronous reception, the RedisConnection contract.

The package org.springframework.data.keyvalue.redis.connection and
org.springframework.data.keyvalue.redis.listener provide the core functionality for using Redis
messaging.

4.7.1. Sending/Publishing messages

To publish a message, one can use, as with the other operations, either the low-level RedisConnection or the
high-level RedisTemplate. Both entities offer the publish method that accepts as argument the message that
needs to be sent as well as the destination channel. While RedisConnection requires raw-data (array of bytes),
the RedisTemplate allow arbitrary objects to be passed in as messages:

// send message through connection
RedisConnection con = ...
byte[] msg = ...
byte[] channel = ...

con.publish(msg, channel);

// send message through RedisTemplate
RedisTemplate template = ...
template.convertAndSend("hello!", "world");

4.7.2. Receiving/Subscribing for messages

On the receiving side, one can subscribe to one or multiple channels either by naming them directly or by using
pattern matching. The latter approach is quite useful as it not only allows multiple subscriptions to be created
with one command but to also listen on channels not yet created at subscription time (as long as match the
pattern).

At the low-level, RedisConnection offers subscribe and pSubscribe methods that map the Redis commands
for subscribing by channel respectively by pattern. Note that multiple channels or patterns can be used as
arguments. To change the subscription of a connection or simply query whether it is listening or not,
RedisConnection provides getSubscription and isSubscribed method.

Important
Subscribing commands are synchronized and thus blocking. That is, calling subscribe on a
connection will cause the current thread to block as it will start waiting for messages - the thread
will be released only if the subscription is canceled, that is an additional thread invokes
unsubscribe respectively pUnsubscribe on the same connection. See message listener container

Redis support

Spring Data Key Value (1.0.0.M3) 12

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html
http://en.wikipedia.org/wiki/JSON

below for a solution to these problem.

As mentioned above, one subscribed a connection starts waiting for messages - no other commands can be
invoked on it except for adding new subscriptions or modifying/canceling the existing ones, that is invoking
anything else then subscribe, pSubscribe, unsubscribe, pUnsubscribe or is illegal and will through an
exception.

In order to subscribe for messages, one needs to implement the MessageListener callback: each time a new
message arrives, the callback gets invoked and the user code executed through onMessage method. The
interface gives access not only to the actual message but to the channel it has been received through and the
pattern (if any) used by the subscription to match the channel. This information allows the callee to differentiate
between various messages not just by content but also through data.

4.7.2.1. Message Listener Containers

Due to its blocking nature, low-level subscription is not attractive as it requires connection and thread
management for every single listener. To alleviate this problem, Spring Data offers
RedisMessageListenerContainer which does all the heavy lifting on behalf of the user - users familiar with
EJB and JMS should find the concepts familiar as it is designed as close as possible to the support in Spring
Framework and its message-driven POJOs (MDPs)

RedisMessageListenerContainer acts as a message listener container; it is used to receive messages from a
Redis channel and drive the MessageListener that are injected into it. The listener container is responsible for
all threading of message reception and dispatches into the listener for processing. A message listener container
is the intermediary between an MDP and a messaging provider, and takes care of registering to receive
messages, resource acquisition and release, exception conversion and suchlike. This allows you as an
application developer to write the (possibly complex) business logic associated with receiving a message (and
reacting to it), and delegates boilerplate Redis infrastructure concerns to the framework.

Further more, to minimize the application footprint, RedisMessageListenerContainer performs allows one
connection and one thread to be shared by multiple listeners even though they do not share a subscription. Thus
no matter how many listeners or channels an application tracks, the runtime cost will remain the same through
out its lifetime. Moreover, the container allows runtime configuration changes so one can add or remove
listeners while an application is running without the need for restart. Additionally, the container uses a lazy
subscription approach, using a RedisConnection only when needed - if all the listeners are unsubscribed,
cleanup is automatically performed and the used thread released.

To help with the asynch manner of messages, the container requires a java.util.concurrent.Executor (or
Spring's TaskExecutor) for dispatching the messages. Depending on the load, the number of listeners or the
runtime environment, one should change or tweak the executor to better serve her needs - in particular in
managed environments (such as app servers), it is highly recommended to pick a a proper TaskExecutor to take
advantage of its runtime.

4.7.2.2. The MessageListenerAdapter

The MessageListenerAdapter class is the final component in Spring's asynchronous messaging support: in a
nutshell, it allows you to expose almost any class as a MDP (there are of course some constraints).

Consider the following interface definition. Notice that although the interface extends the MessageListener

interface, it can still be used as a MDP via the use of the MessageListenerAdapter class. Notice also how the
various message handling methods are strongly typed according to the contents of the various Message types
that they can receive and handle.

Redis support

Spring Data Key Value (1.0.0.M3) 13

public interface MessageDelegate {

void handleMessage(String message);

void handleMessage(Map message);

void handleMessage(byte[] message);

void handleMessage(Serializable message);
}

public class DefaultMessageDelegate implements MessageDelegate {
// implementation elided for clarity...

}

In particular, note how the above implementation of the MessageDelegate interface (the above
DefaultMessageDelegate class) has no Redis dependencies at all. It truly is a POJO that we will make into an
MDP via the following configuration.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:redis="http://www.springframework.org/schema/redis"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/redis http://www.springframework.org/schema/redis/spring-redis.xsd">

<!-- the default ConnectionFactory -->
<redis:listener-container>
<!-- the method attribute can be skipped as the default method name is "handleMessage" -->
<redis:listener ref="listener" method="handleMessage" channel="chatroom" />

</redis:listener-container>

<bean class="redisexample.DefaultMessageDelegate"/>
...

<beans>

The example above uses the Redis namespace to declare the message listener container and automatically
register the POJOs as listeners. The full blown, beans definition is displayed below:

<!-- this is the Message Driven POJO (MDP) -->
<bean id="messageListener" class="org.springframework.data.keyvalue.redis.listener.adapter.MessageListenerAdapter">

<constructor-arg>
<bean class="redisexample.DefaultMessageDelegate"/>

</constructor-arg>
</bean>

<!-- and this is the message listener container... -->
<bean id="redisContainer" class="org.springframework.data.keyvalue.redis.listener.RedisMessageListenerContainer">

<property name="connectionFactory" ref="connectionFactory"/>
<property name="messageListeners">
<!-- map of listeners and their associated topics (channels or topics) -->
<map>

<entry key-ref="messageListener">
<bean class="org.springframework.data.keyvalue.redis.listener.ChannelTopic">

<constructor-arg value="chatroom">
</bean>

</entry>
</map>

</property>
</bean>

Each time a message is received, the adapter automatically performs translation (using the configured
RedisSerializer) between the low-level format and the required object type transparently. Any exception
caused by the method invocation is caught and handled by the container (by default, being logged).

Redis support

Spring Data Key Value (1.0.0.M3) 14

4.8. Support Classes

Package org.springframework.data.keyvalue.redis.support offers various reusable components that rely
on Redis as a backing store. Curently the package contains various JDK-based interface implementations on top
of Redis such as atomic counters and JDK Collections.

The atomic counters make it easy to wrap Redis key incrementation while the collections allow easy
management of Redis keys with minimal storage exposure or API leakage: in particular the RedisSet and
RedisZSet interfaces offer easy access to the set operations supported by Redis such as intersection and
union while RedisList implements the List, Queue and Deque contracts (and their equivalent blocking
siblings) on top of Redis, exposing the storage as a FIFO (First-In-First-Out), LIFO (Last-In-First-Out) or
capped collection with minimal configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="queue" class="org.springframework.data.keyvalue.redis.support.collections.DefaultRedisList">
<constructor-arg ref="redisTemplat"/>
<constructor-arg value="queue-key"/>

</bean>

</beans>

public class AnotherExample {

// injected
private Deque<String> queue;

public void addTag(String tag) {
queue.push(tag);

}
}

As shown in the example above, the consuming code is decoupled from the actual storage implementation - in
fact there is no indication that Redis is used underneath. This makes moving from development to production
environments transparent and highly increases testability (the Redis implementation can just as well be replaced
with an in-memory one).

4.9. Roadmap ahead

Spring Data Redis project is in its early stages. We are interested in feedback, knowing what your use cases are,
what are the common patters you encounter so that the Redis module better serves your needs. Do contact us
using the channels mentioned above, we are interested in hearing from you!

Redis support

Spring Data Key Value (1.0.0.M3) 15

http://download.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/util/Collection.html

Chapter 5. Riak Support
Riak is a Key/Value datastore that supports Internet-scale data replication for high performance and high
availability. Spring Data Key/Value (SDKV) provides access to the Riak datastore over the HTTP REST API
using a built-in driver based on Spring 3.0's RestTemplate. In addition to making Key/Value datastore access
easier from Java, the RiakTemplate has been designed, from the ground up, to be used from alternative JVM
languages like Groovy or JRuby.

Since the SDKV support for Riak uses the stateless REST API, there are no connection factories to manage or
other stateful objects to keep tabs on. The helper you'll spend the most time working with is likely the
thread-safe RiakTemplate or RiakKeyValueTemplate. Your choice of which to use will depend on how you
want to manage buckets and keys. SDKV supports two ways to interact with Riak. If you want to use the
convention you're likely already familiar with, namely of storing an entry with a given key in a "bucket" by
passing the bucket and key name separately, you'll want to use the RiakTemplate. If you want to use a single
object to represent your bucket and key pair, you can use the RiakKeyValueTemplate. It supports a key object
that is encoded using one of several different methods:

• Using a String - You can concatenate two strings, separated by a colon: "mybucket:mykey".

• Using a BucketKeyPair - You can pass an instance of BucketKeyPair, like SimpleBucketKeyPair.

• Using a Map - You can pass a Map with keys for "bucket" and "key".

5.1. Configuring the RiakTemplate

This is likely the easiest path to using SDKV for Riak, as the bucket and key are passed separately. The
examples that follow will assume you're using this version of the the template.

There are only two options you need to set to specify the Riak server to use in your RiakTemplate object:
"defaultUri" and "mapReduceUri". Encoded with the URI should be placeholders for the bucket and the key,
which will be filled in by the RestTemplate when the request is made.

Important

You can also turn the internal, ETag-based object cache off by setting useCache="false". It's
generally recommended, however, to leave the internal cache on as the ETag matching will pick up
any changes made to the entry on the Riak side and your application will benefit from
greatly-increased performance for often-requested objects.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="riakTemplate" class="org.springframework.data.keyvalue.riak.core.RiakTemplate"
p:defaultUri="http://localhost:8098/riak/{bucket}/{key}"
p:mapReduceUri="http://localhost:8098/mapred"
p:useCache="true"/>

</beans>

Spring Data Key Value (1.0.0.M3) 16

https://wiki.basho.com/display/RIAK/Riak
https://wiki.basho.com/pages/viewpage.action?pageId=1245320
https://wiki.basho.com/display/RIAK/REST+API
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/remoting.html#rest-resttemplate
http://groovy.codehaus.org/
http://jruby.org/

5.1.1. Advanced Template Configuration

There are a couple additional properties on the RiakTemplate that can be changed from their defaults. If you
want to specify your own ConversionService to use when converting objects for storage inside Riak, then set it
on the "conversionService" property:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="conversionService" class="com.mycompany.convert.MyConversionService"/>
<bean id="riakTemplate" class="org.springframework.data.keyvalue.riak.core.RiakTemplate"

p:defaultUri="http://localhost:8098/riak/{bucket}/{key}"
p:mapReduceUri="http://localhost:8098/mapred"
p:conversionService-ref="conversionService"/>

</beans>

Depending on the application, it might be useful to set default Quality-of-Service parameters. In Riak
paralance, these are the "dw", "w", and "r" parameters. They can be set to an integer representing the number of
vnodes that need to report having received the data before declaring the operation a success, or the string "one",
"all", or (the default) "quorum". These values can be overridden by passing a different set of QosParameters to
the set/get operation you're performing.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="qos" class="org.springframework.data.keyvalue.riak.core.RiakQosParameters"
p:durableWriteThreshold="all"
p:writeThreshold="all"/>

<bean id="riakTemplate" class="org.springframework.data.keyvalue.riak.core.RiakTemplate"
p:defaultUri="http://localhost:8098/riak/{bucket}/{key}"
p:mapReduceUri="http://localhost:8098/mapred"
p:defaultQosParameters-ref="qos"/>

</beans>

You can also set a specific ClassLoader to use when loading objects from Riak. Just set the classLoader

property:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="riakTemplate" class="org.springframework.data.keyvalue.riak.core.RiakTemplate"
p:defaultUri="http://localhost:8098/riak/{bucket}/{key}"
p:mapReduceUri="http://localhost:8098/mapred"
p:classLoader-ref="customClassLoader"/>

</beans>

5.2. Working with Objects using the RiakTemplate

Riak Support

Spring Data Key Value (1.0.0.M3) 17

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert-ConversionService-API
https://wiki.basho.com/display/RIAK/REST+API#RESTAPI-Setbucketproperties

One of the primary goals of the SDKV project is to make accessing Key/Value stores easier for the developer
by taking away the mundane tasks of basic IO, buffering, type conversion, exception handling, and sundry
other logistical concerns so the developer can focus on creating great applications. SDKV for Riak works
toward this goal by making basic persistence and data access as easy as using a Map.

5.2.1. Saving data into Riak

To store data in Riak, use one of the six different set methods:

import org.springframework.data.keyvalue.riak.core.RiakTemplate;

public class Example {

@Autowired
RiakTemplate riak;

public void setData(String bucket, String key, String data) throws Exception {
riak.set(bucket, key, data); // Set as Content-Type: text/plain
riak.setAsBytes(bucket, key, data.getBytes()); // Set as Content-Type: application/octet-stream

}

public void setData(String bucket, String key, MyPojo data) throws Exception {
riak.set(bucket, key, data); // Converted to JSON automatically, Content-Type: application/json

}

}

Additionally, there is a setWithMetaData method that takes a Map of metadata that will be set as the outgoing
HTTP headers. To set custom metadata, your key should be prefixed with X-Riak-Meta- e.g.
X-Riak-Meta-Custom-Header.

5.2.1.1. Letting Riak generate the key

Riak has the ability to generate random IDs for you when storing objects. The RiakTemplate exposes this
capability via the put method. It will return the ID it generated for you as a String.

import org.springframework.data.keyvalue.riak.core.RiakTemplate;

public class Example {

@Autowired
RiakTemplate riak;

public String setData(String bucket, String data) throws Exception {
String id = riak.put(bucket, data); // Returns the generated ID
return id;

}

}

5.2.2. Retrieving data from Riak

Retrieving data from Riak is just as easy. There are actually 13 different get methods on RiakTemplate that
give the developer a wide range options for accessing and converting your data.

Assuming you've stored a POJO using an appropriate set method, you can retrieve that object from Riak using
a get:

import org.springframework.data.keyvalue.riak.core.RiakTemplate;

Riak Support

Spring Data Key Value (1.0.0.M3) 18

https://wiki.basho.com/display/RIAK/REST+API#RESTAPI-Storeaneworexistingobjectwithakey

public class Example {

@Autowired
RiakTemplate riak;

public void getData(String bucket, String key) throws Exception {
// What you get depends on Content-Type.
// application/json=Map, text/plain=String, etc...
Object o = riak.get(bucket, key);

// If your entry is Content-Type: application/json...
// It will automatically be converted when retrieved.
MyPojo s = riak.getAsType(bucket, key, MyPojo.class);

// If your entry is Content-Type: application/octet-stream,
// you can access the raw bytes.
byte[] b = riak.getAsBytes(bucket, key);

}

}

5.3. Linking Entries

Riak has the ability to link entries together using an arbitrary tag. This relationship information is stored in the
Link header. The RiakTemplate exposes a method for linking entries together called link. Its usage is quite
simple:

Important

A link is uni-directional, so keep in mind that the bucket and key you pass first should be that of
the child (or target) object and the second set of bucket/key pairs you pass to the link method is
the source of the relationship. It's this second entry that will receive an updated Link header that
points to the child or target entry.

@Autowired
RiakTemplate riak;

riak.link("childbucket", "childkey", "sourcebucket", "sourcekey", "tagname");

Now, querying the metadata on the entry at sourcebucket:sourcekey will result in a Link header that points to
the child object: </riak/childbucket/childkey>; riaktag="tagname"

5.3.1. Link Walking

When entries are linked together in Riak, those relationships can be efficiently traversed on the server using a
feature called Link Walking. Rather than requesting each object in a link's relationship individually, a link walk
pulls all the related objects at once and sends that data back to the client as MIME-encoded multipart data. As
such, it requires special processing to convert those multiple entries into a List of objects, just as if you had
used a get method. If you don't specify a type to convert the objects to, the linkWalk method will try to infer it
from the bucket name. If the bucket name is not a valid class name, it will default to using a java.util.Map.

To link walk a relationship and return a list of custom POJOs, you would do something like this:

@Autowired
RiakTemplate riak;

Riak Support

Spring Data Key Value (1.0.0.M3) 19

https://wiki.basho.com/display/RIAK/Links
../../api/org/springframework/data/keyvalue/riak/core/RiakTemplate.html#link(B1, K1, B2, K2, java.lang.String)
http://blog.basho.com/2010/02/24/link-walking-by-example/
../../api/org/springframework/data/keyvalue/riak/core/RiakTemplate.html#linkWalk(B, K, java.lang.String)

List<MyPojo> result = riak.linkWalk("sourcebucket", "sourcekey", "tagname", MyPojo.class);

5.4. Map/Reduce

Riak supports Map/Reduce functionality in a couple different ways. You can specify the Javascript source to
execute (termed "anonymous" Javascript), you can reference some Javascript already stored in Riak at a specfic
bucket and key, or you can reference an Erlang module and function. The Map/Reduce support in SDKV
covers all these bases by giving you meaningful abstractions over the Map/Reduce job that represent the
various aspects of the Map/Reduce process.

At the highest level, every Map/Reduce request is represented by a MapReduceJob. The MapReduceJob

represents the inputs, the phases, and the optional arg to send to Riak to execute the Map/Reduce job. The
toJson method is responsible for serializing the entire job into the appropriate JSON data to send to Riak.

5.4.1. Specifying Inputs

Riak will accept either a string denoting the bucket in which to get the list of keys to operate on, or a List of
Lists denoting the bucket/key pairs to operate on while executing this Map/Reduce job. If you call the
addInputs method on the job passing a List with a single string entry, the job will assume you want to operate
on an entire bucket. Otherwise, you'll need to pass a multi-dimensional List of bucket/key pairs.

To operate on an entire bucket:

@Autowired
RiakTemplate riak;

RiakMapReduceJob job = riak.createMapReduceJob();
List<String> bucket = new ArrayList<String>() {{
add("mybucket");

}};
job.addInputs(bucket); // Will M/R entire bucket

To operate on a set of keys:

import org.springframework.data.keyvalue.riak.mapreduce.*;

@Autowired
RiakTemplate riak;

RiakMapReduceJob job = riak.createMapReduceJob();

List<String> pair = new ArrayList<String>() {{
add("mybucket");
add("mykey");

}};
List<List<String>> keys = new ArrayList<List<String>>() {{
add(pair);

}};
job.addInputs(keys); // Will M/R only specified keys

5.4.2. Defining Phases

Map/Reduce operations in Riak are broken up into phases. Phases contain a MapReduceOperation. There are

Riak Support

Spring Data Key Value (1.0.0.M3) 20

../../api/org/springframework/data/keyvalue/riak/mapreduce/MapReduceJob.html
../../api/org/springframework/data/keyvalue/riak/mapreduce/MapReduceOperation.html

currently two implementations to handle Javascript or Erlang M/R operations:
JavascriptMapReduceOperation and ErlangMapReduceOperation.

An example Map/Reduce job defining a single "map" phase defined in anonymous Javascript might look like
this:

import org.springframework.data.keyvalue.riak.mapreduce.*;

@Autowired
RiakTemplate riak;

RiakMapReduceJob job = riak.createMapReduceJob();
List<String> bucket = new ArrayList<String>() {{
add("mybucket");

}};

job.addInputs(bucket); // M/R the entire bucket

MapReduceOperation mapOper = new JavascriptMapReduceOperation("function(v){ ...M/R function body... }");
MapReducePhase mapPhase = new RiakMapReducePhase("map", "javascript", mapOper);

job.addPhase(mapPhase);

5.4.3. Executing and Working with the Result

To execute a configured job on your Riak server, use either the synchronous execute or asynchronous submit

methods of your configured RiakTemplate:

Object o = riak.execute(job); // Results of last Map or Reduce phase. Should be a List<?>

...or...

List<MyPojo> o = riak.execute(job, MyPojo.class); // Coerce to given type

...or...

Future<List<?>> f = riak.submit(job); // Job runs in a separate thread

5.5. Managing Bucket Properties

It's sometimes useful to manage settings like the Quality-of-Service parameters w and dw (write and durable
write thresholds) and the n_val setting at the bucket level. It's also possible to list the keys in a particular
bucket by calling the getBucketSchema method, passing true as the second parameter, which tells the
RiakTemplate to list the keys.

To list the keys in a bucket, you would do something like this:

@Autowired
RiakTemplate riak;

Map<String, Object> schema = riak.getBucketSchema("mybucket", true);
List<String> keys = schema.get("keys")
for(String key : keys) {
...do something with each key...

}

To update the bucket settings, pass a Map of properties:

Riak Support

Spring Data Key Value (1.0.0.M3) 21

../../api/org/springframework/data/keyvalue/riak/mapreduce/JavascriptMapReduceOperation.html
../../api/org/springframework/data/keyvalue/riak/mapreduce/ErlangMapReduceOperation.html

@Autowired
RiakTemplate riak;

Map<String, Integer> props = new HashMap<String, Integer>();
props.put("n_val", 6);
props.put("dw", 3);

riak.updateBucketSchema("mybucket", props);

Only the properties specified in the passed-in Map will be updated. Properties that have already been set in
previous operations and not specified in this operation will be unaffected.

5.6. Asynchronous Access

SDKV for Riak also includes an asynchronous version of most of the methods available to the RiakTemplate,
whose method calls are all synchronous. The asynchronous version of the template is called
AsyncRiakTemplate.

5.6.1. Template Configuration

The AsyncRiakTemplate has the same basic configuration properties as the synchronous RiakTemplate. The
only other property specific to the AsyncRiakTemplate you might want to configure is the thread pool the
template uses to execute tasks asynchronously (by default a cached ThreadPoolExecutor). Set your
ExecutorService on the template's workerPool property.

5.6.2. Callbacks

Using the asynchronous Riak support in SDKV means you'll be relying on callbacks to execute your business
logic when the requested operation is completed. All asynchronous operations follow a similar pattern:

• They are named similarly to their synchronous counterparts.

• They take a AsyncKeyValueStoreOperation<?, ?> as a final parameter.

• They return a Future<?>.

To perform an asynchronous get on a JSON-serialized Map object which returns a custom object from the
callback, you'd do something like:

@Autowired
AsyncRiakTemplate riak;

Future<MyObject> future = riak.get("mybucket", "mykey", new AsyncKeyValueStoreOperation<Map, MyObject>() {

MyObject obj = new MyObject();

MyObject completed(KeyValueStoreMetaData meta, Map result) {
obj.setName(result.get("name"));
return obj;

}

MyObject failed(Throwable error) {
obj.setError(error);
return obj;

}

});

Riak Support

Spring Data Key Value (1.0.0.M3) 22

http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ThreadPoolExecutor.html

// Maybe do other work while waiting...
MyObject obj = future.get();

5.7. Groovy Builder Support

If your application uses Groovy, either in a standalone context, or as part of a Grails application, then you could
benefit from using the Groovy RiakBuilder that comes with SDKV for Riak. Underneath, it uses the
AsyncRiakTemplate. To use the RiakBuilder, pass the constructor a configured AsyncRiakTemplate.

Important

Instances of RiakBuilder are NOT thread-safe and should not be shared across threads.

The RiakBuilder implements an easy-to-use DSL for interacting with Riak. It doesn't implement the full set of
methods available on the underlying AsyncRiakTemplate but a subset. The methods that the RiakBuilder

responds to are:

• set

• setAsBytes

• put

• get

• getAsBytes

• getAsType

• containsKey

• delete

• foreach

5.7.1. Riak DSL Usage

The following example illustrates the different uses of the Riak DSL, including batching requests together into
a logical group, using a default bucket name (the node directly beneath riak will be considered the default
bucket to use for the contained operations unless a different one is specified on the operation itself):

def riak = new RiakBuilder(asyncRiakTemplate)
riak {
test {
put(value: [test: "value"]) { completed { v, meta -> meta.key }}
put(value: [test: "value"]) { completed { v, meta -> meta.key }}
put(value: [test: "value"]) { completed { v, meta -> meta.key }}
put(value: [test: "value"]) { completed { v, meta -> meta.key }}

mapreduce {
query {

map(arg: [test: "arg", alist: [1, 2, 3, 4]]) {
source "function(v, keyInfo, arg){ return [1]; }"

}

Riak Support

Spring Data Key Value (1.0.0.M3) 23

../../api/org/springframework/data/keyvalue/riak/groovy/RiakBuilder.html

reduce {
source "function(v){ return Riak.reduceSum(v); }"

}
}
failed { it.printStackTrace() }

}
}

}
def results = riak.results

riak.foreach(bucket: "test") {
completed { v, meta ->
riak.delete(bucket: "test", key: meta.key)

}
}

Some important things to note from this example:

• Each operation in the Riak DSL has two callbacks: completed and failed.

• The completed closure is passed either the result object, or, if your closure is defined with two parameters,
the result object and the metadata associated with that entry.

• Operations can be enclosed in an arbitrarily-named closure which the builder interprets as a default bucket
name (in this case, the node "test" tells the builder to use the bucket name "test" for a default, unless one is
specified on one of the enclosed operations).

• Each operation within a builder's execution will be accumulated inside the special results property. Code
that needs to know the output of individual operations within the batch can get access to that object through
this property. Note that this means that RiakBuilder instances are NOT thread-safe.

Important

Even though the Riak DSL uses an asynchronous template underneath, all operations performed
through the DSL will, by default, block until complete. To get a truly asynchronous operation, pass
the parameter wait: 0 (or give a meaningful timeout in milliseconds to wait for the operation to
complete) on the operation.

5.7.1.1. QosParameters on Riak DSL Operations

You can pass QosParameters to Riak DSL operations by simply defining them as parameters to the operation:

def riak = new RiakBuilder(asyncRiakTemplate)

def myobj = riak.set(bucket: "mybucket", key: "mykey", qos: ["dw": "all"])

5.7.1.2. Working with Riak DSL Output

The output of DSL operations will either be passed to the configured completed callback, or be returned to the
caller if no callback is specified. In the example above, the mapreduce operation has no completed closure.
Therefore, the return of the reduce phase is simply passed back to the builder, which makes that output
available on the special results property.

To gain access to the operation's results immediately, simply assign it to a variable:

Riak Support

Spring Data Key Value (1.0.0.M3) 24

../../api/org/springframework/data/keyvalue/riak/core/RiakMetaData.html

def riak = new RiakBuilder(asyncRiakTemplate)

def myobj = riak.get(bucket: "mybucket", key: "mykey")

If you add a non-zero wait value to the operation, "myobj" will contain a Future<?> rather than the result
object itself.

5.8. Working with streams

SDKV for Riak includes a couple of useful helper objects to make reading and writing plain text or binary data
in Riak really easy. If you want to store a file in Riak, then you can create a RiakOutputStream and simply
write your data to it (making sure to call the "flush" method, which actually sends the data to Riak).

import org.springframework.data.keyvalue.riak.core.RiakTemplate;
import org.springframework.data.keyvalue.riak.core.io.RiakOutputStream;

public class Example {

@Autowired
RiakTemplate riak;

public void writeToRiak(String bucket, String key, String data) throws Exception {
OutputStream out = new RiakOutputStream(riak, bucket, key);
try {

out.write(data.getBytes());
} finally {

out.flush();
out.close();

}
}

}

Reading data from Riak is similarly easy. SDKV provides a java.io.File subclass that represents a resource
in Riak. There's also a Spring IO Resource abstraction called RiakResource that can be used anywhere a
Resource is required. There's also an InputStream implementation called RiakInputStream.

import org.springframework.data.keyvalue.riak.core.RiakTemplate;
import org.springframework.data.keyvalue.riak.core.io.RiakInputStream;

public class Example {

@Autowired
RiakTemplate riak;

public String readFromRiak(String bucket, String key) throws Exception {
InputStream in = new RiakInputStream(riak, bucket, key);
String data;
...read data and work with it...
return data;

}

}

Riak Support

Spring Data Key Value (1.0.0.M3) 25

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/resources.html

Part III. Appendixes

Document structure
Various appendixes outside the reference documentation.

Appendix A, Spring Data Key Value Schema(s) defines the schemas provided by Spring Data Key Value.

Spring Data Key Value (1.0.0.M3) 26

Appendix A. Spring Data Key Value
Schema(s)
Spring Data - Redis support

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.springframework.org/schema/redis"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:tool="http://www.springframework.org/schema/tool"
targetNamespace="http://www.springframework.org/schema/redis"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:import namespace="http://www.springframework.org/schema/tool" schemaLocation="http://www.springframework.org/schema/tool/spring-tool.xsd"/>

<xsd:annotation>
<xsd:documentation><![CDATA[

Defines the configuration elements for the Spring Data Redis support.
Allows for configuring Redis listener containers in XML 'shortcut' style.

]]></xsd:documentation>
</xsd:annotation>

<xsd:element name="listener-container">
<xsd:annotation>
<xsd:documentation><![CDATA[

Container of Redis listeners. All listeners will be hosted by the same container.
]]></xsd:documentation>
<xsd:appinfo>

<tool:annotation>
<tool:exports type="org.springframework.data.keyvalue.redis.listener.RedisMessageListenerContainer"/>

</tool:annotation>
</xsd:appinfo>

</xsd:annotation>
<xsd:complexType>
<xsd:sequence>

<xsd:element name="listener" type="listenerType" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="connection-factory" type="xsd:string" default="redisConnectionFactory">

<xsd:annotation>
<xsd:documentation><![CDATA[

A reference to the Redis ConnectionFactory bean.
Default is "redisConnectionFactory".

]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation kind="ref">
<tool:expected-type type="org.springframework.data.keyvalue.redis.connection.ConnectionFactory"/>

</tool:annotation>
</xsd:appinfo>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="task-executor" type="xsd:string">

<xsd:annotation>
<xsd:documentation><![CDATA[

A reference to a Spring TaskExecutor (or standard JDK 1.5 Executor) for executing
Redis listener invokers. Default is a SimpleAsyncTaskExecutor.

]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation kind="ref">
<tool:expected-type type="java.util.concurrent.Executor"/>

</tool:annotation>
</xsd:appinfo>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="subscription-task-executor" type="xsd:string">

<xsd:annotation>
<xsd:documentation><![CDATA[

A reference to a Spring TaskExecutor (or standard JDK 1.5 Executor) for listening
to Redis messages. By default reuses the 'task-executor' value.

]]></xsd:documentation>
<xsd:appinfo>

Spring Data Key Value (1.0.0.M3) 27

<tool:annotation kind="ref">
<tool:expected-type type="java.util.concurrent.Executor"/>

</tool:annotation>
</xsd:appinfo>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="topic-serializer" type="xsd:string">

<xsd:annotation>
<xsd:documentation><![CDATA[

A reference to the RedisSerializer strategy for converting Redis channels/patterns to
serialized format. Default is a StringRedisSerializer.

]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation kind="ref">
<tool:expected-type type="org.springframework.data.keyvalue.redis.serializer.RedisSerializer"/>

</tool:annotation>
</xsd:appinfo>

</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="phase" type="xsd:string">

<xsd:annotation>
<xsd:documentation><![CDATA[

The lifecycle phase within which this container should start and stop. The lower
the value the earlier this container will start and the later it will stop. The
default is Integer.MAX_VALUE meaning the container will start as late as possible
and stop as soon as possible.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
</xsd:complexType>

</xsd:element>

<xsd:complexType name="listenerType">
<xsd:attribute name="ref" type="xsd:string" use="required">
<xsd:annotation>

<xsd:documentation><![CDATA[
The bean name of the listener object, implementing
the MessageListener interface or defining the specified listener method.
Required.

]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation kind="ref"/>

</xsd:appinfo>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="channel" type="xsd:string">
<xsd:annotation>

<xsd:documentation><![CDATA[
The channel(s) to which the listener is subscribed. Multiple values can be specified
by separating them with spaces.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="pattern" type="xsd:string">
<xsd:annotation>

<xsd:documentation><![CDATA[
The pattern(s) matching the channels to which the listener is subscribed. Multiple values can be specified
by separating them with spaces.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="method" type="xsd:string">
<xsd:annotation>

<xsd:documentation><![CDATA[
The name of the listener method to invoke. If not specified,
the target bean is supposed to implement the MessageListener
interface or provide a method named 'handleMessage'.

]]></xsd:documentation>
</xsd:annotation>

</xsd:attribute>
<xsd:attribute name="serializer" type="xsd:string">
<xsd:annotation>

<xsd:documentation><![CDATA[
A reference to the RedisSerializer strategy for converting Redis Messages to
listener method arguments. Default is a StringRedisSerializer.

]]></xsd:documentation>
<xsd:appinfo>
<tool:annotation kind="ref">
<tool:expected-type type="org.springframework.data.keyvalue.redis.serializer.RedisSerializer"/>

Spring Data Key Value Schema(s)

Spring Data Key Value (1.0.0.M3) 28

</tool:annotation>
</xsd:appinfo>

</xsd:annotation>
</xsd:attribute>

</xsd:complexType>
</xsd:schema>

Spring Data Key Value Schema(s)

Spring Data Key Value (1.0.0.M3) 29

	Spring Data Key-Value - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	Chapter 1. Why Spring Data - Key Value?
	Chapter 2. Requirements
	Chapter 3. Getting Started
	3.1. First Steps
	3.1.1. Knowing Spring
	3.1.2. Knowing NoSQL and Key Value stores
	3.1.3. Trying Out The Samples

	3.2. Need Help?
	3.2.1. Community Support
	3.2.2. Professional Support

	3.3. Following Development

	Part II. Reference Documentation
	Chapter 4. Redis support
	4.1. Redis Requirements
	4.2. Redis Support High Level View
	4.3. Connecting to Redis
	4.3.1. RedisConnection and RedisConnectionFactory
	4.3.2. Configuring Jedis connector
	4.3.3. Configuring JRedis connector

	4.4. Working with Objects through RedisTemplate
	4.5. String-focused convenience classes
	4.6. Serializers
	4.7. Redis Messaging/PubSub
	4.7.1. Sending/Publishing messages
	4.7.2. Receiving/Subscribing for messages
	4.7.2.1. Message Listener Containers
	4.7.2.2. The MessageListenerAdapter

	4.8. Support Classes
	4.9. Roadmap ahead

	Chapter 5. Riak Support
	5.1. Configuring the RiakTemplate
	5.1.1. Advanced Template Configuration

	5.2. Working with Objects using the RiakTemplate
	5.2.1. Saving data into Riak
	5.2.1.1. Letting Riak generate the key

	5.2.2. Retrieving data from Riak

	5.3. Linking Entries
	5.3.1. Link Walking

	5.4. Map/Reduce
	5.4.1. Specifying Inputs
	5.4.2. Defining Phases
	5.4.3. Executing and Working with the Result

	5.5. Managing Bucket Properties
	5.6. Asynchronous Access
	5.6.1. Template Configuration
	5.6.2. Callbacks

	5.7. Groovy Builder Support
	5.7.1. Riak DSL Usage
	5.7.1.1. QosParameters on Riak DSL Operations
	5.7.1.2. Working with Riak DSL Output

	5.8. Working with streams

	Part III. Appendixes
	Appendix A. Spring Data Key Value Schema(s)

