Spring Data Key-Value - Reference Documentation

1.0.0.M3

Costin Leau (SpringSource), Jon Brisbin (SpringSource)

Copyright © 2010-2011

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

(T Lo [FTox i o o PRSPPI 1
1. Why Spring Data- K&Y VAIUE?coouiiieieieeee ettt 2
2. REQUITEIMENES ..ottt e e e e e e e e et e e e e e e e e s s e ettt e e et eeaeesssasnteaeeeaaeeseannnreens 3
3. GELIING SEAMEAeeeeeiiiiiee ittt e et e e e et e e e st e e e e e ae e e e e enb e e e e e anbereeeaas 4

G T O T = B (o 4
3. L1 KNOWING SPIMNG etteieeiniieieeeiiteee e ettt e e et e et e e s e e e s s e e e e nbe e e e e snseeeeeannnneeas 4
3.1.2. Knowing NoSQL and Key ValUe StOr€Sueeiviieeeiiiiiiiiiieeee e ae e 4
3.1.3. Trying OUt The SAMPIESooeeeiiiieeee e a e 4

T N\ [= o I o = I o PSSR 4
3.2.1. COMMUNILY SUPPOIT ...viieieeieeeeiiiiiitee e e e e e e ettt e e e e e e e s s sntr e e e e e e e s s esntrrenereaaeaaans 4
3.2.2. Professional SUPPOITeeiiiiiiiieiiiieie et e e e 5

BTG N o] o V1T g To [D= = o] 1= o | 5

I1. RefErence DOCUMENTALIONueiiiiieeei ittt ee e e e e e e r e e e e e s et e e e e e e e s s ssnbaaeeeeaeesssansraaaeeaaaeeaaans 6

S0 LSS U o] o o U OPUPSRRR 7
4.1, REAiS REQUITEIMENTSuiiiiiiiie e et e e e e s st e e e e e s e s st e e e e e e s e e st aba e e e e e e e e e s annnenes 7
4.2. Redis SUPPOrt HIgN LEVE VIBWcooiiiiiiiiiiece et 7
4.3. CoNNECLINGTO REAISueiiiieiiiiee e e e ane s 7

4.3.1. Redi sConnect i on and Redi SCONNECt i ONFACE OF'Y .eevvvvvevirieiieieieeeieieeeeeeeeeeeeeeeeeess 7
4.3.2. Configuring JediS CONNECLONcceviviiiiiiieieii e e e e e e e e e e e e e ee e 8
4.3.3. Configuring JREAIS CONNECIONccvveieeiiiiiie et ee e et e et e e e 9

4.4. Working with Objects through Redi sTempl at @ccvvieeiiiiiiiiiiiiieee e 9

4.5. String-focused CONVENIENCE ClaSSES ...uvviiiiiii i 11

SIS = T .= £ SRR 11

4.7. Redis MeSSagiNg/PUDSUDcooiiiiiiiiiicc e anees 12
4.7.1. Sending/Publishing MESSAgEScccuriiiiiiiiiie it 12
4.7.2. Receiving/Subscribing fOr MESSAJEScvvvvvviiiiiiieieeeeeeeeeeeeee e 12

A.8. SUPPOIT ClBSSES ...eeiiiiiiiiieiit e e e e e e ettt e e e e e e s s e e e e e e e e s st aeeeeaaesssaasntaaeeaeaeessannnneees 15

4.9. ROBAMEP GNEAA ...t 15

T = NS U o oo PR PPRSPT 16
5.1. Configuring the Ri @K TENMPI @t ...eeeeiiuvrrieeiiirieee it ee e st e et e e e e s e e e e ee e nees 16

5.1.1. Advanced Template Configurationccccciveeiieiiiiiciiiiee e 17

5.2. Working with Objects using the Ri ak TENPl @t €ceeevivrieeiiiiiiieesiiieee e 17
52.1. Savingdatainto RiaK ..o 18
5.2.2. Retrieving datafrom RiaKc.eeveiiieiiiiie e 18

5.3. LINKING ENEIES ...t 19
5.3.1. LINKWEIKING ..ot e e e e 19

5.4, MADIREAUCEcoeiiiiiie ettt ettt e et e e et e e s abn e e e e e e e nnes 20
5.4.1. SpeCifyiNng INPULScoooeeiieeee e, 20
5.4.2. DEfINING PRASESooiiiiiiii ittt 20
5.4.3. Executing and Working withthe Resultcc 21

5.5. Managing BUCKEL PrOPEITIESeeviieeeiiiiiiieiie et e et ee s 21

5.6. ASYNCNIONOUS ACCESSveeeeiiuiiiieeaiiteee e sttt e e s ssee e e e st e e e s st e e s anbe e e e s annn e e e s annreeeeennes 22
5.6.1. Template Configurationccvveiiieeeiiiiiiiiei et r e e e 22
5.6.2. CallDACKS ...ooviieeeiiee e 22

5.7. Groovy Builder SUPPOItcoooeieeeeeeceeee 23
5.7.0. RIBK DSL USBOEeuviiiiiiee ettt ettt e e e e ettt r e e e e s s snntbraneeaaaeenans 23

5.8. WOrKing With SITEAIMScceiiiiiiiiiiii e e e e e e s eeeeas 25

TN oo =0 [=PSRRI 26
A. Spring Data Key Value SChEMA(S)ccoiuiriiiiiiiiie ittt 27

Spring DataKey Vaue (1.0.0.M3)

Preface

The Spring Data Key-Value project applies core Spring concepts to the development of solutions using a
key-value style data store. We provide a "template" as a high-level abstraction for sending and receiving

messages. Y ou will notice similarities to the JDBC support in the Spring Framework.

Spring DataKey Vaue (1.0.0.M3)

Part |. Introduction

This document is the reference guide for Spring Data - Key Value Support. It explains Key Value module
concepts and semantics and the syntax for various stores namespaces.

For an introduction to key value stores or Spring, or Spring Data examples, please refer to Chapter 3, Getting
Sarted - this documentation refers only to Spring Data Key Vaue Support and assumes the user is familiar
with the key value storages and Spring concepts.

Spring DataKey Vaue (1.0.0.M3) 1

Chapter 1. Why Spring Data - Key Value?

The Spring Framework is the leading full-stack Java/JEE application framework. It provides a lightweight
container and a non-invasive programming model enabled by the use of dependency injection, AOP, and
portable service abstractions.

NoSQL storages provide an alternative to classica RDBMS for horizontal scalability and speed. In terms of
implementation, Key Value stores represent one of the largest (and oldest) member in the NoSQL space.

The Spring Data Key Value (or SDKV) framework makes it easy to write Spring applications that use a Key
Vaue store by eliminating the redundant tasks and boiler place code required for interacting with the store
through Spring's excellent infrastructure support.

Spring DataKey Vaue (1.0.0.M3) 2

http://en.wikipedia.org/wiki/NoSQL

Chapter 2. Requirements

Spring Data Key Value 1.x binaries requires JDK level 6.0 and above, and Spring Framework 3.0.x and above.

In terms of key value stores, Redis 2.0.x and Riak 0.13 are required.

Spring Data Key Vaue (1.0.0.M3)

http://www.springsource.org/documentation
http://code.google.com/p/redis/
http://www.basho.com/Riak.html

Chapter 3. Getting Started

Learning a new framework is not always straight forward. In this section, we (the Spring Data team) tried to
provide, what we think is, an easy to follow guide for starting with Spring Data Key Value module. Of course,
feel free to create your own learning 'path’ as you see fit and, if possible, please report back any improvements
to the documentation that can help others.

3.1. First Steps

As explained in Chapter 1, Why Spring Data - Key Value?, Spring Data Key Vaue (SDKV) provides
integration between Spring framework and key value (KV) stores. Thus, it is important to become acquainted
with both of these frameworks (storages or environments depending on how you want to name them).
Throughout the SDKV documentation, each section provides links to resources relevant however, it is best to
become familiar with these topics beforehand.

3.1.1. Knowing Spring

Spring Data uses heavily Spring framework's core functionality, such as the 1oC container, resource abstract or
AOP infrastructure. Whileit is not important to know the Spring APIs, understanding the concepts behind them
is. At aminimum, the idea behind |oC should be familiar. These being said, the more knowledge one has about
the Spring, the faster she will pick Spring Data Key Value. Besides the very comprehensive (and sometimes
disarming) documentation that explains in detail the Spring Framework, there are a lot of articles, blog entries
and books on the matter - take alook at the Spring framework home page for more information. In genera, this
should be the starting point for developers wanting to try Spring DKV.

3.1.2. Knowing NoSQL and Key Value stores

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of solutions, terms and
patterns (to make things worth even the term itself has multiple meanings). While some of the principles are
common, it iscrucial that the user is familiar to some degree with the stores supported by SDKV. The best way
to get acquainted to this solutions is to read their documentation and follow their examples - it usually doesn't
take more then 5-10 minutes to go through them and if you are coming from an RDMBS-only background
many times these exercises can be an eye opener.

3.1.3. Trying Out The Samples

Unfortunately the SDKV project is very young and there are no samples available yet. However we are
working on them and plan to make them available as soon as possible. In the meantime however, one can use
our test suite as a code example (assuming the documentation is not enough) - we provide extensive integration
tests for our code base.

3.2. Need Help?

If you encounter issues or you are just looking for an advice, feel free to use one of the links below:

3.2.1. Community Support

Spring DataKey Vaue (1.0.0.M3) 4

http://static.springframework.org/spring/docs/3.0.x/reference/spring-core.html
http://static.springframework.org/spring/docs/3.0.x/reference/beans.html
http://static.springframework.org/spring/docs/3.0.x/reference/resources.html
http://static.springframework.org/spring/docs/3.0.x/reference/aop.html
http://www.springsource.org/documentation
http://www.google.com/search?q=nosoql+acronym

Getting Started

The Spring Data forum is a message board for all Spring Data (not just Key Value) users to share information
and help each other. Note that registration is needed only for posting.

3.2.2. Professional Support

Professional, from-the-source support, with guaranteed response time, is available from SpringSource, the
company behind Spring Data and Spring.

3.3. Following Development

For information on the Spring Data source code repository, nightly builds and snapshot artifacts please see the
Spring Data home page.

Y ou can help make Spring Data best serve the needs of the Spring community by interacting with developers
through the Spring Community forums.

If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring Data issue
tracker.

To stay up to date with the latest news and announcements in the Spring eco system, subscribe to the Spring
Community Portal.

Lastly, you can follow the SpringSource Data blog or the project team on Twitter (Costin)

Spring DataKey Vaue (1.0.0.M3) 5

http://forum.springframework.org/forumdisplay.php?f=80
http://www.springsource.com
http://www.springsource.org/spring-data
http://forum.springsource.org
https://jira.springframework.org/browse/DATAKV
http://www.springframework.org/
http://blog.springsource.com/category/data-access/
http://twitter.com/costinl

Part |Il. Reference Documentation

Document structure

This part of the reference documentation explains the core functionality offered by Spring Data Key Value.
Chapter 4, Redis support introduces the Redis modul e feature set.

Chapter 5, Riak Support introduces the Riak modul e feature set.

Spring DataKey Vaue (1.0.0.M3)

Chapter 4. Redis support

One of the key value stores supported by SDKV is Redis. To quote the project home page: “ Redis is an
advanced key-value store. It is similar to memcached but the dataset is not volatile, and values can be strings,
exactly like in memcached, but also lists, sets, and ordered sets. All this data types can be manipulated with
atomic operations to push/pop elements, add/remove elements, perform server side union, intersection,
difference between sets, and so forth. Redis supports different kind of sorting abilities.”

Spring Data Key Vaue provides easy configuration and access to Redis from Spring application. Offers both
low-level and high-level abstraction for interacting with the store, freeing the user from infrastructural
concerns.

4.1. Redis Requirements

SDKYV requires Redis 2.0 or above (Redis 2.2 is recommended) and Java SE 6.0 or above. In terms of language
bindings (or connectors), SDKV integrates with Jedis, JRedis and RJC, three popular open source Java libraries
for Redis. If you are aware of any other connector that we should be integrating is, please send us feedback.

4.2. Redis Support High Level View

The Redis support provides several components (in order of dependencies):

« Low-Level Abstractions - for configuring and handling communication with Redis through the various
connector libraries supported as described in Section 4.3, “ Connecting to Redis’.

« High-Level Abstractions - providing a generified, user friendly template classes for interacting with Redis.
Section 4.4, “Working with Objects through Redi sTenpl at e” explains the abstraction builds on top of the
low-level connecti on API to handle the infrastructural concerns and object conversion.

e Support Classes - that offer reusable components (built on the aforementioned abstractions) such as
java.util. Collection backed by Redis as documented in Section 4.8, “ Support Classes’

For most tasks, the high-level abstractions and support services are the best choice. Note that at any point, one
can move between layers - for example, it's very easy to get a hold of the low level connection (or even the
native libray) to communicate directly with Redis.

4.3. Connecting to Redis

One of the first tasks when using Redis and Spring is to connect to the store through the oC container. To do
that, a Java connector (or binding) is required; currently SDKV has support for Jedis and JRedis. No matter the
library one chooses, there only one set of SDKV API that one needs to use that behaves consistently across all
connectors, namely the org.springframework. data. keyval ue. redi s. connection package and its
Redi sConnection and Redi sConnecti onFactory interfaces for working respectively for retrieving active
connect i on to Redis.

4.3.1. Redi sConnect i on and Redi sConnect i onFact ory

Redi sConnect i on provides the building block for Redis communication as it handles the communication with

Spring DataKey Vaue (1.0.0.M3) 7

http://redis.io
http://github.com/xetorthio/jedis
http://github.com/alphazero/jredis
https://github.com/e-mzungu/rjc

Redis support

the Redis back-end. It also automatically translates the underlying connecting library exceptions to Spring's
consistent DAO exception hierarchy so one can switch the connectors without any code changes as the
operation semantics remain the same.

Note

e For the corner cases where the native library API is required, Redi sConnection provides a
dedicated method get Nati veConnecti on which returns the raw, underlying object used for
communication.

Active Redi sConnection are created through Redi sConnectionFactory. In addition, the factories act as
Per si st enceExcepti onTransl at or meaning once declared, allow one to do transparent exception transation
for example through the use of the @reposi t ory annotation and AOP. For more information see the dedicated
section in Spring Framework documentation.

Note
e Depending on the underlying configuration, the factory can return a new connection or an existing
connection (in case a pool is used).

The easiest way to work with aRedi sConnect i onFact ory is to configure the appropriate connector through the
IoC container and inject it into the using class.

Connector features

Unfortunately, currently, not connectors support all of Redis features - in particular JRedis does not have
support for hashes yet though this is currently being worked on. When invoking a method on the
Connect i on APl that is unsupported by the underlying library, a Unsupport edQper at i onExcepti on iS
thrown. This situation is likely to be fixed in the future, as the various connectors mature.

4.3.2. Configuring Jedis connector

Jedis is one of the connectors supported by the Key Vaue module through the
org. spri ngfranewor k. dat a. keyval ue. redi s. connection.jedis package. In its simples form, the Jedis
configuration looks as follow:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schenaLocat i on="
http://ww. spri ngfranmewor k. or g/ schena/ beans http://ww. spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans. xsc

<l-- Jedis ConnectionFactory -->
<bean id="j edi sConnecti onFactory" class="org. springfranmework. dat a. keyval ue. redi s. connecti on.j edi s. Jedi sConnect
</ beans>

For production use however, one might want to tweak the settings such as the host or password:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns: p="http://ww. springfranmework. org/ scherma/ p"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schenma/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsc

<bean id="j edi sConnecti onFactory" class="org. springfranmework. dat a. keyval ue. redi s. connecti on.j edi s. Jedi sConnect
p: host - nane="server" p:port="6379"/>
</ beans>

Spring DataKey Vaue (1.0.0.M3) 8

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/dao.html#dao-exceptions
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/orm.html#orm-exception-translation
http://github.com/xetorthio/jedis

Redis support

4.3.3. Configuring JRedis connector

JRedis is another popular, open-source connector supported by SDKV through the
org. springframewor k. dat a. keyval ue. redi s. connection.jredis package.

Note

e Since JRedis itself does not support (yet) Redis 2x commands, SDKV uses an updated fork
available here.

A typical JRedis configuration can looks like this:

<?xm version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springframework. or g/ scherma/ p"
xsi : schemaLocat i on="

http: //ww. spri ngfranework. or g/ schena/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsc

<bean id="jredi sConnectionFactory" class="org.springfranmework. dat a. keyval ue. redi s. connection.jredis.Jredi sConr

p: host - nane="server" p:port="6379"/>
</ beans>

As one can note, the configuration is quite similar to the Jedis one.

| mportant

e
Currently, JRedis does not have support for binary keys. This forces the Jr edi sConnecti on to
perform encoding internally (through base64 schema). In practice, this means it's safe to read/write
arbitrary data however the Redis key stored values will differ from the decoded ones, even in the
simplest cases, since everything (no matter the format) is encoded. This will not be the case for
Redis values.

Thisissueis currently being addressed in the JRedis project and once fixed, will be incorporated by
Spring Data Redis.

4.4. Working with Objects through Redi sTenpl at e

Most users ae likdy to use RedisTenplate and its coresponding package
org. springframewor k. dat a. keyval ue. redi s. core - the template is in fact the centra class of the Redis
module due to its rich feature set. The template offers a high-level abstraction for Redis interaction - while
Redi sConnect i on offer low level methods that accept and return binary values (byt e arrays), the template takes
care of serialization and connection management, freeing the user from dealing with such details.

Moreover, the template provides operations views (following the grouping from Redis command reference) that
offer rich, generified interfaces for working against a certain type or certain key (through the KeyBound
interfaces) as described below:

Table4.1. Operational views

Interface Description
Key Type Operations

Val ueQper at i ons Redis string (or value) operations

Spring DataKey Vaue (1.0.0.M3) 9

http://github.com/alphazero/jredis
http://github.com/anthonylauzon/jredis
http://en.wikipedia.org/wiki/Base64
http://redis.io/commands

Redis support

Interface Description

Li st Qper ati ons Redislist operations

Set Qper at i ons Redis set operations

ZSet Cper at i ons Redis zset (or sorted set) operations

HashQper at i ons Redis hash operations

Key Bound Operations

BoundVal ueQper at i ons Redis string (or value) key bound operations
BoundLi st Cper at i ons Redislist key bound operations
BoundSet Oper at i ons Redis set key bound operations
BoundZSet Qper at i ons Redis zset (or sorted set) key bound operations
BoundHashQper at i ons Redis hash key bound operations

Once configured, the template is thread-safe and can be reused across multiple instances.

Out of the box, Redi sTenpl at e uses a Javarbased seriadlizer for most of its operations. This means that any
object written or read by the template will be serializer/deserialized through Java. The serialization mechanism
can be easily changed on the template and the Redis module offers several implementations available in the
org. springframewor k. dat a. keyval ue. redi s. seri al i zer package - see Section 4.6, “Serializers’ for more
information. Note that the template requires al keys to be non-null - values can be null as long as the
underlying serializer accepts them; read the javadoc of each serializer for more information.

For cases where a certain template view is needed, one the view as a dependency and inject the template: the
container will automatically perform the conversion eliminating the opsFor [X] cals:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww.springframework. org/ scherma/ p"
xsi : schemalLocat i on="

http://ww. springframework. or g/ schema/ beans http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsc

<bean i d="j edi sConnectionFactory" class="org.springframework. dat a. keyval ue.redi s. connecti on. jedi s. Jedi sConnect
p: use-pool ="true"/>

<I-- redis tenplate definition -->

<bean id="redi sTenpl ate" cl ass="org. spri ngfranmework. dat a. keyval ue. redi s. core. Redi sTenpl at e"
p: connection-factory-ref="jedi sConnecti onFactory"/>

</ beans>

public class Exanple {

/1 inject the actual tenplate
@A\ut owi red
private RedisTenpl ate<String, String> tenplate;

/] inject the tenplate as ListOperations
@\ut owi r ed
private ListOperations<String, String> |istOps;

public void addLi nk(String userlid, URL url) {
|istOps.|eftPush(userld, url.toExternal Form());
}

}

Spring Data Key Vaue (1.0.0.M3) 10

Redis support

4.5. String-focused convenience classes

Since it's quite the keys and values stored in Redis can bej ava. | ang. St ri ng, the Redis modules provides two
extensions to Redi sConnection and Redi sTenpl ate respectively the StringRedi sConnection (and its
Def aul t St ri ngRedi sConnecti on implementation) and StringRedisTenplate as a convenient one-stop
solution for intensive String operations. In addition to be bound to string keys, the template and the
connection use the st ri ngRedi sSeri al i zer underneath which means the stored keys and values are human
readabl e (assuming the same encoding is used both in Redis and your code). For example:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springframework. or g/ schema/ p"
xsi : schenmalLocat i on="
http: //ww. springframework. org/ schema/ beans http://ww. springfranmework. org/ schema/ beans/ spri ng-beans. xsc

<bean id="j edi sConnecti onFactory" class="org. springfranmework. dat a. keyval ue. redi s. connecti on. j edi s. Jedi sConnect
p: use-pool ="true"/>

<bean id="stringRedi sTenpl ate" class="org. springfranmework. dat a. keyval ue. redi s. core. Stri ngRedi sTenpl| ate"
p: connection-factory-ref="jedi sConnecti onFactory"/>

</ beans>

public class Exanple {

@\ut owi r ed
private StringRedi sTenpl ate redi sTenpl ate;

public void addLink(String userld, URL url) {
redi sTenpl at e. opsFor Li st ().l eftPush(userld, url.toExternal Form());
}
}

As with the other Spring templates, Redi sTenpl ate and St ri ngRedi sTenpl ate alow the developer to talk
directly to Redis through the Redi sCal | back interface: this gives complete control to the developer as it talks
directly to the Redi sConnect i on.

public void useCall back() {
redi sTenpl at e. execut e(new Redi sCal | back<Obj ect >() {

publ i c Object dol nRedi s(Redi sConnection connection) throws DataAccessException {
Long size = connection. dbSi ze();

5)s

4.6. Serializers

From the framework perspective, the data stored in Redis are just bytes. While Redis itself supports various
types, for the most part these refer to the way the datais stored rather then what it represents. It is up to the user
to decide whether the information gets translated into Strings or any other objects. The conversion between the
user (custom) types and raw data (and vice-versa) is handled in SDKV Redis through the Redi sSeri al i zer
interface (package org. springfranewor k. dat a. keyval ue. redi s. serial i zer) which as the name implies,
takes care of the serialization process. Multiple implementations are available out of the box, two of which
have been aready mentioned before in this documentation: the StringRedisSerializer and the
JdkSeri al i zati onRedi sSeri al i zer . However one can use Oxnseri al i zer for Object/ XML mapping through

Spring DataKey Vaue (1.0.0.M3) 11

Redis support

Spring 3 OXM support or JacksonJsonRedi sSeri al i zer for storing data in JSON format. Do note that the
storage format is not limited only to values - it can be used for keys, values or hashes without any restrictions.

4.7. Redis Messaging/PubSub

Spring Data provides dedicated messaging integration for Redis, very similar in functionality and naming to the
JMS integration in Spring Framework; in fact, users familiar with the IMS support in Spring, should feel right
at home.

Redis messaging can be roughly divided into two areas of functionality, namely the production or publication
and consumption or subscription of messages, hence the shortcut pubsub (Publish/Subscribe). The
Redi sTenpl ate class is used for message production. For asynchronous reception similar to Java EE's
message-driven bean style, Spring Data provides a dedicated message listener containers that is used to create
Message-Driven POJOs (MDPs) and for synchronous reception, the Redi sConnect i on contract.

The package or g. spri ngframewor k. dat a. keyval ue. redi s. connecti on and
org. spri ngfranewor k. dat a. keyval ue. redis. | i stener provide the core functionality for using Redis

messaging.

4.7.1. Sending/Publishing messages

To publish a message, one can use, as with the other operations, either the low-level Redi sConnecti on or the
high-level Redi sTenpl at e. Both entities offer the publ i sh method that accepts as argument the message that
needs to be sent as well as the destination channel. While Redi sConnect i on requires raw-data (array of bytes),
the Redi sTenpl at e alow arbitrary objects to be passed in as messages:

// send nessage through connection
Redi sConnection con = ...

byte[] nmsg = ...

byte[] channel = ...

con. publ i sh(nmsg, channel);

/1 send nessage through Redi sTenpl ate
Redi sTenpl ate tenplate = ...
tenpl at e. convert AndSend("hello!", "world");

4.7.2. Receiving/Subscribing for messages

On the receiving side, one can subscribe to one or multiple channels either by naming them directly or by using
pattern matching. The latter approach is quite useful as it not only allows multiple subscriptions to be created
with one command but to aso listen on channels not yet created at subscription time (as long as match the
pattern).

At the low-level, Redi sConnect i on Offers subscri be and pSubscri be methods that map the Redis commands
for subscribing by channel respectively by pattern. Note that multiple channels or patterns can be used as
arguments. To change the subscription of a connection or simply query whether it is listening or not,
Redi sConnect i on provides get Subscri ption andi sSubscri bed method.

| mportant

e Subscribing commands are synchronized and thus blocking. That is, calling subscribe on a
connection will cause the current thread to block as it will start waiting for messages - the thread
will be released only if the subscription is canceled, that is an additional thread invokes
unsubscri be respectively punsubscri be on the same connection. See message listener_container

Spring DataKey Vaue (1.0.0.M3) 12

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html
http://en.wikipedia.org/wiki/JSON

Redis support

below for a solution to these problem.

As mentioned above, one subscribed a connection starts waiting for messages - no other commands can be
invoked on it except for adding new subscriptions or modifying/canceling the existing ones, that is invoking
anything else then subscri be, pSubscri be, unsubscribe, pUnsubscribe or is illegal and will through an
exception.

In order to subscribe for messages, one needs to implement the MessagelLi st ener callback: each time a new
message arrives, the callback gets invoked and the user code executed through onMessage method. The
interface gives access not only to the actual message but to the channel it has been received through and the
pattern (if any) used by the subscription to match the channel. Thisinformation allows the callee to differentiate
between various messages not just by content but also through data.

4.7.2.1. Message Listener Containers

Due to its blocking nature, low-level subscription is not attractive as it requires connection and thread
management for every single listener. To alleviate this problem, Spring Data offers
Redi sMessagelLi st ener Cont ai ner which does all the heavy lifting on behalf of the user - users familiar with
EJB and JMS should find the concepts familiar as it is designed as close as possible to the support in Spring
Framework and its message-driven POJOs (MDPs)

Redi sMessagelLi st ener Cont ai ner acts as a message listener container; it is used to receive messages from a
Redis channel and drive the MessageL istener that are injected into it. The listener container is responsible for
all threading of message reception and dispatches into the listener for processing. A message listener container
is the intermediary between an MDP and a messaging provider, and takes care of registering to receive
messages, resource acquisition and release, exception conversion and suchlike. This alows you as an
application developer to write the (possibly complex) business logic associated with receiving a message (and
reacting to it), and delegates boilerplate Redis infrastructure concerns to the framework.

Further more, to minimize the application footprint, Redi sMessagelLi st ener Cont ai ner performs alows one
connection and one thread to be shared by multiple listeners even though they do not share a subscription. Thus
no matter how many listeners or channels an application tracks, the runtime cost will remain the same through
out its lifetime. Moreover, the container allows runtime configuration changes so one can add or remove
listeners while an application is running without the need for restart. Additionally, the container uses a lazy
subscription approach, using a Redi sConnection only when needed - if al the listeners are unsubscribed,
cleanup is automatically performed and the used thread released.

To help with the asynch manner of messages, the container requires aj ava. util . concurrent. Executor (Of
Spring's TaskExecut or) for dispatching the messages. Depending on the load, the number of listeners or the
runtime environment, one should change or tweak the executor to better serve her needs - in particular in
managed environments (such as app servers), it is highly recommended to pick a a proper TaskExecut or to take
advantage of its runtime.

4.7.2.2. The Messageli st ener Adapt er

The MessagelLi st ener Adapt er class is the final component in Spring's asynchronous messaging support: in a
nutshell, it allows you to expose almost any class as a MDP (there are of course some constraints).

Consider the following interface definition. Notice that although the interface extends the MessagelLi st ener
interface, it can still be used as a MDP via the use of the MessageLi st ener Adapt er class. Notice aso how the
various message handling methods are strongly typed according to the contents of the various Message types
that they can receive and handle.

Spring DataKey Vaue (1.0.0.M3) 13

Redis support

public interface MessageDel egate {
voi d handl eMessage(String nessage);
voi d handl eMessage(Map nmessage) ;
voi d handl eMessage(byte[] nessage);

voi d handl eMessage(Seri al i zabl e nmessage) ;

public class Default MessageDel egate inpl ements MessageDel egate {
/1l inplementation elided for clarity..

}

In particular, note how the above implementation of the MessageDel egate interface (the above
Def aul t MessageDel egat e class) has no Redis dependencies at al. It truly is a POJO that we will make into an
MDP viathe following configuration.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:redi s="http://ww. springframework. org/ schema/ redi s"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans http://ww. spri ngframewor k. or g/ schena/ beans/
http://ww. springfranmework. org/ schema/redi s http://ww.springfranmework. org/ schema/ redi s/ spring-redis. xsc

<l-- the default ConnectionFactory -->

<redi s: |istener-container>
<l-- the nmethod attribute can be skipped as the default nethod nane is "handl eMessage" -->
<redis:|istener ref="listener" method="handl eMessage" channel ="chatroont' />

</redis:|istener-container>
<bean cl ass="r edi sexanpl e. Def aul t MessageDel egat e"/ >

<beans>

The example above uses the Redis hamespace to declare the message listener container and automatically
register the POJOs as listeners. The full blown, beans definition is displayed below:

<l-- this is the Message Driven PQIO (MDP) -->
<bean i d="nessageLi stener" cl ass="org.springframework. dat a. keyval ue.redi s. |istener. adapter. MessagelLi st ener Adapt e
<const ruct or - ar g>
<bean cl ass="r edi sexanpl e. Def aul t MessageDel egat e"/ >
</ constructor - ar g>
</ bean>

<l-- and this is the nessage |istener container... -->
<bean i d="redi sContai ner" class="org.springfranmework. data. keyval ue. redi s.|istener. Redi sMessagelLi st ener Cont ai ner"
<property name="connectionFactory" ref="connectionFactory"/>
<property name="nessagelLi steners">
<l-- map of listeners and their associated topics (channels or topics) -->
<map>
<entry key-ref="nmessageli stener">
<bean cl ass="org. spri ngfranewor k. dat a. keyval ue. redi s. | i st ener. Channel Topi ¢c">
<constructor-arg val ue="chatroont >
</ bean>
</entry>
</ map>
</ property>
</ bean>

Each time a message is received, the adapter automatically performs tranglation (using the configured
Redi sSeri al i zer) between the low-level format and the required object type transparently. Any exception
caused by the method invocation is caught and handled by the container (by default, being logged).

Spring Data Key Vaue (1.0.0.M3) 14

Redis support

4.8. Support Classes

Package or g. spri ngf ramewor k. dat a. keyval ue. redi s. support Offers various reusable components that rely
on Redis as a backing store. Curently the package contains various JDK-based interface implementations on top
of Redis such as atomic counters and JDK Col | ectii ons.

The atomic counters make it easy to wrap Redis key incrementation while the collections alow easy
management of Redis keys with minimal storage exposure or APl leakage: in particular the Redi sSet and
Redi szSet interfaces offer easy access to the set operations supported by Redis such asintersection and
uni on while Redi sLi st implements the List, Queue and Deque contracts (and their eguivalent blocking
siblings) on top of Redis, exposing the storage as a FIFO (First-In-First-Out), LIFO (Last-In-First-Out) or
capped collection with minimal configuration:

<?xm version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns: p="http://ww. springfranmework. org/ scherma/ p"
xsi : schemalLocat i on="

http://ww. springframework. or g/ schenma/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsc

<bean id="queue" class="org.springfranmework. dat a. keyval ue. redi s. support.collections. Def aul t Redi sLi st">
<constructor-arg ref="redi sTenpl at"/>
<constructor-arg val ue="queue- key"/ >

</ bean>

</ beans>

public class Anot her Exanpl e {

/1 injected
private Deque<String> queue

public void addTag(String tag) {
gueue. push(tag);
}
}

As shown in the example above, the consuming code is decoupled from the actual storage implementation - in
fact there is no indication that Redis is used underneath. This makes moving from development to production
environments transparent and highly increases testability (the Redisimplementation can just as well be replaced
with an in-memory one).

4.9. Roadmap ahead

Spring Data Redis project isin its early stages. We are interested in feedback, knowing what your use cases are,
what are the common patters you encounter so that the Redis module better serves your needs. Do contact us
using the channels mentioned above, we are interested in hearing from you!

Spring DataKey Vaue (1.0.0.M3) 15

http://download.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/util/Collection.html

Chapter 5. Riak Support

Riak is a Key/Vaue datastore that supports Internet-scale data replication for high performance and high
availability. Spring Data Key/Vaue (SDKV) provides access to the Riak datastore over the HTTP REST API
using a built-in driver based on Spring 3.0's Rest Tenpl at e. In addition to making Key/Value datastore access
easier from Java, the Ri akTenpl at e has been designed, from the ground up, to be used from alternative JVvM
languages like Graovy or JRuby.

Since the SDKV support for Riak uses the stateless REST API, there are no connection factories to manage or
other stateful objects to keep tabs on. The helper you'll spend the most time working with is likely the
thread-safe Ri akTenpl at e Or Ri akKeyVal ueTenpl ate. Your choice of which to use will depend on how you
want to manage buckets and keys. SDKV supports two ways to interact with Riak. If you want to use the
convention you're likely already familiar with, namely of storing an entry with a given key in a "bucket" by
passing the bucket and key name separately, you'll want to use the Ri akTenpl at e. If you want to use a single
object to represent your bucket and key pair, you can use the Ri akKeyVal ueTenpl at e. It supports a key object
that is encoded using one of severa different methods:

e Usingastring - You can concatenate two strings, separated by a colon: "mybucket:mykey".
e Using a Bucket KeyPai r - YOU can pass an instance of Bucket KeyPai r, like Si npl eBucket KeyPai r .

» Using a Map - You can pass a vap with keys for "bucket" and "key".

5.1. Configuring the Ri akTenpl at e

This is likely the easiest path to using SDKV for Riak, as the bucket and key are passed separately. The
examples that follow will assume you're using this version of the the template.

There are only two options you need to set to specify the Riak server to use in your Ri akTenpl at e oObject:
"defaultUri" and "mapReduceUri". Encoded with the URI should be placeholders for the bucket and the key,
which will be filled in by the Rest Tenpl at e when the request is made.

| mportant

e
You can aso turn the internal, ETag-based object cache off by setting useCache="fal se". It's
generally recommended, however, to leave the internal cache on as the ETag matching will pick up
any changes made to the entry on the Riak side and your application will benefit from
greatly-increased performance for often-regquested objects.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww.springfranmework. org/ schema/ p"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean id="riakTenpl ate" cl ass="org. spri ngfranmework. dat a. keyval ue. ri ak. core. Ri akTenpl at e"
p:defaul t Uri ="http://1 ocal host: 8098/ ri ak/ {bucket}/{key}"
p: mapReduceUri ="http://| ocal host: 8098/ mapr ed"
p: useCache="true"/ >

</ beans>

Spring DataKey Vaue (1.0.0.M3) 16

https://wiki.basho.com/display/RIAK/Riak
https://wiki.basho.com/pages/viewpage.action?pageId=1245320
https://wiki.basho.com/display/RIAK/REST+API
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/remoting.html#rest-resttemplate
http://groovy.codehaus.org/
http://jruby.org/

Riak Support

5.1.1. Advanced Template Configuration

There are a couple additional properties on the Ri akTenpl at e that can be changed from their defaults. If you
want to specify your own ConversionService to use when converting objects for storage inside Riak, then set it
on the "conversionService" property:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww.springfranmework. org/ schema/ p"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean i d="conversionService" class="com myconpany. convert.M/Conversi onService"/>

<bean id="riakTenpl ate" cl ass="org. spri ngfranmework. dat a. keyval ue. ri ak. core. Ri akTenpl at e"
p: defaul tUri ="http://1 ocal host: 8098/ ri ak/{bucket}/{key}"
p: mapReduceUri ="http:/ /| ocal host: 8098/ mapr ed"
p: conver si onServi ce-ref =" conver si onServi ce"/ >

</ beans>

Depending on the application, it might be useful to set default Quality-of-Service parameters. In Riak
paralance, these are the "dw", "w", and "r" parameters. They can be set to an integer representing the number of
vnodes that need to report having received the data before declaring the operation a success, or the string "one",
"al", or (the default) "quorum". These values can be overridden by passing a different set of QosPar anet er s to
the set/get operation you're performing.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww.springfranmework. org/ schema/ p"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean id="qos" class="org.springfranework. data. keyval ue. ri ak. core. R akQosPar anet er s"
p: durabl eWiteThreshol d="al | "
p:witeThreshol d="all"/>
<bean id="riakTenpl ate" class="org. springfranmework. dat a. keyval ue. ri ak. core. R akTenpl ate"
p:defaul t Uri ="http://1 ocal host: 8098/ ri ak/{bucket}/{key}"
p: mapReduceUri ="http://| ocal host: 8098/ mapr ed"
p: def aul t QosPar anet ers-ref ="qos"/ >

</ beans>

You can also set a specific d assLoader to use when loading objects from Riak. Just set the cl assLoader
property:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://wwmw. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springframework. or g/ schema/ p"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean id="riakTenpl ate" class="org. springfranmework. dat a. keyval ue. ri ak. core. R akTenpl ate"
p: defaul tUri="http://1 ocal host: 8098/ ri ak/{bucket}/{key}"
p: mapReduceUri ="http://| ocal host: 8098/ mapr ed"
p: cl assLoader - r ef =" cust onCl assLoader "/ >

</ beans>

5.2. Working with Objects using the Ri akTenpl at e

Spring Data Key Vaue (1.0.0.M3) 17

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert-ConversionService-API
https://wiki.basho.com/display/RIAK/REST+API#RESTAPI-Setbucketproperties

Riak Support

One of the primary goals of the SDKV project is to make accessing Key/Value stores easier for the developer
by taking away the mundane tasks of basic 10, buffering, type conversion, exception handling, and sundry
other logistical concerns so the developer can focus on creating great applications. SDKV for Riak works
toward this goal by making basic persistence and data access as easy as using a Map.

5.2.1. Saving data into Riak

To store datain Riak, use one of the six different set methods:

i mport org.springframework. dat a. keyval ue. ri ak. core. Ri akTenpl at e;
public class Exanple {

@\ut owi r ed
Ri akTenpl ate ri ak;

public void setData(String bucket, String key, String data) throws Exception {

ri ak. set (bucket, key, data); // Set as Content-Type: text/plain
ri ak. set AsByt es(bucket, key, data.getBytes()); // Set as Content-Type: application/octet-stream

}

public void setData(String bucket, String key, MyPojo data) throws Exception {
ri ak. set (bucket, key, data); // Converted to JSON automatically, Content-Type: application/json
}

Additionally, there is a set W t hvet aDat a method that takes a vap of metadata that will be set as the outgoing
HTTP headers. To set custom metadata, your key should be prefixed with X-Riak-Meta- eg.
X- Ri ak- Met a- Cust om Header .

5.2.1.1. Letting Riak generate the key

Riak has the ahility to generate random IDs for you when storing objects. The Ri akTenpl at e exposes this
capability viathe put method. It will return the ID it generated for you asastri ng.

i mport org.springframework. dat a. keyval ue. ri ak. core. Ri akTenpl at g;

public class Exanple {

©@Aut owi r ed
Ri akTenpl ate ri ak;

public String setData(String bucket, String data) throws Exception {
String id = riak.put(bucket, data); // Returns the generated |ID
return id,

5.2.2. Retrieving data from Riak

Retrieving data from Riak is just as easy. There are actually 13 different get methods on Ri akTenpl at e that
give the developer awide range options for accessing and converting your data.

Assuming you've stored a POJO using an appropriate set method, you can retrieve that object from Riak using
aget:

i nport org.springfranework. dat a. keyval ue. ri ak. core. Ri akTenpl at e;

Spring DataKey Vaue (1.0.0.M3) 18

https://wiki.basho.com/display/RIAK/REST+API#RESTAPI-Storeaneworexistingobjectwithakey

Riak Support

public class Exanple {

@\ut owi r ed
Ri akTenpl ate ri ak;

public void getData(String bucket, String key) throws Exception {
/1 What you get depends on Content- Type.
/| application/json=Map, text/plain=String, etc...
Obj ect o = riak. get (bucket, key);

/1 |If your entry is Content-Type: application/json...
// 1t will automatically be converted when retrieved.
M/Poj o s = ri ak. get AsType(bucket, key, M/Pojo.cl ass);

/1 1f your entry is Content-Type: application/octet-stream
/] you can access the raw bytes.
byte[] b = riak. get AsByt es(bucket, key);

5.3. Linking Entries

Riak has the ability to link entries together using an arbitrary tag. This relationship information is stored in the
Li nk header. The Ri akTenpl at e exposes a method for linking entries together called i nk. Its usage is quite
simple:

I mportant
e
A link is uni-directional, so keep in mind that the bucket and key you pass first should be that of
the child (or target) object and the second set of bucket/key pairs you pass to the I i nk method is
the source of the relationship. It's this second entry that will receive an updated Li nk header that
points to the child or target entry.
@\ut owi red

Ri akTenpl ate ri ak;

riak.link("childbucket", "childkey", "sourcebucket", "sourcekey", "tagnane");

Now, querying the metadata on the entry at sour cebucket : sour cekey Will result in a Link header that pointsto
the child object: </ ri ak/ chi | dbucket/ chi | dkey>; ri aktag="t agname"

5.3.1. Link Walking

When entries are linked together in Riak, those relationships can be efficiently traversed on the server using a
feature called Link Walking. Rather than requesting each object in alink's relationship individually, alink walk
pulls all the related objects at once and sends that data back to the client as MIME-encoded multipart data. As
such, it requires special processing to convert those multiple entries into a Li st of objects, just as if you had
used aget method. If you don't specify atype to convert the objects to, the | i nkval k method will try to infer it
from the bucket name. If the bucket nameis not avalid class name, it will default to using aj ava. uti | . Map.

Tolink walk arédationship and return alist of custom POJOs, you would do something like this:

@\ut owi r ed
Ri akTenpl ate ri ak;

Spring DataKey Vaue (1.0.0.M3) 19

https://wiki.basho.com/display/RIAK/Links
../../api/org/springframework/data/keyvalue/riak/core/RiakTemplate.html#link(B1, K1, B2, K2, java.lang.String)
http://blog.basho.com/2010/02/24/link-walking-by-example/
../../api/org/springframework/data/keyvalue/riak/core/RiakTemplate.html#linkWalk(B, K, java.lang.String)

Riak Support

Li st <MyPoj o> result = riak.|inkWal k("sourcebucket", "sourcekey", "tagnane", MPojo.cl ass);

5.4. Map/Reduce

Riak supports Map/Reduce functionality in a couple different ways. Y ou can specify the Javascript source to
execute (termed "anonymous' Javascript), you can reference some Javascript already stored in Riak at a specfic
bucket and key, or you can reference an Erlang module and function. The Map/Reduce support in SDKV
covers al these bases by giving you meaningful abstractions over the Map/Reduce job that represent the
various aspects of the Map/Reduce process.

At the highest level, every Map/Reduce request is represented by a MapReducelob. The MapReduceJob
represents the i nput s, the phases, and the optional ar g to send to Riak to execute the Map/Reduce job. The
t oJson method is responsible for serializing the entire job into the appropriate JSON data to send to Riak.

5.4.1. Specifying Inputs

Riak will accept either a string denoting the bucket in which to get the list of keys to operate on, or a Li st of
Li st s denoting the bucket/key pairs to operate on while executing this Map/Reduce job. If you call the
addl nput s method on the job passing aLi st with a single string entry, the job will assume you want to operate
on an entire bucket. Otherwise, you'll need to pass a multi-dimensional Li st of bucket/key pairs.

To operate on an entire bucket:

@\ut owi r ed
Ri akTenpl ate ri ak;

Ri akMapReduceJob job = ri ak. creat eMapReduceJob();
Li st<String> bucket = new ArraylList<String>() {{
add(" nybucket");

M
j ob. addl nput s(bucket); // WIl MR entire bucket

To operate on a set of keys:

i nport org.springfranework. dat a. keyval ue. ri ak. mapr educe. *;

@A\ut owi r ed
Ri akTenpl ate ri ak;

Ri akMapReduceJob job = ri ak. creat eMapReduceJob();
List<String> pair = new ArrayList<String>() {{
add(" nmybucket");
add(" nykey");
M
Li st <Li st<String>> keys = new ArrayList<List<String>>() {{
add(pair);

1
j ob. addl nput s(keys); // WIl MR only specified keys

5.4.2. Defining Phases

Map/Reduce operations in Riak are broken up into phases. Phases contain a MapReduceper ati on. There are

Spring DataKey Vaue (1.0.0.M3) 20

../../api/org/springframework/data/keyvalue/riak/mapreduce/MapReduceJob.html
../../api/org/springframework/data/keyvalue/riak/mapreduce/MapReduceOperation.html

Riak Support

curently two implementations to handle Javascript or Erlang M/R operations:
Javascr i pt MapReduceQper at i on and Er | angMapReduceQper at i on.

An example Map/Reduce job defining a single "map" phase defined in anonymous Javascript might look like
this:

i mport org.springframework. dat a. keyval ue. ri ak. mapr educe. *;

@\ut owi r ed
Ri akTenpl ate ri ak;

Ri akMapReduceJdob job = ri ak. creat eMapReduceJob();
Li st<String> bucket = new ArrayList<String>() {{
add(" nybucket");

M

j ob. addl nput s(bucket); // MR the entire bucket

MapReduceOper at i on mapOper = new Javascri pt MapReduceOperation("function(v){ ... MR function body... }");
MapReducePhase mapPhase = new Ri akMapReducePhase("nap", "javascript", nmapOper);

j ob. addPhase(mapPhase) ;

5.4.3. Executing and Working with the Result

To execute a configured job on your Riak server, use either the synchronous execut e or asynchronous subnmi t
methods of your configured Ri akTenpl at e:

hj ect o = riak.execute(job); // Results of |ast Map or Reduce phase. Should be a List<?>

..or. L.

Li st <MyPoj o> o = ri ak. execut e(j ob, MyPojo.class); // Coerce to given type

..or. L.

Fut ure<Li st<?>> f = riak.submt(job); // Job runs in a separate thread

5.5. Managing Bucket Properties

It's sometimes useful to manage settings like the Quality-of-Service parameters w and dw (write and durable
write thresholds) and the n_val setting at the bucket level. It's also possible to list the keys in a particular
bucket by calling the get Bucket Schema method, passing true as the second parameter, which tells the
Ri akTenpl at e to list the keys.

To list the keys in a bucket, you would do something like this:

@\ut owi r ed
Ri akTenpl ate ri ak;

Map<String, Object> schema = ri ak. get Bucket Schema(" nybucket", true);
Li st<String> keys = schenm. get ("keys")
for(String key : keys) {

...do sonething with each key...

}

To update the bucket settings, pass avap of properties:

Spring DataKey Vaue (1.0.0.M3) 21

../../api/org/springframework/data/keyvalue/riak/mapreduce/JavascriptMapReduceOperation.html
../../api/org/springframework/data/keyvalue/riak/mapreduce/ErlangMapReduceOperation.html

Riak Support

@\ut owi r ed
Ri akTenpl ate ri ak;

Map<String, |nteger> props = new HashMap<String, |nteger>();
props. put("“n_val", 6);
props. put ("dw', 3);

ri ak. updat eBucket Schema(" nybucket", props);

Only the properties specified in the passed-in Map will be updated. Properties that have already been set in
previous operations and not specified in this operation will be unaffected.

5.6. Asynchronous Access

SDKYV for Riak aso includes an asynchronous version of most of the methods available to the Ri akTenpl at e,
whose method calls are all synchronous. The asynchronous version of the template is called
AsyncRi akTenpl at e.

5.6.1. Template Configuration

The AsyncRi akTenpl at e has the same basic configuration properties as the synchronous Ri akTenpl ate. The
only other property specific to the AsyncRi akTenpl at e you might want to configure is the thread pool the
template uses to execute tasks asynchronously (by default a cached ThreadPoolExecutor). Set your
Execut or Ser vi ce 0N the template's wor ker Pool property.

5.6.2. Callbacks

Using the asynchronous Riak support in SDKV means you'll be relying on callbacks to execute your business
logic when the requested operation is completed. All asynchronous operations follow a similar pattern:

e They are named similarly to their synchronous counterparts.
e They take a AsyncKeyVal ueSt or eQper at i on<?, ?> asafina parameter.
» They return aFut ur e<?>.

To perform an asynchronous get on a JSON-serialized mvap object which returns a custom object from the
callback, you'd do something like:

@\ut owi r ed
AsyncRi akTenpl ate ri ak;

Fut ure<MyQoj ect > future = riak. get ("mybucket", "nykey", new AsyncKeyVal ueSt or eOper ati on<Map, MyQbj ect>() {
MyQoj ect obj = new MyQbj ect ();

MyQoj ect conpl et ed(KeyVal ueSt oreMet aData neta, Map result) {
obj . set Nane(result.get("nanme"));
return obj;

}

MyQoj ect fail ed(Throwabl e error) {
obj .setError(error);
return obj;

}
5)s

Spring DataKey Vaue (1.0.0.M3) 22

http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ThreadPoolExecutor.html

Riak Support

// Maybe do other work while waiting..
MyQoj ect obj = future.get();

5.7. Groovy Builder Support

If your application uses Groovy, either in a standalone context, or as part of a Grails application, then you could
benefit from using the Groovy Ri akBuilder that comes with SDKV for Riak. Underneath, it uses the

AsyncRi akTenpl at e. TO use the Ri akBui | der , pass the constructor a configured AsyncRi akTenpl at e.

| mportant

e

Instances of Ri akBui | der are NOT thread-safe and should not be shared across threads.

The Ri akBui | der implements an easy-to-use DSL for interacting with Riak. It doesn't implement the full set of
methods available on the underlying AsyncRi akTenpl at e but a subset. The methods that the Ri akBui | der

respondsto are:

o set
* setAsBytes

e put

s get

* getAsBytes
e getAsType

e containsKey
* delete

* foreach

5.7.1. Riak DSL Usage

The following example illustrates the different uses of the Riak DSL, including batching requests together into
a logical group, using a default bucket name (the node directly beneath ri ak will be considered the default

bucket to use for the contained operations unless a different one is specified on the operation itsalf):

def riak = new Ri akBui |l der (asyncRi akTenpl at e)

riak {
test {
put (val ue:
put (val ue:
put (val ue:
put (val ue:

mapr educe {
query {

map(arg:
source "function(v,

}

[test:
[test:
[test:
[test:

[test:

"val ue"
"val ue"
"val ue"
"val ue"

var g.. ,

) { conpleted { v, neta -> neta.key }}

) { conpleted { v, neta -> neta.key }}

) { conpleted { v, neta -> neta. key }}

) { conpleted { v, neta -> neta.key }}
alist: [1, 2, 3, 4]]) {

keyl nfo, arg){ return [1]; }"

Spring DataKey Vaue (1.0.0.M3)

23

../../api/org/springframework/data/keyvalue/riak/groovy/RiakBuilder.html

Riak Support

reduce {
source "function(v){ return Ri ak.reduceSunm(v); }"

}

}
failed { it.printStackTrace() }

}
}
}

def results = riak.results

ri ak.foreach(bucket: "test") {
conpleted { v, neta ->
ri ak. del et e(bucket: "test", key: meta.key)

}
}

Some important things to note from this example:

» Each operation in the Riak DSL has two callbacks: conpl et ed and f ai | ed.

« The conpl et ed closure is passed either the result object, or, if your closure is defined with two parameters,
the result object and the metadata associated with that entry.

« Operations can be enclosed in an arbitrarily-named closure which the builder interprets as a default bucket
name (in this case, the node "test" tells the builder to use the bucket name "test” for a default, unless one is
specified on one of the enclosed operations).

« Each operation within a builder's execution will be accumulated inside the special resul t s property. Code
that needs to know the output of individual operations within the batch can get access to that object through
this property. Note that this means that Ri akBui | der instances are NOT thread-safe.

| mportant

e
Even though the Riak DSL uses an asynchronous template underneath, all operations performed
through the DSL will, by default, block until complete. To get atruly asynchronous operation, pass
the parameter wait: 0 (or give a meaningful timeout in milliseconds to wait for the operation to
complete) on the operation.

5.7.1.1. QosParameters on Riak DSL Operations
Y ou can pass QosPar anet er s to Riak DSL operations by simply defining them as parameters to the operation:

def riak = new Ri akBui | der (asyncRi akTenpl at e)

def nyobj = riak.set(bucket: "nybucket", key: "nykey", qos: ["dw': "all"])

5.7.1.2. Working with Riak DSL Output

The output of DSL operations will either be passed to the configured conpl et ed callback, or be returned to the
caler if no callback is specified. In the example above, the mapr educe operation has no conpl et ed closure.
Therefore, the return of the reduce phase is simply passed back to the builder, which makes that output
available on the special r esul t s property.

To gain access to the operation's results immediately, simply assign it to avariable:

Spring DataKey Vaue (1.0.0.M3) 24

../../api/org/springframework/data/keyvalue/riak/core/RiakMetaData.html

Riak Support

def riak = new Ri akBui |l der (asyncRi akTenpl at e)

def nyobj = riak.get(bucket: "nybucket", key: "nmykey")

If you add a non-zero wai t value to the operation, "myobj" will contain a Fut ure<?> rather than the result
object itself.

5.8. Working with streams

SDKYV for Riak includes a couple of useful helper objects to make reading and writing plain text or binary data
in Riak really easy. If you want to store a file in Riak, then you can create a Ri akQut put St r eam and simply
write your datato it (making sure to call the "flush" method, which actually sends the data to Riak).

i mport org.springframework. dat a. keyval ue. ri ak. core. Ri akTenpl at e;
i mport org.springframework. dat a. keyval ue. ri ak. core. i o. Ri akQut put Stream

public class Exanple {

©@Aut owi r ed
Ri akTenpl ate ri ak;

public void witeToRi ak(String bucket, String key, String data) throws Exception {
Qut put Stream out = new Ri akQut put Strean(ri ak, bucket, key);
try {
out.wite(data.getBytes());
} finally {
out. flush();
out.close();

Reading data from Riak is similarly easy. SDKV provides aj ava. i o. Fi | e subclass that represents a resource
in Riak. There's adso a Spring 10 Resource abstraction called R akResource that can be used anywhere a
Resour ce isrequired. There'saso an | nput St r eamimplementation called Ri akl nput St ream

i mport org.springframework. dat a. keyval ue. ri ak. core. Ri akTenpl at e;
i nport org.springfranework. dat a. keyval ue. ri ak. core. i o. Ri akl nput Stream

public class Exanple {

@\ut owi r ed
Ri akTenpl ate ri ak;

public String readFronRi ak(String bucket, String key) throws Exception {
Input Streamin = new Ri akl nput Strean(riak, bucket, key);
String data;
...read data and work with it...
return data;

Spring DataKey Vaue (1.0.0.M3) 25

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/resources.html

Part Ill. Appendixes

Document structure

Various appendixes outside the reference documentation.

Appendix A, Soring Data Key Value Schema(s) defines the schemas provided by Spring Data Key Value.

Spring DataKey Vaue (1.0.0.M3)

26

Appendix A. Spring Data Key Value
Schema(s)

Spring Data - Redis support

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schema xm ns="http://ww. springfranmework. org/ schema/redi s"
xm ns: xsd="ht t p: / / www. W3. or g/ 2001/ XM_Schena"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: tool ="http://ww. springfranework. org/ schena/t ool "
t ar get Nanespace="htt p: //wwmv. spri ngframewor k. or g/ schema/ r edi s"
el enent For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t =" unqual i fi ed" >

<xsd:inport namespace="http://ww. springfranework. org/ schema/tool" schemalLocation="http://ww. spri ngframework.

<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Defines the configuration elements for the Spring Data Redis support.
Allows for configuring Redis |istener containers in XML 'shortcut' style
1] ></ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: el ement nane="l|i st ener-contai ner">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Contai ner of Redis listeners. Al listeners will be hosted by the sane container
1] ></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="org.springfranmework. dat a. keyval ue. redi s. | i st ener. Redi sMessagelLi st ener Cont ai ner"/ >
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent name="listener" type="listener Type" m nCccurs="0" maxQOccurs="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="connection-factory" type="xsd:string" default="redi sConnecti onFactory">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
A reference to the Redis ConnectionFactory bean
Default is "redi sConnectionFactory".
1] ></ xsd: docunent ati on>
<xsd: appi nf 0>
<tool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. springfranmework. dat a. keyval ue. redi s. connecti on. Connecti onFactory"/>
</ tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="t ask-executor" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
A reference to a Spring TaskExecutor (or standard JDK 1.5 Executor) for executing
Redis listener invokers. Default is a SinpleAsyncTaskExecut or
1] ></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="java.util.concurrent.Executor"/>
</ tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd:attribute name="subscription-task-executor" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
A reference to a Spring TaskExecutor (or standard JDK 1.5 Executor) for listening
to Redis nessages. By default reuses the 'task-executor' val ue
1] ></ xsd: docunent ati on>
<xsd: appi nf 0>

Spring Data Key Vaue (1.0.0.M3) 27

Spring Data Key Value Schema(s)

<t ool : annotati on ki nd="ref">
<t ool : expect ed-type type="java.util.concurrent.Executor"/>
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute name="topic-serializer" type="xsd:string">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
A reference to the RedisSerializer strategy for converting Redis channel s/patterns to
serialized format. Default is a StringRedisSerializer.
]]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org.springfranmework. data. keyval ue.redi s. serializer.RedisSerializer"/>
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute nane="phase" type="xsd:string">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The lifecycle phase within which this container should start and stop. The | ower
the value the earlier this container will start and the later it will stop. The
default is Integer. MAX VALUE neaning the container will start as late as possible
and stop as soon as possible.
]]1></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attribute>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: conpl exType nanme="li st ener Type" >
<xsd:attribute name="ref" type="xsd:string" use="required">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The bean nanme of the |istener object, inplenenting
the Messageli stener interface or defining the specified |istener method
Requi r ed.
]]1></ xsd: docunent at i on>
<xsd: appi nf 0>
<t ool : annotati on kind="ref"/>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="channel" type="xsd:string">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The channel (s) to which the listener is subscribed. Multiple values can be specified
by separating themw th spaces.
]]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="pattern" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The pattern(s) matching the channels to which the listener is subscribed. Multiple values can be specified
by separating themw th spaces.
]1]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute nane="net hod" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The name of the listener nmethod to invoke. |If not specified
the target bean is supposed to inplenment the Messageli stener
interface or provide a nethod naned ' handl eMessage’
]]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd:attribute name="serializer" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
A reference to the RedisSerializer strategy for converting Redis Messages to
listener nethod argunments. Default is a StringRedisSerializer
]]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. springfranmework. dat a. keyval ue. redi s. seri alizer. RedisSerializer"/>

Spring Data Key Vaue (1.0.0.M3) 28

Spring Data Key Value Schema(s)

</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
</ xsd: conpl exType>
</ xsd: schema>

Spring Data Key Vaue (1.0.0.M3)

29

	Spring Data Key-Value - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	Chapter 1. Why Spring Data - Key Value?
	Chapter 2. Requirements
	Chapter 3. Getting Started
	3.1. First Steps
	3.1.1. Knowing Spring
	3.1.2. Knowing NoSQL and Key Value stores
	3.1.3. Trying Out The Samples

	3.2. Need Help?
	3.2.1. Community Support
	3.2.2. Professional Support

	3.3. Following Development

	Part II. Reference Documentation
	Chapter 4. Redis support
	4.1. Redis Requirements
	4.2. Redis Support High Level View
	4.3. Connecting to Redis
	4.3.1. RedisConnection and RedisConnectionFactory
	4.3.2. Configuring Jedis connector
	4.3.3. Configuring JRedis connector

	4.4. Working with Objects through RedisTemplate
	4.5. String-focused convenience classes
	4.6. Serializers
	4.7. Redis Messaging/PubSub
	4.7.1. Sending/Publishing messages
	4.7.2. Receiving/Subscribing for messages
	4.7.2.1. Message Listener Containers
	4.7.2.2. The MessageListenerAdapter

	4.8. Support Classes
	4.9. Roadmap ahead

	Chapter 5. Riak Support
	5.1. Configuring the RiakTemplate
	5.1.1. Advanced Template Configuration

	5.2. Working with Objects using the RiakTemplate
	5.2.1. Saving data into Riak
	5.2.1.1. Letting Riak generate the key

	5.2.2. Retrieving data from Riak

	5.3. Linking Entries
	5.3.1. Link Walking

	5.4. Map/Reduce
	5.4.1. Specifying Inputs
	5.4.2. Defining Phases
	5.4.3. Executing and Working with the Result

	5.5. Managing Bucket Properties
	5.6. Asynchronous Access
	5.6.1. Template Configuration
	5.6.2. Callbacks

	5.7. Groovy Builder Support
	5.7.1. Riak DSL Usage
	5.7.1.1. QosParameters on Riak DSL Operations
	5.7.1.2. Working with Riak DSL Output

	5.8. Working with streams

	Part III. Appendixes
	Appendix A. Spring Data Key Value Schema(s)

