
Spring Data Key-Value - Reference Documentation

1.0.0.M1

Costin Leau (SpringSource), Jon Brisbin (NPC International, Inc.)

Copyright © 2006-2009

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

Preface .. iii
I. Introduction .. 1

1. Why Spring Data - Key Value? .. 2
2. Requirements .. 3
3. Getting Started .. 4

3.1. First Steps .. 4
3.1.1. Knowing Spring .. 4
3.1.2. Knowing NoSQL and Key Value stores .. 4
3.1.3. Trying Out The Samples .. 4

3.2. Need Help? .. 4
3.2.1. Community Support .. 4
3.2.2. Professional Support .. 5

3.3. Following Development ... 5
II. Reference Documentation ... 6

4. Riak Support .. 7
4.1. Configuring the RiakTemplate .. 7

4.1.1. Advanced Template Configuration ... 8
4.2. Working with Objects using the RiakTemplate .. 8

4.2.1. Saving data into Riak ... 8
4.2.2. Retrieving data from Riak .. 9

4.3. Working with streams ... 9

Spring Data Redis (1.0.0.M1) ii

Preface
The Spring Data Key-Value project applies core Spring concepts to the development of solutions using a
key-value style data store. We provide a "template" as a high-level abstraction for sending and receiving
messages. You will notice similarities to the JDBC support in the Spring Framework.

Spring Data Redis (1.0.0.M1) iii

Part I. Introduction

This document is the reference guide for Spring Data - Key Value Support. It explains Key Value module
concepts and semantics and the syntax for various stores namespaces.

For an introduction to key value stores or Spring, or Spring Data examples, please refer to Chapter 3, Getting
Started - this documentation refers only to Spring Data Key Value Support and assumes the user is familiar
with the key value storages and Spring concepts.

Spring Data Redis (1.0.0.M1) 1

Chapter 1. Why Spring Data - Key Value?
The Spring Framework is the leading full-stack Java/JEE application framework. It provides a lightweight
container and a non-invasive programming model enabled by the use of dependency injection, AOP, and
portable service abstractions.

NoSQL storages provide an alternative to classical RDBMS for horizontal scalability and speed. In terms of
implementation, Key Value stores represent one of the largest (and oldest) member in the NoSQL space.

The Spring Data Key Value (or SDKV) framework makes it easy to write Spring applications that use a Key
Value store by eliminating the redundant tasks and boiler place code required for interacting with the store
through Spring's excellent infrastructure support.

Spring Data Redis (1.0.0.M1) 2

http://en.wikipedia.org/wiki/NoSQL

Chapter 2. Requirements
Spring Data Key Value 1.x binaries requires JDK level 6.0 and above, and Spring Framework 3.0.x and above.

In terms of key value stores, Redis 2.0.x and Riak 0.13 are required.

Spring Data Redis (1.0.0.M1) 3

http://www.springsource.org/documentation
http://code.google.com/p/redis/
http://www.basho.com/Riak.html

Chapter 3. Getting Started
Learning a new framework is not always straight forward. In this section, we (the Spring Data team) tried to
provide, what we think is, an easy to follow guide for starting with Spring Data Key Value module. Of course,
feel free to create your own learning 'path' as you see fit and, if possible, please report back any improvements
to the documentation that can help others.

3.1. First Steps

As explained in Chapter 1, Why Spring Data - Key Value?, Spring Data Key Value (SDKV) provides
integration between Spring framework and key value (KV) stores. Thus, it is important to become acquainted
with both of these frameworks (storages or environments depending on how you want to name them).
Throughout the SDKV documentation, each section provides links to resources relevant however, it is best to
become familiar with these topics beforehand.

3.1.1. Knowing Spring

Spring Data uses heavily Spring framework's core functionality, such as the IoC container, resource abstract or
AOP infrastructure. While it is not important to know the Spring APIs, understanding the concepts behind them
is. At a minimum, the idea behind IoC should be familiar. These being said, the more knowledge one has about
the Spring, the faster she will pick Spring Data Key Value. Besides the very comprehensive (and sometimes
disarming) documentation that explains in detail the Spring Framework, there are a lot of articles, blog entries
and books on the matter - take a look at the Spring framework home page for more information. In general, this
should be the starting point for developers wanting to try Spring DKV.

3.1.2. Knowing NoSQL and Key Value stores

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of solutions, terms and
patterns (to make things worth even the term itself has multiple meanings). While some of the principles are
common, it is crucial that the user is familiar to some degree with the stores supported by SDKV. The best way
to get acquainted to this solutions is to read their documentation and follow their examples - it usually doesn't
take more then 5-10 minutes to go through them and if you are coming from an RDMBS-only background
many times these exercises can be an eye opener.

3.1.3. Trying Out The Samples

Unfortunately the SDKV project is very young and there are no samples available yet. However we are
working on them and plan to make them available as soon as possible. In the meantime however, one can use
our test suite as a code example (assuming the documentation is not enough) - we provide extensive integration
tests for our code base.

3.2. Need Help?

If you encounter issues or you are just looking for an advice, feel free to use one of the links below:

3.2.1. Community Support

Spring Data Redis (1.0.0.M1) 4

http://static.springframework.org/spring/docs/3.0.x/reference/spring-core.html
http://static.springframework.org/spring/docs/3.0.x/reference/beans.html
http://static.springframework.org/spring/docs/3.0.x/reference/resources.html
http://static.springframework.org/spring/docs/3.0.x/reference/aop.html
http://www.springsource.org/documentation
http://www.google.com/search?q=nosoql+acronym

The Spring Data forum is a message board for all Spring Data (not just Key Value) users to share information
and help each other. Note that registration is needed only for posting.

3.2.2. Professional Support

Professional, from-the-source support, with guaranteed response time, is available from SpringSource, the
company behind Spring Data and Spring.

3.3. Following Development

For information on the Spring Data source code repository, nightly builds and snapshot artifacts please see the
Spring Data home page.

You can help make Spring Data best serve the needs of the Spring community by interacting with developers
through the Spring Community forums.

If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring Data issue
tracker.

To stay up to date with the latest news and announcements in the Spring eco system, subscribe to the Spring
Community Portal.

Lastly, you can follow the SpringSource Data blog or the project team on Twitter (Costin)

Getting Started

Spring Data Redis (1.0.0.M1) 5

http://forum.springframework.org/forumdisplay.php?f=80
http://www.springsource.com
http://www.springsource.org/spring-data
http://forum.springsource.org
https://jira.springframework.org/browse/DATAKV
http://www.springframework.org/
http://blog.springsource.com/category/data-access/
http://twitter.com/costinl

Part II. Reference Documentation

Document structure
This part of the reference documentation explains the core functionality offered by Spring Data Key Value.

Spring Data Redis (1.0.0.M1) 6

Chapter 4. Riak Support
Riak is a Key/Value datastore that supports Internet-scale data replication for high performance and high
availability. Spring Data Key/Value (SDKV) provides access to the Riak datastore over the HTTP REST API
using a built-in driver based on Spring 3.0's RestTemplate. In addition to making Key/Value datastore access
easier from Java, the RiakTemplate has been designed, from the ground up, to be used from alternative JVM
languages like Groovy or JRuby.

Since the SDKV support for Riak uses the stateless REST API, there are no connection factories to manage or
other stateful objects to keep tabs on. The helper you'll spend the most time working with is likely the
thread-safe RiakTemplate or RiakKeyValueTemplate. Your choice of which to use will depend on how you
want to manage buckets and keys. SDKV supports two ways to interact with Riak. If you want to use the
convention you're likely already familiar with, namely of storing an entry with a given key in a "bucket" by
passing the bucket and key name separately, you'll want to use the RiakTemplate. If you want to use a single
object to represent your bucket and key pair, you can use the RiakKeyValueTemplate. It supports a key object
that is encoded using one of several different methods:

• Using a String - You can concatenate two strings, separated by a colon: "mybucket:mykey".

• Using a BucketKeyPair - You can pass an instance of BucketKeyPair, like SimpleBucketKeyPair.

• Using a Map - You can pass a Map with keys for "bucket" and "key".

4.1. Configuring the RiakTemplate

This is likely the easiest path to using SDKV for Riak, as the bucket and key are passed separately. The
examples that follow will assume you're using this version of the the template.

There are only two options you need to set to specify the Riak server to use in your RiakTemplate object:
"defaultUri" and "mapReduceUri". Encoded with the URI should be placeholders for the bucket and the key,
which will be filled in by the RestTemplate when the request is made.

Important

You can also turn the internal, ETag-based object cache off by setting useCache="false". It's
generally recommended, however, to leave the internal cache on as the ETag matching will pick up
any changes made to the entry on the Riak side and your application will benefit from
greatly-increased performance for often-requested objects.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="riakTemplate" class="org.springframework.data.keyvalue.riak.core.RiakTemplate"
p:defaultUri="http://localhost:8098/riak/{bucket}/{key}"
p:mapReduceUri="http://localhost:8098/mapred"
p:useCache="true"/>

</beans>

Spring Data Redis (1.0.0.M1) 7

https://wiki.basho.com/display/RIAK/Riak
https://wiki.basho.com/pages/viewpage.action?pageId=1245320
https://wiki.basho.com/display/RIAK/REST+API
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/remoting.html#rest-resttemplate
http://groovy.codehaus.org/
http://jruby.org/

4.1.1. Advanced Template Configuration

There are a couple additional properties on the RiakTemplate that can be changed from their defaults. If you
want to specify your own ConversionService to use when converting objects for storage inside Riak, then set it
on the "conversionService" property:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="conversionService" class="com.mycompany.convert.MyConversionService"/>
<bean id="riakTemplate" class="org.springframework.data.keyvalue.riak.core.RiakTemplate"

p:defaultUri="http://localhost:8098/riak/{bucket}/{key}"
p:mapReduceUri="http://localhost:8098/mapred"
p:conversionService-ref="conversionService"/>

</beans>

Depending on the application, it might be useful to set default Quality-of-Service parameters. In Riak
paralance, these are the "dw", "w", and "r" parameters. They can be set to an integer representing the number of
vnodes that need to report having received the data before declaring the operation a success, or the string "one",
"all", or (the default) "quorum". These values can be overridden by passing a different set of QosParameters to
the set/get operation you're performing.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="qos" class="org.springframework.data.keyvalue.riak.core.RiakQosParameters"
p:durableWriteThreshold="all"
p:writeThreshold="all"/>

<bean id="riakTemplate" class="org.springframework.data.keyvalue.riak.core.RiakTemplate"
p:defaultUri="http://localhost:8098/riak/{bucket}/{key}"
p:mapReduceUri="http://localhost:8098/mapred"
p:defaultQosParameters-ref="qos"/>

</beans>

It might also be necessary to replace the default ExecutorService (by default a cached ThreadPoolExecutor)
with an executor you've explicitly configured. Set your ExecutorService on the template's "executorService"
property.

4.2. Working with Objects using the RiakTemplate

One of the primary goals of the SDKV project is to make accessing Key/Value stores easier for the developer
by taking away the mundane tasks of basic IO, buffering, type conversion, exception handling, and sundry
other logistical concerns so the developer can focus on creating great applications. SDKV for Riak works
toward this goal by making basic persistence and data access as easy as using a Map.

4.2.1. Saving data into Riak

To store data in Riak, use one of the six different set methods:

import org.springframework.data.keyvalue.riak.core.RiakTemplate;

Riak Support

Spring Data Redis (1.0.0.M1) 8

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert-ConversionService-API
https://wiki.basho.com/display/RIAK/REST+API#RESTAPI-Setbucketproperties
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/ThreadPoolExecutor.html

public class Example {

@Autowired
RiakTemplate riak;

public void setData(String bucket, String key, String data) throws Exception {
riak.set(bucket, key, data); // Set as Content-Type: text/plain
riak.setAsBytes(bucket, key, data.getBytes()); // Set as Content-Type: application/octet-stream

}

public void setData(String bucket, String key, MyPojo data) throws Exception {
riak.set(bucket, key, data); // Converted to JSON automatically, Content-Type: application/json

}

}

Additionally, there is a setWithMetaData method that takes a Map of metadata that will be set as the outgoing
HTTP headers. To set custom metadata, your key should be prefixed with X-Riak-Meta- e.g.
X-Riak-Meta-Custom-Header.

4.2.2. Retrieving data from Riak

Retrieving data from Riak is just as easy. There are actually 13 different get methods on RiakTemplate that
give the developer a wide range options for accessing and converting your data.

Assuming you've stored a POJO using an appropriate set method, you can retrieve that object from Riak using
a get:

import org.springframework.data.keyvalue.riak.core.RiakTemplate;

public class Example {

@Autowired
RiakTemplate riak;

public void getData(String bucket, String key) throws Exception {
// What you get depends on Content-Type.
// application/json=Map, text/plain=String, etc...
Object o = riak.get(bucket, key);

// If your entry is Content-Type: application/json...
// It will automatically be converted when retrieved.
MyPojo s = riak.getAsType(bucket, key, MyPojo.class);

// If your entry is Content-Type: application/octet-stream,
// you can access the raw bytes.
byte[] b = riak.getAsBytes(bucket, key); // No conversion at all

}

}

4.3. Working with streams

SDKV for Riak includes a couple of useful helper objects to make reading and writing plain text or binary data
in Riak really easy. If you want to store a file in Riak, then you can create a RiakOutputStream and simply
write your data to it (making sure to call the "flush" method, which actually sends the data to Riak).

import org.springframework.data.keyvalue.riak.core.RiakTemplate;
import org.springframework.data.keyvalue.riak.core.io.RiakOutputStream;

public class Example {

Riak Support

Spring Data Redis (1.0.0.M1) 9

https://wiki.basho.com/display/RIAK/REST+API#RESTAPI-Storeaneworexistingobjectwithakey

@Autowired
RiakTemplate riak;

public void writeToRiak(String bucket, String key, String data) throws Exception {
OutputStream out = new RiakOutputStream(riak, bucket, key);
try {

out.write(data.getBytes());
} finally {

out.flush();
out.close();

}
}

}

Reading data from Riak is similarly easy. SDKV provides a java.io.File subclass that represents a resource
in Riak. There's also a Spring IO Resource abstraction called RiakResource that can be used anywhere a
Resource is required. There's also an InputStream implementation called RiakInputStream.

import org.springframework.data.keyvalue.riak.core.RiakTemplate;
import org.springframework.data.keyvalue.riak.core.io.RiakInputStream;

public class Example {

@Autowired
RiakTemplate riak;

public String readFromRiak(String bucket, String key) throws Exception {
InputStream in = new RiakInputStream(riak, bucket, key);
String data;
...read data and work with it...
return data;

}

}

Riak Support

Spring Data Redis (1.0.0.M1) 10

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/resources.html

	Spring Data Key-Value - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	Chapter 1. Why Spring Data - Key Value?
	Chapter 2. Requirements
	Chapter 3. Getting Started
	3.1. First Steps
	3.1.1. Knowing Spring
	3.1.2. Knowing NoSQL and Key Value stores
	3.1.3. Trying Out The Samples

	3.2. Need Help?
	3.2.1. Community Support
	3.2.2. Professional Support

	3.3. Following Development

	Part II. Reference Documentation
	Chapter 4. Riak Support
	4.1. Configuring the RiakTemplate
	4.1.1. Advanced Template Configuration

	4.2. Working with Objects using the RiakTemplate
	4.2.1. Saving data into Riak
	4.2.2. Retrieving data from Riak

	4.3. Working with streams

