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Preface

The Spring Data MongoDB project applies core Spring concepts to the development of solutions using
the MongoDB document style data store. We provide a "template” as a high-level abstraction for storing
and querying documents. You will notice similarities to the JDBC support in the Spring Framework.
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Part I. Introduction

This document is the reference guide for Spring Data - Document Support. It explains Document module
concepts and semantics and the syntax for various stores namespaces.

This section provides some basic introduction to Spring and Document database. The rest of the
document refers only to Spring Data Document features and assumes the user is familiar with document
databases such as MongoDB and CouchDB as well as Spring concepts.

1 Knowing Spring

Spring Data uses Spring framework's core functionality, such as the 1oC container, type conversion
system, expression language, JMX integration, and portable DAO exception hierarchy. While it is not
important to know the Spring APIs, understanding the concepts behind them is. At a minimum, the idea
behind 1oC should be familiar for whatever 1oC container you choose to use.

The core functionality of the MongoDB and CouchDB support can be used directly, with no need to
invoke the IoC services of the Spring Container. This is much like JdbcTenpl at e which can be used
'standalone’ without any other services of the Spring container. To leverage all the features of Spring
Data document, such as the repository support, you will need to configure some parts of the library
using Spring.

To learn more about Spring, you can refer to the comprehensive (and sometimes disarming)
documentation that explains in detail the Spring Framework. There are a lot of articles, blog entries and
books on the matter - take a look at the Spring framework home page for more information.

2 Knowing NoSQL and Document databases

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of solutions,
terms and patterns (to make things worth even the term itself has multiple meanings). While some of the
principles are common, it is crucial that the user is familiar to some degree with the stores supported by
DATADOC. The best way to get acquainted to this solutions is to read their documentation and follow
their examples - it usually doesn't take more then 5-10 minutes to go through them and if you are coming
from an RDMBS-only background many times these exercises can be an eye opener.

The jumping off ground for learning about MongoDB is www.mongodb.org. Here is a list of other useful
resources.

» The online shell provides a convenient way to interact with a MongoDB instance in combination with
the online tutorial.

* MongoDB Java Language Center

» Several books available for purchase

» Karl Seguin's online book: "The Little MongoDB Book"



http://static.springframework.org/spring/docs/3.0.x/reference/html/spring-core.html
http://static.springframework.org/spring/docs/3.0.x/reference/html/beans.html
http://static.springsource.org/spring/docs/3.0.x/reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/reference/html/expressions.html
http://static.springsource.org/spring/docs/3.0.x/reference/html/jmx.html
http://static.springsource.org/spring/docs/3.0.x/reference/html/dao.html#dao-exceptions
http://www.springsource.org/documentation
http://www.google.com/search?q=nosoql+acronym
http://www.mongodb.org/
http://www.mongodb.org/#
http://www.mongodb.org/display/DOCS/Tutorial
http://www.mongodb.org/display/DOCS/Java+Language+Center
http://www.mongodb.org/display/DOCS/Books
http://openmymind.net/mongodb.pdf
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1. Why Spring Data - Document?

The Spring Framework is the leading full-stack Java/JEE application framework. It provides a lightweight
container and a non-invasive programming model enabled by the use of dependency injection, AOP,
and portable service abstractions.

NoSQL storages provide an alternative to classical RDBMS for horizontal scalability and speed. In terms
of implementation, Document stores represent one of the most popular types of stores in the NoSQL
space. The document database supported by Spring Data are MongoDB and CouchDB, though just
MongoDB integration has been released to date.

The goal of the Spring Data Document (or DATADOC) framework is to provide an extension to the
Spring programming model that supports writing applications that use Document databases. The Spring
framework has always promoted a POJO programming model with a strong emphasis on portability and
productivity. These values are caried over into Spring Data Document.

Notable features that are used in Spring Data Document from the Spring framework are the Features
that particular, features from the Spring framework that are used are the Conversion Service, JMX
Exporters, portable Data Access Exception hierarchy, Spring Expression Language, and Java based
IoC container configuration. The programming model follows the familiar Spring 'template' style, so if you
are familar with Spring template classes such as JdbcTemplate, JInsTemplate, RestTemplate, you will
feel right at home. For example, MongoTemplate removes much of the boilerplate code you would have
to write when using the MongoDB driver to save POJOs as well as a rich java based query interface to
retrieve POJOs. The programming model also offers a new Repository approach in which the Spring
container will provide an implementation of a Repository based soley off an interface definition which
can also include custom finder methods.

Spring Data MongoDB -
1.2.4.RELEASE Reference Documentation 2
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2. Requirements

Spring Data Document 1.x binaries requires JDK level 6.0 and above, and Spring Framework 3.0.x and
above.

In terms of document stores, MongoDB preferably version 1.6.5 or later or CouchDB 1.0.1 or later are
required.

Spring Data MongoDB -
1.2.4.RELEASE Reference Documentation 3
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3. Additional Help Resources

Learning a new framework is not always straight forward. In this section, we try to provide what we think
is an easy to follow guide for starting with Spring Data Document module. However, if you encounter
issues or you are just looking for an advice, feel free to use one of the links below:

3.1 Support
There are a few support options available:
Community Forum

The Spring Data forum is a message board for all Spring Data (not just Document) users to share
information and help each other. Note that registration is needed only for posting.

Professional Support

Professional, from-the-source support, with guaranteed response time, is available from SpringSource,
the company behind Spring Data and Spring.

3.2 Following Development

For information on the Spring Data Mongo source code repository, nightly builds and snapshot artifacts
please see the Spring Data Mongo homepage.

You can help make Spring Data best serve the needs of the Spring community by interacting with
developers through the Spring Community forums. To follow developer activity look for the mailing list
information on the Spring Data Mongo homepage.

If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring Data
issue tracker.

To stay up to date with the latest news and announcements in the Spring eco system, subscribe to the
Spring Community Portal.

Lastly, you can follow the SpringSource Data blog or the project team on Twitter (SpringData)

Spring Data MongoDB -
1.2.4.RELEASE Reference Documentation 4
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4. Working with Spring Data Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code
required to implement data access layers for various persistence stores.

©

Important

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data repositories. The
information in this chapter is pulled from the Spring Data Commons module. It uses the
configuration and code samples for the Java Persistence APl (JPA) module. Adapt the XML
namespace declaration and the types to be extended to the equivalents of the particular module
that you are using. Appendix A, Namespace reference covers XML configuration which is
supported across all Spring Data modules supporting the repository API, Appendix B, Repository
query keywords covers the query method method keywords supported by the repository
abstraction in general. For detailed information on the specific features of your module, consult
the chapter on that module of this document.

4.1 Core concepts

The central interface in Spring Data repository abstraction is Reposi t or y (probably not that much of
a surprise). It takes the the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with and
to help you to discover interfaces that extend this one. The Cr udReposi t or y provides sophisticated
CRUD functionality for the entity class that is being managed.

Oo0Ooogogo

public interface CrudRepository<T, |ID extends Serializable>

ext ends Repository<T, |ID> {

|
<S extends T> S save(S entity);

O
T findOne(ID pri maryKey);

O
Iterabl e<T> findAll ();
Long count () ;

O
void delete(T entity);

O
bool ean exi sts(1D pri maryKey);

O

/1 ..nmore functionality omtted.

Saves the given entity.

Returns the entity identified by the given id.
Returns all entities.

Returns the number of entities.

Deletes the given entity.

Indicates whether an entity with the given id exists.

Example 4.1 Cr udReposi t ory interface

Spring Data MongoDB -
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Usually we will have persistence technology specific sub-interfaces to include additional technology
specific methods. We will now ship implementations for a variety of Spring Data modules that implement
CrudRepository.

On top of the Cr udReposi t ory there is a Pagi ngAndSor t i ngReposi t ory abstraction that adds
additional methods to ease paginated access to entities:

public interface Pagi ngAndSorti ngRepository<T, |D extends Serializabl e>
extends CrudRepository<T, |D> {

Iterabl e<T> findAl | (Sort sort);

Page<T> fi ndAl | (Pageabl e pageabl e);
}

Example 4.2 PagingAndSortingRepository

Accessing the second page of User by a page size of 20 you could simply do something like this:

Pagi ngAndSorti ngReposi t ory<User, Long> repository = // ..get access to a bean
Page<User > users = repository.findAl | (new PageRequest (1, 20));

4.2 Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring
Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Reposi t ory or one of its subinterfaces and type it to the domain
class that it will handle.

‘ public interface PersonRepository extends Repository<User, Long> { ...}

2. Declare query methods on the interface.

‘ Li st <Person> findByLastnane(String | astnane);

3. Set up Spring to create proxy instances for those interfaces.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xml ns: beans="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://wwm. springfranmewor k. or g/ schema/ dat a/ j pa"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmewor k. or g/ schema/ dat a/ j pa
http://ww. springframework. org/ schema/ dat a/ j pa/ spri ng-j pa. xsd" >

<repositories base-package="com acne. repositories" />

</ beans>

© Note

The JPA namespace is used in this example. If you are using the repository abstraction for
any other store, you need to change this to the appropriate namespace declaration of your
store module which should be exchanging j pa in favor of, for example, nongodb.

Spring Data MongoDB -
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4. Get the repository instance injected and use it.

public class Sonedient {

@\ut owi r ed
private PersonRepository repository;

public void doSonet hi ng() {
Li st <Person> persons = repository.findByLastnanme("Matthews");

}

}

The sections that follow explain each step.
Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Reposi t ory and be typed to the domain class and an ID type. If you want to expose CRUD methods
for that domain type, extend Cr udReposi t or y instead of Reposi t ory.

Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
Pagi ngAndSor t i ngReposi t ory. Alternatively, if you do not want to extend Spring Data interfaces,
you can also annotate your repository interface with @RepositoryDefinition. Extending
CrudReposi tory exposes a complete set of methods to manipulate your entities. If you prefer
to be selective about the methods being exposed, simply copy the ones you want to expose from
Cr udReposi t ory into your domain repository.

interface MyBaseRepository<T, |ID extends Serializabl e> extends Repository<T, |ID> {
T findOne(ID id);
T save(T entity);

}

interface UserRepository extends MyBaseRepository<User, Long> {

User findByEnail Address(Enail Address enmi | Addr ess) ;
}

Example 4.3 Selectively exposing CRUD methods

In this first step you defined a common base interface for all your domain repositories and exposed
findOne(..) aswellassave( ..) .These methods will be routed into the base repository implementation
of the store of your choice provided by Spring Data because they are matching the method signatures
in Cr udReposi t ory. So the User Reposi t ory will now be able to save users, and find single ones
by id, as well as triggering a query to find User s by their email address.

Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can derive
the query from the method name directly, or by using an additionally created query. Available options
depend on the actual store. However, there's got to be an strategy that decides what actual query is
created. Let's have a look at the available options.

Spring Data MongoDB -
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Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query-1 ookup- strategy attribute. Some
strategies may not be supported for particular datastores.

CREATE

CREATE attempts to construct a store-specific query from the query method name. The general approach
is to remove a given set of well-known prefixes from the method name and parse the rest of the method.
Read more about query construction in the section called “Query creation”.

USE_DECLARED_QUERY

USE_DECLARED_ QUERY tries to find a declared query and will throw an exception in case it can't find
one. The query can be defined by an annotation somewhere or declared by other means. Consult the
documentation of the specific store to find available options for that store. If the repository infrastructure
does not find a declared query for the method at bootstrap time, it fails.

CREATE_IF_NOT_FOUND (default)

CREATE_| F_NOT_FOUND combines CREATE and USE_DECL ARED QUERY. It looks up a declared query
first, and if no declared query is found, it creates a custom method name-based query. This is the default
lookup strategy and thus will be used if you do not configure anything explicitly. It allows quick query
definition by method names but also custom-tuning of these queries by introducing declared queries
as needed.

Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes f i nd..By, r ead...
By, and get ..By from the method and starts parsing the rest of it. The introducing clause can contain
further expressions such as a Di sti nct to set a distinct flag on the query to be created. However, the
first By acts as delimiter to indicate the start of the actual criteria. At a very basic level you can define
conditions on entity properties and concatenate them with And and O

public interface PersonRepository extends Repository<User, Long> {
Li st <Per son> fi ndByEmai | Addr essAndLast nane( Enai | Addr ess enmi | Address, String | astnane);

/'l Enables the distinct flag for the query
Li st <Person> fi ndDi sti nct Peopl eByLast naneOr Fi rstname(String | astname, String firstnane);
Li st <Person> fi ndPeopl eDi sti nct ByLast nameOr Firstnane(String | astname, String firstnane);

/1 Enabling ignoring case for an individual property

Li st <Person> fi ndByLast nanel gnoreCase(String | astnane);

/] Enabling ignoring case for all suitable properties

Li st <Person> fi ndBylLast naneAndFi r st naneAl | | gnoreCase(String | astname, String firstnane);

/1 Enabling static ORDER BY for a query
Li st <Person> fi ndByLast naneOr der ByFi r st nanmeAsc(String | ast nane);
Li st <Per son> fi ndByLast naneOr der ByFi r st nameDesc(Stri ng | ast nane) ;

}

Example 4.4 Query creation from method names

The actual result of parsing the method depends on the persistence store for which you create the query.
However, there are some general things to notice.

Spring Data MongoDB -
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* The expressions are usually property traversals combined with operators that can be concatenated.
You can combine property expressions with AND and OR. You also get support for operators such as
Bet ween, LessThan, Gr eat er Than, Li ke for the property expressions. The supported operators
can vary by datastore, so consult the appropriate part of your reference documentation.

* The method parser supports setting an |gnoreCase flag for individual properties, for
example,fi ndByLast nanmel gnhor eCase( ..) ) or for all properties of a type that support ignoring case
(usually St ri ngs, for example, f i ndByLast nameAndFi r st naneAl | | gnor eCase( ..) ). Whether
ignoring cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

* You can apply static ordering by appending an Or der By clause to the query method that references
a property and by providing a sorting direction (Asc or Desc). To create a query method that supports
dynamic sorting, see the section called “Special parameter handling”.

Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding
example. At query creation time you already make sure that the parsed property is a property of the
managed domain class. However, you can also define constraints by traversing nested properties.
Assume Per sons have Addr esses with Zi pCodes. In that case a method name of

Li st <Per son> fi ndByAddr essZi pCode( Zi pCode zi pCode);

creates the property traversal x. addr ess. zi pCode. The resolution algorithm starts with interpreting
the entire part (Addr essZi pCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, Addr essZi p and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the way
just described. If the first split does not match, the algorithm move the split point to the left (Addr ess,
Zi pCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property.
Suppose the Per son class has an addr essZi p property as well. The algorithm would match in the first
split round already and essentially choose the wrong property and finally fail (as the type of addr essZi p
probably has no code property). To resolve this ambiguity you can use _ inside your method name to
manually define traversal points. So our method name would end up like so:

Li st <Per son> fi ndByAddr ess_Zi pCode( Zi pCode zi pCode);

Special parameter handling

To handle parameters to your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageabl e and
Sor t to apply pagination and sorting to your queries dynamically.

Page<User > findByLast name(String | astname, Pageabl e pageabl e);
Li st<User> findByLastnane(String |astnanme, Sort sort);

Li st<User> findByLastnane(String | astnane, Pageabl e pageabl e);

Example 4.5 Using Pageable and Sort in query methods

Spring Data MongoDB -
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The first method allows you to pass an or g. spri ngf r amewor k. dat a. donai n. Pageabl e instance
to the query method to dynamically add paging to your statically defined query. Sorting options
are handled through the Pageabl e instance too. If you only need sorting, simply add an
org. springfranmewor k. dat a. domai n. Sort parameter to your method. As you also can see,
simply returning a Li st is possible as well. In this case the additional metadata required to build the
actual Page instance will not be created (which in turn means that the additional count query that would
have been necessary not being issued) but rather simply restricts the query to look up only the given
range of entities.

@ Note

To find out how many pages you get for a query entirely you have to trigger an additional count
query. By default this query will be derived from the query you actually trigger.

Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. The easiest
way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism.

XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns: beans="http://ww. spri ngfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://ww. spri ngframewor k. org/ schena/ dat a/ j pa"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ dat a/ j pa
http://ww. springframework. org/ schema/ dat a/ j pa/ spri ng-j pa. xsd" >

<repositori es base-package="com acne. repositories" />

</ beans: beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its subpackages
for interfaces extending Repository or one of its subinterfaces. For each interface found, the
infrastructure registers the persistence technology-specific Fact or yBean to create the appropriate
proxies that handle invocations of the query methods. Each bean is registered under a bean name that
is derived from the interface name, so an interface of User Reposi t ory would be registered under
user Reposi tory. The base- package attribute allows wildcards, so that you can have a pattern of
scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Reposi t ory subinterface located under the configured base package and creates a bean instance
for it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements
inside <r eposi tori es />. The semantics are exactly equivalent to the elements in Spring's context
namespace. For details, see Spring reference documentation on these elements.
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For example, to exclude certain interfaces from instantiation as repository, you could use the following
configuration:

<repositories base-package="com acne. repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SonmeReposi t or y from being instantiated.
Example 4.6 Using exclude-filter element

JavaConfig

The repository infrastructure can also be triggered using a store-specific @&tnabl e
${ st ore} Reposi t ori es annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation.?

A sample configuration to enable Spring Data repositories looks something like this.

@conf i guration
@nabl eJpaReposi tori es("com acne. repositories")
cl ass ApplicationConfiguration {

@ean
public EntityManager Factory entityManagerFactory() ({
I/
}
}

Example 4.7 Sample annotation based repository configuration

@ Note

The sample uses the JPA-specific annotation, which you would change according to the store
module you actually use. The same applies to the definition of the Enti t yManager Fact ory
bean. Consult the sections covering the store-specific configuration.

Standalone usage

You can also use the repository infrastructure outside of a Spring container. You still need some
Spring libraries in your classpath, but generally you can set up repositories programmatically as
well. The Spring Data modules that provide repository support ship a persistence technology-specific
Reposi t or yFact ory that you can use as follows.

Reposi t oryFact orySupport factory = ...// Instantiate factory here
User Repository repository = factory. get Repository(UserRepository.class);

Example 4.8 Standalone usage of repository factory

4.3 Custom implementations for Spring Data repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

2.]avaConfig in the Spring reference documentation - http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/
html/beans.html#beans-java
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Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation for
the custom functionality. Use the repository interface you provided to extend the custom interface.

interface UserRepositoryCustom {

public voi d soneCust omVet hod( User user);
}

Example 4.9 Interface for custom repository functionality

cl ass UserRepositorylnmpl inplenments UserRepositoryCustom {

public voi d sonmeCust omvet hod(User user) {
/1 Your custom i npl enentation
}
}

© Note

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So
you can use standard dependency injection behavior to inject references to other beans, take
part in aspects, and so on.

Example 4.10 Implementation of custom repository functionality

public interface UserRepository extends CrudRepository<User, Long> UserRepositoryCustom {

/| Decl are query nethods here

}

Let your standard repository interface extend the custom one. Doing so makes CRUD and custom
functionality available to clients.
Example 4.11 Changes to the your basic repository interface

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element's attribute r eposi t or y-
i mpl - post fi x to the found repository interface name. This postfix defaults to | npl .

<repositories base-package="com acne. repository" />

<repositories base-package="com acne. repository" repository-inpl-postfix="FooBar" />

Example 4.12 Configuration example

The first configuration example will try to look up a class
com acne. reposi tory. User Reposi t oryl npl to act as custom repository implementation, where
the second example will try to lookup com acne. reposi t ory. User Reposi t or yFooBar .

Manual wiring

The preceding approach works well if your custom implementation uses annotation-based configuration
and autowiring only, as it will be treated as any other Spring bean. If your custom implementation bean
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needs special wiring, you simply declare the bean and name it after the conventions just described.
The infrastructure will then refer to the manually defined bean definition by name instead of creating
one itself.

<repositori es base-package="com acne. repository" />

<beans: bean i d="userRepositoryl npl" class=".">
<l-- further configuration -->
</ beans: bean>

Example 4.13 Manual wiring of custom implementations (1)

Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces.

1. To add custom behavior to all repositories, you first add an intermediate interface to declare the
shared behavior.

public interface MyRepository<T, |D extends Serializable>
ext ends JpaRepository<T, |D> {

voi d sharedCust omvet hod(I D id);

}
Example 4.14 An interface declaring custom shared behavior

Now your individual repository interfaces will extend this intermediate interface instead of the
Reposi t ory interface to include the functionality declared.

2. Next, create an implementation of the intermediate interface that extends the persistence technology-
specific repository base class. This class will then act as a custom base class for the repository
proxies.

public class MyRepositoryl mpl <T, |D extends Serializable>
extends Si npl eJpaRepository<T, |D> inplenments M/Repository<T, |D> {

private EntityManager entityManager;

/'l There are two constructors to choose from either can be used.
public MyRepositorylnpl (O ass<T> donmi nd ass, EntityManager entityManager) {
super (donmi nCl ass, entityManager);

/1 This is the recormended nethod for accessing inherited class dependenci es.
this.entityManager = entityManager;
}

public voi d sharedCustomvet hod(ID id) {
/1 inmplenentation goes here

}
}

Example 4.15 Custom repository base class

The default behavior of the Spring <r eposi t ori es / > namespace is to provide an implementation
for all interfaces that fall under the base- package. This means that if left in its current state, an
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implementation instance of MyReposi t or y will be created by Spring. This is of course not desired
as it is just supposed to act as an intermediary between Reposi t ory and the actual repository
interfaces you want to define for each entity. To exclude an interface that extends Reposi t or y from
being instantiated as a repository instance, you can either annotate it with @loReposi t or yBean or
move it outside of the configured base- package.

3. Then create a custom repository factory to replace the default Reposi t or yFact or yBean that will
in turn produce a custom Reposi t or yFact ory. The new repository factory will then provide your
MyReposi t oryl npl asthe implementation of any interfaces that extend the Reposi t or y interface,
replacing the Si npl eJpaReposi t ory implementation you just extended.

public class M/RepositoryFact oryBean<R ext ends JpaRepository<T, |> T, | extends
Seri al i zabl e>
ext ends JpaRepositoryFactoryBean<R, T, |> {

protect ed RepositoryFactorySupport createRepositoryFactory(EntityManager
entityManager) ({

return new MyRepositoryFactory(entityManager);
}

private static class M/RepositoryFactory<T, | extends Serializabl e> extends
JpaReposi toryFactory {

private EntityManager entityManager;

publ i c MyRepositoryFactory(EntityManager entityManager) {
super (entityManager);

this.entityManager = entityManager;
}

protected Object get Target Repository(RepositoryMtadata netadata) {

return new MyRepositorylnpl <T, 1>((Cd ass<T>) netadat a. get Domai nCl ass(),
entityManager);
}

protected C ass<?> get Reposi t or yBased ass(Reposi t or yMet adat a net adata) {

/'l The RepositoryMetadata can be safely ignored, it is used by the
JpaReposi t or yFact ory
//to check for QueryDsl JpaRepository's which is out of scope.
return MyRepository. cl ass;
}
}
}

Example 4.16 Custom repository factory bean

4. Finally, either declare beans of the custom factory directly or use the f act ory- cl ass attribute of
the Spring namespace to tell the repository infrastructure to use your custom factory implementation.

<repositories base-package="com acne. repository"
factory-cl ass="com acne. M/Reposi t or yFact or yBean" />

Example 4.17 Using the custom factory with the namespace
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4.4 Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLSs. By default your task is to transform that request parameter or URL part into the domain
class to hand it to layers below then or execute business logic on the entities directly. This would look
something like this:

@ontroll er
@Request Mappi ng( "/ users")
public class UserController {

private final UserRepository userRepository;

@\ut owi red
public UserController(UserRepository userRepository) {
Assert.notNul | (repository, "Repository nust not be null!");

user Reposi tory = userRepository;

}

@request Mappi ng("/{id}")
public String showUser Forn( @at hVari abl e("id") Long id, Mdel nodel) ({

/1 Do null check for id
User user = userRepository.findOne(id);
/1 Do null check for user

nmodel . addAttri bute("user", user);
return "user";

First you declare a repository dependency for each controller to look up the entity managed by
the controller or repository respectively. Looking up the entity is boilerplate as well, as it's always
a findOne(..) call. Fortunately Spring provides means to register custom components that allow
conversion between a St ri ng value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java Propert yEdi t ors had to be used. To integrate with
that, Spring Data offers a Dormai nCl assPr opert yEdi t or Regi st r ar, which looks up all Spring Data
repositories registered in the Appl i cati onCont ext and registers a custom Propert yEdi t or for
the managed domain class.
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<bean cl ass="...web. servl et. nm/c. annot ati on. Annot ati onMet hodHand| er Adapt er" >
<property nanme="webBi ndinglnitializer">
<bean cl ass="...web. bi nd. support. Confi gurabl eWebBi ndi nglnitializer">

<property nane="propertyEditorRegistrars">

<bean cl ass="org. spri ngframework. dat a. repository. support. Domai nCl assPropertyEditorRegi strar"
/>
</ property>
</ bean>
</ property>
</ bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as
follows, which reduces a lot of the clutter and boilerplate.

@ontroll er
@Request Mappi ng( "/ users")
public class UserController {

@Request Mappi ng("/{id}")
public String showUser For n{ @at hVari abl e("i d") User user, Mdel nodel) {

nmodel . addAttri bute("user", user);
return "userForm';

ConversionService

In Spring 3.0 and later the Pr oper t yEdi t or support is superseded by a new conversion infrastructure
that eliminates the drawbacks of PropertyEditors and uses a stateless X to Y conversion
approach. Spring Data now ships with a Domai nCl assConvert er that mimics the behavior of
Domai nCl assPropert yEdi t or Regi strar. To configure, simply declare a bean instance and pipe
the Conver si onSer vi ce being used into its constructor:

<mvc: annot ati on-driven conversi on-servi ce="conversi onServi ce" />

<bean cl ass="org. spri ngfranewor k. dat a. reposi tory. support. Domai nCl assConverter">
<constructor-arg ref="conversi onService" />
</ bean>

If you are using JavaConfig, you can simply extend Spring MVC's WebMscConf i gur at i onSupport
and hand the For mat i ngConver si onSer vi ce that the configuration superclass provides into the
Domai nCl assConvert er instance you create.

cl ass WebConfigurati on extends WebM/cConfi gurati onSupport {
/1 Other configuration omtted

@Bean
publ i ¢ Domai nCl assConverter<?> domai nC assConverter () {
return new Domai nCl assConvert er <Formatti ngConver si onServi ce>(m/cConver si onService());
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Web pagination

When working with pagination in the web layer you usually have to write a lot of boilerplate code yourself
to extract the necessary metadata from the request. The less desirable approach shown in the example
below requires the method to contain an Ht t pSer vl et Request parameter that has to be parsed
manually. This example also omits appropriate failure handling, which would make the code even more
verbose.

@ontrol ler
@Request Mappi ng("/ users")
public class UserController {

/1 DI code omtted

@request Mappi ng
public String showdsers(Mdel nodel, HttpServletRequest request) {

int page = I nteger.parselnt(request.getParaneter("page"));
int pageSi ze = |nteger. parselnt(request.get Paraneter("pageSi ze"));

Pageabl e pageabl e = new PageRequest (page, pageSi ze);

nmodel . addAttri bute("users", userService. getUsers(pageabl e));
return "users";

The bottom line is that the controller should not have to handle the functionality of extracting pagination
information from the request. So Spring includes a Pageabl eAr gunent Resol ver that will do the work
for you.

<bean cl ass="...web. servl et. mvc. annot ati on. Annot ati onMet hodHandl er Adapt er " >
<property nane="cust omAr gunent Resol vers" >
<list>
<bean cl ass="org. spri ngframewor k. dat a. web. Pageabl eAr gunent Resol ver" />
</[list>
</ property>
</ bean>

This configuration allows you to simplify controllers down to something like this:

@ontrol ler
@Request Mappi ng("/ users")
public class UserController {

@Request Mappi ng
public String showdsers(Mdel nodel, Pageable pageable) {

nodel . addAttri bute("users", userRepository.findAll (pageable));
return "users";

The Pageabl eAr gurent Resol ver automatically resolves request parameters to build a
PageRequest instance. By default it expects the following structure for the request parameters.
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Table 4.1. Request parameters evaluated by Pageabl eAr gunent Resol ver

page Page you want to retrieve.

page. si ze Size of the page you want to retrieve.
page. sort Property that should be sorted by.
page.sort.dir Direction that should be used for sorting.

In case you need multiple Pageabl es to be resolved from the request (for multiple tables, for example)
you can use Spring's @ual i fi er annotation to distinguish one from another. The request parameters
then have to be prefixed with ${ qual i fi er} _. So for a method signature like this:

public String showdsers(Mdel nodel,
@ualifier("foo") Pageable first,
@ualifier("bar") Pageable second) { ...}

you have to populate f oo_page and bar _page and the related subproperties.
Configuring a global default on bean declaration

The Pageabl eAr gunent Resol ver will use a PageRequest with the first page and a page size of 10
by default. It will use that value if it cannot resolve a PageRequest from the request (because of missing
parameters, for example). You can configure a global default on the bean declaration directly. If you
might need controller method specific defaults for the Pageabl e, annotate the method parameter with
@ageabl eDef aul t s and specify page (through pageNunber ), page size (through val ue), sort (list
of properties to sort by), and sort Di r (the direction to sort by) as annotation attributes:

public String showUsers(Mdel nodel,
@ageabl eDef aul t s(pageNumber = 0, value = 30) Pageabl e pageable) { ...}

Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
Dat aSour ce using SQL scripts. A similar abstraction is available on the repositories level, although
it does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring's OXM abstraction) and JSON (through Jackson) to define data
with which to populate the repositories.

Assume you have a file dat a. j son with the following content:

[ { "_class" : "com acne. Person",
"firstname" : "Dave",
"l ast name" : "Matthews" },
{ "_class" : "com acne. Person",
"firstname" : "Carter",
"l ast name" : "Beauford" } ]

Example 4.18 Data defined in JSON

You can easily populate your repositories by using the populator elements of the repository namespace
provided in Spring Data Commons. To populate the preceding data to your Per sonRepository , do
the following:
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<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: repository="http://ww. springfranmework. or g/ schema/ dat a/ r eposi tory"
xsi : schemaLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranewor k. or g/ schena/ dat a/ reposi tory

<reposi tory:jackson-popul ator |ocation="cl asspath: data.json" />

</ beans>

Example 4.19 Declaring a Jackson repository populator

http://ww. springframework. org/ scherma/ dat a/ reposi tory/ spring-repository.xsd">

This declaration causes the dat a. j son file being read, deserialized by a Jackson Obj ect Mapper.
The type to which the JSON object will be unmarshalled to will be determined by inspecting the _cl ass
attribute of the JSON document. The infrastructure will eventually select the appropriate repository to

handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmar shal | er - popul at or element. You configure it to use one of the XML marshaller options Spring

OXM provides you with. See the Spring reference documentation for details.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: repository="http://ww. springfranmework. org/ schema/ dat a/ reposi tory"
xm ns: oxn¥"http://ww. springframewor k. or g/ schenma/ oxnt
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schenma/ dat a/ r eposi tory
http://ww. spri ngfranewor k. or g/ schena/ dat a/ r eposi tory/ spri ng-repository. xsd
http://ww. springfranework. or g/ schema/ oxm
http://ww. springframework. or g/ schema/ oxm spri ng- oxm xsd" >

ref ="unmarshal ler" />
<oxm j axb2- mar shal | er cont ext Pat h="com acme" />

</ beans>

<reposi tory: unmarshal | er- popul ator |ocation="cl asspath: data.json" unmarshall er-

Example 4.20 Declaring an unmarshalling repository populator (using JAXB)
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5. MongoDB support

The MongoDB support contains a wide range of features which are summarized below.

» Spring configuration support using Java based @Configuration classes or an XML namespace for a
Mongo driver instance and replica sets

* MongoTemplate helper class that increases productivity performing common Mongo operations.
Includes integrated object mapping between documents and POJOs.

» Exception translation into Spring's portable Data Access Exception hierarchy

» Feature Rich Object Mapping integrated with Spring's Conversion Service

» Annotation based mapping metadata but extensible to support other metadata formats

» Persistence and mapping lifecycle events

» Java based Query, Criteria, and Update DSLs

» Automatic implementatin of Repository interfaces including support for custom finder methods.
* QueryDSL integration to support type-safe queries.

» Cross-store persistance - support for JPA Entities with fields transparently persisted/retrieved using
MongoDB

» Log4j log appender
» GeoSpatial integration

For most tasks you will find yourself using MongoTenpl at e or the Repository support that both leverage
the rich mapping functionality. MongoTemplate is the place to look for accessing functionality such as
incrementing counters or ad-hoc CRUD operations. MongoTemplate also provides callback methods so
that it is easy for you to get a hold of the low level API artifacts such as or g. nrongo. DB to communicate
directly with MongoDB. The goal with haming conventions on various API artifacts is to copy those in
the base MongoDB Java driver so you can easily map your existing knowledge onto the Spring APIs.

5.1 Getting Started

Spring MongoDB support requires MongoDB 1.4 or higher and Java SE 5 or higher. The latest
production release (2.0.x as of this writing) is recommended. An easy way to bootstrap setting up a
working environment is to create a Spring based project in STS.

First you need to set up a running Mongodb server. Refer to the Mongodb Quick Start guide for an
explanation on how to startup a MongoDB instance. Once installed starting MongoDB is typically a
matter of executing the following command: MONGO_HOME/ bi n/ nongod

To create a Spring project in STS go to File -> New -> Spring Template Project -> Simple Spring
Utility Project --> press Yes when prompted. Then enter a project and a package name such as
org.spring.mongodb.example.

Then add the following to pom.xml dependencies section.

Spring Data MongoDB -
1.2.4.RELEASE Reference Documentation 21


http://www.springsource.com/developer/sts
http://www.mongodb.org/display/DOCS/Quickstart

please define productname in your docbook file!

<dependenci es>
<l-- other dependency el enents onitted -->

<dependency>
<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifact!d>spring-data-nongodb</artifact!d>
<version>1. 1. 0. RELEASE</ ver si on>

</ dependency>

</ dependenci es>

Also change the version of Spring in the pom.xml to be

<spring. framewor k. ver si on>3. 1. 2. RELEASE</ spri ng. f ramewor k. ver si on>

You will also need to add the location of the Spring Milestone repository for maven to your pom.xml
which is at the same level of your <dependencies/> element

<repositories>
<reposi tory>
<i d>spring-mlestone</id>
<nane>Spring Maven M LESTONE Repository</nane>
<url >http://repo.springsource.org/libs-mlestone</url>
</repository>
</repositories>

The repository is also browseable here.

You may also want to set the logging level to DEBUG to see some additional information, edit the
log4j.properties file to have

| og4j . cat egory. org. spri ngf ramewor k. dat a. docunent . nongodb=DEBUG
| 0g4j . appender . st dout . | ayout . Conver si onPat t er n=%d{ ABSOLUTE} %p 9%40.40c: %L - Y%dn

Create a simple Person class to persist
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package org. spring. nongodb. exanpl e;
public class Person {

private String id;
private String nane;
private int age;

public Person(String name, int age) {
this. nane = nang;
this.age = age;

}

public String getld() {
return id;

}

public String getName() ({
return nane;

}

public int getAge() {
return age;

}
@verride
public String toString() {
return "Person [id=" +id + ", name=" + nane + ", age=" + age + "]";
}

And a main application to run
package org. spring. nongodb. exanpl e;
import static org.springframework. dat a. rongodb. core. query. Criteria. where;
i mport org.apache. commons. | oggi ng. Log;
i mport org.apache. commons. | oggi ng. LogFact ory;
i nport org.springfranewor k. dat a. nrongodb. cor e. MongoOper at i ons;
i nport org.springfranmework. dat a. nrongodb. cor e. MongoTenpl at e;
i mport org.springframework. dat a. nongodb. core. query. Query;
i mport com nongodb. Mbngo;
public class MngoApp {
private static final Log | og = LogFactory. get Log( MongoApp. cl ass);
public static void main(String[] args) throws Exception {
MongoOper at i ons nobngoCps = new MongoTenpl at e(new Mongo(), "database");
mongoOps. i nsert (new Person("Joe", 34));

| 0g. i nfo(nongoOps. fi ndOne(new Query(where("nane").is("Joe")), Person.class));

nongoOps. dropCol | ecti on(" person");

}
}

This will produce the following output
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10: 01: 32, 062 DEBUG appi ng. MongoPer si stent Entityl ndexCreator: 80 - Anal yzing class cl ass
org. spring. exanpl e. Person for index information
10: 01: 32, 265 DEBUG r amewor k. dat a. nrongodb. cor e. MongoTenpl ate: 631 - insert DBObject

containing fields: [_class, age, nane] in collection: Person

10: 01: 32, 765 DEBUG r anewor k. dat a. nongodb. cor e. MongoTenpl ate: 1243 - findOne using query:
{ "name" : "Joe"} in db.collection: database.Person

10: 01: 32,953 | NFO org. spring. nongodb. exanpl e. MongoApp: 25 - Person

[i d=4ddbba3c0be56b7e1b210166, nane=Joe, age=34]
10: 01: 32, 984 DEBUG r amewor k. dat a. nrongodb. cor e. MongoTenpl ate: 375 - Dropped col |l ection
[ dat abase. per son]

Even in this simple example, there are few things to take notice of

* You can instantiate the central helper class of Spring Mongo, MongoTenpl at e, using the standard
com nongodh. Mongo object and the name of the database to use.

» The mapper works against standard POJO objects without the need for any additional metadata
(though you can optionally provide that information. See here.).

» Conventions are used for handling the id field, converting it to be a Objectld when stored in the
database.

» Mapping conventions can use field access. Notice the Person class has only getters.

« If the constructor argument names match the field names of the stored document, they will be used
to instantiate the object

5.2 Examples Repository

There is an github repository with several examples that you can download and play around with to get
a feel for how the library works.

5.3 Connecting to MongoDB with Spring

One of the first tasks when using MongoDB and Spring is to create a com nongodb. Mongo object
using the IoC container. There are two main ways to do this, either using Java based bean metadata or
XML based bean metadata. These are discussed in the following sections.

© Note

For those not familiar with how to configure the Spring container using Java based bean metadata
instead of XML based metadata see the high level introduction in the reference docs here as
well as the detailed documentation _here.

Registering a Mongo instance using Java based metadata

An example of using Java based bean metadata to register an instance of a com nongodb. Mongo
is shown below
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@Configuration
public class AppConfig {

/*
* Use the standard Mongo driver APl to create a com nongodb. Mongo i nstance.
*/
public @ean Mongo nongo() throws UnknownHost Exception {
return new Mongo("l ocal host");
}
}

Example 5.1 Registering a com.mongodb.Mongo object using Java based bean metadata

This approach allows you to use the standard com nongodb. Mongo API that you may already be used
to using but also pollutes the code with the UnknownHostException checked exception. The use of the
checked exception is not desirable as Java based bean metadata uses methods as a means to set
object dependencies, making the calling code cluttered.

An alternative is to register an instance of com nongodb. Mongo instance with the container using
Spring's MongoFact or yBean. As compared to instantiating a com nongodb. Mongo instance directly,
the FactoryBean approach does not throw a checked exception and has the added advantage of
also providing the container with an ExceptionTranslator implementation that translates MongoDB
exceptions to exceptions in Spring's portable Dat aAccessExcepti on hierarchy for data access
classes annoated with the @Reposit ory annotation. This hierarchy and use of @repository is
described in Spring's DAO support features.

An example of a Java based bean metadata that supports exception translation on @Repository
annotated classes is shown below:

@Configuration
public class AppConfig {

/*
* Factory bean that creates the com nbngodb. Mongo i nstance
*/
public @ean MongoFact oryBean nongo() {
MongoFact or yBean nongo = new MongoFact or yBean() ;
nmongo. set Host ("1 ocal host ") ;
return nongo;

To access the com nongodb. Mongo object created by the MongoFact oryBean in other
@confi gurati on or your own classes, use a "pri vat e @\ut owi red Mongo nongo; " field.
Example 5.2 Registering a com.mongodb.Mongo object using Spring's MongoFactoryBean and
enabling Spring's exception translation support

Registering a Mongo instance using XML based metadata

While you can use Spring's traditional <beans/> XML namespace to register an instance of
com nongodb. Mongo with the container, the XML can be quite verbose as it is general purpose. XML
namespaces are a better alternative to configuring commonly used objects such as the Mongo instance.
The mongo namespace alows you to create a Mongo instance server location, replica-sets, and options.

To use the Mongo namespace elements you will need to reference the Mongo schema:
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<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://wwmv. springfranmewor k. or g/ schema/ cont ext"
xm ns: mongo="htt p: // ww. spri ngf ramewor k. or g/ schema/ dat a/ nrongo"
xsi : schemalLocati on=
“http://ww. springfranmewor k. or g/ schema/ cont ext
http://ww. springfranmework. or g/ schema/ cont ext/ spri ng-cont ext-3. 0. xsd
http://ww. springframework. or g/ schema/ dat a/ nongo
http: //ww. spri ngfranewor k. or g/ schenma/ dat a/ nongo/ spri ng- nongo- 1. 0. xsd
http://ww. springfranmework. org/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd" >

<l-- Default bean nanme is 'nobngo' -->
<nmongo: nongo host ="1 ocal host" port="27017"/>

</ beans>

Example 5.3 XML schema to configure MongoDB

A more advanced configuration with MongoOptions is shown below (note these are not recommended
values)

<beans>

<nopngo: nongo host ="1|ocal host" port="27017">
<nongo: opti ons connecti ons- per - host ="8"

connect - ti meout =" 1000"
max- wai t-ti ne="1500} "
aut o-connect-retry="true"
socket - keep-al i ve="t rue"
socket - ti meout =" 1500"
sl ave- ok="true"
wri t e- nunber =" 1"
write-timeout="0"
wite-fsync="true"/>

</ nongo: nongo/ >

</ beans>

Example 5.4 XML schema to configure a com.mongodb.Mongo object with MongoOptions

A configuration using replica sets is shown below.

<nongo: nongo i d="repl i caSet Mongo" replica-set="127.0.0.1: 27017, | ocal host: 27018"/ >

Example 5.5 XML schema to configure com.mongodb.Mongo object with Replica Sets
The MongoDbFactory interface

While com nongodb. Mongo is the entry point to the MongoDB driver API, connecting to a specific
MongoDB database instance requires additional information such as the database name and
an optional username and password. With that information you can obtain a com.mongodb.DB
object and access all the functionality of a specific MongoDB database instance. Spring provides
the org. spri ngfranmewor k. dat a. nongodb. cor e. MongoDbFact ory interface shown below to
bootstrap connectivity to the database.
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public interface MongoDbFactory {
DB get Db() throws DataAccessExcepti on;

DB get Db(String dbName) throws DataAccessException;

}

The following sections show how you can use the contiainer with either Java or the XML based metadata
to configure an instance of the MongoDbFact or y interface. In turn, you can use the MongoDbFact ory
instance to configure MongoTemplate.

The class org. springframework. dat a. nongodb. cor e. Si npl eMongoDbFact ory provides
implements the MongoDbFactory interface and is created with a
standard com nongodb. Mongo  instance, the database name and an optional
org. springfranmewor k. dat a. aut henti cati on. User Credent i al s constructor argument.

Instead of using the 10C container to create an instance of MongoTemplate, you can just use them in
standard Java code as shown below.

public class MngoApp {
private static final Log | og = LogFactory. get Log( MongoApp. cl ass);
public static void main(String[] args) throws Exception {

MongoOper at i ons nbngoCps = new MongoTenpl at e( new Si npl eMongoDbFact or y( new Mongo(),
"dat abase"));

nongoOps. i nsert (new Person("Joe", 34));
| 0g. i nfo(nmongoQps. fi ndOne(new Query(where("nane").is("Joe")), Person.class));

nongoOps. dropCol | ecti on(" person");

}

The code in bold highlights the use of SimpleMongoDbFactory and is the only difference between the
listing shown in the getting started section.

Registering a MongoDbFactory instance using Java based metadata

To register a MongoDbFactory instance with the container, you write code much like what was
highlighted in the previous code listing. A simple example is shown below

@Configuration
public class MngoConfiguration {

public @ean MongoDbFactory npngoDbFactory() throws Exception {
return new Si npl eMongoDbFact ory(new Mongo(), "database");
}
}

To define the username and password create an instance of
org. springframewor k. dat a. aut henti cati on. UserCredentials and pass it into the
constructor as shown below. This listing also shows using MongoDbFact or y register an instance of
MongoTemplate with the container.
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@Configuration
public class MngoConfiguration {

public @ean MongoDbFactory npngoDbFactory() throws Exception {
User Credential s userCredentials = new UserCredential s("joe", "secret");
return new Si npl eMbngoDbFact ory(new Mongo(), "database", userCredential s);

}

public @ean MongoTenpl ate nongoTenpl ate() throws Exception {
return new MongoTenpl at e( nongoDbFactory());
}
}

Registering a MongoDbFactory instance using XML based metadata

The mongo namespace provides a convient way to create a Si npl eMongoDbFact ory as compared
to using the<beans/ > namespace. Simple usage is shown below

<nmongo: db-fact ory dbnanme="dat abase" >

In the above example a com nongodb. Mongo instance is created using the default host and
port number. The Si npl eMongoDbFact ory registered with the container is identified by the id
'mongoDbFactory' unless a value for the id attribute is specified.

You can also provide the host and port for the underlying com nongodb. Mongo instance as shown
below, in addition to username and password for the database.

<nongo: db-f act ory i d="anot her MongoDbFact or y"
host ="| ocal host "
port="27017"
dbnane="dat abase"
user nane="j oe"
passwor d="secret"/>

If you need to configure additional options on the com nmongodb. Mongo instance that is used to create
a Si npl eMbngoDbFact or y you can refer to an existing bean using the nongo- r ef attribute as shown
below. To show another common usage pattern, this listing show the use of a property placeholder to
parameterise the configuration and creating MongoTenpl at e.
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<cont ext : property- pl acehol der | ocation="cl asspat h:/conl nyapp/ nongodb/ confi g/
nongo. properties"/>

<nmongo: nongo host =" ${ nongo. host}" port="${nongo. port}">
<nmongo: opt i ons

connect i ons- per - host =" ${ nongo. connect i onsPer Host } "
t hreads- al | owed- t o- bl ock- f or - connecti on-

mul tiplier="${nongo.threadsAl | onedToBl ockFor Connecti onMil tiplier}"
connect - ti neout =" ${ nongo. connect Ti neout } "
mex-wai t - ti me="${mongo. max\ai t Ti me} "
aut o- connect - ret r y="${ nongo. aut oConnect Ret ry}"
socket - keep- al i ve="${ nbongo. socket KeepAl i ve} "
socket - ti neout =" ${ nongo. socket Ti meout } "
sl ave- ok="${ nongo. sl aveCk}"
wri t e- number =" 1"
wite-fsync="true"/>

</ mongo: nongo>

<nongo: db-f act ory dbnane="dat abase" nongo-ref="nongo"/>
<bean i d="anot her MongoTenpl ate" cl ass="org. spri ngfranewor k. dat a. nongodb. cor e. MongoTenpl at e" >

<constructor-arg nane="nongoDbFact ory" ref="nongoDbFactory"/>
</ bean>

5.4 Introduction to MongoTemplate

The class MongoTenpl at e, located in the package
or g. spri ngframewor k. dat a. docunent . nrongodb, is the central class of the Spring's MongoDB
support providng a rich feature set to interact with the database. The template offers convenience
operations to create, update, delete and query for MongoDB documents and provides a mapping
between your domain objects and MongoDB documents.

@ Note

Once configured, MongoTenpl at e is thread-safe and can be reused across multiple instances.

The mapping between MongoDB documents and domain classes is done by delegating to
an implementation of the interface MongoConverter. Spring provides two implementations,
Si npl eMappi ngConverter and MongoMappi ngConverter, but you can also write your own
converter. Please refer to the section on MongoCoverters for more detailed information.

The MongoTenpl at e class implements the interface MongoQper ati ons. In as much as possible,
the methods on MongoQper at i ons are named after methods available on the MongoDB driver
Col | ect i on object as as to make the API familiar to existing MongoDB developers who are used to
the driver API. For example, you will find methods such as "find", "findAndModify", "findOne", "insert",
"remove", "save", "update" and "updateMulti". The design goal was to make it as easy as possible to
transition between the use of the base MongoDB driver and MongoQper at i ons. A major difference in
between the two APlIs is that MongOperations can be passed domain objects instead of DBCbj ect and
there are fluent APIs for Query, Cri t eri a, and Updat e operations instead of populating a DBObj ect
to specify the parameters for those operatiosn.

Spring Data MongoDB -
1.2.4.RELEASE Reference Documentation 29



please define productname in your docbook file!

© Note

The preferred way to reference the operations on MongoTenpl at e instance is via its interface
MongoQper at i ons.

The default converter implementation used by MongoTenpl at e is MongoMappingConverter. While the
MongoMappi ngConvert er can make use of additional metadata to specify the mapping of objects to
documents it is also capable of converting objects that contain no additonal metadata by using some
conventions for the mapping of IDs and collection nhames. These conventions as well as the use of
mapping annotations is explained in the Mapping chapter.

© Note

Inthe M2 release Si npl eMappi ngConvert er , was the default and this class is now deprecated
as its functionality has been subsumed by the MongoMappingConverter.

Another central feature of MongoTemplate is exception translation of exceptions thrown in the MongoDB
Java driver into Spring's portable Data Access Exception hierarchy. Refer to the section on exception
translation for more information.

While there are many convenience methods on MongoTenpl at e to help you easily perform common
tasks if you should need to access the MongoDB driver API directly to access functionality not
explicitly exposed by the MongoTemplate you can use one of several Execute callback methods
to access underlying driver APIs. The execute callbacks will give you a reference to either a
com nongodb. Col | ection or a com nongodb. DB object. Please see the section Execution
Callbacks for more information.

Now let's look at a examples of how to work with the MongoTenpl at e in the context of the Spring
container.

Instantiating MongoTemplate

You can use Java to create and register an instance of MongoTemplate as shown below.

@Configuration
public class AppConfig {

public @ean Mongo nongo() throws Exception {
return new Mongo("I| ocal host");

}

publ i c @ean MongoTenpl ate nongoTenpl ate() throws Exception {
return new MongoTenpl at e(nongo(), "mydat abase");

}

Example 5.6 Registering a com.mongodb.Mongo object and enabling Spring's exception translation
support

There are several overloaded constructors of MongoTemplate. These are

 MongoTemplate (Mongo nongo, String databaseNane) -takesthe com nongodb. Mongo
object and the default database name to operate against.
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* MongoTemplate (Mongo nongo, String dat abaseNane, User Credenti al s
user Credenti al s) - adds the username and password for authenticating with the database.

 MongoTemplate (MongoDbFact ory nongoDbFact ory) - takes a MongoDbFactory object that
encapsulated the com nongodb. Mongo object, database name, and username and password.

 MongoTemplate (MongoDbFact ory nongoDbFact or vy, MongoConvert er
nmongoConverter) -addsa MongoConverter to use for mapping.

You can also configure a MongoTemplate using Spring's XML <beans/> schema.

<nongo: nongo host ="| ocal host" port="27017"/>

<bean i d="nongoTenpl ate" cl ass="org. spri ngframewor k. dat a. nrongodb. cor e. MongoTenpl at e" >
<constructor-arg ref="nongo"/>

<constructor-arg nanme="dat abaseNane" val ue="geospatial "/>
</ bean>

Other optional properties that you might like to set when creating a MongoTenpl at e are the default
W it eResul t Checki ngPol i cy, WiteConcern, and ReadPr ef er ence.

© Note

The preferred way to reference the operations on MongoTenpl at e instance is via its interface
MongoQper at i ons.

WriteResultChecking Policy

When in development it is very handy to either log or throw an exception if the
com nongodb. Wit eResul t returned from any MongoDB operation contains an error. It is quite
common to forget to do this during development and then end up with an application that looks
like it runs successfully but in fact the database was not modified according to your expectations.
Set MongoTemplate's WriteResultChecking property to an enum with the following values, LOG,
EXCEPTION, or NONE to either log the error, throw and exception or do nothing. The default is to use
aWiteResul t Checki ng value of NONE.

WriteConcern

You can set the com nongodb. Wit eConcer n property that the MongoTenpl at e will use for write
operations if it has not yet been specified via the driver at a higher level such as com nongodb. Mongo.
If MongoTemplate's Wi t eConcer n property is not set it will default to the one set in the MongoDB
driver's DB or Collection setting.

WriteConcernResolver

For more advanced cases where you want to set different Wit eConcern values on a per-
operation basis (for remove, update, insert and save operations), a strategy interface called
Wit eConcer nResol ver can be configured on MongoTenpl at e. Since MongoTenpl at e is used to
persist POJOs, the Wi t eConcer nResol ver lets you create a policy that can map a specific POJO
classtoa Wit eConcer n value. The Wit eConcer nResol ver interface is shown below.

public interface WiteConcernResol ver {
WiteConcern resol ve( MongoActi on action);

}
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The passed in argument, MongoAction, is what you use to determine the Wit eConcern value
to be used or to use the value of the Template itself as a default. MongoActi on contains the
collection name being written to, the j ava. | ang. C ass of the POJO, the converted DBObj ect, as
well as the operation as an enumeration (MongoAct i onQper ati on: REMOVE, UPDATE, INSERT,
INSERT_LIST, SAVE) and a few other pieces of contextual information. For example,

private class MyAppW i teConcernResol ver inplenents WiteConcernResol ver {

public WiteConcern resol ve(MongoActi on action) {
if (action.getEntityd ass().getSinpleNane().contains("Audit")) {
return WiteConcern. NONE;
} else if (action.getEntityd ass().getSinpl eNane().contains("Mtadata")) ({
return WiteConcern. JOURNAL_SAFE;
}
return action. get Defaul t WiteConcern();
}
}

5.5 Saving, Updating, and Removing Documents

MongoTenpl at e provides a simple way for you to save, update, and delete your domain objects and
map those objects to documents stored in MongoDB.

Given a simple class such as Person

public class Person {

private String id;
private String nane;
private int age;

public Person(String name, int age) {
thi s. nane = nane;
this.age = age;

}

public String getld() {
return id;

}

public String getNane() {
return name;

}

public int getAge() {
return age;

}
@verride
public String toString() {
return "Person [id=" +id + ", nane=" + nane + ", age=" + age + "]"
}

You can save, update and delete the object as shown below.

© Note

MongoQper at i ons is the interface that MongoTenpl at e implements.
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package org. spring. exanpl e;
import static org.springfranmework. dat a. nrongodb. core. query. Criteria. where;
inport static org.springfranework. dat a. nongodb. cor e. query. Updat e. updat e;
import static org.springfranmework. dat a. rongodb. core. query. Query. query;
inport java.util.List;
i mport org.apache. commons. | oggi ng. Log;
i nport org.apache. conmons. | oggi ng. LogFact ory;
i nport org.springfranmework. dat a. nrongodb. cor e. MongoOper at i ons;
i mport org.springfranmework. dat a. nrongodb. core. MongoTenpl at e;
i nport org.springfranewor k. dat a. nongodb. cor e. Si npl eMongoDbFact ory;
i mport com nongodb. Mongo;
public class MngoApp {
private static final Log |og = LogFactory. getLog(MongoApp. cl ass);

public static void main(String[] args) throws Exception {

MongoOper at i ons mongoQps = new MongoTenpl at e( new Si npl eMongoDbFact ory( new
Mongo(), "database"));

Person p = new Person("Joe", 34);

/1l Insert is used to initially store the object into the database.
mongoOps. i nsert (p);
log.info("Insert: " + p);

/1 Find
p = nongoQps. findByld(p.getld(), Person.class);
| og.info("Found: " + p);

/'l Updat e
nongoOps. updat eFi r st (query(where("nane").is("Joe")), update("age", 35), Person.class);

p = nongoQps. fi ndOne(query(where("nane").is("Joe")), Person.class);
| og.info("Updated: " + p);

/] Delete
nongoOps. renove( p);

/'l Check that del etion worked

Li st <Person> peopl e = nongoOps. findAl | (Person. cl ass);
I 0og.info("Nunber of people =: " + people.size());

mongoOps. dropCol | ecti on(Person. cl ass);

This would produce the following log output (including debug messages from MongoTenpl at e itself)
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DEBUG appi ng. MongoPer si stent Entityl ndexCreator: 80 - Anal yzing class class

org. spring. exanpl e. Person for index information

DEBUG wor k. dat a. mongodb. cor e. MongoTenpl ate: 632 - insert DBObj ect containing fields
[_class, age, nane] in collection: person

I NFO org. spring. exanpl e. MongoApp: 30 - Insert: Person

[i d=4ddc6e784ce5bleba3ceaf 5¢c, nane=Joe, age=34]

DEBUG wor k. dat a. nongodb. cor e. MongoTenpl ate: 1246 - findOne using query: { " _id"

{ "$oid" : "4ddc6e784ce5Sbleba3ceaf5c"}} in db.collection: database.person

I NFO org. spring. exanpl e. MongoApp: 34 - Found: Person

[i d=4ddc6e784ce5bleba3ceaf 5¢c, nanme=Joe, age=34]

DEBUG wor k. dat a. nongodb. core. MongoTenpl ate: 778 - calling update using query: { "name" :

"Joe"} and update: { "$set" : { "age" : 35}} in collection: person

DEBUG wor k. dat a. nongodb. cor e. MongoTenpl ate: 1246 - findOne using query: { "nane" : "Joe"}
in db.collection: database. person

I NFO org. spring. exanpl e. MongoApp: 39 - Updated: Person

[i d=4ddc6e784ce5bleba3ceaf 5¢c, nanme=Joe, age=35]

DEBUG wor k. dat a. nongodb. cor e. MongoTenpl ate: 823 - renove using query: { "id" :
"4ddc6e784ce5bleba3ceaf 5¢"} in collection: person

I NFO org. spring. exanpl e. MongoApp: 46 - Nunmber of people =: 0

DEBUG wor k. dat a. mongodb. cor e. MongoTenpl ate: 376 - Dropped coll ection [database. person]

There was implicit conversion using the MongoConvert er betweena St ri ngand Qbj ect | d as stored
in the database and recognizing a convention of the property "Id" name.

© Note

This example is meant to show the use of save, update and remove operations on
MongoTemplate and not to show complex mapping functionality

The query stynax used in the example is explained in more detail in the section Querying Documents.

How the ' _id' field is handled in the mapping layer

MongoDB requires that you have an '_id' field for all documents. If you don't provide one the driver
will assign a oj ect | d with a generated value. When using the MongoMappi ngConvert er there are
certain rules that govern how properties from the Java class is mapped to this '_id' field.

The following outlines what property will be mapped to the '_id' document field:

» A property or field annotated with @ d (or g. spri ngf ranmewor k. dat a. annot ati on. | d) will be
mapped to the '_id' field.

» A property or field without an annotation but named i d will be mapped to the '_id' field.

The following outlines what type conversion, if any, will be done on the property mapped to the _id
document field when using the Mappi ngMongoConvert er, the default for MongoTenpl at e.

» An id property or field declared as a String in the Java class will be converted to and stored as an
oj ect | dif possible using a Spring Converter<Stri ng, Object!| d>.Valid conversion rules are
delegated to the MongoDB Java driver. If it cannot be converted to an Objectld, then the value will
be stored as a string in the database.

» An id property or field declared as Bi gl nt eger in the Java class will be converted to and stored as
an bj ect | d using a Spring Convert er <Bi gl nt eger, Objectld>.

If no field or property specified above is present in the Java class then an implicit '_id' file will be
generated by the driver but not mapped to a property or field of the Java class.
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When querying and updating MongoTenpl at e will use the converter to handle conversions of the
Query and Updat e objects that correspond to the above rules for saving documents so field names
and types used in your queries will be able to match what is in your domain classes.

Type mapping

As MongoDB collections can contain documents that represent instances of a variety of types. A great
example here is if you store a hierarchy of classes or simply have a class with a property of type Obj ect .
In the latter case the values held inside that property have to be read in correctly when retrieving the
object. Thus we need a mechanism to store type information alongside the actual document.

To achieve that the Mappi ngMongoConverter uses a MongoTypeMapper abstraction with
Def aul t MongoTypeMapper as it's main implementation. It's default behaviour is storing the fully
qualified classname under _cl ass inside the document for the top-level document as well as for every
value if it's a complex type and a subtype of the property type declared.

public class Sanple {
Cont act val ue;

}

public abstract class Contact { ...}
public class Person extends Contact { ...}

Sanpl e sanpl e = new Sanpl e();
sanpl e. val ue = new Person();

nongoTenpl at e. save(sanpl e) ;

{ "_class" : "com acne. Sanpl e",
"value" : { "_class" : "com acne. Person" }

}
Example 5.7 Type mapping

As you can see we store the type information for the actual root class persistet as well as
for the nested type as it is complex and a subtype of Contact. So if you're now using
nongoTenpl ate. fi ndAl | (Cbj ect. cl ass, "sanpl e") we are able to find out that the document
stored shall be a Sanpl e instance. We are also able to find out that the value property shall be a Per son
actually.

Customizing type mapping

In case you want to avoid writing the entire Java class name as type information but rather like to use
some key you can use the @ypeAl i as annotation at the entity class being persisted. If you need to
customize the mapping even more have a look atthe Typel nf or mat i onMapper interface. Aninstance
of that interface can be configured at the Def aul t MongoTypeMapper which can be configured in turn
on Mappi nghMbngoConverter.

Methods for saving and inserting documents

There are several convenient methods on MongoTenpl ate for saving and inserting your
objects. To have more fine grained control over the conversion process you can register Spring
converters with the Mappi ngMongoConvert er, for example Conver t er <Per son, DBChj ect > and
Convert er <DBObj ect, Person>.
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© Note

The difference between insert and save operations is that a save operation will perform an insert
if the object is not already present.

The simple case of using the save operation is to save a POJO. In this case the collection name will be
determined by name (not fully qualfied) of the class. You may also call the save operation with a specific
collection name. The collection to store the object can be overriden using mapping metadata.

When inserting or saving, if the Id property is not set, the assumption is that its value will be
autogenerated by the database. As such, for autogeneration of an Objectld to succeed the type of the
Id property/field in your class must be either a St ri ng, Cbj ect | d, or Bi gl nt eger.

Here is a basic example of using the save operation and retrieving its contents.

import static org.springfranmework. dat a. mongodb. core. query. Criteria. where
i nport static org.springfranework. dat a. nbngodb. core. query. Criteria.query

Person p = new Person("Bob", 33);
mongoTenpl ate. i nsert (p);

Person gp = nobngoTenpl ate. fi ndOne(query(where("age").is(33)), Person.class);

Example 5.8 Inserting and retrieving documents using the MongoTemplate
The insert/save operations available to you are listed below.
* voi d save ((hj ect object ToSave) Save the objectto the default collection.

e void save ((Object objectToSave, String collectionNanme) Save the object to the
specified collection.

A similar set of insert operations is listed below
» voi dinsert (Cbj ect object ToSave) Insert the object to the default collection.

» voi dinsert (Cbject objectToSave, String collecti onNane) Insert the object to the
specified collection.

Which collection will my documents be saved into?

There are two ways to manage the collection name that is used for operating on the documents.
The default collection name that is used is the class name changed to start with a lower-case letter.
So a com test. Person class would be stored in the "person™ collection. You can customize this
by providing a different collection nhame using the @Document annotation. You can also override
the collection name by providing your own collection name as the last parameter for the selected
MongoTemplate method calls.

Inserting or saving individual objects

The MongoDB driver supports inserting a collection of documents in one operation. The methods in the
MongoOperations interface that support this functionality are listed below

» insert Insert an object. If there is an existing document with the same id then an error is generated.

Spring Data MongoDB -
1.2.4.RELEASE Reference Documentation 36



please define productname in your docbook file!

» insertAll Takes a Col | ecti on of objects as the first parameter. This method ispects each object
and inserts it to the appropriate collection based on the rules specified above.

» save Save the object ovewriting any object that might exist with the same id.
Inserting several objects in a batch

The MongoDB driver supports inserting a collection of documents in one operation. The methods in the
MongoOperations interface that support this functionality are listed below

» insert nethods that take a Collection as the first argunent. This inserts a list of
objects in a single batch write to the database.

Updating documents in a collection

For updates we can elect to update the first document found using MongoQOper at i on's method
updat eFi r st or we can update all documents that were found to match the query using the method
updat eMul ti . Here is an example of an update of all SAVINGS accounts where we are adding a one
time $50.00 bonus to the balance using the $i nc operator.

import static org.springfranmework. dat a. mongodb. core. query. Criteria. where;
import static org.springframework. dat a. nrongodb. core. query. Query;
i mport static org.springfranmework. dat a. nrongodb. core. query. Updat e;

WiteResult w = nongoTenpl at e. updat eMul ti (new
Query(where("accounts. account Type").is(Account. Type. SAVI NGS) ),
new Update().inc("accounts.
$. bal ance", 50.00),
Account . cl ass);

Example 5.9 Updating documents using the MongoTemplate

In addition to the Quer y discussed above we provide the update definition using an Updat e object. The
Updat e class has methods that match the update modifiers available for MongoDB.

As you can see most methods return the Updat e object to provide a fluent style for the API.
Methods for executing updates for documents

» updateFirst Updates the first document that matches the query document criteria with the provided
updated document.

» updateMulti Updates all objects that match the query document criteria with the provided updated
document.

Methods for the Update class

The Update class can be used with a little 'syntax sugar' as its methods are meant to be chained together
and you can kickstart the creation of a new Update instance via the static method public static
Updat e update(String key, Object val ue) and using static imports.

Here is a listing of methods on the Update class
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* Updat e addToSet (String key, Object value) Update using the $addToSet update
modifier

e Updateinc (String key, Nunmber inc) Update usingthe $i nc update modifier

» Update pop (String key, Update.Position pos) Update usingthe $pop update modifier
* Updatepull (String key, Object value) Update usingthe $pul | update modifier

e Updat e pullAll (String key, Object[] val ues) Update usingthe $pul | Al | update modifier
» Updat e push (String key, Object val ue) Update usingthe $push update modifier

» Update pushAll (String key, Object[] values) Update using the $pushAl | update
modifier

* Updat e rename (String ol dNane, String newNanme) Update using the $r enanme update
modifier

e Updateset (String key, Object val ue) Update usingthe $set update modifier

» Updat e unset (String key) Update using the $unset update modifier
Upserting documents in a collection

Related to perfomring an updat eFi r st operations, you can also perform an upsert operation which
will perform an insert if no document is found that matches the query. The document that is inserted is
a combination of the query document and the update document. Here is an example

tenpl at e. upsert (query(where("ssn").is(1111).and("firstNane").is("Joe").and("Fraizer").is("Update")),
updat e("address", addr), Person.class);

Finding and Upserting documents in a collection

The f i ndAndModi f y(..) method on DBCollection can update a document and return either the old or
newly updated document in a single operation. MongoTenpl at e provides a findAndModify method that
takes Quer y and Updat e classes and converts from DBObj ect to your POJOs. Here are the methods

<T> T findAndModi fy(Query query, Update update, O ass<T> entityC ass);

<T> T findAndModi fy(Query query, Update update, O ass<T> entityC ass, String
col I ecti onNane) ;

<T> T findAndModi fy(Query query, Update update, Fi ndAndModifyQOptions options, O ass<T>
entityd ass);

<T> T findAndModi fy(Query query, Update update, Fi ndAndModifyQOptions options, O ass<T>
entityC ass, String collectionNane);

As an example usage, we will insert of few Per son objects into the container and perform a simple
findAndUpdate operation
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nongoTenpl ate. i nsert (new Person("Tont', 21));
nongoTenpl ate. i nsert (new Person("Di ck", 22));
mongoTenpl ate. i nsert (new Person("Harry", 23));

Query query = new Query(Criteria.where("firstName").is("Harry"));

Updat e update = new Update().inc("age", 1);

Person p = nongoTenpl at e. fi ndAndModi fy(query, update, Person.class); // return's old
person obj ect

assert That (p. getFirstName(), is("Harry"));
assert That (p. get Age(), is(23));

p = nongoTenpl ate. fi ndOne(query, Person.cl ass);
assert That (p. get Age(), is(24));

/1 Now return the new y updated docunment when updati ng

p = tenpl ate. fi ndAndModi fy(query, update, new Fi ndAndModi fyOptions().returnNew(true),
Per son. cl ass) ;

assert That (p. get Age(), is(25));

The Fi ndAndModi f yOpt i ons lets you set the options of returnNew, upsert, and remove. An example
extending off the previous code snippit is shown below

Query query2 = new Query(Criteria.where("firstNane").is("Mary"));
p = nongoTenpl at e. fi ndAndModi fy(query2, update, new
Fi ndAndModi f yOpti ons().returnNew(true). upsert(true), Person.class);
assert That (p. getFirstNane(), is("Mary"));
assert That (p. get Age(), is(1));

Methods for removing documents

You can use several overloaded methods to remove an object from the database.

e remove Remove the given document based on one of the following: a specific object instance, a
query document criteria combined with a class or a query document criteria combined with a specific
collection name.

5.6 Querying Documents

You can express your queries using the Query and Cri t eri a classes which have method names
that mirror the native MongoDB operator names such as I't, I te, i s, and others. The Query and
Criteri aclasses follow a fluent API style so that you can easily chain together multiple method criteria
and queries while having easy to understand code. Static imports in Java are used to help remove the
need to see the 'new' keyword for creating Query and Cr i t er i a instances so as to improve readability.
If you like to create Quer y instances from a plain JSON String use Basi cQuery.

Basi cQuery query = new BasicQuery("{ age : { $lIt : 50 }, accounts.balance : { $gt :
1000.00 }}");
Li st <Person> result = nongoTenpl ate. find(query, Person.class);

Example 5.10 Creating a Query instance from a plain JSON String

GeoSpatial queries are also supported and are described more in the section GeoSpatial Queries.

Map-Reduce operations are also supported and are described more in the section Map-Reduce.
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Querying documents in a collection

We saw how to retrieve a single document using the findOne and findByld methods on MongoTemplate
in previous sections which return a single domain object. We can also query for a collection of documents
to be returned as a list of domain objects. Assuming that we have a number of Person objects with name
and age stored as documents in a collection and that each person has an embedded account document
with a balance. We can now run a query using the following code.

inport static org.springfranmework. dat a. nongodb. core. query. Criteria. where
i nport static org.springfranmework. dat a. nongodb. core. query. Query. query;

Li st <Person> result = nmongoTenpl ate. find(query(where("age").|t(50)
.and("accounts. bal ance") . gt (1000. 00d) ),
Per son. cl ass) ;

Example 5.11 Querying for documents using the MongoTemplate

All find methods take a Quer y object as a parameter. This object defines the criteria and options used
to perform the query. The criteria is specified using a Cri t er i a object that has a static factory method
named wher e used to instantiate a new Cri t eri a object. We recommend using a static import for
or g. spri ngfranmewor k. dat a. nongodb. core. query. Criteria.where and Query. query to
make the query more readable.

This query should return a list of Person objects that meet the specified criteria. The Criteria class has
the following methods that correspond to the operators provided in MongoDB.

As you can see most methods return the Cri t eri a object to provide a fluent style for the API.
Methods for the Criteria class
e Criteriaall (Ooject o) Creates a criterion using the $al | operator

e Criteriaand (String key) Adds achained Criteri a with the specified key to the current
Criteria and retuns the newly created one

e Criteria andOperator (Criteria... criteria)Creates an and query using the $and
operator for all of the provided criteria (requires MongoDB 2.0 or later)

e CriteriaelemMatch (Criteria c) Creates a criterion using the $el emvat ch operator

« Criteriaexists (bool ean b) Creates a criterion using the $exi st s operator

e Criteriagt (Onject o0)Creates a criterion using the $gt operator

e Criteriagte (oj ect 0) Creates a criterion using the $gt e operator

e Criteriain (Object... 0) Creates a criterion using the $i n operator for a varargs argument.

* Criteriain (Collection<?> collection) Creates a criterion using the $i n operator using
a collection

* Criteriais (Onject o0)Creates a criterion using the $i s operator
e Criterialt (Object o)Creates a criterion using the $I t operator

« Criterialte (Object o0)Creates a criterion using the $I t e operator
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e Criteria mod (Nunber value, Number renainder) Creates a criterion using the $nod
operator

e Criteriane (Object o0)Creates a criterion using the $ne operator
e Criterianin (Qoject... 0) Creates a criterion using the $ni n operator

e CriterianorOperator (Criteria... criteria)Createsannorquery usingthe $nor operator
for all of the provided criteria

* Criterianot () Creates a criterion using the $not meta operator which affects the clause directly
following

e CriteriaorOperator (Criteria... criteria)Creates an or query using the $or operator
for all of the provided criteria

e Criteriaregex (String re) Creates a criterion using a $r egex
« Criteriasize (int s)Creates a criterion using the $si ze operator
e Criteriatype (int t)Creates a criterion using the $t ype operator

There are also methods on the Criteria class for geospatial queries. Here is a listing but look at the
section on GeoSpatial Queries to see them in action.

e Criteria withinCenter (Circle circle) Creates a geospatial criterion using $wi t hi n
$cent er operators

e CriteriawithinCenterSphere (Circle circle) Createsageospatial criterion using $w t hi n
$cent er operators. This is only available for MongoDB 1.7 and higher.

 CriteriawithinBox (Box box) Creates a geospatial criterion using a $wi t hi n $box operation
e Criterianear (Point point) Creates a geospatial criterion using a $near operation

e Criteria nearSphere (Point point) Creates a geospatial criterion using $near Spher e
$cent er operations. This is only available for MongoDB 1.7 and higher.

e« Criteria maxDistance (double maxDi stance) Creates a geospatial criterion using the
$maxDi st ance operation, for use with $near.

The Query class has some additional methods used to provide options for the query.
Methods for the Query class

* Query addCriteria (Criteria criteria) usedto add additional criteria to the query
» Fi el dfields () used to define fields to be included in the query results

e Query limit (int Iimt) used to limit the size of the returned results to the provided limit (used
for paging)

* Query skip (int skip) used to skip the provided number of documents in the results (used for
paging)

» Sort sort () used to provide sort definition for the results
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Methods for querying for documents

The query methods need to specify the target type T that will be returned and they are also overloaded
with an explicit collection name for queries that should operate on a collection other than the one
indicated by the return type.

» findAll Query for a list of objects of type T from the collection.

» findOne Map the results of an ad-hoc query on the collection to a single instance of an object of the
specified type.

» findByld Return an object of the given id and target class.
» find Map the results of an ad-hoc query on the collection to a List of the specified type.

» findAndRemove Map the results of an ad-hoc query on the collection to a single instance of an object
of the specified type. The first document that matches the query is returned and also removed from
the collection in the database.

GeoSpatial Queries

MongoDB supports GeoSpatial queries through the use of operators such as $near, $wi t hi n, and
$near Spher e. Methods specific to geospatial queries are available on the Cri t eri a class. There are
also a few shape classes, Box, Gi r cl e, and Poi nt that are used in conjunction with geospatial related
Criteriamethods.

To understand how to perform GeoSpatial queries we will use the following Venue class taken from the
integration tests.which relies on using the rich Mappi ngMongoConvert er.
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@ocunent (col | ecti on="newyor k")
public class Venue {

@d

private String id;
private String nane;
private doubl e[] |ocation;

@er si st enceConst r uct or
Venue(String name, double[] |ocation) {

super () ;
this. nanme = nane;
this.location = |location;

public Venue(String nane, double x, double y) {
super () ;
thi s. nane = nane;
this.location = new double[] { x, y };

public String getNane() {
return name;

publ i c doubl e[] getLocation() {
return | ocation;

}
@verride
public String toString() {
return "Venue [id=" +id + ", name=" + name + ", |ocation="
+ Arrays.toString(location) + "]";
}

To find locations within a Ci r cl e, the following query can be used.

Circle circle = new CGircle(-73.99171, 40.738868, 0.01);
Li st <Venue> venues =

tenpl ate. find(new Query(Criteria.where("location").w thinCenter(circle)),
Venue. cl ass) ;

To find venues within a Ci r ¢l e using spherical coordinates the following query can be used

Circle circle = new Circle(-73.99171, 40.738868, 0.003712240453784);
Li st <Venue> venues =
tenpl ate. find(new Query(Criteria.where("location").wthinCenterSphere(circle)),
Venue. cl ass) ;

To find venues within a Box the following query can be used

/1l ower-1left then upper-right
Box box = new Box(new Point (-73.99756, 40.73083), new Point(-73.988135, 40.741404));
Li st <Venue> venues =

tenpl ate. find(new Query(Criteria.where("location").wthinBox(box)), Venue.class);

To find venues near a Poi nt , the following query can be used
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Poi nt point = new Point (-73.99171, 40.738868);
Li st <Venue> venues =
tenpl ate. find(new Query(Criteria.where("location").near(point). maxDi stance(0.01)),
Venue. cl ass);

To find venues near a Poi nt using spherical coordines the following query can be used

Poi nt point = new Point(-73.99171, 40.738868);
Li st <Venue> venues =
tenpl ate. fi nd(new Query(
Criteria.where("location").nearSphere(point). maxDi stance(0.003712240453784)),
Venue. cl ass) ;

Geo near queries

MongoDB supports querying the database for geo locations and calculation the distance from a given
origin at the very same time. With geo-near queries it's possible to express queries like: "find all
restaurants in the surrounding 10 miles". To do so MongoQper at i ons provides geoNear ( ..) methods
taking a Near Quer y as argument as well as the already familiar entity type and collection

Poi nt | ocation = new Point(-73.99171, 40.738868);
Near Query query = Near Query. near (|l ocation).nmaxDi stance(new Di stance(10, Metrics.MLES));

GeoResul t s<Rest aurant > = operati ons. geoNear (query, Restaurant.class);

As you can see we use the Near Quer y builder APIto set up a query to return all Rest aur ant instances
surrounding the given Poi nt by 10 miles maximum. The Met ri ¢s enum used here actually implements
an interface so that other metrics could be plugged into a distance as well. A Metri c is backed by a
multiplier to transform the distance value of the given metric into native distances. The sample shown
here would consider the 10 to be miles. Using one of the pre-built in metrics (miles and kilometers) will
automatically trigger the spherical flag to be set on the query. If you want to avoid that, simply hand
in plain doubl e values into maxDi st ance( ..) . For more information see the JavaDoc of Near Query
and Di st ance.

The geo near operations return a GeoResul t s wrapper object that encapsulates GeoResul t
instances. The wrapping GeoResul t s allows to access the average distance of all results. A single
CGeoResul t object simply carries the entity found plus its distance from the origin.

5.7 Map-Reduce Operations

You can query MongoDB using Map-Reduce which is useful for batch processing, data aggregation,
and for when the query language doesn't fulfill your needs.

Spring provides integration with MongoDB's map reduce by providing methods on MongoOperations
to simplify the creation and execution of Map-Reduce operations. It can convert the results of a Map-
Reduce operation to a POJO also integrates with Spring's Resource abstraction abstraction. This
will let you place your JavaScript files on the file system, classpath, http server or any other Spring
Resource implementation and then reference the JavaScript resources via an easy URI style syntax,
e.g. 'classpath:reduce.js;. Externalizing JavaScript code in files is often preferable to embedding them
as Java strings in your code. Note that you can still pass JavaScript code as Java strings if you prefer.
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Example Usage

To understand how to perform Map-Reduce operations an example from the book 'MongoDB - The
definitive guide' is used. In this example we will create three documents that have the values [a,b], [b,c],
and [c,d] respectfully. The values in each document are associated with the key 'x' as shown below. For
this example assume these documents are in the collection named "jmr1".

{ "_id" : Objectld("4e5ff893c0277826074ec533"), "x" : [ "a", "
{ " _id" : Objectld("4e5ff893c0277826074ec534"), "x" : [ "b", "
{ " _id" : Objectld("4e5ff893c0277826074ec535"), "x" : [ "c*, "

o O T

"]
!
"]

—— o

A map function that will count the occurance of each letter in the array for each document is shown below

function () {
for (var i =0; i <this.x.length; i++) {
emt(this.x[i], 1);
}

}

The reduce function that will sum up the occurance of each letter across all the documents is shown
below

function (key, values) {
var sum = 0;
for (var i = 0; i < values.length; i++)
sum += val ues[i];
return sum

}
Executing this will result in a collection as shown below.

{ "_id" a", "value" 1}
{ "_id" : "b", "value" 2}
{"_id" c "val ue" 2}
{ " id : "d", "value" 1}

Assuming that the map and reduce functions are located in map.js and reduce.js and bundled in your
jar so they are available on the classpath, you can execute a map-reduce operation and obtain the
results as shown below

MapReduceResul t s<Val ueCbj ect> results =
mongoQper at i ons. mapReduce("jnmr 1", "classpath: map.js", "classpath:reduce.js",
Val ue(pj ect . cl ass) ;
for (Valuebject val uebbject : results) {
System out . println(val uetbj ect);

}
The output of the above code is

Val uehj ect [id=a, val ue=1.0]
Val ueQbj ect [id=b, val ue=2.0]
Val uebj ect [id=c, val ue=2.0]
Val uebj ect [id=d, val ue=1.0]

The MapReduceResults class implements | t er abl e and provides access to the raw output, as well
as timing and count statistics. The Val ueCbj ect class is simply
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public class Val ueObject {

private String id;
private float val ue;

public String getld() {
return id;

}

public float getValue() {
return val ue;

}

public void setVal ue(float value) {
this.val ue = val ue;

}
@verride
public String toString() {
return "ValueObject [id=" +id + ", value=" + value + "]"
}

}

By default the output type of INLINE is used so you don't have to specify an output collection. To specify
additional map-reduce options use an overloaded method that takes an additional MapReduceOpt i ons
argument. The class MapReduceOpt i ons has a fluent API so adding additional options can be done in
a very compact syntax. Here an example that sets the output collection to "jmrl_out". Note that setting
only the output collection assumes a default output type of REPLACE.

MapReduceResul t s<Val ueCbj ect> results =
mongoQper at i ons. mapReduce("jnmr 1", "classpath: map.js", "classpath:reduce.js",
new
MapReduceOpti ons() . out put Col | ection("jnrl_out"), Val ueQbject.class);

There is also a static import i mport static
org. spri ngfranmewor k. dat a. nongodb. cor e. mapr educe. MapReduceQOpt i ons. opti ons;
that can be used to make the syntax slightly more compact

MapReduceResul t s<Val ueCbj ect> results =
mongoQper at i ons. mapReduce("j nr 1", "classpath: map.js", "classpath:reduce.js",

options().outputCollection("jnrl_out"), ValueQbject.class);

You can also specify a query to reduce the set of data that will be used to feed into the map-
reduce operation. This will remove the document that contains [a,b] from consideration for map-reduce
operations.

Query query = new Query(where("x").ne(new String[] { "a", "b" }));
MapReduceResul t s<Val ueCbj ect> results =
mongoQper at i ons. mapReduce(query, "jmr 1", "classpath: map.js", "classpath:reduce.js",

options().outputCollection("jnrl _out"), Value(bject.class);

Note that you can specify additional limit and sort values as well on the query but not skip values.

5.8 Group Operations

As an alternative to using Map-Reduce to perform data aggregation, you can use the gr oup _operation
which feels similar to using SQL's group by query style, so it may feel more approachable vs. using
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Map-Reduce. Using the group operations does have some limitations, for example it is not supported
in a shareded environment and it returns the full result set in a single BSON object, so the result should
be small, less than 10,000 keys.

Spring provides integration with MongoDB's group operation by providing methods on MongoOperations
to simplify the creation and execution of group operations. It can convert the results of the group
operation to a POJO and also integrates with Spring's Resource abstraction abstraction. This will
let you place your JavaScript files on the file system, classpath, http server or any other Spring
Resource implementation and then reference the JavaScript resources via an easy URI style syntax,
e.g. ‘classpath:reduce.js;. Externalizing JavaScript code in files if often preferable to embedding them
as Java strings in your code. Note that you can still pass JavaScript code as Java strings if you prefer.

Example Usage

In order to understand how group operations work the following example is used, which is somewhat
artifical. For a more realistic example consult the book ‘'MongoDB - The definitive guide'. A collection
named "group_test_collection" created with the following rows.

{ " id" : Objectld("4ecld25d41421e2015da64f1"), "x" : 1}
{ "_id" : Objectld("4ecld25d41421e2015da64f2"), "x" : 1 }
{ "_id" : Objectld("4ecld25d41421e2015da64f3"), "x" : 2 }
{ " id" : Objectld("4ecld25d41421e2015da64f4"), "x" : 3}
{ "_id" : Objectld("4ecld25d41421e2015da64f5"), "x" : 3 }
{ "_id" : Objectld("4ecld25d41421e2015da64f6"), "x" : 3 }

We would like to group by the only field in each row, the 'x' field and aggregate the number of times
each specific value of 'x' occurs. To do this we need to create an initial document that contains our count
variable and also a reduce function which will increment it each time it is encountered. The Java code
to execute the group operation is shown below

G oupByResul t s<XOhj ect > resul ts = nongoTenpl at e. group("group_test_col |l ection”,

GroupBy. key("x").initial Docunent ("{ count: 0 }").reduceFunction("function(doc, prev)
{ prev.count += 1 }"),
Xbj ect . cl ass) ;

The first argument is the name of the collection to run the group operation over, the second is a fluent
API that specifies properties of the group operation via a G oupBy class. In this example we are using
just the i nti al Docunent and r educeFuncti on methods. You can also specify a key-function, as
well as a finalizer as part of the fluent API. If you have multiple keys to group by, you can pass in a
comma separated list of keys.

The raw results of the group operation is a JSON document that looks like this

{
“retval" : [ { " : 1.0, "count" : 2.0} ,
{" : 2.0, "count" : 1.0} ,
{" 3.0, "count" : 3.0} ]
“count" : 6.0 ,
"keys" : 3,
"ok" : 1.0
}

The document under the "retval” field is mapped onto the third argument in the group method, in this
case XObject which is shown below.
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public class XObject {
private float x;

private float count;

public float getX() {
return x;

}

public void setX(float x) {
this.x = x;

}

public float getCount() {
return count;

}

public void setCount(float count) {
this.count = count;

}

@verride
public String toString() {

return "XObject [x=" + x + " count =" + count + "]"
}

}

You can also obtain tha raw result as a DbQbj ect by calling the method get RawResul t s on the
GroupByResul t s class.

There is an additional method overload of the group method on MongoOper at i ons which lets you
specify a Cri t eri a object for selecting a subset of the rows. An example which usesa Criteria
object, with some syntax sugar using static imports, as well as referencing a key-function and reduce
function javascript files via a Spring Resource string is shown below.

i mport static org.springframework. dat a. nongodb. core. mapr educe. G oupBy. keyFuncti on;
inmport static org.springfranework. data. nbngodb. core. query. Criteria.where;

G oupByResul t s<XCbj ect> results = nongoTenpl at e. group(where("x").gt(0),
"group_test _collection",

keyFuncti on("cl asspat h: keyFunction.js").initial Docunment("{ count:
0 }").reduceFunction("cl asspat h: groupReduce. js"), Xbject.class);

5.9 Overriding default mapping with custom converters

In order to have more fine grained control over the mapping process you can register Spring converters
with the MongoConvert er implementations such as the Mappi ngMongoConvert er.

The Mappi ngMongoConvert er checks to see if there are any Spring converters that can handle a
specific class before attempting to map the object itself. To 'hijack' the normal mapping strategies of
the Mappi ngMongoConvert er, perhaps for increased performance or other custom mapping needs,
you first need to create an implementation of the Spring Convert er interface and then register it with
the MappingConverter.
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© Note

For more information on the Spring type conversion service see the reference docs here.

Saving using a registered Spring Converter

An example implementation of the Converter that converts from a Person object to a
com nongodb. DBObj ect is shown below

i nport org.springframework. core. convert.converter. Converter;

i mport com nongodb. Basi cDBObj ect ;
i nport com nongodb. DBOhj ect ;

public class PersonWiteConverter inplenents Converter<Person, DBObject> {

publ i c DBObj ect convert(Person source) {
DBChj ect dbo = new Basi cDBObj ect () ;
dbo. put ("_id", source.getld());
dbo. put ("name", source.getFirstNane());
dbo. put ("age", source.getAge());
return dbo;

Reading using a Spring Converter

An example implemention of a Converter that converts from a DBObject ot a Person object is shownn
below

public class PersonReadConverter inplenents Converter<DBObject, Person> {

publ i c Person convert (DBObj ect source) {
Person p = new Person((Objectld) source.get("_id"), (String) source.get("nane"));
p. set Age( (I nteger) source.get("age"));
return p;
}
}

Registering Spring Converters with the MongoConverter

The Mongo Spring hamespace provides a convenience way to register Spring Convert er s with the
Mappi ngMbngoConver t er . The configuration snippet below shows how to manually register converter
beans as well as configuring the wrapping Mappi ngMongoConvert er into a MongoTenpl at e.
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<nongo: db- f act ory dbname="dat abase"/ >

<nongo: meppi ng- converter >
<nobngo: cust om converter s>
<nongo: converter ref="readConverter"/>
<nobngo: converter>
<bean cl ass="org. spri ngfranewor k. dat a. nongodb. t est. PersonW it eConverter"/>
</ nmongo: converter>
</ mongo: cust om converters>
</ mongo: mappi ng- converter>

<bean id="readConverter" class="org.springfranework. data. nongodb. t est. Per sonReadConverter"/
>

<bean i d="nongoTenpl ate" cl ass="org. spri ngfranmewor k. dat a. nongodb. cor e. MongoTenpl at e" >
<constructor-arg nane="nongoDbFactory" ref="nobngoDbFactory"/>
<constructor-arg nane="nongoConverter" ref="mappi ngConverter"/>

</ bean>

You can also use the base-package attribute of the custom-converters element to enable classpath
scanning for all Convert er and Generi cConvert er implementations below the given package.

<nongo: meppi ng- converter >
<npngo: cust om converters base- package="com acne. **. converters" />
</ mongo: mappi ng- converter>

Converter disambiguation

Generally we inspect the Conver t er implementations for the source and target types they convert from
and to. Depending on whether one of those is a type MongoDB can handle natively we will register the
converter instance as reading or writing one. Have a look at the following samples:

/'l Wite converter as only the target type is one Mongo can handl e natively
cl ass MyConverter inplenents Converter<Person, String> { ...}

/'l Read converter as only the source type is one Mongo can handl e natively
cl ass MyConverter inplenents Converter<String, Person> { ...}

In case you write a Converter whose source and target type are native Mongo types there's no
way for us to determine whether we should consider it as reading or writing converter. Registering the
converter instance as both might lead to unwanted results then. E.g. a Converter<Stri ng, Long>
is ambiguous although it probably does not make sense to try to convert all St ri ngs into Longs when
writing. To be generally able to force the infrastructure to register a converter for one way only we provide
@Readi ngConverter aswellas @V i ti ngConverter to be used at the converter implementation.

5.10 Index and Collection managment

MongoTenpl at e provides a few methods for managing indexes and collections. These are collected
into a helper interface called | ndexOper at i ons. You access these operations by calilng the method
i ndexOps and pass in either the collection name orthe j ava. | ang. C ass of your entity (the collection
name will be derived from the .class either by name or via annotation metadata).

The | ndexOper at i ons interface is shown below
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public interface |ndexOperations {
voi d ensurel ndex(| ndexDefinition indexDefinition);
voi d dropl ndex(String nane);
voi d dropAl || ndexes();
voi d reset | ndexCache();

Li st <l ndex| nf o> get | ndex| nfo();

Methods for creating an Index

We can create an index on a collection to improve query performance.

nongoTenpl at e. i ndexOps( Per son. cl ass) . ensur el ndex(new | ndex().on("nane", O der. ASCENDI NG) ) ;

Example 5.12 Creating an index using the MongoTemplate
» ensurelndex Ensure that an index for the provided IndexDefinition exists for the collection.

You can create both standard indexes and geospatial indexes using the classes | ndexDef i ni ti on
and GeoSpat i al | ndex respectfully. For example, given the Venue class defined in a previous section,
you would declare a geospatial query as shown below

mongoTenpl at e. i ndexOps( Venue. cl ass) . ensur el ndex(new Geospati al | ndex("l ocation"));

Accessing index information

The IndexOperations interface has the method getindexinfo that returns a list of IndexInfo objects. This
contains all the indexes defined on the collectcion. Here is an example that defines an index on the
Person class that has age property.

tenpl at e. i ndexOps(Person. cl ass) . ensur el ndex(new | ndex().on("age",
Or der . DESCENDI NG) . uni que( Dupl i cat es. DROP) ) ;

Li st <l ndexI| nf o> i ndexl nfoLi st = tenpl at e. i ndexOps(Person. cl ass). get | ndexl nfo();

/1 Contains

/1 [Indexlnfo [fieldSpec={_i d=ASCENDI NG, name=_id_, uni que=fal se, dropDuplicates=fal se,
spar se=f al se],

/1 Indexlnfo [fiel dSpec={age=DESCENDI NG, nane=age_-1, uni que=true, dropDuplicates=true,
spar se=f al se] ]

Methods for working with a Collection

It's time to look at some code examples showing how to use the MongoTenpl at e. First we look at
creating our first collection.
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DBCol | ection collection = null;

i f (!nongoTenpl at e. get Col | ecti onNanes() . cont ai ns("MyNewCol | ection")) {
col l ecti on = nongoTenpl at e. creat eCol | ecti on(" M/NewCol | ecti on");

}

mongoTenpl at e. dr opCol | ecti on(" MyNewCol | ecti on");

Example 5.13 Working with collections using the MongoTemplate

» getCollectionNames Returns a set of collection names.

» collectionExists Check to see if a collection with a given name exists.
» createCollection Create an uncapped collection

» dropCollection Drop the collection

» getCollection Get a collection by hame, creating it if it doesn't exist.

5.11 Executing Commands

You can also get at the MongoDB driver's DB. cormand( ) method using the execut eCommand( ..)
methods on MbngoTenpl ate. These will also perform exception translation into Spring's
Dat aAccessExcept i on hierarchy.

Methods for executing commands

« CommandResul t executeCommand ( DBCbj ect conmand) Execute a MongoDB command.

e« CommandResul t executeCommand (String |sonConmand) Execute the a MongoDB
command expressed as a JSON string.

5.12 Lifecycle Events

Built into the MongoDB mapping framework are several
org. spri ngframewor k. cont ext . Appl i cati onEvent events that your application can respond
to by registering special beans in the ApplicationContext. By being based off Spring's
ApplicationContext event infastructure this enables other products, such as Spring Integration, to easily
receive these events as they are a well known eventing mechanism in Spring based applications.

To intercept an object before it goes through the conversion process (which turns your domain object
into a com nmongodb. DBObj ect ), you'd register a subclass of Abst r act MongoEvent Li st ener that
overrides the onBef or eConvert method. When the event is dispatched, your listener will be called
and passed the domain object before it goes into the converter.

public class BeforeConvertListener extends Abstract MongoEvent Li st ener <Person> {
@verride
public voi d onBeforeConvert (Person p) {
. does sone auditing mani pul ati on, set timestanps, whatever ...
}
}

Example 5.14

To intercept an object before it goes into the database, you'd register a subclass of
or g. spri ngframewor k. dat a. nrongodb. cor e. mappi ng. event . Abst r act MongoEvent Li st ener
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that overrides the onBef or eSave method. When the event is dispatched, your listener will be called
and passed the domain object and the converted com nongodb. DBObj ect .

public class BeforeSaveli stener extends Abstract MongoEvent Li st ener <Per son> {
@verride
public voi d onBeforeSave(Person p, DBObject dbo) {
...change val ues, del ete them whatever ...
}
}

Example 5.15

Simply declaring these beans in your Spring ApplicationContext will cause them to be invoked whenever
the event is dispatched.

The list of callback methods that are present in AbstractMappingEventListener are

e onBef oreConvert - called in MongoTemplate insert, insertList and save operations before the
object is converted to a DBObject using a MongoConveter.

» onBef or eSave - called in MongoTemplate insert, insertList and save operations before inserting/
saving the DBObject in the database.

* OnAfter Save - called in MongoTemplate insert, insertList and save operations after inserting/saving
the DBObject in the database.

e onAfterLoad - calledin MongoTempnlate find, findAndRemove, findOne and getCollection methods
after the DBObiject is retrieved from the database.

* onAfterConvert - called in MongoTempnlate find, findAndRemove, findOne and getCollection
methods after the DBObject retrieved from the database was converted to a POJO.

5.13 Exception Translation

The Spring framework provides exception translation for a wide variety of database and
mapping technologies. This has traditionally been for JDBC and JPA. The Spring support for
MongoDB extends this feature to the MongoDB Database by providing an implementation of the
org. spri ngfranmewor k. dao. support . Persi st enceExcepti onTransl at or interface.

The motivation behind mapping to Spring's consistent data access exception hierarchy is that you
are then able to write portable and descriptive exception handling code without resorting to coding
against MongoDB error codes. All of Spring's data access exceptions are inherited from the root
Dat aAccessExcepti on class so you can be sure that you will be able to catch all database related
exception within a single try-catch block. Note, that not all exceptions thrown by the MongoDB driver
inherit from the MongoException class. The inner exception and message are preserved SO no
information is lost.

Some of the mappings performed by the MongoExcept i onTr ansl at or are: com.mongodb.Network
to DataAccessResourceFailureException and MongoExcepti on error codes 1003, 12001, 12010,
12011, 12012 to | nval i dDat aAccessApi UsageExcept i on. Look into the implementation for more
details on the mapping.
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5.14 Execution callbacks

One common design feature of all Spring template classes is that all functionality is routed into one of the
templates execute callback methods. This helps ensure that exceptions and any resource management
that maybe required are performed consistency. While this was of much greater need in the case of
JDBC and JMS than with MongoDB, it still offers a single spot for exception translation and logging to
occur. As such, using thexe execute callback is the preferred way to access the MongoDB driver's DB
and DBCol | ect i on objects to perform uncommon operations that were not exposed as methods on
MongoTenpl at e.

Here is a list of execute callback methods.

 <T> Texecute (Cl ass<?> entityd ass, CollectionCallback<T> action) Executes
the given CollectionCallback for the entity collection of the specified class.

e <T> Texecute (String collectionNane, Coll ectionCallback<T> action) Executes
the given CollectionCallback on the collection of the given name.

e <T> T execute (DbCal | back<T> action) Executes a DbCallback translating any exceptions
as necessary.

e <T> T execute (String collectionNanme, DbCallback<T> action) Executes a
DbCallback on the collection of the given name translating any exceptions as necessary.

» <T> T executelnSession (DbCal | back<T> acti on) Executes the given DbCallback within the
same connection to the database so as to ensure consistency in a write heavy environment where
you may read the data that you wrote.

Here is an example that uses the Col | ecti onCal | back to return information about an index

bool ean hasl ndex = tenpl at e. execut e("geol ocati on", new Col | ectionCal | backBool ean>() {
publ i ¢ Bool ean dol nCol | ecti on(Venue. cl ass, DBCol | ection col |l ection) throws
MongoExcepti on, Dat aAccessException {
Li st <DBObj ect > i ndexes = col | ection. getl ndexlnfo();
for (DBCbject dbo : indexes) {
if ("location_2d".equal s(dbo.get("nane"))) {
return true;
}
}
return fal se;
}
5D

5.15 GridFS support

MongoDB supports storing binary files inside it's filesystem GridFS. Spring Data MongoDB provides
a GidFsQperations interface as well as the according implementation Gri dFsTenpl at e to
easily interact with the filesystem. You can setup a Gi dFsTenpl at e instance by handing it a
MongoDbFact ory as well as a MongoConvert er:
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class GidFsConfiguration extends Abstract MongoConfiguration {
/1 ..further configuration onmitted

@Bean
public GidFsTenpl ate gridFsTenpl ate() {

return new G i dFsTenpl at e( nongoDbFactory(), mappi ngMongoConverter());
}

}
Example 5.16 JavaConfig setup for a GridFsTemplate

An according XML configuration looks like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: nmongo="ht t p: / / www. spri ngf ramewor k. or g/ schena/ dat a/ nongo"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ dat a/ nongo
http://ww. springframework. or g/ schema/ dat a/ nongo/ spri ng- nongo. xsd
http://ww. springfranework. org/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd" >

<nongo: db-factory i d="nongoDbFactory" dbnane="dat abase" />
<nongo: mappi ng- converter id="converter" />

<bean cl ass="org. spri ngfranewor k. dat a. nongodb. gri df s. Gi dFsTenpl ate" >
<constructor-arg ref="nmongobDbFactory" />
<constructor-arg ref="converter" />

</ bean>

</ beans>

Example 5.17 XML configuration for a GridFsTemplate
You can no get the template injected and perform storing and retrieving operations to it.
class GidFsCient {

@\ut owi r ed
Gi dFsQperati ons operations;

@est
public void storeFileToGidFs {

Fi | eMet adata netadata = new Fi | eMet adat a();
/'l popul ate netadata
Resource file = ...// | ookup File or Resource

operations.store(file.getlnputStrean(), "filenane.txt", netadata);

}

}
Example 5.18 Using GridFsTemplate to store files

The store(..) operations take an | nput St ream a filename and optionally metadata information
about the file to store. The metadata can be an arbitrary object which will be marshalled by the
MongoConvert er configured with the Gri dFsTenpl at e. Alternatively you can also provide a
DBObj ect as well.

Reading files from the filesystem can either be achieved through the fi nd(..) or get Resources(..)
methods. Let's have a look at the fi nd(..) methods first. You can either find a single file matching a
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Query or multiple ones. To easily define file queries we provide the Gri dFsCri t eri a helper class.
It provides static factory methods to encapsulate default metadata fields (e.g. wher eFi | enane(),
wher eCont ent Type() ) or the custom one through wher eMet aDat a() .

class GidFsCient {

@\ut owi red
G i dFsQper ati ons operations;

@rest
public void findFileslnGidFs {
Li st <G i dFSDBFi | e> result = operations.find(query(whereFilename().is("filename.txt")))

}
}

Example 5.19 Using GridFsTemplate to query for files

@ Note

Currently MongoDB does not support defining sort criterias when retrieving files from GridFS.
Thus any sort criterias defined on the Quer y instance handed into the f i nd( ..) method will be
disregarded.

The other option to read files from the GridFs is using the methods introduced by the
Resour cePat t er nResol ver interface. They allow handing an Ant path into the method ar thus
retrieve files matching the given pattern.

class GidFsCient {

@\ut owi r ed
Gi dFsQperati ons operations;

@est
public void readFil esFronGidFs {
Gi dFsResources[] txtFiles = operations. getResources("*.txt");

}
}

Example 5.20 Using GridFsTemplate to read files

Gri dFsOper at i ons extending Resour cePat t er nResol ver allows the Gri dFsTenpl at e e.g. to
be plugged into an Appl i cat i onCont ext to read Spring Config files from a MongoDB.
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6. MongoDB repositories

6.1 Introduction

This chapter will point out the specialties for repository support for MongoDB. This builds on the core
repository support explained in Chapter 4, Working with Spring Data Repositories. So make sure you've
got a sound understanding of the basic concepts explained there.

6.2 Usage

To access domain entities stored in a MongoDB you can leverage our sophisticated repository support
that eases implementing those quite significantly. To do so, simply create an interface for your repository:

public class Person {

@d

private String id;
private String firstnane;
private String | astnane;
private Address address;

/] ..getters and setters onmitted

Example 6.1 Sample Person entity

We have a quite simple domain object here. Note that it has a property named i d of typeCbj ect | d.
The default serialization mechanism used in MongoTenpl at e (which is backing the repository
support) regards properties named id as document id. Currently we supportStri ng, Gbj ect | d and
Bi gl nt eger as id-types.

public interface PersonRepository extends Pagi ngAndSorti ngRepository<Person, Long> {

// additional custom finder nethods go here

}

Example 6.2 Basic repository interface to persist Person entities

Right now this interface simply serves typing purposes but we will add additional methods to it later. In
your Spring configuration simply add
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<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: nongo="htt p: / / www. spri ngf ramewor k. or g/ schema/ dat a/ nongo"
xsi:schemaLocati on="http://ww. spri ngframework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. spri ngfranewor k. or g/ schema/ dat a/ nongo
http://ww. springfranmewor k. or g/ schema/ dat a/ nongo/ spri ng- nongo- 1. 0. xsd" >

<nongo: nongo i d="nongo" />

<bean i d="nongoTenpl ate" cl ass="org. spri ngfranmewor k. dat a. nongodb. cor e. MongoTenpl at e" >
<constructor-arg ref="nongo" />
<constructor-arg val ue="dat abaseNanme" />

</ bean>

<nongo: reposi tori es base- package="com acne. *.repositories" />

</ beans>

Example 6.3 General MongoDB repository Spring configuration

This namespace element will cause the base packages to be scanned for interfaces extending
MongoReposi t or y and create Spring beans for each of them found. By default the repositories will get
a MongoTenpl at e Spring bean wired that is called nongoTenpl at e, so you only need to configure
nongo-t enpl at e- r ef explicitly if you deviate from this convention.

If you'd rather like to go with JavaConfig use the @nabl eMbngoReposi t ori es annotation. The
annotation carries the very same attributes like the namespace element. If no base package is
configured the infrastructure will scan the package of the annotated configuration class.

@onfiguration
@Enabl eMbngoReposi tori es
cl ass ApplicationConfig extends Abstract MongoConfi guration {

@verride
protected String get Dat abaseNane() {
return "e-store";

}

@verride
public Mongo nongo() throws Exception {
return new Mongo()

}

@verride
protected String get Mappi ngBasePackage() {
return "comoreilly.springdata. nongodb"
}
}

Example 6.4 JavaConfig for repositories

As our domain repository extends Pagi ngAndSorti ngReposi tory it provides you with CRUD
operations as well as methods for paginated and sorted access to the entities. Working with the
repository instance is just a matter of dependency injecting it into a client. So accessing the second
page of Per sons at a page size of 10 would simply look something like this:
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@RunW t h( Spri ngJUni t 4Cl assRunner . cl ass)
@cont ext Confi gurati on
public class PersonRepositoryTests {

@\ut owi red PersonRepository repository;

@est
public void readsFirstPageCorrectly() {

Page<Per son> persons = repository.findAl | (new PageRequest (0, 10));
assert That (persons. i sFirstPage(), is(true));
}
}

Example 6.5 Paging access to Person entities

The sample creates an application context with Spring's unit test support which will perform annotation
based dependency injection into test cases. Inside the test method we simply use the repository to
guery the datastore. We hand the repository a PageRequest instance that requests the first page of
persons at a page size of 10.

6.3 Query methods

Most of the data access operations you usually trigger on a repository result a query being executed
against the MongoDB databases. Defining such a query is just a matter of declaring a method on the
repository interface

public interface PersonRepository extends Pagi ngAndSorti ngRepository<Person, String> {
Li st <Person> findByLastnane(String | astnane);
Page<Person> findByFi rstname(String firstnane, Pageabl e pageabl e);

Per son fi ndByShi ppi ngAddr esses( Addr ess addr ess) ;

}

Example 6.6 PersonRepository with query methods

The first method shows a query for all people with the given lasthname. The query will be derived parsing
the method name for constraints which can be concatenated with And and Or . Thus the method name
will result in a query expression of{ "1 ast nane" : | ast nane}. The second example shows how
pagination is applied to a query. Just equip your method signature with a Pageabl e parameter and
let the method return a Page instance and we will automatically page the query accordingly. The third
examples shows that you can query based on properties which are not a primitive type.

@ Note

Note that for version 1.0 we currently don't support referring to parameters that are mapped as
DBRef in the domain class.

Table 6.1. Supported keywords for query methods

Keyword Sample Logical result

Great er Than fi ndByAgeGreat er Than(int age) {"age" : {"$gt" : age}}

LessThan fi ndByAgeLessThan(i nt age) {"age" : {"$It" : age}}
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Keyword Sample Logical result

Bet ween fi ndByAgeBet ween(i nt from {"age" {"$gt" from

int to) "SIt to}}

I sNot Nul |, findByFirstnanmeNot Nul | () {"age" {" $ne" nul | }}

Not Nul |

[ sNul I, Nul I findByFirstnanmeNul | () {"age" nul |}

Li ke fi ndByFi r st naneLi ke(Stri ng {"age" age} (age as regex)

nane)

Regex findByFirstnaneRegex(String {"firstnanme" {" $regex"

firstnane) firstnanme }}

(No keyword) findByFirstnane(String nane) {"age" nane}

Not findByFirstnaneNot (String {"age" {"$ne" nane}}

nane)

Near fi ndByLocat i onNear ( Poi nt {"l ocation" {" $near"

poi nt) [x,y]}}
Wt hin findByLocationWthin(Circle {"location" {"$wi thin"
circle) {"$center" [ [x, y],
di stance] }}}

Wthin findByLocati onWt hi n(Box box) {"location" {"$wi t hin"
{"$box" : [ [x1, vyl], x2,
y2]}}} True

| sTrue, True findByActivel sTrue() {"active" true}

| sFal se, Fal se findByActivel sFal se() {"active" fal se}

Exi sts fi ndByLocati onExi st s(bool ean {"l ocation" {" $exi st s"

exi sts)

Geo-spatial repository queries

exists }}

As you've just seen there are a few keywords triggering geo-spatial operations within a MongoDB query.
The Near keyword allows some further modification. Let's have look at some examples:

public interface PersonRepository extends MyngoRepository<Person,

/1 { 'location'

: { "$near' : [point.Xx,

Li st <Person> findByLocati onNear (Poi nt | ocation,

}

Example 6.7 Advanced Near queries

poi nt.y],

String>

' $maxDi st ance' : distance}}
Di st ance di stance);

Adding a Di st ance parameter to the query method allows restricting results to those within the given
distance. If the Di st ance was set up containing a Met ri ¢ we will transparently use $near Spher e

instead of $code.
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Poi nt point = new Point (43.7, 48.8);

Di st ance di stance = new Di stance(200, Metrics. KI LOVETERS);

..= repository. findByLocati onNear (poi nt, distance);

/Il {'location' : {'$nearSphere' : [43.7, 48.8], '$maxDi stance' : 0.03135711885774796}}

Example 6.8 Using Di st ance with Metrics

As you can see using a Di st ance equipped with a Met ri ¢ causes $near Spher e clause to be added
instead of a plain $near . Beyond that the actual distance gets calculated according to the Metri cs
used.

Geo-near queries

public interface PersonRepository extends MongoRepository<Person, String>

/'l {"geoNear' : 'location', 'near' : [x, y] }
GeoResul t s<Per son> findByLocati onNear (Poi nt | ocation);

/1 No nmetric: {'geoNear' : 'person', 'near' : [X, y], maxDi stance : distance }
/1l Metric: {'geoNear' : 'person', 'near' : [Xx, y], 'maxDi stance' : distance,
/1 "distanceMultiplier' : netric.nultiplier, 'spherical' : true }

CGeoResul t s<Per son> findByLocati onNear (Poi nt | ocation, Distance distance);

/'l {'geoNear' : 'location', 'near' : [x, y] }
GeoResul t s<Per son> findByLocati onNear (Poi nt | ocation);

MongoDB JSON based query methods and field restriction

By adding the annotation or g. spri ngf r amewor k. dat a. nongodb. r eposi t ory. Query repository
finder methods you can specify a MongoDB JSON query string to use instead of having the query
derived from the method name. For example

public interface PersonRepository extends MbongoRepository<Person, String>

@uery("{ 'firstname' : 20 }")
Li st <Person> fi ndByThePer sonsFirstnane(String firstnane);

The placeholder ?0 lets you substitute the value from the method arguments into the JSON query string.

You can also use the filter property to restrict the set of properties that will be mapped into the Java
object. For example,

public interface PersonRepository extends MngoRepository<Person, String>

@uery(value="{ 'firstname' : 20 }", fields="{ 'firstname’ : 1, 'lastname' : 1}")
Li st <Person> fi ndByThePer sonsFirstnane(String firstnane);

This will return only the firstname, lastname and Id properties of the Person objects. The age property,
a java.lang.Integer, will not be set and its value will therefore be null.

Spring Data MongoDB -
1.2.4.RELEASE Reference Documentation 61



please define productname in your docbook file!

Type-safe Query methods

MongoDB repository support integrates with the QueryDSL project which provides a means to perform
type-safe queries in Java. To quote from the project description, "Instead of writing queries as inline
strings or externalizing them into XML files they are constructed via a fluent APL." It provides the following
features

» Code completion in IDE (all properties, methods and operations can be expanded in your favorite
Java IDE)

» Almost no syntactically invalid queries allowed (type-safe on all levels)

» Domain types and properties can be referenced safely (no Strings involved!)
» Adopts better to refactoring changes in domain types

* Incremental query definition is easier

Please refer to the QueryDSL documentation which describes how to bootstrap your environment for
APT based code generation using Maven or using Ant.

Using QueryDSL you will be able to write queries as shown below

QPerson person = new QPerson("person");
Li st<Person> result = repository.findAl | (person. address. zi pCode. eq(" C0123"));

Page<Per son> page = repository.findAl I (person.|astnane.contains("a"),
new PageRequest (0, 2, Direction. ASC, "lastnane"));

QPerson is a class that is generated (via the Java annotation post processing tool) which is a
Pr edi cat e that allows you to write type safe queries. Notice that there are no strings in the query other
than the value "C0123".

You can use the generated Pr edi cat e class via the interface Quer yDsl Pr edi cat eExecut or which
is shown below

public interface QueryDsl Predi cat eExecut or <T> {
T findOne(Predicate predicate);
Li st<T> findAl | (Predi cate predicate);
Li st<T> findAl | (Predi cate predicate, O derSpecifier<?>. .. orders);
Page<T> findAl | (Predi cate predicate, Pageabl e pageable);

Long count (Predi cate predicate);

To use this in your repository implementation, simply inherit from it in addition to other repository
interfaces. This is shown below

public interface PersonRepository extends MongoRepository<Person, String>,
Quer yDsl Predi cat eExecut or <Per son> {

/1 additional finder nmethods go here

Spring Data MongoDB -
1.2.4.RELEASE Reference Documentation 62


http://www.querydsl.com/
http://source.mysema.com/static/querydsl/2.1.2/reference/html/ch02.html#d0e112
http://source.mysema.com/static/querydsl/2.1.2/reference/html/ch02.html#d0e131

please define productname in your docbook file!

We think you will find this an extremely powerful tool for writing MongoDB queries.

6.4 Miscellaneous

CDI Integration

Instances of the repository interfaces are usually created by a container, which Spring is the most natural
choice when working with Spring Data. As of version 1.3.0 Spring Data MongoDB ships with a custom
CDI extension that allows using the repository abstraction in CDI environments. The extension is part of
the JAR so all you need to do to activate it is dropping the Spring Data MongoDB JAR into your classpath.
You can now set up the infrastructure by implementing a CDI Producer for the MongoTenpl at e:

cl ass MongoTenpl at ePr oducer {

@°r oduces

@\ppl i cati onScoped

publ i ¢ MongoOper ati ons creat eMongoTenpl ate() throws UnknownHost Excepti on,
MongoExcept i on {

MongoDbFact ory factory = new Si npl eMongoDbFact ory(new Mongo(), "database");
return new MongoTenpl ate(factory);

The Spring Data MongoDB CDI extension will pick up the MongoTenpl at e available as CDI bean and
create a proxy for a Spring Data repository whenever an bean of a repository type is requested by the
container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an @ nj ect -
ed property:

class RepositoryCient {

@ nj ect
Per sonRepository repository;

public voi d busi nessMet hod() {

Li st <Person> people = repository.findAll();
}
}

Spring Data MongoDB -
1.2.4.RELEASE Reference Documentation 63



please define productname in your docbook file!

7. Mapping

Rich maping support is provided by the MongoMappi ngConverter. MongoMappi ngConvert er
has a rich metadata model that provides a full feature set of functionality to map domain objects to
MongoDB documents.The mapping metadata model is populated using annotations on your domain
objects. However, the infrastructure is not limited to using annotations as the only source of metadata
information. The MongoMappi ngConvert er also allows you to map objects to documents without
providing any additional metadata, by following a set of conventions.

In this section we will describe the features of the MongoMappingConverter. How to use conventions for
mapping objects to documents and how to override those conventions with annotation based mapping
metadata.

© Note

Si npl eMbngoConvert er has been deprecated in Spring Data MongoDB M3 as all of its
functionality has been subsumed into Mappi ngMongoConvert er.

7.1 Convention based Mapping

MongoMappi ngConverter has a few conventions for mapping objects to documents when no
additional mapping metadata is provided. The conventions are:

» The short Java class name is mapped to the collection name in the following manner. The class
‘com bi gbank. Savi ngsAccount ' maps to 'savi ngsAccount ' collection name.

» All nested objects are stored as nested objects in the document and *not* as DBRefs

» The converter will use any Spring Converters registered with it to override the default mapping of
object properties to document field/values.

e The fields of an object are used to convert to and from fields in the document. Public JavaBean
properties are not used.

* You can have a single non-zero argument constructor whose constructor argument names match top
level field names of document, that constructor will be used. Otherewise the zero arg constructor will
be used. if there is more than one non-zero argument constructor an exception will be thrown.

How the' id' field is handled in the mapping layer

MongoDB requires that you have an'_id' field for all documents. If you don't provide one the driver will
assign a Objectld with a generated value. The "_id" field can be of any type the, other than arrays,
so long as it is unique. The driver naturally supports all primitive types and Dates. When using the
MongoMappi ngConvert er there are certain rules that govern how properties from the Java class is
mapped to this '_id' field.

The following outlines what field will be mapped to the '_id' document field:

A field annotated with @ d (or g. spri ngf ranmewor k. dat a. annot ati on. | d) will be mapped to
the '_id' field.

A field without an annotation but named i d will be mapped to the *'_id' field.
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The following outlines what type conversion, if any, will be done on the property mapped to the _id
document field.

« If a field named 'id' is declared as a String or Biglinteger in the Java class it will be converted to and
stored as an Objectld if possible. Objectld as a field type is also valid. If you specify a value for 'id" in
your application, the conversion to an Objectld is delected to the MongoDBdriver. If the specified 'id'
value cannot be converted to an Objectld, then the value will be stored as is in the document's _id field.

« If afield named 'id'id field is not declared as a String, Biginteger, or ObjectID in the Java class then
you should assign it a value in your application so it can be stored 'as-is' in the document's _id field.

« If no field named 'id' is present in the Java class then an implicit'_id' file will be generated by the driver
but not mapped to a property or field of the Java class.

When querying and updating MongoTenpl at e will use the converter to handle conversions of the
Query and Updat e objects that correspond to the above rules for saving documents so field names
and types used in your queries will be able to match what is in your domain classes.

7.2 Mapping Configuration

Unless explicitly configured, an instance of MongoMappi ngConvert er is created by default when
creating a MongoTenpl at e. You can create your own instance of the Mappi ngMbngoConverter so
as to tell it where to scan the classpath at startup your domain classes in order to extract metadata and
construct indexes. Also, by creating your own instance you can register Spring converters to use for
mapping specific classes to and from the database.

You can configure the MongoMappi ngConverter as well as com nongodb. Mongo and
MongoTemplate either using Java or XML based metadata. Here is an example using Spring's Java
based configuration
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@Configuration
public class GeoSpati al AppConfi g extends Abstract MongoConfi guration {

@ean
public Mongo nongo() throws Exception {
return new Mongo("l ocal host");

}

@verride
public String getDat abaseNane() {
return "dat abase";

}

@verride
public String get Mappi ngBasePackage() ({
return “com bi gbank. domai n";

}

/1 the followi ng are optional

@verride

protected voi d afterMappi ngMongoConvert er Cr eat i on( Mappi ngvbngoConverter converter) {
Set <Converter<?, ?>> converterlList = new HashSet <Converter<?, ?>>();
converterlList.add(new org. springfranework. dat a. nongodb. t est. Per sonReadConverter());
converterlist.add(new org. springfranmework. dat a. nrongodb. t est. PersonW it eConverter());
converter. set Cust onConverters(converterList);

}

@ean
publ i ¢ Loggi ngEvent Li st ener <MongoMappi ngEvent > mappi ngEvent sLi st ener () {
return new Loggi ngEvent Li st ener <MongoMappi ngEvent >();

}

}
Example 7.1 @Configuration class to configure MongoDB mapping support

Abst ract MongoConfi guration requires you to implement methods that define a
com nongodb. Mongo as well as provide a database name. Abstract MongoConfi gurati on
also has a method you can override named ‘get Mappi ngBasePackage'
which  tells the converter where to scan for classes annotated with the
@r g. spri ngfranmewor k. dat a. nongodb. cor e. nappi ng. Docurent annotation.

You can add additional converters to the converter by overriding the method
afterMappingMongoConverterCreation. Also  shown in the above example is a
Loggi ngEvent Li st ener which logs MongoMappi ngEvent s that are posted onto Spring's
Appl i cati onCont ext Event infrastructure.

@ Note

AbstractMongoConfiguration will create a MongoTemplate instance and registered with the
container under the name 'mongoTemplate'.

You can also override the method User Credential s getUser Credenti al s() to provide the
username and password information to connect to the database.

Spring's MongoDB namespace enables you to easily enable mapping functionality in XML
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<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="http://wwmv. springfranmewor k. or g/ schema/ cont ext"
xm ns: mongo="ht t p: / / www. spri ngf ramewor k. or g/ schena/ dat a/ nongo"
xsi : schemaLocati on="http://ww. spri ngfranework. org/ schema/ context http://
www. spri ngframewor k. or g/ schena/ cont ext/ spri ng- cont ext - 3. 0. xsd
http://ww. spri ngfranmewor k. or g/ schema/ dat a/ nrongo http://
www. spri ngf ranewor k. or g/ schena/ dat a/ nrongo/ spri ng- nongo- 1. 0. xsd
http: //wwv. spri ngfranewor k. or g/ schema/ beans http://ww. spri ngfranmewor k. or g/
schema/ beans/ spri ng- beans- 3. 0. xsd" >

<I-- Default bean nane is 'nobngo' -->
<nongo: nongo host ="1| ocal host" port="27017"/>

<nongo: db-f act ory dbnane="dat abase" nongo-ref="nongo"/>

<I-- by default |ook for a Mongo object named 'nongo' - default name used for the
converter is 'mappi ngConverter' -->
<nongo: mappi ng- converter base- package="com bi gbank. domai n" >
<nobngo: cust om converter s>
<nongo: converter ref="readConverter"/>
<nongo: converter>
<bean cl ass="org. spri ngframewor k. dat a. nongodb. t est . PersonW it eConverter"/>
</ nongo: converter>
</ nmongo: cust om converters>
</ mongo: mappi ng- converter>

<bean i d="readConverter" class="org.springfranework. data. nongodb. t est. PersonReadConverter"/
<l-- set the mapping converter to be used by the MngoTenplate -->
<bean i d="nongoTenpl ate" cl ass="org. spri ngfranmewor k. dat a. nongodb. cor e. MongoTenpl at e" >
<constructor-arg nane="nongoDbFactory" ref="nongoDbFactory"/>
<constructor-arg nane="nongoConverter" ref="mappi ngConverter"/>
</ bean>

<bean cl ass="org. spri ngfranewor k. dat a. nrongodb. cor e. mappi ng. event. Loggi ngEvent Li stener"/ >

</ beans

Example 7.2 XML schema to configure MongoDB mapping support

The base-package property tells it where to scan for classes annotated with the
@r g. spri ngf ramewor k. dat a. nrongodb. cor e. mappi ng. Docunent annotation.

7.3 Metadata based Mapping

To take full advantage of the object mapping functionality inside the Spring
Data/MongoDB  support, you should annotate your mapped objects with the
@r g. spri ngframewor k. dat a. nongodb. cor e. mappi ng. Docurrent annotation. Although it is
not necessary for the mapping framework to have this annotation (your POJOs will be mapped correctly,
even without any annotations), it allows the classpath scanner to find and pre-process your domain
objects to extract the necessary metadata. If you don't use this annotation, your application will take a
slight performance hit the first time you store a domain object because the mapping framework needs
to build up its internal metadata model so it knows about the properties of your domain object and how
to persist them.
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package com nyconpany. domai n;

@ocunent
public class Person {

@d
private Objectld id;

@ ndexed
private |nteger ssn;

private String firstName;

@ ndexed
private String | ast Name;

Example 7.3 Example domain object

©® Important

The @ d annotation tells the mapper which property you want to use for the MongoDB _i d
property and the @ ndexed annotation tells the mapping framework to call ensur el ndex on
that property of your document, making searches faster.

Mapping annotation overview

The MappingMongoConverter can use metadata to drive the mapping of objects to documents. An
overview of the annotations is provided below

@ d - applied at the field level to mark the field used for identiy purpose.

@ocunent - applied at the class level to indicate this class is a candidate for mapping to the
database. You can specify the name of the collection where the database will be stored.

@BRef - applied at the field to indicate it is to be stored using a com.mongodb.DBRef.
@ ndexed - applied at the field level to describe how to index the field.

@onmpoundl ndex - applied at the type level to declare Compound Indexes

@xoSpati al | ndexed - applied at the field level to describe how to geoindex the field.

@r ansi ent - by default all private fields are mapped to the document, this annotation excludes the
field where it is applied from being stored in the database

@er si st enceConst ruct or - marks a given constructor - even a package protected one - to use
when instantiating the object from the database. Constructor arguments are mapped by name to the
key values in the retrieved DBODbiject.

@/al ue - this annotation is part of the Spring Framework . Within the mapping framework it can
be applied to constructor arguments. This lets you use a Spring Expression Language statement to
transform a key's value retrieved in the database before it is used to construct a domain object.

@i el d - applied at the field level and described the name of the field as it will be represented in the
MongoDB BSON document thus allowing the name to be different than the fieldname of the class.
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The mapping metadata infrastructure is defined in a seperate spring-data-commons project that is
technology agnostic. Specific subclasses are using in the MongoDB support to support annotation based
metadata. Other strategies are also possible to put in place if there is demand.

Here is an example of a more complex mapping.

@ocumnent
@onpoundl ndexes({

@onpoundl ndex(name = "age_idx", def = "{'lastName': 1, 'age': -1}")
})

public class Person<T extends Address> {

@d
private String id,;

@ ndexed(uni que = true)
private |nteger ssn;

@i el d("f Nanme")
private String firstNane;

@ ndexed
private String |astNane;

private |nteger age;

@r ansi ent
private |nteger accountTotal;

@BRef
private List<Account> accounts;

private T address;

publ i c Person(lnteger ssn) {
this.ssn = ssn;

@er si st enceConstructor
public Person(lnteger ssn, String firstName, String |astNane, |Integer age, T address) {
this.ssn = ssn;
this.firstName = firstNang;
this.lastName = | ast Nane;
thi s.age = age;
thi s. address = address;

public String getld() {
return id;

/1 no setter for Id. (getter is only exposed for sone unit testing)

public Integer getSsn() {
return ssn;

/| other getters/setters ommitted
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Compound Indexes

Compound indexes are also supported. They are defined at the class level, rather than on indidvidual
properties.

© Note

Compound indexes are very important to improve the performance of queries that involve criteria
on multiple fields

Here's an example that creates a compound index of | ast Name in ascending order and age in
descending order:

package com nyconpany. donmai n;

@ocunent
@onpoundl ndexes( {

@onpoundl ndex(name = "age_idx", def = "{'lastNanme': 1, 'age': -1}")
})

public class Person {

@d

private Objectld id;
private |nteger age;
private String firstName;
private String | ast Naneg;

Example 7.4 Example Compound Index Usage

Using DBRefs

The mapping framework doesn't have to store child objects embedded within the document. You can
also store them separately and use a DBRef to refer to that document. When the object is loaded from
MongoDB, those references will be eagerly resolved and you will get back a mapped object that looks
the same as if it had been stored embedded within your master document.

Here's an example of using a DBRef to refer to a specific document that exists independently of the
object in which it is referenced (both classes are shown in-line for brevity's sake):
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@ocunment
public class Account {

@d
private Qojectld id;
private Float total;

}

@ocunment
public class Person {

@d

private Qojectld id,;
@ ndexed

private |nteger ssn;
@BRef

private List<Account> accounts;

Example 7.5

There's no need to use something like @neToMany because the mapping framework sees that you're
wanting a one-to-many relationship because there is a List of objects. When the object is stored in
MongoDB, there will be a list of DBRefs rather than the Account objects themselves.

© Important

The mapping framework does not handle cascading saves. If you change an Account object that
is referenced by a Per son object, you must save the Account object separately. Calling save on
the Per son object will not automatically save the Account objects in the property account s.

Mapping Framework Events

Events are fired throughout the lifecycle of the mapping process. This is described in the Lifecycle
Events section.

Simply declaring these beans in your Spring ApplicationContext will cause them to be invoked whenever
the event is dispatched.

Overriding Mapping with explicit Converters

When storing and querying your objects it is convenient to have a MongoConverter instance
handle the mapping of all Java types to DBObjects. However, sometimes you may want the
MongoConvert er's do most of the work but allow you to selectivly handle the conversion for a particular
type or to optimize performance.

To selectivly handle the conversion vyourself, register one or more one or
more org. spri ngframewor k. core. convert.converter. Converter instances with the
MongoConverter.
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© Note

Spring 3.0 introduced a core.convert package that provides a general type conversion system.
This is described in detail in the Spring reference documentation section entitled Spring 3 Type
Conversion.

The setConverters method on Sinpl eMongoConverter and Mappi ngMbngoConverter
should be used for this purpose. The method after Mappi ngMbngoConverterCreati on in
Abst ract MongoConfi gurati on can be overriden to configure a MappingMongoConverter. The
examples here at the begining of this chapter show how to perform the configuration using Java and
XML.

Below is an example of a Spring Converter implementation that converts from a DBObject to a Person
POJO.

public class PersonReadConverter inplenents Converter<DBCbject, Person> {

publ i c Person convert (DBObj ect source) {
Person p = new Person((Cbjectld) source.get("_id"), (String) source.get("nane"));
p. set Age( (I nteger) source.get("age"));
return p;

}

Here is an example that converts from a Person to a DBObject.

public class PersonWiteConverter inplenents Converter<Person, DBObject> {

publ i c DBObj ect convert(Person source) {
DBhj ect dbo = new Basi cDBObj ect () ;
dbo. put ("_id", source.getld());
dbo. put ("name", source.getFirstNanme());
dbo. put ("age", source.getAge());
return dbo;
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8. Cross Store support

Sometimes you need to store data in multiple data stores and these data stores can be of different
types. One might be relational while the other a document store. For this use case we have created a
separate module in the MongoDB support that handles what we call cross-store support. The current
implemenatation is based on JPA as the driver for the relational database and we allow select fields in
the Entities to be stored in a Mongo database. In addition to allowing you to store your data in two stores
we also coordinate persistence operations for the non-transactional MongoDB store with the transaction
life-cycle for the relational database.

8.1 Cross Store Configuration

Assuming that you have a working JPA application and would like to add some cross-store persistence
for MongoDB. What do you have to add to your configuration?

First of all you need to add a dependency on the spri ng- dat a- nongodb- cr oss- st or e module.
Using Maven this is done by adding a dependency to your pom:

<proj ect xm ns="http://nmaven. apache. org/ POM 4. 0. 0" xm ns: xsi ="htt p://ww. w3. or g/ 2001/
XMLScheme- i nst ance"

xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0. 0 http://maven. apache. or g/ xsd/
maven- 4. 0. 0. xsd" >

<nmodel Ver si on>4. 0. 0</ nodel Ver si on>

<!-- Spring Data -->

<dependency>
<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oup! d>
<artifact!|d>spring-data-nongodb-cross-store</artifactld>
<ver si on>${spri ng. dat a. nongo. ver si on} </ ver si on>

</ dependency>

</ proj ect >
Example 8.1 Example Maven pom.xml with spring-data-mongodb-cross-store dependency
Once this is done we need to enable AspectJ for the project. The cross-store support is implemented

using AspectJ aspects so by enabling compile time AspectJ support the cross-store features will become
available to your project. In Maven you would add an additional plugin to the <build> section of the pom:
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<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="htt p: // wwv. w3. or g/ 2001/
XM.Schema- i nst ance"

xsi : schemaLocati on="htt p:// maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/
maven- 4. 0. 0. xsd" >

<nmodel Ver si on>4. 0. 0</ nodel Ver si on>

<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>or g. codehaus. noj o</ gr oupl d>
<artifactl|d>aspectj-maven-plugin</artifactld>
<ver si on>1. 0</ ver si on>
<dependenci es>
<l-- NB: You nust use Maven 2.0.9 or above or these are ignored (see MNG 2972)

<dependency>
<gr oupl d>or g. aspectj </ gr oupl d>
<artifactld>aspectjrt</artifactld>
<versi on>${aspectj . version}</versi on>
</ dependency>
<dependency>
<gr oupl d>or g. aspectj </ groupl d>
<artifactld>aspectjtool s</artifactld>
<versi on>${aspectj . version}</versi on>
</ dependency>
</ dependenci es>
<executi ons>
<executi on>
<goal s>
<goal >conpi | e</ goal >
<goal >t est - conpi | e</ goal >
</ goal s>
</ executi on>
</ executi ons>
<confi gurati on>
<out xm >t rue</ out xm >
<aspect Li brari es>
<aspect Li brary>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-aspects</artifactld>
</ aspect Li brary>
<aspect Li brary>
<groupl d>or g. spri ngf ranewor k. dat a</ gr oupl d>
<artifact!|d>spring-data-nongodb-cross-store</artifactld>
</ aspect Li brary>
</ aspect Li brari es>
<sour ce>1. 6</ sour ce>
<target >1. 6</t ar get >
</ configuration>
</ pl ugi n>

</ pl ugi ns>
</ bui | d>

— </ proj ect>

Exampie|8=AEEample Maven pom.xmReitdvirepiddikan@anahled
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Finally, you need to configure your project to use MongoDB and also configure the aspects that are
used. The following XML snippet should be added to your application context:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:jdbc="http://wm. springfranmework. org/ schema/ j dbc"
xm ns:jpa="http://ww. springfranmework. org/ schema/ dat a/ j pa"
xm ns: mongo="ht t p: / / www. spri ngf ramewor k. or g/ schena/ dat a/ nongo"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ dat a/ nrongo
http://ww. springfranework. or g/ schema/ dat a/ nongo/ spri ng- nongo. xsd
http://ww. springframework. org/ schema/ j dbc
http://ww. spri ngfranewor k. org/ schema/ j dbc/ spring-j dbc- 3. 0. xsd
http://ww. springfranework. or g/ schenma/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. spri ngfranewor k. or g/ schema/ dat a/ j pa
http://ww. springframework. org/ schema/ dat a/ j pa/ spri ng-j pa-1. 0. xsd" >

<l--  Mdngo config -->
<npngo: nongo host ="1 ocal host" port="27017"/>

<bean i d="nongoTenpl ate" cl ass="org. spri ngfranmewor k. dat a. nongodb. cor e. MongoTenpl at e" >
<constructor-arg name="nongo" ref="nongo"/>
<constructor-arg nane="dat abaseNane" val ue="test"/>
<constructor-arg name="def aul t Col | ecti onNanme" val ue="cross-store"/>

</ bean>

<bean cl ass="org. spri ngframewor k. dat a. nongodb. cor e. MongoExcepti onTransl ator"/ >

<l--  Mdngo cross-store aspect config -->
<bean cl ass="org. spri ngframewor k. dat a. per si st ence. docunment . nrongo. MongoDocurnent Backi ng"
factory-net hod="aspect Of " >
<property nane="changeSet Persi ster" ref="nongoChangeSet Persister"/>
</ bean>
<bean i d="npbngoChangeSet Per si ster"
cl ass="org. spri ngframewor k. dat a. per si st ence. docunent . nrongo. MongoChangeSet Per si st er" >
<property nanme="nmongoTenpl ate" ref="nongoTenpl ate"/>
<property nane="entityManager Factory" ref="entityManager Factory"/>
</ bean>

</ beans>

Example 8.3 Example application context with MongoDB and cross-store aspect support

8.2 Writing the Cross Store Application

We are assuming that you have a working JPA application so we will only cover the additional steps
needed to persist part of your Entity in your Mongo database. First you need to identify the field you
want persited. It should be a domain class and follow the general rules for the Mongo mapping support
covered in previous chapters. The field you want persisted in MongoDB should be annotated using the
@=el at edDocunent annotation. That is really all you need to do!. The cross-store aspects take care
of the rest. This includes marking the field with @Transient so it won't be persisted using JPA, keeping
track of any changes made to the field value and writing them to the database on succesfull transaction
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completion, loading the document from MongoDB the first time the value is used in your application.

Here is an example of a simple Entity that has a field annotated with @RelatedEntity.

@ntity
public class Custoner {

@d

@=ner at edVal ue(strategy = CenerationType. | DENTI TY)
private Long id;

private String firstNane;

private String |astNane;

@Rel at edDocunent
private Surveylnfo surveyl nfo;

/] getters and setters omitted

}

Example 8.4 Example of Entity with @RelatedDocument

public class Surveylnfo {
private Map<String, String> questionsAndAnswers;

public Surveylnfo() {
this. questi onsAndAnswers = new HashMap<String, String>();

}

public Surveylnfo(Map<String, String> questionsAndAnswers) {
thi s. questi onsAndAnswers = questi onsAndAnswers;

}

public Map<String, String> getQuestionsAndAnswers() {
return questi onsAndAnswers;

}

this. questi onsAndAnswers = questi onsAndAnswers;

}

public Surveyl nfo addQuesti onAndAnswer (String question, String answer) {
t hi s. questi onsAndAnswer s. put (questi on, answer);
return this;
}
}

Example 8.5 Example of domain class to be stored as document

public void setQuesti onsAndAnswer s(Map<String, String> questionsAndAnswers) {

Once the Surveyinfo has been set on the Customer object above the MongoTemplate that was
configured above is used to save the Surveylnfo along with some metadata about the JPA Entity is stored
in a MongoDB collection named after the fully qualified name of the JPA Entity class. The following code:
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Cust oner custonmer = new Customner();
cust omer. set Fi r st Name(" Sven") ;
cust omer. set Last Name( " d af sen");
Surveyl nfo surveylnfo = new Surveyl nfo()
. addQuest i onAndAnswer (" age", "22")
. addQuest i onAndAnswer ("married", "Yes")
. addQuest i onAndAnswer ("ci ti zenshi p", "Norwegi an");
cust omer. set Surveyl nf o(surveyl nfo);
cust omer Reposi tory. save(cust oner);

Example 8.6 Example of code using the JPA Entity configured for cross-store persistence
Executing the code above results in the following JSON document stored in MongoDB.

{ "_id" : Opjectld( "4d9e8b6e3c55287f87d4b79e" ),
"_entity_id" : 1,

"_entity_class" : "org.springframework. dat a. rongodb. exanpl es. cust svc. domai n. Cust oner ",
"_entity_field_name" : "surveylnfo",
"questi onsAndAnswers" : { "married" : "Yes",

"age" : "22",

"citizenship" : "Norwegian" },

"_entity_field_class"
"org. springframewor k. dat a. rongodb. exanpl es. cust svc. domai n. Surveyl nf o" }

Example 8.7 Example of JSON document stored in MongoDB
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9. Logging support

An appender for Log4j is provided in the maven module "spring-data-mongodb-log4j". Note, there is no
dependency on other Spring Mongo modules, only the MongoDB driver.

9.1 MongoDB Log4j Configuration

Here is an example configuration

| 0g4j . r oot Cat egor y=I NFO, st dout

| og4j . appender . st dout =or g. spri ngf ramewor k. dat a. docunent . nongodb. | og4j . MongoLog4j Appender
| og4j . appender. st dout . | ayout =or g. apache. | og4j . Pat t er nLayout
| og4j . appender. stdout. | ayout. Conversi onPattern=% % [%] - <%r>%

| og4j . appender. stdout. host = | ocal host
| 0g4j . appender. stdout. port = 27017
| 0g4j . appender. st dout . dat abase = | ogs

| og4j . appender. stdout. col | ectionPattern = 9%{year}%{ nont h}
| og4j . appender. stdout. applicationld = ny.application
| 0g4j . appender. st dout . war nOr Hi gher Wi teConcern = FSYNC_SAFE

| og4j . cat egory. org. apache. acti veng=ERROR

| 0og4j . cat egory. org. spri ngfranewor k. bat ch=DEBUG

| og4j . cat egory. org. spri ngf ramewor k. dat a. docunent . nrongodb=DEBUG
| og4j . cat egory. org. spri ngframewor k. t ransact i on=I NFO

The important configuration to look at aside from host and port is the database and collectionPattern.
The variables year, month, day and hour are available for you to use in forming a collection name. This
is to support the common convention of grouping log information in a collection that corresponds to a
specific time period, for example a collection per day.

There is also an applicationld which is put into the stored message. The document stored from logging
as the following keys: level, name, applicationld, timestamp, properties, traceback, and message.
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10. JMX support

The JMX support for MongoDB exposes the results of executing the 'serverStatus' command on the
admin database for a single MongoDB server instance. It also exposes an administrative MBean,
MongoAdmin which will let you perform administrative operations such as drop or create a database.
The JMX features build upon the JMX feature set available in the Spring Framework. See here for
more details.

10.1 MongoDB JMX Configuration

Spring's Mongo hamespace enables you to easily enable JMX functionality

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="htt p: //ww. spri ngfranewor k. or g/ schena/ cont ext "
xm ns: nongo="htt p: // ww. spri ngf ranewor k. or g/ schema/ dat a/ rongo"
xsi : schenalLocat i on=
"http://ww. springfranmewor k. or g/ schema/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng- cont ext - 3. 0. xsd
htt p: // ww. spri ngf ranewor k. or g/ schenma/ dat a/ nrongo
http://ww. spri ngfranework. or g/ schenma/ dat a/ nongo/ spri ng- nongo- 1. 0. xsd
http://ww. springframework. or g/ schema/ beans http://ww. spri ngfranework. org/ schema/
beans/ spri ng- beans- 3. 0. xsd" >

<beans>

<!-- Default bean nanme is 'nobngo' -->
<nmongo: nongo host ="l ocal host" port="27017"/>

<l-- by default |ook for a Mongo object nanmed 'nongo' -->
<nmongo: j mx/ >

<cont ext : mhean- export/ >
<I-- To transl ate any MongoExceptions thrown in @Repository annotated cl asses -->
<cont ext : annot ati on- confi g/ >
<bean i d="registry" class="org.springframework.renoting.rm .Rm Regi stryFact oryBean" p: port="1099"
/>
<I-- Expose JMX over RM -->
<bean i d="server Connector" class="org. springfranework.jnx.support.Connect or Ser ver Fact or yBean"
depends-on="regi stry"

p: obj ect Nane="connect or: name=rm "
p: serviceUr|l ="service:jnx:rm://local host/jndi/rm://|ocal host: 1099/ nyconnector" /

</ beans>

Example 10.1 XML schmea to configure MongoDB
This will expose several MBeans
» AssertMetrics

» BackgroundFlushingMetrics
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* BtreelndexCounters
» ConnectionMetrics
* GlobalLoclMetrics
* MemoryMetrics

» OperationCounters
» Serverinfo

* MongoAdmin

This is shown below in a screenshot from JConsole

Java Monitoring & Management Console - pid: 8120 org.springframework. data. document. mangodb.... ‘r__Hg -

oy

|£ Connection  Window  Help =

Owerview | Memary | Threads | Classes | VM Summar\;|MBEEﬂS| E

3 MIrnplermentation Operation invocation
-3 com. mongodb :
{3 com.sun. management ekl dropDatabase ] { pi | String | )
-3 connectar
-3 java.lang
-3 java.util.logging
-3 javan. managerment.rermote.rmi
=3 org.springframewark, data. document. mongodb
=3 Mongaadrmin

=-@ DrE.SErinEﬁamework.data.document. rmiongodb. Mongoadmin#0

E..

void [ reateDatabase ] [ pl | String | )]

~dropDatabase

reateDatabase
¢ getDatabaseStats
L-Motifications
=3 org.springframewark. data. document. mongodb, monitor
(3 Assertetrics
[ BackgroundFlushinghetrics ; ;
&3 BreelndexCounters Java.lang.String getDatabaseStats ] (pl | Sfring
(3 ConnectioniMetrics
-3 GlobalLockMetrics
(3 MermoryMetrics
[+ OperationCounters
[#-(C7) ServerInfo
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Appendix A. Namespace reference

A.1 The <repositori

es /> element

The <reposi tories /> element triggers the setup of the Spring Data repository infrastructure. The
most important attribute is base- package which defines the package to scan for Spring Data repository

interfaces.!

Table A.1. Attributes

Name

Description

base- package

repository-inpl-postfix

Defines the package to be used to be scanned for repository
interfaces extending * Reposi t or y (actual interface is determined
by specific Spring Data module) in auto detection mode. All
packages below the configured package will be scanned, too.
Wildcards are allowed.

Defines the postfix to autodetect custom repository
implementations. Classes whose names end with the configured
postfix will be considered as candidates. Defaults to | npl .

guery-| ookup-strat egy

Determines the strategy to be used to create finder queries. See
the section called “Query lookup strategies” for details. Defaults to
create-if-not-found.

Lsee the section called “XML configuration”

1.2.4.RELEASE
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Appendix B. Repository query
keywords

B.1 Supported query keywords
The following table lists the keywords generally supported by the Spring Data repository query derivation
mechanism. However, consult the store-specific documentation for the exact list of supported keywords,

because some listed here might not be supported in a particular store.

Table B.1. Query keywords

Logical keyword Keyword expressions

AND And

OR o

AFTER After,|sAfter

BEFCRE Before, | sBefore

CONTAI NI NG Cont ai ni ng, | sCont ai ni ng, Cont ai ns
BETWEEN Bet ween, | sBet ween

ENDI NG W TH Endi ngWt h, | seEndi ngWt h, EndsWt h
EXI STS Exi sts
FALSE Fal se, | sFal se

GREATER THAN  GreaterThan, | sG eater Than

GREATER_THAN EQGAESt er ThanEqual , | sGr eat er ThanEqual

I'N In,Isln

IS I s, Equal s, (or no keyword)

| S_NOT_NULL Not Nul |, I sNot Nul |

I S_NULL Nul I, 1sNull
LESS THAN LessThan, | sLessThan

LESS THAN EQUALLessThanEqual , | sLessThanEqual

LI KE Li ke, I sLi ke

NEAR Near, | sNear

NOT Not , | sNot

NOT_I N Not I n, I sNot I n
NOT_LI KE Not Li ke, | sNot Li ke
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Logical keyword
REGEX
STARTI NG W TH

TRUE

Keyword expressions
Regex, Mat chesRegex, Mat ches
StartingWth,lsStartingWth, StartsWth

True, | sTrue

W THI N

Wthin,|sWthin
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