Spring Data MongoDB - Reference
Documentation

Mark Pollack, Thomas Risberg, Oliver Gierke, Costin Leau, Jon Brisbhin, Thomas Darimont, Christoph
Strobl

Version 1.7.0.BUILD-SNAPSHOT
2015-03-02

Table of Contents

| = Lol PP PP 1
1. KNOWINE SPTIIIE tuvutteinineneiietneretntetetetrerernenenrereeaesesnensseronsesnsnsnsasonsesesnsnsnseronsesnsnssnronsnnes 2
2. Knowing NoSQL and Document databasesceveveininiiiiiiiiiiiiieiiiiierreneneireteerereeenreenenes 3
R =T DT =) 00 T=) PP 4
4. Additional HElP RESOUICES ...uenintinietiet ettt eiet et ttenetraeateneeaaeateneeeseeeneneesenensnnensenensnnsns 5

BN 11 0] 00 o S PP 5
4.1.1. COMIMUINITY FOTUIT ..uiniiiieieieiiiiir ittt et re e e ee s eeneerereesasnsnensenannerasnenennes)
4.1.2. Professional SUPPOTT.....uiuiei ittt ettt s r e e s et e s seneneas 5

4.2. FOLIOWING DEVEIOPIMEIIL .. uvurentieiiiniitieete ettt et eteteereeteneteatateseeraeataneneeneanenenesnsnes 5

Reference DOCUIMENTAION t.o.iuieeiiiiinii ettt ettt r e e s e et s enenensaans 5

T 001 0 LT 00) 6

5.1. DOCUMENT STIUCTULE «.uuiniiiiitiniiiiiii ettt s s e et e e s saeaenenens 6
6. MONEZODB SUPPOTIT ..ttt ittt et ettt ettt e et ettt et e e ettt et eaeeaneaneaneaneannanes 7
6.1, GELHING STATTEA .vuvrririneiretrerertreitetetrereeeeeeteeaererneneearansesnsnsnsnsersnsesnsnsnsnsorsesesesnsnsnnns 7
6.2. EXaMPLES REPOSITOTY ..uiuiniiiitieiniiiiiiietieeitetetrereeeeiretaeaesatneneerereerasnsnenearersesesnenenns 11
6.3. Connecting to MongoDB With SPIring.......ccecveiiiiiiiiiiiiiiiiiiiiiiniiiii e, 11
6.3.1. Registering a Mongo instance using Java based metadatacccovevevieieieniineneinennnnn. 11
6.3.2. Registering a Mongo instance using XML based metadataccceveervererninenenecenenennnn. 13
6.3.3. The MONgoDDFaCtOrY INtErfacCecuviieieiniiiiiiii e e e e e ans 15
6.3.4. Registering a MongoDbFactory instance using Java based metadatacccoceeuvunene. 16
6.3.5. Registering a MongoDbFactory instance using XML based metadatac.c.cceevnenen... 17
6.4. Introduction to MONZOTEMPLALE ...c.euiiirereiniiiiieiireieereiieirererneeeeeareerasnsenearenrerasnsnenns 18
6.4.1. Instantiating MongOTeMPLAtecoiiireieiiiiiiiii ettt es e eeeneereereanens 19
6.4.2. WriteResultChecKing POLICYocvviuiiiiiiiiiiniiiiiiiiiiini e 21
ST T VA o L =] 00) 4 Lol =) o LN 21
6.4.4. WriteCONCEINRESOIVETvuiiiiiiiiiniiiiiiiiiii et e e e 21
6.5. Saving, Updating, and Removing DOCUIMENTScvvuveininiiiieirineiieieeeeeeeretnenenearenrerernenenss 22
6.5.1. How the '_id' field is handled in the mapping layercccocveiiiiiiiiiiiiiiiiiinnncinnen, 25
6.5, 2. TY P IMAPPINIE - e uentenieenie ettt etee et raetanentraetenentraeatanenerasaseneesneansneaneneenensanens 26
6.5.3. Methods for saving and inserting doCUIMENTSvuveirererierrerereienereereererneeneneernerernsns 29
6.5.4. Updating documents in @ COLLECHION ..vuvruinininiiiiiieiiiireiiiee et er e eeee e e eaaens 30
6.5.5. Upserting documents in @ COLeCTIONveviiiiniiiiiiiiiiiniiirn e 32
6.5.6. Finding and Upserting documents in a COLleCtioNceeevriieiiiiiiiiiiiieiiiienrieeeieennes 32
6.5.7. Methods for removVINg dOCUIMENTS ...vverernineierrerernrnerenrerrerererneneneeraesesssnsnsnrersesesnsns 33
6.6. QUETYING DOCUITIEIIES ...eueninrtieinenenetetreretnenetetetrernenenereraesesatnensasarenrasnsnsnsarensesesnenens 33
6.6.1. Querying documents in @ COLECTIONovvvviuininiiiiiiiiiiiiiiiir e 34
6.6.2. Methods for querying for dOCUMENTSiuiiiierererrirereiieereeereeneeneeteereeneneneneeraesesnens 36
6.6.3. GEOSPALIAl QUETIES .. ueuiniirereineeeitetrererneetereerernsnsereraesesasnsnsserensesnsnsnsnsarsnsesnsns 37
6.6.4. FUIL TEXT QUETIES tuvuuintinietinietineeeentetenereeteteneraentereneeeeneesenessensesenssnennsnennenennenensenes 39
6.7. Map-ReAUCE OPETAtIONS .ouvuintreinininiiiiieieii ittt eeetetetretneneentetsesasnenenas 40
O O =5 € Va1 o) R U Voo PPN 40

6.8. GIOUDP OPETAtIONIS 1t uvutnenrttrererneneereerernrnsneeerenresnsnsesonsesesssnsnsesansnsasnsnsnsarensesesnsnsnns 43

R B =5 € Va1 o) (R U Vot PP 43

6.9. Aggregation FramewWOrK SUPPOTT c.eueuieirereiiiiieiirereereiretrereraeneneerereeresnenenearenresasnsnenns 46
TR T B - 3 (ol 0] (ol o] & PP PP PP 46
6.9.2. Supported Aggregation OPEratiONS ..o.eeveieeerereretrtererernratenenerneaeenenerneaeeneaesenesneanenes 47
6.9.3. PrOjeCtion EXPIESSIONS . ..ueiuineiieiiie ettt ettt e et et e et s et enee et aneaeaneananeaeanns 48

6.10. Overriding default mapping with cuStOM CONVEItErSc.cevevereieiieiiirerreneneareererernenenes 55
6.10.1. Saving using a registered SPring CONVEITOrcuvuiuiuireniiiitieieieeneereererneeeneereerernnns 56
6.10.2. Reading using a SPring CONVETTETiuiueriiiiiieieininiiiiiiieieieeieiietrererneeneeieesesans 56
6.10.3. Registering Spring Converters with the MongoCONVertercceevveieiieieienennenennenennn. 56
6.10.4. Converter diSambDIGUAIONvueneiiierereiireiieirre it ereirereererereeeereerernsnsnenraraeresnsns 57

6.11. Index and ColleCtion MANAZEIMENTvvuieinineiiitreiieeitetrerereteeeeeteeretneenearersesasnenenss 58
6.11.1. Methods for creating an INAeX.........veiiiiiiiiiiiiiii e e enes 58
6.11.2. Accessing index INfOrMAtiONvueeirerereiireiieerrerererertetrerereeeeneereerernsnsnsnsaransesnens 59
6.11.3. Methods for working with @ COLLeCtIONccveirireriireiieirr e ereererer e e eereeeenenaens 59

6.12. EXeCUtING COMIMATIAS . ueutntntrernenenenietreretneneteteererntnenetetaesesatnensaserensessenenearersesesnenens 39
6.12.1. Methods for executing COMIMANAScoeiiiiuinieiiriiiiiieei ettt eaeeneneenenes 60

6.13. LifECYCIE EVEINTS .vuviuininiiiiiieieieereiietreeneneeeteteeeesnensetensesesnsnsnsessnsnsasnsnssarsnsnsesnsnsnns 60

(T 9 55:<¢1<3 01 (o) A B B =1 ¢] = 10 (0) o NN PP 61

6.15. EXecution CallDacKs.......cvviiiiiiiiiiiiiiiiiiiiii e 62

T (ST € 9 1o B o] 1] 0] 010 o S PPN 63

7. MONZODB FEPOSITOTIES .. ettt ettt ettt ettt e et e et e et aaeataneaeaneaeanaeanaaeensaeenaneennns 66

7 T 008 1o 1 (0 0) 66

A UL T PP PPPPRN 66

7.3. QUETY MEtNOAS c.vueneininiiiiii ettt et e 69
7.3.1. RepOSitOry delete QUETIES .. .cuuin ittt it ettt et et e et e et eeaeeeeeaneeanas 70
7.3.2. GeO-Spatial rePOSItOTY (UETIES ...euiuriirereinineteriererereerereerererneneeereeresnsnsnensaraesesnses 71
7.3.3. MongoDB JSON based query methods and field restriction..........cococvvvvvivivinininininnnne. 72
7.3.4. Type-safe QUery MethodS ... cuuuiuininieiiiiiiiiii ettt e e e e 73
7.3.5. FUll-teXt SEATCH QUBTIES ...euuineinieiii ettt ittt ettt e et et e et e et eeeeaeaeaneeanas 74

7.4, MISCEIIANMEOUSeuitinininitiiiii ittt ettt e e s e et e e e e a s e e aenens 75
7.4.1. CDIINTEETATION euuinineniniiietein ettt it eteteteetataeentetataesatneneneerensesssnsnenseronsesnnns 75

7.5. General auditing CONfIGUIatioNouieiiii it e e 76

LY -1 0] 011 0¥ TP PP 78

8.1. Convention hased MaPPINgcceeereererernieiieteirerereeeereraerernenenearerseserasnsnsasarensesasnsnsnns 78
8.1.1. How the '_id' field is handled in the mapping layercccoeiiiiiiiiiiiiiiiiiiiiiinenieeens 78

8.2. Mapping CONFIGUIATION ...euiuieiiiiiiir ettt ettt et e e rer e eeenensareeeeaens 79

8.3. Metadata Dased Map il e et e ittt ettt ettt e et e et e et raeataneeaaeataneaeaeananaaeanas 83
8.3.1. Mapping annotatiON OVEIVIEWiueueniinerernrnenerereererneneearersesesassenserensesesnsnensanens 83
8.3.2. Customized ODbject CONSIIUCTION ..uueuiniiitieieieeieeteeiei et trerereeneeteteeresneneneannns 86
8.3.3. COMPOUNA INACKES ..uvueinininiiiiitiii ittt ettt e e s eeeeteteasasnenensnsnns 87
8.3.4. TEXE INACKES 1uuininiiiiiitiniiiiir ettt e ettt e s e sa e e eeetsasasnenenenenans 87
8.3.5. USINE DBRELS .. .uiiiiiiiiiiiieiir ittt tete et eeeeeteere s eeearenseresasnenseransesasnsnsnsannnns 88
8.3.6. Mapping FrameWOrK EVEITSouiuiuiiiiiiiiieiiiiiiiiiitiieeieiietr s eeneeteteesesneneneennns 89

8.3.7. Overriding Mapping with eXpliCit CONVEIterscccvieiuiiiniiiiiiiieiiiiiiiiiniieeeneens 89

S o RIS IN] o)] D1 0] 610 o A PP 91

9.1. Cross Store CONIGUTATION ...uiuiueiereirereteerieteerereteeeareraeresnsneerersesesasnenssaransesasnsnenns 91
9.2. Writing the Cross Store APPLCAtIONvuvvviiiiiiiiiniiiiiiiiiiii e 97
10. LOZEING SUPPOIT 1 eutuiiintieineninititteieineetitettetseaenettetreresatnentatetetsasnenentetetsesssneneneetorsassenes 100
10.1. MongoDB L0g4j CONTigUIratiON .. .ueuiuiirerereineeenieereeernteneetereeresnsnsnsasersnsesnsnsnsnsonsenes 100
B 0 G0 0 010) o PP 101
11.1. MoNgoDB JMX CONFIGUIATION t.vuuuninininiiiiiieieieeiietieterteeetetetreraeenenteteeresnenenensersenes 101
12. MONZODB 3.0 SUPPOTIT cttutitinitiniitiiit ettt e et s e et seaeatsatseaenanaas 104
12.1. Using Spring Data MongoDB with MongoDB 3.0ccuiiiiiiiiiiiiii e 104
12.1.1. Configuration OPLIONS .eueuenrererneneerernerernenerenreraererareeeararsesesnsensaronsesesnsnensenes 104
12.1.2. WriteConcern and WriteConcernCheckingcccvevuviiiiiniiiiiiiiniieniiirninenenenens 105
12.1.3. AUTRENTICAION tuvuveininitiiiiii ittt e ettt s e s eneneaeas 105
12.1.4. Other things to e aWare Ofo.iiiiiiii i er e re e reeren s eeeaens 106

2 0] 01 1 0 - N 106

© 2008-2014 The original authors.

Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for such
copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

NOTE

Preface

The Spring Data MongoDB project applies core Spring concepts to the development of solutions using
the MongoDB document style data store. We provide a "template"” as a high-level abstraction for
storing and querying documents. You will notice similarities to the JDBC support in the Spring
Framework.

This document is the reference guide for Spring Data - Document Support. It explains Document
module concepts and semantics and the syntax for various stores namespaces.

This section provides some basic introduction to Spring and Document database. The rest of the
document refers only to Spring Data Document features and assumes the user is familiar with
document databases such as MongoDB and CouchDB as well as Spring concepts.

Chapter 1. Knowing Spring

Spring Data uses Spring framework’s core functionality, such as the IoC container, type conversion
system, expression language, JMX integration, and portable DAO exception hierarchy. While it is not
important to know the Spring APIs, understanding the concepts behind them is. At a minimum, the
idea behind IoC should be familiar for whatever IoC container you choose to use.

The core functionality of the MongoDB and CouchDB support can be used directly, with no need to
invoke the IoC services of the Spring Container. This is much like JdbcTemplate which can be used
'standalone’ without any other services of the Spring container. To leverage all the features of Spring
Data document, such as the repository support, you will need to configure some parts of the library
using Spring.

To learn more about Spring, you can refer to the comprehensive (and sometimes disarming)
documentation that explains in detail the Spring Framework. There are a lot of articles, blog entries
and books on the matter - take a look at the Spring framework home page for more information.

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/spring-core.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/beans.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/validation.html#core-convert
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/validation.html#core-convert
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/jmx.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/dao.html#dao-exceptions
http://spring.io/docs

Chapter 2. Knowing NoSQL and Document
databases

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of solutions,
terms and patterns (to make things worth even the term itself has multiple meanings). While some of
the principles are common, it is crucial that the user is familiar to some degree with the stores
supported by DATADOC. The best way to get acquainted to this solutions is to read their documentation
and follow their examples - it usually doesn’t take more then 5-10 minutes to go through them and if
you are coming from an RDMBS-only background many times these exercises can be an eye opener.

The jumping off ground for learning about MongoDB is www.mongodb.org. Here is a list of other
useful resources:

* The manual introduces MongoDB and contains links to getting started guides, reference
documentation and tutorials.

* The online shell provides a convenient way to interact with a MongoDB instance in combination
with the online tutorial.

* MongoDB Java Language Center

Several books available for purchase

» Karl Seguin’s online book: The Little MongoDB Book

http://www.google.com/search?q=nosoql+acronym
http://www.mongodb.org/
http://docs.mongodb.org/manual/
http://try.mongodb.org/
http://docs.mongodb.org/manual/tutorial/getting-started/
http://docs.mongodb.org/ecosystem/drivers/java/
http://www.mongodb.org/books
http://openmymind.net/mongodb.pdf

Chapter 3. Requirements

Spring Data MongoDB 1.x binaries requires JDK level 6.0 and above, and Spring Framework 3.2.x and

above.

In terms of document stores, MongoDB at least 2.4, preferably version 2.6.

http://spring.io/docs
http://www.mongodb.org/

Chapter 4. Additional Help Resources

Learning a new framework is not always straight forward. In this section, we try to provide what we
think is an easy to follow guide for starting with Spring Data Document module. However, if you
encounter issues or you are just looking for an advice, feel free to use one of the links below:

4.1. Support

There are a few support options available:

4.1.1. Community Forum

Spring Data on Stackoverflow Stackoverflow is a tag for all Spring Data (not just Document) users to
share information and help each other. Note that registration is needed only for posting.

4.1.2. Professional Support

Professional, from-the-source support, with guaranteed response time, is available from Pivotal
Sofware, Inc., the company behind Spring Data and Spring.

4.2. Following Development

For information on the Spring Data Mongo source code repository, nightly builds and snapshot
artifacts please see the Spring Data Mongo homepage. You can help make Spring Data best serve the
needs of the Spring community by interacting with developers through the Community on
Stackoverflow. To follow developer activity look for the mailing list information on the Spring Data
Mongo homepage. If you encounter a bug or want to suggest an improvement, please create a ticket on
the Spring Data issue tracker. To stay up to date with the latest news and announcements in the Spring
eco system, subscribe to the Spring Community Portal. Lastly, you can follow the SpringSource Data
blog or the project team on Twitter (SpringData).

Reference Documentation

http://stackoverflow.com/questions/tagged/spring-data
http://gopivotal.com/
http://gopivotal.com/
http://projects.spring.io/spring-data-mongodb/
http://stackoverflow.com/questions/tagged/spring-data
https://jira.spring.io/browse/DATAMONGO
http://spring.io
http://spring.io/blog
http://twitter.com/SpringData

Chapter 5. Introduction

5.1. Document Structure

This part of the reference documentation explains the core functionality offered by Spring Data
Document.

MongoDB support introduces the MongoDB module feature set.

MongoDB repositories introduces the repository support for MongoDB.

Chapter 6. MongoDB support

The MongoDB support contains a wide range of features which are summarized below.

* Spring configuration support using Java based @Configuration classes or an XML namespace for a
Mongo driver instance and replica sets

* MongoTemplate helper class that increases productivity performing common Mongo operations.
Includes integrated object mapping between documents and POJOs.

» Exception translation into Spring’s portable Data Access Exception hierarchy

» Feature Rich Object Mapping integrated with Spring’s Conversion Service

* Annotation based mapping metadata but extensible to support other metadata formats

* Persistence and mapping lifecycle events

* Java based Query, Criteria, and Update DSLs

* Automatic implementation of Repository interfaces including support for custom finder methods.
* QueryDSL integration to support type-safe queries.

* Cross-store persistance - support for JPA Entities with fields transparently persisted/retrieved using
MongoDB

* Log4j log appender
* GeoSpatial integration

For most tasks you will find yourself using MongoTemplate or the Repository support that both leverage
the rich mapping functionality. MongoTemplate is the place to look for accessing functionality such as
incrementing counters or ad-hoc CRUD operations. MongoTemplate also provides callback methods so
that it is easy for you to get a hold of the low level API artifacts such as org.mongo.DB to communicate
directly with MongoDB. The goal with naming conventions on various API artifacts is to copy those in
the base MongoDB Java driver so you can easily map your existing knowledge onto the Spring APIs.

6.1. Getting Started

Spring MongoDB support requires MongoDB 1.4 or higher and Java SE 5 or higher. The latest
production release (2.4.9 as of this writing) is recommended. An easy way to bootstrap setting up a
working environment is to create a Spring based project in STS.

First you need to set up a running Mongodb server. Refer to the Mongodb Quick Start guide for an
explanation on how to startup a MongoDB instance. Once installed starting MongoDB is typically a
matter of executing the following command: MONGO_HOME/b1in/mongod

http://spring.io/tools/sts
http://docs.mongodb.org/manual/core/introduction/

To create a Spring project in STS go to File New Spring Template Project = Simple Spring Utility
Project press Yes when prompted. Then enter a project and a package name such as
org.spring.mongodb.example.

Then add the following to pom.xml dependencies section.

<dependencies>
<!-- other dependency elements omitted -->

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-mongodb</artifactId>
<version>1.4.1.RELEASE</version>
</dependency>

</dependencies>

Also change the version of Spring in the pom.xml to be

<spring.framework.version>3.2.8.RELEASE</spring.framework.version>

You will also need to add the location of the Spring Milestone repository for maven to your pom.xml
which is at the same level of your <dependencies/> element

<repositories>
<repository>
<id>spring-milestone</id>
<name>Spring Maven MILESTONE Repository</name>
<url>http://repo.spring.io/libs-milestone</url>
</repository>
</repositories>

The repository is also browseable here.

You may also want to set the logging level to DEBUG to see some additional information, edit the
log4j.properties file to have

log4j.category.org.springframework.data.document.mongodb=DEBUG
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} %5p %40.40c:%4L - %m%n

Create a simple Person class to persist:

http://shrub.appspot.com/maven.springframework.org/milestone/org/springframework/data/

package org.spring.mongodb.example;
public class Person {

private String id;
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

public String getId() {
return 1id;

}
public String getName() {
return name;

}
public int getAge() {
return age;

}

@0verride
public String toString() {
return "Person [id=" + id +

}

, name=" + name + ", age=" + age + "]";

}

And a main application to run

package org.spring.mongodb.example;
import static org.springframework.data.mongodb.core.query.Criteria.where;

import org.apache.commons.logging.log;

import org.apache.commons.logging.LogFactory;

import org.springframework.data.mongodb.core.MongoOperations;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.core.query.Query;

import com.mongodb.Mongo;

public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {

MongoOperations mongoOps = new MongoTemplate(new Mongo(), "database");
mongoOps.insert(new Person("Joe", 34));

log.info(mongoOps.findOne(new Query(where("name").is("Joe")), Person.class));

mongoOps.dropCollection("person");

This will produce the following output

10:01:32,062 DEBUG apping.MongoPersistentEntityIndexCreator: 80
org.spring.example.Person for index information.

10:01:32,265 DEBUG ramework.data.mongodb.core.MongoTemplate: 631
containing fields: [_class, age, name] in collection: Person
10:01:32,765 DEBUG ramework.data.mongodb.core.MongoTemplate:1243
"name" : "Joe"} in db.collection: database.Person

10:01:32,953 INFO org.spring.mongodb.example.MongoApp: 25
[1d=4ddbba3c@be56b7e1b210166, name=Joe, age=34]

10:01:32,984 DEBUG ramework.data.mongodb.core.MongoTemplate: 375
[database.person]

Analyzing class class

insert DBObject

findOne using query: {

Person

Dropped collection

Even in this simple example, there are few things to take notice of

* You can instantiate the central helper class of Spring Mongo, MongoTemplate, using the standard
com.mongodb.Mongo object and the name of the database to use.

* The mapper works against standard POJO objects without the need for any additional metadata
(though you can optionally provide that information. See here.).

* Conventions are used for handling the id field, converting it to be a Objectld when stored in the
database.

* Mapping conventions can use field access. Notice the Person class has only getters.

« If the constructor argument names match the field names of the stored document, they will be used
to instantiate the object

6.2. Examples Repository

There is an github repository with several examples that you can download and play around with to
get a feel for how the library works.

6.3. Connecting to MongoDB with Spring

One of the first tasks when using MongoDB and Spring is to create a com.mongodb.Mongo object using the
IoC container. There are two main ways to do this, either using Java based bean metadata or XML
based bean metadata. These are discussed in the following sections.

For those not familiar with how to configure the Spring container using Java based
bean metadata instead of XML based metadata see the high level introduction in the
NOTE reference docs here as well as the detailed
documentationhttp://docs.spring.io/spring/docs/3.2.x/spring-framework-
reference/html/beans.html#beans-java-instantiating-container|[here].

6.3.1. Registering a Mongo instance using Java based metadata

An example of using Java based bean metadata to register an instance of a com.mongodb.Mongo is shown
below

https://github.com/spring-projects/spring-data-document-examples
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/new-in-3.0.html#new-java-configuration

Example 1. Registering a com.mongodb.Mongo object using Java based bean metadata

@Configuration
public class AppConfig {

/*
* Use the standard Mongo driver API to create a com.mongodb.Mongo instance.
*/
public @Bean Mongo mongo() throws UnknownHostException {
return new Mongo("localhost");

}

This approach allows you to use the standard com.mongodb.Mongo API that you may already be used to
using but also pollutes the code with the UnknownHostException checked exception. The use of the
checked exception is not desirable as Java based bean metadata uses methods as a means to set object
dependencies, making the calling code cluttered.

An alternative is to register an instance of com.mongodb.Mongo instance with the container using
Spring’s® MongoFactoryBean . As compared to instantiating a com.mongodb.Mongo instance directly, the
FactoryBean approach does not throw a checked exception and has the added advantage of also
providing the container with an ExceptionTranslator implementation that translates MongoDB
exceptions to exceptions in Spring’s portable DataAccessException hierarchy for data access classes
annoated with the @Repository annotation. This hierarchy and use of @Repository is described in
Spring’s DAO support features.

An example of a Java based bean metadata that supports exception translation on @Repository
annotated classes is shown below:

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/dao.html

Example 2. Registering a com.mongodb.Mongo object using Spring’s MongoFactoryBean and enabling
Spring’s exception translation support

public class AppConfig {

/*
* Factory bean that creates the com.mongodb.Mongo instance
*/
public MongoFactoryBean mongo() {
MongoFactoryBean mongo = new MongoFactoryBean();
mongo.setHost("localhost");
return mongo;

To access the com.mongodb.Mongo object created by the MongoFactoryBean in other @Configuration or your
own classes, use a “private @Autowired Mongo mongo;” field.

6.3.2. Registering a Mongo instance using XML based metadata

While you can use Spring’s traditional <beans/> XML namespace to register an instance of
com.mongodb.Mongo with the container, the XML can be quite verbose as it is general purpose. XML
namespaces are a better alternative to configuring commonly used objects such as the Mongo instance.
The mongo namespace alows you to create a Mongo instance server location, replica-sets, and options.

To use the Mongo namespace elements you will need to reference the Mongo schema:

Example 3. XML schema to configure MongoDB

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mongo="http://www.springframework.org/schema/data/mongo'
xsi:schemalocation=
"http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
*http://www.springframework.org/schema/data/mongo

http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd*
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<!-- Default bean name is 'mongo' -->
<mongo:mongo host="localhost" port="27017"/>

</beans>

A more advanced configuration with MongoOptions is shown below (note these are not recommended
values)

Example 4. XML schema to configure a com.mongodb.Mongo object with MongoOptions

<beans>

<mongo:mongo host="1ocalhost" port="27017">
<mongo:options connections-per-host="8"

threads-allowed-to-block-for-connection-multiplier="4"
connect-timeout="1000"
max-wait-time="1500}"
auto-connect-retry="true"
socket-keep-alive="true"
socket-timeout="1500"
slave-ok="true"
write-number="1"
write-timeout="0"
write-fsync="true"/>

</mongo:mongo/>

</beans>

A configuration using replica sets is shown below.

Example 5. XML schema to configure com.mongodb.Mongo object with Replica Sets

<mongo:mongo id="replicaSetMongo" replica-set="127.0.0.1:27017,1localhost:27018"/>

6.3.3. The MongoDbFactory interface

While com.mongodb.Mongo is the entry point to the MongoDB driver API, connecting to a specific
MongoDB database instance requires additional information such as the database name and an
optional username and password. With that information you can obtain a com.mongodb.DB object and
access all the functionality of a specific MongoDB database instance. Spring provides the
org.springframework.data.mongodb.core.MongoDbFactory interface shown below to bootstrap
connectivity to the database.

public interface MongoDbFactory {
DB getDb() throws DataAccessException;

DB getDb(String dbName) throws DataAccessException;
+

The following sections show how you can use the container with either Java or the XML based
metadata to configure an instance of the MongoDbFactory interface. In turn, you can use the
MongoDbFactory instance to configure MongoTemplate.

The class org.springframework.data.mongodb.core.SimpleMongoDbFactory provides implements the
MongoDbFactory interface and is created with a standard com.mongodb.Mongo instance, the database
name and an optional org.springframework.data.authentication.UserCredentials constructor
argument.

Instead of using the IoC container to create an instance of MongoTemplate, you can just use them in
standard Java code as shown below.

public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {

MongoOperations mongoOps = new MongoTemplate(*new SimpleMongoDbFactory(new Mongo(),
"database")*);

mongoOps.insert(new Person("Joe", 34));
log.info(mongoOps.findOne(new Query(where("name").is("Joe")), Person.class));
mongoOps.dropCollection("person");

}
}

The code in bold highlights the use of SimpleMongoDbFactory and is the only difference between the
listing shown in the getting started section.

6.3.4. Registering a MongoDbFactory instance using Java based metadata

To register a MongoDbFactory instance with the container, you write code much like what was
highlighted in the previous code listing. A simple example is shown below

public class MongoConfiguration {

public MongoDbFactory mongoDbFactory() throws Exception {
return new SimpleMongoDbFactory(new Mongo(), "database");
}
}
To define the username and password create an instance of

org.springframework.data.authentication.UserCredentials and pass it into the constructor as shown
below. This listing also shows using MongoDbFactory register an instance of MongoTemplate with the
container.

public class MongoConfiguration {

public MongoDbFactory mongoDbFactory() throws Exception {
UserCredentials userCredentials = new UserCredentials("joe", "secret");
return new SimpleMongoDbFactory(new Mongo(), "database", userCredentials);

}

public MongoTemplate mongoTemplate() throws Exception {
return new MongoTemplate(mongoDbFactory());

}
}

6.3.5. Registering a MongoDbFactory instance using XML based metadata

The mongo namespace provides a convient way to create a SimpleMongoDbFactory as compared to using
the "<beans/>" namespace. Simple usage is shown below

<mongo:db-factory dbname="database">

In the above example a com.mongodb.Mongo instance is created using the default host and port number.
The SimpleMongoDbFactory registered with the container is identified by the id 'mongoDbFactory' unless
a value for the id attribute is specified.

You can also provide the host and port for the underlying com.mongodb.Mongo instance as shown below,
in addition to username and password for the database.

<mongo:db-factory id="anotherMongoDbFactory"
host="localhost"
port="27017"
dbname="database"
username="joe"
password="secret"/>

If you need to configure additional options on the com.mongodb.Mongo instance that is used to create a
SimpleMongoDbFactory you can refer to an existing bean using the mongo-ref attribute as shown below.
To show another common usage pattern, this listing show the use of a property placeholder to
parameterise the configuration and creating MongoTemplate.

<context:property-placeholder location=
"classpath:/com/myapp/mongodb/config/mongo.properties”/>

<mongo:mongo host="${mongo.host}" port="${mongo.port}">
<mongo:options

connections-per-host="${mongo.connectionsPerHost}"
threads-allowed-to-block-for-connection-multiplier=

"${mongo.threadsAllowedToBlockForConnectionMultiplier}"
connect-timeout="${mongo.connectTimeout}"
max-wait-time="${mongo.maxWaitTime}"
auto-connect-retry="${mongo.autoConnectRetry}"
socket-keep-alive="${mongo.socketKeepAlive}"
socket-timeout="${mongo.socketTimeout}"
slave-ok="${mongo.slaveOk}"
write-number="1"
write-timeout="0"
write-fsync="true"/>

</mongo:mongo>

<mongo:db-factory dbname="database" mongo-ref="mongo"/>

<bean id="anotherMongoTemplate" class=
"org.springframework.data.mongodb.core.MongoTemplate">

<constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>
</bean>

6.4. Introduction to MongoTemplate

The class MongoTemplate, located in the package org.springframework.data.document.mongodb, is the
central class of the Spring’s MongoDB support providing a rich feature set to interact with the
database. The template offers convenience operations to create, update, delete and query for MongoDB
documents and provides a mapping between your domain objects and MongoDB documents.

Once configured, MongoTemplate is thread-safe and can be reused across multiple

NOTE .
instances.

The mapping between MongoDB documents and domain classes is done by delegating to an
implementation of the interface MongoConverter. Spring provides two implementations,
SimpleMappingConverter and MongoMappingConverter, but you can also write your own converter. Please
refer to the section on MongoConverters for more detailed information.

The MongoTemplate class implements the interface MongoOperations. In as much as possible, the methods
on MongoOperations are named after methods available on the MongoDB driver Collection object as as
to make the API familiar to existing MongoDB developers who are used to the driver APIL. For example,
you will find methods such as "find", "findAndModify", "findOne", "insert", "remove", "save", "update"

and "updateMulti". The design goal was to make it as easy as possible to transition between the use of
the base MongoDB driver and MongoOperations. A major difference in between the two APIs is that
MongoOperations can be passed domain objects instead of DBObject and there are fluent APIs for Query,
Criteria, and Update operations instead of populating a DBObject to specify the parameters for those
operations.

The preferred way to reference the operations on MongoTemplate instance is via its

NOTE . .
interface MongoOperations.

The default converter implementation used by MongoTemplate is MongoMappingConverter. While the
MongoMappingConverter can make use of additional metadata to specify the mapping of objects to
documents it is also capable of converting objects that contain no additional metadata by using some
conventions for the mapping of IDs and collection names. These conventions as well as the use of
mapping annotations is explained in the Mapping chapter.

In the M2 release SimpleMappingConverter, was the default and this class is now

NOTE
deprecated as its functionality has been subsumed by the MongoMappingConverter.

Another central feature of MongoTemplate is exception translation of exceptions thrown in the
MongoDB Java driver into Spring’s portable Data Access Exception hierarchy. Refer to the section on
exception translation for more information.

While there are many convenience methods on MongoTemplate to help you easily perform common
tasks if you should need to access the MongoDB driver API directly to access functionality not explicitly
exposed by the MongoTemplate you can use one of several Execute callback methods to access
underlying driver APIs. The execute callbacks will give you a reference to either a
com.mongodb.Collection or a com.mongodb. DB object. Please see the section
mongo.executioncallback[Execution Callbacks] for more information.

Now let’s look at a examples of how to work with the MongoTemplate in the context of the Spring
container.

6.4.1. Instantiating MongoTemplate

You can use Java to create and register an instance of MongoTemplate as shown below.

Example 6. Registering a com.mongodb.Mongo object and enabling Spring’s exception translation support

@Configuration
public class AppConfig {

public @Bean Mongo mongo() throws Exception {
return new Mongo("localhost");

}

public @Bean MongoTemplate mongoTemplate() throws Exception {
return new MongoTemplate(mongo(), "mydatabase");

}
}

There are several overloaded constructors of MongoTemplate. These are

* MongoTemplate(Mongo mongo, String databaseName) - takes the com.mongodb.Mongo object and the
default database name to operate against.

* MongoTemplate(Mongo mongo, String databaseName, UserCredentials userCredentials) - adds the
username and password for authenticating with the database.

* MongoTemplate(MongoDbFactory mongoDbFactory) - takes a MongoDbFactory object that encapsulated
the com.mongodb.Mongo object, database name, and username and password.

* MongoTemplate(MongoDbFactory mongoDbFactory, MongoConverter mongoConverter) - adds a
MongoConverter to use for mapping.

You can also configure a MongoTemplate using Spring’s XML <beans/> schema.

<mongo:mongo host="localhost" port="27017"/>

<bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg ref="mongo"/>
<constructor-arg name="databaseName" value="geospatial"/>

</bean>

Other optional properties that you might like to set when creating a MongoTemplate are the default
WriteResultCheckingPolicy, WriteConcern, and ReadPreference

The preferred way to reference the operations on MongoTemplate instance is via its

NOTE . .
interface MongoOperations.

6.4.2. WriteResultChecking Policy

When in development it is very handy to either log or throw an exception if the
com.mongodb.WriteResult returned from any MongoDB operation contains an error. It is quite common
to forget to do this during development and then end up with an application that looks like it runs
successfully but in fact the database was not modified according to your expectations. Set
MongoTemplate’s property to an enum with the following values, LOG, EXCEPTION, or NONE to either
log the error, throw and exception or do nothing. The default is to use a WriteResultChecking value of
NONE.

6.4.3. WriteConcern

You can set the com.mongodb.WriteConcern property that the MongoTemplate will use for write operations
if it has not yet been specified via the driver at a higher level such as com.mongodb.Mongo. If
MongoTemplate’s WriteConcern property is not set it will default to the one set in the MongoDB driver’s
DB or Collection setting.

6.4.4. WriteConcernResolver

For more advanced cases where you want to set different WriteConcern values on a per-operation basis
(for remove, update, insert and save operations), a strategy interface called WriteConcernResolver can
be configured on MongoTemplate. Since MongoTemplate is used to persist POJOs, the WriteConcernResolver
lets you create a policy that can map a specific POJO class to a WriteConcern value. The
WriteConcernResolver interface is shown below.

public interface WriteConcernResolver {
WriteConcern resolve(MongoAction action);

}

The passed in argument, MongoAction, is what you use to determine the WriteConcern value to be used
or to use the value of the Template itself as a default. MongoAction contains the collection name being
written to, the java.lang.Class of the POJO, the converted DBObject, as well as the operation as an
enumeration (MongoActionOperation: REMOVE, UPDATE, INSERT, INSERT_LIST, SAVE) and a few other
pieces of contextual information. For example,

private class MyAppWriteConcernResolver implements WriteConcernResolver {

public WriteConcern resolve(MongoAction action) {
if (action.getEntityClass().getSimpleName().contains("Audit")) {
return WriteConcern.NONE;
} else if (action.getEntityClass().getSimpleName().contains("Metadata")) {
return WriteConcern.JOURNAL SAFE;

}

return action.getDefaultWriteConcern();

}
}

6.5. Saving, Updating, and Removing Documents

MongoTemplate provides a simple way for you to save, update, and delete your domain objects and map
those objects to documents stored in MongoDB.

Given a simple class such as Person

public class Person {

private String 1id;
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

public String getId() {
return 1id;

}
public String getName() {
return name;

}
public int getAge() {
return age;

}

@0verride
public String toString() {
return "Person [id=" + id +

}

, name=" + name + ", age=" + age + "]";

You can save, update and delete the object as shown below.

NOTE MongoOperations is the interface that MongoTemplate implements.

package org.spring.example;

import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Update.update;
import static org.springframework.data.mongodb.core.query.Query.query;

import java.util.List;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.lLogFactory;

import org.springframework.data.mongodb.core.MongoOperations;
import org.springframework.data.mongodb.core.MongoTemplate;

import org.springframework.data.mongodb.core.SimpleMongoDbFactory;

import com.mongodb.Mongo;

public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {

MongoOperations mongoOps = new MongoTemplate(new SimpleMongoDbFactory(new Mongo(),
"database"));

Person p = new Person("Joe", 34);

// Insert is used to initially store the object into the database.
mongoOps.insert(p);
log.info("Insert: " + p);

// Find

p = mongoOps.findById(p.getId(), Person.class);
log.info("Found: " + p);

// Update
mongoOps.updateFirst(query(where("name").is("Joe")), update("age", 35), Person.class

p = mongoOps.findOne(query(where("name").is("Joe")), Person.class);
log.info("Updated: " + p);

// Delete
mongoOps. remove(p);

// Check that deletion worked
List<Person> people = mongoOps.findAll(Person.class);

log.info("Number of people = : " + people.size());

mongoOps.dropCollection(Person.class);
}
+

This would produce the following log output (including debug messages from MongoTemplate itself)

DEBUG apping.MongoPersistentEntityIndexCreator: 8@ - Analyzing class class
org.spring.example.Person for index information.

DEBUG work.data.mongodb.core.MongoTemplate: 632 - insert DBObject containing fields:
[_class, age, name] in collection: person

INFO org.spring.example.MongoApp: 30 - Insert: Person
[1d=4ddcbe784ce5bleba3ceaf5c, name=Joe, age=34]

DEBUG work.data.mongodb.core.MongoTemplate:1246 - findOne using query: { "_id" : { "S$oid"
: "4ddc6e784ce5bleba3ceaf5c”}} in db.collection: database.person

INFO org.spring.example.MongoApp: 34 - Found: Person
[id=4ddcbe784ce5bleba3ceaf5c, name=Joe, age=34]

DEBUG work.data.mongodb.core.MongoTemplate: 778 - calling update using query: { "name" :
"Joe"} and update: { "$set" : { "age" : 35}} in collection: person

DEBUG work.data.mongodb.core.MongoTemplate:1246 - findOne using query: { "name" : "Joe"}
in db.collection: database.person

INFO org.spring.example.MongoApp: 39 - Updated: Person
[1d=4ddcbe784ce5bleba3ceaf5c, name=Joe, age=35]

DEBUG work.data.mongodb.core.MongoTemplate: 823 - remove using query: { "id" :
"4ddcbe784ce5bleba3ceaf5c"} in collection: person

INFO org.spring.example.MongoApp: 46 - Number of people = : @

DEBUG work.data.mongodb.core.MongoTemplate: 376 - Dropped collection [database.person]

There was implicit conversion using the MongoConverter between a String and ObjectId as stored in the
database and recognizing a convention of the property "Id" name.

This example is meant to show the use of save, update and remove operations on

NOTE
MongoTemplate and not to show complex mapping functionality

The query syntax used in the example is explained in more detail in the section Querying Documents.

6.5.1. How the '_id' field is handled in the mapping layer

MongoDB requires that you have an '_id' field for all documents. If you don’t provide one the driver
will assign a ObjectId with a generated value. When using the MongoMappingConverter there are certain
rules that govern how properties from the Java class is mapped to this'_id' field.

The following outlines what property will be mapped to the '_id' document field:

* A property or field annotated with @Id (org.springframework.data.annotation.Id) will be mapped to

the '_id' field.
* A property or field without an annotation but named id will be mapped to the '_id' field.

The following outlines what type conversion, if any, will be done on the property mapped to the _id
document field when using the MappingMongoConverter, the default for MongoTemplate.

* An id property or field declared as a String in the Java class will be converted to and stored as an
ObjectId if possible using a Spring Converter<String, ObjectId>. Valid conversion rules are
delegated to the MongoDB Java driver. If it cannot be converted to an Objectld, then the value will
be stored as a string in the database.

* An id property or field declared as BigInteger in the Java class will be converted to and stored as an
ObjectId using a Spring Converter<BigInteger, ObjectId>.

If no field or property specified above is present in the Java class then an implicit '_id' file will be
generated by the driver but not mapped to a property or field of the Java class.

When querying and updating MongoTemplate will use the converter to handle conversions of the Query
and Update objects that correspond to the above rules for saving documents so field names and types
used in your queries will be able to match what is in your domain classes.

6.5.2. Type mapping

As MongoDB collections can contain documents that represent instances of a variety of types. A great
example here is if you store a hierarchy of classes or simply have a class with a property of type Object.
In the latter case the values held inside that property have to be read in correctly when retrieving the
object. Thus we need a mechanism to store type information alongside the actual document.

To achieve that the MappingMongoConverter uses a MongoTypeMapper abstraction with
DefaultMongoTypeMapper as it’s main implementation. It’s default behaviour is storing the fully qualified
classname under _class inside the document for the top-level document as well as for every value if it’s
a complex type and a subtype of the property type declared.

Example 7. Type mapping

public class Sample {
Contact value;

+
public abstract class Contact { }
public class Person extends Contact { }

Sample sample = new Sample();
sample.value = new Person();

mongoTemplate.save(sample);

{ "_class" : "com.acme.Sample",
"value" : { " _class" : "com.acme.Person" }

As you can see we store the type information for the actual root class persistent as well as for the
nested type as it is complex and a subtype of Contact. So if youre now using
mongoTemplate.findAl11(Object.class, "sample") we are able to find out that the document stored shall
be a Sample instance. We are also able to find out that the value property shall be a Person actually.

Customizing type mapping

In case you want to avoid writing the entire Java class name as type information but rather like to use
some key you can use the @TypeAlias annotation at the entity class being persisted. If you need to
customize the mapping even more have a look at the TypeInformationMapper interface. An instance of
that interface can be configured at the DefaultMongoTypeMapper which can be configured in turn on
MappingMongoConverter.

Example 8. Defining a TypeAlias for an Entity

(Ilpersll)
class Person {

Note that the resulting document will contain "pers" as the value in the _class Field.

Configuring custom type mapping

The following example demonstrates how to configure a custom
MappingMongoConverter.

Example 9. Configuring a custom MongoTypeMapper via Spring Java Config

class CustomMongoTypeMapper extends DefaultMongoTypeMapper {
//implement custom type mapping here

}

@Configuration
class SampleMongoConfiguration extends AbstractMongoConfiguration {

@0verride
protected String getDatabaseName() {
return "database";

}

@Override
public Mongo mongo() throws Exception {
return new Mongo();

}

@Bean
@0verride

public MappingMongoConverter mappingMongoConverter() throws Exception {

MappingMongoConverter mmc = super.mappingMongoConverter();
mmc . setTypeMapper (customTypeMapper());
return mmc;

}

@Bean
public MongoTypeMapper customTypeMapper() {
return new CustomMongoTypeMapper();
}
}

MongoTypeMapper

in

Note that we are extending the AbstractMongoConfiguration class and override the bean definition of

the MappingMongoConverter where we configure our custom MongoTypeMapper.

Example 10. Configuring a custom MongoTypeMapper via XML

<mongo:mapping-converter type-mapper-ref="customMongoTypeMapper"/>

<bean name="customMongoTypeMapper" class="com.bubu.mongo.CustomMongoTypeMapper"/>

6.5.3. Methods for saving and inserting documents

There are several convenient methods on MongoTemplate for saving and inserting your objects. To have
more fine grained control over the conversion process you can register Spring converters with the
MappingMongoConverter, for example Converter<Person, DBObject>and Converter<DBObject, Person>.

The difference between insert and save operations is that a save operation will perform

NOTE
an insert if the object is not already present.

The simple case of using the save operation is to save a POJO. In this case the collection name will be
determined by name (not fully qualfied) of the class. You may also call the save operation with a
specific collection name. The collection to store the object can be overriden using mapping metadata.

When inserting or saving, if the Id property is not set, the assumption is that its value will be auto-
generated by the database. As such, for auto-generation of an Objectld to succeed the type of the Id
property/field in your class must be either a String, ObjectId, or BigInteger.

Here is a basic example of using the save operation and retrieving its contents.
Example 11. Inserting and retrieving documents using the MongoTemplate

import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Criteria.query;

Person p = new Person("Bob", 33);
mongoTemplate.insert(p);

Person qp = mongoTemplate.findOne(query(where("age").is(33)), Person.class);

The insert/save operations available to you are listed below.
* void save (Object objectToSave) Save the object to the default collection.
* void save (Object objectToSave, String collectionName) Save the object to the specified collection.

A similar set of insert operations is listed below

* void insert (Object objectToSave) Insert the object to the default collection.

* void insert (Object objectToSave, String collectionName) Insert the object to the specified
collection.

Which collection will my documents be saved into?

There are two ways to manage the collection name that is used for operating on the documents. The
default collection name that is used is the class name changed to start with a lower-case letter. So a
com. test.Person class would be stored in the "person" collection. You can customize this by providing a
different collection name using the @Document annotation. You can also override the collection name
by providing your own collection name as the last parameter for the selected MongoTemplate method
calls.

Inserting or saving individual objects

The MongoDB driver supports inserting a collection of documents in one operation. The methods in the
MongoOperations interface that support this functionality are listed below

* insert inserts an object. If there is an existing document with the same id then an error is
generated.

* insertAll takes a "Collection of objects as the first parameter. This method inspects each object
and inserts it to the appropriate collection based on the rules specified above.

* save saves the object overwriting any object that might exist with the same id.

Inserting several objects in a batch

The MongoDB driver supports inserting a collection of documents in one operation. The methods in the
MongoOperations interface that support this functionality are listed below

 insert’ methods that take a Collection as the first argument. This inserts a list of objects in a single
batch write to the database.

6.5.4. Updating documents in a collection

For updates we can elect to update the first document found using MongoOperation s method
‘updateFirst or we can update all documents that were found to match the query using the method
updateMulti. Here is an example of an update of all SAVINGS accounts where we are adding a one time
$50.00 bonus to the balance using the $inc operator.

Example 12. Updating documents using the MongoTemplate

import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Query;
import static org.springframework.data.mongodb.core.query.Update;

WriteResult wr = mongoTemplate.updateMulti(new Query(where("accounts.accountType").
is(Account.Type.SAVINGS)),
new Update().inc("accounts.$.balance", 50.00), Account.class);

In addition to the Query discussed above we provide the update definition using an Update object. The
Update class has methods that match the update modifiers available for MongoDB.

As you can see most methods return the Update object to provide a fluent style for the API.

Methods for executing updates for documents

* updateFirst Updates the first document that matches the query document criteria with the
provided updated document.

* updateMulti Updates all objects that match the query document criteria with the provided updated
document.

Methods for the Update class

The Update class can be used with a little 'syntax sugar' as its methods are meant to be chained
together and you can kick-start the creation of a new Update instance via the static method public
static Update update(String key, Object value) and using static imports.

Here is a listing of methods on the Update class

Update addToSet (String key, Object value) ‘ Update using the ‘$addToSet update modifier

* Update inc (String key, Number inc) Update using the $inc update modifier

Update pop (String key, Update.Position pos) Update using the $pop update modifier

Update pull (String key, Object value) Update using the $pull update modifier

Update pullAll (String key, Object[] values) Update using the $pullAll update modifier

Update push (String key, Object value) ‘ Update using the ‘$push update modifier

* Update pushAll (String key, Object[] values) Update using the $pushAll update modifier

 Update rename (String oldName, String newName) Update using the $rename update modifier
* Update set (String key, Object value) Update using the $set update modifier

* Update unset (String key) Update using the $unset update modifier

6.5.5. Upserting documents in a collection

Related to performing an updateFirst operations, you can also perform an upsert operation which will
perform an insert if no document is found that matches the query. The document that is inserted is a
combination of the query document and the update document. Here is an example

template.upsert(query(where("ssn").is(1111).and("firstName").is("Joe").and("Fraizer").is(
"Update")), update("address", addr), Person.class);

6.5.6. Finding and Upserting documents in a collection

The findAndModify() method on DBCollection can update a document and return either the old or
newly updated document in a single operation. MongoTemplate provides a findAndModify method that
takes Query and Update classes and converts from DBObject to your POJOs. Here are the methods

<> T findAndModify(Query query, Update update, Class<T> entityClass);

<T> T findAndModify(Query query, Update update, Class<T> entityClass, String
collectionName);

<T> T findAndModify(Query query, Update update, FindAndModifyOptions options, Class<T>
entityClass);

<T> T findAndModify(Query query, Update update, FindAndModifyOptions options, Class<T>
entityClass, String collectionName);

As an example usage, we will insert of few Person objects into the container and perform a simple
findAndUpdate operation

mongoTemplate.insert(new Person("Tom", 21));
mongoTemplate.insert(new Person("Dick", 22));
mongoTemplate.insert(new Person("Harry", 23));

Query query = new Query(Criteria.where("firstName").is("Harry"));

Update update = new Update().inc("age", 1);

Person p = mongoTemplate.findAndModify(query, update, Person.class); // return's old
person object

assertThat(p.getFirstName(), is("Harry"));
assertThat(p.getAge(), is(23));

p = mongoTemplate.findOne(query, Person.class);
assertThat(p.getAge(), is(24));

// Now return the newly updated document when updating

p = template.findAndModify(query, update, new FindAndModifyOptions().returnNew(true),
Person.class);

assertThat(p.getAge(), is(25));

The FindAndModifyOptions lets you set the options of returnNew, upsert, and remove. An example
extending off the previous code snippit is shown below

Query query2 = new Query(Criteria.where("firstName").is("Mary"));

p = mongoTemplate.findAndModify(query2, update, new FindAndModifyOptions().returnNew(
true).upsert(true), Person.class);

assertThat(p.getFirstName(), is("Mary"));

assertThat(p.getAge(), is(1));

6.5.7. Methods for removing documents

You can use several overloaded methods to remove an object from the database.

* remove Remove the given document based on one of the following: a specific object instance, a
query document criteria combined with a class or a query document criteria combined with a
specific collection name.

6.6. Querying Documents

You can express your queries using the Query and Criteria classes which have method names that
mirror the native MongoDB operator names such as 1t, 1te, is, and others. The Query and Criteria
classes follow a fluent API style so that you can easily chain together multiple method criteria and
queries while having easy to understand code. Static imports in Java are used to help remove the need
to see the 'new' keyword for creating Query and Criteria instances so as to improve readability. If you
like to create Query instances from a plain JSON String use BasicQuery.

Example 13. Creating a Query instance from a plain JSON String

BasicQuery query = new BasicQuery("{ age : { $1t : 50 }, accounts.balance : { $qt :
1000.00 }1}");
List<Person> result = mongoTemplate.find(query, Person.class);

GeoSpatial queries are also supported and are described more in the section GeoSpatial Queries.

Map-Reduce operations are also supported and are described more in the section Map-Reduce.

6.6.1. Querying documents in a collection

We saw how to retrieve a single document using the findOne and findByld methods on
MongoTemplate in previous sections which return a single domain object. We can also query for a
collection of documents to be returned as a list of domain objects. Assuming that we have a number of
Person objects with name and age stored as documents in a collection and that each person has an
embedded account document with a balance. We can now run a query using the following code.

Example 14. Querying for documents using the MongoTemplate

import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Query.query;

List<Person> result = mongoTemplate.find(query(where("age").1t(50)
.and("accounts.balance").qt(1000.00d)), Person.class);

All find methods take a Query object as a parameter. This object defines the criteria and options used to
perform the query. The criteria is specified using a Criteria object that has a static factory method
named where used to instantiate a new Criteria object. We recommend using a static import for
org.springframework.data.mongodb.core.query.Criteria.where and Query.query to make the query more
readable.

This query should return a list of Person objects that meet the specified criteria. The Criteria class has
the following methods that correspond to the operators provided in MongoDB.

As you can see most methods return the Criteria object to provide a fluent style for the API.

Methods for the Criteria class

e Criteriaall (Object o) Creates a criterion using the $all operator

e Criteria and (String key) Adds a chained Criteria with the specified key to the current Criteria
and returns the newly created one

* Criteria andOperator (Criteria criteria) Creates an and query using the $and operator for all
of the provided criteria (requires MongoDB 2.0 or later)

* Criteria elemMatch (Criteria c) Creates a criterion using the $elemMatch operator

» Criteria exists (boolean b) Creates a criterion using the $exists operator

» Criteriagt (Object o) Creates a criterion using the $gt operator

» Criteriagte (Object o) Creates a criterion using the $gte operator

e Criteriain (Object o) Creates a criterion using the $in operator for a varargs argument.
* Criteriain (Collection<?> collection) Creates a criterion using the $in operator using a collection
* Criteriais (Object o) Creates a criterion using the $is operator

* Criterialt (Object o) Creates a criterion using the §1t operator

» Criterialte (Object o) Creates a criterion using the $1te operator

* Criteria mod (Number value, Number remainder) Creates a criterion using the $mod operator
* Criteriane (Object o) Creates a criterion using the $ne operator

* Criterianin (Object o) Creates a criterion using the $nin operator

e Criteria norOperator (Criteria criteria) Creates an nor query using the $nor operator for all
of the provided criteria

» Criteria not () Creates a criterion using the $not meta operator which affects the clause directly
following

e Criteria orOperator (Criteria criteria) Creates an or query using the $or operator for all of
the provided criteria

» Criteriaregex (String re) Creates a criterion using a $regex

» Criteriasize (int s) Creates a criterion using the $size operator

Criteriatype (int t) Creates a criterion using the $type operator

There are also methods on the Criteria class for geospatial queries. Here is a listing but look at the
section on GeoSpatial Queries to see them in action.

* Criteria within (Circle circle) Creates a geospatial criterion using $geoWithin $center operators.

» Criteria within (Box box) Creates a geospatial criterion using a $geoWithin $box operation.

* Criteria withinSphere (Circle circle) Creates a geospatial criterion using $geoWithin $center
operators.

* Criterianear (Point point) Creates a geospatial criterion using a “$near "operation

e Criteria nearSphere (Point point) Creates a geospatial criterion using $nearSpherefcenter
operations. This is only available for MongoDB 1.7 and higher.

* Criteria maxDistance (double maxDistance) Creates a geospatial criterion using the $maxDistance
operation, for use with $near.

The Query class has some additional methods used to provide options for the query.
Methods for the Query class
* Query addCriteria (Criteria criteria) used to add additional criteria to the query
* Field fields () used to define fields to be included in the query results

e Query limit (int Tlimit) used to limit the size of the returned results to the provided limit (used for
paging)

* Query skip (int skip) used to skip the provided number of documents in the results (used for
paging)

* Sort sort () used to provide sort definition for the results

6.6.2. Methods for querying for documents

The query methods need to specify the target type T that will be returned and they are also overloaded
with an explicit collection name for queries that should operate on a collection other than the one
indicated by the return type.

» findAll Query for a list of objects of type T from the collection.

* findOne Map the results of an ad-hoc query on the collection to a single instance of an object of the
specified type.

 findByld Return an object of the given id and target class.
» find Map the results of an ad-hoc query on the collection to a List of the specified type.

* findAndRemove Map the results of an ad-hoc query on the collection to a single instance of an
object of the specified type. The first document that matches the query is returned and also
removed from the collection in the database.

6.6.3. GeoSpatial Queries

MongoDB supports GeoSpatial queries through the use of operators such as $near, $within, geoWithin
and $nearSphere. Methods specific to geospatial queries are available on the Criteria class. There are
also a few shape classes, Box, Circle, and Point that are used in conjunction with geospatial related
Criteria methods.

To understand how to perform GeoSpatial queries we will use the following Venue class taken from the
integration tests.which relies on using the rich MappingMongoConverter.

(collection="newyork")
public class Venue {

private String id;
private String name;
private double[] location;

Venue(String name, double[] location) {
super();
this.name = name;
this.location = location;

}

public Venue(String name, double x, double y) {
super();
this.name = name;
this.location = new double[] { x, y };

}

public String getName() {
return name;

}

public double[] getLocation() {
return location;

}

public String toString() {
return "Venue [id=" + id + ", name=" + name + ", location='
+ Arrays.toString(location) + "]";

n 1

To find locations within a Circle, the following query can be used.

Circle circle = new Circle(-73.99171, 40.738868, 0.01);
List<Venue> venues =
template.find(new Query(Criteria.where("location").within(circle)), Venue.class);

To find venues within a Circle using spherical coordinates the following query can be used

Circle circle = new Circle(-73.99171, 40.738868, 0.003712240453784);
List<Venue> venues =

template.find(new Query(Criteria.where("location").withinSphere(circle)), Venue.
class);

To find venues within a Box the following query can be used

//lower-left then upper-right
Box box = new Box(new Point(-73.99756, 40.73083), new Point(-73.988135, 40.741404));
List<Venue> venues =

template.find(new Query(Criteria.where("location").within(box)), Venue.class);

To find venues near a Point, the following query can be used

Point point = new Point(-73.99171, 40.738868);
List<Venue> venues =

template.find(new Query(Criteria.where("location").near(point).maxDistance(0.01)),
Venue.class);

To find venues near a Point using spherical coordines the following query can be used

Point point = new Point(-73.99171, 40.738868);
List<Venue> venues =
template.find(new Query(
Criteria.where("location").nearSphere(point).maxDistance(0.003712240453784)),
Venue.class);

Geo near queries

MongoDB supports querying the database for geo locations and calculation the distance from a given
origin at the very same time. With geo-near queries it’s possible to express queries like: "find all
restaurants in the surrounding 10 miles". To do so MongoOperations provides geoNear() methods
taking a NearQuery as argument as well as the already familiar entity type and collection

Point location = new Point(-73.99171, 40.738868);
NearQuery query = NearQuery.near(location).maxDistance(new Distance(10, Metrics.MILES));

GeoResults<Restaurant> = operations.geoNear(query, Restaurant.class);

As you can see we use the NearQuery builder API to set up a query to return all Restaurant instances
surrounding the given Point by 10 miles maximum. The Metrics enum used here actually implements
an interface so that other metrics could be plugged into a distance as well. A Metric is backed by a
multiplier to transform the distance value of the given metric into native distances. The sample shown
here would consider the 10 to be miles. Using one of the pre-built in metrics (miles and kilometers) will
automatically trigger the spherical flag to be set on the query. If you want to avoid that, simply hand in
plain double values into maxDistance(). For more information see the JavaDoc of NearQuery and
Distance.

The geo near operations return a GeoResults wrapper object that encapsulates GeoResult instances. The
wrapping GeoResults allows to access the average distance of all results. A single GeoResult object
simply carries the entity found plus its distance from the origin.

6.6.4. Full Text Queries

Since MongoDB 2.6 full text queries can be executed using the $text operator. Methods and operations
specific for full text queries are available in TextQuery and TextCriteria. When doing full text search
please refer to the MongoDB reference for its behavior and limitations.

Full Text Search

Before we are actually able to use full text search we have to ensure to set up the search index
correctly. Please refer to section Text Index for creating index structures.

db.foo.createIndex(

{
title : "text",
content : "text"

H
{
weights : {
title : 3
}
+
)

A query searching for coffee cake, sorted by relevance according to the weights can be defined and
executed as:

http://docs.mongodb.org/manual/reference/operator/query/text/#behavior

Query query = TextQuery.searching(new TextCriteria().matchingAny("coffee", "cake"))
.sortByScore();
List<Document> page = template.find(query, Document.class);

Exclusion of search terms can directly be done by prefixing the term with - or using notMatching

// search for 'coffee' and not 'cake'
TextQuery.searching(new TextCriteria().matching("coffee").matching("-cake"));
TextQuery.searching(new TextCriteria().matching("coffee").notMatching("cake"));

As TextCriteria.matching takes the provided term as is. Therefore phrases can be defined by putting
them between double quotes (eg. \"coffee cake\") or using TextCriteria.phrase.

// search for phrase 'coffee cake'
TextQuery.searching(new TextCriteria().matching("\"coffee cake\""));
TextQuery.searching(new TextCriteria().phrase("coffee cake"));

6.7. Map-Reduce Operations

You can query MongoDB using Map-Reduce which is useful for batch processing, data aggregation, and
for when the query language doesn’t fulfill your needs.

Spring provides integration with MongoDB’s map reduce by providing methods on MongoOperations
to simplify the creation and execution of Map-Reduce operations. It can convert the results of a Map-
Reduce operation to a POJO also integrates with Spring’s Resource abstraction abstraction. This will let
you place your JavaScript files on the file system, classpath, http server or any other Spring Resource
implementation and then reference the JavaScript resources via an easy URI style syntax, e.g.
'classpath:reduce.js;. Externalizing JavaScript code in files is often preferable to embedding them as
Java strings in your code. Note that you can still pass JavaScript code as Java strings if you prefer.

6.7.1. Example Usage

To understand how to perform Map-Reduce operations an example from the book 'MongoDB - The
definitive guide' is used. In this example we will create three documents that have the values [a,b],
[b,cl, and [c,d] respectfully. The values in each document are associated with the key 'X' as shown
below. For this example assume these documents are in the collection named "jmr1".

{ "_id" : ObjectId("4e5ff893c0277826074ec533"), "x" : ["a", "b"] }
{ "_id" : ObjectId("4e5ff893c0277826074ec534"), "x" : ["b", "c¢" 1}
{ "_id" : ObjectId("4e5ff893c0277826074ec535"), "x" : ["c", "d"] }

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html

A map function that will count the occurrence of each letter in the array for each document is shown
below

function () {
for (var i = 0; i < this.x.length; i++) {
emit(this.x[i], 1);
}

The reduce function that will sum up the occurrence of each letter across all the documents is shown
below

function (key, values) {
var sum = 0;
for (var i = 0; i < values.length; i++)
sum += values[i];
return sum;

Executing this will result in a collection as shown below.

{"_id" : "a", "value" : 1}
{"_id" : "b", "value" : 2}
{"_id" : "¢", "value" : 2}
{"_id" : "d", "value" : 1}

Assuming that the map and reduce functions are located in map.js and reduce.js and bundled in your
jar so they are available on the classpath, you can execute a map-reduce operation and obtain the
results as shown below

MapReduceResults<ValueObject> results = mongoOperations.mapReduce("jmr1",

"classpath:map.js", "classpath:reduce.js", ValueObject.class);

for (ValueObject valueObject : results) {
System.out.println(valueObject);

}

The output of the above code is

ValueObject [id=a, value=1.0]
ValueObject [id=b, value=2.0]
ValueObject [id=c, value=2.0]
ValueObject [id=d, value=1.0]

The MapReduceResults class implements Iterable and provides access to the raw output, as well as
timing and count statistics. The ValueObject class is simply

public class ValueObject {

private String id;
private float value;

public String getId() {
return id;

}

public float getValue() {
return value;

}

public void setValue(float value) {
this.value = value;

}

public String toString() {
return "ValueObject [id=" + id +
}
}

, value=" + value + "]";

By default the output type of INLINE is used so you don’t have to specify an output collection. To
specify additional map-reduce options use an overloaded method that takes an additional
MapReduceOptions argument. The class MapReduceOptions has a fluent API so adding additional options
can be done in a very compact syntax. Here an example that sets the output collection to "jmr1_out".
Note that setting only the output collection assumes a default output type of REPLACE.

MapReduceResults<ValueObject> results = mongoOperations.mapReduce("jmr1",
"classpath:map.js", "classpath:reduce.js",

new
MapReduceOptions().outputCollection("jmr1_out"), ValueObject.class);

There is also a static import import static

org.springframework.data.mongodb.core.mapreduce.MapReduceOptions.options; that can be used to make
the syntax slightly more compact

MapReduceResults<ValueObject> results = mongoOperations.mapReduce("jmr1",
"classpath:map.js", "classpath:reduce.js",

options().outputColl
ection("jmr1_out"), ValueObject.class);

You can also specify a query to reduce the set of data that will be used to feed into the map-reduce
operation. This will remove the document that contains [a,b] from consideration for map-reduce
operations.

Query query = new Query(where("x").ne(new String[] { "a", "b" }));
MapReduceResults<ValueObject> results = mongoOperations.mapReduce(query, "jmr1",
"classpath:map.js", "classpath:reduce.js",

options().outputColl
ection("jmr1_out"), ValueObject.class);

Note that you can specify additional limit and sort values as well on the query but not skip values.

6.8. Group Operations

As an alternative to using Map-Reduce to perform data aggregation, you can use the group operation
which feels similar to using SQL’s group by query style, so it may feel more approachable vs. using
Map-Reduce. Using the group operations does have some limitations, for example it is not supported in
a shareded environment and it returns the full result set in a single BSON object, so the result should
be small, less than 10,000 keys.

Spring provides integration with MongoDB’s group operation by providing methods on
MongoOperations to simplify the creation and execution of group operations. It can convert the results
of the group operation to a POJO and also integrates with Spring’s Resource abstraction abstraction.
This will let you place your JavaScript files on the file system, classpath, http server or any other Spring
Resource implementation and then reference the JavaScript resources via an easy URI style syntax, e.g.
'classpath:reduce.js;. Externalizing JavaScript code in files if often preferable to embedding them as
Java strings in your code. Note that you can still pass JavaScript code as Java strings if you prefer.

6.8.1. Example Usage

In order to understand how group operations work the following example is used, which is somewhat
artificial. For a more realistic example consult the book 'MongoDB - The definitive guide'. A collection
named "group_test_collection" created with the following rows.

http://www.mongodb.org/display/DOCS/Aggregation#Aggregation-Group
http://www.mongodb.org/display/DOCS/Aggregation#Aggregation-Group
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html

"_id" : ObjectId("4ec1d25d41421e2015da64f1"), "x" :
"_id" : ObjectId("4ec1d25d41421e2015dab4f2"), "x" :
"_id" : ObjectId("4ec1d25d41421e2015dab4f3"), "
"_id" : ObjectId("4ec1d25d41421e2015dab4f4"), "
"_id" : ObjectId("4ec1d25d41421e2015dab4f5"), "
"_id" : ObjectId("4ec1d25d41421e2015dab4f6"), "

W W WwWN =
[T = S S

X X X X X X

N e T e N e N SN

We would like to group by the only field in each row, the 'x' field and aggregate the number of times
each specific value of 'x' occurs. To do this we need to create an initial document that contains our
count variable and also a reduce function which will increment it each time it is encountered. The Java
code to execute the group operation is shown below

GroupByResults<XObject> results = mongoTemplate.group("group_test_collection”,
GroupBy.key("x").initialDocument("{
count: @ }").reduceFunction("function(doc, prev) { prev.count += 1 }"),
XObject.class);

The first argument is the name of the collection to run the group operation over, the second is a fluent
API that specifies properties of the group operation via a GroupBy class. In this example we are using
just the intialDocument and reduceFunction methods. You can also specify a key-function, as well as a
finalizer as part of the fluent APIL If you have multiple keys to group by, you can pass in a comma
separated list of keys.

The raw results of the group operation is a JSON document that looks like this

{
"retval" : [{ "x" : 1.0 , "count" : 2.0} ,
{ "x" : 2.0, "count" : 1.0} ,
{ "x" : 3.0, "count" : 3.0} 1,
"count" : 6.0 ,
"keys" : 3,
"ok" : 1.0
+

The document under the "retval" field is mapped onto the third argument in the group method, in this
case XObject which is shown below.

public class XObject {
private float x;

private float count;

public float getX() {
return x;

}

public void setX(float x) {
this.x = x;

}

public float getCount() {
return count;

}

public void setCount(float count) {
this.count = count;

}

public String toString() {
return "XObject [x=" + x +
}
}

n n

count = " + count + "]";

You can also obtain the raw result as a DbObject by calling the method getRawResults on the
GroupByResults class.

There is an additional method overload of the group method on MongoOperations which lets you specify
a Criteria object for selecting a subset of the rows. An example which uses a Criteria object, with
some syntax sugar using static imports, as well as referencing a key-function and reduce function
javascript files via a Spring Resource string is shown below.

import static org.springframework.data.mongodb.core.mapreduce.GroupBy.keyFunction;
import static org.springframework.data.mongodb.core.query.Criteria.where;

GroupByResults<XObject> results = mongoTemplate.group(where("x").gt(@),
"group_test_collection",
keyFunction("classpath:keyFunction.js").initialDo

cument("{ count: @ }").reduceFunction("classpath:groupReduce.js"), XObject.class);

6.9. Aggregation Framework Support

Spring Data MongoDB provides support for the Aggregation Framework introduced to MongoDB in
version 2.2.

The MongoDB Documentation describes the Aggregation Framework as follows:

For further information see the full reference documentation of the aggregation framework and other
data aggregation tools for MongoDB.

6.9.1. Basic Concepts

The Aggregation Framework support in Spring Data MongoDB is based on the following key
abstractions Aggregation, AggregationOperation and AggregationResults.

« Aggregation

An Aggregation represents a MongoDB aggregate operation and holds the description of the
aggregation pipline instructions. Aggregations are created by inoking the appropriate
newAggregation() static factory Method of the Aggregation class which takes the list of
AggregateOperation as a parameter next to the optional input class.

The actual aggregate operation is executed by the aggregate method of the MongoTemplate which also
takes the desired output class as parameter.

« AggregationOperation

An AggregationOperation represents a MongoDB aggregation pipeline operation and describes the
processing that should be performed in this aggregation step. Although one could manually create
an AggregationOperation the recommended way to construct an AggregateOperation is to use the
static factory methods provided by the Aggregate class.

« AggregationResults

AggregationResults is the container for the result of an aggregate operation. It provides access to the
raw aggregation result in the form of an DBObject, to the mapped objects and information which
performed the aggregation.

The canonical example for using the Spring Data MongoDB support for the MongoDB Aggregation
Framework looks as follows:

http://docs.mongodb.org/manual/core/aggregation/
http://docs.mongodb.org/manual/aggregation/

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

Aggregation agg = newAggregation(
pipelineOP1(),
pipelineOP2(),
pipelineOPn()

);

AggregationResults<OutputType> results = mongoTemplate.aggregate(agg,

"INPUT_COLLECTION_NAME", OutputType.class);
List<OutputType> mappedResult = results.getMappedResults();

Note that if you provide an input class as the first parameter to the newAggregation method the
MongoTemplate will derive the name of the input collection from this class. Otherwise if you don’t not
specify an input class you must provide the name of the input collection explicitly. If an input-class and
an input-collection is provided the latter takes precedence.

6.9.2. Supported Aggregation Operations
The MongoDB Aggregation Framework provides the following types of Aggregation Operations:
* Pipeline Aggregation Operators
* Group Aggregation Operators
* Boolean Aggregation Operators
* Comparison Aggregation Operators
* Arithmetic Aggregation Operators
» String Aggregation Operators
» Date Aggregation Operators
* Conditional Aggregation Operators

At the time of this writing we provide support for the following Aggregation Operations in Spring Data
MongoDB.

Table 1. Aggregation Operations currently supported by Spring Data MongoDB
Pipeline Aggregation Operators project, skip, limit, unwind, group, sort, geoNear

Group Aggregation Operators addToSet, first, last, max, min, avg, push, sum,
(*count)

Arithmetic Aggregation Operators add (*via plus), subtract (*via minus), multiply,
divide, mod

Comparison Aggregation Operators eq (*via: is), gt, gte, It, Ite, ne

Note that the aggregation operations not listed here are currently not supported by Spring Data
MongoDB. Comparison aggregation operators are expressed as Criteria expressions.

*) The operation is mapped or added by Spring Data MongoDB.

6.9.3. Projection Expressions

Projection expressions are used to define the fields that are the outcome of a particular aggregation
step. Projection expressions can be defined via the project method of the Aggregate class either by
passing a list of String's or an aggregation framework ‘Fields object. The projection can be extended
with additional fields through a fluent API via the and(String) method and aliased via the as(String)
method. Note that one can also define fields with aliases via the static factory method Fields.field of
the aggregation framework that can then be used to construct a new Fields instance.

Example 15. Projection expression examples

project("name", "netPrice") // will generate {$project: {name: 1, netPrice: 1}}
project().and("foo").as("bar") // will generate {$project: {bar: $foo}}
project("a","b").and("foo").as("bar") // will generate {$project: {a: 1, b: 1, bar:
$foo}}

Note that more examples for project operations can be found in the AggregationTests class.

Note that further details regarding the projection expressions can be found in the corresponding
section of the MongoDB Aggregation Framework reference documentation.

Spring Expression Support in Projection Expressions

As of Version 1.4.0 we support the use of SpEL expression in projection expressions via the
andExpression method of the ProjectionOperation class. This allows you to define the desired expression
as a SpEL expression which is translated into a corresponding MongoDB projection expression part on
query execution. This makes it much easier to express complex calculations.

Complex calculations with SpEL expressions

The following SpEL expression:

T+@+1)/7(-1)

http://docs.mongodb.org/manual/reference/operator/aggregation/project/#pipe._S_project
http://docs.mongodb.org/manual/reference/operator/aggregation/project/#pipe._S_project

will be translated into the following projection expression part:

{ "$add" : [1, {

"$divide" : [{
"$add":["$q", 11}, {
"$subtract":["$q", 11}

]

3}

Have a look at an example in more context in Aggregation Framework Example 5 and Aggregation
Framework Example 6. You can find more usage examples for supported SpEL expression constructs in
SpelExpressionTransformerUnitTests.

Aggregation Framework Examples

The following examples demonstrate the usage patterns for the MongoDB Aggregation Framework
with Spring Data MongoDB.

In this introductory example we want to aggregate a list of tags to get the occurrence count of a
particular tag from a MongoDB collection called "tags" sorted by the occurrence count in descending
order. This example demonstrates the usage of grouping, sorting, projections (selection) and
unwinding (result splitting).

class TagCount {
String tag;
int n;

}

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

Aggregation agg = newAggregation(
project("tags"),
unwind("tags"),
group("tags").count().as("n"),
project("n").and("tag").previousOperation(),
sort(DESC, "n")

)i

AggregationResults<TagCount> results = mongoTemplate.aggregate(agg, "tags", TagCount
.class);
List<TagCount> tagCount = results.getMappedResults();

* In order to do this we first create a new aggregation via the newAggregation static factory method to
which we pass a list of aggregation operations. These aggregate operations define the aggregation

pipeline of our Aggregation.

* As a second step we select the "tags" field (which is an array of strings) from the input collection
with the project operation.

* In a third step we use the unwind operation to generate a new document for each tag within the
"tags" array.

* In the forth step we use the group operation to define a group for each "tags"-value for which we
aggregate the occurrence count via the count aggregation operator and collect the result in a new
field called "n".

* As a fifth step we select the field "n" and create an alias for the id-field generated from the previous
group operation (hence the call to previousOperation()) with the name "tag".

* As the sixth step we sort the resulting list of tags by their occurrence count in descending order via
the sort operation.

» Finally we call the aggregate Method on the MongoTemplate in order to let MongoDB perform the
acutal aggregation operation with the created Aggregation as an argument.

Note that the input collection is explicitly specified as the "tags" parameter to the aggregate Method. If
the name of the input collection is not specified explicitly, it is derived from the input-class passed as
first parameter to the newAggreation Method.

This example is based on the Largest and Smallest Cities by State example from the MongoDB
Aggregation Framework documentation. We added additional sorting to produce stable results with
different MongoDB versions. Here we want to return the smallest and largest cities by population for
each state, using the aggregation framework. This example demonstrates the usage of grouping,
sorting and projections (selection).

http://docs.mongodb.org/manual/tutorial/aggregation-examples/#largest-and-smallest-cities-by-state

class ZipInfo {
String 1id;
String city;
String state;
("pop") int population;
("loc") double[] location;
¥

class City {
String name;
int population;

}

class ZipInfoStats {
String 1id;
String state;
City biggestCity;
City smallestCity;
}

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<ZipInfo> aggregation = newAggregation(ZipInfo.class,
group("state", "city")
.sum("population”).as("pop"),
sort(ASC, "pop", "state", "city"),
group("state")
last("city").as("biggestCity")
.Last("pop").as("biggestPop")
first("city").as("smallestCity")
first("pop").as("smallestPop"),
project()
.and("state").previousOperation()
.and("biggestCity")
.nested(bind("name", "biggestCity").and("population”, "biggestPop"))
.and("smallestCity")
.nested(bind("name", "smallestCity").and("population”, "smallestPop")),
sort(ASC, "state")

)i
AggregationResults<ZipInfoStats> result = mongoTemplate.aggregate(aggregation,

ZipInfoStats.class);
ZipInfoStats firstZipInfoStats = result.getMappedResults().get(0);

* The class ZipInfo maps the structure of the given input-collection. The class ZipInfoStats defines the

structure in the desired output format.

As a first step we use the group operation to define a group from the input-collection. The grouping
criteria is the combination of the fields "state" and "city" ‘which forms the id structure of the
group. We aggregate the value of the '"population" property from the grouped elements with by
using the sum operator saving the result in the field "pop".

non

In a second step we use the sort operation to sort the intermediate-result by the fields "pop", "state"
and "city" in ascending order, such that the smallest city is at the top and the biggest city is at the
bottom of the result. Note that the sorting on "state" and "city" is implicitly performed against the
group id fields which Spring Data MongoDB took care of.

In the third step we use a group operation again to group the intermediate result by "state". Note
that "state" again implicitly references an group-id field. We select the name and the population
count of the biggest and smallest city with calls to the last() and first() operator respectively
via the project operation.

As the forth step we select the "state" field from the previous group operation. Note that "state"
again implicitly references an group-id field. As we do not want an implicit generated id to appear,
we exclude the id from the previous operation via and(previousOperation()).exclude(). As we want
to populate the nested City structures in our output-class accordingly we have to emit appropriate
sub-documents with the nested method.

Finally as the fifth step we sort the resulting list of StateStats by their state name in ascending
order via the sort operation.

Note that we derive the name of the input-collection from the ZipInfo-class passed as first parameter to
the newAggregation-Method.

This example is based on the States with Populations Over 10 Million example from the MongoDB
Aggregation Framework documentation. We added additional sorting to produce stable results with
different MongoDB versions. Here we want to return all states with a population greater than 10
million, using the aggregation framework. This example demonstrates the usage of grouping, sorting
and matching (filtering).

class StateStats {
String 1id;
String state;
("totalPop") int totalPopulation;

http://docs.mongodb.org/manual/tutorial/aggregation-examples/#states-with-populations-over-10-million

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<ZipInfo> agg = newAggregation(ZipInfo.class,
group("state").sum("population”).as("totalPop"),
sort(ASC, previousOperation(), "totalPop"),
match(where("totalPop").gte(10 * 1000 * 1000))

)i

AggregationResults<StateStats> result = mongoTemplate.aggregate(agg, StateStats.class);
List<StateStats> stateStatslList = result.getMappedResults();

* As a first step we group the input collection by the "state" field and calculate the sum of the
"population” field and store the result in the new field "totalPop".

* In the second step we sort the intermediate result by the id-reference of the previous group
operation in addition to the "totalPop" field in ascending order.

 Finally in the third step we filter the intermediate result by using a match operation which accepts a
Criteria query as an argument.

Note that we derive the name of the input-collection from the ZipInfo-class passed as first parameter to
the newAggregation-Method.

This example demonstrates the use of simple arithmetic operations in the projection operation.

class Product {
String 1id;
String name;
double netPrice;
int spaceUnits;

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<Product> agg = newAggregation(Product.class,
project("name", "netPrice")

.and("netPrice").plus(1).as("netPricePlus1")
.and("netPrice").minus(1).as("netPriceMinus1")
.and("netPrice").multiply(1.19).as("grossPrice")
.and("netPrice").divide(2).as("netPriceDiv2")
.and("spaceUnits").mod(2).as("spaceUnitsMod2")

E

AggregationResults<DBObject> result = mongoTemplate.aggregate(agg, DBObject.class);
List<DBObject> resultlList = result.getMappedResults();

Note that we derive the name of the input-collection from the Product-class passed as first parameter to
the newAggregation-Method.

This example demonstrates the use of simple arithmetic operations derived from SpEL Expressions in
the projection operation.

class Product {
String 1id;
String name;
double netPrice;
int spaceUnits;

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<Product> agg = newAggregation(Product.class,
project("name", "netPrice")

.andExpression("netPrice + 1").as("netPricePlus1")
.andExpression("netPrice - 1").as("netPriceMinus1")
.andExpression("netPrice / 2").as("netPriceDiv2")
.andExpression("netPrice * 1.19").as("grossPrice")
.andExpression("spacelnits % 2").as("spaceUnitsMod2")
.andExpression("(netPrice * 0.8 + 1.2) * 1.19").as(

"grossPriceIncludingDiscountAndCharge")

)

AggregationResults<DBObject> result = mongoTemplate.aggregate(agg, DBObject.class);
List<DBObject> resultlList = result.getMappedResults();

This example demonstrates the use of complex arithmetic operations derived from SpEL Expressions
in the projection operation.

Note: The additional parameters passed to the addExpression Method can be referenced via indexer
expressions according to their position. In this example we reference the parameter which is the first
parameter of the parameters array via [0]. External parameter expressions are replaced with their
respective values when the SpEL expression is transformed into a MongoDB aggregation framework
expression.

class Product {
String 1id;
String name;
double netPrice;
int spaceUnits;

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;
double shippingCosts = 1.2;

TypedAggregation<Product> agg = newAggregation(Product.class,
project("name", "netPrice")
.andExpression("(netPrice * (1-discountRate) + [0]) * (1+taxRate)",
shippingCosts).as("salesPrice")

)

AggregationResults<DBObject> result = mongoTemplate.aggregate(agg, DBObject.class);
List<DBObject> resultlList = result.getMappedResults();

Note that we can also refer to other fields of the document within the SpEL expression.

6.10. Overriding default mapping with custom
converters

In order to have more fine grained control over the mapping process you can register Spring
converters with the MongoConverter implementations such as the MappingMongoConverter.

The MappingMongoConverter checks to see if there are any Spring converters that can handle a specific
class before attempting to map the object itself. To 'hijack' the normal mapping strategies of the
MappingMongoConverter, perhaps for increased performance or other custom mapping needs, you first
need to create an implementation of the Spring Converter interface and then register it with the
MappingConverter.

For more information on the Spring type conversion service see the reference docs

NOTE
here.

6.10.1. Saving using a registered Spring Converter

An example implementation of the Converter that converts from a Person object to a
com.mongodb.DBObject is shown below

import org.springframework.core.convert.converter.Converter;

import com.mongodb.BasicDBObject;
import com.mongodb.DBObject;

public class PersonWriteConverter implements Converter<Person, DBObject> {

public DBObject convert(Person source) {
DBObject dbo = new BasicDBObject();
dbo.put("_id", source.getId());
dbo.put("name", source.getFirstName());
dbo.put("age", source.getAge());
return dbo;

}

}

6.10.2. Reading using a Spring Converter

An example implementation of a Converter that converts from a DBObject ot a Person object is shownn
below

public class PersonReadConverter implements Converter<DBObject, Person> {

public Person convert(DBObject source) {
Person p = new Person((ObjectId) source.get("_id"), (String) source.get("name"));
p.setAge((Integer) source.get("age"));
return p;
}
}

6.10.3. Registering Spring Converters with the MongoConverter

The Mongo Spring namespace provides a convenience way to register Spring Converter's with the
‘MappingMongoConverter. The configuration snippet below shows how to manually register converter
beans as well as configuring the wrapping MappingMongoConverter into a MongoTemplate.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert

<mongo:db-factory dbname="database"/>

<mongo:mapping-converter>
<mongo:custom-converters>
<mongo:converter ref="readConverter"/>
<mongo:converter>
<bean class="org.springframework.data.mongodb.test.PersonWriteConverter"/>
</mongo:converter>
</mongo:custom-converters>
</mongo:mapping-converter>

<bean id="readConverter" class="
org.springframework.data.mongodb.test.PersonReadConverter"/>

<bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>
<constructor-arg name="mongoConverter" ref="mappingConverter"/>

</bean>

You can also use the base-package attribute of the custom-converters element to enable classpath
scanning for all Converter and GenericConverter implementations below the given package.

<mongo:mapping-converter>
<mongo:custom-converters base-package="com.acme.**.converters" />
</mongo:mapping-converter>

6.10.4. Converter disambiguation

Generally we inspect the Converter implementations for the source and target types they convert from
and to. Depending on whether one of those is a type MongoDB can handle natively we will register the
converter instance as reading or writing one. Have a look at the following samples:

// Write converter as only the target type is one Mongo can handle natively
class MyConverter implements Converter<Person, String> { }

// Read converter as only the source type is one Mongo can handle natively
class MyConverter implements Converter<String, Person> { }

In case you write a Converter whose source and target type are native Mongo types there’s no way for
us to determine whether we should consider it as reading or writing converter. Registering the
converter instance as both might lead to unwanted results then. E.g. a Converter<String, Long> is

ambiguous although it probably does not make sense to try to convert all String's into ‘Long‘s when
writing. To be generally able to force the infrastructure to register a converter for one way only

we provide ‘@ReadingConverter as well as @WritingConverter to be used at the converter
implementation.

6.11. Index and Collection management

MongoTemplate provides a few methods for managing indexes and collections. These are collected into a
helper interface called IndexOperations. You access these operations by calling the method index0Ops and
pass in either the collection name or the java.lang.(Class of your entity (the collection name will be
derived from the .class either by name or via annotation metadata).

The IndexOperations interface is shown below

public interface IndexOperations {
void ensurelndex(IndexDefinition indexDefinition);
void dropIndex(String name);
void dropAllIndexes();
void resetIndexCache();

List<IndexInfo> getIndexInfo();

6.11.1. Methods for creating an Index

We can create an index on a collection to improve query performance.

Creating an index using the MongoTemplate
mongoTemplate.indexOps(Person.class).ensureIndex(new Index().on("name",Order.ASCENDING));

 ensurelndex Ensure that an index for the provided IndexDefinition exists for the collection.

You can create standard, geospatial and text indexes using the classes IndexDefinition, GeoSpatialIndex
and TextIndexDefinition. For example, given the Venue class defined in a previous section, you would
declare a geospatial query as shown below.

mongoTemplate.indexOps(Venue.class).ensureIndex(new GeospatialIndex("location"));

6.11.2. Accessing index information

The IndexOperations interface has the method getIndexInfo that returns a list of IndexInfo objects.
This contains all the indexes defined on the collectcion. Here is an example that defines an index on
the Person class that has age property.

template.indexOps(Person.class).ensurelndex(new Index().on("age", Order.DESCENDING)
.unique(Duplicates.DROP));

List<IndexInfo> indexInfolist = template.indexOps(Person.class).getIndexInfo();

// Contains

// [IndexInfo [fieldSpec={_id=ASCENDING}, name=_id_, unique=false, dropDuplicates=false,
sparse=false],

// IndexInfo [fieldSpec={age=DESCENDING}, name=age_-1, unique=true, dropDuplicates=true,
sparse=false]]

6.11.3. Methods for working with a Collection

It’s time to look at some code examples showing how to use the MongoTemplate. First we look at creating
our first collection.

Example 16. Working with collections using the MongoTemplate
DBCollection collection = null;

if (!mongoTemplate.getCollectionNames().contains("MyNewCollection")) {
collection = mongoTemplate.createCollection("MyNewCollection");

}

mongoTemplate.dropCollection("MyNewCollection");

getCollectionNames Returns a set of collection names.

* collectionExists Check to see if a collection with a given name exists.

createCollection Create an uncapped collection

» dropCollection Drop the collection

getCollection Get a collection by name, creating it if it doesn’t exist.

6.12. Executing Commands

You can also get at the MongoDB driver’s DB.command() method using the executeCommand() methods

on MongoTemplate. These will also perform exception translation into Spring’s DataAccessException
hierarchy.

6.12.1. Methods for executing commands
* CommandResult executeCommand (DBObject command) Execute a MongoDB command.

* CommandResult executeCommand (String jsonCommand) Execute the a MongoDB command
expressed as a JSON string.

6.13. Lifecycle Events

Built into the MongoDB mapping framework are several org.springframework.context.ApplicationEvent
events that your application can respond to by registering special beans in the ApplicationContext. By
being based off Spring’s ApplicationContext event infastructure this enables other products, such as
Spring Integration, to easily receive these events as they are a well known eventing mechanism in
Spring based applications.

To intercept an object before it goes through the conversion process (which turns your domain object
into a com.mongodb.DBObject), you’d register a subclass of AbstractMongoEventListener that overrides the
onBeforeConvert method. When the event is dispatched, your listener will be called and passed the
domain object before it goes into the converter.

public class BeforeConvertListener extends AbstractMongoEventlListener<Person> {

public void onBeforeConvert(Person p) {
... does some auditing manipulation, set timestamps, whatever ...

}
}

To intercept an object before it goes into the database, you’d register a subclass of
org.springframework.data.mongodb.core.mapping.event.AbstractMongoEventListener that overrides the
onBeforeSave method. When the event is dispatched, your listener will be called and passed the domain
object and the converted com.mongodb.DBObject.

public class BeforeSavelListener extends AbstractMongoEventListener<Person> {

public void onBeforeSave(Person p, DBObject dbo) {
change values, delete them, whatever

}
}

Simply declaring these beans in your Spring ApplicationContext will cause them to be invoked
whenever the event is dispatched.

The list of callback methods that are present in AbstractMappingEventListener are

» onBeforeConvert - called in MongoTemplate insert, insertList and save operations before the object is
converted to a DBODbject using a MongoConveter.

* onBeforeSave - called in MongoTemplate insert, insertList and save operations before
inserting/saving the DBODbject in the database.

» onAfterSave - called in MongoTemplate insert, insertList and save operations after inserting/saving
the DBObject in the database.

» onAfterLoad - called in MongoTemplate find, findAndRemove, findOne and getCollection methods
after the DBObject is retrieved from the database.

» onAfterConvert - called in MongoTemplate find, findAndRemove, findOne and getCollection methods
after the DBODbject retrieved from the database was converted to a POJO.

6.14. Exception Translation

The Spring framework provides exception translation for a wide variety of database and mapping
technologies. This has traditionally been for JDBC and JPA. The Spring support for MongoDB extends
this feature to the MongoDB Database by providing an implementation of the
org.springframework.dao.support.PersistenceExceptionTranslator interface.

The motivation behind mapping to Spring’s consistent data access exception hierarchy is that you are
then able to write portable and descriptive exception handling code without resorting to coding
against MongoDB error codes. All of Spring’s data access exceptions are inherited from the root
DataAccessException class so you can be sure that you will be able to catch all database related
exception within a single try-catch block. Note, that not all exceptions thrown by the MongoDB driver
inherit from the MongoException class. The inner exception and message are preserved SO no
information is lost.

Some of the mappings performed by the MongoExceptionTranslator are: com.mongodb.Network to
DataAccessResourceFailureException and MongoException error codes 1003, 12001, 12010, 12011, 12012

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/dao.html#dao-exceptions
http://www.mongodb.org/about/contributors/error-codes/

to InvalidDataAccessApiUsageException. Look into the implementation for more details on the mapping.

6.15. Execution callbacks

One common design feature of all Spring template classes is that all functionality is routed into one of
the templates execute callback methods. This helps ensure that exceptions and any resource
management that maybe required are performed consistency. While this was of much greater need in
the case of JDBC and JMS than with MongoDB, it still offers a single spot for exception translation and
logging to occur. As such, using thexe execute callback is the preferred way to access the MongoDB
driver’s DB and DBCollection objects to perform uncommon operations that were not exposed as
methods on MongoTemplate.

Here is a list of execute callback methods.

* <> T execute ((Class<?> entityClass, CollectionCallback<T> action) Executes the given
CollectionCallback for the entity collection of the specified class.

* <I> T execute (String collectionName, CollectionCallback<T> action) Executes the given
CollectionCallback on the collection of the given name.

e <T> T execute (DbCallback<T> action) Spring Data MongoDB provides support for the Aggregation
Framework introduced to MongoDB in version 2.2. Executes a DbCallback translating any exceptions
as necessary.

o <T> T execute (String collectionName, DbCallback<T> action) Executes a DbCallback on the
collection of the given name translating any exceptions as necessary.

* <T> T executeInSession ' (DbCallback<T> action) * Executes the given DbCallback within the same
connection to the database so as to ensure consistency in a write heavy environment where you
may read the data that you wrote.

Here is an example that uses the CollectionCallback to return information about an index

boolean hasIndex = template.execute("geolocation”, new CollectionCallbackBoolean>() {
public Boolean doInCollection(Venue.class, DBCollection collection) throws
MongoException, DataAccessException {
List<DBObject> indexes = collection.getIndexInfo();
for (DBObject dbo : indexes) {
if ("location_2d".equals(dbo.get("name"))) {
return true;
}
}
return false;
}
3

6.16. GridFS support

MongoDB supports storing binary files inside it’s filesystem GridFS. Spring Data MongoDB provides a
GridFsOperations interface as well as the according implementation GridFsTemplate to easily interact
with the filesystem. You can setup a GridFsTemplate instance by handing it a MongoDbFactory as well as a
MongoConverter:

Example 17. JavaConfig setup for a GridFsTemplate

class GridFsConfiguration extends AbstractMongoConfiguration {
// further configuration omitted

@Bean
public GridFsTemplate gridFsTemplate() {
return new GridFsTemplate(mongoDbFactory(), mappingMongoConverter());
}
}

An according XML configuration looks like this:

Example 18. XML configuration for a GridFsTemplate

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-
mongo.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<mongo:db-factory id="mongoDbFactory" dbname="database" />
<mongo:mapping-converter id="converter" />

<bean class="org.springframework.data.mongodb.gridfs.GridFsTemplate">
<constructor-arg ref="mongoDbFactory" />
<constructor-arg ref="converter" />

</bean>

</beans>

The template can now be injected and used to perform storage and retrieval operations.

Example 19. Using GridFsTemplate to store files

class GridFsClient {

GridFsOperations operations;

public void storeFileToGridFs {

FileMetadata metadata = new FileMetadata();
// populate metadata
Resource file = // lookup File or Resource

operations.store(file.getInputStream(), "filename.txt", metadata);

}
}

The store() operations take an InputStream, a filename and optionally metadata information about
the file to store. The metadata can be an arbitrary object which will be marshalled by the
MongoConverter configured with the GridFsTemplate. Alternatively you can also provide a DBObject as
well.

Reading files from the filesystem can either be achieved through the find() or getResources()
methods. Let’s have a look at the find() methods first. You can either find a single file matching a
Query or multiple ones. To easily define file queries we provide the GridFsCriteria helper class. It
provides static factory methods to encapsulate default metadata fields (e.g. whereFilename(),
whereContentType()) or the custom one through whereMetaData().

Example 20. Using GridFsTemplate to query for files

class GridFsClient {
GridFsOperations operations;

public void findFilesInGridFs {
List<GridFSDBFile> result = operations.find(query(whereFilename().is(

"filename.txt")))

}
}

Currently MongoDB does not support defining sort criteria when retrieving files from
NOTE GridFS. Thus any sort criteria defined on the Query instance handed into the find()
method will be disregarded.

The other option to read files from the GridFs is using the methods introduced by the
ResourcePatternResolver interface. They allow handing an Ant path into the method ar thus retrieve

files matching the given pattern.

Example 21. Using GridFsTemplate to read files

class GridFsClient {
GridFsOperations operations;

public void readFilesFromGridFs {
GridFsResources[] txtFiles = operations.getResources("*.txt");

}
}

GridFsOperations extending ResourcePatternResolver allows the GridFsTemplate e.g. to be plugged into
an ApplicationContext to read Spring Config files from a MongoDB.

Chapter 7. MongoDB repositories

7.1. Introduction

This chapter will point out the specialties for repository support for MongoDB. This builds on the core
repository support explained in [repositories]. So make sure you’ve got a sound understanding of the
basic concepts explained there.

7.2. Usage

To access domain entities stored in a MongoDB you can leverage our sophisticated repository support
that eases implementing those quite significantly. To do so, simply create an interface for your
repository:

Example 22. Sample Person entity

public class Person {

private String id;

private String firstname;
private String lastname;
private Address address;

// getters and setters omitted

We have a quite simple domain object here. Note that it has a property named id of type Objectld .
The default serialization mechanism used in MongoTemplate (which is backing the repository support)
regards properties named id as document id. Currently we support " String ", ObjectId and BigInteger as
id-types.

Example 23. Basic repository interface to persist Person entities

public interface PersonRepository extends PagingAndSortingRepository<Person, Long> {

// additional custom finder methods go here

}

Right now this interface simply serves typing purposes but we will add additional methods to it later.

In your Spring configuration simply add

Example 24. General MongoDB repository Spring configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd">

<mongo:mongo id="mongo" />

<bean id="mongoTemplate" class="
org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg ref="mongo" />
<constructor-arg value="databaseName" />
</bean>

<mongo:repositories base-package="com.acme.*.repositories" />

</beans>

This namespace element will cause the base packages to be scanned for interfaces extending
MongoRepository and create Spring beans for each of them found. By default the repositories will get a
MongoTemplate Spring bean wired that is called mongoTemplate, so you only need to configure mongo-
template-ref explicitly if you deviate from this convention.

If you’d rather like to go with JavaConfig use the @EnableMongoRepositories annotation. The annotation
carries the very same attributes like the namespace element. If no base package is configured the
infrastructure will scan the package of the annotated configuration class.

Example 25. JavaConfig for repositories

class ApplicationConfig extends AbstractMongoConfiguration {

protected String getDatabaseName() {
return "e-store";

}

public Mongo mongo() throws Exception {
return new Mongo();

}

protected String getMappingBasePackage() {
return "com.oreilly.springdata.mongodb"

}
}

As our domain repository extends PagingAndSortingRepository it provides you with CRUD operations as
well as methods for paginated and sorted access to the entities. Working with the repository instance is
just a matter of dependency injecting it into a client. So accessing the second page of "Person's at a
page size of 10 would simply look something like this:

Example 26. Paging access to Person entities

(SpringJUnit4ClassRunner.class)
public class PersonRepositoryTests {

PersonRepository repository;

public void readsFirstPageCorrectly() {

Page<Person> persons = repository.findAll(new PageRequest(0, 10));
assertThat(persons.isFirstPage(), is(true));

}

The sample creates an application context with Spring’s unit test support which will perform
annotation based dependency injection into test cases. Inside the test method we simply use the
repository to query the datastore. We hand the repository a PageRequest instance that requests the first
page of persons at a page size of 10.

7.3. Query methods

Most of the data access operations you usually trigger on a repository result a query being executed
against the MongoDB databases. Defining such a query is just a matter of declaring a method on the
repository interface

Example 27. PersonRepository with query methods

public interface PersonRepository extends PagingAndSortingRepository<Person, String>

{
List<Person> findByLastname(String lastname);
Page<Person> findByFirstname(String firstname, Pageable pageable);

Person findByShippingAddresses(Address address);

The first method shows a query for all people with the given lastname. The query will be derived
parsing the method name for constraints which can be concatenated with And and Or. Thus the method
name will result in a query expression of " {"lastname" : lastname} . The second example shows how
pagination is applied to a query. Just equip your method signature with a Pageable parameter and let
the method return a Page instance and we will automatically page the query accordingly. The third
examples shows that you can query based on properties which are not a primitive type.

Note that for version 1.0 we currently don’t support referring to parameters that are

NOTE
mapped as DBRef in the domain class.

Table 2. Supported keywords for query methods

Keyword Sample Logical result
GreaterThan findByAgeGreaterThan(int age) {"age" : {"$gt" : age}}

GreaterThanEqu findByAgeGreaterThanEqual(int {"age" : {"$gte" : age}}
al age)

LessThan findByAgelLessThan(int age) {"age" : {"$1t" : age}}
LessThanEqual findByAgelessThanEqual(int age) {"age" : {"$1te" : age}}

Between findByAgeBetween(int from, int {"age" : {"$qt" : from, "$1t" : to}}
to)

Keyword Sample Logical result

In findByAgeIn(Collection ages) {"age" : {"$in" : [ages 1}}

NotIn findByAgeNotIn(Collection ages) {"age" : {"$nin" : [ages 1}}

IsNotNull, findByFirstnameNotNull() {"firstname" : {"$ne" : null}}

NotNull

IsNull, Null findByFirstnameNull() {"firstname" : null}

Like findByFirstnamelLike(String {"firstname" : name} (name as regex)
name)

Regex findByFirstnameRegex(String {"firstname" : {"$regex" : firstname }}
firstname)

(No keyword) findByFirstname(String name) {"firstname" : name}

Not findByFirstnameNot(String name) {"firstname" : {"$ne" : name}}

Near findByLocationNear (Point point) {"location" : {"$near" : [x,y]}}

Within findByLocationWithin(Circle {"location" : {"$geoWithin" : {"$center" : [[x,
circle) y], distance]}}}

Within findByLocationWithin(Box box) {"location" : {"$geoWithin" : {"$box" : [[x1,

y11, x2, y21}}}

IsTrue, True findByActiveIsTrue() {"active" : true}

IsFalse, False findByActivelsFalse() {"active" : false}

Exists findByLocationExists(boolean {"location" : {"$exists" : exists }}
exists)

7.3.1. Repository delete queries

The above keywords can be used in conjunciton with delete By or remove By to create queries
deleting matching documents.

Example 28. Delete By Query

public interface PersonRepository extends MongoRepository<Person, String> {
List <Person> deleteBylLastname(String lastname);

Long deletePersonBylLastname(String lastname);

}

Using return type List will retrieve and return all matching documents before actually deleting them.
A numeric return type directly removes the matching documents returning the total number of
documents removed.

7.3.2. Geo-spatial repository queries

As you’ve just seen there are a few keywords triggering geo-spatial operations within a MongoDB
query. The Near keyword allows some further modification. Let’s have look at some examples:

Example 29. Advanced Near queries

public interface PersonRepository extends MongoRepository<Person, String>

// { 'location' : { '$near' : [point.x, point.y], '$maxDistance' : distance}}
List<Person> findByLocationNear(Point location, Distance distance);

}

Adding a Distance parameter to the query method allows restricting results to those within the given
distance. If the Distance was set up containing a Metric we will transparently use $nearSphere instead of
$code.

Example 30. Using Distance with Metrics

Point point = new Point(43.7, 48.8);
Distance distance = new Distance(200, Metrics.KILOMETERS);
= repository.findBylLocationNear(point, distance);
// {'location" : {'$nearSphere' : [43.7, 48.8], '$maxDistance’
0.03135711885774796}}

As you can see using a Distance equipped with a Metric causes $nearSphere clause to be added instead
of a plain $near. Beyond that the actual distance gets calculated according to the Metrics used.

Geo-near queries

public interface PersonRepository extends MongoRepository<Person, String>

// {'geoNear' : 'location', 'near' : [x, y] }
GeoResults<Person> findBylLocationNear(Point location);

// No metric: {'geoNear' : 'person', 'mear' : [x, y], maxDistance : distance }
// Metric: {'geoNear' : 'person', 'near' : [x, y], 'maxDistance' : distance,
// "distanceMultiplier' : metric.multiplier, 'spherical' : true }

GeoResults<Person> findByLocationNear(Point location, Distance distance);

// {'geoNear' : 'location', 'near' : [x, y] }
GeoResults<Person> findByLocationNear(Point location);

7.3.3. MongoDB JSON based query methods and field restriction

By adding the annotation org.springframework.data.mongodb.repository.Query repository finder
methods you can specify a MongoDB JSON query string to use instead of having the query derived
from the method name. For example

public interface PersonRepository extends MongoRepository<Person, String>

@Query("{ 'firstname' : 70 }")
List<Person> findByThePersonsFirstname(String firstname);

The placeholder ?0 lets you substitute the value from the method arguments into the JSON query
string.

You can also use the filter property to restrict the set of properties that will be mapped into the Java
object. For example,

public interface PersonRepository extends MongoRepository<Person, String>

@Query(value="{ 'firstname' : 70 }", fields="{ 'firstname' : 1, 'lastname' : 1}")
List<Person> findByThePersonsFirstname(String firstname);

This will return only the firstname, lastname and Id properties of the Person objects. The age property,
a java.lang.Integer, will not be set and its value will therefore be null.

7.3.4. Type-safe Query methods

MongoDB repository support integrates with the QueryDSL project which provides a means to perform
type-safe queries in Java. To quote from the project description, "Instead of writing queries as inline
strings or externalizing them into XML files they are constructed via a fluent APL." It provides the
following features

* Code completion in IDE (all properties, methods and operations can be expanded in your favorite
Java IDE)

* Almost no syntactically invalid queries allowed (type-safe on all levels)

* Domain types and properties can be referenced safely (no Strings involved!)
* Adopts better to refactoring changes in domain types

* Incremental query definition is easier

Please refer to the QueryDSL documentation which describes how to bootstrap your environment for
APT based code generation using Maven or using Ant.

Using QueryDSL you will be able to write queries as shown below

QPerson person = new QPerson("person");
List<Person> result = repository.findAll(person.address.zipCode.eq("C0123"));

Page<Person> page = repository.findAll(person.lastname.contains("a"),
new PageRequest(@, 2, Direction.ASC, "lastname"));

QPerson is a class that is generated (via the Java annotation post processing tool) which is a Predicate
that allows you to write type safe queries. Notice that there are no strings in the query other than the
value "C0123".

You can use the generated Predicate class via the interface QueryDs1PredicateExecutor which is shown
below

http://www.querydsl.com/
http://source.mysema.com/static/querydsl/2.1.2/reference/html/ch02.html#d0e112
http://source.mysema.com/static/querydsl/2.1.2/reference/html/ch02.html#d0e131

public interface QueryDslPredicateExecutor<T> {
T findOne(Predicate predicate);
List<T> findA11(Predicate predicate);
List<T> findA11(Predicate predicate, OrderSpecifier<?>... orders);
Page<T> findAll(Predicate predicate, Pageable pageable);

Long count(Predicate predicate);

}

To use this in your repository implementation, simply inherit from it in addition to other repository
interfaces. This is shown below

public interface PersonRepository extends MongoRepository<Person, String>,
QueryDs1PredicateExecutor<Person> {

// additional finder methods go here

We think you will find this an extremely powerful tool for writing MongoDB queries.

7.3.5. Full-text search queries

MongoDBs full text search feature is very store specic and therefore can rather be found on
MongoRepository than on the more general CrudRepository. What we need is a document with a full-text
index defined for (Please see section Text Indexes for creating).

Additional methods on MongoRepository take TextCriteria as input parameter. In addition to those
explicit methods, it is also possible to add a TextCriteria derived repository method. The criteria will
added as an additional AND criteria. Once the entity contains a @TextScore annotated property the
documents full-text score will be retrieved. Furthermore the @TextScore annotated property will also
make it possible to sort by the documents score.

class FullTextDocument {

String 1id;
String title;
String content;
Float score;

}
interface FullTextRepository extends Repository<FullTextDocument, String> {

// Execute a full-text search and define sorting dynamically
List<FullTextDocument> findA11By(TextCriteria criteria, Sort sort);

// Paginate over a full-text search result
Page<FullTextDocument> findA11By(TextCriteria criteria, Pageable pageable);

// Combine a derived query with a full-text search
List<FullTextDocument> findByTitleOrderByScoreDesc(String title, TextCriteria criteria

Sort sort = new Sort("score");
TextCriteria criteria = TextCriteria.forDefaultLanguage().matchingAny("spring”, "data");
List<FullTextDocument> result = repository.findAl1By(criteria, sort);

criteria = TextCriteria.forDefaultLanguage().matching("film");

Page<FullTextDocument> page = repository.findAl1By(criteria, new PageRequest(1, 1, sort)
)i

List<FullTextDocument> result = repository.findByTitleOrderByScoreDesc("mongodb”,
criteria);

7.4. Miscellaneous

7.4.1. CDI Integration

Instances of the repository interfaces are usually created by a container, which Spring is the most
natural choice when working with Spring Data. As of version 1.3.0 Spring Data MongoDB ships with a
custom CDI extension that allows using the repository abstraction in CDI environments. The extension
is part of the JAR so all you need to do to activate it is dropping the Spring Data MongoDB JAR into your
classpath. You can now set up the infrastructure by implementing a CDI Producer for the
MongoTemplate:

class MongoTemplateProducer {

public MongoOperations createMongoTemplate() throws UnknownHostException,
MongoException {

MongoDbFactory factory = new SimpleMongoDbFactory(new Mongo(), "database");
return new MongoTemplate(factory);

The Spring Data MongoDB CDI extension will pick up the MongoTemplate available as CDI bean and
create a proxy for a Spring Data repository whenever an bean of a repository type is requested by the
container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an @Inject-ed

property:

class RepositoryClient {

PersonRepository repository;

public void businessMethod() {
List<Person> people = repository.findAll();

}
}

7.5. General auditing configuration

Activating auditing functionality is just a matter of adding the Spring Data Mongo auditing namespace
element to your configuration:

Example 31. Activating auditing using XML configuration

<mongo:auditing mapping-context-ref="customMappingContext" auditor-aware-ref=
"yourAuditorAwareImpl"/>

Since Spring Data MongoDB 1.4 auditing can be enabled by annotating a configuration class with the
@EnableMongoAuditing annotation.

Example 32. Activating auditing using JavaConfig

@Configuration
@EnableMongoAuditing
class Config {

@Bean
public AuditorAware<AuditableUser> myAuditorProvider() {
return new AuditorAwareImpl();

}
}

If you expose a bean of type AuditorAware to the ApplicationContext, the auditing infrastructure will
pick it up automatically and use it to determine the current user to be set on domain types. If you have
multiple implementations registered in the ApplicationContext, you can select the one to be used by
explicitly setting the auditorAwareRef attribute of @EnableJpaAuditing.

Chapter 8. Mapping

Rich mapping support is provided by the MongoMappingConverter. MongoMappingConverter has a rich
metadata model that provides a full feature set of functionality to map domain objects to MongoDB
documents.The mapping metadata model is populated using annotations on your domain objects.
However, the infrastructure is not limited to using annotations as the only source of metadata
information. The MongoMappingConverter also allows you to map objects to documents without
providing any additional metadata, by following a set of conventions.

In this section we will describe the features of the MongoMappingConverter. How to use conventions for
mapping objects to documents and how to override those conventions with annotation based mapping
metadata.

SimpleMongoConverter has been deprecated in Spring Data MongoDB M3 as all of its

NOTE
functionality has been subsumed into MappingMongoConverter.

8.1. Convention based Mapping

MongoMappingConverter has a few conventions for mapping objects to documents when no additional
mapping metadata is provided. The conventions are:

The short Java class name is mapped to the collection name in the following manner. The class
‘com.bigbank.SavingsAccount’ maps to ‘savingsAccount’ collection name.

+ All nested objects are stored as nested objects in the document and not as DBRefs

* The converter will use any Spring Converters registered with it to override the default mapping of
object properties to document field/values.

* The fields of an object are used to convert to and from fields in the document. Public JavaBean
properties are not used.

* You can have a single non-zero argument constructor whose constructor argument names match
top level field names of document, that constructor will be used. Otherwise the zero arg constructor
will be used. if there is more than one non-zero argument constructor an exception will be thrown.

8.1.1. How the '_id' field is handled in the mapping layer

MongoDB requires that you have an '_id' field for all documents. If you don’t provide one the driver
will assign a Objectld with a generated value. The "_id" field can be of any type the, other than arrays,
so long as it is unique. The driver naturally supports all primitive types and Dates. When using the
MongoMappingConverter there are certain rules that govern how properties from the Java class is
mapped to this '_id' field.

The following outlines what field will be mapped to the '_id' document field:

* A field annotated with @Id (org.springframework.data.annotation.Id) will be mapped to the '_id' field.
* A field without an annotation but named 'id' will be mapped to the '_id' field.
¢ The default field name for identifiers is ' id' and can be customized via the @Field annotation.

Table 3. Examples for the translation of '_id-field definitions

Field definition Resulting Id-Fieldname in MongoDB
Stringid _id

@Field Stringid _id

@Field('x') Stringid X

@Id String x _id

@Field('x") @Id Stringx _id

The following outlines what type conversion, if any, will be done on the property mapped to the _id
document field.

o If a field named 'id' is declared as a String or BigInteger in the Java class it will be converted to and
stored as an Objectld if possible. Objectld as a field type is also valid. If you specify a value for 'id' in
your application, the conversion to an Objectld is detected to the MongoDBdriver. If the specified
'id' value cannot be converted to an Objectld, then the value will be stored as is in the document’s

id field.

» If a field named 'id' id field is not declared as a String, BigInteger, or ObjectID in the Java class then
you should assign it a value in your application so it can be stored 'as-is' in the document’s _id field.

 If no field named 'id' is present in the Java class then an implicit '_id' file will be generated by the
driver but not mapped to a property or field of the Java class.

When querying and updating MongoTemplate will use the converter to handle conversions of the Query
and Update objects that correspond to the above rules for saving documents so field names and types
used in your queries will be able to match what is in your domain classes.

8.2. Mapping Configuration

Unless explicitly configured, an instance of MongoMappingConverter is created by default when creating a
MongoTemplate. You can create your own instance of the MappingMongoConverter so as to tell it where to
scan the classpath at startup your domain classes in order to extract metadata and construct indexes.
Also, by creating your own instance you can register Spring converters to use for mapping specific
classes to and from the database.

You can configure the MongoMappingConverter as well as com.mongodb.Mongo and MongoTemplate either
using Java or XML based metadata. Here is an example using Spring’s Java based configuration

Example 33. @Configuration class to configure MongoDB mapping support

public class GeoSpatialAppConfig extends AbstractMongoConfiguration {

public Mongo mongo() throws Exception {
return new Mongo("localhost");

}

public String getDatabaseName() {
return "database";

}

public String getMappingBasePackage() {
return "com.bigbank.domain";

}

// the following are optional

public CustomConversions customConversions() throws Exception {
List<Converter<?, 7>> converterList = new ArrayList<Converter<?, 7>>();
converterList.add(new org.springframework.data.mongodb.test.PersonReadConverter(

)i

converterList.add(new org.springframework.data.mongodb.test.PersonWriteConverter

0);

return new CustomConversions(converterList);

}

public LoggingEventListener<MongoMappingEvent> mappingEventsListener() {
return new LoggingEventListener<MongoMappingEvent>();
}
}

AbstractMongoConfiguration requires you to implement methods that define a com.mongodb.Mongo as well
as provide a database name. AbstractMongoConfiguration also has a method you can override named
‘getMappingBasePackage’ which tells the converter where to scan for classes annotated with the
@org.springframework.data.mongodb.core.mapping.Document annotation.

You <can add additional converters to the converter by overriding the method
afterMappingMongoConverterCreation. Also shown in the above example is a LoggingEventListener
which logs MongoMappingEvent's that are posted onto Spring s ‘ApplicationContextEvent
infrastructure.

AbstractMongoConfiguration will create a MongoTemplate instance and registered with

NOTE)
the container under the name 'mongoTemplate'.

You can also override the method UserCredentials getUserCredentials() to provide the username and
password information to connect to the database.

Spring’s MongoDB namespace enables you to easily enable mapping functionality in XML

Example 34. XML schema to configure MongoDB mapping support

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<!-- Default bean name is 'mongo’' -->
<mongo:mongo host="localhost" port="27017"/>

<mongo:db-factory dbname="database" mongo-ref="mongo"/>

<!-- by default look for a Mongo object named 'mongo’' - default name used for the
converter is 'mappingConverter' -->
<mongo:mapping-converter base-package="com.bigbank.domain">
<mongo:custom-converters>
<mongo:converter ref="readConverter"/>
<mongo:converter>
<bean class="org.springframework.data.mongodb.test.PersonWriteConverter"/>
</mongo:converter>
</mongo:custom-converters>
</mongo:mapping-converter>

<bean id="readConverter" class=
"org.springframework.data.mongodb.test.PersonReadConverter"/>

<!-- set the mapping converter to be used by the MongoTemplate -->
<bean id="mongoTemplate" class="
org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>
<constructor-arg name="mongoConverter" ref="mappingConverter"/>
</bean>

<bean class=
"org.springframework.data.mongodb.core.mapping.event.LoggingEventListener"/>

</beans>

The base-package property tells it where to scan for classes annotated with the
@org.springframework.data.mongodb.core.mapping.Document annotation.

8.3. Metadata based Mapping

To take full advantage of the object mapping functionality inside the Spring Data/MongoDB support,
you should annotate your mapped objects with the
@org.springframework.data.mongodb.core.mapping.Document annotation. Although it is not necessary for
the mapping framework to have this annotation (your POJOs will be mapped correctly, even without
any annotations), it allows the classpath scanner to find and pre-process your domain objects to
extract the necessary metadata. If you don’t use this annotation, your application will take a slight
performance hit the first time you store a domain object because the mapping framework needs to
build up its internal metadata model so it knows about the properties of your domain object and how
to persist them.

Example 35. Example domain object

package com.mycompany.domain;
public class Person {
private ObjectId id;

private Integer ssn;

private String firstName;

private String lastName;

}

The @Id annotation tells the mapper which property you want to use for the
MongoDB _id property and the @Indexed annotation tells the mapping
framework to call createIndex() on that property of your document, making
searches faster.

IMPORTANT

IMPORTANT Automatic index creation is only done for types annotated with @Document.

8.3.1. Mapping annotation overview

The MappingMongoConverter can use metadata to drive the mapping of objects to documents. An

overview of the annotations is provided below
* @Id - applied at the field level to mark the field used for identiy purpose.

* @Document - applied at the class level to indicate this class is a candidate for mapping to the database.
You can specify the name of the collection where the database will be stored.

* @DBRef - applied at the field to indicate it is to be stored using a com.mongodbh.DBRef.

* @Indexed - applied at the field level to describe how to index the field.

* @CompoundIndex - applied at the type level to declare Compound Indexes

* @GeoSpatiallndexed - applied at the field level to describe how to geoindex the field.

* @TextIndexed - applied at the field level to mark the field to be included in the text index.
* @Language - applied at the field level to set the language override property for text index.

* @Transient - by default all private fields are mapped to the document, this annotation excludes the
field where it is applied from being stored in the database

» @PersistenceConstructor - marks a given constructor - even a package protected one - to use when
instantiating the object from the database. Constructor arguments are mapped by name to the key
values in the retrieved DBObject.

* @Value - this annotation is part of the Spring Framework . Within the mapping framework it can be
applied to constructor arguments. This lets you use a Spring Expression Language statement to
transform a key’s value retrieved in the database before it is used to construct a domain object. In
order to reference a property of a given document one has to use expressions like:
@Value("#root.myProperty") where root refers to the root of the given document.

» @Field - applied at the field level and described the name of the field as it will be represented in the
MongoDB BSON document thus allowing the name to be different than the fieldname of the class.

The mapping metadata infrastructure is defined in a seperate spring-data-commons project that is
technology agnostic. Specific subclasses are using in the MongoDB support to support annotation based
metadata. Other strategies are also possible to put in place if there is demand.

Here is an example of a more complex mapping.

@Document
@CompoundIndexes({

@CompoundIndex(name = "age_idx", def = "{'lastName': 1, 'age': -1}")
3]

public class Person<T extends Address> {

eId
private String 1id;

@Indexed(unique = true)
private Integer ssn;

@Field("fName")
private String firstName;

@Indexed
private String lastName;

private Integer age;

@Transient
private Integer accountTotal;

@DBRef
private List<Account> accounts;

private T address;

public Person(Integer ssn) {
this.ssn = ssn;

}

@PersistenceConstructor
public Person(Integer ssn, String firstName, String lastName, Integer age, T address) {
this.ssn = ssn;
this.firstName = firstName;
this.lastName = lastName;
this.age = age;
this.address = address;

}

public String getId() {
return id;

}

// no setter for Id. (getter is only exposed for some unit testing)

public Integer getSsn() {
return ssn;

}

// other getters/setters ommitted

8.3.2. Customized Object Construction

The mapping subsystem allows the customization of the object construction by annotating a
constructor with the @PersistenceConstructor annotation. The values to be used for the constructor
parameters are resolved in the following way:

 If a parameter is annotated with the @Value annotation, the given expression is evaluated and the
result is used as the parameter value.

« If the Java type has a property whose name matches the given field of the input document, then it’s
property information is used to select the appropriate constructor parameter to pass the input field
value to. This works only if the parameter name information is present in the java .class files
which can be achieved by compiling the source with debug information or using the new
-parameters command-line switch for javac in Java 8.

* Otherwise an MappingException will be thrown indicating that the given constructor parameter
could not be bound.

class OrderItem {

private String 1id;
private int quantity;
private double unitPrice;

OrderItem(String id, ("#root.qty ?: 0") int quantity, double unitPrice) {
this.id = id;
this.quantity = quantity;
this.unitPrice = unitPrice;

}

// getters/setters ommitted
}

DBObject input = new BasicDBObject("id", "4711");
input.put("unitPrice", 2.5);

input.put("qty",5);

OrderItem item = converter.read(OrderItem.class, input);

The SpEL expression in the @Value annotation of the quantity parameter falls back to

NOTE
the value 0 if the given property path cannot be resolved.

Additional examples for using the @PersistenceConstructor annotation can be found in the
MappingMongoConverterUnitTests test suite.

8.3.3. Compound Indexes

Compound indexes are also supported. They are defined at the class level, rather than on indidividual
properties.

Compound indexes are very important to improve the performance of queries that

NOTE
involve criteria on multiple fields

Here’s an example that creates a compound index of lastName in ascending order and age in
descending order:

Example 36. Example Compound Index Usage

package com.mycompany.domain;

({
(name = "age_idx", def = "{'lastName': 1, 'age': -1}")
3]

public class Person {

private ObjectId 1id;
private Integer age;
private String firstName;
private String lastName;

8.3.4. Text Indexes
NOTE The text index feature is disabled by default for mongodb v.2.4.

Creating a text index allows to accumulate several fields into a searchable full text index. It is only
possible to have one text index per collection so all fields marked with @TextIndexed are combined into
this index. Properties can be weighted to influence document score for ranking results. The default
language for the text index is english, to change the default language set @Document(language="spanish")
to any language you want. Using a property called language or @Language allows to define a language
override on a per document base.

https://github.com/spring-projects/spring-data-mongodb/blob/master/spring-data-mongodb/src/test/java/org/springframework/data/mongodb/core/convert/MappingMongoConverterUnitTests.java

Example 37. Example Text Index Usage

(language = "spanish")
class SomeEntity {

String foo;
String lang;

Nested nested;

}

class Nested {

(weight=5) String bar;
String roo;

8.3.5. Using DBRefs

The mapping framework doesn’t have to store child objects embedded within the document. You can
also store them separately and use a DBRef to refer to that document. When the object is loaded from
MongoDB, those references will be eagerly resolved and you will get back a mapped object that looks
the same as if it had been stored embedded within your master document.

Here’s an example of using a DBRef to refer to a specific document that exists independently of the
object in which it is referenced (both classes are shown in-line for brevity’s sake):

public class Account {

private ObjectId id;
private Float total;

}

public class Person {

private ObjectId id;
private Integer ssn;

private List<Account> accounts;

}

There’s no need to use something like @0neToMany because the mapping framework sees that you’re
wanting a one-to-many relationship because there is a List of objects. When the object is stored in
MongoDB, there will be a list of DBRefs rather than the Account objects themselves.

The mapping framework does not handle cascading saves. If you change an
Account object that is referenced by a Person object, you must save the Account
object separately. Calling save on the Person object will not automatically save
the Account objects in the property accounts.

IMPORTANT

8.3.6. Mapping Framework Events

Events are fired throughout the lifecycle of the mapping process. This is described in the Lifecycle
Events section.

Simply declaring these beans in your Spring ApplicationContext will cause them to be invoked
whenever the event is dispatched.

8.3.7. Overriding Mapping with explicit Converters

When storing and querying your objects it is convenient to have a MongoConverter instance handle the
mapping of all Java types to DBObjects. However, sometimes you may want the “MongoConverter’s do
most of the work but allow you to selectively handle the conversion for a particular type or to optimize
performance.

To selectively handle the conversion yourself, register one or more one or more

org.springframework.core.convert.converter.Converter instances with the MongoConverter.

Spring 3.0 introduced a core.convert package that provides a general type conversion
NOTE system. This is described in detail in the Spring reference documentation section
entitled Spring 3 Type Conversion.

The method customConversions in AbstractMongoConfiguration can be used to configure Converters. The
examples here at the beginning of this chapter show how to perform the configuration using Java and
XML.

Below is an example of a Spring Converter implementation that converts from a DBObject to a Person
POJO.

public class PersonReadConverter implements Converter<DBObject, Person> {

public Person convert(DBObject source) {
Person p = new Person((ObjectId) source.get("_id"), (String) source.get("name"));
p.setAge((Integer) source.get("age"));
return p;
}
}

Here is an example that converts from a Person to a DBObject.

public class PersonWriteConverter implements Converter<Person, DBObject> {

public DBObject convert(Person source) {
DBObject dbo = new BasicDBObject();
dbo.put("_id", source.getId());
dbo.put("name", source.getFirstName());
dbo.put("age", source.getAge());
return dbo;

}

}

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/validation.html#core-convert

Chapter 9. Cross Store support

Sometimes you need to store data in multiple data stores and these data stores can be of different
types. One might be relational while the other a document store. For this use case we have created a
separate module in the MongoDB support that handles what we call cross-store support. The current
implementation is based on JPA as the driver for the relational database and we allow select fields in
the Entities to be stored in a Mongo database. In addition to allowing you to store your data in two
stores we also coordinate persistence operations for the non-transactional MongoDB store with the
transaction life-cycle for the relational database.

9.1. Cross Store Configuration

Assuming that you have a working JPA application and would like to add some cross-store persistence
for MongoDB. What do you have to add to your configuration?

First of all you need to add a dependency on the module. Using Maven this is done by adding a
dependency to your pom:

Example 38. Example Maven pom.xml with spring-data-mongodb-cross-store dependency

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<!-- Spring Data -->

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-mongodb-cross-store</artifactId>
<version>${spring.data.mongo.version}</version>

</dependency>

</project>

Once this is done we need to enable Aspect] for the project. The cross-store support is implemented
using Aspect] aspects so by enabling compile time Aspect] support the cross-store features will become
available to your project. In Maven you would add an additional plugin to the <build> section of the
pom:

Example 39. Example Maven pom.xml with Aspect] plugin enabled

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<build>
<plugins>

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>aspectj-maven-plugin</artifactId>
<version>1.0</version>
<dependencies>
<!-- NB: You must use Maven 2.0.9 or above or these are ignored (see MNG-
2972) -->
<dependency>
<groupld>org.aspectj</groupld>
<artifactId>aspectjrt</artifactId>
<version>${aspectj.version}</version>
</dependency>
<dependency>
<groupId>org.aspectj</groupId>
<artifactId>aspectjtools</artifactId>
<version>${aspectj.version}</version>
</dependency>
</dependencies>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>test-compile</goal>
</goals>
</execution>
</executions>
<confiquration>
<outxml>true</outxml>
<aspectlibraries>
<aspectlibrary>
<groupld>org.springframework</groupld>
<artifactId>spring-aspects</artifactId>
</aspectlibrary>
<aspectlibrary>

<groupId>org.springframework.data</groupId>
<artifactId>spring-data-mongodb-cross-store</artifactId>
</aspectlLibrary>

</aspectLibraries>

<source>1.6</source>

<target>1.6</target>

</configuration>
</plugin>

</plugins>
</build>

</project>

Finally, you need to configure your project to use MongoDB and also configure the aspects that are
used. The following XML snippet should be added to your application context:

Example 40. Example application context with MongoDB and cross-store aspect support

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jdbe="http://www.springframework.org/schema/jdbc"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa-1.0.xsd">

<!-- Mongo config -->
<mongo:mongo host="localhost" port="27017"/>

<bean id="mongoTemplate" class="
org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg name="mongo" ref="mongo"/>
<constructor-arg name="databaseName" value="test"/>
<constructor-arg name="defaultCollectionName" value="cross-store"/>
</bean>

<bean class="org.springframework.data.mongodb.core.MongoExceptionTranslator"/>

<!-- Mongo cross-store aspect config -->
<bean class=
"org.springframework.data.persistence.document.mongo.MongoDocumentBacking"
factory-method="aspectOf">
<property name="changeSetPersister" ref="mongoChangeSetPersister"/>
</bean>
<bean id="mongoChangeSetPersister"
class="org.springframework.data.persistence.document.mongo.MongoChangeSetPersis
ter">
<property name="mongoTemplate" ref="mongoTemplate"/>
<property name="entityManagerFactory" ref="entityManagerFactory"/>
</bean>

</beans>

9.2. Writing the Cross Store Application

We are assuming that you have a working JPA application so we will only cover the additional steps
needed to persist part of your Entity in your Mongo database. First you need to identify the field you
want persisted. It should be a domain class and follow the general rules for the Mongo mapping
support covered in previous chapters. The field you want persisted in MongoDB should be annotated
using the @RelatedDocument annotation. That is really all you need to do!. The cross-store aspects take
care of the rest. This includes marking the field with @Transient so it won’t be persisted using JPA,
keeping track of any changes made to the field value and writing them to the database on successful
transaction completion, loading the document from MongoDB the first time the value is used in your
application. Here is an example of a simple Entity that has a field annotated with @RelatedEntity.

Example 41. Example of Entity with @RelatedDocument

public class Customer {
(strategy = GenerationType.IDENTITY)
private Long id;
private String firstName;

private String lastName;

private SurveyInfo surveyInfo;

// getters and setters omitted

}

Example 42. Example of domain class to be stored as document

public class SurveyInfo {
private Map<String, String> questionsAndAnswers;

public SurveyInfo() {
this.questionsAndAnswers = new HashMap<String, String>();

}

public SurveyInfo(Map<String, String> questionsAndAnswers) {
this.questionsAndAnswers = questionsAndAnswers;

}

public Map<String, String> getQuestionsAndAnswers() {
return questionsAndAnswers;

}

public void setQuestionsAndAnswers(Map<String, String> questionsAndAnswers) {
this.questionsAndAnswers = questionsAndAnswers;

}

public SurveyInfo addQuestionAndAnswer(String question, String answer) {
this.questionsAndAnswers.put(question, answer);
return this;
}
}

Once the SurveyInfo has been set on the Customer object above the MongoTemplate that was
configured above is used to save the SurveyInfo along with some metadata about the JPA Entity is
stored in a MongoDB collection named after the fully qualified name of the JPA Entity class. The
following code:

Example 43. Example of code using the JPA Entity configured for cross-store persistence

Customer customer = new Customer();
customer.setFirstName("Sven");
customer.setLastName("0lafsen");

SurveyInfo surveyInfo = new SurveyInfo()
.addQuestionAndAnswer ("age", "22")
.addQuestionAndAnswer("married", "Yes")
.addQuestionAndAnswer ("citizenship", "Norwegian");

customer.setSurveyInfo(surveyInfo);

customerRepository.save(customer);

Executing the code above results in the following JSON document stored in MongoDB.

Example 44. Example of J]SON document stored in MongoDB

{ "_id" : ObjectId("4d9e8b6e3c55287f87d4b79%e"),

"_entity_id" : 1,

"_entity_class" :
"org.springframework.data.mongodb.examples.custsve.domain.Customer",

"_entity_field_name" : "surveyInfo",
"questionsAndAnswers" : { "married" : "Yes",
llagell : l|22|l'
"citizenship" : "Norwegian" },

_entity_field_class" :
"org.springframework.data.mongodb.examples.custsvc.domain.SurveyInfo" }

Chapter 10. Logging support

An appender for Log4j is provided in the maven module "spring-data-mongodb-log4j". Note, there is no
dependency on other Spring Mongo modules, only the MongoDB driver.

10.1. MongoDB Log4j Configuration

Here is an example configuration

log4j.rootCategory=INFO, stdout

log4j.appender.stdout=org.springframework.data.document.mongodb.log4j.MongoLog4jAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - <%m>%n
log4j.appender.stdout.host = localhost

log4j.appender.stdout.port = 27017

log4j.appender.stdout.database = logs

log4j.appender.stdout.collectionPattern = %X{year}%X{month}
log4j.appender.stdout.applicationId = my.application
log4j.appender.stdout.warnOrHigherWriteConcern = FSYNC_SAFE

log4j.category.org.apache.activemq=ERROR
log4j.category.org.springframework.batch=DEBUG
log4j.category.org.springframework.data.document.mongodb=DEBUG
log4j.category.org.springframework.transaction=INFO

The important configuration to look at aside from host and port is the database and collectionPattern.
The variables year, month, day and hour are available for you to use in forming a collection name. This
is to support the common convention of grouping log information in a collection that corresponds to a
specific time period, for example a collection per day.

There is also an applicationld which is put into the stored message. The document stored from logging
as the following keys: level, name, applicationld, timestamp, properties, traceback, and message.

Chapter 11. JMX support

The JMX support for MongoDB exposes the results of executing the 'serverStatus' command on the
admin database for a single MongoDB server instance. It also exposes an administrative MBean,
MongoAdmin which will let you perform administrative operations such as drop or create a database.
The JMX features build upon the JMX feature set available in the Spring Framework. See here for more
details.

11.1. MongoDB JMX Configuration

Spring’s Mongo namespace enables you to easily enable JMX functionality

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/jmx.html

Example 45. XML schema to configure MongoDB

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<!-- Default bean name is 'mongo' -->
<mongo:mongo host="localhost" port="27017"/>

<!-- by default look for a Mongo object named 'mongo' -->
<mongo: jmx/>

<context:mbean-export/>

<!-- To translate any MongoExceptions thrown in @Repository annotated classes -->
<context:annotation-config/>

<bean id="registry" class=
"org.springframework.remoting.rmi.RmiRegistryFactoryBean" p:port="1099" />

<!-- Expose JMX over RMI -->
<bean id="serverConnector" class=
"org.springframework.jmx.support.ConnectorServerFactoryBean"
depends-on="registry"
p:objectName="connector:name=rmi"
p:servicelrl="service:jmx:rmi://localhost/jndi/rmi://localhost:1099/myconnect
or" />

</beans>

This will expose several MBeans
* AssertMetrics
* BackgroundFlushingMetrics

¢ BtreeIndexCounters

¢ ConnectionMetrics

GlobalLoclMetrics

* MemoryMetrics

* OperationCounters
» ServerInfo

MongoAdmin

This is shown below in a screenshot from JConsole

ngframework. data. docume

) com.sunmanagerment
2 connector
) java.lang
) java.util Ingging
LD javax. management.remate.r mi
(=3 org.springframework. data.document. mangodh

=3 Mongoadmin

(= org.springframework data. document. mongodb MongoAdmin#n

cropDatabase
createDatabase
getDatahaseStats
Wotifications

(=3 org springframework. data.document. mongadh. manitor

5 Assertivetrics

{2 BackgroundF lushinghetrics

) BiresIndexCounters

1) ConnectionMetrics

1) GlobalLockivetrics

) MermoryMetrice

{2 OperationCounters

5 Serverlnfo

Operation invocation

vl [oroppatabese | (p1| swig [y
¥ [croatepatabeze | (p1| String |y
javalang, String
getatbasestats | (pi| Swing b

Chapter 12. MongoDB 3.0 Support

Spring Data MongoDB allows usage of both MongoDB Java driver generations 2 and 3 when connecting
to a MongoDB 2.6/3.0 server running MMap.vl or a MongoDB server 3.0 using MMap.vl or the
WiredTiger storage engine.

Please refer to the driver and database specific documentation for major differences

NOTE
between those.

Operations that are no longer valid using a 3.x MongoDB Java driver have been

NOTE
deprecated within Spring Data and will be removed in a subsequent release.

12.1. Using Spring Data MongoDB with MongoDB 3.0

12.1.1. Configuration Options

Some of the configuration options have been changed / removed for the mongo-java-driver. The
following options will be ignored using the generation 3 driver:

* autoConnectRetry

* maxAutoConnectRetryTime

* slaveOk
Generally it is recommended to use the <mongo:mongo-client /> and <mongo:client-options
/> elements instead of <mongo:mongo /> when doing XML based configuration, since those

elements will only provide you with attributes valid for the 3 generation java driver.

<?xml version="1.0" encoding="UTF-8"7>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<mongo:mongo-client host="127.0.0.1" port="27017">
<mongo:client-options write-concern="NORMAL" />

</mongo:mongo-client>

</beans>

12.1.2. WriteConcern and WriteConcernChecking

The WriteConcern.NONE, which had been used as default by Spring Data MongoDB, was removed in 3.0.
Therefore in a MongoDB 3 environment the WriteConcern will be defaulted to
WriteConcern.UNACKNOWLEGED. In case WriteResultChecking.EXCEPTION is enabled the WriteConcern will be
altered to WriteConcern.ACKNOWLEDGED for write operations, as otherwise errors during execution would
not be throw correctly, since simply not raised by the driver.

12.1.3. Authentication

MongoDB Server generation 3 changed the authentication model when connecting to the DB.
Therefore some of the configuration options available for authentication are no longer valid. Please
use the MongoClient specific options for setting credentials via MongoCredential to provide
authentication data.

public class ApplicationContextEventTestsAppConfig extends AbstractMongoConfiguration {

public String getDatabaseName() {
return "database";

}

public Mongo mongo() throws Exception {
return new MongoClient(singletonList(new ServerAddress("127.0.0.1", 27017)),
singletonList(MongoCredential.createCredential("name", "db", "pwd".toCharArray()))

In order to use authentication with XML configuration use the credentials attribue on <mongo-client>.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<mongo:mongo-client credentials="user:password@database" />

</beans>

12.1.4. Other things to be aware of

This section covers additional things to keep in mind when using the 3.0 driver.

* IndexOperations.resetIndexCache() is no longer supported.

Any MapReduceOptions.extraOption is silently ignored.
* WriteResult does not longer hold error informations but throws an Exception.
* MongoOperations.executeInSession() no longer calls requestStart / requestDone.

* Index name generation has become a driver internal operations, still we use the 2.x schema to
generate names.

* Some Exception messages differ between the generation 2 and 3 servers as well as between
MMap.v1 and WiredTiger storage engine.

Appendix

	Spring Data MongoDB - Reference Documentation
	Table of Contents
	Preface
	Chapter 1. Knowing Spring
	Chapter 2. Knowing NoSQL and Document databases
	Chapter 3. Requirements
	Chapter 4. Additional Help Resources
	4.1. Support
	4.1.1. Community Forum
	4.1.2. Professional Support

	4.2. Following Development

	Reference Documentation
	Chapter 5. Introduction
	5.1. Document Structure

	Chapter 6. MongoDB support
	6.1. Getting Started
	6.2. Examples Repository
	6.3. Connecting to MongoDB with Spring
	6.3.1. Registering a Mongo instance using Java based metadata
	6.3.2. Registering a Mongo instance using XML based metadata
	6.3.3. The MongoDbFactory interface
	6.3.4. Registering a MongoDbFactory instance using Java based metadata
	6.3.5. Registering a MongoDbFactory instance using XML based metadata

	6.4. Introduction to MongoTemplate
	6.4.1. Instantiating MongoTemplate
	6.4.2. WriteResultChecking Policy
	6.4.3. WriteConcern
	6.4.4. WriteConcernResolver

	6.5. Saving, Updating, and Removing Documents
	6.5.1. How the '_id' field is handled in the mapping layer
	6.5.2. Type mapping
	6.5.3. Methods for saving and inserting documents
	6.5.4. Updating documents in a collection
	6.5.5. Upserting documents in a collection
	6.5.6. Finding and Upserting documents in a collection
	6.5.7. Methods for removing documents

	6.6. Querying Documents
	6.6.1. Querying documents in a collection
	6.6.2. Methods for querying for documents
	6.6.3. GeoSpatial Queries
	6.6.4. Full Text Queries

	6.7. Map-Reduce Operations
	6.7.1. Example Usage

	6.8. Group Operations
	6.8.1. Example Usage

	6.9. Aggregation Framework Support
	6.9.1. Basic Concepts
	6.9.2. Supported Aggregation Operations
	6.9.3. Projection Expressions

	6.10. Overriding default mapping with custom converters
	6.10.1. Saving using a registered Spring Converter
	6.10.2. Reading using a Spring Converter
	6.10.3. Registering Spring Converters with the MongoConverter
	6.10.4. Converter disambiguation

	6.11. Index and Collection management
	6.11.1. Methods for creating an Index
	6.11.2. Accessing index information
	6.11.3. Methods for working with a Collection

	6.12. Executing Commands
	6.12.1. Methods for executing commands

	6.13. Lifecycle Events
	6.14. Exception Translation
	6.15. Execution callbacks
	6.16. GridFS support

	Chapter 7. MongoDB repositories
	7.1. Introduction
	7.2. Usage
	7.3. Query methods
	7.3.1. Repository delete queries
	7.3.2. Geo-spatial repository queries
	7.3.3. MongoDB JSON based query methods and field restriction
	7.3.4. Type-safe Query methods
	7.3.5. Full-text search queries

	7.4. Miscellaneous
	7.4.1. CDI Integration

	7.5. General auditing configuration

	Chapter 8. Mapping
	8.1. Convention based Mapping
	8.1.1. How the '_id' field is handled in the mapping layer

	8.2. Mapping Configuration
	8.3. Metadata based Mapping
	8.3.1. Mapping annotation overview
	8.3.2. Customized Object Construction
	8.3.3. Compound Indexes
	8.3.4. Text Indexes
	8.3.5. Using DBRefs
	8.3.6. Mapping Framework Events
	8.3.7. Overriding Mapping with explicit Converters

	Chapter 9. Cross Store support
	9.1. Cross Store Configuration
	9.2. Writing the Cross Store Application

	Chapter 10. Logging support
	10.1. MongoDB Log4j Configuration

	Chapter 11. JMX support
	11.1. MongoDB JMX Configuration

	Chapter 12. MongoDB 3.0 Support
	12.1. Using Spring Data MongoDB with MongoDB 3.0
	12.1.1. Configuration Options
	12.1.2. WriteConcern and WriteConcernChecking
	12.1.3. Authentication
	12.1.4. Other things to be aware of

	Appendix

