Spring Data MongoDB - Reference
Documentation

Mark Pollack, Thomas Risberg, Oliver Gierke, Costin Leau, Jon Brisbhin, Thomas Darimont, Christoph
Strobl

Version 1.7.1.RELEASE
2015-06-30

Table of Contents

| = Lol PP PP 1
1. KNOWIILE SPTIIIE ettt ettt ettt et ettt ettt e e et s et ea e e s et aa e e e eee e aeanaeeennaasananennaneananens 2
2. Knowing NoSQL and Document databasesceveveininiiiiiiiiiiiiieiiiiierreneneireteerereeenreenenes 3
3 REGUITEITIEIIES t.veutrinteneerneeteneneeneeseneneeneaseneenenseneneenensenennssenesensesssnensnssnsesensssensesensenennenens 4
4. Additional HElP RESOUICES ...uenintinietiet ettt eiet et ttenetraeateneeaaeateneeeseeeneneesenensnnensenensnnsns 5

BN 11 0] 00 o S PP 5
4.1.1. COMIMUINITY FOTUIT ..uiniiiieieieiiiiir ittt et re e e ee s eeneerereesasnsnensenannerasnenennes)
4.1.2. Professional SUDPOTT ... et iireiiietiitrttrteteiteteneeteneenentenenterenerneasenenesneanenenesnennenennenenes 5

4.2. FOLIOWING DEVEIOPIMEIIL .. uvurentieiiiniitieete ettt et eteteereeteneteatateseeraeataneneeneanenenesnsnes 5

5. NEW & NOTEWOTTIY L.eeneieii ettt ettt ettt et e et et e et e e e e e eaeaeenaaeananens 6
5.1. What’s new in Spring Data MONZGODB 1.7cuiiiiiiieiiiiiiiiein s ieetere e eenee e eneseenenenaas 6
5. DEPEIIACIICIES +uveutiritineitineeteneeeenteteneneentereneaaenteneneenensenenssnennesensesssnensnssnsosensnsensesensenensenens 7
6.1. Dependency management With SPring BOOt.......ccviieiiiieiiiiiii i 8
6.2. SPIING FrameWOrKottt ettt et et ea et st re e e eananens 8
7. Working with Spring Data REPOSITOTIES ..uuuiuininiiiiieieieieeiietrerneereiretrererneeneererrernenenenrenaenes 9

A B 0] S 0] 1 (< o £ 9

7.2, QUETY IMNETNOGS tueutt ittt ee et ettt et e et e et e e e etaeeaneensaneaesaentanensrneaeeneanensanenns 11

7.3. Defining repoSitOry INTEITACES .iuvueniiiiieri e r e retr e e e eeeeeeeerasnsnenearennesasnsnsnns 13
7.3.1. Fine-tuning repository defiNitionc.veveiiiiiiiiiiii e eree e e ans 13

7.4. Defining qUETY MEthOAS «..vvriiit it iii it et ee et te et rereenteaenesaenteneneenensenennenensens 14
7.4.1. QUETY LOOKUP SITATEZIES .eueninetnireiiet et titee et eeten et raeataneeraeateneneaneaeaneaeaeaeeneaeenns 14
U A 010 1) g A =T L6 (0] | PP 14
7.4.3. PrOPeItY EXPIESSIONIS . eututntneretnenenereererernenenrerenaeresneensereraesasnenenseronsesssnsenseronsesnsns 16
7.4.4. Special parameter handling.......cccoviiuiniiniiiiiiiii e 16
7.4.5. LIMItING QUETY TESULLS . utneinitiireiieteitretitet et eeten et raeateneeraeataneaeaneaeaneaeaneaeeneanenns 17
7.4.6. StreamMing QUETY TeSULTS ... uuie ittt ittt et e et et et e et reaeaeaeaneeanes 18

7.5. Creating repOSItOrY INSTATICES ..uiuiueniietrereieerteteerereeeenretaereratnenearareerasnsnenearensesesnenenns 19
7.5.1. XML CONTIGUIATION 1.t tutinttinieteereenieteereetereneraeneenenerneatenenesnesnenensenenssnenssnesnenennenes 19
R TV E A 2 10) 1 ¥ i - PP 20
7.5.3. StANAAL0NIE USAZE ... ueneiniittie ettt ettt ettt ettt e e s et e et r et eae et eanan 21

7.6. Custom implementations for Spring Data rePOSItOriesccvvverernieiiiiiirerieneneereererernenenss 21
7.6.1. Adding custom behavior to Single rePOSItOTIeS . .ouvuieiuiriniiiiiieiiieieiierrieeneeeeeeeaens 21
7.6.2. Adding custom behavior to all rePOSItOTIeS . c.euure it e eeenes 23

7.7. SPIING DAtA EXTEIISIONIS 1. ettt ettt e etee et ta et aa et e et teaeeateetaeaeentaeeasraeataneanrneananeananeaeenens 26
AN B L] I D1) ¢ To) o A PP 26
7.7.2. REPOSITOTY POPULATOTS 1.uentinitinereinieteeretterenereenterenerneatenenesnensenenesnenssnenssnennenennenes 30
7.7.3. LeBACY WD SUDPOTT . euenitiiit ittt ettt te et e et e et s et eneeeaeaeaneeaneneaneaeenas 32

Reference DOCUIMENTATION ...iuiuiiiiiininiiiiiiiii ettt ettt e e e s et e e enensaanes 34
TN B L0 0o LT 0o) 35

8.1. DOCUIMENT STIUCTUTE ..uvniitiniitiniiiiit ittt ettt e e s et et tentseetsaeaaes 35

I\ (o) aF={e] D) 3101 0] 60 o AP TP 36

oI B €T w0 g 7 U i (=T B PP 36

9.2. EXAMPLES REPOSIIOTY . .etniieiitiii it ettt et ettt e et e et s et e et e et eneeaeananeeanas 40

9.3. Connecting to MongoDB With SPriNg.......ccceieiiiiiiiiiiiiiiiirr e eeeeeereererasnenenns 40
9.3.1. Registering a Mongo instance using Java based metadatac.cocvviieiiiiiiieiinineninnnn. 40
9.3.2. Registering a Mongo instance using XML based metadataccceceveiverniiinnenernenennennn. 42
9.3.3. The MongoDDFaCtOrY INTEITACE +.vvviuiniiiiiireiiiiiieeieereeenererieereeeenreneerannesnsnsnensannens 44
9.3.4. Registering a MongoDbFactory instance using Java based metadatac.ceoevenennen. 45
9.3.5. Registering a MongoDbFactory instance using XML based metadatacccoeeenvnnene. 46

9.4. Introduction to MONGOTEMPIATE ...uereiniiriireiietertieietenertraeaterenerneateneneeneateneaeeneeneneanenes 47
9.4.1. Instantiating MongoTemMPLateoueiiniiii i et et e e eaeeneenas 48
9.4.2. WriteReSUltCheCKINg POLICY ..uvuveieineeiiiiiiri i eeieier e e eereerere s eerenensesasnsnensennens 50
T 0 T T (=T) 4 U i 0 N 50
9.4.4. WriteCONCEINRESOLVET ...iuiuiiiiitieiiiiiiiii ettt e et e s s eneeeaans 50

9.5. Saving, Updating, and RemoviNg DOCUIMENTSuueutreiiirneireineiereetaneaeaeaeaneeeaneeeaneeanes 51
9.5.1. How the '_id' field is handled in the mapping layercceveiiiiiriiiiiiiiiiinrirnenereeenens 54
0.5, 2. TY PO IMaAPPIIIE cueueniniieiein ittt ettt tet et eeneaeeteesernenenentetsesnsatnensesensesasnenensarnns 35
9.5.3. Methods for saving and inserting dOCUIMENTSveiiiiiiiinieieriiiiiieieirereeteeeenaenenes 58
9.5.4. Updating documents in @ COLLECTIONuiniiniiiii it eene 59
9.5.5. Upserting documents in @ COLLECHION ...euvuiiirerniiiieeier i eerer e erere e s s eeeenene 61
9.5.6. Finding and Upserting documents in a COLECtIONcvuvuiiniiiiiieieiiiniiiiiiiiieeneeeens 61
9.5.7. Methods for removing AOCUMENTSeuiuiniiieininieiiiieiieieerr e teeieeee et taeeneneenenes 62

9.6. QUETYINEG DOCUITIEINTS . .euuineinitenit ettt et ttee et eatanetraeataneneraeataneaeaneananeaeaneanensaeenns 62
9.6.1. Querying documents in @ COLLECHION ...euvuirirerniniiiieireiierereererere e eeneerernerarneenrannene 63
9.6.2. Methods for querying for dOCUMENTSocveieiiiiiiiiiiiieiiierr et eeeeeeeene 65
9.6.3. GeOSPAtIAl QUETIES . .uuueininiiiiiiitii ittt ettt e e et a s enenaeans 66
9.6.4. GEOJSON SUPPOTT . ettt ettt ettt ettt et ettt et et e e e a e e et e e e e rneeeaeaeans 69
9.6.5. FUIL TOXT QUBTIES +uvutineieiiiitetteetet ettt ee et e et e ee et eaetaeeeeaeaasneensneaneeenennasennenennenennnes 73

9.7. Map-ReAUCE OPETAtIONS .euvuernineniiiieieiieietetetieteeeteteereteeetetaeeesatnenensarersesasnenenss 74
0. 7. 1. EXAINPIE TS e teiuitintinttenentrntetenententeteneneeneetenenesneanentsnsnsensnsenssessnsensnssnsnnenensens 74

9.8. SCIIPT OPETATIONIS ueuuentiniettt ettt ettt ettt tae et raeatan et raeataneeraeataneeaneananeneaneaneneanenns 77
0.8.1. EXAIMPIE USAZE . eueurnrrerninineietieneretneeeeetaererneneneareraeresneneearersesesasnenseransesasnsnsnsansnns 77

9.9. GrOUP OPETaAtIONIS .. eueueniitereineneetetreteteeetetetetretaenenetetaesesnenenentetsesesatnensnserensesasnenens 77
0.9.1. EXAIMNPIE USAZE .ueuininiinininiiiiiiiii ettt ettt e st e ettt e e s s eneaaans 78

9.10. Aggregation Framework SUPPOTT.....cciuiuiiie ittt e e et e e e e e aes 80
9.10.1. BASIC COMCEPES cuvurntrenrnrnenenrereneretnenereraerernsneneareransesssnsearensesesasnenserensesasnsnsnsonsnns 80
9.10.2. Supported Aggregation OPEratiONSccvurereiuiuireeteererneerentetrerereeneerereeresnenensorenns 81
9.10.3. Projection EXPIeSSIONS ..uuiuiuiiieieineniiiiiiieieieeititetieineeentetresesatnenenteteesasnenensntenns 82

9.11. Overriding default mapping with CUStOIM CONVEILErScvvvereiriiiiieirererieneeeeererernenenenes 89
9.11.1. Saving using a registered SPring CONVEITETcceterrerernrneearerrerernenenrererreresnenensannens 90
9.11.2. Reading using a SPriNg COMVEITELcuiiitrereininiieteeierneereiietrereraenenearereerasnenensonenns 90
9.11.3. Registering Spring Converters with the MongoCOoNVertercocvvvveiiiiiiniieininenininnns 90
9.11.4. Converter diSAMBDIZUATIONuuuiniin ittt ettt ae et e e e et eaa e eaeaneaenas 91

9.12. Index and ColleCtion MANAZEIMENTuvuiueiereerererneneeereraererneneereraererasnsnsararensesasnsnenns 92
9.12.1. Methods for creating an INAeX.......cieiiiiiieiniiiiiiieiir et te e s s eeneeaeane 92

9.12.2. Accessing index INfOrmationoc.vuieiiiiiiiiieii e 93

9.12.3. Methods for working with @ COLLECtION ...uvereiniiieiirereierereiieereenreiereeeeerernrnenenrannens 93

9.13. EXECULING COMIMATNIAS . 1uvuernrnrnenernrerernenenrereneeresneneneareraeresnsnsnsronsesesasnsnsesarensesasnsnsnns 93
9.13.1. Methods for executing COMMANASvuveiiiiiininiiiiiniirnirr e eaanes 94
9.14. LifeCYCle EVEILS ..ueuiiiininiieiiiiiie ettt ettt ettt sttt et e s e et e e en e e e aeaens 94
9.15. EXCePioN TransSlatiOno.ceiiieiiie ittt ettt e et e et e et e et eneeaeeeaneeanes 95
9.16. EXecution CallDaCKSc.vuieiiiiiiiiii e 96
0.17. GIIAES SUPPOIT et ueneniiitieieiietete ettt ettt st e et teteesesaenenensetaesesatnenenserensesasnenenns 97
10. MONZODB TEPOSITOTIES 1vuviuininiiiieititiiiiiitiet ettt re et et tetetsetaenetttetsesasnenenentorsasnenes 100
0 B 0L 0T L0 o1 o) 100
O 7 U PP 100
10.3. QUETY INETROAS c. ittt ettt e e ettt e e e et e re s eneneseeenes 103
10.3.1. RepOSItOry delete qUETIES . .cvuiuinininiiiiiiiitiieiee ettt ete e s e nenenens 104
10.3.2. Geo-spatial rePOSItOTY QUETIES ...uueuieiiieetieeiie ettt e et et aeereeeaeaeaeeeeneaeananes 105
10.3.3. MongoDB JSON based query methods and field restriction..........c.oveeveeieirenerninenennns 106
10.3.4. Type-safe QUery MethOdS....c.vuiuiiiiiiiiiiiiiieee e e ee s s e eeneas 107
10.3.5. Full-text SearCh qUETIEScouiuinininiiiiiiiii e eeees 108
10.4. MISCEILATIEOUS .euvuininnininininiiiitiiitiniiiiintititin ettt e satneneettetsasaeneneeetsasasnenenenteeseses 109
10.4.1. CDI INTEGIAIONL vuvuernineniereerernenenereeaererneneenreneeaerasnenesaronsesesnsnensaronsesesnsnensones 109

11 AUGITIIIE . eetvi it ettt sttt ettt et ettt e e e e 111
I T B 11 1 N 111
11.1.1. Annotation based auditing Metadatacoeveeerneieiiiiei et ereeeeeaes 111
11.1.2. Interface-based auditing Metadatac.oeverererenrerrerererenereereererereeneererrerernenenennes 111
11.1.3. AUGITOTAWATE . eueuininitiiiinininiiiin ettt et a et sttt e eaeata e teenentasastseenenens 112
11.2. General auditing CONfigUIatioNiuiiiiiirtitiiiiiieret e eierereeeeeraeneeneneeenereeneneneneeenenes 112
Y =) 0] o) 1 - PO TPE 114
12.1. Convention Dased Ma PImg . .c.vurerutnierieinererneeeretrererateneeeeraeresnsneneararaesesnsnsnsarorsenes 114
12.1.1. How the '_id' field is handled in the mapping layerc.ccceviiiiiiiiiiiiininiininenenens 114
12.2. Mapping CONIGUTatiONcueuinieiiiiiiii ittt e e e et eeeneaane 115
12.3. Metadata Dased MaPPINg ...ueeeeneieineetiii ettt ettt et e eatan et aaeataneaeaeaeaneaeananes 119
12.3.1. Mapping annotatiON OVETVIEWeueeiererernrnenerereererernenenearersesesnsnensaronsesesnsnsnsnnes 119
12.3.2. Customized Object CONSIIUCTION . ueuiuiiiieiieeieieeii ettt eneereerenesneenenens 122
12.3.3. COMPOUNGA INAEKES .. uiuiniiiiiiieinii ittt ettt ts et e e ettt sesasaenenenens 123
T = 4 0 1= (< 123
12.3.5. USING DBRETS ..euininiiiiiiiiiiiiii et ee e e e 124
12.3.6. Mapping Framework EVENTS.......cocviviiiiniiiiiiiiiiiiiiiinniinnnn e e 125
12.3.7. Overriding Mapping with exXplicit CONVEITErSccvuvtieininiiiiiiiiiieiiieniiiiirenieenenens 125

13, CrOSS STOTE SUPPOTT « . ueeneent ettt ettt et ettt et et et e et e et s e sttt ettt teeaeeaeeanaaneanaaneannns 127
13.1. Cross Store CONFIGUIAtION ..uvuverereiieiieiirere e eiretrerereteneeeeraeresnsneneereraeresnsnenenronnenes 127
13.2. Writing the Cross Store APPLiCAtIONvuvuiviiviiiiiiiniiiiiiiiir e 133
I 0T ea Y DY o) 4o o N 136
14.1. MongoDB L0g4j CONfigUIratiOn .. .ueuiuiirirereineneeiietreeernreneeeereeresnensnsarersnsesnsnsnsnsonsenes 136
BT 170 G101 0] 010) i PP 137
15.1. MONgODB JMX CONFIGUIATION t.vuuuninininiiiiiieinieeiietieeetieneetetetreraeeeneeteerernenenensersenes 137

16. MONZODB 3.0 SUPPOTIT cttuiitinitiniitiiiii et ettt s e e s st eatsatseaenenans 140

16.1. Using Spring Data MongoDB with MongoDB 3.0ccviniieiiiiiiiiii e 140

16.1.1. Configuration OPLIONS ..ueueurrerernenenerteteerernreearereeaererneneeararsesesnsnensaransesesnsnsnsones 140
16.1.2. WriteConcern and WriteConcernCheckingcccvvuviiiiniiiiiiiiniieniiiinnienenenens 141
16.1.3. AUTRENTICAtION tuvueneininitiiii ittt st e e et e s e eeneas 141
16.1.4. Other things to he aWare Ofo.vi i e ee e rer s eneneaens 142

D2N 0 015] 4 o - QPPN 142
Appendix A: NameSPaCe FEIEIEIICE .. .iuiuiiiiieiieiiiiiiit ettt ettt e raseenseteaaesasnenanees 143
The <repositories /> EleIMENTiuiiiiiiii ittt s e nenenens 143
Appendix B: Populators Nnamespace FefEreNCEe . .c.veererereineireiieerernrenereereerernenenenrersesesnsnsnsnes 144
The <populator /> EleMENTtuiueniiiiiie ittt st e e et eresaraenenarensenasnsnensanes 144
Appendix C: RepOSIitOry QUETY KEYWOIAS .cuvuuinininiiiiieieiieiiiiereieteeiteteererrenenreteeaerasnenenees 145
Supported QUETY KEYWOITAS ..cuuuuieininiiiiiiiiiiiir ettt e et e e s anenenens 145
Appendix D: RePOSItOTY UETY FETUTTL TYPES .euenninttnententeteneeeteteereetaeentreeataneaeraeaeaneaeaneananens 147

SUPPOrted QUETY FETUITL LYPES wuvuuinentrrrerernrnerereraererneneeareesesssssnenseransesnsnsnsnrorsesnsnsnsnsnnes 147

© 2008-2015 The original authors.

Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for such
copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

NOTE

Preface

The Spring Data MongoDB project applies core Spring concepts to the development of solutions using
the MongoDB document style data store. We provide a "template"” as a high-level abstraction for
storing and querying documents. You will notice similarities to the JDBC support in the Spring
Framework.

This document is the reference guide for Spring Data - Document Support. It explains Document
module concepts and semantics and the syntax for various stores namespaces.

This section provides some basic introduction to Spring and Document database. The rest of the
document refers only to Spring Data Document features and assumes the user is familiar with
document databases such as MongoDB and CouchDB as well as Spring concepts.

Chapter 1. Knowing Spring

Spring Data uses Spring framework’s core functionality, such as the IoC container, type conversion
system, expression language, JMX integration, and portable DAO exception hierarchy. While it is not
important to know the Spring APIs, understanding the concepts behind them is. At a minimum, the
idea behind IoC should be familiar for whatever IoC container you choose to use.

The core functionality of the MongoDB and CouchDB support can be used directly, with no need to
invoke the IoC services of the Spring Container. This is much like JdbcTemplate which can be used
'standalone’ without any other services of the Spring container. To leverage all the features of Spring
Data document, such as the repository support, you will need to configure some parts of the library
using Spring.

To learn more about Spring, you can refer to the comprehensive (and sometimes disarming)
documentation that explains in detail the Spring Framework. There are a lot of articles, blog entries
and books on the matter - take a look at the Spring framework home page for more information.

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/spring-core.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/beans.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/validation.html#core-convert
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/validation.html#core-convert
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/jmx.html
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/dao.html#dao-exceptions
http://spring.io/docs

Chapter 2. Knowing NoSQL and Document
databases

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of solutions,
terms and patterns (to make things worth even the term itself has multiple meanings). While some of
the principles are common, it is crucial that the user is familiar to some degree with the stores
supported by DATADOC. The best way to get acquainted to this solutions is to read their documentation
and follow their examples - it usually doesn’t take more then 5-10 minutes to go through them and if
you are coming from an RDMBS-only background many times these exercises can be an eye opener.

The jumping off ground for learning about MongoDB is www.mongodb.org. Here is a list of other
useful resources:

* The manual introduces MongoDB and contains links to getting started guides, reference
documentation and tutorials.

* The online shell provides a convenient way to interact with a MongoDB instance in combination
with the online tutorial.

* MongoDB Java Language Center

Several books available for purchase

» Karl Seguin’s online book: The Little MongoDB Book

http://www.google.com/search?q=nosoql+acronym
http://www.mongodb.org/
http://docs.mongodb.org/manual/
http://try.mongodb.org/
http://docs.mongodb.org/manual/tutorial/getting-started/
http://docs.mongodb.org/ecosystem/drivers/java/
http://www.mongodb.org/books
http://openmymind.net/mongodb.pdf

Chapter 3. Requirements

Spring Data MongoDB 1.x binaries requires JDK level 6.0 and above, and Spring Framework 4.0.x and

above.

In terms of document stores, MongoDB at least 2.6.

http://spring.io/docs
http://www.mongodb.org/

Chapter 4. Additional Help Resources

Learning a new framework is not always straight forward. In this section, we try to provide what we
think is an easy to follow guide for starting with Spring Data Document module. However, if you
encounter issues or you are just looking for an advice, feel free to use one of the links below:

4.1. Support

There are a few support options available:

4.1.1. Community Forum

Spring Data on Stackoverflow Stackoverflow is a tag for all Spring Data (not just Document) users to
share information and help each other. Note that registration is needed only for posting.

4.1.2. Professional Support

Professional, from-the-source support, with guaranteed response time, is available from Pivotal
Sofware, Inc., the company behind Spring Data and Spring.

4.2. Following Development

For information on the Spring Data Mongo source code repository, nightly builds and snapshot
artifacts please see the Spring Data Mongo homepage. You can help make Spring Data best serve the
needs of the Spring community by interacting with developers through the Community on
Stackoverflow. To follow developer activity look for the mailing list information on the Spring Data
Mongo homepage. If you encounter a bug or want to suggest an improvement, please create a ticket on
the Spring Data issue tracker. To stay up to date with the latest news and announcements in the Spring
eco system, subscribe to the Spring Community Portal. Lastly, you can follow the SpringSource Data
blog or the project team on Twitter (SpringData).

http://stackoverflow.com/questions/tagged/spring-data
http://pivotal.io/
http://pivotal.io/
http://projects.spring.io/spring-data-mongodb/
http://stackoverflow.com/questions/tagged/spring-data
https://jira.spring.io/browse/DATAMONGO
http://spring.io
http://spring.io/blog
http://twitter.com/SpringData

Chapter 5. New & Noteworthy

5.1. What’s new in Spring Data MongoDB 1.7

* Assert compatibility with MongoDB 3.0 and MongoDB Java Driver 3-beta3 (see: MongoDB 3.0
Support).

Support JSR-310 and ThreeTen back-port date/time types.

Allow Stream as query method return type (see: Query methods).

Added Geo]SON support in both domain types and queries (see: Geo]JSON Support).

QueryDs1PredicateExcecutor now supports findA11(OrderSpecifier<?> orders).
* Support calling JavaScript functions via Script Operations.

» Improve support for CONTAINS keyword on collection like properties.

Support for $bit, $mul and $position operators to Update.

http://geojson.org/

Chapter 6. Dependencies

Due to different inception dates of individual Spring Data modules, most of them carry different major
and minor version numbers. The easiest way to find compatible ones is by relying on the Spring Data
Release Train BOM we ship with the compatible versions defined. In a Maven project you’d declare this
dependency in the <dependencyManagement /> section of your POM:

Example 1. Using the Spring Data release train BOM

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.data</groupld>
<artifactId>spring-data-releasetrain</artifactId>
<version>${release-train}</version>
<scope>import</scope>
<type>pom</type>
</dependency>
<dependencies>
</dependencyManagement>

The current release train version is Fowler-BUILD-SNAPSHOT. The train names are ascending
alphabetically and currently available ones are listed here. The version name follows the following
pattern: §{name}-${release} where release can be one of the following:

o BUILD-SNAPSHOT - current snapshots

M1, M2 etc. - milestones

RC1, RC2 etc. - release candidates

RELEASE - GA release

SR1, SR2 etc. - service releases
A working example of using the BOMs can be found in our Spring Data examples repository.

If that’s in place declare the Spring Data modules you’d like to use without a version in the
<dependencies /> block.

https://github.com/spring-projects/spring-data-commons/wiki/Release-planning
https://github.com/spring-projects/spring-data-examples/tree/master/bom

Example 2. Declaring a dependency to a Spring Data module

<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-jpa</artifactld>
</dependency>
<dependencies>

6.1. Dependency management with Spring Boot

Spring Boot already selects a very recent version of Spring Data modules for you. In case you want to
upgrade to a newer version nonetheless, simply configure the property spring-data-
releasetrain.version to the train name and iteration you’d like to use.

6.2. Spring Framework

The current version of Spring Data modules require Spring Framework in version 4.0.9.RELEASE or
better. The modules might also work with an older bugfix version of that minor version. However,
using the most recent version within that generation is highly recommended.

Chapter 7. Working with Spring Data
Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code
required to implement data access layers for various persistence stores.

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data
repositories. The information in this chapter is pulled from the Spring Data
Commons module. It uses the configuration and code samples for the Java
Persistence API (JPA) module. Adapt the XML namespace declaration and the
types to be extended to the equivalents of the particular module that you are
using. Namespace reference covers XML configuration which is supported
across all Spring Data modules supporting the repository API, Repository query
keywords covers the query method keywords supported by the repository
abstraction in general. For detailed information on the specific features of your
module, consult the chapter on that module of this document.

IMPORTANT

7.1. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a
surprise). It takes the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with and to
help you to discover interfaces that extend this one. The CrudRepository provides sophisticated CRUD
functionality for the entity class that is being managed.

Example 3. CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
extends Repository<T, ID> {

<S extends T> S save(S entity); <1>

T findOne(ID primaryKey); <2>
Iterable<T> findAl1l(); <3>
Long count(); <4>
void delete(T entity); <5>

boolean exists(ID primaryKey); <6>

// more functionality omitted.

@ Saves the given entity.

@ Returns the entity identified by the given id.
® Returns all entities.

@ Returns the number of entities.

® Deletes the given entity.

® Indicates whether an entity with the given id exists.

We also provide persistence technology-specific abstractions like e.g. JpaRepository or
MongoRepository. Those interfaces extend CrudRepository and expose the capabilities of
the underlying persistence technology in addition to the rather generic persistence
technology-agnostic interfaces like e.g. CrudRepository.

NOTE

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 4. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable>
extends CrudRepository<T, ID> {

Iterable<T> findAl11l(Sort sort);

Page<T> findAl1(Pageable pageable);
}

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

Example 5. Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {

Long countBylLastname(String lastname);

}

Example 6. Derived Delete Query

public interface UserRepository extends CrudRepository<User, Long> {
Long deleteBylLastname(String lastname);

List<User> removeBylLastname(String lastname);

7.2. Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With
Spring Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain class
and ID type that it will handle.

interface PersonRepository extends Repository<User, Long> { }

2. Declare query methods on the interface.

interface PersonRepository extends Repository<User, Long> {
List<Person> findBylLastname(String lastname);

}

3. Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

import org.springframework.data.jpa.repository.config.Enable]paRepositories;

@EnablelpaRepositories
class Config {}

or via XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any other
store, you need to change this to the appropriate namespace declaration of your store module
which should be exchanging jpa in favor of, for example, mongodb.

Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the
annotated class is used by default. To customize the package to scan use one of the basePackage
attribute of the data-store specific repository @Enable -annotation.

1. Get the repository instance injected and use it.

public class SomeClient {

private PersonRepository repository;

public void doSomething() {
List<Person> persons = repository.findByLastname("Matthews");

}
}

The sections that follow explain each step in detail.

7.3. Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods for
that domain type, extend CrudRepository instead of Repository.

7.3.1. Fine-tuning repository definition

Typicallyy, your repository interface will extend Repository, CrudRepository or
PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you can
also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository exposes
a complete set of methods to manipulate your entities. If you prefer to be selective about the methods
being exposed, simply copy the ones you want to expose from CrudRepository into your domain
repository.

This allows you to define your own abstractions on top of the provided Spring Data

NOTE o . .
Repositories functionality.

Example 7. Selectively exposing CRUD methods

interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {
T findOne(ID id);

T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
User findByEmailAddress(EmailAddress emailAddress);

}

In this first step you defined a common base interface for all your domain repositories and exposed
findOne() as well as save().These methods will be routed into the base repository implementation
of the store of your choice provided by Spring Data ,e.g. in the case if JPA SimpleJpaRepository, because
they are matching the method signatures in CrudRepository. So the UserRepository will now be able to
save users, and find single ones by id, as well as triggering a query to find Users by their email address.

Note, that the intermediate repository interface is annotated with @NoRepositoryBean.
NOTE Make sure you add that annotation to all repository interfaces that Spring Data should
not create instances for at runtime.

7.4. Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can
derive the query from the method name directly, or by using a manually defined query. Available
options depend on the actual store. However, there’s got to be a strategy that decides what actual query
is created. Let’s have a look at the available options.

7.4.1. Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query-lookup-strategy attribute in case of XML
configuration or via the querylLookupStrategy attribute of the Enable${store}Repositories annotation in
case of Java config. Some strategies may not be supported for particular datastores.

* CREATE attempts to construct a store-specific query from the query method name. The general
approach is to remove a given set of well-known prefixes from the method name and parse the rest
of the method. Read more about query construction in Query creation.

o USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can’t find
one. The query can be defined by an annotation somewhere or declared by other means. Consult
the documentation of the specific store to find available options for that store. If the repository
infrastructure does not find a declared query for the method at bootstrap time, it fails.

o CREATE_IF_NOT_FOUND (default) combines CREATE and USE_DECLARED_QUERY. It looks up a declared query
first, and if no declared query is found, it creates a custom method name-based query. This is the
default lookup strategy and thus will be used if you do not configure anything explicitly. It allows
quick query definition by method names but also custom-tuning of these queries by introducing
declared queries as needed.

7.4.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes find By,
read By, query By, count By, and get By from the method and starts parsing the rest of it. The
introducing clause can contain further expressions such as a Distinct to set a distinct flag on the query

to be created. However, the first By acts as delimiter to indicate the start of the actual criteria. At a very
basic level you can define conditions on entity properties and concatenate them with And and Or.

Example 8. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String
lastname);

// Enables the distinct flag for the query

List<Person> findDistinctPeopleBylLastnameOrFirstname(String lastname, String
firstname);

List<Person> findPeopleDistinctBylLastnameOrFirstname(String lastname, String
firstname);

// Enabling ignoring case for an individual property

List<Person> findByLastnameIgnoreCase(String lastname);

// Enabling ignoring case for all suitable properties

List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String
firstname);

// Enabling static ORDER BY for a query
List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
List<Person> findByLastnameOrderByFirstnameDesc(String lastname);

}

The actual result of parsing the method depends on the persistence store for which you create the
query. However, there are some general things to notice.

* The expressions are usually property traversals combined with operators that can be concatenated.
You can combine property expressions with AND and OR. You also get support for operators such as
Between, LessThan, GreaterThan, Like for the property expressions. The supported operators can vary
by datastore, so consult the appropriate part of your reference documentation.

* The method parser supports setting an IgnoreCase flag for individual properties (for example,
findByLastnameIgnoreCase()) or for all properties of a type that support ignoring case (usually
String instances, for example, findBylLastnameAndFirstnameAllIgnoreCase()). Whether ignoring
cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

* You can apply static ordering by appending an OrderBy clause to the query method that references a
property and by providing a sorting direction (Asc or Desc). To create a query method that supports
dynamic sorting, see Special parameter handling.

7.4.3. Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the
preceding example. At query creation time you already make sure that the parsed property is a
property of the managed domain class. However, you can also define constraints by traversing nested
properties. Assume a Person has an Address with a ZipCode. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting the
entire part (AddressZipCode) as the property and checks the domain class for a property with that name
(uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits up the source
at the camel case parts from the right side into a head and a tail and tries to find the corresponding
property, in our example, AddressZip and Code. If the algorithm finds a property with that head it takes
the tail and continue building the tree down from there, splitting the tail up in the way just described.
If the first split does not match, the algorithm move the split point to the left (Address, ZipCode) and
continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property.
Suppose the Person class has an addressZip property as well. The algorithm would match in the first
split round already and essentially choose the wrong property and finally fail (as the type of addressZip
probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal points.
So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

As we treat underscore as a reserved character we stongly advise to follow standard Java naming
conventions (i.e. not using underscores in property names but camel case instead).

7.4.4. Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageable and
Sort to apply pagination and sorting to your queries dynamically.

Example 9. Using Pageable, Slice and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);
Slice<User> findByLastname(String lastname, Pageable pageable);
List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the query
method to dynamically add paging to your statically defined query. A Page knows about the total
number of elements and pages available. It does so by the infrastructure triggering a count query to
calculate the overall number. As this might be expensive depending on the store used, Slice can be
used as return instead. A Slice only knows about whether there’s a next Slice available which might
be just sufficient when walking thought a larger result set.

Sorting options are handled through the Pageable instance too. If you only need sorting, simply add an
org.springframework.data.domain.Sort parameter to your method. As you also can see, simply returning
a List is possible as well. In this case the additional metadata required to build the actual Page instance
will not be created (which in turn means that the additional count query that would have been
necessary not being issued) but rather simply restricts the query to look up only the given range of
entities.

To find out how many pages you get for a query entirely you have to trigger an
NOTE additional count query. By default this query will be derived from the query you
actually trigger.

7.4.5. Limiting query results

The results of query methods can be limited via the keywords first or top, which can be used
interchangeably. An optional numeric value can be appended to top/first to specify the maximum
result size to be returned. If the number is left out, a result size of 1 is assumed.

Example 10. Limiting the result size of a query with Top and First

User findFirstByOrderByLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);
Slice<User> findTop3BylLastname(String lastname, Pageable pageable);
List<User> findFirst10BylLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct keyword. Also, for the queries limiting the result set
to one instance, wrapping the result into an Optional is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number of
pages available) then it is applied within the limited result.

Note that limiting the results in combination with dynamic sorting via a Sort parameter
NOTE allows to express query methods for the 'K' smallest as well as for the 'K' biggest
elements.

7.4.6. Streaming query results

The results of query methods can be processed incrementally by using a Java 8 Stream<T> as return
type. Instead of simply wrapping the query results in a Stream data store specific methods are used to
perform the streaming.

Example 11. Stream the result of a query with Java 8 Stream<T>
("select u from User u")
Stream<User> findA11ByCustomQueryAndStream();
Stream<User> readAl1ByFirstnameNotNull();

("select u from User u")
Stream<User> streamAl1Paged(Pageable pageable);

A Stream potentially wraps underlying data store specific resources and must therefore
NOTE be closed after usage. You can either manually close the Stream using the close()
method or by using a Java 7 try-with-resources block.

Example 12. Working with a Stream<T> result in a try-with-resources block

try (Stream<User> stream = repository.findA11ByCustomQueryAndStream()) {
stream.forEach();

}

NOTE Not all Spring Data modules currently support Stream<T> as a return type.

7.5. Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One way
to do so is using the Spring namespace that is shipped with each Spring Data module that supports the
repository mechanism although we generally recommend to use the Java-Config style configuration.

7.5.1. XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

Example 13. Enabling Spring Data repositories via XML

<?xml version="1.0" encoding="UTF-8"7>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its sub-packages
for interfaces extending Repository or one of its sub-interfaces. For each interface found, the
infrastructure registers the persistence technology-specific FactoryBean to create the appropriate
proxies that handle invocations of the query methods. Each bean is registered under a bean name that
is derived from the interface name, so an interface of UserRepository would be registered under
userRepository. The base-package attribute allows wildcards, so that you can define a pattern of
scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Repository sub-interface located under the configured base package and creates a bean instance for it.
However, you might want more fine-grained control over which interfaces bean instances get created
for. To do this you use <include-filter /> and <exclude-filter /> elements inside <repositories />.
The semantics are exactly equivalent to the elements in Spring’s context namespace. For details, see
Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the following
configuration:

Example 14. Using exclude-filter element
<repositories base-package="com.acme.repositories">

<context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

7.5.2. JavaConfig

The repository infrastructure can also be triggered using a store-specific @Enable${store}Repositories
annotation on a JavaConfig class. For an introduction into Java-based configuration of the Spring
container, see the reference documentation. [JavaConfig in the Spring reference documentation]

A sample configuration to enable Spring Data repositories looks something like this.
Example 15. Sample annotation based repository configuration
@Configuration

@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {

@Bean
public EntityManagerFactory entityManagerFactory() {
//

{spring-framework-docs}/beans.html#beans-scanning-filters
{spring-framework-docs}/beans.html#beans-java

The sample uses the JPA-specific annotation, which you would change according to the
store module you actually use. The same applies to the definition of the
EntityManagerFactory bean. Consult the sections covering the store-specific
configuration.

NOTE

7.5.3. Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI environments.
You still need some Spring libraries in your classpath, but generally you can set up repositories
programmatically as well. The Spring Data modules that provide repository support ship a persistence
technology-specific RepositoryFactory that you can use as follows.

Example 16. Standalone usage of repository factory

RepositoryFactorySupport factory = // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

7.6. Custom implementations for Spring Data
repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

7.6.1. Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation
for the custom functionality. Use the repository interface you provided to extend the custom interface.

Example 17. Interface for custom repository functionality

interface UserRepositoryCustom {
public void someCustomMethod(User user);

}

Example 18. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

public void someCustomMethod(User user) {
// Your custom implementation

}
}

The most important bit for the class to be found is the Impl postfix of the name on it

NOTE
compared to the core repository interface (see below).

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can use standard dependency injection behavior to inject references to other beans like a JdbTemplate,
take part in aspects, and so on.

Example 19. Changes to the your basic repository interface

interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

// Declare query methods here
}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and
custom functionality and makes it available to clients.

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element’s attribute repository-
impl-postfix to the found repository interface name. This postfix defaults to Impl.

Example 20. Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />

The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl to
act as custom repository implementation, whereas the second example will try to lookup

com.acme.repository.UserRepositoryFooBar.

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based
configuration and autowiring only, as it will be treated as any other Spring bean. If your custom
implementation bean needs special wiring, you simply declare the bean and name it after the
conventions just described. The infrastructure will then refer to the manually defined bean definition
by name instead of creating one itself.

Example 21. Manual wiring of custom implementations

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class=" ">

<!-- further configuration -->
</beans:bean>

7.6.2. Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces.

1. To add custom behavior to all repositories, you first add an intermediate interface to declare the
shared behavior.

Example 22. An interface declaring custom shared behavior

public interface MyRepository<T, ID extends Serializable>
extends PagingAndSortingRepository<T, ID> {

void sharedCustomMethod(ID id);
}

2. Now your individual repository interfaces will extend this intermediate interface instead of the
Repository interface to include the functionality declared.

3. Next, create an implementation of the intermediate interface that extends the persistence
technology-specific repository base class. This class will then act as a custom base class for the
repository proxies.

Example 23. Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
extends SimplelpaRepository<T, ID> implements MyRepository<T, ID> {

private final EntityManager entityManager;

public MyRepositoryImpl(Class<T> domainClass, EntityManager entityManager) {
super (domainClass, entityManager);

// Keep the EntityManager around to used from the newly introduced methods.
this.entityManager = entityManager;
}

public void sharedCustomMethod(ID id) {
// implementation goes here
}
}

The default behavior of the Spring <repositories />namespace is to provide an implementation for
all interfaces that fall under the base-package. This means that if left in its current state, an
implementation instance of MyRepository will be created by Spring. This is of course not desired as it
is just supposed to act as an intermediary between Repository and the actual repository interfaces
you want to define for each entity. To exclude an interface that extends Repository from being
instantiated as a repository instance, you can either annotate it with @NoRepositoryBean (as seen
above) or move it outside of the configured base-package.

. Then create a custom repository factory to replace the default RepositoryFactoryBean that will in
turn produce a custom RepositoryFactory. The new repository factory will then provide your
MyRepositoryImpl as the implementation of any interfaces that extend the Repository interface,
replacing the SimpleJpaRepository implementation you just extended.

Example 24. Custom repository factory bean

public class MyRepositoryFactoryBean<R extends JpaRepository<T, I>, T,
I extends Serializable> extends JpaRepositoryFactoryBean<R, T, I> {

protected RepositoryFactorySupport createRepositoryFactory(EntityManager em) {
return new MyRepositoryFactory(em);

}

private static class MyRepositoryFactory<T, I extends Serializable>
extends JpaRepositoryFactory {

private final EntityManager em;
public MyRepositoryFactory(EntityManager em) {

super(em);
this.em = em;

}

protected Object getTargetRepository(RepositoryMetadata metadata) {
return new MyRepositoryImpl<T, I>((Class<T>) metadata.getDomainClass(), em);

}

protected Class<?> getRepositoryBase(lass(RepositoryMetadata metadata) {
return MyRepositoryImpl.class;
}
}
}

5. Finally, either declare beans of the custom factory directly or use the factory-class attribute of the
Spring namespace or @Enable annotation to instruct the repository infrastructure to use your
custom factory implementation.

Example 25. Using the custom factory with the namespace

<repositories base-package="com.acme.repository"
factory-class="com.acme.MyRepositoryFactoryBean" />

Example 26. Using the custom factory with the @Enable annotation

(factoryClass = "com.acme.MyRepositoryFactoryBean")
class Config {}

7.7. Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

7.7.1. Web support

This section contains the documentation for the Spring Data web support as it is
implemented as of Spring Data Commons in the 1.6 range. As it the newly introduced
support changes quite a lot of things we kept the documentation of the former behavior
in Legacy web support.

NOTE

Spring Data modules ships with a variety of web support if the module supports the repository
programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them
even provide integration with Spring HATEOAS [Spring HATEOAS -
https://github.com/SpringSource/spring-hateoas]. In general, the integration support is enabled by
using the @EnableSpringDataWebSupport annotation in your JavaConfig configuration class.

Example 27. Enabling Spring Data web support

class WebConfiguration { }

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit. It will
also detect Spring HATEOAS on the classpath and register integration components for it as well if
present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or
HateoasAwareSpringDataWebSupport as Spring beans:

https://github.com/SpringSource/spring-hateoas

Example 28. Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the former
-->

<bean class=
"org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

* A DomainClassConverter to enable Spring MVC to resolve instances of repository managed domain
classes from request parameters or path variables.

* HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort
instances from request parameters.

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method
signatures directly, so that you don’t have to manually lookup the instances via the repository:

Example 29. A Spring MVC controller using domain types in method signatures

@Controller
@RequestMapping("/users")
public class UserController {

@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") User user, Model model) {

model.addAttribute("user", user);
return "userForm";

}
}

As you can see the method receives a User instance directly and no further lookup is necessary. The
instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain
class first and eventually access the instance through calling findOne() on the repository instance
registered for the domain type.

Currently the repository has to implement CrudRepository to be eligible to be discovered

NOTE .
for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as an
instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being valid
controller method arguments

Example 30. Using Pageable as controller method argument

("/users")
public class UserController {

UserRepository repository;

public String showUsers(Model model, Pageable pageable) {

model.addAttribute("users", repository.findAll(pageable));
return "users";

}
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request
parameters using the following default configuration:

Table 1. Request parameters evaluated for Pageable instances

page Page you want to retrieve, 0 indexed and defaults
to 0.

size Size of the page you want to retrieve, defaults to
20.

sort Properties that should be sorted by in the format

property,property(,ASC|DESC). Default sort
direction is ascending. Use multiple sort
parameters if you want to switch directions, e.g.
?sort=firstname&sort=1astname,asc.

To customize this behavior extend either SpringDataWebConfiguration or the HATEOAS-enabled
equivalent and override the pageableResolver() or sortResolver() methods and import your
customized configuration file instead of using the @Enable-annotation.

In case you need multiple Pageable or Sort instances to be resolved from the request (for multiple

tables, for example) you can use Spring’s @Qualifier annotation to distinguish one from another. The
request parameters then have to be prefixed with ${qualifier}_. So for a method signature like this:

public String showUsers(Model model,
("foo") Pageable first,
("bar") Pageable second) { }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(@, 20) but can be
customized using the @PageableDefaults annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enrichting the
content of a Page instance with the necessary Page metadata as well as links to let the clients easily
navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of the
Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

Example 31. Using a PagedResourcesAssembler as controller method argument

class PersonController {
PersonRepository repository;

(value = "/persons", method = RequestMethod.GET)
HttpEntity<PagedResources<Person>> persons(Pageable pageable,
PagedResourcesAssembler assembler) {

Page<Person> persons = repository.findAll(pageable);
return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.0K);
}
}

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as controller
method argument. Calling toResources() on it will cause the following:

* The content of the Page will become the content of the PagedResources instance.

» The PagedResources will get a PageMetadata instance attached populated with information form the
Page and the underlying PageRequest.

* The PagedResources gets prev and next links attached depending on the page’s state. The links will

point to the URI the method invoked is mapped to. The pagination parameters added to the method
will match the setup of the PageableHandlerMethodArgumentResolver to make sure the links can be
resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET
http://localhost:8080/persons and you’ll see something similar to this:

{ "links" : [{ "rel" : "next",
"href" : "http://localhost:8080/persons?page=1&size=20 }

1,
"content" : [
// 20 Person instances rendered here
1,
"pageMetadata” : {
"size" : 20,

"totalElements" : 30,
"totalPages" : 2,
"number" : 0

You see that the assembler produced the correct URI and also picks up the default configuration
present to resolve the parameters into a Pageable for an upcoming request. This means, if you change
that configuration, the links will automatically adhere to the change. By default the assembler points to
the controller method it was invoked in but that can be customized by handing in a custom Link to be
used as base to build the pagination links to overloads of the PagedResourcesAssembler.toResource()
method.

7.7.2. Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it
does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define data
with which to populate the repositories.

Assume you have a file data. json with the following content:

http://localhost:8080/persons

Example 32. Data defined in JSON

[{ "_class" : "com.acme.Person",
"firstname" : "Dave",

"lastname" : "Matthews" },

{ " class" : "com.acme.Person",
"firstname" : "Carter",

"lastname" : "Beauford" }]

You can easily populate your repositories by using the populator elements of the repository namespace
provided in Spring Data Commons. To populate the preceding data to your PersonRepository , do the
following:

Example 33. Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd">

<repository:jackson-populator locations="classpath:data.json" />

</beans>

This declaration causes the data.json file to be read and deserialized via a Jackson ObjectMapper.

The type to which the JSON object will be unmarshalled to will be determined by inspecting the _class
attribute of the JSON document. The infrastructure will eventually select the appropriate repository to
handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring OXM
provides you with. See the Spring reference documentation for details.

{spring-framework-docs}/oxm.html

Example 34. Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xmlns:oxm="http://www.springframework.org/schema/oxm"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm.xsd">

<repository:unmarshaller-populator locations="classpath:data.json"
unmarshaller-ref="unmarshaller" />

<oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

7.7.3. Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class ids
from URLs. By default your task is to transform that request parameter or URL part into the domain
class to hand it to layers below then or execute business logic on the entities directly. This would look
something like this:

("/users")
public class UserController {

private final UserRepository userRepository;

public UserController(UserRepository userRepository) {
Assert.notNull(repository, "Repository must not be null!");
this.userRepository = userRepository;

}

(ll/{_id}")
public String showUserForm(("1d") Long id, Model model) {

// Do null check for id
User user = userRepository.findOne(id);
// Do null check for user

model.addAttribute("user", user);
return "user";

First you declare a repository dependency for each controller to look up the entity managed by the
controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a
findOne() call. Fortunately Spring provides means to register custom components that allow
conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that,
Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data repositories
registered in the ApplicationContext and registers a custom PropertyEditor for the managed domain
class.

<bean class=" .web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="webBindingInitializer">
<bean class=" .web.bind.support.ConfigurableWebBindingInitializer">
<property name="propertyEditorRegistrars">
<bean class=
"org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
</property>
</bean>
</property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as
follows, which reduces a lot of the clutter and boilerplate.

@Controller
@RequestMapping("/users")
public class UserController {

@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") User user, Model model) {

model.addAttribute("user", user);
return "userForm";

}
}

Reference Documentation

Chapter 8. Introduction

8.1. Document Structure

This part of the reference documentation explains the core functionality offered by Spring Data
Document.

MongoDB support introduces the MongoDB module feature set.

MongoDB repositories introduces the repository support for MongoDB.

Chapter 9. MongoDB support

The MongoDB support contains a wide range of features which are summarized below.

* Spring configuration support using Java based @Configuration classes or an XML namespace for a
Mongo driver instance and replica sets

* MongoTemplate helper class that increases productivity performing common Mongo operations.
Includes integrated object mapping between documents and POJOs.

» Exception translation into Spring’s portable Data Access Exception hierarchy

» Feature Rich Object Mapping integrated with Spring’s Conversion Service

* Annotation based mapping metadata but extensible to support other metadata formats

* Persistence and mapping lifecycle events

* Java based Query, Criteria, and Update DSLs

* Automatic implementation of Repository interfaces including support for custom finder methods.
* QueryDSL integration to support type-safe queries.

* Cross-store persistance - support for JPA Entities with fields transparently persisted/retrieved using
MongoDB

* Log4j log appender
* GeoSpatial integration

For most tasks you will find yourself using MongoTemplate or the Repository support that both leverage
the rich mapping functionality. MongoTemplate is the place to look for accessing functionality such as
incrementing counters or ad-hoc CRUD operations. MongoTemplate also provides callback methods so
that it is easy for you to get a hold of the low level API artifacts such as org.mongo.DB to communicate
directly with MongoDB. The goal with naming conventions on various API artifacts is to copy those in
the base MongoDB Java driver so you can easily map your existing knowledge onto the Spring APIs.

9.1. Getting Started

Spring MongoDB support requires MongoDB 2.6 or higher and Java SE 6 or higher. An easy way to
bootstrap setting up a working environment is to create a Spring based project in STS.

First you need to set up a running Mongodb server. Refer to the Mongodb Quick Start guide for an
explanation on how to startup a MongoDB instance. Once installed starting MongoDB is typically a
matter of executing the following command: MONGO_HOME/bin/mongod

http://spring.io/tools/sts
http://docs.mongodb.org/manual/core/introduction/

To create a Spring project in STS go to File New Spring Template Project Simple Spring Utility
Project press Yes when prompted. Then enter a project and a package name such as
org.spring.mongodb.example.

Then add the following to pom.xml dependencies section.

<dependencies>
<!-- other dependency elements omitted -->

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-mongodb</artifactId>
<version>1.7.0.RELEASE</version>
</dependency>

</dependencies>

Also change the version of Spring in the pom.xml to be

<spring.framework.version>4.0.9.RELEASE</spring.framework.version>

You will also need to add the location of the Spring Milestone repository for maven to your pom.xml
which is at the same level of your <dependencies/> element

<repositories>
<repository>
<id>spring-milestone</id>
<name>Spring Maven MILESTONE Repository</name>
<url>http://repo.spring.io/libs-milestone</url>
</repository>
</repositories>

The repository is also browseable here.

You may also want to set the logging level to DEBUG to see some additional information, edit the
log4j.properties file to have

log4j.category.org.springframework.data.document.mongodb=DEBUG
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} %5p %40.40c:%4L - %m%n

Create a simple Person class to persist:

http://shrub.appspot.com/maven.springframework.org/milestone/org/springframework/data/

package org.spring.mongodb.example;
public class Person {

private String id;
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

public String getId() {
return 1id;

}
public String getName() {
return name;

}
public int getAge() {
return age;

}

@0verride
public String toString() {
return "Person [id=" + id +

}

, name=" + name + ", age=" + age + "]";

}

And a main application to run

package org.spring.mongodb.example;
import static org.springframework.data.mongodb.core.query.Criteria.where;

import org.apache.commons.logging.log;

import org.apache.commons.logging.LogFactory;

import org.springframework.data.mongodb.core.MongoOperations;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.core.query.Query;

import com.mongodb.Mongo;

public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {

MongoOperations mongoOps = new MongoTemplate(new Mongo(), "database");
mongoOps.insert(new Person("Joe", 34));

log.info(mongoOps.findOne(new Query(where("name").is("Joe")), Person.class));

mongoOps.dropCollection("person");

This will produce the following output

10:01:32,062 DEBUG apping.MongoPersistentEntityIndexCreator: 80
org.spring.example.Person for index information.

10:01:32,265 DEBUG ramework.data.mongodb.core.MongoTemplate: 631
containing fields: [_class, age, name] in collection: Person
10:01:32,765 DEBUG ramework.data.mongodb.core.MongoTemplate:1243
"name" : "Joe"} in db.collection: database.Person

10:01:32,953 INFO org.spring.mongodb.example.MongoApp: 25
[1d=4ddbba3c@be56b7e1b210166, name=Joe, age=34]

10:01:32,984 DEBUG ramework.data.mongodb.core.MongoTemplate: 375
[database.person]

Analyzing class class

insert DBObject

findOne using query: {

Person

Dropped collection

Even in this simple example, there are few things to take notice of

* You can instantiate the central helper class of Spring Mongo, MongoTemplate, using the standard
com.mongodb.Mongo object and the name of the database to use.

* The mapper works against standard POJO objects without the need for any additional metadata
(though you can optionally provide that information. See here.).

* Conventions are used for handling the id field, converting it to be a Objectld when stored in the
database.

* Mapping conventions can use field access. Notice the Person class has only getters.

« If the constructor argument names match the field names of the stored document, they will be used
to instantiate the object

9.2. Examples Repository

There is an github repository with several examples that you can download and play around with to
get a feel for how the library works.

9.3. Connecting to MongoDB with Spring

One of the first tasks when using MongoDB and Spring is to create a com.mongodb.Mongo object using the
IoC container. There are two main ways to do this, either using Java based bean metadata or XML
based bean metadata. These are discussed in the following sections.

For those not familiar with how to configure the Spring container using Java based
bean metadata instead of XML based metadata see the high level introduction in the
NOTE reference docs here as well as the detailed
documentationhttp://docs.spring.io/spring/docs/3.2.x/spring-framework-
reference/html/beans.html#beans-java-instantiating-container|[here].

9.3.1. Registering a Mongo instance using Java based metadata

An example of using Java based bean metadata to register an instance of a com.mongodb.Mongo is shown
below

https://github.com/spring-projects/spring-data-examples
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/new-in-3.0.html#new-java-configuration

Example 35. Registering a com.mongodb.Mongo object using Java based bean metadata

@Configuration
public class AppConfig {

/*
* Use the standard Mongo driver API to create a com.mongodb.Mongo instance.
*/
public @Bean Mongo mongo() throws UnknownHostException {
return new Mongo("localhost");

}

This approach allows you to use the standard com.mongodb.Mongo API that you may already be used to
using but also pollutes the code with the UnknownHostException checked exception. The use of the
checked exception is not desirable as Java based bean metadata uses methods as a means to set object
dependencies, making the calling code cluttered.

An alternative is to register an instance of com.mongodb.Mongo instance with the container using
Spring’s® MongoFactoryBean . As compared to instantiating a com.mongodb.Mongo instance directly, the
FactoryBean approach does not throw a checked exception and has the added advantage of also
providing the container with an ExceptionTranslator implementation that translates MongoDB
exceptions to exceptions in Spring’s portable DataAccessException hierarchy for data access classes
annoated with the @Repository annotation. This hierarchy and use of @Repository is described in
Spring’s DAO support features.

An example of a Java based bean metadata that supports exception translation on @Repository
annotated classes is shown below:

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/dao.html

Example 36. Registering a com.mongodb.Mongo object using Spring’s MongoFactoryBean and enabling
Spring’s exception translation support

public class AppConfig {

/*
* Factory bean that creates the com.mongodb.Mongo instance
*/
public MongoFactoryBean mongo() {
MongoFactoryBean mongo = new MongoFactoryBean();
mongo.setHost("localhost");
return mongo;

To access the com.mongodb.Mongo object created by the MongoFactoryBean in other @Configuration or your
own classes, use a “private @Autowired Mongo mongo;” field.

9.3.2. Registering a Mongo instance using XML based metadata

While you can use Spring’s traditional <beans/> XML namespace to register an instance of
com.mongodb.Mongo with the container, the XML can be quite verbose as it is general purpose. XML
namespaces are a better alternative to configuring commonly used objects such as the Mongo instance.
The mongo namespace alows you to create a Mongo instance server location, replica-sets, and options.

To use the Mongo namespace elements you will need to reference the Mongo schema:

Example 37. XML schema to configure MongoDB

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mongo="http://www.springframework.org/schema/data/mongo'
xsi:schemalocation=
"http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
*http://www.springframework.org/schema/data/mongo

http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd*
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<!-- Default bean name is 'mongo' -->
<mongo:mongo host="localhost" port="27017"/>

</beans>

A more advanced configuration with MongoOptions is shown below (note these are not recommended
values)

Example 38. XML schema to configure a com.mongodb.Mongo object with MongoOptions

<beans>

<mongo:mongo host="1ocalhost" port="27017">
<mongo:options connections-per-host="8"

threads-allowed-to-block-for-connection-multiplier="4"
connect-timeout="1000"
max-wait-time="1500}"
auto-connect-retry="true"
socket-keep-alive="true"
socket-timeout="1500"
slave-ok="true"
write-number="1"
write-timeout="0"
write-fsync="true"/>

</mongo:mongo/>

</beans>

A configuration using replica sets is shown below.

Example 39. XML schema to configure com.mongodb.Mongo object with Replica Sets

<mongo:mongo id="replicaSetMongo" replica-set="127.0.0.1:27017,1localhost:27018"/>

9.3.3. The MongoDbFactory interface

While com.mongodb.Mongo is the entry point to the MongoDB driver API, connecting to a specific
MongoDB database instance requires additional information such as the database name and an
optional username and password. With that information you can obtain a com.mongodb.DB object and
access all the functionality of a specific MongoDB database instance. Spring provides the
org.springframework.data.mongodb.core.MongoDbFactory interface shown below to bootstrap
connectivity to the database.

public interface MongoDbFactory {
DB getDb() throws DataAccessException;

DB getDb(String dbName) throws DataAccessException;
+

The following sections show how you can use the container with either Java or the XML based
metadata to configure an instance of the MongoDbFactory interface. In turn, you can use the
MongoDbFactory instance to configure MongoTemplate.

The class org.springframework.data.mongodb.core.SimpleMongoDbFactory provides implements the
MongoDbFactory interface and is created with a standard com.mongodb.Mongo instance, the database
name and an optional org.springframework.data.authentication.UserCredentials constructor
argument.

Instead of using the IoC container to create an instance of MongoTemplate, you can just use them in
standard Java code as shown below.

public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {

MongoOperations mongoOps = new MongoTemplate(*new SimpleMongoDbFactory(new Mongo(),
"database")*);

mongoOps.insert(new Person("Joe", 34));
log.info(mongoOps.findOne(new Query(where("name").is("Joe")), Person.class));
mongoOps.dropCollection("person");

}
}

The code in bold highlights the use of SimpleMongoDbFactory and is the only difference between the
listing shown in the getting started section.

9.3.4. Registering a MongoDbFactory instance using Java based metadata

To register a MongoDbFactory instance with the container, you write code much like what was
highlighted in the previous code listing. A simple example is shown below

public class MongoConfiguration {

public MongoDbFactory mongoDbFactory() throws Exception {
return new SimpleMongoDbFactory(new Mongo(), "database");
}
}
To define the username and password create an instance of

org.springframework.data.authentication.UserCredentials and pass it into the constructor as shown
below. This listing also shows using MongoDbFactory register an instance of MongoTemplate with the
container.

public class MongoConfiguration {

public MongoDbFactory mongoDbFactory() throws Exception {
UserCredentials userCredentials = new UserCredentials("joe", "secret");
return new SimpleMongoDbFactory(new Mongo(), "database", userCredentials);

}

public MongoTemplate mongoTemplate() throws Exception {
return new MongoTemplate(mongoDbFactory());

}
}

9.3.5. Registering a MongoDbFactory instance using XML based metadata

The mongo namespace provides a convient way to create a SimpleMongoDbFactory as compared to using
the "<beans/>" namespace. Simple usage is shown below

<mongo:db-factory dbname="database">

In the above example a com.mongodb.Mongo instance is created using the default host and port number.
The SimpleMongoDbFactory registered with the container is identified by the id 'mongoDbFactory' unless
a value for the id attribute is specified.

You can also provide the host and port for the underlying com.mongodb.Mongo instance as shown below,
in addition to username and password for the database.

<mongo:db-factory id="anotherMongoDbFactory"
host="localhost"
port="27017"
dbname="database"
username="joe"
password="secret"/>

If you need to configure additional options on the com.mongodb.Mongo instance that is used to create a
SimpleMongoDbFactory you can refer to an existing bean using the mongo-ref attribute as shown below.
To show another common usage pattern, this listing show the use of a property placeholder to
parameterise the configuration and creating MongoTemplate.

<context:property-placeholder location=
"classpath:/com/myapp/mongodb/config/mongo.properties”/>

<mongo:mongo host="${mongo.host}" port="${mongo.port}">
<mongo:options

connections-per-host="${mongo.connectionsPerHost}"
threads-allowed-to-block-for-connection-multiplier=

"${mongo.threadsAllowedToBlockForConnectionMultiplier}"
connect-timeout="${mongo.connectTimeout}"
max-wait-time="${mongo.maxWaitTime}"
auto-connect-retry="${mongo.autoConnectRetry}"
socket-keep-alive="${mongo.socketKeepAlive}"
socket-timeout="${mongo.socketTimeout}"
slave-ok="${mongo.slaveOk}"
write-number="1"
write-timeout="0"
write-fsync="true"/>

</mongo:mongo>

<mongo:db-factory dbname="database" mongo-ref="mongo"/>

<bean id="anotherMongoTemplate" class=
"org.springframework.data.mongodb.core.MongoTemplate">

<constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>
</bean>

9.4. Introduction to MongoTemplate

The class MongoTemplate, located in the package org.springframework.data.document.mongodb, is the
central class of the Spring’s MongoDB support providing a rich feature set to interact with the
database. The template offers convenience operations to create, update, delete and query for MongoDB
documents and provides a mapping between your domain objects and MongoDB documents.

Once configured, MongoTemplate is thread-safe and can be reused across multiple

NOTE .
instances.

The mapping between MongoDB documents and domain classes is done by delegating to an
implementation of the interface MongoConverter. Spring provides two implementations,
SimpleMappingConverter and MongoMappingConverter, but you can also write your own converter. Please
refer to the section on MongoConverters for more detailed information.

The MongoTemplate class implements the interface MongoOperations. In as much as possible, the methods
on MongoOperations are named after methods available on the MongoDB driver Collection object as as
to make the API familiar to existing MongoDB developers who are used to the driver APIL. For example,
you will find methods such as "find", "findAndModify", "findOne", "insert", "remove", "save", "update"

and "updateMulti". The design goal was to make it as easy as possible to transition between the use of
the base MongoDB driver and MongoOperations. A major difference in between the two APIs is that
MongoOperations can be passed domain objects instead of DBObject and there are fluent APIs for Query,
Criteria, and Update operations instead of populating a DBObject to specify the parameters for those
operations.

The preferred way to reference the operations on MongoTemplate instance is via its

NOTE . .
interface MongoOperations.

The default converter implementation used by MongoTemplate is MongoMappingConverter. While the
MongoMappingConverter can make use of additional metadata to specify the mapping of objects to
documents it is also capable of converting objects that contain no additional metadata by using some
conventions for the mapping of IDs and collection names. These conventions as well as the use of
mapping annotations is explained in the Mapping chapter.

In the M2 release SimpleMappingConverter, was the default and this class is now

NOTE
deprecated as its functionality has been subsumed by the MongoMappingConverter.

Another central feature of MongoTemplate is exception translation of exceptions thrown in the
MongoDB Java driver into Spring’s portable Data Access Exception hierarchy. Refer to the section on
exception translation for more information.

While there are many convenience methods on MongoTemplate to help you easily perform common
tasks if you should need to access the MongoDB driver API directly to access functionality not explicitly
exposed by the MongoTemplate you can use one of several Execute callback methods to access
underlying driver APIs. The execute callbacks will give you a reference to either a
com.mongodb.Collection or a com.mongodb. DB object. Please see the section
mongo.executioncallback[Execution Callbacks] for more information.

Now let’s look at a examples of how to work with the MongoTemplate in the context of the Spring
container.

9.4.1. Instantiating MongoTemplate

You can use Java to create and register an instance of MongoTemplate as shown below.

Example 40. Registering a com.mongodb.Mongo object and enabling Spring’s exception translation
support

@Configuration
public class AppConfig {

public @Bean Mongo mongo() throws Exception {
return new Mongo("localhost");

}

public @Bean MongoTemplate mongoTemplate() throws Exception {
return new MongoTemplate(mongo(), "mydatabase");
}
}

There are several overloaded constructors of MongoTemplate. These are

* MongoTemplate(Mongo mongo, String databaseName) - takes the com.mongodb.Mongo object and the
default database name to operate against.

* MongoTemplate(Mongo mongo, String databaseName, UserCredentials userCredentials) - adds the
username and password for authenticating with the database.

* MongoTemplate(MongoDbFactory mongoDbFactory) - takes a MongoDbFactory object that encapsulated
the com.mongodb.Mongo object, database name, and username and password.

* MongoTemplate(MongoDbFactory mongoDbFactory, MongoConverter mongoConverter) - adds a
MongoConverter to use for mapping.

You can also configure a MongoTemplate using Spring’s XML <beans/> schema.

<mongo:mongo host="localhost" port="27017"/>

<bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg ref="mongo"/>
<constructor-arg name="databaseName" value="geospatial"/>

</bean>

Other optional properties that you might like to set when creating a MongoTemplate are the default
WriteResultCheckingPolicy, WriteConcern, and ReadPreference

The preferred way to reference the operations on MongoTemplate instance is via its

NOTE . .
interface MongoOperations.

9.4.2. WriteResultChecking Policy

When in development it is very handy to either log or throw an exception if the
com.mongodb.WriteResult returned from any MongoDB operation contains an error. It is quite common
to forget to do this during development and then end up with an application that looks like it runs
successfully but in fact the database was not modified according to your expectations. Set
MongoTemplate’s property to an enum with the following values, LOG, EXCEPTION, or NONE to either
log the error, throw and exception or do nothing. The default is to use a WriteResultChecking value of
NONE.

9.4.3. WriteConcern

You can set the com.mongodb.WriteConcern property that the MongoTemplate will use for write operations
if it has not yet been specified via the driver at a higher level such as com.mongodb.Mongo. If
MongoTemplate’s WriteConcern property is not set it will default to the one set in the MongoDB driver’s
DB or Collection setting.

9.4.4. WriteConcernResolver

For more advanced cases where you want to set different WriteConcern values on a per-operation basis
(for remove, update, insert and save operations), a strategy interface called WriteConcernResolver can
be configured on MongoTemplate. Since MongoTemplate is used to persist POJOs, the WriteConcernResolver
lets you create a policy that can map a specific POJO class to a WriteConcern value. The
WriteConcernResolver interface is shown below.

public interface WriteConcernResolver {
WriteConcern resolve(MongoAction action);

}

The passed in argument, MongoAction, is what you use to determine the WriteConcern value to be used
or to use the value of the Template itself as a default. MongoAction contains the collection name being
written to, the java.lang.Class of the POJO, the converted DBObject, as well as the operation as an
enumeration (MongoActionOperation: REMOVE, UPDATE, INSERT, INSERT_LIST, SAVE) and a few other
pieces of contextual information. For example,

private class MyAppWriteConcernResolver implements WriteConcernResolver {

public WriteConcern resolve(MongoAction action) {
if (action.getEntityClass().getSimpleName().contains("Audit")) {
return WriteConcern.NONE;
} else if (action.getEntityClass().getSimpleName().contains("Metadata")) {
return WriteConcern.JOURNAL SAFE;

}

return action.getDefaultWriteConcern();

}
}

9.5. Saving, Updating, and Removing Documents

MongoTemplate provides a simple way for you to save, update, and delete your domain objects and map
those objects to documents stored in MongoDB.

Given a simple class such as Person

public class Person {

private String 1id;
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

public String getId() {
return 1id;

}
public String getName() {
return name;

}
public int getAge() {
return age;

}

@0verride
public String toString() {
return "Person [id=" + id +

}

, name=" + name + ", age=" + age + "]";

You can save, update and delete the object as shown below.

NOTE MongoOperations is the interface that MongoTemplate implements.

package org.spring.example;

import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Update.update;
import static org.springframework.data.mongodb.core.query.Query.query;

import java.util.List;

import org.apache.commons.logging.Log;

import org.apache.commons.logging.lLogFactory;

import org.springframework.data.mongodb.core.MongoOperations;
import org.springframework.data.mongodb.core.MongoTemplate;

import org.springframework.data.mongodb.core.SimpleMongoDbFactory;

import com.mongodb.Mongo;

public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {

MongoOperations mongoOps = new MongoTemplate(new SimpleMongoDbFactory(new Mongo(),
"database"));

Person p = new Person("Joe", 34);

// Insert is used to initially store the object into the database.
mongoOps.insert(p);
log.info("Insert: " + p);

// Find

p = mongoOps.findById(p.getId(), Person.class);
log.info("Found: " + p);

// Update
mongoOps.updateFirst(query(where("name").is("Joe")), update("age", 35), Person.class

p = mongoOps.findOne(query(where("name").is("Joe")), Person.class);
log.info("Updated: " + p);

// Delete
mongoOps. remove(p);

// Check that deletion worked
List<Person> people = mongoOps.findAll(Person.class);

log.info("Number of people = : " + people.size());

mongoOps.dropCollection(Person.class);
}
+

This would produce the following log output (including debug messages from MongoTemplate itself)

DEBUG apping.MongoPersistentEntityIndexCreator: 8@ - Analyzing class class
org.spring.example.Person for index information.

DEBUG work.data.mongodb.core.MongoTemplate: 632 - insert DBObject containing fields:
[_class, age, name] in collection: person

INFO org.spring.example.MongoApp: 30 - Insert: Person
[1d=4ddcbe784ce5bleba3ceaf5c, name=Joe, age=34]

DEBUG work.data.mongodb.core.MongoTemplate:1246 - findOne using query: { "_id" : { "S$oid"
: "4ddc6e784ce5bleba3ceaf5c”}} in db.collection: database.person

INFO org.spring.example.MongoApp: 34 - Found: Person
[id=4ddcbe784ce5bleba3ceaf5c, name=Joe, age=34]

DEBUG work.data.mongodb.core.MongoTemplate: 778 - calling update using query: { "name" :
"Joe"} and update: { "$set" : { "age" : 35}} in collection: person

DEBUG work.data.mongodb.core.MongoTemplate:1246 - findOne using query: { "name" : "Joe"}
in db.collection: database.person

INFO org.spring.example.MongoApp: 39 - Updated: Person
[1d=4ddcbe784ce5bleba3ceaf5c, name=Joe, age=35]

DEBUG work.data.mongodb.core.MongoTemplate: 823 - remove using query: { "id" :
"4ddcbe784ce5bleba3ceaf5c"} in collection: person

INFO org.spring.example.MongoApp: 46 - Number of people = : @

DEBUG work.data.mongodb.core.MongoTemplate: 376 - Dropped collection [database.person]

There was implicit conversion using the MongoConverter between a String and ObjectId as stored in the
database and recognizing a convention of the property "Id" name.

This example is meant to show the use of save, update and remove operations on

NOTE
MongoTemplate and not to show complex mapping functionality

The query syntax used in the example is explained in more detail in the section Querying Documents.

9.5.1. How the '_id' field is handled in the mapping layer

MongoDB requires that you have an '_id' field for all documents. If you don’t provide one the driver
will assign a ObjectId with a generated value. When using the MongoMappingConverter there are certain
rules that govern how properties from the Java class is mapped to this'_id' field.

The following outlines what property will be mapped to the '_id' document field:

* A property or field annotated with @Id (org.springframework.data.annotation.Id) will be mapped to

the '_id' field.
* A property or field without an annotation but named id will be mapped to the '_id' field.

The following outlines what type conversion, if any, will be done on the property mapped to the _id
document field when using the MappingMongoConverter, the default for MongoTemplate.

* An id property or field declared as a String in the Java class will be converted to and stored as an
ObjectId if possible using a Spring Converter<String, ObjectId>. Valid conversion rules are
delegated to the MongoDB Java driver. If it cannot be converted to an Objectld, then the value will
be stored as a string in the database.

* An id property or field declared as BigInteger in the Java class will be converted to and stored as an
ObjectId using a Spring Converter<BigInteger, ObjectId>.

If no field or property specified above is present in the Java class then an implicit '_id' file will be
generated by the driver but not mapped to a property or field of the Java class.

When querying and updating MongoTemplate will use the converter to handle conversions of the Query
and Update objects that correspond to the above rules for saving documents so field names and types
used in your queries will be able to match what is in your domain classes.

9.5.2. Type mapping

As MongoDB collections can contain documents that represent instances of a variety of types. A great
example here is if you store a hierarchy of classes or simply have a class with a property of type Object.
In the latter case the values held inside that property have to be read in correctly when retrieving the
object. Thus we need a mechanism to store type information alongside the actual document.

To achieve that the MappingMongoConverter uses a MongoTypeMapper abstraction with
DefaultMongoTypeMapper as it’s main implementation. It’s default behaviour is storing the fully qualified
classname under _class inside the document for the top-level document as well as for every value if it’s
a complex type and a subtype of the property type declared.

Example 41. Type mapping

public class Sample {
Contact value;

+
public abstract class Contact { }
public class Person extends Contact { }

Sample sample = new Sample();
sample.value = new Person();

mongoTemplate.save(sample);

{ "_class" : "com.acme.Sample",
"value" : { " _class" : "com.acme.Person" }

As you can see we store the type information for the actual root class persistent as well as for the
nested type as it is complex and a subtype of Contact. So if youre now using
mongoTemplate.findAl11(Object.class, "sample") we are able to find out that the document stored shall
be a Sample instance. We are also able to find out that the value property shall be a Person actually.

Customizing type mapping

In case you want to avoid writing the entire Java class name as type information but rather like to use
some key you can use the @TypeAlias annotation at the entity class being persisted. If you need to
customize the mapping even more have a look at the TypeInformationMapper interface. An instance of
that interface can be configured at the DefaultMongoTypeMapper which can be configured in turn on
MappingMongoConverter.

Example 42. Defining a TypeAlias for an Entity

(Ilpersll)
class Person {

Note that the resulting document will contain "pers" as the value in the _class Field.

Configuring custom type mapping

The following example demonstrates how to configure a custom
MappingMongoConverter.

Example 43. Configuring a custom MongoTypeMapper via Spring Java Config

class CustomMongoTypeMapper extends DefaultMongoTypeMapper {
//implement custom type mapping here

}

@Configuration
class SampleMongoConfiguration extends AbstractMongoConfiguration {

@0verride
protected String getDatabaseName() {
return "database";

}

@Override
public Mongo mongo() throws Exception {
return new Mongo();

}

@Bean
@0verride

public MappingMongoConverter mappingMongoConverter() throws Exception {

MappingMongoConverter mmc = super.mappingMongoConverter();
mmc . setTypeMapper (customTypeMapper());
return mmc;

}

@Bean
public MongoTypeMapper customTypeMapper() {
return new CustomMongoTypeMapper();
}
}

MongoTypeMapper

in

Note that we are extending the AbstractMongoConfiguration class and override the bean definition of

the MappingMongoConverter where we configure our custom MongoTypeMapper.

Example 44. Configuring a custom MongoTypeMapper via XML

<mongo:mapping-converter type-mapper-ref="customMongoTypeMapper"/>

<bean name="customMongoTypeMapper" class="com.bubu.mongo.CustomMongoTypeMapper"/>

9.5.3. Methods for saving and inserting documents

There are several convenient methods on MongoTemplate for saving and inserting your objects. To have
more fine grained control over the conversion process you can register Spring converters with the
MappingMongoConverter, for example Converter<Person, DBObject>and Converter<DBObject, Person>.

The difference between insert and save operations is that a save operation will perform

NOTE
an insert if the object is not already present.

The simple case of using the save operation is to save a POJO. In this case the collection name will be
determined by name (not fully qualfied) of the class. You may also call the save operation with a
specific collection name. The collection to store the object can be overriden using mapping metadata.

When inserting or saving, if the Id property is not set, the assumption is that its value will be auto-
generated by the database. As such, for auto-generation of an Objectld to succeed the type of the Id
property/field in your class must be either a String, ObjectId, or BigInteger.

Here is a basic example of using the save operation and retrieving its contents.
Example 45. Inserting and retrieving documents using the MongoTemplate

import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Criteria.query;

Person p = new Person("Bob", 33);
mongoTemplate.insert(p);

Person qp = mongoTemplate.findOne(query(where("age").is(33)), Person.class);

The insert/save operations available to you are listed below.
* void save (Object objectToSave) Save the object to the default collection.
* void save (Object objectToSave, String collectionName) Save the object to the specified collection.

A similar set of insert operations is listed below

* void insert (Object objectToSave) Insert the object to the default collection.

* void insert (Object objectToSave, String collectionName) Insert the object to the specified
collection.

Which collection will my documents be saved into?

There are two ways to manage the collection name that is used for operating on the documents. The
default collection name that is used is the class name changed to start with a lower-case letter. So a
com. test.Person class would be stored in the "person" collection. You can customize this by providing a
different collection name using the @Document annotation. You can also override the collection name
by providing your own collection name as the last parameter for the selected MongoTemplate method
calls.

Inserting or saving individual objects

The MongoDB driver supports inserting a collection of documents in one operation. The methods in the
MongoOperations interface that support this functionality are listed below

* insert inserts an object. If there is an existing document with the same id then an error is
generated.

* insertAll takes a "Collection of objects as the first parameter. This method inspects each object
and inserts it to the appropriate collection based on the rules specified above.

* save saves the object overwriting any object that might exist with the same id.

Inserting several objects in a batch

The MongoDB driver supports inserting a collection of documents in one operation. The methods in the
MongoOperations interface that support this functionality are listed below

 insert’ methods that take a Collection as the first argument. This inserts a list of objects in a single
batch write to the database.

9.5.4. Updating documents in a collection

For updates we can elect to update the first document found using MongoOperation s method
‘updateFirst or we can update all documents that were found to match the query using the method
updateMulti. Here is an example of an update of all SAVINGS accounts where we are adding a one time
$50.00 bonus to the balance using the $inc operator.

Example 46. Updating documents using the MongoTemplate

import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Query;
import static org.springframework.data.mongodb.core.query.Update;

WriteResult wr = mongoTemplate.updateMulti(new Query(where("accounts.accountType").
is(Account.Type.SAVINGS)),
new Update().inc("accounts.$.balance", 50.00), Account.class);

In addition to the Query discussed above we provide the update definition using an Update object. The
Update class has methods that match the update modifiers available for MongoDB.

As you can see most methods return the Update object to provide a fluent style for the API.

Methods for executing updates for documents

* updateFirst Updates the first document that matches the query document criteria with the
provided updated document.

* updateMulti Updates all objects that match the query document criteria with the provided updated
document.

Methods for the Update class

The Update class can be used with a little 'syntax sugar' as its methods are meant to be chained
together and you can kick-start the creation of a new Update instance via the static method public
static Update update(String key, Object value) and using static imports.

Here is a listing of methods on the Update class

Update addToSet (String key, Object value) ‘ Update using the ‘$addToSet update modifier

* Update inc (String key, Number inc) Update using the $inc update modifier

Update pop (String key, Update.Position pos) Update using the $pop update modifier

Update pull (String key, Object value) Update using the $pull update modifier

Update pullAll (String key, Object[] values) Update using the $pullAll update modifier

Update push (String key, Object value) ‘ Update using the ‘$push update modifier

* Update pushAll (String key, Object[] values) Update using the $pushAll update modifier

 Update rename (String oldName, String newName) Update using the $rename update modifier
* Update set (String key, Object value) Update using the $set update modifier

* Update unset (String key) Update using the $unset update modifier

9.5.5. Upserting documents in a collection

Related to performing an updateFirst operations, you can also perform an upsert operation which will
perform an insert if no document is found that matches the query. The document that is inserted is a
combination of the query document and the update document. Here is an example

template.upsert(query(where("ssn").is(1111).and("firstName").is("Joe").and("Fraizer").is(
"Update")), update("address", addr), Person.class);

9.5.6. Finding and Upserting documents in a collection

The findAndModify() method on DBCollection can update a document and return either the old or
newly updated document in a single operation. MongoTemplate provides a findAndModify method that
takes Query and Update classes and converts from DBObject to your POJOs. Here are the methods

<> T findAndModify(Query query, Update update, Class<T> entityClass);

<T> T findAndModify(Query query, Update update, Class<T> entityClass, String
collectionName);

<T> T findAndModify(Query query, Update update, FindAndModifyOptions options, Class<T>
entityClass);

<T> T findAndModify(Query query, Update update, FindAndModifyOptions options, Class<T>
entityClass, String collectionName);

As an example usage, we will insert of few Person objects into the container and perform a simple
findAndUpdate operation

mongoTemplate.insert(new Person("Tom", 21));
mongoTemplate.insert(new Person("Dick", 22));
mongoTemplate.insert(new Person("Harry", 23));

Query query = new Query(Criteria.where("firstName").is("Harry"));

Update update = new Update().inc("age", 1);

Person p = mongoTemplate.findAndModify(query, update, Person.class); // return's old
person object

assertThat(p.getFirstName(), is("Harry"));
assertThat(p.getAge(), is(23));

p = mongoTemplate.findOne(query, Person.class);
assertThat(p.getAge(), is(24));

// Now return the newly updated document when updating

p = template.findAndModify(query, update, new FindAndModifyOptions().returnNew(true),
Person.class);

assertThat(p.getAge(), is(25));

The FindAndModifyOptions lets you set the options of returnNew, upsert, and remove. An example
extending off the previous code snippit is shown below

Query query2 = new Query(Criteria.where("firstName").is("Mary"));

p = mongoTemplate.findAndModify(query2, update, new FindAndModifyOptions().returnNew(
true).upsert(true), Person.class);

assertThat(p.getFirstName(), is("Mary"));

assertThat(p.getAge(), is(1));

9.5.7. Methods for removing documents

You can use several overloaded methods to remove an object from the database.

* remove Remove the given document based on one of the following: a specific object instance, a
query document criteria combined with a class or a query document criteria combined with a
specific collection name.

9.6. Querying Documents

You can express your queries using the Query and Criteria classes which have method names that
mirror the native MongoDB operator names such as 1t, 1te, is, and others. The Query and Criteria
classes follow a fluent API style so that you can easily chain together multiple method criteria and
queries while having easy to understand code. Static imports in Java are used to help remove the need
to see the 'new' keyword for creating Query and Criteria instances so as to improve readability. If you
like to create Query instances from a plain JSON String use BasicQuery.

Example 47. Creating a Query instance from a plain JSON String

BasicQuery query = new BasicQuery("{ age : { $1t : 50 }, accounts.balance : { $qt :
1000.00 }1}");
List<Person> result = mongoTemplate.find(query, Person.class);

GeoSpatial queries are also supported and are described more in the section GeoSpatial Queries.

Map-Reduce operations are also supported and are described more in the section Map-Reduce.

9.6.1. Querying documents in a collection

We saw how to retrieve a single document using the findOne and findByld methods on
MongoTemplate in previous sections which return a single domain object. We can also query for a
collection of documents to be returned as a list of domain objects. Assuming that we have a number of
Person objects with name and age stored as documents in a collection and that each person has an
embedded account document with a balance. We can now run a query using the following code.

Example 48. Querying for documents using the MongoTemplate

import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Query.query;

List<Person> result = mongoTemplate.find(query(where("age").1t(50)
.and("accounts.balance").qt(1000.00d)), Person.class);

All find methods take a Query object as a parameter. This object defines the criteria and options used to
perform the query. The criteria is specified using a Criteria object that has a static factory method
named where used to instantiate a new Criteria object. We recommend using a static import for
org.springframework.data.mongodb.core.query.Criteria.where and Query.query to make the query more
readable.

This query should return a list of Person objects that meet the specified criteria. The Criteria class has
the following methods that correspond to the operators provided in MongoDB.

As you can see most methods return the Criteria object to provide a fluent style for the API.

Methods for the Criteria class

e Criteriaall (Object o) Creates a criterion using the $all operator

e Criteria and (String key) Adds a chained Criteria with the specified key to the current Criteria
and returns the newly created one

* Criteria andOperator (Criteria criteria) Creates an and query using the $and operator for all
of the provided criteria (requires MongoDB 2.0 or later)

* Criteria elemMatch (Criteria c) Creates a criterion using the $elemMatch operator

» Criteria exists (boolean b) Creates a criterion using the $exists operator

» Criteriagt (Object o) Creates a criterion using the $gt operator

» Criteriagte (Object o) Creates a criterion using the $gte operator

e Criteriain (Object o) Creates a criterion using the $in operator for a varargs argument.
* Criteriain (Collection<?> collection) Creates a criterion using the $in operator using a collection
* Criteriais (Object o) Creates a criterion using the $is operator

* Criterialt (Object o) Creates a criterion using the §1t operator

» Criterialte (Object o) Creates a criterion using the $1te operator

* Criteria mod (Number value, Number remainder) Creates a criterion using the $mod operator
* Criteriane (Object o) Creates a criterion using the $ne operator

* Criterianin (Object o) Creates a criterion using the $nin operator

e Criteria norOperator (Criteria criteria) Creates an nor query using the $nor operator for all
of the provided criteria

» Criteria not () Creates a criterion using the $not meta operator which affects the clause directly
following

e Criteria orOperator (Criteria criteria) Creates an or query using the $or operator for all of
the provided criteria

» Criteriaregex (String re) Creates a criterion using a $regex

» Criteriasize (int s) Creates a criterion using the $size operator

Criteriatype (int t) Creates a criterion using the $type operator

There are also methods on the Criteria class for geospatial queries. Here is a listing but look at the
section on GeoSpatial Queries to see them in action.

* Criteria within (Circle circle) Creates a geospatial criterion using $geoWithin $center operators.

» Criteria within (Box box) Creates a geospatial criterion using a $geoWithin $box operation.

* Criteria withinSphere (Circle circle) Creates a geospatial criterion using $geoWithin $center
operators.

* Criterianear (Point point) Creates a geospatial criterion using a “$near "operation

e Criteria nearSphere (Point point) Creates a geospatial criterion using $nearSpherefcenter
operations. This is only available for MongoDB 1.7 and higher.

* Criteria minDistance (double minDistance) Creates a geospatial criterion using the $minDistance
operation, for use with $near.

* Criteria maxDistance (double maxDistance) Creates a geospatial criterion using the $maxDistance
operation, for use with $near.

The Query class has some additional methods used to provide options for the query.
Methods for the Query class
* Query addCriteria (Criteria criteria) used to add additional criteria to the query
* Field fields () used to define fields to be included in the query results

* Query limit (int Timit) used to limit the size of the returned results to the provided limit (used for
paging)

* Query skip (int skip) used to skip the provided number of documents in the results (used for
paging)

» Sort sort () used to provide sort definition for the results

9.6.2. Methods for querying for documents

The query methods need to specify the target type T that will be returned and they are also overloaded
with an explicit collection name for queries that should operate on a collection other than the one
indicated by the return type.

» findAll Query for a list of objects of type T from the collection.

* findOne Map the results of an ad-hoc query on the collection to a single instance of an object of the
specified type.

» findByld Return an object of the given id and target class.
» find Map the results of an ad-hoc query on the collection to a List of the specified type.

* findAndRemove Map the results of an ad-hoc query on the collection to a single instance of an
object of the specified type. The first document that matches the query is returned and also

removed from the collection in the database.

9.6.3. GeoSpatial Queries

MongoDB supports GeoSpatial queries through the use of operators such as $near, $within, geoWithin
and $nearSphere. Methods specific to geospatial queries are available on the Criteria class. There are
also a few shape classes, Box, Circle, and Point that are used in conjunction with geospatial related
Criteria methods.

To understand how to perform GeoSpatial queries we will use the following Venue class taken from the
integration tests.which relies on using the rich MappingMongoConverter.

@Document(collection="newyork")
public class Venue {

eId

private String id;

private String name;
private double[] location;

@PersistenceConstructor

Venue(String name, double[] location) {
super();
this.name = name;
this.location = location;

}

public Venue(String name, double x, double y) {
super();
this.name = name;
this.location = new double[] { x, y };

}

public String getName() {
return name;

}

public double[] getlocation() {
return location;

}

@0verride
public String toString() {
return "Venue [id=" + id + ", name=" + name + ", location="
+ Arrays.toString(location) + "]";

To find locations within a Circle, the following query can be used.

Circle circle = new Circle(-73.99171, 40.738868, 0.01);
List<Venue> venues =
template.find(new Query(Criteria.where("location").within(circle)), Venue.class);

To find venues within a Circle using spherical coordinates the following query can be used

Circle circle = new Circle(-73.99171, 40.738868, 0.003712240453784);
List<Venue> venues =

template.find(new Query(Criteria.where("location").withinSphere(circle)), Venue.
class);

To find venues within a Box the following query can be used

//lower-left then upper-right
Box box = new Box(new Point(-73.99756, 40.73083), new Point(-73.988135, 40.741404));
List<Venue> venues =

template.find(new Query(Criteria.where("location").within(box)), Venue.class);

To find venues near a Point, the following queries can be used

Point point = new Point(-73.99171, 40.738868);
List<Venue> venues =

template.find(new Query(Criteria.where("location").near(point).maxDistance(0.01)),
Venue.class);

Point point = new Point(-73.99171, 40.738868);
List<Venue> venues =

template.find(new Query(Criteria.where("location").near(point).minDistance(0.07)
.maxDistance(100)), Venue.class);

To find venues near a Point using spherical coordines the following query can be used

Point point = new Point(-73.99171, 40.738868);
List<Venue> venues =
template.find(new Query(
Criteria.where("location").nearSphere(point).maxDistance(0.003712240453784)),
Venue.class);

Geo near queries

MongoDB supports querying the database for geo locations and calculation the distance from a given
origin at the very same time. With geo-near queries it’s possible to express queries like: "find all
restaurants in the surrounding 10 miles". To do so MongoOperations provides geoNear() methods
taking a NearQuery as argument as well as the already familiar entity type and collection

Point location = new Point(-73.99171, 40.738868);
NearQuery query = NearQuery.near(location).maxDistance(new Distance(10, Metrics.MILES));

GeoResults<Restaurant> = operations.geoNear(query, Restaurant.class);

As you can see we use the NearQuery builder API to set up a query to return all Restaurant instances
surrounding the given Point by 10 miles maximum. The Metrics enum used here actually implements
an interface so that other metrics could be plugged into a distance as well. A Metric is backed by a
multiplier to transform the distance value of the given metric into native distances. The sample shown
here would consider the 10 to be miles. Using one of the pre-built in metrics (miles and kilometers) will
automatically trigger the spherical flag to be set on the query. If you want to avoid that, simply hand in
plain double values into maxDistance(). For more information see the JavaDoc of NearQuery and
Distance.

The geo near operations return a GeoResults wrapper object that encapsulates GeoResult instances. The
wrapping GeoResults allows to access the average distance of all results. A single GeoResult object
simply carries the entity found plus its distance from the origin.

9.6.4. GeoJSON Support

MongoDB supports GeoJSON and simple (legacy) coordinate pairs for geospatial data. Those formats
can both be used for storing as well as querying data.

Please refer to the MongoDB manual on GeoJSON support to learn about requirements

NOTE ..
and restrictions.

GeoJSON types in domain classes

Usage of GeoJSON types in domain classes is straight forward. The
org.springframework.data.mongodb.core.geo package contains types like GeoJsonPoint, GeoJsonPolygon
and others. Those are extensions to the existing org.springframework.data.geo types.

http://geojeson.org/
http://docs.mongodb.org/manual/core/2dsphere/#geospatial-indexes-store-geojson/
http://geojeson.org/

public class Store {
String 1id;

/**

* location is stored in GeoJSON format.
*{

* "type" : "Point",

* "coordinates" : [x, y]

*}

*/

GeoJsonPoint location;

}

GeoJSON types in repository query methods

Using GeoJSON types as repository query parameters forces usage of the $geometry operator when
creating the query.

public interface StoreRepository extends CrudRepository<Store, String> {

List<Store> findByLocationWithin(Polygon polygon); <1>

¥
/*
*{
* "location": {
= "$geoWithin": {
* "$geometry": {
* "type": "Polygon",
w "coordinates": [
“ [
* [-73.992514,40.758934],
* [-73.961138,40.760348],
* [-73.991658,40.730006],
* [-73.992514,40.758934]
*]
“]
“ }
“ }
*
*)
*/
repo.findByLocationWithin(<2>
new GeoJsonPolygon(
new Point(-73.992514, 40.758934),
new Point(-73.961138, 40.760348),
new Point(-73.991658, 40.730006),
new Point(-73.992514, 40.758934))); <3>
/*
*{
* "location" : {
” "$geoWithin" : {
* "$polygon” : [[-73.992514,40.758934] , [-73.961138,40.760348] , [-
73.991658,40.730006]]
“ }
*)
*)
*/
repo.findByLocationWithin(<4>

new Polygon(
new Point(-73.992514, 40.758934),
new Point(-73.961138, 40.760348),
new Point(-73.991658, 40.730000));

@ Repository method definition using the commons type allows calling it with both GeoJSON and
legacy format.

@ Use GeoJSON type the make use of $geometry operator.
® Plase note that GeoJSON polygons need the define a closed ring.

@ Use legacy format $polygon operator.

9.6.5. Full Text Queries

Since MongoDB 2.6 full text queries can be executed using the $text operator. Methods and operations
specific for full text queries are available in TextQuery and TextCriteria. When doing full text search
please refer to the MongoDB reference for its behavior and limitations.

Full Text Search

Before we are actually able to use full text search we have to ensure to set up the search index
correctly. Please refer to section Text Index for creating index structures.

db.foo.createIndex(

{
title : "text",
content : "text"

i
{
weights : {
title : 3
}
}
)

A query searching for coffee cake, sorted by relevance according to the weights can be defined and
executed as:

Query query = TextQuery.searching(new TextCriteria().matchingAny("coffee", "cake"))
.sortByScore();
List<Document> page = template.find(query, Document.class);

Exclusion of search terms can directly be done by prefixing the term with - or using notMatching

// search for 'coffee' and not 'cake'
TextQuery.searching(new TextCriteria().matching("coffee").matching("-cake"));
TextQuery.searching(new TextCriteria().matching("coffee").notMatching("cake"));

http://docs.mongodb.org/manual/reference/operator/query/text/#behavior

As Text(Criteria.matching takes the provided term as is. Therefore phrases can be defined by putting
them between double quotes (eg. \"coffee cake\") or using TextCriteria.phrase.

// search for phrase 'coffee cake'
TextQuery.searching(new TextCriteria().matching("\"coffee cake\""));
TextQuery.searching(new TextCriteria().phrase("coffee cake"));

9.7. Map-Reduce Operations

You can query MongoDB using Map-Reduce which is useful for batch processing, data aggregation, and
for when the query language doesn’t fulfill your needs.

Spring provides integration with MongoDB’s map reduce by providing methods on MongoOperations
to simplify the creation and execution of Map-Reduce operations. It can convert the results of a Map-
Reduce operation to a POJO also integrates with Spring’s Resource abstraction abstraction. This will let
you place your JavaScript files on the file system, classpath, http server or any other Spring Resource
implementation and then reference the JavaScript resources via an easy URI style syntax, e.g.
‘classpath:reduce.js;. Externalizing JavaScript code in files is often preferable to embedding them as
Java strings in your code. Note that you can still pass JavaScript code as Java strings if you prefer.

9.7.1. Example Usage

To understand how to perform Map-Reduce operations an example from the book 'MongoDB - The
definitive guide' is used. In this example we will create three documents that have the values [a,b],
[b,cl, and [c,d] respectfully. The values in each document are associated with the key 'x' as shown
below. For this example assume these documents are in the collection named "jmr1".

{ "_id" : ObjectId("4e5ff893c0277826074ec533"), "x" : ["a", "b" 1}
{ "_id" : ObjectId("4e5ff893c0277826074ec534"), "x" : ["b", "c" 1 }
{ "_id" : ObjectId("4e5ff893c0277826074ec535"), "x" : ["c¢", "d"]}

A map function that will count the occurrence of each letter in the array for each document is shown
below

function () {
for (var i = 0; i < this.x.length; i++) {
emit(this.x[1], 1);
}

The reduce function that will sum up the occurrence of each letter across all the documents is shown
below

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html

function (key, values) {
var sum = 0;
for (var i = 0; 1 < values.length; i++)
sum += values[i];
return sum;

Executing this will result in a collection as shown below.

{ "_id" : "a", "value" : 1}
{ " 4d" : "b", "value" : 2 }
{ "_id" : "c¢", "value" : 2}
{ " id" : "d", "value" : 1}

Assuming that the map and reduce functions are located in map.js and reduce.js and bundled in your
jar so they are available on the classpath, you can execute a map-reduce operation and obtain the
results as shown below

MapReduceResults<ValueObject> results = mongoOperations.mapReduce("jmr1",

"classpath:map.js", "classpath:reduce.js", ValueObject.class);

for (ValueObject valueObject : results) {
System.out.println(valueObject);

}

The output of the above code is

ValueObject [id=a, value=1.0]
ValueObject [id=b, value=2.0]
ValueObject [id=c, value=2.0]
ValueObject [id=d, value=1.0]

The MapReduceResults class implements Iterable and provides access to the raw output, as well as
timing and count statistics. The ValueObject class is simply

public class ValueObject {

private String id;
private float value;

public String getId() {
return id;

}

public float getValue() {
return value;

}

public void setValue(float value) {
this.value = value;

}

public String toString() {
return "ValueObject [id=" + id +
}
}

, value=" + value + "]";

By default the output type of INLINE is used so you don’t have to specify an output collection. To
specify additional map-reduce options use an overloaded method that takes an additional
MapReduceOptions argument. The class MapReduceOptions has a fluent API so adding additional options
can be done in a very compact syntax. Here an example that sets the output collection to "jmrl_out".
Note that setting only the output collection assumes a default output type of REPLACE.

MapReduceResults<ValueObject> results = mongoOperations.mapReduce("jmr1",
"classpath:map.js", "classpath:reduce.js",

new
MapReduceOptions().outputCollection("jmr1_out"), ValueObject.class);

There is also a static import import static
org.springframework.data.mongodb.core.mapreduce.MapReduceOptions.options; that can be used to make
the syntax slightly more compact

MapReduceResults<ValueObject> results = mongoOperations.mapReduce("jmr1",
"classpath:map.js", "classpath:reduce.js",

options().outputColl
ection("jmr1_out"), ValueObject.class);

You can also specify a query to reduce the set of data that will be used to feed into the map-reduce
operation. This will remove the document that contains [a,b] from consideration for map-reduce
operations.

Query query = new Query(where("x").ne(new String[] { "a", "b" }));
MapReduceResults<ValueObject> results = mongoOperations.mapReduce(query, "jmr1",
"classpath:map.js", "classpath:reduce.js",

options().outputColl

ection("jmr1_out"), ValueObject.class);

Note that you can specify additional limit and sort values as well on the query but not skip values.

9.8. Script Operations

MongoDB allows to execute JavaScript functions on the server by either directly sending the script or
calling a stored one. ScriptOperations can be accessed via MongoTemplate and provides basic abstraction
for JavaScript usage.

9.8.1. Example Usage

ScriptOperations scriptOps = template.scriptOps();

ExecutableMongoScript echoScript = new ExecutableMongoScript("function(x) { return x;
")

scriptOps.execute(echoScript, "directly execute script"); <1>

scriptOps.register(new NamedMongoScript(“echo”, echoSeript)); <2>
scriptOps.call("echo", "execute script via name"); <3>

@ Execute the script directly without storing the function on server side.

@ Store the script using 'echo’ as its name. The given name identifies the script and allows calling
it later.

® Execute the script with name 'echo’ using the provided parameters.

9.9. Group Operations

As an alternative to using Map-Reduce to perform data aggregation, you can use the group operation
which feels similar to using SQL’s group by query style, so it may feel more approachable vs. using
Map-Reduce. Using the group operations does have some limitations, for example it is not supported in
a shareded environment and it returns the full result set in a single BSON object, so the result should
be small, less than 10,000 keys.

http://www.mongodb.org/display/DOCS/Aggregation#Aggregation-Group
http://www.mongodb.org/display/DOCS/Aggregation#Aggregation-Group

Spring provides integration with MongoDB’s group operation by providing methods on
MongoOperations to simplify the creation and execution of group operations. It can convert the results
of the group operation to a POJO and also integrates with Spring’s Resource abstraction abstraction.
This will let you place your JavaScript files on the file system, classpath, http server or any other Spring
Resource implementation and then reference the JavaScript resources via an easy URI style syntax, e.g.
‘classpath:reduce.js;. Externalizing JavaScript code in files if often preferable to embedding them as
Java strings in your code. Note that you can still pass JavaScript code as Java strings if you prefer.

9.9.1. Example Usage

In order to understand how group operations work the following example is used, which is somewhat
artificial. For a more realistic example consult the book 'MongoDB - The definitive guide'. A collection
named "group_test_collection" created with the following rows.

"_id" : ObjectId("4ec1d25d41421e2015da64f1"), "x" :
"_id" : ObjectId("4ec1d25d41421e2015dab4f2"), "x" :
"_id" : ObjectId("4ec1d25d41421e2015dab4f3"), "
"_id" : ObjectId("4ec1d25d41421e2015dab4f4"), "
"_id" : ObjectId("4ec1d25d41421e2015dab4f5"), "
"_id" : ObjectId("4ec1d25d41421e2015da64f6"), "

W W WwWN =
[T = S S

X X X X X X

N e T e N e N SN

We would like to group by the only field in each row, the 'x' field and aggregate the number of times
each specific value of 'x' occurs. To do this we need to create an initial document that contains our
count variable and also a reduce function which will increment it each time it is encountered. The Java
code to execute the group operation is shown below

GroupByResults<XObject> results = mongoTemplate.group("group_test_collection”,
GroupBy.key("x").initialDocument("{
count: @ }").reduceFunction("function(doc, prev) { prev.count += 1 }"),
XObject.class);

The first argument is the name of the collection to run the group operation over, the second is a fluent
API that specifies properties of the group operation via a GroupBy class. In this example we are using
just the intialDocument and reduceFunction methods. You can also specify a key-function, as well as a
finalizer as part of the fluent APIL If you have multiple keys to group by, you can pass in a comma
separated list of keys.

The raw results of the group operation is a JSON document that looks like this

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html

"retval" : [{ "x" : 1.0 , "count" : 2.0} ,
{ "x" : 2.0, "count" : 1.0} ,
{ "x" : 3.0, "count" : 3.0} 1,
"count" : 6.0 ,
"keys" : 3,
"ok" : 1.0

The document under the "retval" field is mapped onto the third argument in the group method, in this
case XObject which is shown below.

public class XObject {
private float x;

private float count;

public float getX() {
return x;

}

public void setX(float x) {
this.x = x;

}

public float getCount() {
return count;

}

public void setCount(float count) {
this.count = count;

}

public String toString() {
return "XObject [x=" + x +

}

n n n

count = " + count + "]";

}

You can also obtain the raw result as a DbObject by calling the method getRawResults on the
GroupByResults class.

There is an additional method overload of the group method on MongoOperations which lets you specify

a Criteria object for selecting a subset of the rows. An example which uses a Criteria object, with
some syntax sugar using static imports, as well as referencing a key-function and reduce function
javascript files via a Spring Resource string is shown below.

import static org.springframework.data.mongodb.core.mapreduce.GroupBy.keyFunction;
import static org.springframework.data.mongodb.core.query.Criteria.where;

GroupByResults<XObject> results = mongoTemplate.group(where("x").qt(0),
"group_test_collection",
keyFunction("classpath:keyFunction.js").initialDo

cument("{ count: @ }").reduceFunction("classpath:groupReduce.js"), XObject.class);

9.10. Aggregation Framework Support

Spring Data MongoDB provides support for the Aggregation Framework introduced to MongoDB in
version 2.2.

The MongoDB Documentation describes the Aggregation Framework as follows:

For further information see the full reference documentation of the aggregation framework and other
data aggregation tools for MongoDB.

9.10.1. Basic Concepts

The Aggregation Framework support in Spring Data MongoDB is based on the following key
abstractions Aggregation, AggregationOperation and AggregationResults.

« Aggregation

An Aggregation represents a MongoDB aggregate operation and holds the description of the
aggregation pipline instructions. Aggregations are created by inoking the appropriate
newAggregation() static factory Method of the Aggregation class which takes the list of
AggregateOperation as a parameter next to the optional input class.

The actual aggregate operation is executed by the aggregate method of the MongoTemplate which also
takes the desired output class as parameter.

« AggregationOperation

An AggregationOperation represents a MongoDB aggregation pipeline operation and describes the
processing that should be performed in this aggregation step. Although one could manually create
an AggregationOperation the recommended way to construct an AggregateOperation is to use the
static factory methods provided by the Aggregate class.

« AggregationResults

AggregationResults is the container for the result of an aggregate operation. It provides access to the

http://docs.mongodb.org/manual/core/aggregation/
http://docs.mongodb.org/manual/aggregation/

raw aggregation result in the form of an DBObject, to the mapped objects and information which
performed the aggregation.

The canonical example for using the Spring Data MongoDB support for the MongoDB Aggregation
Framework looks as follows:

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

Aggregation agg = newAggregation(
pipelineOP1(),
pipelineOP2(),
pipelineOPn()

)i

AggregationResults<OutputType> results = mongoTemplate.aggregate(agg,
"INPUT_COLLECTION_NAME", OutputType.class);
List<OutputType> mappedResult = results.getMappedResults();

Note that if you provide an input class as the first parameter to the newAggregation method the
MongoTemplate will derive the name of the input collection from this class. Otherwise if you don’t not
specify an input class you must provide the name of the input collection explicitly. If an input-class and
an input-collection is provided the latter takes precedence.

9.

10.2. Supported Aggregation Operations

The MongoDB Aggregation Framework provides the following types of Aggregation Operations:

Pipeline Aggregation Operators
Group Aggregation Operators
Boolean Aggregation Operators
Comparison Aggregation Operators
Arithmetic Aggregation Operators
String Aggregation Operators

Date Aggregation Operators

Conditional Aggregation Operators

At the time of this writing we provide support for the following Aggregation Operations in Spring Data
MongoDB.

Table 2. Aggregation Operations currently supported by Spring Data MongoDB

Pipeline Aggregation Operators project, skip, limit, unwind, group, sort, geoNear

Group Aggregation Operators addTosSet, first, last, max, min, avg, push, sum,
(*count)

Arithmetic Aggregation Operators add (*via plus), subtract (*via minus), multiply,
divide, mod

Comparison Aggregation Operators eq (*via: is), gt, gte, It, Ite, ne

Note that the aggregation operations not listed here are currently not supported by Spring Data
MongoDB. Comparison aggregation operators are expressed as Criteria expressions.

*) The operation is mapped or added by Spring Data MongoDB.

9.10.3. Projection Expressions

Projection expressions are used to define the fields that are the outcome of a particular aggregation
step. Projection expressions can be defined via the project method of the Aggregate class either by
passing a list of String's or an aggregation framework ‘Fields object. The projection can be extended
with additional fields through a fluent API via the and(String) method and aliased via the as(String)
method. Note that one can also define fields with aliases via the static factory method Fields.field of
the aggregation framework that can then be used to construct a new Fields instance.

Example 49. Projection expression examples

project("name", "netPrice") // will generate {$project: {name: 1, netPrice: 1}}
project().and("foo").as("bar") // will generate {$project: {bar: $foo}}
project("a","b").and("foo").as("bar") // will generate {$project: {a: 1, b: 1, bar:
$foo}}

Note that more examples for project operations can be found in the AggregationTests class.

Note that further details regarding the projection expressions can be found in the corresponding
section of the MongoDB Aggregation Framework reference documentation.

Spring Expression Support in Projection Expressions

As of Version 1.4.0 we support the use of SpEL expression in projection expressions via the
andExpression method of the ProjectionOperation class. This allows you to define the desired expression
as a SpEL expression which is translated into a corresponding MongoDB projection expression part on
query execution. This makes it much easier to express complex calculations.

Complex calculations with SpEL expressions

The following SpEL expression:

http://docs.mongodb.org/manual/reference/operator/aggregation/project/#pipe._S_project
http://docs.mongodb.org/manual/reference/operator/aggregation/project/#pipe._S_project

T+@+1)/(-1)

will be translated into the following projection expression part:

{ "$add" : [1, {

"$divide" : [{
"$addll:[ll$q", ’I]}, {
"$subtract":["$q", 11}

]

H}

Have a look at an example in more context in Aggregation Framework Example 5 and Aggregation
Framework Example 6. You can find more usage examples for supported SpEL expression constructs in
SpelExpressionTransformerUnitTests.

Aggregation Framework Examples

The following examples demonstrate the usage patterns for the MongoDB Aggregation Framework
with Spring Data MongoDB.

In this introductory example we want to aggregate a list of tags to get the occurrence count of a
particular tag from a MongoDB collection called "tags" sorted by the occurrence count in descending
order. This example demonstrates the usage of grouping, sorting, projections (selection) and
unwinding (result splitting).

class TagCount {
String tag;
int n;

}

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

Aggregation agg = newAggregation(
project("tags"),
unwind("tags"),
group("tags").count().as("n"),
project("n").and("tag").previousOperation(),
sort(DESC, "n")

)i

AggregationResults<TagCount> results = mongoTemplate.aggregate(agg, "tags", TagCount
.class);
List<TagCount> tagCount = results.getMappedResults();

* In order to do this we first create a new aggregation via the newAggregation static factory method to
which we pass a list of aggregation operations. These aggregate operations define the aggregation
pipeline of our Aggregation.

* As a second step we select the "tags" field (which is an array of strings) from the input collection
with the project operation.

* In a third step we use the unwind operation to generate a new document for each tag within the
"tags" array.

* In the forth step we use the group operation to define a group for each "tags"-value for which we
aggregate the occurrence count via the count aggregation operator and collect the result in a new
field called "n".

* As a fifth step we select the field "n" and create an alias for the id-field generated from the previous
group operation (hence the call to previousOperation()) with the name "tag".

* As the sixth step we sort the resulting list of tags by their occurrence count in descending order via
the sort operation.

» Finally we call the aggregate Method on the MongoTemplate in order to let MongoDB perform the
acutal aggregation operation with the created Aggregation as an argument.

Note that the input collection is explicitly specified as the "tags" parameter to the aggregate Method. If
the name of the input collection is not specified explicitly, it is derived from the input-class passed as
first parameter to the newAggreation Method.

This example is based on the Largest and Smallest Cities by State example from the MongoDB
Aggregation Framework documentation. We added additional sorting to produce stable results with
different MongoDB versions. Here we want to return the smallest and largest cities by population for
each state, using the aggregation framework. This example demonstrates the usage of grouping,
sorting and projections (selection).

http://docs.mongodb.org/manual/tutorial/aggregation-examples/#largest-and-smallest-cities-by-state

class ZipInfo {
String 1id;
String city;
String state;
("pop") int population;
("loc") double[] location;
¥

class City {
String name;
int population;

}

class ZipInfoStats {
String 1id;
String state;
City biggestCity;
City smallestCity;
}

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<ZipInfo> aggregation = newAggregation(ZipInfo.class,
group("state", "city")
.sum("population”).as("pop"),
sort(ASC, "pop", "state", "city"),
group("state")
last("city").as("biggestCity")
.Last("pop").as("biggestPop")
first("city").as("smallestCity")
first("pop").as("smallestPop"),
project()
.and("state").previousOperation()
.and("biggestCity")
.nested(bind("name", "biggestCity").and("population”, "biggestPop"))
.and("smallestCity")
.nested(bind("name", "smallestCity").and("population”, "smallestPop")),
sort(ASC, "state")

)i
AggregationResults<ZipInfoStats> result = mongoTemplate.aggregate(aggregation,

ZipInfoStats.class);
ZipInfoStats firstZipInfoStats = result.getMappedResults().get(0);

* The class ZipInfo maps the structure of the given input-collection. The class ZipInfoStats defines the

structure in the desired output format.

As a first step we use the group operation to define a group from the input-collection. The grouping
criteria is the combination of the fields "state" and "city" ‘which forms the id structure of the
group. We aggregate the value of the '"population" property from the grouped elements with by
using the sum operator saving the result in the field "pop".

non

In a second step we use the sort operation to sort the intermediate-result by the fields "pop", "state"
and "city" in ascending order, such that the smallest city is at the top and the biggest city is at the
bottom of the result. Note that the sorting on "state" and "city" is implicitly performed against the
group id fields which Spring Data MongoDB took care of.

In the third step we use a group operation again to group the intermediate result by "state". Note
that "state" again implicitly references an group-id field. We select the name and the population
count of the biggest and smallest city with calls to the last() and first() operator respectively
via the project operation.

As the forth step we select the "state" field from the previous group operation. Note that "state"
again implicitly references an group-id field. As we do not want an implicit generated id to appear,
we exclude the id from the previous operation via and(previousOperation()).exclude(). As we want
to populate the nested City structures in our output-class accordingly we have to emit appropriate
sub-documents with the nested method.

Finally as the fifth step we sort the resulting list of StateStats by their state name in ascending
order via the sort operation.

Note that we derive the name of the input-collection from the ZipInfo-class passed as first parameter to
the newAggregation-Method.

This example is based on the States with Populations Over 10 Million example from the MongoDB
Aggregation Framework documentation. We added additional sorting to produce stable results with
different MongoDB versions. Here we want to return all states with a population greater than 10
million, using the aggregation framework. This example demonstrates the usage of grouping, sorting
and matching (filtering).

class StateStats {
String 1id;
String state;
("totalPop") int totalPopulation;

http://docs.mongodb.org/manual/tutorial/aggregation-examples/#states-with-populations-over-10-million

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<ZipInfo> agg = newAggregation(ZipInfo.class,
group("state").sum("population”).as("totalPop"),
sort(ASC, previousOperation(), "totalPop"),
match(where("totalPop").gte(10 * 1000 * 1000))

)i

AggregationResults<StateStats> result = mongoTemplate.aggregate(agg, StateStats.class);
List<StateStats> stateStatslList = result.getMappedResults();

* As a first step we group the input collection by the "state" field and calculate the sum of the
"population” field and store the result in the new field "totalPop".

* In the second step we sort the intermediate result by the id-reference of the previous group
operation in addition to the "totalPop" field in ascending order.

 Finally in the third step we filter the intermediate result by using a match operation which accepts a
Criteria query as an argument.

Note that we derive the name of the input-collection from the ZipInfo-class passed as first parameter to
the newAggregation-Method.

This example demonstrates the use of simple arithmetic operations in the projection operation.

class Product {
String 1id;
String name;
double netPrice;
int spaceUnits;

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<Product> agg = newAggregation(Product.class,
project("name", "netPrice")

.and("netPrice").plus(1).as("netPricePlus1")
.and("netPrice").minus(1).as("netPriceMinus1")
.and("netPrice").multiply(1.19).as("grossPrice")
.and("netPrice").divide(2).as("netPriceDiv2")
.and("spaceUnits").mod(2).as("spaceUnitsMod2")

E

AggregationResults<DBObject> result = mongoTemplate.aggregate(agg, DBObject.class);
List<DBObject> resultlList = result.getMappedResults();

Note that we derive the name of the input-collection from the Product-class passed as first parameter to
the newAggregation-Method.

This example demonstrates the use of simple arithmetic operations derived from SpEL Expressions in
the projection operation.

class Product {
String 1id;
String name;
double netPrice;
int spaceUnits;

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;

TypedAggregation<Product> agg = newAggregation(Product.class,
project("name", "netPrice")

.andExpression("netPrice + 1").as("netPricePlus1")
.andExpression("netPrice - 1").as("netPriceMinus1")
.andExpression("netPrice / 2").as("netPriceDiv2")
.andExpression("netPrice * 1.19").as("grossPrice")
.andExpression("spacelnits % 2").as("spaceUnitsMod2")
.andExpression("(netPrice * 0.8 + 1.2) * 1.19").as(

"grossPriceIncludingDiscountAndCharge")

)

AggregationResults<DBObject> result = mongoTemplate.aggregate(agg, DBObject.class);
List<DBObject> resultlList = result.getMappedResults();

This example demonstrates the use of complex arithmetic operations derived from SpEL Expressions
in the projection operation.

Note: The additional parameters passed to the addExpression Method can be referenced via indexer
expressions according to their position. In this example we reference the parameter which is the first
parameter of the parameters array via [0]. External parameter expressions are replaced with their
respective values when the SpEL expression is transformed into a MongoDB aggregation framework
expression.

class Product {
String 1id;
String name;
double netPrice;
int spaceUnits;

import static org.springframework.data.mongodb.core.aggregation.Aggregation.*;
double shippingCosts = 1.2;

TypedAggregation<Product> agg = newAggregation(Product.class,
project("name", "netPrice")
.andExpression("(netPrice * (1-discountRate) + [0]) * (1+taxRate)",
shippingCosts).as("salesPrice")

)

AggregationResults<DBObject> result = mongoTemplate.aggregate(agg, DBObject.class);
List<DBObject> resultlList = result.getMappedResults();

Note that we can also refer to other fields of the document within the SpEL expression.

9.11. Overriding default mapping with custom
converters

In order to have more fine grained control over the mapping process you can register Spring
converters with the MongoConverter implementations such as the MappingMongoConverter.

The MappingMongoConverter checks to see if there are any Spring converters that can handle a specific
class before attempting to map the object itself. To 'hijack' the normal mapping strategies of the
MappingMongoConverter, perhaps for increased performance or other custom mapping needs, you first
need to create an implementation of the Spring Converter interface and then register it with the
MappingConverter.

For more information on the Spring type conversion service see the reference docs

NOTE
here.

9.11.1. Saving using a registered Spring Converter

An example implementation of the Converter that converts from a Person object to a
com.mongodb.DBObject is shown below

import org.springframework.core.convert.converter.Converter;

import com.mongodb.BasicDBObject;
import com.mongodb.DBObject;

public class PersonWriteConverter implements Converter<Person, DBObject> {

public DBObject convert(Person source) {
DBObject dbo = new BasicDBObject();
dbo.put("_id", source.getId());
dbo.put("name", source.getFirstName());
dbo.put("age", source.getAge());
return dbo;

}

}

9.11.2. Reading using a Spring Converter

An example implementation of a Converter that converts from a DBObject ot a Person object is shownn
below

public class PersonReadConverter implements Converter<DBObject, Person> {

public Person convert(DBObject source) {
Person p = new Person((ObjectId) source.get("_id"), (String) source.get("name"));
p.setAge((Integer) source.get("age"));
return p;
}
}

9.11.3. Registering Spring Converters with the MongoConverter

The Mongo Spring namespace provides a convenience way to register Spring Converter's with the
‘MappingMongoConverter. The configuration snippet below shows how to manually register converter
beans as well as configuring the wrapping MappingMongoConverter into a MongoTemplate.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/validation.html#core-convert

<mongo:db-factory dbname="database"/>

<mongo:mapping-converter>
<mongo:custom-converters>
<mongo:converter ref="readConverter"/>
<mongo:converter>
<bean class="org.springframework.data.mongodb.test.PersonWriteConverter"/>
</mongo:converter>
</mongo:custom-converters>
</mongo:mapping-converter>

<bean id="readConverter" class="
org.springframework.data.mongodb.test.PersonReadConverter"/>

<bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>
<constructor-arg name="mongoConverter" ref="mappingConverter"/>

</bean>

You can also use the base-package attribute of the custom-converters element to enable classpath
scanning for all Converter and GenericConverter implementations below the given package.

<mongo:mapping-converter>
<mongo:custom-converters base-package="com.acme.**.converters" />
</mongo:mapping-converter>

9.11.4. Converter disambiguation

Generally we inspect the Converter implementations for the source and target types they convert from
and to. Depending on whether one of those is a type MongoDB can handle natively we will register the
converter instance as reading or writing one. Have a look at the following samples:

// Write converter as only the target type is one Mongo can handle natively
class MyConverter implements Converter<Person, String> { }

// Read converter as only the source type is one Mongo can handle natively
class MyConverter implements Converter<String, Person> { }

In case you write a Converter whose source and target type are native Mongo types there’s no way for
us to determine whether we should consider it as reading or writing converter. Registering the
converter instance as both might lead to unwanted results then. E.g. a Converter<String, Long> is

ambiguous although it probably does not make sense to try to convert all String's into ‘Long‘s when
writing. To be generally able to force the infrastructure to register a converter for one way only

we provide ‘@ReadingConverter as well as @WritingConverter to be used at the converter
implementation.

9.12. Index and Collection management

MongoTemplate provides a few methods for managing indexes and collections. These are collected into a
helper interface called IndexOperations. You access these operations by calling the method index0Ops and
pass in either the collection name or the java.lang.(Class of your entity (the collection name will be
derived from the .class either by name or via annotation metadata).

The IndexOperations interface is shown below

public interface IndexOperations {
void ensurelndex(IndexDefinition indexDefinition);
void dropIndex(String name);
void dropAllIndexes();
void resetIndexCache();

List<IndexInfo> getIndexInfo();

9.12.1. Methods for creating an Index

We can create an index on a collection to improve query performance.

Creating an index using the MongoTemplate
mongoTemplate.indexOps(Person.class).ensureIndex(new Index().on("name",Order.ASCENDING));

 ensurelndex Ensure that an index for the provided IndexDefinition exists for the collection.

You can create standard, geospatial and text indexes using the classes IndexDefinition, GeoSpatialIndex
and TextIndexDefinition. For example, given the Venue class defined in a previous section, you would
declare a geospatial query as shown below.

mongoTemplate.indexOps(Venue.class).ensureIndex(new GeospatialIndex("location"));

9.12.2. Accessing index information

The IndexOperations interface has the method getIndexInfo that returns a list of IndexInfo objects.
This contains all the indexes defined on the collectcion. Here is an example that defines an index on
the Person class that has age property.

template.indexOps(Person.class).ensurelndex(new Index().on("age", Order.DESCENDING)
.unique(Duplicates.DROP));

List<IndexInfo> indexInfolist = template.indexOps(Person.class).getIndexInfo();

// Contains

// [IndexInfo [fieldSpec={_id=ASCENDING}, name=_id_, unique=false, dropDuplicates=false,
sparse=false],

// IndexInfo [fieldSpec={age=DESCENDING}, name=age_-1, unique=true, dropDuplicates=true,
sparse=false]]

9.12.3. Methods for working with a Collection

It’s time to look at some code examples showing how to use the MongoTemplate. First we look at creating
our first collection.

Example 50. Working with collections using the MongoTemplate
DBCollection collection = null;

if (!mongoTemplate.getCollectionNames().contains("MyNewCollection")) {
collection = mongoTemplate.createCollection("MyNewCollection");

}

mongoTemplate.dropCollection("MyNewCollection");

getCollectionNames Returns a set of collection names.

* collectionExists Check to see if a collection with a given name exists.

createCollection Create an uncapped collection

» dropCollection Drop the collection

getCollection Get a collection by name, creating it if it doesn’t exist.

9.13. Executing Commands

You can also get at the MongoDB driver’s DB.command() method using the executeCommand() methods

on MongoTemplate. These will also perform exception translation into Spring’s DataAccessException
hierarchy.

9.13.1. Methods for executing commands
* CommandResult executeCommand (DBObject command) Execute a MongoDB command.

* CommandResult executeCommand (String jsonCommand) Execute the a MongoDB command
expressed as a JSON string.

9.14. Lifecycle Events

Built into the MongoDB mapping framework are several org.springframework.context.ApplicationEvent
events that your application can respond to by registering special beans in the ApplicationContext. By
being based off Spring’s ApplicationContext event infastructure this enables other products, such as
Spring Integration, to easily receive these events as they are a well known eventing mechanism in
Spring based applications.

To intercept an object before it goes through the conversion process (which turns your domain object
into a com.mongodb.DBObject), you’d register a subclass of AbstractMongoEventListener that overrides the
onBeforeConvert method. When the event is dispatched, your listener will be called and passed the
domain object before it goes into the converter.

public class BeforeConvertListener extends AbstractMongoEventlListener<Person> {

public void onBeforeConvert(Person p) {
... does some auditing manipulation, set timestamps, whatever ...

}
}

To intercept an object before it goes into the database, you’d register a subclass of
org.springframework.data.mongodb.core.mapping.event.AbstractMongoEventListener that overrides the
onBeforeSave method. When the event is dispatched, your listener will be called and passed the domain
object and the converted com.mongodb.DBObject.

public class BeforeSavelListener extends AbstractMongoEventListener<Person> {

public void onBeforeSave(Person p, DBObject dbo) {
change values, delete them, whatever

}
}

Simply declaring these beans in your Spring ApplicationContext will cause them to be invoked
whenever the event is dispatched.

The list of callback methods that are present in AbstractMappingEventListener are

» onBeforeConvert - called in MongoTemplate insert, insertList and save operations before the object is
converted to a DBODbject using a MongoConveter.

* onBeforeSave - called in MongoTemplate insert, insertList and save operations before
inserting/saving the DBODbject in the database.

» onAfterSave - called in MongoTemplate insert, insertList and save operations after inserting/saving
the DBObject in the database.

» onAfterLoad - called in MongoTemplate find, findAndRemove, findOne and getCollection methods
after the DBObject is retrieved from the database.

» onAfterConvert - called in MongoTemplate find, findAndRemove, findOne and getCollection methods
after the DBODbject retrieved from the database was converted to a POJO.

9.15. Exception Translation

The Spring framework provides exception translation for a wide variety of database and mapping
technologies. This has traditionally been for JDBC and JPA. The Spring support for MongoDB extends
this feature to the MongoDB Database by providing an implementation of the
org.springframework.dao.support.PersistenceExceptionTranslator interface.

The motivation behind mapping to Spring’s consistent data access exception hierarchy is that you are
then able to write portable and descriptive exception handling code without resorting to coding
against MongoDB error codes. All of Spring’s data access exceptions are inherited from the root
DataAccessException class so you can be sure that you will be able to catch all database related
exception within a single try-catch block. Note, that not all exceptions thrown by the MongoDB driver
inherit from the MongoException class. The inner exception and message are preserved SO no
information is lost.

Some of the mappings performed by the MongoExceptionTranslator are: com.mongodb.Network to
DataAccessResourceFailureException and MongoException error codes 1003, 12001, 12010, 12011, 12012

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/dao.html#dao-exceptions
http://www.mongodb.org/about/contributors/error-codes/

to InvalidDataAccessApiUsageException. Look into the implementation for more details on the mapping.

9.16. Execution callbacks

One common design feature of all Spring template classes is that all functionality is routed into one of
the templates execute callback methods. This helps ensure that exceptions and any resource
management that maybe required are performed consistency. While this was of much greater need in
the case of JDBC and JMS than with MongoDB, it still offers a single spot for exception translation and
logging to occur. As such, using thexe execute callback is the preferred way to access the MongoDB
driver’s DB and DBCollection objects to perform uncommon operations that were not exposed as
methods on MongoTemplate.

Here is a list of execute callback methods.

* <> T execute ((Class<?> entityClass, CollectionCallback<T> action) Executes the given
CollectionCallback for the entity collection of the specified class.

* <I> T execute (String collectionName, CollectionCallback<T> action) Executes the given
CollectionCallback on the collection of the given name.

e <T> T execute (DbCallback<T> action) Spring Data MongoDB provides support for the Aggregation
Framework introduced to MongoDB in version 2.2. Executes a DbCallback translating any exceptions
as necessary.

o <T> T execute (String collectionName, DbCallback<T> action) Executes a DbCallback on the
collection of the given name translating any exceptions as necessary.

* <T> T executeInSession ' (DbCallback<T> action) * Executes the given DbCallback within the same
connection to the database so as to ensure consistency in a write heavy environment where you
may read the data that you wrote.

Here is an example that uses the CollectionCallback to return information about an index

boolean hasIndex = template.execute("geolocation”, new CollectionCallbackBoolean>() {
public Boolean doInCollection(Venue.class, DBCollection collection) throws
MongoException, DataAccessException {
List<DBObject> indexes = collection.getIndexInfo();
for (DBObject dbo : indexes) {
if ("location_2d".equals(dbo.get("name"))) {
return true;
}
}
return false;
}
3

9.17. GridFS support

MongoDB supports storing binary files inside it’s filesystem GridFS. Spring Data MongoDB provides a
GridFsOperations interface as well as the according implementation GridFsTemplate to easily interact
with the filesystem. You can setup a GridFsTemplate instance by handing it a MongoDbFactory as well as a
MongoConverter:

Example 51. JavaConfig setup for a GridFsTemplate

class GridFsConfiguration extends AbstractMongoConfiguration {
// further configuration omitted

@Bean
public GridFsTemplate gridFsTemplate() {
return new GridFsTemplate(mongoDbFactory(), mappingMongoConverter());
}
}

An according XML configuration looks like this:

Example 52. XML configuration for a GridFsTemplate

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-
mongo.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<mongo:db-factory id="mongoDbFactory" dbname="database" />
<mongo:mapping-converter id="converter" />

<bean class="org.springframework.data.mongodb.gridfs.GridFsTemplate">
<constructor-arg ref="mongoDbFactory" />
<constructor-arg ref="converter" />

</bean>

</beans>

The template can now be injected and used to perform storage and retrieval operations.

Example 53. Using GridFsTemplate to store files

class GridFsClient {

GridFsOperations operations;

public void storeFileToGridFs {

FileMetadata metadata = new FileMetadata();
// populate metadata
Resource file = // lookup File or Resource

operations.store(file.getInputStream(), "filename.txt", metadata);

}
}

The store() operations take an InputStream, a filename and optionally metadata information about
the file to store. The metadata can be an arbitrary object which will be marshalled by the
MongoConverter configured with the GridFsTemplate. Alternatively you can also provide a DBObject as
well.

Reading files from the filesystem can either be achieved through the find() or getResources()
methods. Let’s have a look at the find() methods first. You can either find a single file matching a
Query or multiple ones. To easily define file queries we provide the GridFsCriteria helper class. It
provides static factory methods to encapsulate default metadata fields (e.g. whereFilename(),
whereContentType()) or the custom one through whereMetaData().

Example 54. Using GridFsTemplate to query for files

class GridFsClient {
GridFsOperations operations;

public void findFilesInGridFs {
List<GridFSDBFile> result = operations.find(query(whereFilename().is(

"filename.txt")))

}
}

Currently MongoDB does not support defining sort criteria when retrieving files from
NOTE GridFS. Thus any sort criteria defined on the Query instance handed into the find()
method will be disregarded.

The other option to read files from the GridFs is using the methods introduced by the
ResourcePatternResolver interface. They allow handing an Ant path into the method ar thus retrieve

files matching the given pattern.

Example 55. Using GridFsTemplate to read files

class GridFsClient {
GridFsOperations operations;

public void readFilesFromGridFs {
GridFsResources[] txtFiles = operations.getResources("*.txt");

}
}

GridFsOperations extending ResourcePatternResolver allows the GridFsTemplate e.g. to be plugged into
an ApplicationContext to read Spring Config files from a MongoDB.

Chapter 10. MongoDB repositories

10.1. Introduction

This chapter will point out the specialties for repository support for MongoDB. This builds on the core
repository support explained in Working with Spring Data Repositories. So make sure you’ve got a
sound understanding of the basic concepts explained there.

10.2. Usage

To access domain entities stored in a MongoDB you can leverage our sophisticated repository support
that eases implementing those quite significantly. To do so, simply create an interface for your
repository:

Example 56. Sample Person entity

public class Person {

private String id;

private String firstname;
private String lastname;
private Address address;

// getters and setters omitted

We have a quite simple domain object here. Note that it has a property named id of type Objectld .
The default serialization mechanism used in MongoTemplate (which is backing the repository support)
regards properties named id as document id. Currently we support " String ", ObjectId and BigInteger as
id-types.

Example 57. Basic repository interface to persist Person entities

public interface PersonRepository extends PagingAndSortingRepository<Person, Long> {

// additional custom finder methods go here

}

Right now this interface simply serves typing purposes but we will add additional methods to it later.

In your Spring configuration simply add

Example 58. General MongoDB repository Spring configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd">

<mongo:mongo id="mongo" />

<bean id="mongoTemplate" class="
org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg ref="mongo" />
<constructor-arg value="databaseName" />
</bean>

<mongo:repositories base-package="com.acme.*.repositories" />

</beans>

This namespace element will cause the base packages to be scanned for interfaces extending
MongoRepository and create Spring beans for each of them found. By default the repositories will get a
MongoTemplate Spring bean wired that is called mongoTemplate, so you only need to configure mongo-
template-ref explicitly if you deviate from this convention.

If you’d rather like to go with JavaConfig use the @EnableMongoRepositories annotation. The annotation
carries the very same attributes like the namespace element. If no base package is configured the
infrastructure will scan the package of the annotated configuration class.

Example 59. JavaConfig for repositories

class ApplicationConfig extends AbstractMongoConfiguration {

protected String getDatabaseName() {
return "e-store";

}

public Mongo mongo() throws Exception {
return new Mongo();

}

protected String getMappingBasePackage() {
return "com.oreilly.springdata.mongodb"

}
}

As our domain repository extends PagingAndSortingRepository it provides you with CRUD operations as
well as methods for paginated and sorted access to the entities. Working with the repository instance is
just a matter of dependency injecting it into a client. So accessing the second page of "Person's at a
page size of 10 would simply look something like this:

Example 60. Paging access to Person entities

(SpringJUnit4ClassRunner.class)
public class PersonRepositoryTests {

PersonRepository repository;

public void readsFirstPageCorrectly() {

Page<Person> persons = repository.findAll(new PageRequest(0, 10));
assertThat(persons.isFirstPage(), is(true));

}

The sample creates an application context with Spring’s unit test support which will perform
annotation based dependency injection into test cases. Inside the test method we simply use the
repository to query the datastore. We hand the repository a PageRequest instance that requests the first
page of persons at a page size of 10.

10.3. Query methods

Most of the data access operations you usually trigger on a repository result a query being executed
against the MongoDB databases. Defining such a query is just a matter of declaring a method on the
repository interface

Example 61. PersonRepository with query methods

public interface PersonRepository extends PagingAndSortingRepository<Person, String>

{
List<Person> findByLastname(String lastname); <1>
Page<Person> findByFirstname(String firstname, Pageable pageable); <2>
Person findByShippingAddresses(Address address); <3>

Stream<Person> findA11By(); <4>

@ The method shows a query for all people with the given lastname. The query will be derived
parsing the method name for constraints which can be concatenated with And and Or. Thus the
method name will result in a query expression of {"lastname" : lastname}.

@ Applies pagination to a query. Just equip your method signature with a Pageable parameter and
let the method return a Page instance and we will automatically page the query accordingly.

® Shows that you can query based on properties which are not a primitive type.

@ Uses a Java 8 Stream which reads and converts individual elements while iterating the stream.

Note that for version 1.0 we currently don’t support referring to parameters that are

NOTE
mapped as DBRef in the domain class.

Table 3. Supported keywords for query methods

Keyword Sample Logical result

After findByBirthdateAfter(Date date) {"birthdate" : {"$qt" : date}}
GreaterThan findByAgeGreaterThan(int age) {"age" : {"$qt" : age}}

GreaterThanEqu findByAgeGreaterThanEqual(int {"age" : {"$gte" : age}}
al age)

Keyword

Before

LessThan
LessThanEqual

Between

In
NotIn

IsNotNull,
NotNull

IsNull, Null

Like,

StartingWith,
EndingWith

Containing on
String

Containing on
Collection

Regex

(No keyword)
Not
Near

Near

Near

Within

Within

IsTrue, True
IsFalse, False

Exists

Sample

findByBirthdateBefore(Date
date)

findByAgelLessThan(int age)
findByAgeLessThanEqual(int age)

findByAgeBetween(int from, int
to)

findByAgeIn(Collection ages)
findByAgeNotIn(Collection ages)
findByFirstnameNotNull()

findByFirstnameNull()

findByFirstnamelLike(String
name)

findByFirstnameContaining(Strin
g name)

findByAddressesContaining(Addre
ss address)

findByFirstnameRegex(String
firstname)

findByFirstname(String name)
findByFirstnameNot(String name)
findBylLocationNear (Point point)

findByLocationNear (Point point,
Distance max)

findByLocationNear (Point point,
Distance min, Distance max)

findBylLocationWithin(Circle
circle)

findBylLocationWithin(Box box)

findByActivelsTrue()
findByActiveIsFalse()

findByLocationExists(boolean
exists)

10.3.1. Repository delete queries

Logical result

{"birthdate" : {"$1t" : date}}

{uagen : {"$1t" . age}}
{"age" : {"$1te" : age}}

{"age" : {"$gt" : from, "$1t" : to}}
{"age" : {"$in" : [ages 1}}

{"age" : {"$nin" : [ages 1}}
{"firstname" : {"$ne" : null}}
{"firstname" : null}

{"firstname" : name} (name as regex)

{"firstname" : name} (name as regex)

{"addresses" : { "$in" : address}}

{"firstname" : {"$regex" : firstname }}
{"firstname" : name}

{"firstname" : {"$ne" : name}}

{"location" : {"$near" : [x,y1}}

{"location" : {"$near" : [x,y], "$maxDistance" :
max}}

{"location" : {"$near" : [x,y], "$minDistance" :
min, "$maxDistance" : max}}

{"location" : {"$geoWithin" : {"$center" : [[x,
y], distance]}}}

{"location" : {"$geoWithin" : {"$box" : [[x1,
y11, x2, y21}}}

1 true}
. false}

{"active"
{"active"

{"location" : {"$exists" : exists }}

The above keywords can be used in conjunciton with delete By or remove By to create queries

deleting matching documents.

Example 62. Delete By Query

public interface PersonRepository extends MongoRepository<Person, String> {
List <Person> deleteBylLastname(String lastname);

Long deletePersonBylLastname(String lastname);

}

Using return type List will retrieve and return all matching documents before actually deleting them.

A numeric return type directly removes the matching documents returning the total number of
documents removed.

10.3.2. Geo-spatial repository queries

As you’ve just seen there are a few keywords triggering geo-spatial operations within a MongoDB
query. The Near keyword allows some further modification. Let’s have look at some examples:

Example 63. Advanced Near queries

public interface PersonRepository extends MongoRepository<Person, String>

// { 'location' : { '$near' : [point.x, point.y], '$maxDistance' : distance}}
List<Person> findByLocationNear(Point location, Distance distance);

}

Adding a Distance parameter to the query method allows restricting results to those within the given

distance. If the Distance was set up containing a Metric we will transparently use $nearSphere instead of
$code.

Example 64. Using Distance with Metrics

Point point = new Point(43.7, 48.8);
Distance distance = new Distance(200, Metrics.KILOMETERS);
= repository.findBylLocationNear(point, distance);
// {'location' : {'$nearSphere' : [43.7, 48.8], '$maxDistance’
0.03135711885774796}}

As you can see using a Distance equipped with a Metric causes $nearSphere clause to be added instead

of a plain $near. Beyond that the actual distance gets calculated according to the Metrics used.

Using @GeoSpatiallndexed(type = GeoSpatialIndexType.GEO_2DSPHERE) on the target

NOTE
property forces usage of $nearSphere operator.

Geo-near queries

public interface PersonRepository extends MongoRepository<Person, String>

// {'geoNear' : 'location', 'near' : [x, y] }
GeoResults<Person> findByLocationNear(Point location);

// No metric: {'geoNear' : 'person', 'near' : [x, y], maxDistance : distance }
// Metric: {'geoNear' : 'person', 'near' : [x, y], 'maxDistance' : distance,
// "distanceMultiplier' : metric.multiplier, 'spherical' : true }

GeoResults<Person> findByLocationNear(Point location, Distance distance);

// Metric: {'geoNear' : 'person', 'near' : [x, y], 'minDistance’ : min,
// 'maxDistance’ : max, 'distanceMultiplier' : metric.multiplier,
// "spherical’ : true }

GeoResults<Person> findBylLocationNear(Point location, Distance min, Distance max);

// {'geoNear' : 'location', 'near' : [x, y] }
GeoResults<Person> findBylLocationNear(Point location);

10.3.3. MongoDB JSON based query methods and field restriction

By adding the annotation org.springframework.data.mongodb.repository.Query repository finder
methods you can specify a MongoDB JSON query string to use instead of having the query derived
from the method name. For example

public interface PersonRepository extends MongoRepository<Person, String>

@Query("{ 'firstname' : 70 }")
List<Person> findByThePersonsFirstname(String firstname);

The placeholder ?0 lets you substitute the value from the method arguments into the JSON query
string.

You can also use the filter property to restrict the set of properties that will be mapped into the Java
object. For example,

public interface PersonRepository extends MongoRepository<Person, String>

(value="{ 'firstname' : 7?0 }", fields="{ 'firstname' : 1, 'lastname' : 1}")
List<Person> findByThePersonsFirstname(String firstname);

This will return only the firstname, lastname and Id properties of the Person objects. The age property,
a java.lang.Integer, will not be set and its value will therefore be null.

10.3.4. Type-safe Query methods

MongoDB repository support integrates with the QueryDSL project which provides a means to perform
type-safe queries in Java. To quote from the project description, "Instead of writing queries as inline
strings or externalizing them into XML files they are constructed via a fluent APL." It provides the
following features

* Code completion in IDE (all properties, methods and operations can be expanded in your favorite
Java IDE)

* Almost no syntactically invalid queries allowed (type-safe on all levels)

* Domain types and properties can be referenced safely (no Strings involved!)

Adopts better to refactoring changes in domain types
* Incremental query definition is easier

Please refer to the QueryDSL documentation which describes how to bootstrap your environment for
APT based code generation using Maven or using Ant.

Using QueryDSL you will be able to write queries as shown below

QPerson person = new QPerson("person");
List<Person> result = repository.findAll(person.address.zipCode.eq("C0123"));

Page<Person> page = repository.findAll(person.lastname.contains("a"),
new PageRequest(0, 2, Direction.ASC, "lastname"));

QPerson is a class that is generated (via the Java annotation post processing tool) which is a Predicate
that allows you to write type safe queries. Notice that there are no strings in the query other than the
value "C0123".

You can use the generated Predicate class via the interface QueryDs1PredicateExecutor which is shown
below

http://www.querydsl.com/
http://source.mysema.com/static/querydsl/2.1.2/reference/html/ch02.html#d0e112
http://source.mysema.com/static/querydsl/2.1.2/reference/html/ch02.html#d0e131

public interface QueryDslPredicateExecutor<T> {
T findOne(Predicate predicate);
List<T> findA11(Predicate predicate);
List<T> findA11(Predicate predicate, OrderSpecifier<?>... orders);
Page<T> findAll(Predicate predicate, Pageable pageable);

Long count(Predicate predicate);

}

To use this in your repository implementation, simply inherit from it in addition to other repository
interfaces. This is shown below

public interface PersonRepository extends MongoRepository<Person, String>,
QueryDs1PredicateExecutor<Person> {

// additional finder methods go here

We think you will find this an extremely powerful tool for writing MongoDB queries.

10.3.5. Full-text search queries

MongoDBs full text search feature is very store specic and therefore can rather be found on
MongoRepository than on the more general CrudRepository. What we need is a document with a full-text
index defined for (Please see section Text Indexes for creating).

Additional methods on MongoRepository take TextCriteria as input parameter. In addition to those
explicit methods, it is also possible to add a TextCriteria derived repository method. The criteria will
added as an additional AND criteria. Once the entity contains a @TextScore annotated property the
documents full-text score will be retrieved. Furthermore the @TextScore annotated property will also
make it possible to sort by the documents score.

class FullTextDocument {

String 1id;
String title;
String content;
Float score;

}
interface FullTextRepository extends Repository<FullTextDocument, String> {

// Execute a full-text search and define sorting dynamically
List<FullTextDocument> findA11By(TextCriteria criteria, Sort sort);

// Paginate over a full-text search result
Page<FullTextDocument> findA11By(TextCriteria criteria, Pageable pageable);

// Combine a derived query with a full-text search
List<FullTextDocument> findByTitleOrderByScoreDesc(String title, TextCriteria criteria

Sort sort = new Sort("score");
TextCriteria criteria = TextCriteria.forDefaultLanguage().matchingAny("spring”, "data");
List<FullTextDocument> result = repository.findAl1By(criteria, sort);

criteria = TextCriteria.forDefaultLanguage().matching("film");

Page<FullTextDocument> page = repository.findAl1By(criteria, new PageRequest(1, 1, sort)
)i

List<FullTextDocument> result = repository.findByTitleOrderByScoreDesc("mongodb”,
criteria);

10.4. Miscellaneous

10.4.1. CDI Integration

Instances of the repository interfaces are usually created by a container, which Spring is the most
natural choice when working with Spring Data. As of version 1.3.0 Spring Data MongoDB ships with a
custom CDI extension that allows using the repository abstraction in CDI environments. The extension
is part of the JAR so all you need to do to activate it is dropping the Spring Data MongoDB JAR into your
classpath. You can now set up the infrastructure by implementing a CDI Producer for the
MongoTemplate:

class MongoTemplateProducer {

public MongoOperations createMongoTemplate() throws UnknownHostException,
MongoException {

MongoDbFactory factory = new SimpleMongoDbFactory(new Mongo(), "database");
return new MongoTemplate(factory);

The Spring Data MongoDB CDI extension will pick up the MongoTemplate available as CDI bean and
create a proxy for a Spring Data repository whenever an bean of a repository type is requested by the
container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an @Inject-ed
property:

class RepositoryClient {

PersonRepository repository;

public void businessMethod() {

List<Person> people = repository.findAll();
}
}

Chapter 11. Auditing

11.1. Basics

Spring Data provides sophisticated support to transparently keep track of who created or changed an
entity and the point in time this happened. To benefit from that functionality you have to equip your
entity classes with auditing metadata that can be defined either using annotations or by implementing
an interface.

11.1.1. Annotation based auditing metadata

We provide @CreatedBy, @LastModifiedBy to capture the user who created or modified the entity as well
as @CreatedDate and @LastModifiedDate to capture the point in time this happened.

Example 65. An audited entity

class Customer {
private User user;

private DateTime createdDate;

// further properties omitted
¥

As you can see, the annotations can be applied selectively, depending on which information you’d like
to capture. For the annotations capturing the points in time can be used on properties of type
JodaTimes DateTime, legacy Java Date and Calendar, JDK8 date/time types as well as long/Long.

11.1.2. Interface-based auditing metadata

In case you don’t want to use annotations to define auditing metadata you can let your domain class
implement the Auditable interface. It exposes setter methods for all of the auditing properties.

There’s also a convenience base class AbstractAuditable which you can extend to avoid the need to
manually implement the interface methods. Be aware that this increases the coupling of your domain
classes to Spring Data which might be something you want to avoid. Usually the annotation based way
of defining auditing metadata is preferred as it is less invasive and more flexible.

11.1.3. AuditorAware

In case you use either @CreatedBy or @LastModifiedBy, the auditing infrastructure somehow needs to
become aware of the current principal. To do so, we provide an AuditorAware<T> SPI interface that you
have to implement to tell the infrastructure who the current user or system interacting with the
application is. The generic type T defines of what type the properties annotated with @CreatedBy or
@LastModifiedBy have to be.

Here’s an example implementation of the interface using Spring Security’s Authentication object:

Example 66. Implementation of AuditorAware based on Spring Security

class SpringSecurityAuditorAware implements AuditorAware<User> {
public User getCurrentAuditor() {

Authentication authentication = SecurityContextHolder.getContext()
.getAuthentication();

if (authentication == null || !authentication.isAuthenticated()) {
return null;

}

return ((MyUserDetails) authentication.getPrincipal()).getUser();

}
}

The implementation is accessing the Authentication object provided by Spring Security and looks up
the custom UserDetails instance from it that you have created in your UserDetailsService
implementation. We’re assuming here that you are exposing the domain user through that UserDetails
implementation but you could also look it up from anywhere based on the Authentication found.

11.2. General auditing configuration

Activating auditing functionality is just a matter of adding the Spring Data Mongo auditing namespace
element to your configuration:

Example 67. Activating auditing using XML configuration

<mongo:auditing mapping-context-ref="customMappingContext" auditor-aware-ref=
"yourAuditorAwareImpl"/>

Since Spring Data MongoDB 1.4 auditing can be enabled by annotating a configuration class with the
@EnableMongoAuditing annotation.

Example 68. Activating auditing using JavaConfig

class Config {

public AuditorAware<AuditableUser> myAuditorProvider() {
return new AuditorAwareImpl();

}
}

If you expose a bean of type AuditorAware to the ApplicationContext, the auditing infrastructure will
pick it up automatically and use it to determine the current user to be set on domain types. If you have
multiple implementations registered in the ApplicationContext, you can select the one to be used by
explicitly setting the auditorAwareRef attribute of @EnableJpaAuditing.

Chapter 12. Mapping

Rich mapping support is provided by the MongoMappingConverter. MongoMappingConverter has a rich
metadata model that provides a full feature set of functionality to map domain objects to MongoDB
documents.The mapping metadata model is populated using annotations on your domain objects.
However, the infrastructure is not limited to using annotations as the only source of metadata
information. The MongoMappingConverter also allows you to map objects to documents without
providing any additional metadata, by following a set of conventions.

In this section we will describe the features of the MongoMappingConverter. How to use conventions for
mapping objects to documents and how to override those conventions with annotation based mapping
metadata.

SimpleMongoConverter has been deprecated in Spring Data MongoDB M3 as all of its

NOTE
functionality has been subsumed into MappingMongoConverter.

12.1. Convention based Mapping

MongoMappingConverter has a few conventions for mapping objects to documents when no additional
mapping metadata is provided. The conventions are:

The short Java class name is mapped to the collection name in the following manner. The class
‘com.bigbank.SavingsAccount’ maps to ‘savingsAccount’ collection name.

+ All nested objects are stored as nested objects in the document and not as DBRefs

* The converter will use any Spring Converters registered with it to override the default mapping of
object properties to document field/values.

* The fields of an object are used to convert to and from fields in the document. Public JavaBean
properties are not used.

* You can have a single non-zero argument constructor whose constructor argument names match
top level field names of document, that constructor will be used. Otherwise the zero arg constructor
will be used. if there is more than one non-zero argument constructor an exception will be thrown.

12.1.1. How the '_id' field is handled in the mapping layer

MongoDB requires that you have an '_id' field for all documents. If you don’t provide one the driver
will assign a Objectld with a generated value. The "_id" field can be of any type the, other than arrays,
so long as it is unique. The driver naturally supports all primitive types and Dates. When using the
MongoMappingConverter there are certain rules that govern how properties from the Java class is
mapped to this '_id' field.

The following outlines what field will be mapped to the '_id' document field:

* A field annotated with @Id (org.springframework.data.annotation.Id) will be mapped to the '_id' field.
* A field without an annotation but named 'id' will be mapped to the '_id' field.
¢ The default field name for identifiers is ' id' and can be customized via the @Field annotation.

Table 4. Examples for the translation of '_id-field definitions

Field definition Resulting Id-Fieldname in MongoDB
Stringid _id

@Field Stringid _id

@Field('x') Stringid X

@Id String x _id

@Field('x") @Id Stringx _id

The following outlines what type conversion, if any, will be done on the property mapped to the _id
document field.

o If a field named 'id' is declared as a String or BigInteger in the Java class it will be converted to and
stored as an Objectld if possible. Objectld as a field type is also valid. If you specify a value for 'id' in
your application, the conversion to an Objectld is detected to the MongoDBdriver. If the specified
'id' value cannot be converted to an Objectld, then the value will be stored as is in the document’s

id field.

» If a field named 'id' id field is not declared as a String, BigInteger, or ObjectID in the Java class then
you should assign it a value in your application so it can be stored 'as-is' in the document’s _id field.

 If no field named 'id' is present in the Java class then an implicit '_id' file will be generated by the
driver but not mapped to a property or field of the Java class.

When querying and updating MongoTemplate will use the converter to handle conversions of the Query
and Update objects that correspond to the above rules for saving documents so field names and types
used in your queries will be able to match what is in your domain classes.

12.2. Mapping Configuration

Unless explicitly configured, an instance of MongoMappingConverter is created by default when creating a
MongoTemplate. You can create your own instance of the MappingMongoConverter so as to tell it where to
scan the classpath at startup your domain classes in order to extract metadata and construct indexes.
Also, by creating your own instance you can register Spring converters to use for mapping specific
classes to and from the database.

You can configure the MongoMappingConverter as well as com.mongodb.Mongo and MongoTemplate either
using Java or XML based metadata. Here is an example using Spring’s Java based configuration

Example 69. @Configuration class to configure MongoDB mapping support

public class GeoSpatialAppConfig extends AbstractMongoConfiguration {

public Mongo mongo() throws Exception {
return new Mongo("localhost");

}

public String getDatabaseName() {
return "database";

}

public String getMappingBasePackage() {
return "com.bigbank.domain";

}

// the following are optional

public CustomConversions customConversions() throws Exception {
List<Converter<?, 7>> converterList = new ArrayList<Converter<?, 7>>();
converterList.add(new org.springframework.data.mongodb.test.PersonReadConverter(

)i

converterList.add(new org.springframework.data.mongodb.test.PersonWriteConverter

0);

return new CustomConversions(converterList);

}

public LoggingEventListener<MongoMappingEvent> mappingEventsListener() {
return new LoggingEventListener<MongoMappingEvent>();
}
}

AbstractMongoConfiguration requires you to implement methods that define a com.mongodb.Mongo as well
as provide a database name. AbstractMongoConfiguration also has a method you can override named
‘getMappingBasePackage’ which tells the converter where to scan for classes annotated with the
@org.springframework.data.mongodb.core.mapping.Document annotation.

You <can add additional converters to the converter by overriding the method
afterMappingMongoConverterCreation. Also shown in the above example is a LoggingEventListener
which logs MongoMappingEvent's that are posted onto Spring s ‘ApplicationContextEvent
infrastructure.

AbstractMongoConfiguration will create a MongoTemplate instance and registered with

NOTE)
the container under the name 'mongoTemplate'.

You can also override the method UserCredentials getUserCredentials() to provide the username and
password information to connect to the database.

Spring’s MongoDB namespace enables you to easily enable mapping functionality in XML

Example 70. XML schema to configure MongoDB mapping support

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<!-- Default bean name is 'mongo’' -->
<mongo:mongo host="localhost" port="27017"/>

<mongo:db-factory dbname="database" mongo-ref="mongo"/>

<!-- by default look for a Mongo object named 'mongo’' - default name used for the
converter is 'mappingConverter' -->
<mongo:mapping-converter base-package="com.bigbank.domain">
<mongo:custom-converters>
<mongo:converter ref="readConverter"/>
<mongo:converter>
<bean class="org.springframework.data.mongodb.test.PersonWriteConverter"/>
</mongo:converter>
</mongo:custom-converters>
</mongo:mapping-converter>

<bean id="readConverter" class=
"org.springframework.data.mongodb.test.PersonReadConverter"/>

<!-- set the mapping converter to be used by the MongoTemplate -->
<bean id="mongoTemplate" class="
org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg name="mongoDbFactory" ref="mongoDbFactory"/>
<constructor-arg name="mongoConverter" ref="mappingConverter"/>
</bean>

<bean class=
"org.springframework.data.mongodb.core.mapping.event.LoggingEventListener"/>

</beans>

The base-package property tells it where to scan for classes annotated with the
@org.springframework.data.mongodb.core.mapping.Document annotation.

12.3. Metadata based Mapping

To take full advantage of the object mapping functionality inside the Spring Data/MongoDB support,
you should annotate your mapped objects with the
@org.springframework.data.mongodb.core.mapping.Document annotation. Although it is not necessary for
the mapping framework to have this annotation (your POJOs will be mapped correctly, even without
any annotations), it allows the classpath scanner to find and pre-process your domain objects to
extract the necessary metadata. If you don’t use this annotation, your application will take a slight
performance hit the first time you store a domain object because the mapping framework needs to
build up its internal metadata model so it knows about the properties of your domain object and how
to persist them.

Example 71. Example domain object

package com.mycompany.domain;
public class Person {
private ObjectId id;

private Integer ssn;

private String firstName;

private String lastName;

}

The @Id annotation tells the mapper which property you want to use for the
MongoDB _id property and the @Indexed annotation tells the mapping
framework to call createIndex() on that property of your document, making
searches faster.

IMPORTANT

IMPORTANT Automatic index creation is only done for types annotated with @Document.

12.3.1. Mapping annotation overview

The MappingMongoConverter can use metadata to drive the mapping of objects to documents. An

overview of the annotations is provided below
* @Id - applied at the field level to mark the field used for identiy purpose.

* @Document - applied at the class level to indicate this class is a candidate for mapping to the database.
You can specify the name of the collection where the database will be stored.

* @DBRef - applied at the field to indicate it is to be stored using a com.mongodbh.DBRef.

* @Indexed - applied at the field level to describe how to index the field.

* @CompoundIndex - applied at the type level to declare Compound Indexes

* @GeoSpatiallndexed - applied at the field level to describe how to geoindex the field.

* @TextIndexed - applied at the field level to mark the field to be included in the text index.
* @Language - applied at the field level to set the language override property for text index.

* @Transient - by default all private fields are mapped to the document, this annotation excludes the
field where it is applied from being stored in the database

» @PersistenceConstructor - marks a given constructor - even a package protected one - to use when
instantiating the object from the database. Constructor arguments are mapped by name to the key
values in the retrieved DBObject.

* @Value - this annotation is part of the Spring Framework . Within the mapping framework it can be
applied to constructor arguments. This lets you use a Spring Expression Language statement to
transform a key’s value retrieved in the database before it is used to construct a domain object. In
order to reference a property of a given document one has to use expressions like:
@Value("#root.myProperty") where root refers to the root of the given document.

» @Field - applied at the field level and described the name of the field as it will be represented in the
MongoDB BSON document thus allowing the name to be different than the fieldname of the class.

The mapping metadata infrastructure is defined in a seperate spring-data-commons project that is
technology agnostic. Specific subclasses are using in the MongoDB support to support annotation based
metadata. Other strategies are also possible to put in place if there is demand.

Here is an example of a more complex mapping.

@Document
@CompoundIndexes({

@CompoundIndex(name = "age_idx", def = "{'lastName': 1, 'age': -1}")
3]

public class Person<T extends Address> {

eId
private String 1id;

@Indexed(unique = true)
private Integer ssn;

@Field("fName")
private String firstName;

@Indexed
private String lastName;

private Integer age;

@Transient
private Integer accountTotal;

@DBRef
private List<Account> accounts;

private T address;

public Person(Integer ssn) {
this.ssn = ssn;

}

@PersistenceConstructor
public Person(Integer ssn, String firstName, String lastName, Integer age, T address) {
this.ssn = ssn;
this.firstName = firstName;
this.lastName = lastName;
this.age = age;
this.address = address;

}

public String getId() {
return id;

}

// no setter for Id. (getter is only exposed for some unit testing)

public Integer getSsn() {
return ssn;

}

// other getters/setters ommitted

12.3.2. Customized Object Construction

The mapping subsystem allows the customization of the object construction by annotating a
constructor with the @PersistenceConstructor annotation. The values to be used for the constructor
parameters are resolved in the following way:

 If a parameter is annotated with the @Value annotation, the given expression is evaluated and the
result is used as the parameter value.

« If the Java type has a property whose name matches the given field of the input document, then it’s
property information is used to select the appropriate constructor parameter to pass the input field
value to. This works only if the parameter name information is present in the java .class files
which can be achieved by compiling the source with debug information or using the new
-parameters command-line switch for javac in Java 8.

* Otherwise an MappingException will be thrown indicating that the given constructor parameter
could not be bound.

class OrderItem {

private String 1id;
private int quantity;
private double unitPrice;

OrderItem(String id, ("#root.qty ?: 0") int quantity, double unitPrice) {
this.id = id;
this.quantity = quantity;
this.unitPrice = unitPrice;

}

// getters/setters ommitted
}

DBObject input = new BasicDBObject("id", "4711");
input.put("unitPrice", 2.5);

input.put("qty",5);

OrderItem item = converter.read(OrderItem.class, input);

The SpEL expression in the @Value annotation of the quantity parameter falls back to

NOTE
the value 0 if the given property path cannot be resolved.

Additional examples for using the @PersistenceConstructor annotation can be found in the
MappingMongoConverterUnitTests test suite.

12.3.3. Compound Indexes

Compound indexes are also supported. They are defined at the class level, rather than on indidividual
properties.

Compound indexes are very important to improve the performance of queries that

NOTE
involve criteria on multiple fields

Here’s an example that creates a compound index of lastName in ascending order and age in
descending order:

Example 72. Example Compound Index Usage

package com.mycompany.domain;

({
(name = "age_idx", def = "{'lastName': 1, 'age': -1}")
3]

public class Person {

private ObjectId 1id;
private Integer age;
private String firstName;
private String lastName;

12.3.4. Text Indexes
NOTE The text index feature is disabled by default for mongodb v.2.4.

Creating a text index allows to accumulate several fields into a searchable full text index. It is only
possible to have one text index per collection so all fields marked with @TextIndexed are combined into
this index. Properties can be weighted to influence document score for ranking results. The default
language for the text index is english, to change the default language set @Document(language="spanish")
to any language you want. Using a property called language or @Language allows to define a language
override on a per document base.

https://github.com/spring-projects/spring-data-mongodb/blob/master/spring-data-mongodb/src/test/java/org/springframework/data/mongodb/core/convert/MappingMongoConverterUnitTests.java

Example 73. Example Text Index Usage

(language = "spanish")
class SomeEntity {

String foo;
String lang;

Nested nested;

}

class Nested {

(weight=5) String bar;
String roo;

12.3.5. Using DBRefs

The mapping framework doesn’t have to store child objects embedded within the document. You can
also store them separately and use a DBRef to refer to that document. When the object is loaded from
MongoDB, those references will be eagerly resolved and you will get back a mapped object that looks
the same as if it had been stored embedded within your master document.

Here’s an example of using a DBRef to refer to a specific document that exists independently of the
object in which it is referenced (both classes are shown in-line for brevity’s sake):

public class Account {

private ObjectId id;
private Float total;

}

public class Person {

private ObjectId id;
private Integer ssn;

private List<Account> accounts;

}

There’s no need to use something like @0neToMany because the mapping framework sees that you’re
wanting a one-to-many relationship because there is a List of objects. When the object is stored in
MongoDB, there will be a list of DBRefs rather than the Account objects themselves.

The mapping framework does not handle cascading saves. If you change an
Account object that is referenced by a Person object, you must save the Account
object separately. Calling save on the Person object will not automatically save
the Account objects in the property accounts.

IMPORTANT

12.3.6. Mapping Framework Events

Events are fired throughout the lifecycle of the mapping process. This is described in the Lifecycle
Events section.

Simply declaring these beans in your Spring ApplicationContext will cause them to be invoked
whenever the event is dispatched.

12.3.7. Overriding Mapping with explicit Converters

When storing and querying your objects it is convenient to have a MongoConverter instance handle the
mapping of all Java types to DBObjects. However, sometimes you may want the “MongoConverter’s do
most of the work but allow you to selectively handle the conversion for a particular type or to optimize
performance.

To selectively handle the conversion yourself, register one or more one or more

org.springframework.core.convert.converter.Converter instances with the MongoConverter.

Spring 3.0 introduced a core.convert package that provides a general type conversion
NOTE system. This is described in detail in the Spring reference documentation section
entitled Spring 3 Type Conversion.

The method customConversions in AbstractMongoConfiguration can be used to configure Converters. The
examples here at the beginning of this chapter show how to perform the configuration using Java and
XML.

Below is an example of a Spring Converter implementation that converts from a DBObject to a Person
POJO.

public class PersonReadConverter implements Converter<DBObject, Person> {

public Person convert(DBObject source) {
Person p = new Person((ObjectId) source.get("_id"), (String) source.get("name"));
p.setAge((Integer) source.get("age"));
return p;
}
}

Here is an example that converts from a Person to a DBObject.

public class PersonWriteConverter implements Converter<Person, DBObject> {

public DBObject convert(Person source) {
DBObject dbo = new BasicDBObject();
dbo.put("_id", source.getId());
dbo.put("name", source.getFirstName());
dbo.put("age", source.getAge());
return dbo;

}

}

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/validation.html#core-convert

Chapter 13. Cross Store support

Sometimes you need to store data in multiple data stores and these data stores can be of different
types. One might be relational while the other a document store. For this use case we have created a
separate module in the MongoDB support that handles what we call cross-store support. The current
implementation is based on JPA as the driver for the relational database and we allow select fields in
the Entities to be stored in a Mongo database. In addition to allowing you to store your data in two
stores we also coordinate persistence operations for the non-transactional MongoDB store with the
transaction life-cycle for the relational database.

13.1. Cross Store Configuration

Assuming that you have a working JPA application and would like to add some cross-store persistence
for MongoDB. What do you have to add to your configuration?

First of all you need to add a dependency on the module. Using Maven this is done by adding a
dependency to your pom:

Example 74. Example Maven pom.xml with spring-data-mongodb-cross-store dependency

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<!-- Spring Data -->

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-mongodb-cross-store</artifactId>
<version>${spring.data.mongo.version}</version>

</dependency>

</project>

Once this is done we need to enable Aspect] for the project. The cross-store support is implemented
using Aspect] aspects so by enabling compile time Aspect] support the cross-store features will become
available to your project. In Maven you would add an additional plugin to the <build> section of the
pom:

Example 75. Example Maven pom.xml with Aspect] plugin enabled

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<build>
<plugins>

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>aspectj-maven-plugin</artifactId>
<version>1.0</version>
<dependencies>
<!-- NB: You must use Maven 2.0.9 or above or these are ignored (see MNG-
2972) -->
<dependency>
<groupld>org.aspectj</groupld>
<artifactId>aspectjrt</artifactId>
<version>${aspectj.version}</version>
</dependency>
<dependency>
<groupId>org.aspectj</groupId>
<artifactId>aspectjtools</artifactId>
<version>${aspectj.version}</version>
</dependency>
</dependencies>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>test-compile</goal>
</goals>
</execution>
</executions>
<confiquration>
<outxml>true</outxml>
<aspectlibraries>
<aspectlibrary>
<groupld>org.springframework</groupld>
<artifactId>spring-aspects</artifactId>
</aspectlibrary>
<aspectlibrary>

<groupId>org.springframework.data</groupId>
<artifactId>spring-data-mongodb-cross-store</artifactId>
</aspectlLibrary>

</aspectLibraries>

<source>1.6</source>

<target>1.6</target>

</configuration>
</plugin>

</plugins>
</build>

</project>

Finally, you need to configure your project to use MongoDB and also configure the aspects that are
used. The following XML snippet should be added to your application context:

Example 76. Example application context with MongoDB and cross-store aspect support

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jdbe="http://www.springframework.org/schema/jdbc"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa-1.0.xsd">

<!-- Mongo config -->
<mongo:mongo host="localhost" port="27017"/>

<bean id="mongoTemplate" class="
org.springframework.data.mongodb.core.MongoTemplate">
<constructor-arg name="mongo" ref="mongo"/>
<constructor-arg name="databaseName" value="test"/>
<constructor-arg name="defaultCollectionName" value="cross-store"/>
</bean>

<bean class="org.springframework.data.mongodb.core.MongoExceptionTranslator"/>

<!-- Mongo cross-store aspect config -->
<bean class=
"org.springframework.data.persistence.document.mongo.MongoDocumentBacking"
factory-method="aspectOf">
<property name="changeSetPersister" ref="mongoChangeSetPersister"/>
</bean>
<bean id="mongoChangeSetPersister"
class="org.springframework.data.persistence.document.mongo.MongoChangeSetPersis
ter">
<property name="mongoTemplate" ref="mongoTemplate"/>
<property name="entityManagerFactory" ref="entityManagerFactory"/>
</bean>

</beans>

13.2. Writing the Cross Store Application

We are assuming that you have a working JPA application so we will only cover the additional steps
needed to persist part of your Entity in your Mongo database. First you need to identify the field you
want persisted. It should be a domain class and follow the general rules for the Mongo mapping
support covered in previous chapters. The field you want persisted in MongoDB should be annotated
using the @RelatedDocument annotation. That is really all you need to do!. The cross-store aspects take
care of the rest. This includes marking the field with @Transient so it won’t be persisted using JPA,
keeping track of any changes made to the field value and writing them to the database on successful
transaction completion, loading the document from MongoDB the first time the value is used in your
application. Here is an example of a simple Entity that has a field annotated with @RelatedEntity.

Example 77. Example of Entity with @RelatedDocument

public class Customer {
(strategy = GenerationType.IDENTITY)
private Long id;
private String firstName;

private String lastName;

private SurveyInfo surveyInfo;

// getters and setters omitted

}

Example 78. Example of domain class to be stored as document

public class SurveyInfo {
private Map<String, String> questionsAndAnswers;

public SurveyInfo() {
this.questionsAndAnswers = new HashMap<String, String>();

}

public SurveyInfo(Map<String, String> questionsAndAnswers) {
this.questionsAndAnswers = questionsAndAnswers;

}

public Map<String, String> getQuestionsAndAnswers() {
return questionsAndAnswers;

}

public void setQuestionsAndAnswers(Map<String, String> questionsAndAnswers) {
this.questionsAndAnswers = questionsAndAnswers;

}

public SurveyInfo addQuestionAndAnswer(String question, String answer) {
this.questionsAndAnswers.put(question, answer);
return this;
}
}

Once the SurveyInfo has been set on the Customer object above the MongoTemplate that was
configured above is used to save the SurveyInfo along with some metadata about the JPA Entity is
stored in a MongoDB collection named after the fully qualified name of the JPA Entity class. The
following code:

Example 79. Example of code using the JPA Entity configured for cross-store persistence

Customer customer = new Customer();
customer.setFirstName("Sven");
customer.setLastName("0lafsen");

SurveyInfo surveyInfo = new SurveyInfo()
.addQuestionAndAnswer ("age", "22")
.addQuestionAndAnswer("married", "Yes")
.addQuestionAndAnswer ("citizenship", "Norwegian");

customer.setSurveyInfo(surveyInfo);

customerRepository.save(customer);

Executing the code above results in the following JSON document stored in MongoDB.

Example 80. Example of JSON document stored in MongoDB

{ "_id" : ObjectId("4d9e8b6e3c55287f87d4b79%e"),

"_entity_id" : 1,

"_entity_class" :
"org.springframework.data.mongodb.examples.custsve.domain.Customer",

"_entity_field_name" : "surveyInfo",
"questionsAndAnswers" : { "married" : "Yes",
llagell : l|22|l'
"citizenship" : "Norwegian" },

_entity_field_class" :
"org.springframework.data.mongodb.examples.custsvc.domain.SurveyInfo" }

Chapter 14. Logging support

An appender for Log4j is provided in the maven module "spring-data-mongodb-log4j". Note, there is no
dependency on other Spring Mongo modules, only the MongoDB driver.

14.1. MongoDB Log4j Configuration

Here is an example configuration

log4j.rootCategory=INFO, stdout

log4j.appender.stdout=org.springframework.data.document.mongodb.log4j.MongoLog4jAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - <%m>%n
log4j.appender.stdout.host = localhost

log4j.appender.stdout.port = 27017

log4j.appender.stdout.database = logs

log4j.appender.stdout.collectionPattern = %X{year}%X{month}
log4j.appender.stdout.applicationId = my.application
log4j.appender.stdout.warnOrHigherWriteConcern = FSYNC_SAFE

log4j.category.org.apache.activemq=ERROR
log4j.category.org.springframework.batch=DEBUG
log4j.category.org.springframework.data.document.mongodb=DEBUG
log4j.category.org.springframework.transaction=INFO

The important configuration to look at aside from host and port is the database and collectionPattern.
The variables year, month, day and hour are available for you to use in forming a collection name. This
is to support the common convention of grouping log information in a collection that corresponds to a
specific time period, for example a collection per day.

There is also an applicationld which is put into the stored message. The document stored from logging
as the following keys: level, name, applicationld, timestamp, properties, traceback, and message.

Chapter 15. JMX support

The JMX support for MongoDB exposes the results of executing the 'serverStatus' command on the
admin database for a single MongoDB server instance. It also exposes an administrative MBean,
MongoAdmin which will let you perform administrative operations such as drop or create a database.
The JMX features build upon the JMX feature set available in the Spring Framework. See here for more
details.

15.1. MongoDB JMX Configuration

Spring’s Mongo namespace enables you to easily enable JMX functionality

http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/jmx.html

Example 81. XML schema to configure MongoDB

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo-1.0.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

<!-- Default bean name is 'mongo' -->
<mongo:mongo host="localhost" port="27017"/>

<!-- by default look for a Mongo object named 'mongo' -->
<mongo: jmx/>

<context:mbean-export/>

<!-- To translate any MongoExceptions thrown in @Repository annotated classes -->
<context:annotation-config/>

<bean id="registry" class=
"org.springframework.remoting.rmi.RmiRegistryFactoryBean" p:port="1099" />

<!-- Expose JMX over RMI -->
<bean id="serverConnector" class=
"org.springframework.jmx.support.ConnectorServerFactoryBean"
depends-on="registry"
p:objectName="connector:name=rmi"
p:servicelrl="service:jmx:rmi://localhost/jndi/rmi://localhost:1099/myconnect
or" />

</beans>

This will expose several MBeans
* AssertMetrics
* BackgroundFlushingMetrics

¢ BtreeIndexCounters

¢ ConnectionMetrics

GlobalLoclMetrics

* MemoryMetrics

* OperationCounters
» ServerInfo

MongoAdmin

This is shown below in a screenshot from JConsole

ngframework. data. docume

) com.sunmanagerment
2 connector
) java.lang
) java.util Ingging
LD javax. management.remate.r mi
(=3 org.springframework. data.document. mangodh

=3 Mongoadmin

(= org.springframework data. document. mongodb MongoAdmin#n

cropDatabase
createDatabase
getDatahaseStats
Wotifications

(=3 org springframework. data.document. mongadh. manitor

5 Assertivetrics

{2 BackgroundF lushinghetrics

) BiresIndexCounters

1) ConnectionMetrics

1) GlobalLockivetrics

) MermoryMetrice

{2 OperationCounters

5 Serverlnfo

Operation invocation

vl [oroppatabese | (p1| swig [y
¥ [croatepatabeze | (p1| String |y
javalang, String
getatbasestats | (pi| Swing b

Chapter 16. MongoDB 3.0 Support

Spring Data MongoDB allows usage of both MongoDB Java driver generations 2 and 3 when connecting
to a MongoDB 2.6/3.0 server running MMap.vl or a MongoDB server 3.0 using MMap.vl or the
WiredTiger storage engine.

Please refer to the driver and database specific documentation for major differences

NOTE
between those.

Operations that are no longer valid using a 3.x MongoDB Java driver have been

NOTE
deprecated within Spring Data and will be removed in a subsequent release.

16.1. Using Spring Data MongoDB with MongoDB 3.0

16.1.1. Configuration Options

Some of the configuration options have been changed / removed for the mongo-java-driver. The
following options will be ignored using the generation 3 driver:

* autoConnectRetry

* maxAutoConnectRetryTime

* slaveOk
Generally it is recommended to use the <mongo:mongo-client /> and <mongo:client-options
/> elements instead of <mongo:mongo /> when doing XML based configuration, since those

elements will only provide you with attributes valid for the 3 generation java driver.

<?xml version="1.0" encoding="UTF-8"7>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<mongo:mongo-client host="127.0.0.1" port="27017">
<mongo:client-options write-concern="NORMAL" />

</mongo:mongo-client>

</beans>

16.1.2. WriteConcern and WriteConcernChecking

The WriteConcern.NONE, which had been used as default by Spring Data MongoDB, was removed in 3.0.
Therefore in a MongoDB 3 environment the WriteConcern will be defaulted to
WriteConcern.UNACKNOWLEGED. In case WriteResultChecking.EXCEPTION is enabled the WriteConcern will be
altered to WriteConcern.ACKNOWLEDGED for write operations, as otherwise errors during execution would
not be throw correctly, since simply not raised by the driver.

16.1.3. Authentication

MongoDB Server generation 3 changed the authentication model when connecting to the DB.
Therefore some of the configuration options available for authentication are no longer valid. Please
use the MongoClient specific options for setting credentials via MongoCredential to provide
authentication data.

public class ApplicationContextEventTestsAppConfig extends AbstractMongoConfiguration {

public String getDatabaseName() {
return "database";

}

public Mongo mongo() throws Exception {
return new MongoClient(singletonList(new ServerAddress("127.0.0.1", 27017)),
singletonList(MongoCredential.createCredential("name", "db", "pwd".toCharArray()))

In order to use authentication with XML configuration use the credentials attribue on <mongo-client>.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:mongo="http://www.springframework.org/schema/data/mongo"
xsi:schemalocation="http://www.springframework.org/schema/data/mongo
http://www.springframework.org/schema/data/mongo/spring-mongo.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<mongo:mongo-client credentials="user:password@database" />

</beans>

16.1.4. Other things to be aware of

This section covers additional things to keep in mind when using the 3.0 driver.

* IndexOperations.resetIndexCache() is no longer supported.

Any MapReduceOptions.extraOption is silently ignored.
* WriteResult does not longer hold error informations but throws an Exception.
* MongoOperations.executeInSession() no longer calls requestStart / requestDone.

* Index name generation has become a driver internal operations, still we use the 2.x schema to
generate names.

* Some Exception messages differ between the generation 2 and 3 servers as well as between
MMap.v1 and WiredTiger storage engine.

Appendix

Appendix A: Namespace reference

The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The most
important attribute is base-package which defines the package to scan for Spring Data repository
interfaces. [see XML configuration]

Table 5. Attributes
Name Description

base-package Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific Spring
Data module) in auto detection mode. All packages below the configured
package will be scanned, too. Wildcards are allowed.

repository-impl-postfix Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered as
candidates. Defaults to Impl.

query-lookup-strategy = Determines the strategy to be used to create finder queries. See Query
lookup strategies for details. Defaults to create-if-not-found.

named-queries-location Defines the location to look for a Properties file containing externally
defined queries.

consider-nested- Controls whether nested repository interface definitions should be
repositories considered. Defaults to false.

Appendix B: Populators namespace reference

The <populator /> element

The <populator /> element allows to populate the a data store via the Spring Data repository
infrastructure. [see XML configuration]

Table 6. Attributes
Name Description

locations Where to find the files to read the objects from the repository shall be
populated with.

Appendix C: Repository query keywords

Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query
derivation mechanism. However, consult the store-specific documentation for the exact list of
supported keywords, because some listed here might not be supported in a particular store.

Table 7. Query keywords

Logical keyword Keyword expressions

AND And

OR Or

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains
BETWEEN

ENDING_WITH

EXISTS
FALSE

GREATER_THAN
GREATER_THAN_EQUALS

Between, IsBetween

EndingWith, IsEndingWith, EndsWith
Exists

False, IsFalse

GreaterThan, IsGreaterThan

GreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)
IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN

LESS_THAN_EQUAL

LessThan, IsLessThan

LessThanEqual, IsLessThanEqual

LIKE Like, IsLike
NEAR Near, IsNear
NOT Not, IsNot
NOT_IN NotIn, IsNotIn
NOT_LIKE

NotLike, IsNotLike

Logical keyword
REGEX

STARTING_WITH
TRUE

WITHIN

Keyword expressions

Regex, MatchesRegex, Matches
StartingWith, IsStartingWith, StartsWith
True, IsTrue

Within, IsWithin

Appendix D: Repository query return types

Supported query return types

The following table lists the return types generally supported by Spring Data repositories. However,
consult the store-specific documentation for the exact list of supported return types, because some
listed here might not be supported in a particular store.

NOTE

Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data stores

that support geospatial queries.

Table 8. Query return types

Return type
void

Primitives
Wrapper types
I

Iterator<T>
Collection<T>
List<T>

Optional<T>

Stream<T>

Slice

Page<T>

GeoResult<T>

GeoResults<T>

GeoPage<T>

Description

Denotes no return value.
Java primitives.

Java wrapper types.

An unique entity. Expects the query method to return one result at most. In
case no result is found null is returned. More than one result will trigger an
IncorrectResultSizeDataAccessException.

An Iterator.
A Collection.
A List.

A Java 8 or Guava Optional. Expects the query method to return one result
at most. In case no result is found Optional.empty()/Optional.absent() is
returned. More than one result will trigger an
IncorrectResultSizeDataAccessException.

AJava 8 Stream.

A sized chunk of data with information whether there is more data
available. Requires a Pageable method parameter.

A Slice with additional information, e.g. the total number of results.
Requires a Pageable method parameter.

A result entry with additional information, e.g. distance to a reference
location.

A list of GeoResult<T> with additional information, e.g. average distance to a
reference location.

A Page with GeoResult<T>, e.g. average distance to a reference location.

	Spring Data MongoDB - Reference Documentation
	Table of Contents
	Preface
	Chapter 1. Knowing Spring
	Chapter 2. Knowing NoSQL and Document databases
	Chapter 3. Requirements
	Chapter 4. Additional Help Resources
	4.1. Support
	4.1.1. Community Forum
	4.1.2. Professional Support

	4.2. Following Development

	Chapter 5. New & Noteworthy
	5.1. What’s new in Spring Data MongoDB 1.7

	Chapter 6. Dependencies
	6.1. Dependency management with Spring Boot
	6.2. Spring Framework

	Chapter 7. Working with Spring Data Repositories
	7.1. Core concepts
	7.2. Query methods
	7.3. Defining repository interfaces
	7.3.1. Fine-tuning repository definition

	7.4. Defining query methods
	7.4.1. Query lookup strategies
	7.4.2. Query creation
	7.4.3. Property expressions
	7.4.4. Special parameter handling
	7.4.5. Limiting query results
	7.4.6. Streaming query results

	7.5. Creating repository instances
	7.5.1. XML configuration
	7.5.2. JavaConfig
	7.5.3. Standalone usage

	7.6. Custom implementations for Spring Data repositories
	7.6.1. Adding custom behavior to single repositories
	7.6.2. Adding custom behavior to all repositories

	7.7. Spring Data extensions
	7.7.1. Web support
	7.7.2. Repository populators
	7.7.3. Legacy web support

	Reference Documentation
	Chapter 8. Introduction
	8.1. Document Structure

	Chapter 9. MongoDB support
	9.1. Getting Started
	9.2. Examples Repository
	9.3. Connecting to MongoDB with Spring
	9.3.1. Registering a Mongo instance using Java based metadata
	9.3.2. Registering a Mongo instance using XML based metadata
	9.3.3. The MongoDbFactory interface
	9.3.4. Registering a MongoDbFactory instance using Java based metadata
	9.3.5. Registering a MongoDbFactory instance using XML based metadata

	9.4. Introduction to MongoTemplate
	9.4.1. Instantiating MongoTemplate
	9.4.2. WriteResultChecking Policy
	9.4.3. WriteConcern
	9.4.4. WriteConcernResolver

	9.5. Saving, Updating, and Removing Documents
	9.5.1. How the '_id' field is handled in the mapping layer
	9.5.2. Type mapping
	9.5.3. Methods for saving and inserting documents
	9.5.4. Updating documents in a collection
	9.5.5. Upserting documents in a collection
	9.5.6. Finding and Upserting documents in a collection
	9.5.7. Methods for removing documents

	9.6. Querying Documents
	9.6.1. Querying documents in a collection
	9.6.2. Methods for querying for documents
	9.6.3. GeoSpatial Queries
	9.6.4. GeoJSON Support
	9.6.5. Full Text Queries

	9.7. Map-Reduce Operations
	9.7.1. Example Usage

	9.8. Script Operations
	9.8.1. Example Usage

	9.9. Group Operations
	9.9.1. Example Usage

	9.10. Aggregation Framework Support
	9.10.1. Basic Concepts
	9.10.2. Supported Aggregation Operations
	9.10.3. Projection Expressions

	9.11. Overriding default mapping with custom converters
	9.11.1. Saving using a registered Spring Converter
	9.11.2. Reading using a Spring Converter
	9.11.3. Registering Spring Converters with the MongoConverter
	9.11.4. Converter disambiguation

	9.12. Index and Collection management
	9.12.1. Methods for creating an Index
	9.12.2. Accessing index information
	9.12.3. Methods for working with a Collection

	9.13. Executing Commands
	9.13.1. Methods for executing commands

	9.14. Lifecycle Events
	9.15. Exception Translation
	9.16. Execution callbacks
	9.17. GridFS support

	Chapter 10. MongoDB repositories
	10.1. Introduction
	10.2. Usage
	10.3. Query methods
	10.3.1. Repository delete queries
	10.3.2. Geo-spatial repository queries
	10.3.3. MongoDB JSON based query methods and field restriction
	10.3.4. Type-safe Query methods
	10.3.5. Full-text search queries

	10.4. Miscellaneous
	10.4.1. CDI Integration

	Chapter 11. Auditing
	11.1. Basics
	11.1.1. Annotation based auditing metadata
	11.1.2. Interface-based auditing metadata
	11.1.3. AuditorAware

	11.2. General auditing configuration

	Chapter 12. Mapping
	12.1. Convention based Mapping
	12.1.1. How the '_id' field is handled in the mapping layer

	12.2. Mapping Configuration
	12.3. Metadata based Mapping
	12.3.1. Mapping annotation overview
	12.3.2. Customized Object Construction
	12.3.3. Compound Indexes
	12.3.4. Text Indexes
	12.3.5. Using DBRefs
	12.3.6. Mapping Framework Events
	12.3.7. Overriding Mapping with explicit Converters

	Chapter 13. Cross Store support
	13.1. Cross Store Configuration
	13.2. Writing the Cross Store Application

	Chapter 14. Logging support
	14.1. MongoDB Log4j Configuration

	Chapter 15. JMX support
	15.1. MongoDB JMX Configuration

	Chapter 16. MongoDB 3.0 Support
	16.1. Using Spring Data MongoDB with MongoDB 3.0
	16.1.1. Configuration Options
	16.1.2. WriteConcern and WriteConcernChecking
	16.1.3. Authentication
	16.1.4. Other things to be aware of

	Appendix
	Appendix A: Namespace reference
	The <repositories /> element

	Appendix B: Populators namespace reference
	The <populator /> element

	Appendix C: Repository query keywords
	Supported query keywords

	Appendix D: Repository query return types
	Supported query return types

