
Good Relationships

The Spring Data Neo4j Guide Book

2.0.0.RELEASE

Copyright © 2010 - 2011 Michael Hunger, David Montag, Andreas Kollegger

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this

Copyright Notice, whether distributed in print or electronically. Copyright 2010-2011 Neo Technology

ii

Spring Data Graph

(2.0.0.RELEASE)

Foreword by Rod Johnson .. v

Foreword by Emil Eifrem .. vi

About this guide book .. vii

1. The Spring Data Neo4j Project ... vii

2. Feedback ... vii

3. Format of the Book .. vii

4. Acknowledgements .. vii

I. Tutorial .. 1

1. Introducing our project ... 2

2. The Spring stack .. 3

2.1. Required setup .. 3

3. The domain model ... 5

4. Learning Neo4j .. 7

5. Spring Data Neo4j ... 9

6. Annotating the domain ... 10

7. Indexing .. 11

8. Repositories ... 12

9. Relationships .. 14

9.1. Creating relationships .. 14

9.2. Accessing related entities ... 15

9.3. Accessing the relationship entities .. 16

10. Get it running .. 17

10.1. Populating the database .. 17

10.2. Inspecting the datastore .. 17

10.2.1. Neoclipse visualization .. 17

10.2.2. The Neo4j Shell .. 18

11. Web views ... 20

11.1. Searching .. 21

11.2. Listing results .. 21

12. Adding social ... 24

12.1. Users ... 24

12.2. Ratings for movies ... 25

13. Adding Security ... 26

14. More UI ... 30

15. Importing Data ... 33

16. Recommendations ... 36

17. Neo4j Server .. 37

17.1. Getting Neo4j-Server ... 37

17.2. Other approaches ... 38

18. Conclusion ... 39

II. Reference Documentation .. 40

Reference Documentation ... xli

1. Spring Data and Spring Data Neo4j .. xli

2. Reference Documentation Overview .. xli

19. Introduction to Neo4j ... 44

19.1. What is a graph database? .. 44

19.2. About Neo4j .. 44

19.3. GraphDatabaseService .. 44

19.4. Creating nodes and relationships ... 45

Good Relationships

iii

Spring Data Graph

(2.0.0.RELEASE)

19.5. Graph traversal .. 45

19.6. Indexing .. 45

19.7. Querying the Graph with Cypher .. 46

19.8. Gremlin a Graph Traversal DSL ... 47

20. Programming model ... 48

20.1. Object Graph Mapping ... 48

20.2. Advanced Mapping with AspectJ .. 48

20.2.1. AspectJ IDE support ... 49

20.3. Simple Object Graph Mapping ... 50

20.4. Defining node entities .. 51

20.4.1. @NodeEntity: The basic building block .. 51

20.4.2. @GraphId: Neo4j -id field ... 51

20.4.3. @GraphProperty: Optional annotation for property fields 52

20.4.4. @Indexed: Making entities searchable by field value 52

20.4.5. @Query: fields as query result views ... 52

20.4.6. @GraphTraversal: fields as traversal result views 52

20.5. Relating node entities ... 53

20.5.1. @RelatedTo: Connecting node entities ... 53

20.5.2. @RelationshipEntity: Rich relationships ... 55

20.5.3. @RelatedToVia: Accessing relationship entities 55

20.6. Indexing .. 56

20.6.1. Exact and numeric index ... 56

20.6.2. Fulltext indexes ... 57

20.6.3. Manual index access ... 57

20.6.4. Index queries in Neo4jTemplate ... 58

20.6.5. Neo4j Auto Indexes .. 58

20.6.6. Spatial Indexes .. 58

20.7. Neo4jTemplate .. 58

20.7.1. Basic operations .. 59

20.7.2. Result ... 59

20.7.3. Indexing ... 60

20.7.4. Graph traversal ... 60

20.7.5. Cypher Queries ... 60

20.7.6. Gremlin Scripts ... 60

20.7.7. Transactions .. 60

20.7.8. Neo4j REST Server ... 60

20.8. CRUD with repositories ... 60

20.8.1. CRUDRepository .. 61

20.8.2. IndexRepository and NamedIndexRepository .. 61

20.8.3. TraversalRepository ... 62

20.8.4. Query and Finder Methods .. 62

20.8.5. CypherDSL repository ... 64

20.8.6. Creating repositories .. 65

20.8.7. Composing repositories ... 65

20.9. Projecting entities .. 66

20.10. Geospatial Queries ... 67

20.11. Active Record Methods for Advanced Mapping Mode 68

20.12. Transactions ... 69

20.13. Detached node entities in advanced mapping mode .. 71

Good Relationships

iv

Spring Data Graph

(2.0.0.RELEASE)

20.13.1. Relating detached entities .. 72

20.14. Entity type representation ... 73

20.15. Bean validation (JSR-303) .. 74

21. Environment setup .. 75

21.1. Dependencies for Spring Data Neo4j Simple Mapping 75

21.2. Gradle configuration for Advanced Mapping (AspectJ) 75

21.3. Ant/Ivy configuration for Advanced Mapping (AspectJ) 76

21.4. Maven configuration for Advanced Mapping ... 76

21.4.1. Repositories .. 76

21.4.2. Dependencies .. 76

21.4.3. Maven AspectJ build configuration .. 77

21.5. Spring configuration .. 78

21.5.1. XML namespace ... 78

21.5.2. Repository Configuration ... 79

21.5.3. Java-based bean configuration .. 80

22. Cross-store persistence .. 81

22.1. Partial entities .. 81

22.2. Cross-store annotations .. 81

22.2.1. @NodeEntity(partial = "true") .. 81

22.2.2. @GraphProperty ... 81

22.2.3. Example ... 82

22.3. Configuring cross-store persistence ... 82

23. Sample code ... 84

23.1. Introduction ... 84

23.2. Hello Worlds sample application .. 84

23.3. IMDB sample application ... 84

23.4. MyRestaurants sample application .. 85

23.5. MyRestaurant-Social sample application ... 85

23.6. Cineasts social movie database ... 86

24. Heroku: Seeding the Cloud ... 88

24.1. Create a Self-Hosted Web Application .. 88

24.2. Deploy to Heroku .. 91

25. Performance considerations ... 92

25.1. When to use Spring Data Neo4j ... 92

26. AspectJ details ... 93

27. Neo4j Server .. 94

27.1. Server Extension .. 94

27.2. Using Spring Data Neo4j as a REST client .. 95

v

Spring Data Graph

(2.0.0.RELEASE)

Foreword by Rod Johnson
I’m excited about Spring Data Neo4j for several reasons.

First, this project is in a very important space. We are in an era of transition. A very few years

ago, a relational database was a given for storing nearly all the data in nearly all applications. While

relational databases remain important, new application requirements and massive data proliferation

have prompted a richer choice of data stores. Graph databases have some very interesting strengths,

and Neo4j is proving itself valuable in many applications. It's a choice you should add to your toolbox.

Second, Spring Data Neo4j is an innovative project, which makes it easy to work with one of the most

interesting new data stores. Unfortunately, the proliferation of new data stores has not been matched

by innovation in programming models to work with them. Ironically, just after modern ORM mapping

made working with relational data in Java relatively easy, the data store disruption occurred, and

developers were back to square one: struggling once more with clumsy, low level APIs. Working with

most non-relational technologies is overly complex and imposes too much work on developers. Spring

Data Neo4j makes working with Neo4j amazingly easy, and therefore has the potential to make you

more successful as a developer. Its use of AspectJ to eliminate persistence code from your domain

model is truly innovative, and on the cutting edge of today’s Java technologies.

Third, I'm excited about Spring Data Neo4j for personal reasons. I no longer get to write code as often

as I would like. My initial convictions that Spring and AspectJ could both make building applications

with Neo4j dramatically easier and cross-store object navigation possible gave me an excuse for a

much-needed coding binge early in 2010. This led to a prototype of what became Spring Data Neo4j —

at times written paired with Emil. I’m sure the vast majority of my code has long since been replaced

(probably for the better) by coders who aren't rusty — thanks Michael and Thomas! — but I retain

my pleasant memories.

Finally, Spring Data Neo4j is part of the broader Spring Data project: one of the key areas in which

Spring is innovating to help meet new application requirements. I encourage you to explore Spring

Data, and — better still — become involved in the community and contribute.

Enjoy the Spring Data Neo4j book, and happy coding!

Rod Johnson, Founder, Spring and SVP, Application Platform, VMware

vi

Spring Data Graph

(2.0.0.RELEASE)

Foreword by Emil Eifrem
"Spring is the most popular middleware on the planet," I thought to myself as I walked up to Rod

Johnson in late 2009 at the JAOO conference in Aarhus, Denmark. Rod had just given an introductory

presentation about Spring Roo and when he was done I told him "Great talk. You're clearly building

a stack for the future. What about support for non-relational databases?"

We started talking and quickly agreed that NOSQL will play an important role in emerging stacks.

Now, a year and half later, Spring Data Neo4j is available in its first stable release and I'm blown away

by the result. Never before in any environment, in any programming framework, in any stack, has it

been so easy and intuitive to tap into the power of a graph database like Neo4j. It's a testament to the

efforts by an awesome team of four hackers from Neo Technology and VMware: Michael Hunger,

David Montag, Thomas Risberg and Mark Pollack.

The Spring framework revolutionized how we all wrote enterprise Java applications and today it's

used by millions of enterprise developers. Graph databases also stand out in the NOSQL crowd when

it comes to enterprise adoption. You can find graph databases used in areas as diverse as network

management, fraud detection, cloud management, anything with social data, geo and location services,

master data management, bioinformatics, configuration databases, and much more.

Spring developers deserve access to the best tools available to solve their problem. Sometimes that's

a relational database accessed through JPA. But more often than not, a graph database like Neo4j is

the perfect fit for your project. I hope that Spring Data Neo4j will give you access to the power and

flexibility of graph databases while retaining the familiar productivity and convenience of the Spring

framework.

Enjoy the Spring Data Neo4j guide book and welcome to the wonderful world of graph databases!

Emil Eifrem, CEO of Neo Technology

vii

Spring Data Graph

(2.0.0.RELEASE)

About this guide book

1. The Spring Data Neo4j Project

Welcome to the Spring Data Neo4j Guide Book. Thank you for taking the time to get an in depth look

into Spring Data Neo4j. This project is part of the Spring Data project, which brings the convenient

programming model of the Spring Framework to modern NOSQL databases. Spring Data Neo4j, as

the name alludes to, aims to provide support for the graph database Neo4j.

2. Feedback

It was written by developers for developers. Hopefully we've created a guide that is well received by

our peers.

If you have any feedback on Spring Data Neo4j or this book, please provide it via the SpringSource

JIRA, the SpringSource NOSQL Forum, github comments or issues, or the Neo4j mailing list.

3. Format of the Book

This book is presented as a duplex book, a term coined by Martin Fowler. A duplex book consists

of at least two parts. The first part is an easily accessible tutorial or narrative that gives the reader an

overview of the topics contained in the book. It contains lots of examples and discussion topics. This

part of the book is highly suited for cover-to-cover reading.

We chose a tutorial describing the creation of a web application that allows movie enthusiasts to find

their favorite movies, rate them, connect with fellow movie geeks, and enjoy social features such as

recommendations. The application is running on Neo4j using Spring Data Neo4j and the well-known

Spring Web Stack.

The second part of the book is the classic reference documentation, containing detailed information

about the library. It discusses the programming model, the underlying assumptions, and internals, as

well as the APIs for the object-graph mapping. The reference documentation is typically used to look

up concrete bits of information, or to drill down into certain topics. For hackers wanting to really delve

into Spring Data Neo4j, it can of course also be read cover-to-cover.

4. Acknowledgements

We would like to thank everyone who contributed to this book, especially Mark Pollack and Thomas

Risberg, the leads of the Spring Data Project, who helped a lot during the development of the

library as well as sharing great feedback about the book. Also Oliver Gierke, our local German

VMWare/SpringSource engineer, who invested a lot of time discussing various aspects of the library as

well as providing the superb foundations for the Spring Data Repositories. We tortured Andy Clement,

the AspectJ project lead, with many questions and issues around our advanced AspectJ usage which

caused some headaches. He always quickly solved our issues and gave us excellent answers.

We also appreciate very much the foresight of Rod Johnson and Emil Eifrem to initiate the project, and

now also providing great forewords. Their leadership inspired collaboration between the engineering

teams at SpringSource and Neo Technology, a tremendous help during the making of Spring Data

Neo4j.

http://spring.neo4j.org
http://springsource.org/spring-data
http://neo4j.org
http://spring.neo4j.org/issues
http://spring.neo4j.org/issues
http://spring.neo4j.org/discussion
http://github.com/SpringSource/spring-data-neo4j/issues
http://neo4j.org/forums/
http://martinfowler.com/bliki/DuplexBook.html

About this guide book

viii

Spring Data Graph

(2.0.0.RELEASE)

Last but not least we thank our vibrant community, both in the Spring Forums as well as on the

Neo4j Mailing list and on many other places on the internet for giving us feedback, reporting issues

and suggesting improvements. Without that important feedback we wouldn't be where we are today.

Especially Jean-Pierre Bergamin and Alfredas Chmieliauskas provided exceptional feedback and

contributions.

Enjoy the book!

1

Spring Data Graph

(2.0.0.RELEASE)

Part I. Tutorial

The first part of the book provides a tutorial that walks through the creation of a complete web application called

cineasts.net, built with Spring Data Neo4j. Cineasts are people who love movies, and the site is a gathering place

for moviegoers. For cineasts.net we decided to add a social aspect to the rating of movies, allowing friends to

share their scores and get recommendations for new friends and movies.

The tutorial takes the reader through the steps necessary to create the application. It provides the configuration

and code examples that are needed to understand what's happening in Spring Data Neo4j. The complete source

code for the app is available on Github.

http://spring.neo4j.org/cineasts

2

Spring Data Graph

(2.0.0.RELEASE)

Chapter 1. Introducing our project

Allow me to introduce Cineasts.net

Once upon a time we wanted to build a social movie database. At first there was only the name:

Cineasts, the movie enthusiasts who have a burning passion for movies. So we went ahead and bought

the domain cineasts.net, and so we were off to a good start.

We had some ideas about the domain model too. There would obviously be actors playing roles in

movies. We also needed someone to rate the movies - enter the cineast. And cineasts, being the social

people they are, they wanted to make friends with other fellow cineasts. Imagine instantly finding

someone to watch a movie with, or share movie preferences with. Even better, finding new friends and

movies based on what you and your friends like.

When we looked for possible sources of data, IMDB was our first stop. But they're a bit expensive for

our taste, charging $15k USD for data access. Fortunately, we found themoviedb.org which provides

user-generated data for free. They also have liberal terms and conditions, and a nice API for retrieving

the data.

We had many more ideas, but we wanted to get something out there quickly. Here is how we envisioned

the final website:

http://cineasts.net
http://themoviedb.org

3

Spring Data Graph

(2.0.0.RELEASE)

Chapter 2. The Spring stack

Being Spring developers, we naturally choose components from the Spring stack to do all the heavy

lifting. After all, we have the concept etched out, so we're already halfway there.

What database would fit both the complex network of cineasts, movies, actors, roles, ratings, and

friends, while also being able to support the recommendation algorithms that we had in mind? We

had no idea.

But hold your horses, there is this new Spring Data project, started in 2010, which brings the

convenience of the Spring programming model to NOSQL databases. That should be in line with what

we already know, providing us with a quick start. We had a look at the list of projects supporting

the different NOSQL databases out there. Only one of them mentioned the kind of social network

we were thinking of - Spring Data Neo4j for the Neo4j graph database. Neo4j's slogan of "value in

relationships" plus "Enterprise NOSQL" and the accompanying docs looked like what we needed. We

decided to give it a try.

2.1. Required setup

To set up the project we created a public Github account and began setting up the infrastructure

for a Spring web project using Maven as the build system. So we added the dependencies

for the Spring Framework libraries, added the web.xml for the DispatcherServlet, and the

applicationContext.xml in the webapp directory.

Example 2.1. Project pom.xml

<properties>

 <spring.version>3.0.7.RELEASE</spring.version>

</properties>

<dependencies>

<dependency>

 <groupId>org.springframework</groupId>

 <!-- abbreviated for all the dependencies -->

 <artifactId>spring-(core,context,aop,aspects,tx,webmvc)</artifactId>

 <version>${spring.version}</version>

</dependency>

<dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-test</artifactId>

 <version>${spring.version}</version>

 <scope>test</scope>

</dependency>

</dependencies>

The Spring stack

4

Spring Data Graph

(2.0.0.RELEASE)

Example 2.2. Project web.xml

<listener>

 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

<servlet>

 <servlet-name>dispatcherServlet</servlet-name>

 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>dispatcherServlet</servlet-name>

 <url-pattern>/</url-pattern>

</servlet-mapping>

With this setup in place we were ready for the first spike: creating a simple MovieController showing

a static view. See the Spring Framework documentation for information on doing this.

Example 2.3. applicationContext.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/tx

 http://www.springframework.org/schema/tx/spring-tx-3.0.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <context:annotation-config/>

 <context:spring-configured/>

 <context:component-scan base-package="org.neo4j.cineasts">

 <context:exclude-filter type="annotation"

 expression="org.springframework.stereotype.Controller"/>

 </context:component-scan>

 <tx:annotation-driven mode="proxy"/>

</beans>

Example 2.4. dispatcherServlet-servlet.xml

<mvc:annotation-driven/>

<mvc:resources mapping="/images/**" location="/images/"/>

<mvc:resources mapping="/resources/**" location="/resources/"/>

<context:component-scan base-package="org.neo4j.cineasts.controller"/>

<bean id="viewResolver"

 class="org.springframework.web.servlet.view.InternalResourceViewResolver"

 p:prefix="/WEB-INF/views/" p:suffix=".jsp"/>

We spun up Tomcat in STS with the App and it worked fine. For completeness we also added Jetty

to the maven-config and tested it by invoking mvn jetty:run to see if there were any obvious issues

with the config. It all seemed to work just fine.

5

Spring Data Graph

(2.0.0.RELEASE)

Chapter 3. The domain model

Setting the stage

We wanted to outline the domain model before diving into library details. We also looked at the data

model of the themoviedb.org data to confirm that it matched our expectations.

In Java code this looks pretty straightforward:

The domain model

6

Spring Data Graph

(2.0.0.RELEASE)

Example 3.1. Domain model

class Movie {

 String id;

 String title;

 int year;

 Set<Role> cast;

}

class Actor {

 String id;

 String name;

 Set<Movie> filmography;

 Role playedIn(Movie movie, String role) { ... }

}

class Role {

 Movie movie;

 Actor actor;

 String role;

}

class User {

 String login;

 String name;

 String password;

 Set<Rating> ratings;

 Set<User> friends;

 Rating rate(Movie movie, int stars, String comment) { ... }

 void befriend(User user) { ... }

}

class Rating {

 User user;

 Movie movie;

 int stars;

 String comment;

}

Then we wrote some simple tests to show that the basic design of the domain is good enough so far.

Just creating a movie, populating it with actors, and allowing users to rate it.

7

Spring Data Graph

(2.0.0.RELEASE)

Chapter 4. Learning Neo4j

Graphs ahead

Now we needed to figure out how to store our chosen domain model in the chosen database. First we

read up about graph databases, in particular our chosen one, Neo4j. The Neo4j data model consists

of nodes and relationships, both of which can have key/value-style properties. What does that mean,

exactly? Nodes are the graph database name for records, with property keys instead of column names.

That's normal enough. Relationships are the special part. In Neo4j, relationships are first-class citizens,

meaning they are more than a simple foreign-key reference to another record, relationships carry

information. So we can link together nodes into semantically rich networks. This really appealed to

us. Then we found that we were also able to index nodes and relationships by {key, value} pairs. We

also found that we could traverse relationships both imperatively using the core API, and declaratively

using a query-like Traversal Description. Besides those programmatic traversals there was the powerful

graph query language called Cypher and an interesting looking DSL named Gremlin. So lots of ways

of working with the graph.

We also learned that Neo4j is fully transactional and therefore upholds ACID guarantees for our data.

Durability is actually a good thing and we didn't have to scale to trillions of users and movies yet.

This is unusual for NOSQL databases, but easier for us to get our head around than non-transactional

eventual consistency. It also made us feel safe, though it also meant that we had to manage transactions.

Something to keep in mind later.

We started out by doing some prototyping with the Neo4j core API to get a feeling for how it works.

And also, to see what the domain might look like when it's saved in the graph database. After adding

the Maven dependency for Neo4j, we were ready to go.

Example 4.1. Neo4j Maven dependency

<dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j</artifactId>

 <version>1.6.M02</version>

</dependency>

http://neo4j.org
http://docs.neo4j.org/chunked/milestone/indexing.html
http://docs.neo4j.org/chunked/milestone/tutorials-java-embedded-traversal.html
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
https://github.com/tinkerpop/gremlin/wiki
http://en.wikipedia.org/wiki/ACID

Learning Neo4j

8

Spring Data Graph

(2.0.0.RELEASE)

Example 4.2. Neo4j core API (transaction code omitted)

enum RelationshipTypes implements RelationshipType { ACTS_IN };

GraphDatabaseService gds = new EmbeddedGraphDatabase("/path/to/store");

Node forrest=gds.createNode();

forrest.setProperty("title","Forrest Gump");

forrest.setProperty("year",1994);

gds.index().forNodes("movies").add(forrest,"id",1);

Node tom=gds.createNode();

tom.setProperty("name","Tom Hanks");

Relationship role=tom.createRelationshipTo(forrest,ACTS_IN);

role.setProperty("role","Forrest");

Node movie=gds.index().forNodes("movies").get("id",1).getSingle();

assertEquals("Forrest Gump", movie.getProperty("title"));

for (Relationship role : movie.getRelationships(ACTS_IN,INCOMING)) {

 Node actor=role.getOtherNode(movie);

 assertEquals("Tom Hanks", actor.getProperty("name"));

 assertEquals("Forrest", role.getProperty("role"));

}

9

Spring Data Graph

(2.0.0.RELEASE)

Chapter 5. Spring Data Neo4j

Conjuring magic

So far it had all been pure Spring Framework and Neo4j. However, using the Neo4j code in our domain

classes polluted them with graph database details. For this application, we wanted to keep the domain

classes clean. Spring Data Neo4j promised to do the heavy lifting for us, so we continued investigating

it.

Spring Data Neo4j comes with two mapping modes. The more powerful one depends heavily

on AspectJ, see Chapter 26, AspectJ details, so we ignored it for the time being. The simple

direct POJO-mapping copies the data out of the graph and into our entities. Good enough for a

web-application like ours.

The first step was to configure Maven:

Example 5.1. Spring Data Neo4j Maven configuration

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j</artifactId>

 <version>2.0.0.RELEASE</version>

</dependency>

The Spring context configuration was even easier, thanks to a provided namespace:

Example 5.2. Spring Data Neo4j context configuration

<beans xmlns="http://www.springframework.org/schema/beans" ...

 xmlns:neo4j="http://www.springframework.org/schema/data/neo4j"

 xsi:schemaLocation="... http://www.springframework.org/schema/data/neo4j

 http://www.springframework.org/schema/data/neo4j/spring-neo4j-2.0.xsd">

 ...

 <neo4j:config storeDirectory="data/graph.db"/>

 ...

</beans>

10

Spring Data Graph

(2.0.0.RELEASE)

Chapter 6. Annotating the domain

Decorations

Looking at the Spring Data Neo4j documentation, we found a simple Hello World example and tried to

understand it. We also spotted a compact reference card which helped us a lot. The entity classes were

annotated with @NodeEntity. That was simple, so we added the annotation to our domain classes too.

Entity classes representing relationships were instead annotated with @RelationshipEntity. Property

fields were taken care of automatically. The only additional field we had to provide for all entities was

a id-field to store the node- and relationship-ids.

Example 6.1. Movie class with annotation

@NodeEntity

class Movie {

 @GraphId Long nodeId;

 String id;

 String title;

 int year;

 Set<Role> cast;

}

It was time to put our entities to the test. How could we now be assured that an attribute really was

persisted to the graph store? We wanted to load the entity and check the attribute. Either we could

have a Neo4jTemplate injected and use its findOne(id,type) method to load the entity. Or use a more

versatile Repository. The same goes for persisting entities, both Neo4jTemplate or the Repository

could be used. We decided to keep things simple for now.

So here's what our test ended up looking like:

Example 6.2. First test case

@Autowired Neo4jTemplate template;

@Test @Transactional public void persistedMovieShouldBeRetrievableFromGraphDb() {

 Movie forrestGump = template.save(new Movie("Forrest Gump", 1994));

 Movie retrievedMovie = template.findOne(forrestGump.getNodeId(), Movie.class);

 assertEqual("retrieved movie matches persisted one", forrestGump, retrievedMovie);

 assertEqual("retrieved movie title matches", "Forrest Gump", retrievedMovie.getTitle());

}

As Neo4j is transactional, we have to provide the transactional boundaries for mutating operations.

http://spring.neo4j.org/helloworld
http://spring.neo4j.org/notes

11

Spring Data Graph

(2.0.0.RELEASE)

Chapter 7. Indexing

Do I know you?

There is an @Indexed annotation for fields. We wanted to try this out, and use it to guide the next test.

We added @Indexed to the id field of the Movie class. This field is intended to represent the external

ID that will be used in URIs and will be stable across database imports and updates. This time we went

with a simple GraphRepository to retrieve the indexed movie.

Example 7.1. Exact Indexing for Movie id

@NodeEntity class Movie {

 @Indexed String id;

 String title;

 int year;

}

@Autowired Neo4jTemplate template;

@Test @Transactional

 public void persistedMovieShouldBeRetrievableFromGraphDb() {

 int id = 1;

 Movie forrestGump = template.save(new Movie(id, "Forrest Gump", 1994));

 GraphRepository<Movie> movieRepository =

 template.repositoryFor(Movie.class);

 Movie retrievedMovie = movieRepository.findByPropertyValue("id", id);

 assertEqual("retrieved movie matches persisted one", forrestGump, retrievedMovie);

 assertEqual("retrieved movie title matches", "Forrest Gump", retrievedMovie.getTitle());

 }

12

Spring Data Graph

(2.0.0.RELEASE)

Chapter 8. Repositories

Serving a good cause

We wanted to add repositories with domain-specific operations. Interestingly there was support for a

very advanced repository infrastructure. You just declare an entity specific repository interface and

get all commonly used methods for free without implementing any of boilerplate code.

So we started by creating a movie-related repository, simply by creating an empty interface.

Example 8.1. Movie repository

package org.neo4j.cineasts.repository;

public interface MovieRepository extends GraphRepository<Movie> {}

Then we enabled repository support in the Spring context configuration by simply adding:

Example 8.2. Repository context configuration

<neo4j:repositories base-package="org.neo4j.cineasts.repository"/>

Besides the existing repository operations (like CRUD, and many standard queries) it was possible

to declare custom methods, which we explored later. Those methods' names could be more domain

centric and expressive than the generic operations. For simple use-cases like finding by id's this is good

enough. So we first let Spring autowire our MovieController with the MovieRepository. That way

we could perform simple persistence operations.

Example 8.3. Usage of a repository

@Autowired MovieRepository repo;

...

 Movie movie = repo.findByPropertyValue("id",movieId);

We went on exploring the repository infrastructure. A very cool feature was something that we so far

only heard about from Grails developers. Deriving queries from method names. Impressive! So we

had a more explicit method for the id lookup.

Example 8.4. Derived movie-repository query method

public interface MovieRepository extends GraphRepository<Movie> {

 Movie getMovieById(String id);

}

In our wildest dreams we imagined the method names we would come up with, and what kinds of

queries those could generate. But some, more complex queries would be cumbersome to read and

write. So in those cases it is better to just annotate the finder method. We did this much later, and

just wanted to give you a peek into the future. There is much more, you can do with repositories, it

is worthwile to explore.

Repositories

13

Spring Data Graph

(2.0.0.RELEASE)

Example 8.5. Annotated movie-repository query method

public interface MovieRepository extends GraphRepository<Movie> {

 @Query("start user=node:User({0}) match user-[r:RATED]->movie return movie order by r.stars desc limit 10")

 Iterable<Movie> getTopRatedMovies(User uer);

}

14

Spring Data Graph

(2.0.0.RELEASE)

Chapter 9. Relationships

A convincing act

Our application was not very much fun yet, just storing movies and actors. After all, the power is in

the relationships between them. Fortunately, Neo4j treats relationships as first class citizens, allowing

them to be addressed individually and have properties assigned to them. That allows for representing

them as entities if needed.

9.1. Creating relationships

Relationships without properties ("anonymous" relationships) don't require any @RelationshipEntity

classes. "Unfortunately" we had none of those, because our relationships were richer. Therefore

we went with the Role relationship between Movie and Actor. It had to be annotated with

@RelationshipEntity and the @StartNode and @EndNode had to be marked. So our Role looked like

this:

Example 9.1. Role class

@RelationshipEntity

class Role {

 @StartNode Actor actor;

 @EndNode Movie movie;

 String role;

}

When writing a test for the Role we tried to create the relationship entity just by instantiating it with

new and saving it with the template, but we got an exception saying that it misses the relationship-type.

We had to add it to the @RelationshipEntity as an attribute (or as a @RelationshipType annotated

field in the RelationshipEntity). Another way to create instances of relationship-entities is to use the

methods provided by the template, like createRelationshipBetween.

Relationships

15

Spring Data Graph

(2.0.0.RELEASE)

Example 9.2. Relating actors to movies

@RelationshipEntity(type="ACTS_IN")

class Role {

 @StartNode Actor actor;

 @EndNode Movie movie;

 String role;

}

class Actor {

...

 public Role playedIn(Movie movie, String roleName) {

 Role role = new Role(this, movie, roleName);

 this.roles.add(role);

 return role;

 }

}

 Role role = tomHanks.playedIn(forrestGump, "Forrest Gump");

 // either save the actor

 template.save(tomHanks);

 // or the role

 template.save(role);

 // alternative approach

 Role role = template.createRelationshipBetween(actor,movie,

 Role.class, "ACTS_IN");

9.2. Accessing related entities

Now we wanted to find connected entities. We already had fields for the relationships in both classes.

It was time to annotate them correctly. The Neo4j relationship type and direction were easy to figure

out. The direction even defaulted to outgoing, so we only had to specify it for the movie. If we want to

use the same relationship between the two entities we have to make sure to provide a dedicated type,

otherwise the field-names would be used resulting in different relationships.

Example 9.3. @RelatedTo usage

@NodeEntity

class Movie {

 @Indexed int id;

 String title;

 int year;

 @RelatedTo(type = "ACTS_IN", direction = Direction.INCOMING)

 Set<Actor> cast;

}

@NodeEntity

class Actor {

 @Indexed int id;

 String name;

 @RelatedTo(type = "ACTS_IN")

 Set<Movie> movies;

 public Role playedIn(Movie movie, String roleName) {

 return new Role(this,movie, roleName);

 }

}

Changes to the collections of related entities are reflected into the graph on saving of the entity.

Relationships

16

Spring Data Graph

(2.0.0.RELEASE)

We made sure to add some tests for using the relationshhips, so we were assured that the collections

worked as advertised.

9.3. Accessing the relationship entities

But we still couldn't access the Role relationship entities themselves. It turned out that there was a

separate annotation @RelatedToVia for accessing the actual relationship entities. And we could declare

the field as an Iterable<Role>, with read-only semantics or on a Collection or Set<Role> field with

modifying semantics. So off we went, creating our first real relationship (just kidding).

To have the collections of relationships being read eagerly during the loading of the Movie we have

to annotate it with the @Fetch annotation. Otherwise Spring Data Neo4j refrains from following

relationships automatically. The risk of loading the whole graph into memory would be too high.

Example 9.4. @RelatedToVia usage

@NodeEntity

class Movie {

 @Indexed int id;

 String title;

 int year;

 @Fetch @RelatedToVia(type = "ACTS_IN", direction = Direction.INCOMING)

 Iterable<Roles> roles;

}

After watching the tests pass, we were confident that the changes to the relationship fields were really

stored to the underlying relationships in the graph. We were pretty satisfied with persisting our domain.

17

Spring Data Graph

(2.0.0.RELEASE)

Chapter 10. Get it running

Curtains up!

Now we had a pretty complete application. It was time to put it to the test.

10.1. Populating the database

Before we opened the gates we needed to add some movie data. So we wrote a small class for populating

the database which could be called from our controller. To make it safe to call several times we added

index lookups to check for existing entries. A simple /populate endpoint for the controller that called

it would be enough for now.

Example 10.1. Populating the database - Controller

@Service

public class DatabasePopulator {

 @Transactional

 public List<Movie> populateDatabase() {

 Actor tomHanks = new Actor("1", "Tom Hanks");

 Movie forrestGump = new Movie("1", "Forrest Gump");

 tomHanks.playedIn(forrestGump,"Forrest");

 template.save(forrestGump);

 return asList(forrestGump);

 }

}

@Controller

public class MovieController {

 @Autowired private DatabasePopulator populator;

 @RequestMapping(value = "/populate", method = RequestMethod.POST)

 public String populateDatabase(Model model) {

 Collection<Movie> movies = populator.populateDatabase();

 model.addAttribute("movies",movies);

 return "/movies/list";

 }

}

Accessing the URI we could see the list of movies we had added.

10.2. Inspecting the datastore

Being the geeks we are, we also wanted to inspect the raw data in the database. Reading the Neo4j

docs, there were a couple of different ways of going about this.

10.2.1. Neoclipse visualization

First we tried Neoclipse, an Eclipse RCP application/plugin that opens an existing graph store and

visualizes its content. After getting an exception about concurrent access, we learned that we have to

use Neoclipse in read-only mode when our webapp was still running. Good to know.

http://docs.neo4j.org/
http://docs.neo4j.org/

Get it running

18

Spring Data Graph

(2.0.0.RELEASE)

10.2.2. The Neo4j Shell

For console junkies there was also a shell that was able to connect to a running Neo4j instance (if it

was started with the enable_remote_shell=true parameter), or reads an existing graph store directly.

Example 10.2. Starting the Neo4j Shell

bash# neo4j-shell -readonly -path data/graph.db

bash# neo4j-shell -readonly -port 1337

The shell was very similar to a standard Bash shell. We were able to cd to between the nodes, and

ls the relationships and properties. There were also more advanced commands for indexing, queries

and traversals.

Get it running

19

Spring Data Graph

(2.0.0.RELEASE)

Example 10.3. Neo4j Shell usage

neo4j-sh[readonly] (0)$ help

Available commands: index dbinfo ls rm alias set eval mv gsh env rmrel mkrel

 trav help pwd paths ... man cd

Use man <command> for info about each command.

neo4j-sh[readonly] (0)$ index --cd -g User login micha

neo4j-sh[readonly] (Micha,1)$ ls

*__type__ =[org.neo4j.cineasts.domain.User]

*login =[micha]

*name =[Micha]

*roles =[ROLE_ADMIN,ROLE_USER]

(me) --[FRIEND]-> (Olliver,2)

(me) --[RATED]-> (The Matrix,3)

neo4j-sh[readonly] (Micha,1)$ ls 2

*__type__ =[org.neo4j.cineasts.domain.User]

*login =[ollie]

*name =[Olliver]

*roles =[ROLE_USER]

(Olliver,2) <-[FRIEND]-- (me)

neo4j-sh[readonly] (Micha,1)$ cd 3

neo4j-sh[readonly] (The Matrix,3)$ ls

*__type__ =[org.neo4j.cineasts.domain.Movie]

*description =[Neo is a young software engineer and part-time hacker who is singled ...]

*genre =[Action]

*homepage =[http://whatisthematrix.warnerbros.com/]

...

*studio =[Warner Bros. Pictures]

*tagline =[Welcome to the Real World.]

*title =[The Matrix]

*trailer =[http://www.youtube.com/watch?v=UM5yepZ21pI]

*version =[324]

(me) <-[ACTS_IN]-- (Marc Aden,19)

(me) <-[ACTS_IN]-- (David Aston,18)

...

(me) <-[ACTS_IN]-- (Keanu Reeves,6)

(me) <-[DIRECTED]-- (Andy Wachowski,5)

(me) <-[DIRECTED]-- (Lana Wachowski,4)

(me) <-[RATED]-- (Micha,1)

20

Spring Data Graph

(2.0.0.RELEASE)

Chapter 11. Web views

Showing off

After having put some data in the graph database, we also wanted to show it to the user. Adding the

controller method to show a single movie with its attributes and cast in a JSP was straightforward.

It basically just involved using the repository to look the movie up and add it to the model, and then

forwarding to the /movies/show view and voilá.

Example 11.1. Controller for showing movies

@RequestMapping(value = "/movies/{movieId}",

method = RequestMethod.GET, headers = "Accept=text/html")

public String singleMovieView(final Model model, @PathVariable String movieId) {

 Movie movie = repository.findById(movieId);

 model.addAttribute("id", movieId);

 if (movie != null) {

 model.addAttribute("movie", movie);

 model.addAttribute("stars", movie.getStars());

 }

 return "/movies/show";

}

Example 11.2. Populating the database - JSP /movies/show

<%@ page session="false" %>

 <%@ taglib uri="http://www.springframework.org/tags" prefix="s" %>

 <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

 <c:choose>

 <c:when test="${not empty movie}">

 <h2>${movie.title} (${stars} Stars)</h2>

 <c:if test="${not empty movie.roles}">

 <c:forEach items="${movie.roles}" var="role">

 <c:out value="${role.actor.name}" /> as

 <c:out value="${role.name}" />

 </c:forEach>

 </c:if>

 </c:when>

 <c:otherwise>

 No Movie with id ${id} found!

 </c:otherwise>

 </c:choose>

The UI had now evolved to this:

Web views

21

Spring Data Graph

(2.0.0.RELEASE)

11.1. Searching

The next thing was to allow users to search for movies, so we needed some fulltext search capabilities.

As the default index provider implementation of Neo4j is based on Apache Lucene, we were delighted

to see that fulltext indexes were supported out of the box.

We happily annotated the title field of the Movie class with @Indexed(type = FULLTEXT). Next thing

we got an exception telling us that we had to specify a separate index name. So we simply changed it

to @Indexed(type = FULLTEXT, indexName = "search").

With derived finder methods, finding things became easy. By simply declaring a finder-method name

that expressed the required properties, it worked without annotations. Cool stuff and you could even

tell it that it should return pages of movies, its size and offset specified by a Pageable which also

contains sort information. Using the like operator indicates that fulltext search should be used, instead

of an exact search.

Example 11.3. Searching for movies

public interface MovieRepository ... {

 Movie findById(String id);

 Page<Movie> findByTitleLike(String title, Pageable page);

}

11.2. Listing results

We then used this result in the controller to render a page of movies, driven by a search box. The movie

properties and the cast were accessible through the getters in the domain classes.

http://lucene.apache.org/java/docs/index.html

Web views

22

Spring Data Graph

(2.0.0.RELEASE)

Example 11.4. Search controller

@RequestMapping(value = "/movies",

method = RequestMethod.GET, headers = "Accept=text/html")

public String findMovies(Model model, @RequestParam("q") String query) {

 Page<Movie> movies = repository.findByTitleLike(query, new PageRequest(0,20));

 model.addAttribute("movies", movies);

 model.addAttribute("query", query);

 return "/movies/list";

}

Example 11.5. Search Results JSP

<h2>Movies</h2>

<c:choose>

 <c:when test="${not empty movies}">

 <dl class="listings">

 <c:forEach items="${movies}" var="movie">

 <dt>

 <c:out value="${movie.title}" />

 </dt>

 <dd>

 <c:out value="${movie.description}" escapeXml="true" />

 </dd>

 </c:forEach>

 </dl>

 </c:when>

 <c:otherwise>

 No movies found for query "${query}".

 </c:otherwise>

</c:choose>

The UI now looked like this:

Web views

23

Spring Data Graph

(2.0.0.RELEASE)

24

Spring Data Graph

(2.0.0.RELEASE)

Chapter 12. Adding social

Movies 2.0

So far, the website had only been a plain old movie database. We now wanted to add a touch of social

to it.

12.1. Users

So we started out by taking the User class that we'd already coded and made it a full-fledged Spring

Data Neo4j entity. We added the ability to create friends and to rate movies. With that we also added

a simple UserRepository that was able to look up users by ID.

The relationships of the user are his friends and the movie-ratings which is implemented with a Rating

Relationship-Entity. This time we used a different approach (for educational and curiosity purposes)

to create the Rating relationships. The createRelationshipBetween operation of the Neo4jTemplate

was our matchmaker of choice.

Example 12.1. Social entities

@NodeEntity

class User {

 @Indexed String login;

 String name;

 String password;

 @RelatedToVia(type = RATED)

 @Fetch Set<Rating> ratings;

 @RelatedTo(type = "FRIEND", direction=Direction.BOTH)

 @Fetch Set<User> friends;

 public Rating rate(Neo4jOperations template, Movie movie, int stars, String comment) {

 final Rating rating = template.createRelationshipBetween(this, movie, Rating.class, RATED, false);

 rating.rate(stars, comment);

 return template.save(rating);

 }

 public void addFriend(User user) {

 this.friends.add(user);

 }

}

@RelationshipEntity

class Rating {

 @StartNode User user;

 @EndNode Movie movie;

 int stars;

 String comment;

 public Rating rate(int stars, String comment) {

 this.stars = stars; this.comment = comment;

 return this;

 }

}

We extended the DatabasePopulator to add some users and ratings to the initial setup.

Adding social

25

Spring Data Graph

(2.0.0.RELEASE)

Example 12.2. Populate users and ratings

@Transactional

public List<Movie> populateDatabase() {

 Actor tomHanks = new Actor("1", "Tom Hanks");

 Movie forestGump = new Movie("1", "Forrest Gump");

 tomHanks.playedIn(forestGump, "Forrest");

 template.save(tomHanks);

 User me = template.save(new User("micha", "Micha", "password"));

 Rating awesome = me.rate(template, forestGump, 5, "Awesome");

 User ollie = template.save(new User("ollie", "Oliver", "password"));

 ollie.rate(template,forestGump, 2, "ok");

 me.addFriend(ollie);

 template.save(me);

 return asList(forestGump);

}

12.2. Ratings for movies

We also put a ratings field into the Movie class to be able to get a movie's ratings, and also a method

to average its star rating.

Example 12.3. Getting the rating of a movie

class Movie {

 ...

 @RelatedToVia(type="RATED", direction = Direction.INCOMING)

 @Fetch Iterable<Rating> ratings;

 public int getStars() {

 int stars = 0, count = 0;

 for (Rating rating : ratings) {

 stars += rating.getStars(); count++;

 }

 return count == 0 ? 0 : stars / count;

 }

}

Fortunately our tests highlighted the division by zero error when calculating the stars for a movie

without ratings. The next steps were to add this information to the movie presentation in the UI, and

creating a user profile page. But for that to happen, users must first be able to log in.

26

Spring Data Graph

(2.0.0.RELEASE)

Chapter 13. Adding Security

Protecting assets

To handle an active user in the webapp we had to put it in the session and add login and registration

pages. Of course the pages that were only meant for logged-in users had to be secured as well.

Being Spring users, we naturally used Spring Security for this. We wrote a simple

UserDetailsService by extending a repository with a custom implementation that takes care

of looking up the users and validating their credentials. The config is located in a separate

applicationContext-security.xml. But first, as always, Maven and web.xml setup.

Example 13.1. Spring Security pom.xml

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-web</artifactId>

 <version>${spring.version}</version>

</dependency>

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-config</artifactId>

 <version>${spring.version}</version>

</dependency>

Example 13.2. Spring Security web.xml

<context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/applicationContext-security.xml

 /WEB-INF/applicationContext.xml

 </param-value>

</context-param>

<listener>

 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

<filter>

 <filter-name>springSecurityFilterChain</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

 <filter-name>springSecurityFilterChain</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Adding Security

27

Spring Data Graph

(2.0.0.RELEASE)

Example 13.3. Spring Security applicationContext-security.xml

<security:global-method-security secured-annotations="enabled">

</security:global-method-security>

<security:http auto-config="true" access-denied-page="/auth/denied">

 <security:intercept-url pattern="/admin/*" access="ROLE_ADMIN"/>

 <security:intercept-url pattern="/import/*" access="ROLE_ADMIN"/>

 <security:intercept-url pattern="/user/*" access="ROLE_USER"/>

 <security:intercept-url pattern="/auth/login" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:intercept-url pattern="/auth/register" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:intercept-url pattern="/**" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:form-login login-page="/auth/login"

 authentication-failure-url="/auth/login?login_error=true"

 default-target-url="/user"/>

 <security:logout logout-url="/auth/logout" logout-success-url="/" invalidate-session="true"/>

</security:http>

<security:authentication-manager>

 <security:authentication-provider user-service-ref="userRepository">

 <security:password-encoder hash="md5">

 <security:salt-source system-wide="cewuiqwzie"/>

 </security:password-encoder>

 </security:authentication-provider>

</security:authentication-manager>

Adding Security

28

Spring Data Graph

(2.0.0.RELEASE)

Example 13.4. CinceastUserDetailsService interface and UserRepository custom
implementation

public interface CineastsUserDetailsService extends UserDetailsService {

 @Override

 CineastsUserDetails loadUserByUsername(String login)

 throws UsernameNotFoundException, DataAccessException;

 User getUserFromSession();

 @Transactional

 Rating rate(Movie movie, User user, int stars, String comment);

 @Transactional

 User register(String login, String name, String password);

 @Transactional

 void addFriend(String login, final User userFromSession);

}

public interface UserRepository extends GraphRepository<User>,

 RelationshipOperationsRepository<User>,

 CineastsUserDetailsService {

 User findByLogin(String login);

}

public class UserRepositoryImpl implements CineastsUserDetailsService {

 @Autowired private Neo4jOperations template;

 @Override

 public CineastsUserDetails loadUserByUsername(String login)

 throws UsernameNotFoundException, DataAccessException {

 final User user = findByLogin(login);

 if (user==null) throw

 new UsernameNotFoundException("Username not found: "+login);

 return new CineastsUserDetails(user);

 }

 private User findByLogin(String login) {

 return template.lookup(User.class,"login",login)

 .to(User.class).single();

 }

 @Override

 public User getUserFromSession() {

 SecurityContext context = SecurityContextHolder.getContext();

 Authentication authentication = context.getAuthentication();

 Object principal = authentication.getPrincipal();

 if (principal instanceof CineastsUserDetails) {

 CineastsUserDetails userDetails = (CineastsUserDetails) principal;

 return userDetails.getUser();

 }

 return null;

 }

}

public class CineastsUserDetails implements UserDetails {

 private final User user;

 public CineastsUserDetails(User user) {

 this.user = user;

 }

 @Override

 public Collection<GrantedAuthority> getAuthorities() {

 User.Roles[] roles = user.getRoles();

 if (roles ==null) return Collections.emptyList();

 return Arrays.<GrantedAuthority>asList(roles);

 }

 @Override

 public String getPassword() {

 return user.getPassword();

 }

 @Override

 public String getUsername() {

 return user.getLogin();

 }

 ...

 public User getUser() {

 return user;

 }

}

Adding Security

29

Spring Data Graph

(2.0.0.RELEASE)

Any logged-in user was now available in the session, and could be used for all the social interactions.

The remaining work for this was mainly adding controller methods and JSPs for the views. We used

the helper method getUserFromSession() in the controllers to access the logged-in user and put it in

the model for rendering. Here's what the UI had evolved to:

30

Spring Data Graph

(2.0.0.RELEASE)

Chapter 14. More UI

Oh the glamour

To create a nice user experience, we wanted to have a nice looking app. Not something that looked like

a toddler made it. So we got some user experience people involved and the results were impressive.

This sections presents some of the remaining screen shots of Cineasts.net.

More UI

31

Spring Data Graph

(2.0.0.RELEASE)

More UI

32

Spring Data Graph

(2.0.0.RELEASE)

33

Spring Data Graph

(2.0.0.RELEASE)

Chapter 15. Importing Data

The dusty archives

It was now time to pull the data from themoviedb.org. Registering there and getting an API key was

simple, as was using the API on the command-line with curl. Looking at the JSON returned for movies

and people, we decided to enhance our domain model and add some more fields to enrich the UI.

Example 15.1. JSON movie response

[{"popularity":3,

"translated":true, "adult":false, "language":"en",

"original_name":"[Rec]", "name":"[Rec]", "alternative_name":"[REC]",

"movie_type":"movie",

"id":8329, "imdb_id":"tt1038988", "url":"http://www.themoviedb.org/movie/8329",

"votes":11, "rating":7.2,

"status":"Released",

"tagline":"One Witness. One Camera",

"certification":"R",

"overview":"\"REC\" turns on a young TV reporter and her cameraman who cover the night shift

 at the local fire station...

"keywords":["terror", "lebende leichen", "obsession", "camcorder", "firemen", "reality tv ",

 "bite", "cinematographer",

"attempt to escape", "virus", "lodger", "live-reportage", "schwerverletzt"],

"released":"2007-08-29",

"runtime":78,

"budget":0,

"revenue":0,

"homepage":"http://www.3l-filmverleih.de/rec",

"trailer":"http://www.youtube.com/watch?v=YQUkX_XowqI",

"genres":[{"type":"genre",

"url":"http://themoviedb.org/genre/horror",

"name":"Horror",

"id":27}],

"studios":[{"url":"http://www.themoviedb.org/company/2270", "name":"Filmax Group", "id":2270}],

"languages_spoken":[{"code":"es", "name":"Spanish", "native_name":"Espa\u00f1ol"}],

"countries":[{"code":"ES", "name":"Spain", "url":"http://www.themoviedb.org/country/es"}],

"posters":[{"image":{"type":"poster",

"size":"original", "height":1000, "width":706,

"url":"http://cf1.imgobject.com/posters/3a0/4cc8df415e73d650240003a0/rec-original.jpg",

"id":"4cc8df415e73d650240003a0"}},

....

"cast":[{"name":"Manuela Velasco",

"job":"Actor", "department":"Actors",

"character":"Angela Vidal",

"id":34793, "order":0, "cast_id":1,

"url":"http://www.themoviedb.org/person/34793",

"profile":"http://cf1.imgobject.com/profiles/390/.../manuela-velasco-thumb.jpg"},

...

{"name":"Gl\u00f2ria Viguer",

"job":"Costume Design", "department":"Costume \u0026 Make-Up",

"character":"",

"id":54531, "order":0, "cast_id":21,

"url":"http://www.themoviedb.org/person/54531",

"profile":""}],

"version":150, "last_modified_at":"2011-02-20 23:16:57"}]

http://themoviedb.org

Importing Data

34

Spring Data Graph

(2.0.0.RELEASE)

Example 15.2. JSON actor response

[{"popularity":3,

"name":"Glenn Strange", "known_as":[{"name":"George Glenn Strange"}, {"name":"Glen Strange"},

{"name":"Glen 'Peewee' Strange"}, {"name":"Peewee Strange"}, {"name":"'Peewee' Strange"}],

"id":30112,

"biography":"",

"known_movies":4,

"birthday":"1899-08-16", "birthplace":"Weed, New Mexico, USA",

"url":"http://www.themoviedb.org/person/30112",

"filmography":[{"name":"Bud Abbott Lou Costello Meet Frankenstein",

"id":3073,

"job":"Actor", "department":"Actors",

"character":"The Frankenstein Monster",

"cast_id":23,

"url":"http://www.themoviedb.org/movie/3073",

"poster":"http://cf1.imgobject.com/posters/4ca/.../bud-abbott-lou-costello-meet-frankenstein-cover.jpg",

"adult":false, "release":"1948-06-15"},

...],

"profile":[],

"version":19, "last_modified_at":"2011-03-07 13:02:35"}]

For the import process we created a separate importer using Jackson (a JSON library) to fetch and

parse the data, and then some transactional methods in the MovieDbImportService to actually import

it as movies, roles, and actors. The importer used a simple caching mechanism to keep downloaded

actor and movie data on the filesystem, so that we didn't have to overload the remote API. In the code

below you can see that we've changed the actor to a person so that we can also accommodate the other

folks that participate in movie production.

Importing Data

35

Spring Data Graph

(2.0.0.RELEASE)

Example 15.3. Importing the data

@Transactional

public Movie importMovie(String movieId) {

 Movie movie = movieRepository.findById(movieId);

 if (movie == null) { // Not found: Create fresh

 movie = new Movie(movieId,null);

 }

 Map data = loadMovieData(movieId);

 if (data.containsKey("not_found")) throw

 new RuntimeException("Data for Movie "+movieId+" not found.");

 movieDbJsonMapper.mapToMovie(data, movie);

 movieRepository.save(movie);

 relatePersonsToMovie(movie, data);

 return movie;

}

private void relatePersonsToMovie(Movie movie, Map data) {

 Collection<Map> cast = (Collection<Map>) data.get("cast");

 for (Map entry : cast) {

 String id = "" + entry.get("id");

 String jobName = (String) entry.get("job");

 Roles job = movieDbJsonMapper.mapToRole(jobName);

 if (job==null) {

 continue;

 }

 switch (job) {

 case DIRECTED:

 final Director director = doImportPerson(id, new Director(id));

 director.directed(movie);

 directorRepository.save(director);

 break;

 case ACTS_IN:

 final Actor actor = doImportPerson(id, new Actor(id));

 actor.playedIn(movie, (String) entry.get("character"));

 actorRepository.save(actor);

 break;

 }

 }

}

public void mapToMovie(Map data, Movie movie) {

 movie.setTitle((String) data.get("name"));

 movie.setLanguage((String) data.get("language"));

 movie.setTagline((String) data.get("tagline"));

 movie.setReleaseDate(toDate(data, "released", "yyyy-MM-dd"));

...

 movie.setImageUrl(selectImageUrl((List<Map>) data.get("posters"), "poster", "mid"));

}

The last part involved adding a protected URI to the MovieController to allow importing ranges of

movies. During testing, it became obvious that the calls to themoviedb.org were a limiting factor. As

soon as the data was stored locally, the Neo4j import was a sub-second deal.

36

Spring Data Graph

(2.0.0.RELEASE)

Chapter 16. Recommendations

Movies! Friends! Bargains!

In the last part of this exercise we wanted to add recommendations to the app. One obvious

recommendation was movies that our fiends liked.

There was this query language called Cypher that looked a bit like SQL but expressed graph matching

queries. So we gave it a try, using the neo4j-shell, to incrementally expand the query, just by declaring

what relationships we wanted to be taken into account and which properties of nodes and relationships

to filter and sort on.

Example 16.1. Cypher based movie recommendation on Repository

interface MovieRepository extends GraphRepository<Movie> {

 @Query("

 start user=node({0})

 match user-[:FRIEND]-friend-[r:RATED]->movie

 return movie

 order by avg(r.stars) desc, count(*) desc

 limit 10

 ")

 Iterabe<Movie> recommendMovies(User me);

}

But we didn't have enough friends, so it was time to get some suggested. That would be like-minded

cineasts that rated movies similarly to us. Again Cypher to the rescue, this time only a bit more complex.

Something that became obvious with both queries is that graph queries are always local, so they start

from a node, or set of nodes or relationships, and then expand outwards from there.

Example 16.2. Cypher - Friend Recommendation on Repository

interface UserRepository extends GraphRepository<User> {

 @Query("

 start user=node({0})

 match user-[r:RATED]->movie<-[r2:RATED]-likeminded,

 user-[:FRIEND]-friend

 where r.stars > 3 and r2.stars >= 3

 return likeminded

 order by count(*) desc

 limit 10

 ")

 Iterabe<User> suggestFriends(User me);

}

The controllers simply called these methods, added their results to the model, and the view rendered

the recommendations alongside the user's own ratings.

37

Spring Data Graph

(2.0.0.RELEASE)

Chapter 17. Neo4j Server

Remotely related

Right now our application was running with the embedded mode of Neo4j which was fine and highly

performant. In certain environments you don't have the luxury of file-system access for your webapps

and have to talk to a remote database service instead. Neo4j can also run as a server. It exposes its

operations via a HTTP based REST API.

We decided to have a look, to be at least knowledgeable about this deployment scenario. We were

aware of the difference of local, in-memory calls and higher latency network hops. That would be

something we would also take into careful consideration.

17.1. Getting Neo4j-Server

Getting the Neo4j-Server was easy, we just went to neo4j.org and downloaded the latest version.

Starting it on the command-line (or installing it as a service) was a no-brainer as well.

We copied our store-directory into the data/graph.db directory of the server and started it up again.

The admin console of Neo4j-Server, called 'web-admin' is pretty. Using JavaScript, it renders the graph

visually in a highly configurable way. It also gave us the possibility to issue queries over a console,

another handy feature.

So, how would we get our app connected to this server? It turned out the changes in configuration

and setup where minimal. Spring Data Neo4j already came with a module that took care of the

remote protocol. We added that maven dependency and changed the graph database used in the Spring

Configuration.

Example 17.1. Maven Dependency

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j-rest</artifactId>

 <version>2.0.0.RELEASE</version>

</dependency>

Example 17.2. Spring Config

<neo4j:config graphDatabaseService="graphDatabaseService"/>

<bean id="graphDatabaseService"

 class="org.springframework.data.neo4j.rest.SpringRestGraphDatabase">

 <constructor-arg index="0" value="http://localhost:7474/db/data" />

</bean>

After those two changes we restarted the app, and ... it worked. The transparent handling of the remote

API was impressive. We learned that it uses a library called java-rest-binding under the hood which

is also usable without the Spring Framework.

Of course we noticed performance implications. Especially after moving the server to a remote

machine. It turned out that the server supported remote execution of many operations, allowing us to

http://neo4j.org/
https://github.com/neo4j/java-rest-binding

Neo4j Server

38

Spring Data Graph

(2.0.0.RELEASE)

run the graph traversal and querying inside the server. That means looking at our graph interactions

and changing them in a way that switched from the transparent, direct graph access via the entities to

a different interaction pattern.

We looked into the different modes of remotely executed operations and found traversals, Cypher

and Gremlin queries and index lookups. Most of them already matched our needs but the Cypher and

Gremlin approaches were best suited, because they also handled index operations and allowed to return

partial attribute sets and subgraphs.

So we looked at our use-case (aka page)-based interactions with the graph entities and converted them

to Cypher queries on repositories where appropriate, measuring the performance improvements as we

went.

There was also a nice mechanism of mapping Cypher query results to Domain Concepts. You just had

to declare and annotate an interface that represents the query results as domain entities and the nodes

and relationships returned by Cypher were converted into the appropriate entities.

Example 17.3. Example of query result mapping

public interface MovieRepository extends GraphRepository<Movie> {

 @Query("START movie=node:Movie(id={0})

 MATCH movie-[rating?:rating]->(),

 movie<-[:ACTS_IN]-actor

 RETURN movie, COLLECT(actor), AVG(rating.stars)")

 MovieData getMovieData(String movieId);

 @MapResult

 public interface MovieData {

 @ResultColumn("movie")

 Movie getMovie();

 @ResultColumn("AVG(rating.stars)")

 Double getRating();

 @ResultColumn("COLLECT(actor)")

 Iterable<Actor> getCast();

 }

}

This allowed us to get all the data needed for rendering a page in a single call to the server, greatly

diminishing the chatter between the client and the server.

17.2. Other approaches

Another approach using the Neo4j-Server would be to write a custom server extension using the

SpringPluginInitializer provided by spring-data-neo4j-rest. This extension would use the well

known entities and approaches as it runs inside the server atop a embedded graph database. From the

extension we would expose custom, domain and use-case oriented REST endpoints that could then be

consumable by any kind of webapp, even a pure Javascript based browser app.

39

Spring Data Graph

(2.0.0.RELEASE)

Chapter 18. Conclusion

To new frontiers

Pretty neat. We were satisfied with what we got here with little effort and high performance. Lots of

opportunities to expand the social movie database showed up during development. Like adding more

social features like tagging, communication streams, location based features (cinemas) and much more.

But we leave you with that as an exercise to enjoy and explore. Thanks for following the tutorial and

make sure to get back to us with suggestions for improvements or reports about unexpected behaviours

at the discussion forums, or the issue tracker.

http://spring.neo4j.org/discussions
http://spring.neo4j.org/issues

40

Spring Data Graph

(2.0.0.RELEASE)

Part II. Reference Documentation

This part of the Spring Data Neo4j Guide book provides the reference documentation. It details many aspects of

the tutorial and also explains concepts that were only just mentioned there.

Its content covers information about the programming model, APIs, concepts, annotations and technical details

of Spring Data Neo4j.

Whenever you look for the means to employ the full power of the Spring Data Neo4j library you find your answers

in the reference section. If you don't, please inform us about missing or incorrect content so that we can fix that.

xli

Spring Data Graph

(2.0.0.RELEASE)

Reference Documentation

1. Spring Data and Spring Data Neo4j

Spring Data is a SpringSource project that aims to provide Spring's convenient programming model

and well known conventions for NOSQL databases. Currently there is support for graph (Neo4j),

key-value (Redis, Riak), document (MongoDB) and relational (Oracle) databases. Mark Pollack, the

author of Spring.NET, is the project lead for the Spring Data project.

The Spring Data Neo4j project, as part of the Spring Data initiative, aims to simplify development

with the Neo4j graph database. Like JPA, it uses annotations on simple POJO domain objects. The

annotations activate one of the supported mapping approaches, either the simple mapping or the

advanced AspectJ mapping. Both use the annotation and reflection metadata for mapping the POJO

entities and their fields to nodes, relationships, and properties in the graph database.

Spring Data Neo4j allows, at any time, to drop down to the Neo4j-API, see Chapter 19, Introduction

to Neo4j level to execute functionality with the highest performance possible.

For Integration of Neo4j and Grails/GORM please refer to the Neo4j grails plugin. For other language

bindings or frameworks visit the Neo4j Wiki.

2. Reference Documentation Overview

The explanation of Spring Data Neo4js programming model starts with some underlying details. The

basic internal workings of the two mapping modes are explained in the initial chapter. Section 20.1,

“Object Graph Mapping” covers the simple mapping and Section 20.2, “Advanced Mapping with

AspectJ” contains details about the advanced mapping. It also explains some of the common issues

around AspectJ tooling with the current IDEs.

To get started with a simple application, you need only your domain model and the annotations (see

Section 20.4, “Defining node entities”) provided by the library. You use annotations to mark domain

objects to be reflected by nodes and relationships of the graph database. For individual fields the

annotations allow you to declare how they should be processed and mapped to the graph. For property

fields and references to other entities this is straightforward.

To use advanced functionality like traversals, Cypher and Gremlin, a basic understanding of the graph

data model is required. The graph data model is explained in the chapter about Neo4j, see Chapter 19,

Introduction to Neo4j.

Relationships between entities are first class citizens in a graph database and therefore worth a separate

chapter (Section 20.5, “Relating node entities”) describing their usage in Spring Data Neo4j.

Indexing operations are useful for finding individual nodes and relationships in a graph. They can be

used to start graph operations or to be processed in your application. Indexing in the plain Neo4j API

is a bit more involved. Spring Data Neo4j maintains automatic indexes per entity class, with @Indexed

annotations on relevant fields. (Section 20.6, “Indexing”)

Being a Spring Data library, Spring Data Neo4j offers a comprehensive Neo4j-Template (Section 20.7,

“Neo4jTemplate”) for interacting with the mapped entities and the Neo4j graph database. The

operations provided by Spring Data Neo4j - Repositories per mapped entity class are based on the

http://springsource.org/spring-data
http://www.grails.org/plugin/neo4j
http://wiki.neo4j.org/content/Main_Page#Language_and_framework_bindings

Reference Documentation

xlii

Spring Data Graph

(2.0.0.RELEASE)

API offered by the Neo4j-Template. It also provides the operations of the Neo4j Core API in a

more convenient way. Especially the querying (Indexes, Cypher, Gremlin and Traversals) and result

conversion facilities allow writing very concise code.

Spring Data Commons provides a very powerful repository infrastructure that is also leveraged in

Spring Data Neo4j. Those repositories consist only of a composition of interfaces that declare the

available functionality in each repository. The implementation details of commonly used persistence

methods are handled by the library. At least for typical CRUD, index- and query-operations that is very

convenient. The repositories are extensible by annotated, named or derived finder methods. For custom

implementations of repository methods you are free to add your own code. (Section 20.8, “CRUD

with repositories”).

To be able to leverage the schema-free nature of Neo4j it is possible to project any entity to any

other entity type. That is useful as long as they share some properties (or relationships). The entities

don't have to share any super-types or hierarchies. How that works is explained here: Section 20.9,

“Projecting entities”.

Spring Data Neo4j also allows you to integrate with the powerful geospatial graph library

Neo4j-Spatial that offers full support for working with any kind of geo-data. Spring Data Neo4j

repositories expose a couple of those operations via bounding-box and near-location searches.

Section 20.10, “Geospatial Queries”.

Using computed fields that are dynamically backed by graph operations is a bit more involved. First

you should know about traversals, Cypher queries and Gremlin expressions. Those are explained in

the Chapter 19, Introduction to Neo4jNeo4j-API. Then you can start using virtual, computed fields in

your entities Section 20.9, “Projecting entities” .

If you like the ActiveRecord approach that uses persistence methods mixed into the domain classes,

you will want to look at the description of the additional entity methods (see Section 20.11, “Active

Record Methods for Advanced Mapping Mode”) that are added to your domain objects by Spring

Data Neo4j Aspects. Those allow you to manage the entity lifecycle as well as to connect entities.

Those methods also provide the means to execute the mentioned graph operations with your entity

as a starting point.

Neo4j is a fully ACID, enterprise grade database. It uses Java transactions, and internally a 2 phase

commit protocol, to guarantee the safety of your data. The implications of that are described in the

chapter around transactions. (Section 20.12, “Transactions”)

The need of an active transaction for mutating the state of nodes or relationships implies that direct

changes to the graph are only possible in a transactional context. Unfortunately many higher level

application layers don't want to care about transactions and the open-session-in-view pattern is not

widely used. Therefore Spring Data Neo4j advanced mapping introduced an entity lifecyle and added

support for detached entities which can be used for temporary domain objects that are not intended

to be stored in the graph or which will be attached to the graph only later. (Section 20.13, “Detached

node entities in advanced mapping mode”)

For the simple mapping this is not neccessary as domain objects are detached by default and have to

be explicitly reattached to the graph to store the changes.

Unlike Neo4j which is a schema free database, Spring Data Neo4j works on Java domain objects. So it

needs to store the type information in the graph to be able to reconstruct the entities when just nodes are

Reference Documentation

xliii

Spring Data Graph

(2.0.0.RELEASE)

retrieved. To achieve that it employs type-representation-strategies which are described in a separate

chapter. (see Section 20.14, “Entity type representation”)

Spring Data Neo4j offers basic support for bean property validation (JSR-303). Annotations from that

JSR are recognized and evaluated whenever a property is set, or when a previously detached entity is

persisted to the graph. (see Section 20.15, “Bean validation (JSR-303)”)

Unfortunately the setup of Spring Data Neo4j advanced mapping mode is more involved than we'd

like. That is partly due to the Maven setup and dependencies for AspectJ, which can be alleviated by

using different build systems like Gradle or Ant/Ivy. The Spring configuration itself boils down to two

lines of <spring-neo4j> namespace setup. (see Chapter 21, Environment setup)

In a polyglot persistence context Spring Data Neo4j can also be used in a JPA environment to add

graph features to your JPA entities. In the Chapter 22, Cross-store persistence the slightly different

behavior and setup of a Graph-JPA interaction are described.

The provided samples, which are also publicly hosted on Github, are explained in Chapter 23, Sample

code.

The performance implications of using Spring Data Neo4j are detailed in Chapter 25, Performance

considerations. This chapter also discusses which use cases should not be handled with Spring Data

Neo4j.

As AspectJ might not be well known to everyone, some of the core concepts of the aspect oriented,

advanced mapping mode for Java are explained in Chapter 26, AspectJ details.

How to consume the REST-API of a Neo4j-Server is the topic of Chapter 27, Neo4j Server. But

Spring Data Neo4j can also be used to create custom Extensions for the Neo4j Server which would

serve domain model abstractions to a suitable front-end. So instead of talking low level primitives to

a database, the front-end or web-app would communicate via a domain level protocol with endpoints

implemented in Jersey and Spring Data Neo4j.

Note

As the advanced mapping mode of Spring Data Neo4j is based on AspectJ and use some

advanced features of that toolset, please be aware of that. Please see the section on AspectJ

(Section 20.2, “Advanced Mapping with AspectJ”) for details if you run into any problems.

http://spring.neo4j.org/examples

44

Spring Data Graph

(2.0.0.RELEASE)

Chapter 19. Introduction to Neo4j

19.1. What is a graph database?

A graph database is a storage engine that is specialized in storing and retrieving vast networks of data.

It efficiently stores nodes and relationships and allows high performance traversal of those structures.

Properties can be added to nodes and relationships.

Graph databases are well suited for storing most kinds of domain models. In almost all domains, there

are certain things connected to other things. In most other modeling approaches, the relationships

between things are reduced to a single link without identity and attributes. Graph databases allow to

keep the rich relationships that originate from the domain, equally well-represented in the database

without resorting to also modeling the relationships as "things". There is very little "impedance

mismatch" when putting real-life domains into a graph database.

19.2. About Neo4j

Neo4j is a NOSQL graph database. It is a fully transactional database (ACID) that stores data structured

as graphs. A graph consists of nodes, connected by relationships. Inspired by the structure of the human

mind, it allows for high query performance on complex data, while remaining intuitive and simple

for the developer.

Neo4j has been in commercial development for 10 years and in production for over 7 years. Most

importantly it has a helpful and contributing community surrounding it, but it also:

• has an intuitive, rich graph-oriented model for data representation. Instead of tables, rows, and

columns, you work with a graph consisting of nodes, relationships, and properties.

• has a disk-based, native storage manager optimized for storing graph structures with maximum

performance and scalability.

• is scalable. Neo4j can handle graphs with many billions of nodes/relationships/properties on a single

machine, but can also be scaled out across multiple machines for high availability.

• has a powerful traversal framework and query languages for traversing the graph.

• can be deployed as a standalone server or an embedded database with a very small distribution

footprint.

• has a core Java API.

In addition, Neo4j has ACID transactions, durable persistence, concurrency control, transaction

recovery, high availability, and more. Neo4j is released under a dual free software/commercial license

model.

19.3. GraphDatabaseService

The API of org.neo4j.graphdb.GraphDatabaseService provides access to the storage engine.

Its features include creating and retrieving nodes and relationships, managing indexes (via the

IndexManager), database life cycle callbacks, transaction management, and more.

http://neo4j.org/
http://wiki.neo4j.org/content/Getting_Started
http://api.neo4j.org/

Introduction to Neo4j

45

Spring Data Graph

(2.0.0.RELEASE)

The EmbeddedGraphDatabase is an implementation of GraphDatabaseService that is used to embed

Neo4j in a Java application. This implementation is used so as to provide the highest and tightest

integration with the database. Besides the embedded mode, the Neo4j server provides access to the

graph database via an HTTP-based REST API.

19.4. Creating nodes and relationships

Using the API of GraphDatabaseService, it is easy to create nodes and relate them to each other.

Relationships are typed. Both nodes and relationships can have properties. Property values can be

primitive Java types and Strings, or arrays of both. Node creation and modification has to happen

within a transaction, while reading from the graph store can be done with or without a transaction.

Example 19.1. Neo4j usage

GraphDatabaseService graphDb = new EmbeddedGraphDatabase("helloworld");

Transaction tx = graphDb.beginTx();

try {

 Node firstNode = graphDb.createNode();

 firstNode.setProperty("message", "Hello, ");

 Node secondNode = graphDb.createNode();

 secondNode.setProperty("message", "world!");

 Relationship relationship = firstNode.createRelationshipTo(secondNode,

 DynamicRelationshipType.of("KNOWS"));

 relationship.setProperty("message", "brave Neo4j ");

 tx.success();

} finally {

 tx.finish();

}

19.5. Graph traversal

Getting a single node or relationship and examining it is not the main use case of a graph database.

Fast graph traversal of complex, interconnected data and application of graph algorithms are. Neo4j

provides a DSL for defining TraversalDescriptions that can then be applied to a start node and will

produce a lazy java.lang.Iterable result of nodes and/or relationships.

Example 19.2. Traversal usage

TraversalDescription traversalDescription = Traversal.description()

 .depthFirst()

 .relationships(KNOWS)

 .relationships(LIKES, Direction.INCOMING)

 .evaluator(Evaluators.toDepth(5));

for (Path position : traversalDescription.traverse(myStartNode)) {

 System.out.println("Path from start node to current position is " + position);

}

19.6. Indexing

The best way for retrieving start nodes for traversals and queries is by using Neo4j's integrated index

facilities. The GraphDatabaseService provides access to the IndexManager which in turn provides

named indexes for nodes and relationships. Both can be indexed with property names and values.

Retrieval is done with query methods on indexes, returning an IndexHits iterator.

http://wiki.neo4j.org/content/Getting_Started_With_Neo4j_Server

Introduction to Neo4j

46

Spring Data Graph

(2.0.0.RELEASE)

Spring Data Neo4j provides automatic indexing via the @Indexed annotation, eliminating the need for

manual index management.

Note

Modifying Neo4j indexes also requires transactions.

Example 19.3. Index usage

IndexManager indexManager = graphDb.index();

Index<Node> nodeIndex = indexManager.forNodes("a-node-index");

Node node = ...;

Transaction tx = graphDb.beginTx();

try {

 nodeIndex.add(node, "property","value");

 tx.success();

} finally {

 tx.finish();

}

for (Node foundNode : nodeIndex.get("property","value")) {

 // found node

}

19.7. Querying the Graph with Cypher

Neo4j provides a graph query language called "Cypher" which draws from many sources. It resembles

SQL but with an iconic representation of patterns in the graph (concepts drawn from SPARQL). The

Cypher execution engine was written in Scala to leverage the high expressiveness for lazy sequence

operations of the language and the parser combinator library. A screencast explaining the possibilities

in detail can be found on the Neo4j video site.

Cypher queries always begin with a start set of nodes. Those can be either expressed by their id's or

by a index lookup expression. Those start-nodes are then related to other nodes in the match clause.

Start and match clauses can introduce new identifiers for nodes and relationships. In the where clause

additional filtering of the result set is applied by evaluating expressions. The return clause defines

which part of the query result will be available. Aggregation also happens in the return clause by using

aggregation functions on some of the values. Sorting can happen in the order by clause and the skip

and limit parts restrict the result set to a certain window.

Cypher can be executed on an embedded graph db using an ExecutionEngine and CypherParser. This

is encapsulated in Spring Data Neo4j with CypherQueryEngine. The Neo4j-REST-Server comes with

a Cypher-Plugin that is accessible remotely and is available in the Spring Data Neo4j REST-Binding.

http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://video.neo4j.org/ybMbf/screencast-introduction-to-cypher/

Introduction to Neo4j

47

Spring Data Graph

(2.0.0.RELEASE)

Example 19.4. Cypher Examples on the Cineasts.net Dataset

// Actors of Forrest Gump:

start movie=node:Movie("title:Matr*") match movie<-[:ACTS_IN]-actor

 return actor.name, actor.birthplace?

// User-Ratings:

start user=node:User(login='micha') match user-[r,:RATED]->movie where r.stars > 3

 return movie.title, r.stars, r.comment

// Mutual Friend recommendations:

start user=node:Micha(login='micha') match user-[:FRIEND]-friend-[r,:RATED]->movie where r.stars > 3

 return friend.name, movie.title, r.stars, r.comment?

// Movie suggestions based on a movie:

start movie=node:Movie(id='13') match (movie)<-[:ACTS_IN]-()-[:ACTS_IN]->(suggestion)

 return suggestion.title, count(*) order by count(*) desc limit 5

// Co-Actors, sorted by count and name of Lucy Liu

start lucy=node(1000) match lucy-[:ACTS_IN]->movie<-[:ACTS_IN]-co_actor

 return count(*), co_actor.name order by count(*) desc,co_actor.name limit 20

// recommendations including counts, grouping and sorting

start user=node:User(login='micha') match user-[:FRIEND]-()-[r,:RATED]->movie

 return movie.title, AVG(r.stars), count(*) order by AVG(r.stars) desc, count(*) desc

19.8. Gremlin a Graph Traversal DSL

Gremlin is an expressive Groovy DSL developed by Marko Rodriguez as part of the Tinkerpop stack.

It builds on top of a pipe implementation (Blueprints Pipes) that uses connected operations to traverse

a graph. Gremlin has a concise syntax but is Turing complete.

Gremlin can be executed by including the Tinkerpop and Blueprints dependencies and then requesting

a ScriptEngine of type "gremlin" from the javax.Script* facilities. In Spring Data Neo4j this is

encapsulated in GremlinQueryEngine. The Neo4j-REST-Server also comes with a Gremlin-Plugin that

is accessible remotely and is available in the Spring Data Neo4j REST-Binding.

Example 19.5. Sample Gremlin Queries

// Vertex with id 1

v = g.v(1)

// determine the name of the vertices that vertex 1 knows and that are older than 30 years of age

v.outE{it.label=='knows'}.inV{it.age > 30}.name

// calculate basic collaborative filtering for vertex 1

m = [:]

g.v(1).out('likes').in('likes').out('likes').groupCount(m)

m.sort{a,b -> a.value <=> b.value}

http://markorodriguez.com
http://tinkerpop.com

48

Spring Data Graph

(2.0.0.RELEASE)

Chapter 20. Programming model

This chapter covers the fundamentals of the programming model behind Spring Data Neo4j. It

discusses the simple and advanced mapping modes, the annotations provided by Spring Data Neo4j

and how to use them. Examples for this section are taken from the "IMDB" project of Spring Data

Neo4j examples.

20.1. Object Graph Mapping

Up until recently Spring Data Neo4j supported only the more advanced and flexible AspectJ based

mapping approach, see Section 20.2, “Advanced Mapping with AspectJ”. Feedback about issues with

the AspectJ tooling and other implications persuaded us to add a simpler mapping (see Section 20.3,

“Simple Object Graph Mapping”) to Spring Data Neo4j. Both versions work with the same annotations

and provide similar API's, but differ in behaviour.

Reflection and Annotation-based metadata is collected about persistent entities in the

Neo4jMappingContext which provides it to any part of the library. The information is stored in

Neo4jPersistentEntity instances which hold all the Neo4jPersistentProperty's of the type. Each

entity can be checked to determine whether it represents a Node or a Relationship. Properties declare

detailed data about their indexing and relationship information as well as type information that also

covers nested generic types. With all that information available it is simple to select the appropriate

strategy for mapping each entity and field to elements, relationships and properties of the graph.

The main difference is in the way of accessing the graph. In the simple mapping the required

information is copied into the entity on load and only stored back when an explicit save operation

occurs. In the advanced mapping (AspectJ-enhanced) approach a node or relationship is attached via

an additional field to the entity and all read- and write-operations (inside of Transactions) happen

through that.

For the simple mapping mode, declaration of fetch strategies for related entities is necessary

to avoid loading the whole graph eagerly into memory. The initial approach uses just a simple

@Fetch annotations on relationship properties. The resulting MappingPolicy is provided to the

infrastructure methods to ensure the correct loading behaviour. Both, Neo4jPersistentEntiy and

Neo4jPersistentProperty can be queried for the MappingPolicy.

Otherwise the two approaches share much of the infrastructure. E.g. for creating new entity

instances from type information store in the graph (Section 20.14, “Entity type representation”), the

infrastructure for mapping individual fields to graph properties and relationships and everything related

to indexing and querying. A certain part of that is also exposed via the Neo4jTemplate for direct use.

20.2. Advanced Mapping with AspectJ

Behind the scenes, Spring Data Neo4j leverages AspectJ aspects to modify the behavior of annotated

POJO entities (see Chapter 26, AspectJ details). Each node entity is backed by a graph node that

holds its properties and relationships to other entities. AspectJ is used for intercepting field access,

so that Spring Data Neo4j can retrieve the appropriate information from the entity's backing node or

relationship.

The aspect introduces a internal field (entityState)and some public methods (see Section 20.11,

“Active Record Methods for Advanced Mapping Mode”) to the entities, for instance as

http://spring.neo4j.org/examples
http://spring.neo4j.org/examples
http://www.eclipse.org/aspectj/

Programming model

49

Spring Data Graph

(2.0.0.RELEASE)

entity.getPersistentState() and entity.relateTo. It also introduces some methods for graph

operations that start at the current entity. Introduced methods for equals() and hashCode() use the

underlying node or relationship. Please take the introduced field into account when serializing your

entities and exclude it from the serialization process.

Spring Data Neo4j internally uses an abstraction called EntityState that the field access and

instantiation advices of the aspect delegate to. This way, the aspect code is kept to a minimum,

focusing mainly on the pointcuts and delegation. The EntityState then uses a number of

FieldAccessorFactories to create a FieldAccessor instance per field that does the specific handling

needed for the concrete field type. There is some caching involved as well, so it handles repeated

instantiation efficiently.

To use the advanced, AspectJ based mapping, please add spring-data-neo4j-aspects as a

dependency and set up the AspectJ integration in Maven or other build tools as explained in Chapter 21,

Environment setup. Some hints for your IDE setup are described below.

20.2.1. AspectJ IDE support

As Spring Data Neo4j uses some advanced features of AspectJ, users may experience issues with their

IDE reporting errors where in fact there are none. Features that might be reported wrongfully include:

introduction of methods to interfaces, declaration of additional interfaces for annotated classes, and

generified introduced methods.

IDE's not providing the full AJ support might mark parts of your code as errors. You should rely on

your build-system and tests to verify the correctness of the code. You might also have your Entities

(or their interfaces) implement the NodeBacked and RelationshipBacked interfaces directly to benefit

from completion support and error checking.

Eclipse and STS support AspectJ via the AJDT plugin which can be installed from the update-site:

http://download.eclipse.org/tools/ajdt/37/update/ (it might be necessary to use the latest development

snapshot of the plugin http://download.eclipse.org/tools/ajdt/36/dev/update). The current version that

does not show incorrect errors is AspectJ 1.6.12 (included in STS 2.8.0), previous versions are reported

to mislead the user.

Note

There might be some issues with the eclipse maven plugin not adding AspectJ files

correctly to the build path. If you encounter issues, please try the following: Try editing

the build path to include **/*.aj for the spring-data-neo4j project. You can do this by

selecting "Build Path -> Configure Build Path ..." from the Package Explorer. Then for

the spring-data-neo4j/src/main/java add **/*.aj to the Included path. For importing

an Spring Data Graph project into Eclipse with m2e. Please make sure that the AspectJ

Configurator is installed and

The AspectJ support in IntelliJ IDEA lacks some of the features. JetBrains is working on improving

the situation in their upcoming 11 release of their popular IDE. Their latest work is available under

their early access program (EAP). Building the project with the AspectJ compiler ajc works in IDEA

(Options -> Compiler -> Java Compiler should show ajc). Make sure to give the compiler at least 512

MB of RAM.

http://download.eclipse.org/tools/ajdt/36/update/
http://download.eclipse.org/tools/ajdt/36/dev/update
http://dist.springsource.org/release/AJDT/configurator
http://dist.springsource.org/release/AJDT/configurator

Programming model

50

Spring Data Graph

(2.0.0.RELEASE)

20.3. Simple Object Graph Mapping

In addition to the advanced object graph mapping using AspectJ, Spring Data Neo4j also supports

a simpler mode that converts graph data into domain objects and vice versa. It does not require

any additional set up and should work out of the box. The simple mapping approach uses the same

annotations (???) as the advanced mapping to declare mapping meta-information.

The simple object graph mapping comes into play whenever an entity is constructed from a node

or relationship. This could be done explicitly like during the lookup- or create-operations of the

repositories and the Neo4jTemplate but also implicitly while executing any graph operation that returns

nodes or relationships and expecting mapped entities to be returned.

It uses the available meta-information about the persistent entity to iterate over its properties and

relationships, fetching their data from the graph while doing so. It also executes computed fields and

stores the resulting values in the properties.

We try to avoid loading the whole graph into memory by not following relationships eagerly. A

dedicated @Fetch annotation controls instead if related entities are loaded or not. Whenever an entity

is not fully loaded, then only its id is stored. Those entities or collections of entities can then later be

loaded explicitly using the template.fetch() operation.

The additional fetch information is stored in a MappingPolicy which can be retrieved via the

Neo4jTemplate for classes. Both Neo4jPersistentEntitity as well as Neo4jPersistentProperty

provide access to that information on their scope.

Note

Please note that if you have two collections in an entity pointing to the same relationship

and one of them has data and the other is empty due to the nature of persisting it, one

will override the other in the graph so that you might end up with no data. If you want a

relationship-collection to be ignored on save set it to null.

Example 20.1. Examples for loading entities from the graph

 @Autowired Neo4jOperations template;

 @NodeEntity class Person {

 String name;

 @Fetch Person boss;

 Person spouse;

 @RelatedTo(type = "FRIEND", direction = BOTH)

 @Fetch Set<Person> friends;

 }

 Person person = template.findOne(personId);

 assertNotNull(person.getBoss().getName());

 assertNotNull(person.getSpouse().getId());

 assertNull(person.getSpouse().getName());

 template.fetch(person.getSpouse());

 assertNotNull(person.getSpouse().getName());

 assertEquals(10,person.getFriends().size());

 assertNotNull(firstFriend.getName());

Programming model

51

Spring Data Graph

(2.0.0.RELEASE)

Note
Both the simple mapping approach as well as the fetch strategies (MappingPolicy) debuted

in Spring Data Neo4j 2.0. So there might be rough edges and there are certainly many

areas for improvement and extension. We look forward to your feedback on this topic.

As we tried to encapsulate each aspect of the mapping process into a separate class the resulting fabric

of responsibilities is quite intricate. All of them are set up in the MappingInfrastructure that is part

of the Neo4jTemplate setup.

20.4. Defining node entities

Node entities are declared using the @NodeEntity annotation. Relationship entities use the

@RelationshipEntity annotation.

20.4.1. @NodeEntity: The basic building block

The @NodeEntity annotation is used to turn a POJO class into an entity backed by a node in the graph

database. Fields on the entity are by default mapped to properties of the node. Fields referencing other

node entities (or collections thereof) are linked with relationships. If the useShortNames attribute is

set to false, the property and relationship names will have the class name of the entity prepended.

@NodeEntity annotations are inherited from super-types and interfaces. It is not necessary to annotate

your domain objects at every inheritance level.

If the partial attribute is set to true, this entity takes part in a cross-store setting, where the entity

lives in both the graph database and a JPA data source. See Chapter 22, Cross-store persistence for

more information.

Entity fields can be annotated with @GraphProperty, @RelatedTo, @RelatedToVia, @Indexed,

@GraphId, @Query and @GraphTraversal.

Example 20.2. Simplest node entity

@NodeEntity

public class Movie {

 String title;

}

20.4.2. @GraphId: Neo4j -id field

For the simple mapping this is a required field which must be of type Long. It is used by Spring Data

Neo4j to store the node or relationship-id to re-connect the entity to the graph.

Note

It must not be a primitive type because then the "non-attached" case can not be represented

as the default value 0 would point to the reference node. Please make also sure that an

equals() and hashCode() method have to be provided which take the id field into account

(and also handle the "non-attached", null case).

For the advanced mapping such a field is optional. Only if the underlying id has to be accessed, it

is needed.

Programming model

52

Spring Data Graph

(2.0.0.RELEASE)

20.4.3. @GraphProperty: Optional annotation for property fields

It is not necessary to annotate property fields, as they are persisted by default; all fields that contain

primitive values are persisted directly to the graph. All fields convertible to a String using the Spring

conversion services will be stored as a string. Spring Data Neo4j includes a custom conversion factory

that comes with converters for Enums and Dates. Transient fields are not persisted.

Collections of collections of primitive or convertable values are stored as well. They are converted to

arrays of their type or strings respectively.

This annotation is typically used with cross-store persistence. When a node entity is configured

as partial, then all fields that should be persisted to the graph must be explicitly annotated with

@GraphProperty.

20.4.4. @Indexed: Making entities searchable by field value

The @Indexed annotation can be declared on fields that are intended to be indexed by the Neo4j

indexing facilities. The resulting index can be used to later retrieve nodes or relationships that contain

a certain property value, e.g. a name. Often an index is used to establish the start node for a traversal.

Indexes are accessed by a repository for a particular node or relationship entity type. See Section 20.6,

“Indexing” and Section 20.8, “CRUD with repositories” for more information.

20.4.5. @Query: fields as query result views

The @Query annotation leverages the delegation infrastructure supported by Spring Data Neo4j. It

provides dynamic fields which, when accessed, return the values selected by the provided query

language expression. The provided query must contain a placeholder named {self} for the the current

entity. For instance the query start n=node({self}) match n-[:FRIEND]->friend return friend.

Graph queries can return variable number of entities. That's why annotation can be put onto fields

with a single value, a subclass of Iterable of a concrete type or an Iterable of Map<String,Object>.

Additional parameters are taken from the params attribute of the @Query annotation. These parameter

tuples form key-value pairs that are provided to the query at execution time.

Example 20.3. @Graph on a node entity field

@NodeEntity

public class Group {

 @Query(value = "start n=({self}) match (n)-[r]->(friend) where r.type = {relType} return friend",

 params = {"relType", "FRIEND"})

 private Iterable<Person> friends;

}

Note

Please note that this annotation can also be used on repository methods. (Section 20.8,

“CRUD with repositories”)

20.4.6. @GraphTraversal: fields as traversal result views

The @GraphTraversal annotation also leverages the delegation infrastructure supported by Spring

Data aspects. It provides dynamic fields which, when accessed, return an Iterable of node or

relationship entities that are the result of a traversal starting at the entity containing the field. The

TraversalDescription used for this is created by the FieldTraversalDescriptionBuilder class

Programming model

53

Spring Data Graph

(2.0.0.RELEASE)

defined by the traversal attribute. The class of the resulting node entities must be provided with the

elementClass attribute.

Example 20.4. @GraphTraversal from a node entity

@NodeEntity

public class Group {

 @GraphTraversal(traversal = PeopleTraversalBuilder.class,

 elementClass = Person.class, params = "persons")

 private Iterable<Person> people;

 private static class PeopleTraversalBuilder implements FieldTraversalDescriptionBuilder {

 @Override

 public TraversalDescription build(NodeBacked start, Field field, String... params) {

 return new TraversalDescriptionImpl()

 .relationships(DynamicRelationshipType.withName(params[0]))

 .filter(Traversal.returnAllButStartNode());

 }

 }

}

20.5. Relating node entities

Since relationships are first-class citizens in Neo4j, associations between node entities are represented

by relationships. In general, relationships are categorized by a type, and start and end nodes (which

imply the direction of the relationship). Relationships can have an arbitrary number of properties.

Spring Data Neo4j has special support to represent Neo4j relationships as entities too, but it is often

not needed.

Note

As of Neo4j 1.4.M03, circular references are allowed. Spring Data Neo4j reflects this

accordingly.

20.5.1. @RelatedTo: Connecting node entities

Every field of a node entity that references one or more other node entities is backed by relationships

in the graph. These relationships are managed by Spring Data Neo4j automatically.

The simplest kind of relationship is a single field pointing to another node entity (1:1). In this case, the

field does not have to be annotated at all, although the annotation may be used to control the direction

and type of the relationship. When setting the field, a relationship is created when the entity is persisted.

If the field is set to null, the relationship is removed.

Example 20.5. Single relationship field

@NodeEntity

public class Movie {

 private Actor topActor;

}

It is also possible to have fields that reference a set of node entities (1:N). These fields come in two

forms, modifiable or read-only. Modifiable fields are of the type Set<T>, and read-only fields are

Iterable<T>, where T is a @NodeEntity-annotated class.

Programming model

54

Spring Data Graph

(2.0.0.RELEASE)

Example 20.6. Node entity with relationships

@NodeEntity

public class Actor {

 @RelatedTo(type = "topActor", direction = Direction.INCOMING)

 private Set<Movie> topActorIn;

 @RelatedTo(type = "ACTS_IN")

 private Set<Movie> movies;

}

For the simple mapping, the automatic transitive loading of related entities depends on declaration of

@Fetch at the property. Otherwise the related node or relationship entities will just be initialized with

their id for later loading.

When using the advanced mapping, Fields referencing other entities should not be manually initialized,

as they are managed by Spring Data Neo4j Aspects under the hood. 1:N fields can be accessed

immediately, and Spring Data Neo4j will provide a Set representing the relationships.

If this Set of related entities is modified, the changes are reflected in the graph, relationships are added,

removed or updated accordingly.

Note

Spring Data Neo4j ensures by default that there is only one relationship of a

given type between any two given entities. This can be circumvented by using

the createRelationshipBetween() method with the allowDuplicates parameter on

repositories or entities.

Note

Before an entity has been persisted for the first time, it will not have its state managed by

Spring Data Neo4j. For example, given the Actor class defined above, if actor.movies

was accessed in a non-persisted entity, it would return null, whereas if it was accessed in

a persisted entity, it would return an empty managed set.

When an Interface is used as target type for the Set and/or as elementClass it should be marked as

@NodeEntity too.

By setting direction to BOTH, relationships are created in the outgoing direction, but when the 1:N field

is read, it will include relationships in both directions. A cardinality of M:N is not necessary because

relationships can be navigated in both directions.

In the advanced mapping mode, the relationships can also be accessed by using the methods

entity.getRelationshipBetween(target, type) and entity.relateTo(target, type) available

on each NodeEntity. These methods find and create Neo4j relationships. It is also possible to manually

remove relationships by using entity.removeRelationshipTo(target, type). Using these methods

is significantly faster than adding/removing from the collection of relationships as it doesn't have to

re-synchronize a whole set of relationships with the graph.

Methods of the same semantics exist in the repositories to be used in the simple mapping mode.

Programming model

55

Spring Data Graph

(2.0.0.RELEASE)

Note

Other collection types than Set are not supported so far, also currently NO

Map<RelationshipType,Set<NodeBacked>>.

20.5.2. @RelationshipEntity: Rich relationships

To access the full data model of graph relationships, POJOs can also be annotated with

@RelationshipEntity, making them relationship entities. Just as node entities represent nodes in

the graph, relationship entities represent relationships. As described above, fields annotated with

@RelatedTo provide a way to link node entities together via relationships, but it provides no way of

accessing the relationships themselves.

Relationship entities can be accessed via by @RelatedToVia-annotated (Section 20.5.3,

“@RelatedToVia: Accessing relationship entities”) fields or methods like

entity.getRelationshipTo() or template|repository.getRelationshipsBetween().

Relationship entities either be instantiated directly and added to Set's

of @RelatedToVia fields or created by the introduced entity.relateTo(),

template|repository.createRelationshipBetween() methods (see Section 20.11, “Active Record

Methods for Advanced Mapping Mode”)

Fields in relationship entities are, similarly to node entities, persisted as properties on the relationship.

For accessing the two endpoints of the relationship, two special annotations are available: @StartNode

and @EndNode. A field annotated with one of these annotations will provide read-only access to the

corresponding endpoint, depending on the chosen annotation.

For the relationship-type a String or RelationshipType field annotated with @RelationshipType is

available. When Relationship-Entities are instantiated directly, the relationship type has to be provided

either in this annotated field or as part of the @RelationshipEntity annotation.

Example 20.7. Relationship entity (in advanced mapping)

@NodeEntity

public class Actor {

 public Role playedIn(Movie movie, String title) {

 return relateTo(movie, Role.class, "ACTS_IN");

 }

}

@RelationshipEntity

public class Role {

 String title;

 @StartNode private Actor actor;

 @EndNode private Movie movie;

}

20.5.3. @RelatedToVia: Accessing relationship entities

To provide easy programmatic access to the richer relationship entities of the data model, the

annotation @RelatedToVia can be added on fields of type Iterable<T> or Set<T>, where T is a

@RelationshipEntity-annotated class. These fields provide access to relationship entities.

Programming model

56

Spring Data Graph

(2.0.0.RELEASE)

Example 20.8. Relationship entity (in simple mapping)

@NodeEntity

public class Actor {

 @Set<Role> roles=new HashSet<Role>();

 public Role playedIn(Movie movie, String title) {

 Role role=new Role(this,movie,title);

 roles.add(role);

 return role;

 }

}

@RelationshipEntity(type = "ACTS_IN")

public class Role {

 String title;

 @StartNode private Actor actor;

 @EndNode private Movie movie;

}

20.6. Indexing

Indexing is used in Neo4j to quickly find nodes and relationships to start graph operations from. Either

for manually traversing the graph, using the traversal framework, cypher or gremlin queries or for

"global" graph operations. Indexes are also employed to ensure uniqueness of elements with certain

properties.

The Neo4j graph database employs different index providers for exact lookups and fulltext searches.

Lucene is the default index provider implementation. Each named index is configured to be fulltext or

exact. There is also a spatial index provider for geo-searches.

20.6.1. Exact and numeric index

When using the standard Neo4j API, nodes and relationships have to be manually indexed with

key-value pairs, typically being the property name and value. When using Spring Data Neo4j, this

task is simplified to just adding an @Indexed annotation on entity fields by which the entity should be

searchable. This will result in automatic updates of the index every time an indexed field changes.

Numerical fields are indexed numerically so that they are available for range queries. All other fields

are indexed with their string representation.

The @Indexed annotation also provides the option of using a custom index name. The default index

name is the simple class name of the entity, so that each class typically gets its own index. It is

recommended to not have two entity classes with the same class name, regardless of package.

If a field is declared in a superclass but different indexes for subclasses are needed, the level attribute

declares what will be used as index. Level.CLASS uses the class where the field was declared and

Level.INSTANCE uses the class that is provided or of the actual entity instance.

The indexes can be queried by using a repository (see Section 20.8, “CRUD with repositories”). The

repository is an instance of org.springframework.data.neo4j.repository.IndexRepository. The

methods findByPropertyValue() and findAllByPropertyValue() work on the exact indexes and

return the first or all matches. To do range queries, use findAllByRange() (please note that currently

both values are inclusive).

Programming model

57

Spring Data Graph

(2.0.0.RELEASE)

For providing explicit index names the repository has to extend NamedIndexRepository. This adds the

shown methods with another signature that take the index name as first parameter.

Example 20.9. Indexing entities

@NodeEntity

class Person {

 @Indexed(indexName = "people") String name;

 @Indexed int age;

}

GraphRepository<Person> graphRepository = template.repositoryFor(Person.class);

// Exact match, in named index

Person mark = graphRepository.findByPropertyValue("people", "name", "mark");

// Numeric range query, index name inferred automatically

for (Person middleAgedDeveloper : graphRepository.findAllByRange("age", 20, 40)) {

 Developer developer=middleAgedDeveloper.projectTo(Developer.class);

}

20.6.2. Fulltext indexes

Spring Data Neo4j also supports fulltext indexes. By default, indexed fields are stored in an exact

lookup index. To have them analyzed and prepared for fulltext search, the @Indexed annotation has

the type attribute which can be set to IndexType.FULLTEXT. Please note that fulltext indexes require

a separate index name as the fulltext configuration is stored in the index itself.

Access to the fulltext index is provided by the findAllByQuery() repository method. Wildcards like *

are allowed. Generally though, the fulltext querying rules of the underlying index provider apply. See

the Lucene documentation for more information on this.

Example 20.10. Fulltext indexing

@NodeEntity

class Person {

 @Indexed(indexName = "people-search", type=FULLTEXT) String name;

}

GraphRepository<Person> graphRepository =

 template.repositoryFor(Person.class);

Person mark = graphRepository.findAllByQuery("people-search", "name", "ma*");

Note

Please note that indexes are currently created on demand, so whenever an index that doesn't

exist is requested from a query or get operation it is created. This is subject to change

but has currently the implication that those indexes won't be configured as fulltext which

causes subsequent fulltext updates to those indexes to fail.

20.6.3. Manual index access

The index for a domain class is also available from Neo4jTemplate via the getIndex() method. The

second parameter is optional and takes the index name if it should not be inferred from the class name.

It returns the index implementation that is provided by Neo4j.

http://lucene.apache.org

Programming model

58

Spring Data Graph

(2.0.0.RELEASE)

Example 20.11. Manual index retrieval by type and name

@Autowired Neo4jTemplate template;

// Default index

Index<Node> personIndex = template.getIndex(null, Person.class);

personIndex.query(new QueryContext(NumericRangeQuery.newÍntRange("age", 20, 40, true, true))

 .sort(new Sort(new SortField("age", SortField.INT, false))));

// Named index

Index<Node> namedPersonIndex = template.getIndex("people",Person.class);

namedPersonIndex.get("name", "Mark");

// Fulltext index

Index<Node> personFulltextIndex = template.getIndex("people-search", Person.class);

personFulltextIndex.query("name", "*cha*");

personFulltextIndex.query("{name:*cha*}");

It is also possible to pass in the property name of the entity with an @Indexed annotation whose index

should be returned.

Example 20.12. Manual index retrieval by property configuration

@Autowired Neo4jTemplate template;

Index<Node> personIndex = template.getIndex(Person.class, "age");

personIndex.query(new QueryContext(NumericRangeQuery.newÍntRange("age", 20, 40, true, true))

 .sort(new Sort(new SortField("age", SortField.INT, false))));

// Fulltext index

Index<Node> personFulltextIndex = template.getIndex(Person.class,"name");

personFulltextIndex.query("name", "*cha*");

personFulltextIndex.query("{name:*cha*}");

20.6.4. Index queries in Neo4jTemplate

For querying the index, the template offers query methods that take either the exact match parameters

or a query object/expression, return the results as Result objects which then can be converted and

projected further using the result-conversion-dsl (see Section 20.7, “Neo4jTemplate”).

20.6.5. Neo4j Auto Indexes

Neo4j allows to configure auto-indexing for certain properties on nodes and relationships. This

auto-indexing differs from the approach used in Spring Data Neo4j because it only updates the

indexes when the transaction is committed. So the index modifications will only be available

after the successful commit. It is possible to use the specific index names node_auto_index and

relationship_auto_index when querying indexes in Spring Data Neo4j either with the query

methods in template and repositories or via Cypher and Gremlin.

20.6.6. Spatial Indexes

Spring Data Neo4j offers limited support for spatial queries using the neo4j-spatial library. See the

separate chapter Section 20.10, “Geospatial Queries” for details.

20.7. Neo4jTemplate

The Neo4jTemplate offers the convenient API of Spring templates for the Neo4j graph database. The

Spring Data Neo4j Object Graph mapping builds upon the core functionality of the template to persist

http://docs.neo4j.org/chunked/milestone/auto-indexing.html

Programming model

59

Spring Data Graph

(2.0.0.RELEASE)

objects to the graph and load them in a variety of ways. The template handles the active mapping mode

(Section 20.1, “Object Graph Mapping”) transparently.

Besides methods for creating, storing and deleting entities, nodes and relationships in the graph,

Neo4jTemplate also offers a wide range of query methods. To reduce the proliferation of query

methods a simple result handling DSL was added.

20.7.1. Basic operations

For direct retrieval of nodes and relationships, the getReferenceNode(), getNode() and

getRelationship() methods can be used.

There are methods (createNode() and createRelationship()) for creating nodes and relationships

that automatically set provided properties.

Example 20.13. Neo4j template

 // TODO auto-post-construct !!

 final Neo4jTemplate neo = new Neo4jTemplate(graphDatabase);

 neo.postConstruct();

 Node mark = neo.createNode(map("name", "Mark"));

 Node thomas = neo.createNode(map("name", "Thomas"));

 neo.createRelationshipBetween(mark, thomas, "WORKS_WITH", map("project", "spring-data"));

 neo.index("devs", thomas, "name", "Thomas");

 // Cypher TODO

 assertEquals("Mark", neo.query("start p=node({person}) match p<-[:WORKS_WITH]-other return other.name",

 map("person", asList(thomas.getId()))).to(String.class).single());

 // Gremlin

 assertEquals(thomas, neo.execute("g.v(person).out('WORKS_WITH')",

 map("person", mark.getId())).to(Node.class).single());

 // Index lookup

 assertEquals(thomas, neo.lookup("devs", "name", "Thomas").to(Node.class).single());

 // Index lookup with Result Converter

 assertEquals("Thomas", neo.lookup("devs", "name", "Thomas").to(String.class, new ResultConverter.ResultConverterAdapter<PropertyContainer, String>() {

 public String convert(PropertyContainer element, Class<String> type) {

 return (String) element.getProperty("name");

 }

 }).single());

20.7.2. Result

All querying methods of the template return a uniform result type: Result<T> which is also

an Iterable<T>. The query result offers methods of converting each element to a target type

result.to(Type.class) optionally supplying a ResultConverter<FROM,TO> which takes care of

custom conversions. By default most query methods can already handle conversions from and

to: Paths, Nodes, Relationship and GraphEntities as well as conversions backed by registered

ConversionServices. A converted Result<FROM> is an Iterable<TO>. Results can be limited to a single

value using the result.single() or result.singleOrNull() methods. It also offers support for a

pure callback function using a Handler<T>.

Programming model

60

Spring Data Graph

(2.0.0.RELEASE)

20.7.3. Indexing

Adding nodes and relationships to an index is done with the index() method.

The lookup() methods either take a field/value combination to look for exact matches in the index,

or a Lucene query object or string to handle more complex queries. All lookup() methods return a

Result<PropertyContainer> to be used or transformed.

20.7.4. Graph traversal

The traversal methods are at the core of graph operations. The traverse() method covers

the full traversal operation that takes a TraversalDescription (typically built with the

template.getGraphDatabase().traversalDescription() DSL) and runs it from the given start

node. traverse returns a Result<Path> to be used or transformed.

20.7.5. Cypher Queries

The Neo4jTemplate also allows execution of arbitrary Cypher queries. Via the query methods

the statement and parameter-Map are provided. Cypher Queries return tabular results, so the

Result<Map<String,Object>> contains the rows which can be either used as they are or converted

as needed.

20.7.6. Gremlin Scripts

Gremlin Scripts can run with the execute method, which also takes the parameters that will be

available as variables inside the script. The result of the executions is a generic Result<Object> fit

for conversion or usage.

20.7.7. Transactions

The Neo4jTemplate provides implicit transactions for some of its methods. For instance save

uses them. For other modifying operations please provide Spring Transaction management using

@Transactional or the TransactionTemplate.

20.7.8. Neo4j REST Server

If the template is configured to use a SpringRestGraphDatabase the operations that would be

expensive over the wire, like traversals and querying are executed efficiently on the server side by

using the REST API to forward those calls. All the other template methods require individual network

operations.

The REST-batch-mode of the SpringRestGraphDatabase is not yet exposed via the template, but it

is available via the graph database.

20.8. CRUD with repositories

The repositories provided by Spring Data Neo4j build on the composable repository infrastructure

in Spring Data Commons. They allow for interface based composition of repositories consisting of

provided default implementations for certain interfaces and additional custom implementations for

other methods.

Spring Data Neo4j repositories support annotated and named queries for the Neo4j Cypher

query-language and Gremlin graph DSL.

http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories
http://docs.neo4j.org/chunked/milestone/query-lang.html

Programming model

61

Spring Data Graph

(2.0.0.RELEASE)

Spring Data Neo4j comes with typed repository implementations that provide methods

for locating node and relationship entities. There are several types of basic repository

interfaces and implementations. CRUDRepository provides basic operations, IndexRepository

and NamedIndexRepository delegate to Neo4j's internal indexing subsystem for queries, and

TraversalRepository handles Neo4j traversals.

With the RelationshipOperationsRepository it is possible to access, create and delete relationships

between entitites or nodes. The SpatialRepository allows geographic searches (Section 20.10,

“Geospatial Queries”)

GraphRepository is a convenience repository interface, combining CRUDRepository,

IndexRepository, and TraversalRepository. Generally, it has all the desired repository methods. If

other operations are required then the additional repository interfaces should be added to the individual

interface declaration.

20.8.1. CRUDRepository

CRUDRepository delegates to the configured TypeRepresentationStrategy (see Section 20.14,

“Entity type representation”) for type based queries.

Load an entity instance via an id

T findOne(id)

Check for existence of a id in the graph

boolean exists(id)

Iterate over all entities instances of the repository entity type

Iterable<T> findAll() Iterable<T> findAll(Sort) Page<T> findAll(Pageable)

Count the instances of the repository entity type

Long count()

Save entities

T save(T) and Iterable<T> save(Iterable<T>)

Delete graph entities

void delete(T), void; delete(Iterable<T>), and deleteAll()

20.8.2. IndexRepository and NamedIndexRepository

IndexRepository works with the indexing subsystem and provides methods to find entities by indexed

properties, ranged queries, and combinations thereof. The index key is the name of the indexed entity

field, unless overridden in the @Indexed annotation.

Iterate over all indexed entity instances with a certain field value

Iterable<T> findAllByPropertyValue(key, value)

Get a single entity instance with a certain field value

T findByPropertyValue(key, value)

Iterate over all indexed entity instances with field values in a certain numerical range (inclusive)

Iterable<T> findAllByRange(key, from, to)

Programming model

62

Spring Data Graph

(2.0.0.RELEASE)

Iterate over all indexed entity instances with field values matching the given fulltext string or

QueryContext query

Iterable<T> findAllByQuery(key, queryOrQueryContext)

There is also a NamedIndexRepository with the same methods, but with an additional index name

parameter, making it possible to query any index.

20.8.3. TraversalRepository

TraversalRepository delegates to the Neo4j traversal framework.

Iterate over a traversal result

Iterable<T> findAllByTraversal(startEntity, traversalDescription)

20.8.4. Query and Finder Methods

20.8.4.1. Annotated queries

Queries using the Cypher graph query language can be supplied with the @Query annotation. That

means every method annotated with @Query("start n=node:IndexName(key={node or 0}) match

(n)-->(m) return m") will use the supplied query string. The named or indexed parameter {node} will

be substituted by the actual method parameter. Node and Relationship-Entities are handled directly,

Iterables thereof as well. All other parameters are replaced directly (i.e. Strings, Longs, etc). There

is special support for the Sort and Pageable parameters from Spring Data Commons, which are

supported to add programmatic paging and sorting (alternatively static paging and sorting can be

supplied in the query string itself). For using the named parameters you have to either annotate the

parameters of the method with the @Param("node") annotation or enable debug symbols. Indexed

parameters are always usable.

Gremlin queries can be used similarly, the @Query annotation would just need a

type=QueryType.GREMLIN attribute. Parameters are supported in the same way.

20.8.4.2. Named queries

Spring Data Neo4j also supports the notion of named queries which are externalized

in property-config-files (META-INF/neo4j-named-queries.properties). Those files have the

format: Entity.finderName=query (e.g. Person.findBoss=start p=node({0}) match

(p)<-[:BOSS]-(boss) return boss). Otherwise named queries support the same parameters as

annotated queries.

20.8.4.3. Query results

Typical results for queries are Iterable<Type>, Iterable<Map<String,Object>>, Type and

Page<Type>. Nodes and Relationships are converted to their respective Entities (if they exist). Other

values are converted using the registered Spring conversion services (e.g. enums).

20.8.4.4. Cypher examples

There is a screencast available showing many features of the query language. The following examples

are taken from the cineasts dataset of the tutorial section.

start n=node(0) return n

returns the node with id 0

http://video.neo4j.org/ybMbf/screencast-introduction-to-cypher

Programming model

63

Spring Data Graph

(2.0.0.RELEASE)

start movie=node:Movie(title='Matrix') return movie

returns the nodes which are indexed with title equal to 'Matrix'

start movie=node:Movie(title='Matrix') match (movie)<-[:ACTS_IN]-(actor) return

actor.name

returns the names of the actors that have a ACTS_IN relationship to the movie node for 'Matrix'

start movie=node:Movie(title='Matrix') match (movie)<-[r:RATED]-(user) where r.stars

> 3 return user.name, r.stars, r.comment

returns users names and their ratings (>3) of the movie titled 'Matrix'

start user=node:User(login='micha') match

(user)-[:FRIEND]-(friend)-[r:RATED]->(movie) return movie.title, AVG(r.stars),

COUNT(*) order by AVG(r.stars) desc, COUNT(*) desc

returns the movies rate by the friends of the user 'micha', aggregated by movie.title, with averaged

ratings and rating-counts sorted by both

20.8.4.5. Queries derived from finder-method names

As known from Rails or Grails it is possible to derive queries for domain entities from finder method

names like Iterable<Person> findByNameAndAgeGreaterThan(String name, int age). Using the

infrastructure in Spring Data Commons that allows to collect the meta information about entities and

their properties a finder method name can be split into its semantic parts and converted into a cypher

query. @Indexed fields will be converted into index-lookups of the start clause, navigation along

relationships will be reflected in the match clause properties with operators will end up as expressions

in the where clause. Order and limiting of the query will by handled by provided Pageable or Sort

parameters. The other parameters will be used in the order they appear in the method signature so that

should align with the expressions stated in the method name.

Example 20.14. Some examples of methods and resulting cypher queries of a PersonRepository

public interface PersonRepository

 extends GraphRepository<Person> {

// start person=node:Person(id={0}) return person

Person findById(String id)

// start person=node:Person({0}) return person - {0} will be "id:"+name

Iterable<Person> findByNameLike(String name)

// start person=node:__types__("className"="com...Person")

// where person.age = {0} and person.married = {1}

// return person

Iterable<Person> findByAgeAndMarried(int age, boolean married)

// start person=node:__types__("className"="com...Person")

// match person<-[:CHILD]-parent

// where parent.age > {0} and person.married = {1}

// return person

Iterable<Person> findByParentAgeAndMarried(int age, boolean married)

}

20.8.4.6. Derived Finder Methods

Use the meta information of your domain model classes to declare repository finders that navigate

along relationships and compare properties. The path defined with the method name is used to create

a Cypher query that is executed on the graph.

Programming model

64

Spring Data Graph

(2.0.0.RELEASE)

Example 20.15. Repository and usage of derived finder methods

 @NodeEntity

 public static class Person {

 @GraphId Long id;

 private String name;

 private Group group;

 private Person(){}

 public Person(String name) {

 this.name = name;

 }

 }

 @NodeEntity

 public static class Group {

 @GraphId Long id;

 private String title;

 // incoming relationship for the person -> group

 @RelatedTo(type = "group", direction = Direction.INCOMING)

 private Set<Person> members=new HashSet<Person>();

 private Group(){}

 public Group(String title, Person...people) {

 this.title = title;

 members.addAll(asList(people));

 }

 }

 public interface PersonRepository extends GraphRepository<Person> {

 Iterable<Person> findByGroupTitle(String name);

 }

 @Autowired PersonRepository personRepository;

 Person oliver=personRepository.save(new Person("Oliver"));

 final Group springData = new Group("spring-data",oliver);

 groupRepository.save(springData);

 final Iterable<Person> members = personRepository.findByGroupTitle("spring-data");

 assertThat(members.iterator().next().name, is(oliver.name));

20.8.5. CypherDSL repository

Spring Data Neo4j supports the new cypher-dsl to write Cypher queries in a statically typed way. Just

by including CypherDslRepository to your repository you get the Page<T> query(Execute query,

params, Pageable page) and the EndResult<T> query(Execute query, params);. The result type

of the Cypher-DSL builder is called Execute

Programming model

65

Spring Data Graph

(2.0.0.RELEASE)

Example 20.16. Examples for Cypher-DSL repository

 public interface PersonRepository extends GraphRepository<Person>,

 CypherDslRepository<Person> {}

 @Autowired PersonRepository repo;

 // START company=node:Company(name={name}) MATCH company<-[:WORKS_AT]->person RETURN person

 Execute query = start(lookup("company", "Company", "name", param("name"))).

 match(path().from("company").in("WORKS_AT").to("person")).

 returns(nodes("person"))

 Page<Person> people = repo.query(query , map("name","Neo4j"), new PageRequest(1,10));

 QPerson person = QPerson.person;

 QCompany company = QCompany.company;

 Execute query = start(lookup(company, "Company", company.name, param("name"))).

 match(path().from(company).in("WORKS_AT").to(person).

 .where(person.firstName.like("P*").and(person.age.gt(25))).

 returns(nodes(person))

 EndResult<Person> people = repo.query(query , map("name","Neo4j"));

20.8.6. Creating repositories

The Repository instances should normally be injected but can also be created manually via the

Neo4jTemplate.

Example 20.17. Using basic GraphRepository methods

public interface PersonRepository extends GraphRepository<Person> {}

@Autowired PersonRepository repo;

// OR

GraphRepository<Person> repo = template

 .repositoryFor(Person.class);

Person michael = repo.save(new Person("Michael", 36));

Person dave = repo.findOne(123);

Long numberOfPeople = repo.count();

Person mark = repo.findByPropertyValue("name", "mark");

Iterable<Person> devs = repo.findAllByProperyValue("occupation", "developer");

Iterable<Person> middleAgedPeople = repo.findAllByRange("age", 20, 40);

Iterable<Person> aTeam = repo.findAllByQuery("name", "A*");

Iterable<Person> davesFriends = repo.findAllByTraversal(dave,

 Traversal.description().pruneAfterDepth(1)

 .relationships(KNOWS).filter(returnAllButStartNode()));

20.8.7. Composing repositories

The recommended way of providing repositories is to define a repository interface per domain class.

The mechanisms provided by the repository infrastructure will automatically detect them, along with

additional implementation classes, and create an injectable repository implementation to be used in

services or other spring beans.

Programming model

66

Spring Data Graph

(2.0.0.RELEASE)

Example 20.18. Composing repositories

public interface PersonRepository extends GraphRepository<Person>, PersonRepositoryExtension {}

// configure the repositories, preferably via the neo4j:repositories namespace

// (template reference is optional)

<neo4j:repositories base-package="org.example.repository"

 graph-database-context-ref="template"/>

// have it injected

@Autowired

PersonRepository personRepository;

// or created via the template

PersonRepository personRepository = template.repositoryFor(Person.class);

Person michael = personRepository.save(new Person("Michael",36));

Person dave=personRepository.findOne(123);

Iterable<Person> devs = personRepository.findAllByPropertyValue("occupation","developer");

Iterable<Person> aTeam = graphRepository.findAllByQuery("name","A*");

Iterable<Person> friends = personRepository.findFriends(dave);

// alternatively select some of the required repositories individually

public interface PersonRepository extends CRUDGraphRepository<Node,Person>,

 IndexQueryExecutor<Node,Person>, TraversalQueryExecutor<Node,Person>,

 PersonRepositoryExtension {}

// provide a custom extension if needed

public interface PersonRepositoryExtension {

 Iterable<Person> findFriends(Person person);

}

public class PersonRepositoryImpl implements PersonRepositoryExtension {

 // optionally inject default repository, or use DirectGraphRepositoryFactory

 @Autowired PersonRepository baseRepository;

 public Iterable<Person> findFriends(Person person) {

 return baseRepository.findAllByTraversal(person, friendsTraversal);

 }

}

Note

If you use <context:component-scan> in your spring config, please make sure to put it

behind <neo4j:repositories>, as the RepositoryFactoryBean adds new bean definitions

for all the declared repositories, the context scan doesn't pick them up otherwise.

20.9. Projecting entities

As the underlying data model of a graph database doesn't imply and enforce strict type constraints

like a relational model does, it offers much more flexibility on how to model your domain classes and

which of those to use in different contexts.

For instance an order can be used in these contexts: customer, procurement, logistics, billing,

fulfillment and many more. Each of those contexts requires its distinct set of attributes and operations.

As Java doesn't support mixins one would put the sum of all of those into the entity class and thereby

making it very big, brittle and hard to understand. Being able to take a basic order and project it to a

Programming model

67

Spring Data Graph

(2.0.0.RELEASE)

different (not related in the inheritance hierarchy or even an interface) order type that is valid in the

current context and only offers the attributes and methods needed here would be very beneficial.

Spring Data Neo4j offers initial support for projecting node and relationship entities to different target

types. All instances of this projected entity share the same backing node or relationship, so changes

are reflected on the same data.

This could for instance also be used to handle nodes of a traversal with a unified (simpler) type (e.g.

for reporting or auditing) and only project them to a concrete, more functional target type when the

business logic requires it.

Example 20.19. Projection of entities

@NodeEntity

class Trainee {

 String name;

 @RelatedTo

 Set<Training> trainings;

}

for (Person person : graphRepository.findAllByPropertyValue("occupation","developer")) {

 Developer developer = person.projectTo(Developer.class);

 if (developer.isJavaDeveloper()) {

 trainInSpringData(developer.projectTo(Trainee.class));

 }

}

20.10. Geospatial Queries

SpatialRepository is a dedicated Repository for spatial queries. Spring Data Neo4j provides an

optional dependency to neo4j-spatial which is an advanced library for GIS operations. So if you include

the maven dependency in your pom.xml, Neo4j-Spatial and the required SPATIAL index provider is

available.

Example 20.20. Neo4j-Spatial Dependencies

<dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j-spatial</artifactId>

 <version>0.7-SNAPSHOT</version>

</dependency>

To have your entities available for spatial index queries, please include a String property containing a

"well known text", location string. WKT is the Well Known Text Spatial Format eg. POINT(LON LAT

) or POLYGON ((LON1 LAT1 LON2 LAT2 LON3 LAT3 LON1 LAT1))

https://github.com/neo4j/spatial
http://en.wikipedia.org/wiki/Well-known_text

Programming model

68

Spring Data Graph

(2.0.0.RELEASE)

Example 20.21. Fields of Well Known Text

@NodeEntity

class Venue {

 String name;

 @Indexed(type = POINT, indexName = "VenueLocation") String wkt;

 public void setLocation(float lon, float lat) {

 this.wkt = String.format("POINT(%.2f %.2f)",lon,lat);

 }

}

venue.setLocation(56,15);

After adding the SpatialRepository to your repository you can use the findWithinBoundingBox,

findWithinDistance, findWithinWellKnownText.

Example 20.22. Spatial Queries

 Iterable<Person> teamMembers = personRepository.findWithinBoundingBox("personLayer", 55, 15, 57, 17);

Iterable<Person> teamMembers = personRepository.findWithinWellKnownText("personLayer", "POLYGON ((15 55, 15 57, 17 57, 17 55, 15 55))");

Iterable<Person> teamMembers = personRepository.findWithinDistance("personLayer", 16,56,70);

Example 20.23. Methods of the Spatial Repository

public interface SpatialRepository<T> {

 ClosableIterable<T> findWithinBoundingBox(String indexName, double lowerLeftLat,

 double lowerLeftLon,

 double upperRightLat,

 double upperRightLon);

 ClosableIterable<T> findWithinDistance(final String indexName, final double lat, double lon, double distanceKm);

 ClosableIterable<T> findWithinWellKnownText(final String indexName, String wellKnownText);

}

20.11. Active Record Methods for Advanced Mapping Mode

This chapter only applies to the advanced mapping. Currently the Aspects introduce the following

methods by default, this will change in the future, there will be separate Mixin-Interfaces that can

selectively mixed into the domain entities if needed. Otherwise the AspectJ interaction will be restricted

to field access interception and post constructor handling.

The node and relationship aspects introduce (via AspectJ ITD - inter type declaration) several methods

to the entities.

Persisting the node entity after creation and after changes outside of a transaction. Participates in an

open transaction, or creates its own implicit transaction otherwise.

nodeEntity.persist()

Accessing node and relationship IDs

nodeEntity.getNodeId() and relationshipEntity.getRelationshipId()

Accessing the node or relationship backing the entity

entity.getPersistentState()

equals() and hashCode() are delegated to the underlying state

entity.equals() and entity.hashCode()

Programming model

69

Spring Data Graph

(2.0.0.RELEASE)

Creating relationships to a target node entity, and returning the relationship entity instance

nodeEntity.relateTo(targetEntity, relationshipClass, relationshipType)

Retrieving a single relationship entity

nodeEntity.getRelationshipTo(targetEntity, relationshipClass, relationshipType)

Creating relationships to a target node entity and returning the relationship

nodeEntity.relateTo(targetEntity, relationshipType)

Retrieving a single relationship

nodeEntity.getRelationshipTo(targetEnttiy, relationshipType)

Removing a single relationship

nodeEntity.removeRelationshipTo(targetEntity, relationshipType)

Remove the node entity, its relationships, and all index entries for it

nodeEntity.remove() and relationshipEntity.remove()

Project entity to a different target type, using the same backing state

entity.projectTo(targetClass)

Traverse, starting from the current node. Returns end nodes of traversal converted to the provided type.

nodeEntity.findAllByTraversal(targetType, traversalDescription)

Traverse, starting from the current node. Returns EntityPaths of the traversal result bound to the

provided start and end-node-entity types

Iterable<EntityPath> findAllPathsByTraversal(traversalDescription)

Executes the given Cypher query, providing the {self} variable with the node-id and returning the

results converted to the target type.

<T> Iterable<T> NodeBacked.findAllByQuery(final String query, final Class<T>

targetType)

Executes the given query, providing {self} variable with the node-id and returning the original result,

but with nodes and relationships replaced by their appropriate entities.

Iterable<Map<String,Object>> NodeBacked.findAllByQuery(final String query)

Executes the given query, providing {self} variable with the node-id and returns a single result

converted to the target type.

<T> T NodeBacked.findByQuery(final String query, final Class<T> targetType)

20.12. Transactions

Neo4j is a transactional database, only allowing modifications to be performed within transaction

boundaries. Reading data does however not require transactions. Spring Data Neo4j integrates nicely

with both the declarative transaction support with @Transactional as well as the manual transaction

handling with TransactionTemplate. It also supports the rollback mechanisms of the Spring Testing

library.

Spring Data Neo4j integrates with transaction managers configured using Spring. The simplest

scenario of just running the graph database uses a SpringTransactionManager provided by the Neo4j

kernel to be used with Spring's JtaTransactionManager. That is, configuring Spring to use Neo4j's

transaction manager.

Programming model

70

Spring Data Graph

(2.0.0.RELEASE)

Note

To avoid name collisons the transaction manager configured by Spring Data Neo4j is

called neo4jTransactionManager and is aliased to transactionManager. So defining

a separate transactionManager bean should not interfere with Spring Data Neo4j

operations.

Note

The explicit XML configuration given below is encoded in the Neo4jConfiguration

configuration bean that uses Spring's @Configuration feature. This greatly simplifies the

configuration of Spring Data Neo4j.

Example 20.24. Simple transaction manager configuration

<bean id="neo4jTransactionManager"

 class="org.springframework.transaction.jta.JtaTransactionManager">

 <property name="transactionManager">

 <bean class="org.neo4j.kernel.impl.transaction.SpringTransactionManager">

 <constructor-arg ref="graphDatabaseService"/>

 </bean>

 </property>

 <property name="userTransaction">

 <bean class="org.neo4j.kernel.impl.transaction.UserTransactionImpl">

 <constructor-arg ref="graphDatabaseService"/>

 </bean>

 </property>

</bean>

<tx:annotation-driven mode="aspectj" transaction-manager="neo4jTransactionManager"/>

For scenarios with multiple transactional resources there are two options. The first option is to have

Neo4j participate in the externally configured transaction manager using the Spring support in Neo4j by

enabling the configuration parameter for your graph database. Neo4j will then use Spring's transaction

manager instead of its own.

Example 20.25. Neo4j Spring integration

<![CDATA[<context:annotation-config />

<context:spring-configured/>

<bean id="transactionManager"

 class="org.springframework.transaction.jta.JtaTransactionManager">

 <property name="transactionManager">

 <bean id="jotm" class="org.springframework.data.neo4j.transaction.JotmFactoryBean"/>

 </property>

</bean>

<bean id="graphDatabaseService" class="org.neo4j.kernel.EmbeddedGraphDatabase"

 destroy-method="shutdown">

 <constructor-arg value="target/test-db"/>

 <constructor-arg>

 <map>

 <entry key="tx_manager_impl" value="spring-jta"/>

 </map>

 </constructor-arg>

</bean>

<tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

Programming model

71

Spring Data Graph

(2.0.0.RELEASE)

One can also configure a stock XA transaction manager (e.g. Atomikos, JOTM, App-Server-TM) to

be used with Neo4j and the other resources. For a bit less secure but fast 1-phase-commit-best-effort,

use ChainedTransactionManager, which comes bundled with Spring Data Neo4j. It takes a list of

transaction managers as constructor params and will handle them in order for transaction start and

commit (or rollback) in the reverse order.

Example 20.26. ChainedTransactionManager example

<![CDATA[<bean id="jpaTransactionManager"

 class="org.springframework.orm.jpa.JpaTransactionManager">

 <property name="entityManagerFactory" ref="entityManagerFactory"/>

</bean>

<bean id="jtaTransactionManager"

 class="org.springframework.transaction.jta.JtaTransactionManager">

 <property name="transactionManager">

 <bean class="org.neo4j.kernel.impl.transaction.SpringTransactionManager">

 <constructor-arg ref="graphDatabaseService" />

 </bean>

 </property>

 <property name="userTransaction">

 <bean class="org.neo4j.kernel.impl.transaction.UserTransactionImpl">

 <constructor-arg ref="graphDatabaseService" />

 </bean>

 </property>

</bean>

<bean id="transactionManager"

 class="org.springframework.data.neo4j.transaction.ChainedTransactionManager">

 <constructor-arg>

 <list>

 <ref bean="jpaTransactionManager"/>

 <ref bean="jtaTransactionManager"/>

 </list>

 </constructor-arg>

</bean>

<tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

20.13. Detached node entities in advanced mapping mode

This section only applies to the advanced mapping (AspectJ-backed). The simple mapping always

detaches entities on load as it copies the data out of the graph into the entities and stores it back fully too.

Node entities can be in two different persistence states: attached or detached. By default, newly created

node entities are in the detached state. When persist() or template.save() is called on the entity,

it becomes attached to the graph, and its properties and relationships are stores in the database. If the

save operation is not called within a transaction, it automatically creates an implicit transaction only

for the operation.

Changing an attached entity inside a transaction will immediately write through the changes to the

datastore. Whenever an entity is changed outside of a transaction it becomes detached. The changes

are stored in the entity (its fields) itself until the next call to a save operation.

All entities returned by library functions are initially in an attached state. Just as with any other entity,

changing them outside of a transaction detaches them, and they must be reattached with persist()

for the data to be saved.

Programming model

72

Spring Data Graph

(2.0.0.RELEASE)

Example 20.27. Persisting entities

@NodeEntity

class Person {

 String name;

 Person(String name) { this.name = name; }

}

// Store Michael in the database.

Person p = new Person("Michael").persist();

20.13.1. Relating detached entities

As mentioned above, an entity simply created with the new keyword starts out detached. It also has

no state assigned to it. If you create a new entity with new and then throw it away, the database won't

be touched at all.

Now consider this scenario:

Example 20.28. Relationships outside of transactions

@NodeEntity

class Movie {

 private Actor topActor;

 public void setTopActor(Actor actor) {

 topActor = actor;

 }

}

@NodeEntity

class Actor {

}

Movie movie = new Movie();

Actor actor = new Actor();

movie.setTopActor(actor);

Neither the actor nor the movie has been assigned a node in the graph. If we were to call

movie.persist(), then Spring Data Neo4j would first create a node for the movie. It would then note

that there is a relationship to an actor, so it would call actor.persist() in a cascading fashion. Once the

actor has been persisted, it will create the relationship from the movie to the actor. All of this will be

done atomically in one transaction.

Important to note here is that if actor.persist() is called instead, then only the actor will be persisted.

The reason for this is that the actor entity knows nothing about the movie entity. It is the movie entity

that has the reference to the actor. Also note that this behavior is not dependent on any configured

relationship direction on the annotations. It is a matter of Java references and is not related to the data

model in the database.

The save operation (merge) stores all properties of the entity to the graph database and puts the entity

in attached mode. There is no need to update the reference to the Java POJO as the underlying backing

node handles the read-through transparently. If multiple object instances that point to the same node

are persisted, the ordering is not important as long as they contain distinct changes. For concurrent

changes a concurrent modification exception is thrown (subject to be parameterized in the future).

Programming model

73

Spring Data Graph

(2.0.0.RELEASE)

If the relationships form a cycle, then the entities will first of all be assigned a node in the database,

and then the relationships will be created. The cascading of persist() is however only cascaded to

related entity fields that have been modified.

In the following example, the actor and the movie are both attached entites, having both been previously

persisted to the graph:

Example 20.29. Cascade for modified fields

actor.setName("Billy Bob");

movie.persist();

In this case, even though the movie has a reference to the actor, the name change on the actor will not

be persisted by the call to movie.persist(). The reason for this is, as mentioned above, that cascading

will only be done for fields that have been modified. Since the movie.topActor field has not been

modified, it will not cascade the persist operation to the actor.

20.14. Entity type representation

There are several ways to represent the Java type hierarchy of the data model in the graph. In

general, for all node and relationship entities, type information is needed to perform certain repository

operations. Some of this type information is saved in the graph database.

Implementations of TypeRepresentationStrategy take care of persisting this information during

entity instance creation. They also provide the repository methods that use this type information

to perform their operations, like findAll and count. The derived finderMethods also use the type

information for graph global queries.

There are three available implementations for node entities to choose from.

• IndexingNodeTypeRepresentationStrategy this is the default strategy used.

Stores entity types in the integrated index. Each entity node gets indexed with its type and all

supertypes that are also @NodeEntity-annotated. The special index used for this is named __types__.

Additionally, in order to retrieve the type of an entity node, each node has a property __type__ with

the fully qualified type of that entity.

• SubReferenceNodeTypeRepresentationStrategy

Stores entity types in a tree in the graph representing the type hierarchy. Each entity has a

INSTANCE_OF relationship to a type node representing that entity's type. The type may or may

not have a SUBCLASS_OF relationship to another type node.

• NoopNodeTypeRepresentationStrategy

Does not store any type information, and does hence not support finding by type, counting by type,

or retrieving the type of any entity.

There are two implementations for relationship entities available, same behavior as the corresponding

ones above:

• IndexingRelationshipTypeRepresentationStrategy

Programming model

74

Spring Data Graph

(2.0.0.RELEASE)

Stores relationship entity types in the integrated index. Each entity relationship gets indexed with its

type and all supertypes that are also @RelationshipEntity-annotated. The special index used for

this is named __rel_types__. Additionally, in order to retrieve the type of an entity relationship,

each relationship has a property __type__ with the fully qualified type of that entity.

• NoopRelationshipTypeRepresentationStrategy

Spring Data Neo4j will by default autodetect which are the most suitable strategies for node and

relationship entities. For new data stores, it will always opt for the indexing strategies. If a data store

was created with the olderSubReferenceNodeTypeRepresentationStrategy, then it will continue to

use that strategy for node entities. It will however in that case use the no-op strategy for relationship

entities, which means that the old data stores have no support for searching for relationship entities.

The indexing strategies are recommended for all new users.

20.15. Bean validation (JSR-303)

Spring Data Neo4j supports property-based validation support. When a property is changed and

persisted, it is checked against the annotated constraints, e.g. @Min, @Max, @Size, etc. Validation errors

throw a ValidationException. The validation support that comes with Spring is used for evaluating

the constraints. To use this feature, a validator has to be registered with the Neo4jTemplate, which is

done automatically by the Neo4jConfiguration if one is present in the Spring Config.

Example 20.30. Bean validation

@NodeEntity

class Person {

 @Size(min = 3, max = 20)

 String name;

 @Min(0) @Max(100)

 int age;

}

75

Spring Data Graph

(2.0.0.RELEASE)

Chapter 21. Environment setup

Spring Data Neo4j dramatically simplifies development, but some setup is naturally required. For

building the application, Maven needs to be configured to include the Spring Data Neo4j dependencies.

For the advanced mapping mode, it is necessary to configure the AspectJ weaving. After the build

setup is complete, the Spring application needs to be configured to make use of Spring Data Neo4j.

Examples for these different setups can be found in the Spring Data Neo4j examples.

Spring Data Neo4j projects can be built using Maven. There are also means to build them with Gradle

or Ant/Ivy.

21.1. Dependencies for Spring Data Neo4j Simple Mapping

For the simple POJO mapping it is enough to add the

org.springframework.data:spring-data-neo4j:2.0.0.RELEASE dependency to your project. If you

want to use the Cypher query language please add org.neo4j:neo4j-cypher:1.6.M02

Example 21.1. Maven dependencies for Spring Data Neo4j

<dependency>

<groupId>org.springframework.data</groupId>

<artifactId>spring-data-neo4j</artifactId>

<version>2.0.0.RELEASE</version>

</dependency>

21.2. Gradle configuration for Advanced Mapping (AspectJ)

The necessary build plugin to build Spring Data Neo4j projects with Gradle is available as part of the

Spring Data Neo4j distribution or on Github which makes the usage as easy as:

Example 21.2. Gradle Build Configuration

sourceCompatibility = 1.6

targetCompatibility = 1.6

springVersion = "3.0.7.RELEASE"

springDataNeo4jVersion = "2.0.0.RELEASE"

aspectjVersion = "1.6.12"

apply from:'https://github.com/SpringSource/spring-data-neo4j/raw/master/build/

gradle/springdataneo4j.gradle'

configurations {

 runtime

 testCompile

}

repositories {

 mavenCentral()

 mavenLocal()

 mavenRepo urls: "http://maven.springframework.org/release"

}

The actual springdataneo4j.gradle is very simple, just decorating the javac tasks with the iajc

ant task.

http://spring.neo4j.org/examples

Environment setup

76

Spring Data Graph

(2.0.0.RELEASE)

21.3. Ant/Ivy configuration for Advanced Mapping (AspectJ)

The supplied sample ant build configuration is mainly about resolving the dependencies for Spring

Data Neo4j Aspects and AspectJ using Ivy and integrating the iajc ant task in the build.

Example 21.3. Ant/Ivy Build Configuration

 <taskdef resource="org/aspectj/tools/ant/taskdefs/aspectjTaskdefs.properties" classpath="${lib.dir}/aspectjtools.jar"/>

<target name="compile" description="Compile production classes" depends="lib.retrieve">

 <mkdir dir="${main.target}" />

 <iajc sourceroots="${main.src}" destDir="${main.target}" classpathref="path.libs" source="1.6">

 <aspectpath>

 <pathelement location="${lib.dir}/spring-aspects.jar"/>

 </aspectpath>

 <aspectpath>

 <pathelement location="${lib.dir}/spring-data-neo4j-aspects.jar"/>

 </aspectpath>

 </iajc>

</target>

21.4. Maven configuration for Advanced Mapping

Spring Data Neo4j projects are easiest to build with Apache Maven. The core dependency is Spring

Data Neo4j Aspects which comes with transitive dependencies to Spring Data Neo4j, Spring Data

Commons, parts of the Spring Framework, AspectJ and the Neo4j graph database.

21.4.1. Repositories

The milestone releases of Spring Data Neo4j are available from the dedicated milestone repository.

Neo4j releases and milestones are available from Maven Central.

Example 21.4. Spring milestone repository

<repository>

 <id>spring-maven-milestone</id>

 <name>Springframework Maven Repository</name>

 <url>http://maven.springframework.org/milestone</url>

</repository>

21.4.2. Dependencies

The dependency on spring-data-neo4j-aspects will transitively pull in the necessary parts of Spring

Framework (core, context, aop, aspects, tx), AspectJ, Neo4j, and Spring Data Commons. If you already

use these (or different versions of these) in your project, then include those dependencies on your own.

In this case, please make sure that the versions match. If you want to use Cypher or Gremlin, please

add the dependencies (which are optional in SDN) accordingly.

https://github.com/SpringSource/spring-data-neo4j/raw/master/build/ivy

Environment setup

77

Spring Data Graph

(2.0.0.RELEASE)

Example 21.5. Maven dependencies

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j-aspects</artifactId>

 <version>2.0.0.RELEASE</version>

</dependency>

<dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>1.6.12</version>

</dependency>

[<dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j-cypher</artifactId>

 <version>1.6.M02</version>

</dependency>]

21.4.3. Maven AspectJ build configuration

Since the advanced mapping uses AspectJ for build-time aspect weaving of entities, it is necessary to

hook the AspectJ Maven plugin into the build process. The plugin also has its own dependencies. You

also need to explicitly specify the aspect libraries (spring-aspects and spring-data-neo4j-aspects).

Environment setup

78

Spring Data Graph

(2.0.0.RELEASE)

Example 21.6. AspectJ configuration

<plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>aspectj-maven-plugin</artifactId>

 <version>1.2</version>

 <dependencies>

 <!-- NB: You must use Maven 2.0.9 or above or these are ignored (see MNG-2972) -->

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>1.6.12</version>

 </dependency>

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjtools</artifactId>

 <version>1.6.12</version>

 </dependency>

 </dependencies>

 <executions>

 <execution>

 <goals>

 <goal>compile</goal>

 <goal>test-compile</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <outxml>true</outxml>

 <aspectLibraries>

 <aspectLibrary>

 <groupId>org.springframework</groupId>

 <artifactId>spring-aspects</artifactId>

 </aspectLibrary>

 <aspectLibrary>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j-aspects</artifactId>

 </aspectLibrary>

 </aspectLibraries>

 <source>1.6</source>

 <target>1.6</target>

 </configuration>

</plugin>

21.5. Spring configuration

Users of Spring Data Neo4j have two ways of very concisely configuring it. Either they can use a

Spring Data Neo4j XML configuration namespace, or they can use a Java-based bean configuration.

21.5.1. XML namespace

The XML namespace can be used to configure Spring Data Neo4j. The config element

provides an XML-based configuration of Spring Data Neo4j in one line. It has three attributes.

graphDatabaseService points out the Neo4j instance to use. For convenience, storeDirectory can be

set instead of graphDatabaseService to point to a directory where a new EmbeddedGraphDatabase will

be created. For cross-store configuration, the entityManagerFactory attribute needs to be configured.

Environment setup

79

Spring Data Graph

(2.0.0.RELEASE)

Example 21.7. XML configuration with store directory

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:neo4j="http://www.springframework.org/schema/data/neo4j"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.0.xsd

 http://www.springframework.org/schema/data/neo4j

 http://www.springframework.org/schema/data/neo4j/spring-neo4j-2.0.xsd">

 <context:annotation-config/>

 <neo4j:config storeDirectory="target/config-test"/>

</beans>

Example 21.8. XML configuration with GraphDatabaseService bean

<context:annotation-config/>

<bean id="graphDatabaseService" class="org.neo4j.kernel.EmbeddedGraphDatabase"

 destroy-method="shutdown">

 <constructor-arg index="0" value="target/config-test"/>

<!-- optionally pass in neo4j-config parameters to the graph database

 <constructor-arg index="1">

 <map>

 <entry key="allow_store_upgrade" value="true"/>

 </map>

 </constructor-arg>

-->

</bean>

<neo4j:config graphDatabaseService="graphDatabaseService"/>

Example 21.9. XML configuration with cross-store

<context:annotation-config/>

<bean class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"

 id="entityManagerFactory">

 <property name="dataSource" ref="dataSource"/>

 <property name="persistenceXmlLocation" value="classpath:META-INF/persistence.xml"/>

</bean>

<neo4j:config storeDirectory="target/config-test"

 entityManagerFactory="entityManagerFactory"/>

21.5.2. Repository Configuration

Spring Data Neo4j repositories are configured using the <neo4j:repositories> element which

defines the base-package (or packages) for the repositories. A reference to an existing Neo4jTemplate

bean reference can be passed in as well.

As Spring Data Neo4j repositories build upon the infrastructure provided by Spring Data Commons,

the configuration options for repositories described there work here as well.

http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories.create-instances

Environment setup

80

Spring Data Graph

(2.0.0.RELEASE)

Example 21.10. XML configuration for repositories

<neo4j:repositories base-package="org.example.repository"/>

<!-- with template bean reference -->

<neo4j:repositories base-package="org.example.repository" graph-database-context-ref="template"/>

21.5.3. Java-based bean configuration

You can also configure Spring Data Neo4j using Java-based bean metadata.

Note

For those not familiar with Java-based bean configuration in Spring, we recommend that

you read up on it first. The Spring documentation has a high-level introduction as well as

detailed documentation on it.

In order to configure Spring Data Neo4j with Java-based bean metadata, the class Neo4jConfiguration

is registered with the context. This is either done explicitly in the context configuration, or via classpath

scanning for classes that have the @Configuration annotation. The only thing that must be provided

is the GraphDatabaseService. The example below shows how to register the @Configuration

Neo4jConfiguration class, as well as Spring's ConfigurationClassPostProcessor that transforms

the @Configuration class to bean definitions.

Example 21.11. Java-based bean configuration

<![CDATA[<beans ...>

 ...

 <tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

 <bean class="org.springframework.data.neo4j.config.Neo4jConfiguration"/>

 <bean class="org.springframework.context.annotation.ConfigurationClassPostProcessor"/>

 <bean id="graphDatabaseService" class="org.neo4j.kernel.EmbeddedGraphDatabase"

 destroy-method="shutdown" scope="singleton">

 <constructor-arg index="0" value="target/config-test"/>

 </bean>

 ...

</beans>

Additional beans can be configured to be included in the Neo4j-Configuration just by defining them

in the Spring context. ConversionService for custom conversions, Validators for bean validation,

TypeRepresentationStrategyFactory for configuring the in graph type representation, IndexProviders

for custom index handling (e.g. for multi-tenancy), Entity-Instantiators (with their config) to have more

control over the creation of entity instances and much more.

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/new-in-3.0.html#new-java-configuration
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container

81

Spring Data Graph

(2.0.0.RELEASE)

Chapter 22. Cross-store persistence

The Spring Data Neo4j project support cross-store persistence for the advanced mapping mode, which

allows for parts of the data to be stored in a traditional JPA data store (RDBMS), and other parts in

a graph store. This means that an entity can be partially stored in e.g. MySQL, and partially stored

in Neo4j.

This allows existing JPA-based applications to embrace NOSQL data stores for evolving certain parts

of their data model. Possible use cases include adding social networking or geospatial information to

existing applications.

22.1. Partial entities

Partial graph persistence is achieved by restricting the Spring Data Neo4j aspects to manage only

explicitly annotated parts of the entity. Those fields will be made @Transient by the aspect so that

JPA ignores them.

A backing node in the graph store is only created when the entity has been assigned a JPA ID. Only

then will the association between the two stores be established. Until the entity has been persisted, its

state is just kept inside the POJO (in detached state), and then flushed to the backing graph database

on the persist operation.

The association between the two entities is maintained via a FOREIGN_ID field in the node, that

contains the JPA ID. Currently only single-value IDs are supported. The entity class can be resolved

via the TypeRepresentationStrategy that manages the Java type hierarchy within the graph database.

Given the ID and class, you can then retrieve the appropriate JPA entity for a given node.

The other direction is handled by indexing the Node with the FOREIGN_ID index which contains a

concatenation of the fully qualified class name of the JPA entity and the ID. The matching node can

then be found using the indexing facilities, and the two entities can be reassociated.

Using these mechanisms and the Spring Data Neo4j aspects, a single POJO can contain some fields

handled by JPA and others handles by Spring Data Neo4j. This also includes relationship fields

persisted in the graph database.

22.2. Cross-store annotations

Cross-store persistence only requires the use of one additional annotation: @GraphProperty. See below

for details and an example.

22.2.1. @NodeEntity(partial = "true")

When annotating an entity with partial = true, this marks it as a cross-store entity. Spring Data

Neo4j will thus only manage fields explicitly annotated with @GraphProperty.

22.2.2. @GraphProperty

Fields of primitive or convertible types do not normally have to be annotated in order to be persisted

by Spring Data Neo4j. In cross-store mode, Spring Data Neo4j only persists fields explicitly annotated

with @GraphProperty. JPA will ignore these fields.

Cross-store persistence

82

Spring Data Graph

(2.0.0.RELEASE)

22.2.3. Example

The following example is taken from the Spring Data Neo4j examples myrestaurants-social project:

Example 22.1. Cross-store node entity

@Entity

@Table(name = "user_account")

@NodeEntity(partial = true)

public class UserAccount {

 private String userName;

 private String firstName;

 private String lastName;

 @GraphProperty

 String nickname;

 @RelatedTo

 Set<UserAccount> friends;

 @RelatedToVia(type = "recommends")

 Iterable<Recommendation> recommendations;

 @Temporal(TemporalType.TIMESTAMP)

 @DateTimeFormat(style = "S-")

 private Date birthDate;

 @ManyToMany(cascade = CascadeType.ALL)

 private Set<Restaurant> favorites;

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "id")

 private Long id;

 public void knows(UserAccount friend) {

 relateTo(friend, "friends");

 }

 public Recommendation rate(Restaurant restaurant, int stars, String comment) {

 Recommendation recommendation = relateTo(restaurant, Recommendation.class, "recommends");

 recommendation.rate(stars, comment);

 return recommendation;

 }

 public Iterable<Recommendation> getRecommendations() {

 return recommendations;

 }

}

22.3. Configuring cross-store persistence

Configuring cross-store persistence is done similarly to the default Spring Data Neo4j configuration.

All you need to do is to specify an entityManagerFactory in the XML namespace config element,

and Spring Data Neo4j will configure itself for cross-store use.

http://spring.neo4j.org/examples

Cross-store persistence

83

Spring Data Graph

(2.0.0.RELEASE)

Example 22.2. Cross-store Spring configuration

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:datagraph="http://www.springframework.org/schema/data/neo4j"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.0.xsd

 http://www.springframework.org/schema/data/neo4j

 http://www.springframework.org/schema/data/neo4j/spring-neo4j-2.0.xsd

 ">

 <context:annotation-config/>

 <neo4j:config storeDirectory="target/config-test"

 entityManagerFactory="entityManagerFactory"/>

 <bean class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"

 id="entityManagerFactory">

 <property name="dataSource" ref="dataSource"/>

 <property name="persistenceXmlLocation" value="classpath:META-INF/persistence.xml"/>

 </bean>

</beans>

84

Spring Data Graph

(2.0.0.RELEASE)

Chapter 23. Sample code

23.1. Introduction

Spring Data Neo4j comes with a number of sample applications. The source code of the samples can

be found on Github. The different sample projects are introduced below.

23.2. Hello Worlds sample application

The Hello Worlds sample application is a simple console application. It creates some worlds (node

entities) and rocket routes (relationships) between worlds, all in a galaxy (the graph), and then prints

them.

The unit tests demonstrate some other features of Spring Data Neo4j as well. The sample comes with

a minimal configuration for Maven and Spring to get up and running quickly.

The Hello Worlds application is available both for the simple mapping (hello-worlds) and for the

advanced mapping (hello-world-aspects).

Executing the application creates the following graph in the graph database:

23.3. IMDB sample application

The IMDB sample is a web application that imports datasets from the Internet Movie Database (IMDB)

into the graph database. It allows the listing of movies with their actors, and of actors and their roles

in different movies. It also uses graph traversal operations to calculate the Bacon number of any given

actor. This sample application shows the usage of Spring Data Neo4j in a more complex setting,

using several annotated entities and relationships as well as indexes and in-graph indexes and graph

traversals.

See the readme file for instructions on how to compile and run the application.

An excerpt of the data stored in the graph database after executing the application:

http://spring.neo4j.org/exampless
http://en.wikipedia.org/wiki/Bacon_number

Sample code

85

Spring Data Graph

(2.0.0.RELEASE)

23.4. MyRestaurants sample application

Simple, JPA-based web application for managing users and restaurants, with the ability to add

restaurants as favorites to a user. It is basically the foundation for the MyRestaurants-Social application

(seeSection 23.5, “MyRestaurant-Social sample application”), and does therefore not use Spring Data

Neo4j.

23.5. MyRestaurant-Social sample application

This application extends the MyRestaurants sample application, adding social networking functionality

to it with cross-store persistence. The web application allows for users to add friends and rate

restaurants. A graph traversal provides recommendations based on your friends' (and their friends')

rating of restaurants.

Here's an excerpt of the data stored in the graph database after executing the application:

Sample code

86

Spring Data Graph

(2.0.0.RELEASE)

23.6. Cineasts social movie database

The cineasts.net application was introduced extensively in the first part of this guide, the tutorial. The

tutorial covers the development of the simple mapping version of cineasts.

To document the differences, versions for the advanced mapping (cineasts-aspects) and accessing

the remote server (cineasts-rest) are also available.

A online version of cineasts can be found on cineasts.net. A sample dataset of the cineasts databse is

available at the neo4j sample-data page.

This is a subset of the visualization of the cineasts graph for the "Matrix" movie.

http://cineasts.net
http://sample-data.neo4j.org

Sample code

87

Spring Data Graph

(2.0.0.RELEASE)

88

Spring Data Graph

(2.0.0.RELEASE)

Chapter 24. Heroku: Seeding the Cloud

Deploying your application into the cloud is a great way to scale from from "wouldn't it be cool if.." to

giving interviews to Forbes, Fast Company, and Jimmy Fallon. Heroku makes it super easy to provision

everying you need, including a Neo4j Add-on. With a few simple adjustments, your Spring Data Neo4j

application is ready to take that first step into the cloud.

To deploy your Spring Data Neo4j web application to Heroku, you'll need:

• account on Heroku

• git command line

• maven-based project

• standard Spring MV Servlet application

• well, and Spring Data Neo4j REST

For reference, the following sections detail the steps taken to make the Spring Data Neo4j Todos

example ready for deployment to Heroku.

24.1. Create a Self-Hosted Web Application

Usually, a Spring MVC application is bundled into a war and deployed to an application server like

Tomcat. But Heroku can host any kind of java application. It just needs to know what to launch. So,

we'll transform the war into a self-hosted servlet using an embedded Jetty server, then add a startup

script to launch it.

First, we'll add the dependencies for Jetty to the pom.xml:

Example 24.1. Jetty dependencies - pom.xml

<dependency>

 <groupId>org.eclipse.jetty</groupId>

 <artifactId>jetty-webapp</artifactId>

 <version>7.4.4.v20110707</version>

</dependency>

<dependency>

 <groupId>org.mortbay.jetty</groupId>

 <artifactId>jsp-2.1-glassfish</artifactId>

 <version>2.1.v20100127</version>

</dependency>

Then we'll change the scope of the servlet-api artifact from provided to compile. This library is

normally provided at runtime by the application container. Since we're self-hosting, it needs to be

included directly. Make sure the servlet-api dependency looks like this:

http://heroku.com

Heroku: Seeding the Cloud

89

Spring Data Graph

(2.0.0.RELEASE)

Example 24.2. servlet-api dependencies - pom.xml

<dependency>

 <groupId>javax.servlet</groupId>

 <artifactId>servlet-api</artifactId>

 <version>2.5</version>

 <scope>compile</scope>

</dependency>

We could provide a complicated command-line to Heroku to launch the app. Instead, we'll simplify

the command-line by using the appassembler-maven-plugin to create a launch script. Add the plugin

to your pom's build/plugins section:

Example 24.3. appassembler-maven-plugin configuration pom.xml

<plugin>

<groupId>org.codehaus.mojo</groupId>

<artifactId>appassembler-maven-plugin</artifactId>

<version>1.1.1</version>

<executions>

 <execution>

 <phase>package</phase>

 <goals><goal>assemble</goal></goals>

 <configuration>

 <assembleDirectory>target</assembleDirectory>

 <extraJvmArguments>-Xmx512m</extraJvmArguments>

 <programs>

 <program>

 <mainClass>Main</mainClass>

 <name>webapp</name>

 </program>

 </programs>

 </configuration>

 </execution>

</executions>

</plugin>

Finally, switch the packaging from war to jar. That's it for the pom.

Now that the application is ready to be self-hosted, create a simple Main to bootstrap Jetty and host

the servlet.

Heroku: Seeding the Cloud

90

Spring Data Graph

(2.0.0.RELEASE)

Example 24.4. src/main/java/Main.java

import org.eclipse.jetty.server.Server;

import org.eclipse.jetty.webapp.WebAppContext;

public class Main {

 public static void main(String[] args) throws Exception {

 String webappDirLocation = "src/main/webapp/";

 String webPort = System.getenv("PORT");

 if(webPort == null || webPort.isEmpty()) {

 webPort = "8080";

 }

 Server server = new Server(Integer.valueOf(webPort));

 WebAppContext root = new WebAppContext();

 root.setContextPath("/");

 root.setDescriptor(webappDirLocation+"/WEB-INF/web.xml");

 root.setResourceBase(webappDirLocation);

 root.setParentLoaderPriority(true);

 server.setHandler(root);

 server.start();

 server.join();

 }

}

Notice the use of environment variable "PORT" for discovering which port to use. Heroku and the

Neo4j Add-on use a number of environment variable to configure the application. Next, we'll modify

the Spring application context to use the Neo4j variables for specifying the connection to Neo4j itself.

In the SDN Todos example,

src/main/resources/META-INF/spring/ applicationContext-graph.xml was modified to look

like this:

Example 24.5. Spring Data Neo4j REST configuration - applicationContext-graph.xml

<neo4j:config graphDatabaseService="graphDatabaseService"/>

<bean id="graphDatabaseService"

 class="org.springframework.data.neo4j.rest.SpringRestGraphDatabase">

 <constructor-arg index="0" value="${NEO4J_REST_URL}" />

 <constructor-arg index="1" value="${NEO4J_LOGIN}" />

 <constructor-arg index="2" value="${NEO4J_PASSWORD}" />

</bean>

Before provisioning at Heroku, test the application locally. First make sure you've got Neo4j server

running locally, using default configuration. Then set the following environment variables:

Example 24.6. environment variables

export NEO4J_REST_URL=http://localhost:7474/db/data

export NEO4J_LOGIN=""

export NEO4J_PASSWORD=""

Now you can launch the app by running sh target/bin/webapp. If running the SDN Todos example,

you can test it by running ./bin/todos list. That should return an empty JSON array, since no todos

have been created yet.

For details about the todos script, see the readme included with the example.

Heroku: Seeding the Cloud

91

Spring Data Graph

(2.0.0.RELEASE)

24.2. Deploy to Heroku

With a self-hosted application ready, deploying to Heroku needs a few more steps. First, create a

Procfile at the top-level of the project, which will contain a single line identifying the command line

which launches the application.

The contents of the Procfile should contain:

Example 24.7. Procfile

web: sh target/bin/webapp

Example 24.8. deploy to heroku

Initialize a local git repository, adding all the project files

 git init

 git add .

 git commit -m "initial commit"

Provision a Heroku stack, add the Neo4j Add-on and deploy the appication

 heroku create --stack cedar

 heroku addons:add neo4j

 git push heroku master

Note

Note that the stack must be "cedar" to support running Java. Check that the process is

running by using heroku ps, which should show a "web.1" process in the "up" state.

Success!

For the SDN Todos application, you can try out the remote application using the -r switch with the

bin/todo script like this:

Example 24.9. Session with todo script

./bin/todo -r mk "tweet thanks for the good work @mesirii @akollegger"

./bin/todo -r list

To see the Neo4j graph you just created through Heroku, use heroku config to reveal the NEO4J_URL

environment variable, which will take you to Neo4j's Webadmin.

92

Spring Data Graph

(2.0.0.RELEASE)

Chapter 25. Performance considerations

Although adding layers of abstraction is a common pattern in software development, each of these

layers generally adds overhead and performance penalties. This chapter discusses the performance

implications of using Spring Data Neo4j instead of the Neo4j API directly.

25.1. When to use Spring Data Neo4j

The focus of Spring Data Neo4j is to add a convenience layer on top of the Neo4j API. This enables

developers to get up and running with a graph database very quickly, having their domain objects

mapped to the graph with very little work. Building on this foundation, one can later explore other,

more efficient ways to explore and process the graph - if the performance requirements demand it.

Like with any other object mapping framework, the domain entities that are created, read, or persisted

represent only a small fraction of the data stored in the database. This is the set needed for a certain

use-case to be displayed, edited or processed in a low throughput fashion. The main advantages of

using an object mapper in this case are the ease of use of real domain objects in your business logic

and also the integration with existing frameworks and libraries that expect Java POJOs as input or

create them as results.

Spring Data Neo4j, however, was not designed with a major focus on performance. It does add some

overhead to pure graph operations.

Most of the overhead comes from the use of the Java Reflection API, which is used to provide

information about annotations, fields and constructors. Some of the information is already cached by

the JVM and the library infrastructure from Spring-Data-Commons, so that only the first access gets

a performance penalty. Other reflection penalties like field or method access will occur all the time.

For the simple mapping it is important to be aware of the size graph of data that is pulled out of the

graph database in a single read and copied to domain entities. That's why Spring Data Neo4j loads

related data not by default. You have to provide an indicator (@Fetch) to do so. Alternatively the

Neo4jTemplate.fetch method offers means of of loading entities and collections of those.

For the advanced mapping mode keep in mind that any access of properties and relationships will in

general read through down to the database. To avoid multiple reads, it is sensible to store the result in

a local variable in suitable scope (e.g. method, class or jsp).

To evaluate if the performance of Spring Data Neo4j impacts a certain use-case it is sensible to define

performance requirements and measure the actual time in realistic test scenarios for the use-case. Only

if Spring Data Neo4j doesn't perform as fast as required it is recommended to drop down to the native

Neo4j API.

93

Spring Data Graph

(2.0.0.RELEASE)

Chapter 26. AspectJ details

The advanced mapping mode of Spring Data Neo4j relies heavily on AspectJ. AspectJ is a

Java implementation of the aspect-oriented programming paradigm that allows easy extraction

and controlled application of so-called cross-cutting concerns. Cross-cutting concerns are typically

repetitive tasks in a system (e.g. logging, security, auditing, caching, transaction scoping) that

are difficult to extract using the normal OO paradigms. Many OO concepts, such as subclassing,

polymorphism, overriding and delegation are still cumbersome to use with many of those concerns

applied in the code base. Also, the flexibility becomes limited, potentially adding quite a number of

configuration options or parameters.

The AspectJ pointcut language can be intimidating, but a developer using Spring Data Neo4j will not

have to deal with that. Users don't have care about hooking into a framework mechanism, or having

to extend a framework superclass.

AspectJ uses a declarative approach, defining concrete "advice", which is just pieces of code that

contain the implementation of the "concern", as it is called. AspectJ advice can for instance be applied

before, after, or instead of a method or constructor call. It can also be applied on variable and field

access. This is declared using AspectJ's expressive pointcut language, able to express any place within

a code structure or flow. AspectJ is also able to introduce new methods, fields, annotations, interfaces,

and superclasses to existing classes.

Spring Data Neo4j uses a mix of these mechanisms internally. First, when encountering the

@NodeEntity or @RelationshipEntity annotations it introduces a new interface NodeBacked or

RelationshipBacked to the annotated class. Secondly, it introduces fields and methods to the

annotated class. See Section 20.11, “Active Record Methods for Advanced Mapping Mode” for more

information on the methods introduced.

Spring Data Neo4j also leverages AspectJ to intercept access to fields, delegating the calls to the graph

database instead. Under the hood, properties and relationships will be created.

So how is an aspect applied to a concrete class? At compile time, the AspectJ Java compiler (ajc)

takes source files and aspect definitions, and compiles the source files while adding all the necessary

interception code for the aspects to hook in where they're declared to. This is known as compile-time

weaving. At runtime only a small AspectJ runtime is needed, as the byte code of the classes has already

been rewritten to delegate the appropriate calls via the declared advice in the aspects.

Note

A caveat of using compile-time weaving is that all source files that should be part of the

weaving process must be compiled with the AspectJ compiler. Fortunately, this is all taken

care of seamlessly by the AspectJ Maven plugin.

AspectJ also supports other types of weaving, e.g. load-time weaving and runtime weaving. These are

currently not supported by Spring Data Neo4j.

https://secure.wikimedia.org/wikipedia/en/wiki/Aspect-oriented_programming

94

Spring Data Graph

(2.0.0.RELEASE)

Chapter 27. Neo4j Server
Neo4j is not only available in embedded mode. It can also be installed and run as a stand-alone

server accessible via a REST API. Developers can integrate Spring Data Neo4j into the Neo4j server

infrastructure in two ways: in an unmanaged server extension, or via the REST API.

27.1. Server Extension

When should you write a server extension? The default REST API is essentially a REST'ified

representation of the Neo4j core API. It is nice for getting started, and for simpler scenarios. For

more involved solutions that require high-volume access or more complex operations, writing a server

extension that is able to process external parameters, do all the computations locally in the plugin, and

then return just the relevant information to the calling client is preferable.

The Neo4j Server has two built-in extension mechanisms. It is possible to extend existing URI

endpoints like the graph database, nodes, or relationships, adding new URIs or methods to those. This

is achieved by writing a server plugin. This plugin type has some restrictions however.

For complete freedom in the implementation, an unmanaged extension can be used. Unmanaged

extensions are essentially Jersey resource implementations. The resource constructors or methods can

get the GraphDatabaseService injected to execute the necessary operations and return appropriate

Representations.

Both kinds of extensions have to be packaged as JAR files and added to the Neo4j

Server's plugin directory. Server Plugins are picked up by the server at startup if they

provide the necessary META-INF.services/org.neo4j.server.plugins.ServerPlugin file for Java's

ServiceLoader facility. Unmanaged extensions have to be registered with the Neo4j Server

configuration.

Example 27.1. Configuring an unmanaged extension

org.neo4j.server.thirdparty_jaxrs_classes=com.example.mypackage=/my-context

Running Spring Data Neo4j on the Neo4j Server is easy. You need to tell the server where to find the

Spring context configuration file, and which beans from it to expose:

Example 27.2. Server plugin initialization

public class HelloWorldInitializer extends SpringPluginInitializer {

 public HelloWorldInitializer() {

 super(new String[]{"spring/helloWorldServer-Context.xml"},

 Pair.of("worldRepository", WorldRepository.class),

 Pair.of("template", Neo4jTemplate.class));

 }

}

Now, your resources can require the Spring beans they need, annotated with @Context like this:

Example 27.3. Jersey resource

@Path("/path")

@POST

@Produces(MediaType.APPLICATION_JSON)

public void foo(@Context WorldRepository repo) {

 ...

}

http://docs.neo4j.org/chunked/milestone/server-plugins.html
http://docs.neo4j.org/chunked/milestone/server-unmanaged-extensions.html
http://jersey.java.net/

Neo4j Server

95

Spring Data Graph

(2.0.0.RELEASE)

The SpringPluginInitializer merges the server provided GraphDatabaseService with

the Spring configuration and registers the named beans as Jersey Injectables. It is

still necessary to list the initializer's fully qualified class name in a file named

META-INF/services/org.neo4j.server.plugins.PluginLifecycle. The Neo4j Server can then

pick up and run the initialization classes before the extensions are loaded.

27.2. Using Spring Data Neo4j as a REST client

To use REST-API the Neo4j Server exposes, one would either go with REST libraries on the lower

level or choose one of the Neo4j related rest drivers in various languages. For Java Neo4j provides the

Neo4j Java REST bindings which come as a drop in replacement for the GraphDatabaseService API.

Spring Data Neo4j REST uses those bindings to provide seamless access to a remote Neo4j Database.

By simply configuring the graphDatabaseService to be a SpringRestGraphDatabase pointing to a

Neo4j Server instance and referring to that from <neo4j:config> Spring Data Neo4j will use the server

side database for both the simple mapping as well as the advanced mapping.

Note

The Neo4j Server REST API does not allow for transactions to span across requests, which

means that Spring Data Neo4j is not transactional across multiple operations when running

with a SpringRestGraphDatabase.

Please also keep in mind that performing graph operations via the REST-API is about one order of

magnitude slower than local operations. Try to use the Neo4j Cypher query language, server-side

traversals (RestTraversal) or Gremlin expressions whenever possible for retrieving large sets of data.

Future versions of Spring Data Neo4j will use the more performant batch API as well as a binary

protocol.

To set up your project to use the REST bindings, add this dependency to your pom.xml:

Example 27.4. REST-Client configuration - pom.xml

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j-rest</artifactId>

 <version>2.0.0.RELEASE</version>

</dependency>

Now, you set up the normal Spring Data Neo4j configuration, but point the database to an URL instead

of a local directory, like so:

Example 27.5. REST client configuration - application context

<neo4j:config graphDatabaseService="graphDatabaseService"/>

<bean id="graphDatabaseService" class="org.springframework.data.neo4j.rest.SpringRestGraphDatabase">

 <constructor-arg value="http://localhost:7474/db/data/" index="0"/>

<!-- for running against a server requiring authentication

 <constructor-arg value="username" index="1"/>

 <constructor-arg value="password" index="2"/>

-->

</bean>

Your project is now set up to work against a remote Neo4j Server.

https://github.com/neo4j/java-rest-binding

Neo4j Server

96

Spring Data Graph

(2.0.0.RELEASE)

For traversals and Cypher and Gremlin graph queries it is sensible to forward those to

the remote endpoint and execute them there instead of walking the graph over the wire.

SpringRestGraphDatabase already supports that by providing methods that forward to the remote

instance. (e.g. queryEngineFor(), index() and createTraversalDescription()). Please use those

methods when interacting with a remote server for optimal performance. Those methods are also used

by the Neo4jTemplate and the mapping infrastructure automatically.

	Good Relationships
	Table of Contents
	Foreword by Rod Johnson
	Foreword by Emil Eifrem
	About this guide book
	1. The Spring Data Neo4j Project
	2. Feedback
	3. Format of the Book
	4. Acknowledgements

	Part I. Tutorial
	Chapter 1. Introducing our project
	Chapter 2. The Spring stack
	2.1. Required setup

	Chapter 3. The domain model
	Chapter 4. Learning Neo4j
	Chapter 5. Spring Data Neo4j
	Chapter 6. Annotating the domain
	Chapter 7. Indexing
	Chapter 8. Repositories
	Chapter 9. Relationships
	9.1. Creating relationships
	9.2. Accessing related entities
	9.3. Accessing the relationship entities

	Chapter 10. Get it running
	10.1. Populating the database
	10.2. Inspecting the datastore
	10.2.1. Neoclipse visualization
	10.2.2. The Neo4j Shell

	Chapter 11. Web views
	11.1. Searching
	11.2. Listing results

	Chapter 12. Adding social
	12.1. Users
	12.2. Ratings for movies

	Chapter 13. Adding Security
	Chapter 14. More UI
	Chapter 15. Importing Data
	Chapter 16. Recommendations
	Chapter 17. Neo4j Server
	17.1. Getting Neo4j-Server
	17.2. Other approaches

	Chapter 18. Conclusion

	Part II. Reference Documentation
	Reference Documentation
	1. Spring Data and Spring Data Neo4j
	2. Reference Documentation Overview

	Chapter 19. Introduction to Neo4j
	19.1. What is a graph database?
	19.2. About Neo4j
	19.3. GraphDatabaseService
	19.4. Creating nodes and relationships
	19.5. Graph traversal
	19.6. Indexing
	19.7. Querying the Graph with Cypher
	19.8. Gremlin a Graph Traversal DSL

	Chapter 20. Programming model
	20.1. Object Graph Mapping
	20.2. Advanced Mapping with AspectJ
	20.2.1. AspectJ IDE support

	20.3. Simple Object Graph Mapping
	20.4. Defining node entities
	20.4.1. @NodeEntity: The basic building block
	20.4.2. @GraphId: Neo4j -id field
	20.4.3. @GraphProperty: Optional annotation for property fields
	20.4.4. @Indexed: Making entities searchable by field value
	20.4.5. @Query: fields as query result views
	20.4.6. @GraphTraversal: fields as traversal result views

	20.5. Relating node entities
	20.5.1. @RelatedTo: Connecting node entities
	20.5.2. @RelationshipEntity: Rich relationships
	20.5.3. @RelatedToVia: Accessing relationship entities

	20.6. Indexing
	20.6.1. Exact and numeric index
	20.6.2. Fulltext indexes
	20.6.3. Manual index access
	20.6.4. Index queries in Neo4jTemplate
	20.6.5. Neo4j Auto Indexes
	20.6.6. Spatial Indexes

	20.7. Neo4jTemplate
	20.7.1. Basic operations
	20.7.2. Result
	20.7.3. Indexing
	20.7.4. Graph traversal
	20.7.5. Cypher Queries
	20.7.6. Gremlin Scripts
	20.7.7. Transactions
	20.7.8. Neo4j REST Server

	20.8. CRUD with repositories
	20.8.1. CRUDRepository
	20.8.2. IndexRepository and NamedIndexRepository
	20.8.3. TraversalRepository
	20.8.4. Query and Finder Methods
	20.8.4.1. Annotated queries
	20.8.4.2. Named queries
	20.8.4.3. Query results
	20.8.4.4. Cypher examples
	20.8.4.5. Queries derived from finder-method names
	20.8.4.6. Derived Finder Methods

	20.8.5. CypherDSL repository
	20.8.6. Creating repositories
	20.8.7. Composing repositories

	20.9. Projecting entities
	20.10. Geospatial Queries
	20.11. Active Record Methods for Advanced Mapping Mode
	20.12. Transactions
	20.13. Detached node entities in advanced mapping mode
	20.13.1. Relating detached entities

	20.14. Entity type representation
	20.15. Bean validation (JSR-303)

	Chapter 21. Environment setup
	21.1. Dependencies for Spring Data Neo4j Simple Mapping
	21.2. Gradle configuration for Advanced Mapping (AspectJ)
	21.3. Ant/Ivy configuration for Advanced Mapping (AspectJ)
	21.4. Maven configuration for Advanced Mapping
	21.4.1. Repositories
	21.4.2. Dependencies
	21.4.3. Maven AspectJ build configuration

	21.5. Spring configuration
	21.5.1. XML namespace
	21.5.2. Repository Configuration
	21.5.3. Java-based bean configuration

	Chapter 22. Cross-store persistence
	22.1. Partial entities
	22.2. Cross-store annotations
	22.2.1. @NodeEntity(partial = "true")
	22.2.2. @GraphProperty
	22.2.3. Example

	22.3. Configuring cross-store persistence

	Chapter 23. Sample code
	23.1. Introduction
	23.2. Hello Worlds sample application
	23.3. IMDB sample application
	23.4. MyRestaurants sample application
	23.5. MyRestaurant-Social sample application
	23.6. Cineasts social movie database

	Chapter 24. Heroku: Seeding the Cloud
	24.1. Create a Self-Hosted Web Application
	24.2. Deploy to Heroku

	Chapter 25. Performance considerations
	25.1. When to use Spring Data Neo4j

	Chapter 26. AspectJ details
	Chapter 27. Neo4j Server
	27.1. Server Extension
	27.2. Using Spring Data Neo4j as a REST client

