Cineasts.net - The Social Movie Database

The Spring Data Neo4j Tutorial

Copyright © 2010 - 2011 Michael Hunger, David Montag

Copies of this document may be made for your own use and for distribution to others, provided that you
do not charge any fee for such copies and further provided that each copy contains this Copyright Notice,
whether distributed in print or electronically. This is an excerpt from the Spring Data Neo4j Guide Book
"Good Relationships", which is available at http://spring.neo4j.org and will be published as an InfoQ Book.

Foreword Dy RO JONNSONcoiiiiiiiiiiiiie ettt e snees iii

Foreword by Emil EIfFEmMooe e iv
I I 1o P PR PRSPPI 1
R o 8 o o T 011 g o= A 2
2. TNE SPING SEACK ...eeeiiiiiie et e e e e e e e e 3
2.1, REQUITEA SEIUP ...eeiiiiiiiieeeiiiee ettt e et e s e e e s e e e e s snneeeeaas 3

3. The domain MOTEoooiiiiiii e e e e e e r e e e e e e s sanarareaaaeesans 5
I 14 a1 o T AN I PEERR 7
5. SPring Datla NEOcccuiiiiiiiie ettt s e e e e e e s e st e e e e e e e e aanrrees 9
6. Annotating the dOMaINcoooeiii i 10
A 1116 (=] oo O PPPPRPPPPPRP 11
8. REPOSITONES ...ttt et e ek e e e e e e e e e e e e anrneeenn 12
0. REBLIONSNIPS ...eeieeiiiiiee ettt e ettt e e et e e e e ebb e e e e e annb e e e nnnees 14
9.1. Creating relalionNShiPScuvviiiiiee e 14

9.2. Accessing related EntitiESuvveiieeee e 15

9.3. Accessing the relationship entities ... 16

O T 0 1 oo RSO 17
10.1. Populating the databaseeeeiiiiieeiiiiee e 17
10.2. INSPECiNgG the dataStOrecvveiiiiieiie e 17
10.2.1. Neoclipse VISUAIZBLIONceevveeeiiiiciiieiee e e e e e 17

10.2.2. The NEO4] ShElloooiiieiiiee e 18

L0 WED VIBIWS <.ttt e ettt e e e e e e e s e bbbt e e e e e e e e e e nbbbeeeeaaaeeaaans 20
T = o 1 o PR 21
11.2. LIStNG FESUITS ...ttt 21

12, AAAING SOCIEL ... 24
N T U L < PP PPPT P PPP 24
12.2. RatiNgS fOr MOVIESccciiiiiiiiiee ettt e e e e e e e e e e e e e eaaneaes 25

13, AAAING SECUMLY uvveeiieei et e e e e e e e e e e e e e e s s e bt b e e e e e eaeeeaaans 26
T4, IMIOFE UL ettt bnnnenees 30
15, IMPOITING DELAeeeeeiiiieie ettt e s e e e 33
16. RECOMMENUALIONSvvvieiieeeeiieiiiieie et e e e e sttt e e e e e e e s s st rae e e e e e e e essnsbeaaeeaaeeessannsraneeeaens 36
17, CONCIUSIONeiiiiieiie ettt e e e e e e e et e e e e e e e s e e nt e e eaaeeessansnrsaeeeaaeesaannnes 37

Foreword by Rod Johnson

I’m excited about Spring Data Neo4j for several reasons.

First, this project is in a very important space. We are in an era of transition. A very few years
ago, arelational database was a given for storing nearly all the datain nearly all applications. While
relational databases remain important, new application requirements and massive data proliferation
have prompted a richer choice of data stores. Graph databases have some very interesting strengths,
and Neodj isproving itself valuable in many applications. It's a choice you should add to your tool box.

Second, Spring Data Neo4j is an innovative project, which makesit easy to work with one of the most
interesting new data stores. Unfortunately, the proliferation of new data stores has not been matched
by innovation in programming models to work with them. Ironically, just after modern ORM mapping
made working with relational data in Java relatively easy, the data store disruption occurred, and
devel opers were back to sguare one: struggling once more with clumsy, low level APIs. Working with
most non-relational technologiesisoverly complex and imposestoo much work on developers. Spring
Data Neo4dj makes working with Neo4j amazingly easy, and therefore has the potential to make you
more successful as a developer. Its use of Aspect] to eliminate persistence code from your domain
model is truly innovative, and on the cutting edge of today’ s Java technol ogies.

Third, I'm excited about Spring Data Neo4j for personal reasons. | no longer get to write code as often
as| would like. My initial convictions that Spring and AspectJ could both make building applications
with Neodj dramatically easier and cross-store object navigation possible gave me an excuse for a
much-needed coding binge early in 2010. Thisled to a prototype of what became Spring Data Neodj —
at times written paired with Emil. I’m sure the vast majority of my code has long since been replaced
(probably for the better) by coders who aren't rusty — thanks Michael and Thomas! — but | retain
my pleasant memories.

Finally, Spring Data Neo4j is part of the broader Spring Data project: one of the key areas in which
Spring is innovating to help meet new application requirements. | encourage you to explore Spring
Data, and — better still — become involved in the community and contribute.

Enjoy the Spring Data Neo4j book, and happy coding!

Rod Johnson, Founder, Spring and SV P, Application Platform, VMware

Foreword by Emil Eifrem

"Spring is the most popular middleware on the planet,” | thought to myself as | walked up to Rod
Johnson in late 2009 at the JAOO conference in Aarhus, Denmark. Rod had just given an introductory
presentation about Spring Roo and when he was done | told him "Great talk. You're clearly building
astack for the future. What about support for non-relational databases?'

We started talking and quickly agreed that NOSQL will play an important role in emerging stacks.
Now, ayear and half later, Spring Data Neo4j isavailableinitsfirst stable release and I'm blown away
by the result. Never before in any environment, in any programming framework, in any stack, has it
been so easy and intuitive to tap into the power of a graph database like Neo4j. It's a testament to the
efforts by an awesome team of four hackers from Neo Technology and VMware: Michael Hunger,
David Montag, Thomas Risberg and Mark Pollack.

The Spring framework revolutionized how we all wrote enterprise Java applications and today it's
used by millions of enterprise developers. Graph databases al so stand out in the NOSQL crowd when
it comes to enterprise adoption. You can find graph databases used in areas as diverse as network
management, fraud detection, cloud management, anything with social data, geo and location services,
master data management, bioinformatics, configuration databases, and much more.

Spring developers deserve access to the best tools available to solve their problem. Sometimes that's
arelational database accessed through JPA. But more often than not, a graph database like Neo4j is
the perfect fit for your project. | hope that Spring Data Neo4j will give you access to the power and
flexibility of graph databases while retaining the familiar productivity and convenience of the Spring
framework.

Enjoy the Spring Data Neo4j guide book and welcome to the wonderful world of graph databases!

Emil Eifrem, CEO of Neo Technology

Part |. Tutorial

CINEASTS

Thistutorial walks through the creation of a complete web application called cineasts.net, built with Spring Data
Neo4j. Cineasts are people who love movies, and the site is a gathering place for moviegoers. For cineasts.net
we decided to add a social aspect to the rating of movies, alowing friends to share their scores and get
recommendations for new friends and movies.

The tutorial takes the reader through the steps necessary to create the application. It provides the configuration
and code examples that are needed to understand what's happening in Spring Data Neo4j. The complete source
code for the app is available on Github.

http://spring.neo4j.org/cineasts

Chapter 1. Introducing our project

Allow me to introduce Cineasts.net

Once upon a time we wanted to build a social movie database. At first there was only the name:
Cineasts, the movie enthusi asts who have a burning passion for movies. So we went ahead and bought
the domain cineasts.net, and so we were off to agood start.

We had some ideas about the domain model too. There would obviously be actors playing roles in
movies. We also heeded someone to rate the movies - enter the cineast. And cineasts, being the socia
people they are, they wanted to make friends with other fellow cineasts. Imagine instantly finding
someone to watch amovie with, or share movie preferences with. Even better, finding new friends and
movies based on what you and your friends like.

When we looked for possible sources of data, IMDB was our first stop. But they're a bit expensive for
our taste, charging $15k USD for data access. Fortunately, we found themoviedb.org which provides
user-generated datafor free. They also have liberal terms and conditions, and anice API for retrieving
the data.

We had many moreideas, but wewanted to get something out there quickly. Hereishow we envisioned
the final website:

-
-

\ X}

¥ CINEASTS

b spring — ‘ | :.‘ springdatagraph

http://cineasts.net
http://themoviedb.org

Chapter 2. The Spring stack

Being Spring developers, we naturally choose components from the Spring stack to do all the heavy
lifting. After al, we have the concept etched out, so we're aready halfway there.

What database would fit both the complex network of cineasts, movies, actors, roles, ratings, and
friends, while also being able to support the recommendation algorithms that we had in mind? We
had no idea

But hold your horses, there is this new Spring Data project, started in 2010, which brings the
convenience of the Spring programming model to NOSQL databases. That should bein line with what
we aready know, providing us with a quick start. We had a look at the list of projects supporting
the different NOSQL databases out there. Only one of them mentioned the kind of social network
we were thinking of - Spring Data Neo4j for the Neo4j graph database. Neo4j's slogan of "vaue in
relationships" plus "Enterprise NOSQL" and the accompanying docs looked like what we needed. We
decided to giveit atry.

2.1. Required setup

To set up the project we created a public Github account and began setting up the infrastructure
for a Spring web project using Maven as the build system. So we added the dependencies
for the Spring Framework libraries, added the web.xmi for the Di spatcherServlet, and the
appl i cati onCont ext . xni in the webapp directory.

Example 2.1. Project pom.xml

<properties>
<spring. versi on>3. 0. 7. RELEASE</ spri ng. ver si on>
</ properties>

<dependenci es>

<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<l-- abbreviated for all the dependencies -->

<artifactld>spring-(core, context, aop, aspects,tx,webmsc)</artifactld>
<versi on>${spri ng. ver si on} </ versi on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-test</artifactld>
<versi on>${spring. versi on} </ versi on>
<scope>t est </ scope>

</ dependency>

</ dependenci es>

The Spring stack

Example 2.2. Project web.xml

<l i stener>
<l i stener-class>org. springframewor k. web. cont ext. Cont ext Loader Li st ener</|i stener-cl ass>
</listener>

<servl et >
<servl et - nane>di spat cher Ser vl et </ ser vl et - nane>
<servl et -cl ass>org. spri ngfranmewor k. web. servl et. Di spat cher Servl et </ servl et -cl ass>
<l oad- on- st art up>1</1| oad-on-start up>

</ servl et >

<servl et - mappi ng>
<servl et - nane>di spat cher Ser vl et </ ser vl et - nane>
<url-pattern>/</url-pattern>

</ servl et - mappi ng>

With this setup in place we were ready for the first spike: creating a simple MovieController showing
astatic view. See the Spring Framework documentation for information on doing this.

Example 2.3. applicationContext.xml

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: cont ext ="http://ww. springfranmework. or g/ schema/ cont ext "
xm ns: tx="http://ww. springframework. or g/ schenma/ t x"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schenma/ beans
http://ww. springframework. or g/ schenma/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. or g/ schema/ t x
http://ww. springframework. or g/ schema/t x/ spring-tx-3.0.xsd
http://ww. spri ngfranework. or g/ schena/ cont ext
http://ww. springframework. or g/ schenma/ cont ext/ spri ng-cont ext - 3. 0. xsd" >

<cont ext: annot ati on-confi g/ >
<cont ext: spri ng- confi gured/ >
<cont ext : conponent - scan base- package="or g. neo4j . ci neasts">
<cont ext: exclude-filter type="annotation"
expressi on="org. spri ngf ramewor k. st ereotype. Control l er"/>
</ cont ext : conponent - scan>

<t x:annot ati on-driven node="proxy"/>
</ beans>

Example 2.4. dispatcher Servlet-serviet.xml

<mvc: annot ati on-driven/ >

<nvc:resources mappi ng="/images/**" | ocati on="/images/"/>
<mvc:resources mappi ng="/resources/**" | ocati on="/resources/"/>

<cont ext : conponent - scan base- package="or g. neo4j . ci neasts.controller"/>

<bean id="vi ewResol ver"
cl ass="org. spri ngframewor k. web. servl et. vi ew. | nt er nal Resour ceVi ewResol ver"
p: prefix="/WEB-| NF/ vi ews/" p:suffix=".jsp"/>

We spun up Tomcat in STS with the App and it worked fine. For completeness we also added Jetty
to the maven-config and tested it by invoking nvn jetty: run to seeif there were any obvious issues
with the config. It al seemed to work just fine.

Chapter 3. The domain model
Setting the stage

We wanted to outline the domain model before diving into library details. We also looked at the data
model of the themoviedb.org data to confirm that it matched our expectations.

FRIEND®

User
Iualiln
name g RATED i_ E;:Hml
F’A‘E‘E&JF Y. * aTdrs
vate() |

L Lefriend()

[Acter)

Wiarme

| Flﬂﬂ&&lﬂ()

In Java code this looks pretty straightforward:

The domain model

Example 3.1. Domain model

class Myvie {
String id;
String title;
int year;
Set <Rol e> cast;

}

class Actor {

String id;

String nang;

Set <Mbvi e> fi | mogr aphy;

Rol e pl ayedl n(Movie novie, String role) { ... }
}

class Role {
Movi e novi e;
Actor actor;
String role;

}

class User {
String |ogin;
String nane;
String password;
Set <Rati ng> ratings;
Set <User > friends;
Rating rate(Movie novie, int stars, String comment) { ... }
voi d befriend(User user) { ... }

}

class Rating {
User user;
Movi e novi e;
int stars;
String coment;

Then we wrote some simpl e tests to show that the basic design of the domain is good enough so far.
Just creating amovie, populating it with actors, and allowing usersto rate it.

Chapter 4. Learning Neo4j
Graphs ahead

Now we needed to figure out how to store our chosen domain model in the chosen database. First we
read up about graph databases, in particular our chosen one, Neo4j. The Neo4j data model consists
of nodes and relationships, both of which can have key/value-style properties. What does that mean,
exactly? Nodes are the graph database name for records, with property keysinstead of column names.
That's normal enough. Relationshipsarethe special part. In Neo4j, relationships arefirst-classcitizens,
meaning they are more than a simple foreign-key reference to another record, relationships carry
information. So we can link together nodes into semantically rich networks. This really appeaed to
us. Then we found that we were also able to index nodes and relationships by { key, value} pairs. We
also found that we could traverse rel ationships both imperatively using the core API, and declaratively
using aquery-like Traversal Description. Besidesthose programmatic traversal stherewasthe powerful
graph query language called Cypher and an interesting looking DSL named Gremlin. So lots of ways
of working with the graph.

We also learned that Neo4j isfully transactional and therefore upholds ACID guarantees for our data.
Durability is actually a good thing and we didn't have to scale to trillions of users and movies yet.
Thisisunusua for NOSQL databases, but easier for usto get our head around than non-transactional
eventual consistency. It also made usfeel safe, thoughit also meant that we had to manage transactions.
Something to keep in mind later.

We started out by doing some prototyping with the Neo4j core API to get afeeling for how it works.
And also, to see what the domain might look like when it's saved in the graph database. After adding
the Maven dependency for Neo4j, we were ready to go.

Example 4.1. Neo4j Maven dependency

<dependency>
<gr oupl d>or g. neo4j </ gr oupl d>
<artifactld>neodj</artifactld>

<version>1. 6. MD2</ ver si on>
</ dependency>

http://neo4j.org
http://docs.neo4j.org/chunked/milestone/indexing.html
http://docs.neo4j.org/chunked/milestone/tutorials-java-embedded-traversal.html
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
https://github.com/tinkerpop/gremlin/wiki
http://en.wikipedia.org/wiki/ACID

Learning Neo4j

Example 4.2. Neodj core API (transaction code omitted)

enum Rel ati onshi pTypes i npl enents Rel ati onshi pType { ACTS IN };

G aphDat abaseServi ce gds = new EnbeddedG aphDat abase("/ pat h/to/ store");
Node forrest=gds. creat eNode();

forrest.setProperty("title","Forrest Gunp");
forrest.setProperty("year", 1994);

gds. i ndex().for Nodes("novi es").add(forrest,"id", 1);

Node tomFgds. cr eat eNode();
tom set Property("nane", " Tom Hanks");

Rel ati onshi p rol e=tom creat eRel ati onshi pTo(forrest, ACTS IN);
rol e.setProperty("“role","Forrest");

Node novi e=gds. i ndex().for Nodes("novies").get("id",1).getSingle();
assert Equal s("Forrest Gunp", novie.getProperty("title"));
for (Relationship role : novie.getRelationshi ps(ACTS_IN, | NCOM NG) {
Node act or =rol e. get & her Node(novi e) ;
assert Equal s(" Tom Hanks", actor.getProperty("nanme"));
assert Equal s("Forrest", role.getProperty("role"));

Chapter 5. Spring Data Neo4j
Conjuring magic

Sofar it had al been pure Spring Framework and Neo4j. However, using the Neo4j codein our domain
classes polluted them with graph database details. For this application, we wanted to keep the domain
classes clean. Spring Data Neo4j promised to do the heavy lifting for us, so we continued investigating
it.

Spring Data Neo4j comes with two mapping modes. The more powerful one depends heavily on
Aspect], see 7??, so weignored it for the time being. The simple direct POJO-mapping copiesthe data
out of the graph and into our entities. Good enough for aweb-application like ours.

Thefirst step was to configure Maven:

Example 5.1. Spring Data Neo4j Maven configuration

<dependency>
<groupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj</artifactld>
<version>2. 0. 0. RELEASE</ ver si on>

</ dependency>

The Spring context configuration was even easier, thanks to a provided namespace:

Example 5.2. Spring Data Neo4j context configuration

<beans xm ns="http://ww. spri ngfranmework. or g/ schema/ beans" ..
xm ns: neodj ="htt p://ww. spri ngfranewor k. or g/ schema/ dat a/ neo4j "
xsi :schemaLocation="... http://wwmv springframework. or g/ schenma/ dat a/ neo4j
http://ww. springframework. or g/ schenma/ dat a/ neo4j / spri ng- neo4j - 2. 0. xsd" >

<neo4j :config storeDirectory="datal/ graph. db"/>

</ beans>

Chapter 6. Annotating the domain

Decorations

L ooking at the Spring Data Neo4j documentation, we found asimple Hello World example and tried to
understand it. We al so spotted a compact reference card which helped usalot. The entity classes were
annotated with @odeEnt i ty. That was simple, so we added the annotation to our domain classes too.
Entity classes representing rel ationships were instead annotated with @el at i onshi pEnt i t y. Property
fields were taken care of automatically. The only additional field we had to providefor all entitieswas
aid-field to store the node- and relationship-ids.

Example 6.1. Movie classwith annotation

@\odeEntity
class Myvie {
@ aphl d Long nodel d;
String id;
String title;
int year;
Set <Rol e> cast ;

It was time to put our entities to the test. How could we now be assured that an attribute really was
persisted to the graph store? We wanted to load the entity and check the attribute. Either we could
have aNeo4j Tenpl at e injected and useitsfi ndone(i d, t ype) method to load the entity. Or useamore
versatile Reposi t ory. The same goes for persisting entities, both Neo4j Tenpl at e Or the Reposi tory
could be used. We decided to keep things simple for now.

S0 here's what our test ended up looking like:

Example 6.2. First test case

@\ut owi red Neo4j Tenpl ate tenpl ate;

@est @ransactional public void persistedMvovi eShoul dBeRetri evabl eFronGraphDb() {
Movi e forrestGunp = tenpl ate. save(new Myvi e("Forrest Gunp", 1994));
Movi e retrievedvbvie = tenpl ate. fi ndOne(forrest Gunp. get Nodel d(), Mbvi e. cl ass);
assert Equal ("retrieved novi e natches persisted one", forrestQunp, retrievedMvie);
assertEqual ("retrieved novie title natches", "Forrest Gunp", retrievedMovie.getTitle());

As Neo4j istransactional, we have to provide the transactional boundaries for mutating operations.

10

http://spring.neo4j.org/helloworld
http://spring.neo4j.org/notes

Chapter 7. Indexing

Do | know you?

Thereisan @Indexed annotation for fields. We wanted to try this out, and use it to guide the next test.
We added @Indexed to thei d field of the Movie class. Thisfield isintended to represent the external
ID that will be used in URIsand will be stable across database imports and updates. Thistime we went

with a simple GraphRepository to retrieve the indexed movie.
Example 7.1. Exact Indexing for Movieid

@\odeEntity class Mvie {
@ndexed String id;
String title;
int year;

}
@\ut owi red Neo4j Tenpl ate tenpl ate;

@est @ransacti onal
public voi d persistedMvi eShoul dBeRet ri evabl eFronG aphDb() {
int id =1,
Movi e forrest Gunp = tenpl ate. save(new Mvie(id, "Forrest Gunp", 1994));
G aphReposi t ory<Movi e> novi eRepository =
tenpl at e. reposi t or yFor (Movi e. cl ass);
Movi e retrievedvbvi e = novi eRepository. fi ndByPropertyVal ue("id", id);
assert Equal ("retrieved novi e matches persisted one", forrestGunp, retrievedMvie);
assertEqual ("retrieved novie title natches", "Forrest Gunp", retrievedMovie.getTitle()

11

Chapter 8. Repositories
Serving a good cause

We wanted to add repositories with domain-specific operations. Interestingly there was support for a
very advanced repository infrastructure. Y ou just declare an entity specific repository interface and
get al commonly used methods for free without implementing any of boilerplate code.

So we started by creating a movie-related repository, simply by creating an empty interface.

Example 8.1. Movierepository

package org.neo4j.cineasts.repository;
public interface MvieRepository extends G aphRepository<Mvie> {}

Then we enabled repository support in the Spring context configuration by simply adding:

Example 8.2. Repository context configuration

<neo4j :repositories base-package="org. neodj.cineasts.repository"/>

Besides the existing repository operations (like CRUD, and many standard queries) it was possible
to declare custom methods, which we explored later. Those methods names could be more domain
centric and expressive than the generic operations. For simple use-caseslikefinding by id'sthisisgood
enough. So we first let Spring autowire our Movi eControl | er With the Movi eReposi t ory. That way
we could perform simple persistence operations.

Example 8.3. Usage of a repository
@\ut owi red Movi eRepository repo;
Movi e novie = repo. findByPropertyVal ue("id", novi el d);

We went on exploring the repository infrastructure. A very cool feature was something that we so far
only heard about from Grails developers. Deriving queries from method names. Impressivel So we
had a more explicit method for the id lookup.

Example 8.4. Derived movie-repository query method

public interface MvieRepository extends G aphRepository<Mvie> {
Movi e get Movi eByl d(String id);
}

In our wildest dreams we imagined the method names we would come up with, and what kinds of
queries those could generate. But some, more complex gueries would be cumbersome to read and
write. So in those cases it is better to just annotate the finder method. We did this much later, and
just wanted to give you a peek into the future. There is much more, you can do with repositories, it
isworthwile to explore.

12

Repositories

Example 8.5. Annotated movie-repository query method

public interface MvieRepository extends G aphRepository<Mvie> {
@uery("start user=node: User ({0}) natch user-[r: RATED]->npvie return novie order by r.stars desc lim
It er abl e<Mbvi e> get TopRat edMbvi es(User uer);

}

13

Chapter 9. Relationships
A convincing act

Our application was not very much fun yet, just storing movies and actors. After all, the power isin
the relationshi ps between them. Fortunately, Neo4j treats relationships asfirst class citizens, allowing
them to be addressed individually and have properties assigned to them. That allows for representing
them as entities if needed.

9.1. Creating relationships

Rel ationshipswithout properties (*anonymous' relationships) don't requireany @el at i onshi pEntity
classes. "Unfortunately" we had none of those, because our relationships were richer. Therefore
we went with the Rol e relationship between Mvie and Actor. It had to be annotated with
@rel ati onshi pEntity and the @t ar t Node and @ndNode had to be marked. So our Role looked like
this:

Actor Role |
ttle
name 3 ALTS N i
movies htle A
) cast

Example 9.1. Role class

@Rel ati onshi pEntity

class Role {
@bt art Node Actor actor;
@ndNode Mbvi e novi e;
String role;

When writing atest for the Rol e we tried to create the relationship entity just by instantiating it with
newand saving it with the template, but we got an exception saying that it misses the relationship-type.

We had to add it to the @rel ati onshi pEnti ty as an attribute (or as a @RelationshipType annotated
field in the RelationshipEntity). Another way to create instances of relationship-entities is to use the
methods provided by the template, like cr eat eRel at i onshi pBet ween.

14

Relationships

Example 9.2. Relating actorsto movies

@Rel ati onshi pEntity(type="ACTS_ | N')
class Role {
@5t art Node Actor actor;
@ndNode Mbvi e novi e;
String role;

}

class Actor {

public Role playedl n(Mvie nmovie, String rol eName) {
Rol e role = new Role(this, novie, rol eNane);

this.roles.add(rol e);
return role;

Rol e rol e = tonHanks. pl ayedl n(forrest Gunp, "Forrest Gunp");

/'l either save the actor
t enpl at e. save(t onHanks) ;
/'l or the role

tenpl at e. save(rol e);

/] alternative approach

Rol e rol e = tenpl ate. creat eRel ati onshi pBet ween(act or, novi e,

Rol e. cl ass, "ACTS_IN');

9.2. Accessing related entities

Now we wanted to find connected entities. We already had fields for the relationships in both classes.
It was time to annotate them correctly. The Neo4j relationship type and direction were easy to figure
out. The direction even defaulted to outgoing, so we only had to specify it for the movie. If we want to
use the same relationship between the two entities we have to make sure to provide a dedicated type,

otherwise the field-names would be used resulting in different relationships.

Example 9.3. @RelatedTo usage

@NodeEntity

class Myvie {
@ ndexed int id;
String title;
int year;

@Rel at edTo(type = "ACTS_IN', direction = Direction.| NCOM NG

Set <Act or > cast ;

}

@NodeEntity
class Actor {
@ ndexed int id;
String nang;
@Rel at edTo(type = "ACTS I N')
Set <Mbvi e> novi es;

public Role playedl n(Mvie novie, String rol eNane) {

return new Rol e(this, nmovie, roleNane);

}

Changes to the collections of related entities are reflected into the graph on saving of the entity.

15

Relationships

We made sure to add some tests for using the relationshhips, so we were assured that the collections
worked as advertised.

9.3. Accessing the relationship entities

But we still couldn't access the Role relationship entities themselves. It turned out that there was a
separate annotation @rel at edToVi a for accessing the actual relationship entities. And we could declare
thefieldasan |t er abl e<Rol e>, with read-only semanticsor on acol | ect i on Of Set <Rol e> field with
modifying semantics. So off we went, creating our first real relationship (just kidding).

To have the collections of relationships being read eagerly during the loading of the Movie we have
to annotate it with the @Fetch annotation. Otherwise Spring Data Neo4j refrains from following
relationships automatically. The risk of loading the whole graph into memory would be too high.

Example 9.4. @RelatedToVia usage

@\odeEntity

class Myvie {
@ ndexed int id;
String title;
int year;

@etch @Rel at edToVi a(type = "ACTS_IN', direction = Direction.|NCOM NG
It er abl e<Rol es> rol es;

}

After watching the tests pass, we were confident that the changes to the relationship fields were realy
stored to the underlying relationshipsin the graph. Wewere pretty satisfied with persisting our domain.

16

Chapter 10. Get it running
Curtains up!

Now we had a pretty complete application. It wastime to put it to the test.

10.1. Populating the database

Beforewe opened the gateswe needed to add some moviedata. So wewroteasmall classfor populating
the database which could be called from our controller. To makeit safe to call several times we added
index lookupsto check for existing entries. A simple/ popul at e endpoint for the controller that called
it would be enough for now.

Example 10.1. Populating the database - Controller

@servi ce
public cl ass Dat abasePopul ator {

@r ansacti onal
public List<Mvie> popul at eDat abase() {
Act or tonHanks = new Actor("1", "Tom Hanks");
Movi e forrest Gunp = new Movie("1", "Forrest Gunp");
t omHanks. pl ayedl n(forrest Gunp, "Forrest");
tenpl at e. save(forrest Gunp);
return asLi st (forrestGunp);

}

@ontrol | er
public class MvieController {

@\ut owi red private Dat abasePopul at or popul at or;

@Request Mappi ng(val ue = "/ popul ate", method = Request Met hod. POST)
public String popul at eDat abase(Model nodel) {

Col | ecti on<Mbvi e> novi es = popul at or. popul at eDat abase() ;

nodel . addAt tri but e(" novi es", novi es) ;

return "/ novies/list";

Accessing the URI we could see the list of movies we had added.

10.2. Inspecting the datastore

Being the geeks we are, we also wanted to inspect the raw data in the database. Reading the Neo4j
docs, there were a couple of different ways of going about this.

10.2.1. Neoclipse visualization

First we tried Neoclipse, an Eclipse RCP application/plugin that opens an existing graph store and
visualizes its content. After getting an exception about concurrent access, we learned that we have to
use Neoclipse in read-only mode when our webapp was still running. Good to know.

17

http://docs.neo4j.org/
http://docs.neo4j.org/

Get it running

anon Neoclipse

=

le|E®y B

[Cot e+ =R [Fapm~ -0

2 Micha 7 Belinda McClory 0 Marc Aden
o ERIENTT
0 olliver
RATED
@ Carrie-Anne Moss @Jce Pantoliano
D Laurence Fishburne
70 Marcus Chong 72 The Marrix 0 Keanu Reeves
LA 2 Paul Goddard
% Maw Doran \ DIREET]
2 Anthony Ray Parker DIRE? 0 Gloria Foster
0 David Aston
0 Julian Arahanga \ % Andy Wachowski
T Hugo Weaving D Lana Wachowski
] Properties &3 B T = O |[%® relationship types 14 ¥4 X | ¥ & | [=
Property Walue Relationship type W In % Out

¥ Properties -

typt.a. % org.neu4J.c|neasts.domam.M.uv|e m DIRECTED

description @ Meo is a young software engineer and part-time har FRIEND

genre Action RATED

homepage @ http:/ fwhatisthematrix.warnerbros.com/

id () 603 4

imageUr| @ http:/ fcfl.imgobject.com/posters/606/4bc309d0I ¥
F= =1
€ D Jal»

Traversal depth: 3 Nodes: 19 Relationships: 18

10.2.2. The Neo4j Shell

For console junkies there was also a shell that was able to connect to a running Neo4j instance (if it
was started with the enabl e_r enot e_shel | =t r ue parameter), or reads an existing graph store directly.

Example 10.2. Starting the Neo4j Shell

bash# neo4j-shell -readonly -path data/graph. db
bash# neo4j-shell -readonly -port 1337

The shell was very similar to a standard Bash shell. We were able to cd to between the nodes, and
I s the relationships and properties. There were also more advanced commands for indexing, queries

and traversals.

18

Get it running

Example 10.3. Neodj Shell usage

neo4j - sh[readonly] (0)$ hel p

Avai |l abl e commands: index dbinfo Is rmalias set eval mv gsh env rnrel nkrel
trav help pwd paths ... man cd

Use man <conmand> for info about each conmand.

neodj - sh[readonly] (0)$ index --cd -g User |ogin mcha

neodj -sh[readonly] (Mcha,1)$ Is

* __type__ =[org.neodj.cineasts. donmain. User]
*| ogin =[m cha]

*name =[M cha]

*rol es =[ROLE_ADM N, ROLE_USER]

(nme) --[FRIEND]-> (Qliver, 2)

(me) --[RATED]-> (The Matri x, 3)

neo4j -sh[readonly] (Mcha,1)$ Is 2

* _type__ =[org.neodj.cineasts. donmain. User]
*| ogi n =[ollie]

*name =[Aliver]

*rol es =[ROLE_USER]

(Aliver,2) <-[FRIEND]-- (ne)
neo4dj - sh[readonly] (Mcha,1)$ cd 3

neo4j - sh[readonly] (The Matrix,3)$ Is

* _ _type__ =[org. neo4j . ci neast s. donai n. Movi e]

*description =[Neo is a young software engi neer and part-tine hacker who is singled
*genre =[Acti on]

*homepage =[http://whatisthematri x. war ner bros. coni]
*studi o =[Warner Bros. Pictures]

*tagline =[Wel come to the Real World.]

*title =[The Matri x]

*trailer =[htt p: // ww. yout ube. conf wat ch?v=UVbyepZ21pl]
*version =[324]

(me) <-[ACTS_IN]-- (Marc Aden, 19)
(nme) <-[ACTS_IN-- (David Aston, 18)

(nme) <-[ACTS_IN-- (Keanu Reeves, 6)
(nme) <-[DI RECTED]-- (Andy Wachowski, 5)
(nme) <-[DI RECTED] -- (Lana Wachowski , 4)
(nme) <-[RATED]-- (Mcha, 1)

-

19

Chapter 11. Web views
Showing off

After having put some data in the graph database, we also wanted to show it to the user. Adding the
controller method to show a single movie with its attributes and cast in a JSP was straightforward.
It basically just involved using the repository to look the movie up and add it to the model, and then
forwarding to the/ movi es/ show view and voil&

Example 11.1. Controller for showing movies

@Request Mappi ng(val ue = "/ novi es/ {novi el d}",
nmet hod = Request Met hod. GET, headers = "Accept=text/htm ")
public String singleMvieViewfinal Mdel nodel, @athVariable String novield) {
Movi e novie = repository.findByld(novield);
nodel . addAttri bute("id", novield);
if (novie !'= null) {
nodel . addAttri but e(" novi e", novie);
nodel . addAttri bute("stars", novie.getStars());

}

return "/ novi es/ show'

Example 11.2. Populating the database - JSP /movies/show

<% page sessi on="fal se" %
<Yg@taglib uri="http://ww.springfranmework.org/tags" prefix="s" %
<U@taglib prefix="c" uri="http://java.sun.conifjsp/jstl/core" %

<c: choose>
<c:when test="%{not enpty novie}">
<h2>${movie.title} (${stars} Stars)</h2>
<c:if test="%${not enpty novie.roles}">

<c:forEach items="${novie.roles}" var="rol e">

<c:out value="${rol e.actor.nane}" /> as
<c:out value="${role.nane}" />

</ c: forEach>
</ ul >
</c:if>
</ c: when>
<c: ot her wi se>
No Movie with id ${id} found
</ c: ot her wi se>
</ c: choose>

The Ul had now evolved to this:

20

Web views

-
=

3y CINEASTS

- - f A - -
= o - A =
\ L4 \ 24 \ 4 \ 24
- - 7 - -

Anthony Ray Paul Goddard as Joe Pantoliano asMatt Doran as Julian Arahanga

TheMovieDb.org ; t Parker as Dozer Agent Brown Cypher Mouse as Apoc
IMDb - ’
-

-
Amazon - - 1 A
CineButier L X4 = -
Google Movies =] q ‘

-
- -

H |~ 2
Belinda McClory Marcus Chong asGlorla Foster as Carrie-Anne Keanu Reeves as
as Switch Tank Oracle Moss as Trinity Neo
- -
Homepage 5 2 “ -

v &

-
A T 4 A L 4
}"\ 3 = =

Hugo Weaving asLaur;ence David Aston as Marc Aden as
Agent Smith Fishburne as Rhineheart Choi
Morpheus

rERees
S R R | Micha

11.1. Searching

The next thing wasto allow usersto search for movies, so we needed some fulltext search capabilities.
Asthedefault index provider implementation of Neo4j isbased on Apache L ucene, we were delighted
to see that fulltext indexes were supported out of the box.

We happily annotated thetitle field of the Movie classwith @ ndexed(type = FULLTEXT) . Next thing
we got an exception telling us that we had to specify a separate index name. So we simply changed it
10 @ ndexed(type = FULLTEXT, indexName = "search").

With derived finder methods, finding things became easy. By simply declaring a finder-method name
that expressed the required properties, it worked without annotations. Cool stuff and you could even
tell it that it should return pages of movies, its size and offset specified by a Pageabl e which also
contains sort information. Using thel i ke operator indicates that fulltext search should be used, instead
of an exact search.

Example 11.3. Sear ching for movies

public interface MvieRepository ... {
Movi e findByld(String id);
Page<Movi e> findByTitleLike(String title, Pageabl e page);

11.2. Listing results

Wethen used thisresult in the controller to render a page of movies, driven by asearch box. Themovie
properties and the cast were accessible through the getters in the domain classes.

21

http://lucene.apache.org/java/docs/index.html

Web views

Example 11.4. Sear ch controller

@Request Mappi ng(val ue = "/ novi es",

met hod = Request Met hod. GET, headers = "Accept=text/htm")

public String findMvovi es(Mbdel nodel, @RequestParan("qg") String query) {
Page<Movi e> novies = repository.findByTitleLike(query, new PageRequest (0, 20));
nmodel . addAttri but e(" novi es", novies);
nodel . addAttri but e("query", query);
return "/novies/list";

Example 11.5. Sear ch Results JSP

<h2>Movi es</ h2>

<c: choose>
<c:when test="${not enpty novies}">

<dl class="Ilistings">
<c:forEach itenms="${novies}" var="novie">
<dt >
<c: out value="${novie.title}" />

</ dt>
<dd>
<c:out value="${novie.description}" escapeXnl ="true" />
</ dd>
</ c: for Each>
</ dl >
</ c: when>

<c: ot herw se>
No novi es found for query " ${query}"
</ c: ot her wi se>
</ c: choose>

The Ul now looked like this:

22

Web views

-—
-
-

"

3 CINEASTS

X X]
The Matrix =V 7 9

&

| e i
RE {.nh.ﬂ-:u
i

The Matrix Reloaded

The Matrix Revolutions

Micha Logout

23

Chapter 12. Adding social
Movies 2.0

So far, the website had only been a plain old movie database. We now wanted to add a touch of social
toit.

12.1. Users

So we started out by taking the User class that we'd aready coded and made it a full-fledged Spring
Data Neodj entity. We added the ability to create friends and to rate movies. With that we also added
asimple UserRepository that was able to look up users by ID.

The relationships of the user are hisfriends and the movie-ratings which isimplemented with arat i ng
Relationship-Entity. This time we used a different approach (for educational and curiosity purposes)
to create the Rat i ng relationships. Thecr eat eRel at i onshi pBet ween operation of the Neo4j Template
was our matchmaker of choice.

Example 12.1. Social entities

@\odeEntity

class User {
@ndexed String | ogin;
String nane;
String password;

@Rel at edToVi a(type = RATED)
@etch Set<Rating> ratings;

@Rel at edTo(type = "FRIEND', direction=Direction. BOTH)
@etch Set<User> friends;

public Rating rate(Neo4jOperations tenplate, Myvie novie, int stars, String comment) {
final Rating rating = tenpl ate.createRel ati onshi pBetween(this, novie, Rating.class
rating.rate(stars, conment);
return tenpl ate. save(rating);

}

public void addFriend(User user) {
this.friends.add(user);
}
}

@Rel ati onshi pEntity
class Rating {
@5t art Node User user;
@ndNode Mbvi e novi e;
int stars;
String coment;
public Rating rate(int stars, String coment) {
this.stars = stars; this.coment = coment;
return this;

We extended the DatabasePopul ator to add some users and ratings to the initial setup.

24

RATED, fal

Adding socia

Example 12.2. Populate users and ratings

@ransacti onal
public List<Mvie> popul at eDat abase() {
Act or tonHanks = new Actor("1", "Tom Hanks");
Movi e forestGunp = new Movie("1", "Forrest Gunp");
t onHanks. pl ayedl n(f orest Gunp, "Forrest");
tenpl at e. save(t onHanks) ;

User ne = tenpl ate. save(new User("m cha", "M cha", "password"));
Rati ng awesone = ne.rate(tenplate, forestGunp, 5, "Awesone");

User ollie = tenpl ate. save(new User("ollie", "Aiver", "password"));
ollie.rate(tenpl ate, forestGunp, 2, "ok");

ne. addFri end(ol lie);

tenpl at e. save(ne) ;

return asLi st (forest@unp);

12.2. Ratings for movies

We adso put aratings field into the Movie class to be able to get a movie's ratings, and also a method
to average its star rating.

Example 12.3. Getting therating of a movie

class Mvie {

@Rel at edToVi a(type="RATED', direction = Direction.| NCOM NG
@etch |Iterabl e<Rating> ratings;

public int getStars() {
int stars = 0, count = O;
for (Rating rating : ratings) {
stars += rating.getStars(); count++;

}

return count == 0 ? 0 : stars / count;

Fortunately our tests highlighted the division by zero error when calculating the stars for a movie
without ratings. The next steps were to add this information to the movie presentation in the Ul, and
creating a user profile page. But for that to happen, users must first be ableto log in.

25

Chapter 13. Adding Security

Protecting assets

To handle an active user in the webapp we had to put it in the session and add login and registration

pages. Of course the pages that were only meant for logged-in users had to be secured as well.

Being Spring users, we naturally used Spring Security for this. We wrote a simple
User Det ai | sServi ce by extending a repository with a custom implementation that takes care
of looking up the users and validating their credentials. The config is located in a separate

appl i cati onCont ext - securi ty. xm . But first, asaways, Maven and web. xni setup.

Example 13.1. Spring Security pom.xml

<dependency>
<gr oupl d>or g. spri ngf ramewor k. securi ty</ groupl d>
<artifactl|d>spring-security-web</artifactld>
<versi on>${spri ng. ver si on} </ versi on>

</ dependency>

<dependency>
<groupl d>or g. spri ngf ramewor k. securi ty</ groupl d>
<artifactld>spring-security-config</artifactld>
<versi on>${spring. versi on} </ versi on>

</ dependency>

Example 13.2. Spring Security web.xml

<cont ext - par an>
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>
/ VEEB- | NF/ appl i cati onCont ext - security. xm
/ VEEB- | NF/ appl i cati onCont ext . xmi
</ par am val ue>
</ cont ext - par an>

<listener>

<l i stener-class>org. springframewor k. web. cont ext. Cont ext Loader Li st ener</|i stener-cl ass>

</|istener>

<filter>
<filter-nane>springSecurityFilterChain</filter-nane>

<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>

</filter>

<filter-mppi ng>
<filter-nanme>springSecurityFilterChain</filter-nanme>
<url-pattern>/*</url-pattern>

</filter-nmappi ng>

26

Adding Security

Example 13.3. Spring Security applicationContext-security.xml

<security: gl obal - net hod-security secured-annot ati ons="enabl ed">
</security: gl obal - met hod-security>

<security:http auto-config="true" access-deni ed- page="/aut h/ deni ed" >

<security:intercept-url pattern="/adm n/*" access="ROLE_ADM N'/>
<security:intercept-url pattern="/inport/*" access="ROLE ADM N'/>
<security:intercept-url pattern="/user/*" access="ROLE _USER'/>

<security:intercept-url pattern="/auth/login" access="|S AUTHENTI CATED_ ANONYMOUSLY"/ >
<security:intercept-url pattern="/auth/register" access="1S AUTHENTI CATED_ ANONYMOUSLY"
<security:intercept-url pattern="/**" access="|S_AUTHENTI CATED ANONYMOUSLY"/ >

<security:formlogin | ogi n-page="/aut h/| ogi n"
aut hentication-failure-url="/auth/login?l ogi n_error=true"
defaul t-target-url="/user"/>

<security:logout |ogout-url="/auth/logout" |ogout-success-url="/" invalidate-session="

</security: http>

<security:authentication-manager >
<security:authentication-provider user-service-ref="userRepository">
<security: password- encoder hash="nd5">
<security:salt-source systemw de="cewi gwzi e"/>
</ security: password- encoder >
</ security:authentication-provider>
</security:authentication-nmanager>

27

rue"/>

Adding Security

Example 13.4. CinceastUserDetailsService interface and UserRepository
implementation

public interface G neastsUserDetail sService extends UserDetail sService {
@verride
Cineast sUserDetail s | oadUser ByUser nane(String | ogin)
t hrows User nameNot FoundExcepti on, Dat aAccessExcepti on;

User get User FronfSessi on();

@r ansacti onal
Rating rate(Mvie novie, User user, int stars, String comment);

@r ansacti onal
User register(String login, String nane, String password);

@r ansacti onal
voi d addFriend(String |login, final User userFronBession);

public interface UserRepository extends G aphRepository<User >,
Rel at i onshi pOper at i onsReposi t or y<User >,
Ci neast sUser Det ai | sSer vi ce {

User findByLogin(String |ogin);

public class UserRepositorylnpl inplenents G neastsUserDetail sService {
@\utowi red private Neo4j Operations tenpl ate;

@verride
public G neastsUserDetails |oadUserByUsernane(String | ogin)
t hrows User naneNot FoundExcepti on, Dat aAccessException {
final User user = findByLogin(login);
if (user==null) throw
new User naneNot FoundExcepti on(" User nane not found: "+l ogin);
return new G neastsUserDetail s(user);

private User findByLogin(String |ogin) {
return tenpl ate. | ookup(User.cl ass, "l ogin", | ogin)
.to(User.class).single();

@verride
public User getUserFronSession() {
SecurityContext context = SecurityContextHol der. get Context();
Aut henti cati on authentication = context.getAuthentication();
oj ect principal = authentication. getPrincipal();
if (principal instanceof G neastsUserDetails) {
CineastsUserDetails userDetails = (Ci neastsUserDetails) principal;
return userDetails.getUser();

}

return null;

public class CineastsUserDetails inplenents UserDetails {
private final User user;

public Ci neastsUserDetail s(User user) {
this.user = user;

@verride

public Collection<G antedAuthority> getAuthorities() {
User. Rol es[] roles = user.getRoles();
if (roles ==null) return Collections.enptyList();

rotiirn Arrave <(x ant adAiit hari t vsaclict(rnl ac) -

custom

QO

Adding Security

Any logged-in user was now available in the session, and could be used for al the social interactions.
The remaining work for this was mainly adding controller methods and JSPs for the views. We used
the helper method get User Fr onSessi on() in the controllers to access the logged-in user and put it in
the model for rendering. Here's what the Ul had evolved to:

Mche Logout

)

A T4

} CINEASTS

Y
-
| B

=

=

Forrest Gump (1994) - "Inspiring"

The Matrix (1999) - "Best of the series”
EMIL EIFREM

The Simpsons Movie (2007) - "See our family. And feel better about yours.” = = & & &

The Matrix Reloaded (2003) - "Free your mind.”

This site is running on SpringFramework and Spring Data Graph powered by the Neo4j graph database. All movie data is provided by themoviedb.org.

. [P - .
L . 1
Spfll’] ; @' springdatagraph -.. ﬂigp‘q’h]dmbase

division of VITIWAIE

29

Chapter 14. More Ul
Oh the glamour

To create anice user experience, we wanted to have a nice looking app. Not something that looked like
atoddler made it. So we got some user experience people involved and the results were impressive.
This sections presents some of the remaining screen shots of Cineasts.net.

-
"

\ X4

§ CINEASTS

" spring = ‘ i ’: springdatagraph

30

More Ul

-—
-
-

| L4

3 CINEASTS

'

Y

B 4 B B B
e wr | wx | x| we
}

The Matrix @ 9 9 9
The Matrix Reloaded

The Matrix Revolutions

Miche. Logout

31

More Ul

TheMovieDb.org
IMDb

Amazon
CineButler

Google Movies

Homepage

-
-
-

»
H

-

CINEASTS

Login Regster

Anthony Ray Paul Goddard as Joe Pantoliano asMatt Doran as Julian Arahanga

Parker as Dozer Agent Brown

Yt

Cypher Mouse as Apoc
7 7

Belinda McClory Marcus Chong asGloria Foster as Carrie-Anne Keanu Reeves as

as Switch Tank

Hugo Weaving asLaurence
Agent Smith Fishburne as
Morpheus

Micha

The Matrix as Neo in 1999
The Matrix Revolutions as Neo in 2003
The Matrix Reloaded as Neo in 2003

Oracle Moss as Trinity Neo
-
A K 4
-
-

David Aston as Marc Aden as
Rhineheart Choi

Find maovie

32

Chapter 15. Importing Data
The dusty archives

It was now time to pull the data from themoviedb.org. Registering there and getting an APl key was
simple, aswas using the APl onthe command-linewith cur I . Looking at the JSON returned for movies
and people, we decided to enhance our domain model and add some more fields to enrich the Ul.

Example 15.1. JSON movieresponse

[{"popularity":3,

"translated":true, "adult":false, "language":"en",

“original _name":"[Rec]", "nanme":"[Rec]", "alternative_nane":"[REC]",

"nmovi e_type": "novie",

"id":8329, "indb_id":"tt1038988", "url":"http://ww.thenovi edb. org/ novi e/ 8329",

"votes":11, "rating":7.2,

"status":"Rel eased",

"tagline":"One Wtness. One Canera",

"certification":"R",

"overview':"\"REC\" turns on a young TV reporter and her caneranman who cover the night shi
at the local fire station...

"keywords":["terror", "lebende |eichen", "obsession", "cancorder", "firemen", "reality tv |,
"bite", "cinematographer",

"attenpt to escape", "virus", "lodger", "live-reportage", "schwerverletzt"],

"rel eased":"2007-08- 29",

"runtine":78,

"budget ": 0,

"revenue":0,

"honmepage": "http://ww. 3l -filmverleih. de/rec",

"trailer":"http://ww.yout ube. conf wat ch?v=YQUkX_Xowgl ",

"genres":[{"type":"genre",

—

“url":"http://thenovi edb. org/ genre/ horror",
"nanme":"Horror",
"id":27}],

"studios":[{"url":"http://ww.thenovi edb. or g/ conpany/ 2270", "nane":"Fil max G oup", "id":22[0}],
"l anguages_spoken": [{"code":"es", "nanme":"Spanish", "native_nane":"Espa\u00f 1ol "}],
“countries":[{"code":"ES", "nane":"Spain", "url":"http://ww.thenovi edb. org/country/es"}],
"posters":[{"image":{"type": "poster",

"size":"original", "height":1000, "w dth": 706,

“url":"http://cfl.ingobject.conl posters/3al/4cc8df 415e73d650240003a0/ rec-origi nal.jpg",
"id":"4cc8df 415e73d650240003a0"}},

"cast":[{"name": " Manuel a Vel asco",

"job":"Actor", "departnent":"Actors",

"character":"Angela Vidal",

"id":34793, "order":0, "cast_id":1,

“url":"http://ww.thenovi edb. or g/ person/ 34793",
"profile":"http://cfl.ingobject.com profiles/390/.../manuel a-vel asco-thunb.jpg"},

{"nanme":"d \uO0f 2ria Viguer",

"job":" Costunme Design", "departnent":"Costune \u0026 Make-Up",
“character":"",

"id":54531, "order":0, "cast_id":21,

“url":"http://ww.thenovi edb. or g/ per son/ 54531",
"profile":""}],

"version":150, "last_nodified_at":"2011-02-20 23:16:57"}]

33

http://themoviedb.org

Importing Data

Example 15.2. JSON actor response

[{"popularity":3,

"nane":"d enn Strange", "known_as":[{"nanme":"George G enn Strange"}, {"name":"d en Strangel
{"nanme":"d en ' Peewee' Strange"}, {"nane":"Peewee Strange"}, {"nane":"'Peewee' Strange"}],
"id":30112,

"bi ography":"",

"known_novi es": 4,

"birthday":"1899-08-16", "birthplace":"Wed, New Mexico, USA",
“url":"http://ww.thenovi edb. or g/ person/ 30112",
“filnography":[{"nanme":"Bud Abbott Lou Costell o Meet Frankenstein",
"id":3073,

"job":"Actor", "departnent":"Actors",

"character":"The Frankenstein Mnster",

"cast _id":23,

“url":"http://ww.thenovi edb. or g/ novi e/ 3073",
"poster":"http://cfl.ingobject.conf posters/4cal.../bud-abbott-I|ou-costello-neet-frankenste
"adult":fal se, "rel ease":"1948-06- 15"},

R

"profile":[],

"version":19, "last_nodified_at":"2011-03-07 13: 02: 35"}]

n- cover. j pc

For the import process we created a separate importer using Jackson (a JSON library) to fetch and
parse the data, and then some transactional methods in the Movi eDbl npor t Ser vi ce to actually import
it as movies, roles, and actors. The importer used a simple caching mechanism to keep downloaded
actor and movie data on the filesystem, so that we didn't have to overload the remote API. In the code
below you can see that we've changed the actor to a person so that we can also accommodate the other

folks that participate in movie production.

Importing Data

Example 15.3. Importing the data

@ransacti onal
public Movie inportMvie(String novield) {
Movi e novi e = novi eRepository. findByl d(novi el d);
if (nmovie == null) { // Not found: Create fresh
novi e = new Movi e(novi eld, null);

}

Map data = | oadMovi eDat a(novi el d) ;
i f (data.containsKey("not_found")) throw
new Runti meException("Data for Mvie "+novield+" not found.");
novi eDbJsonMapper . mapToMovi e(data, novie);
novi eReposi tory. save(novi e) ;
r el at ePer sonsToMovi e(novi e, data);
return novie;

}

private void rel at ePer sonsToMovi e(Movi e novi e, Map data) {
Col | ecti on<Map> cast = (Col | ecti on<Map>) data.get("cast");
for (Map entry : cast) {
String id ="" + entry.get("id");
String jobName = (String) entry.get("job");
Rol es job = novi eDbJsonMapper . mapToRol e(j obNan®) ;
if (job==null) {
conti nue;
}
switch (job) {
case DI RECTED:
final Director director = dolnportPerson(id, new Director(id));
director.directed(novie);
di rect or Reposi tory. save(di rector);
br eak;
case ACTS IN:
final Actor actor = dolnportPerson(id, new Actor(id));
actor.playedln(novie, (String) entry.get("character"));
act or Reposi tory. save(actor);
br eak;
}
}
}

public void napToMovi e(Map data, Myvie novie) {
novie.setTitle((String) data.get("nanme"));
novi e. set Language((String) data.get("language"));
novi e. set Tagl i ne((String) data.get("tagline"));
novi e. set Rel easeDat e(t oDat e(data, "rel eased", "yyyy-Mvidd"));

novi e. set | mageUr | (sel ect | mageUr | ((Li st<Map>) data.get("posters"), "poster", "mid"));

The last part involved adding a protected URI to the MovieController to allow importing ranges of
movies. During testing, it became obvious that the calls to themoviedb.org were a limiting factor. As
soon as the data was stored locally, the Neo4j import was a sub-second deal.

35

Chapter 16. Recommendations

Movies! Friends! Bargains!

In the last part of this exercise we wanted to add recommendations to the app. One obvious
recommendation was movies that our fiends liked.

There was this query language called Cypher that |ooked a bit like SQL but expressed graph matching
gueries. Sowegaveit atry, usingtheneo4j - shel | , toincrementally expand the query, just by declaring
what rel ationships we wanted to be taken into account and which properties of nodes and relationships
to filter and sort on.

Example 16.1. Cypher based movie recommendation on Repository

interface Movi eRepository extends G aphRepository<Mvie> {
@uery("
start user=node({0})
mat ch user-[: FRIEND] -friend-[r: RATED] - >novi e
return novie
order by avg(r.stars) desc, count(*) desc
limt 10
")

| t er abe<Mbvi e> reconmendMbvi es(User ne);

But we didn't have enough friends, so it was time to get some suggested. That would be like-minded
cineaststhat rated moviessimilarly to us. Again Cypher to therescue, thistimeonly abit more complex.
Something that became obvious with both queriesis that graph queries are aways local, so they start
from anode, or set of nodes or relationships, and then expand outwards from there.

Example 16.2. Cypher - Friend Recommendation on Repository

interface UserRepository extends G aphRepository<User> {
@uery("
start user=node({0})
mat ch user-[r: RATED) - >novi e<-[r2: RATED] - | i kem nded,
user-[: FRIEND] -friend
where r.stars > 3 and r2.stars >= 3
return |ikem nded
order by count(*) desc
limt 10
")

| t erabe<User > suggest Fri ends(User ne);

The controllers simply called these methods, added their results to the model, and the view rendered
the recommendations alongside the user's own ratings.

36

Chapter 17. Conclusion

To new frontiers

Pretty neat. We were satisfied with what we got here with little effort and high performance. Lots of
opportunities to expand the social movie database showed up during development. Like adding more
social featuresliketagging, communication streams, location based features (cinemas) and much more.

But we leave you with that as an exercise to enjoy and explore. Thanks for following the tutorial and
make sureto get back to uswith suggestions for improvements or reports about unexpected behaviours
at the discussion forums, or the issue tracker.

37

http://spring.neo4j.org/discussions
http://spring.neo4j.org/issues

	Cineasts.net - The Social Movie Database
	Table of Contents
	Foreword by Rod Johnson
	Foreword by Emil Eifrem
	Part I. Tutorial
	Chapter 1. Introducing our project
	Chapter 2. The Spring stack
	2.1. Required setup

	Chapter 3. The domain model
	Chapter 4. Learning Neo4j
	Chapter 5. Spring Data Neo4j
	Chapter 6. Annotating the domain
	Chapter 7. Indexing
	Chapter 8. Repositories
	Chapter 9. Relationships
	9.1. Creating relationships
	9.2. Accessing related entities
	9.3. Accessing the relationship entities

	Chapter 10. Get it running
	10.1. Populating the database
	10.2. Inspecting the datastore
	10.2.1. Neoclipse visualization
	10.2.2. The Neo4j Shell

	Chapter 11. Web views
	11.1. Searching
	11.2. Listing results

	Chapter 12. Adding social
	12.1. Users
	12.2. Ratings for movies

	Chapter 13. Adding Security
	Chapter 14. More UI
	Chapter 15. Importing Data
	Chapter 16. Recommendations
	Chapter 17. Conclusion

