
Cineasts.net - The Social Movie Database

The Spring Data Neo4j Tutorial

Copyright © 2010 - 2011 Michael Hunger, David Montag

Copies of this document may be made for your own use and for distribution to others, provided that you
do not charge any fee for such copies and further provided that each copy contains this Copyright Notice,

whether distributed in print or electronically. This is an excerpt from the Spring Data Neo4j Guide Book
"Good Relationships", which is available at http://spring.neo4j.org and will be published as an InfoQ Book.

ii

Foreword by Rod Johnson ... iii

Foreword by Emil Eifrem .. iv

I. Tutorial .. 1

1. Introducing our project ... 2

2. The Spring stack .. 3

2.1. Required setup .. 3

3. The domain model ... 5

4. Learning Neo4j .. 7

5. Spring Data Neo4j ... 9

6. Annotating the domain ... 10

7. Indexing .. 11

8. Repositories ... 12

9. Relationships .. 14

9.1. Creating relationships .. 14

9.2. Accessing related entities ... 15

9.3. Accessing the relationship entities .. 16

10. Get it running .. 17

10.1. Populating the database .. 17

10.2. Inspecting the datastore .. 17

10.2.1. Neoclipse visualization .. 17

10.2.2. The Neo4j Shell .. 18

11. Web views ... 20

11.1. Searching .. 21

11.2. Listing results .. 21

12. Adding social ... 24

12.1. Users ... 24

12.2. Ratings for movies ... 25

13. Adding Security ... 26

14. More UI ... 30

15. Importing Data ... 33

16. Recommendations ... 36

17. Conclusion ... 37

iii

Foreword by Rod Johnson
I’m excited about Spring Data Neo4j for several reasons.

First, this project is in a very important space. We are in an era of transition. A very few years

ago, a relational database was a given for storing nearly all the data in nearly all applications. While

relational databases remain important, new application requirements and massive data proliferation

have prompted a richer choice of data stores. Graph databases have some very interesting strengths,

and Neo4j is proving itself valuable in many applications. It's a choice you should add to your toolbox.

Second, Spring Data Neo4j is an innovative project, which makes it easy to work with one of the most

interesting new data stores. Unfortunately, the proliferation of new data stores has not been matched

by innovation in programming models to work with them. Ironically, just after modern ORM mapping

made working with relational data in Java relatively easy, the data store disruption occurred, and

developers were back to square one: struggling once more with clumsy, low level APIs. Working with

most non-relational technologies is overly complex and imposes too much work on developers. Spring

Data Neo4j makes working with Neo4j amazingly easy, and therefore has the potential to make you

more successful as a developer. Its use of AspectJ to eliminate persistence code from your domain

model is truly innovative, and on the cutting edge of today’s Java technologies.

Third, I'm excited about Spring Data Neo4j for personal reasons. I no longer get to write code as often

as I would like. My initial convictions that Spring and AspectJ could both make building applications

with Neo4j dramatically easier and cross-store object navigation possible gave me an excuse for a

much-needed coding binge early in 2010. This led to a prototype of what became Spring Data Neo4j —

at times written paired with Emil. I’m sure the vast majority of my code has long since been replaced

(probably for the better) by coders who aren't rusty — thanks Michael and Thomas! — but I retain

my pleasant memories.

Finally, Spring Data Neo4j is part of the broader Spring Data project: one of the key areas in which

Spring is innovating to help meet new application requirements. I encourage you to explore Spring

Data, and — better still — become involved in the community and contribute.

Enjoy the Spring Data Neo4j book, and happy coding!

Rod Johnson, Founder, Spring and SVP, Application Platform, VMware

iv

Foreword by Emil Eifrem
"Spring is the most popular middleware on the planet," I thought to myself as I walked up to Rod

Johnson in late 2009 at the JAOO conference in Aarhus, Denmark. Rod had just given an introductory

presentation about Spring Roo and when he was done I told him "Great talk. You're clearly building

a stack for the future. What about support for non-relational databases?"

We started talking and quickly agreed that NOSQL will play an important role in emerging stacks.

Now, a year and half later, Spring Data Neo4j is available in its first stable release and I'm blown away

by the result. Never before in any environment, in any programming framework, in any stack, has it

been so easy and intuitive to tap into the power of a graph database like Neo4j. It's a testament to the

efforts by an awesome team of four hackers from Neo Technology and VMware: Michael Hunger,

David Montag, Thomas Risberg and Mark Pollack.

The Spring framework revolutionized how we all wrote enterprise Java applications and today it's

used by millions of enterprise developers. Graph databases also stand out in the NOSQL crowd when

it comes to enterprise adoption. You can find graph databases used in areas as diverse as network

management, fraud detection, cloud management, anything with social data, geo and location services,

master data management, bioinformatics, configuration databases, and much more.

Spring developers deserve access to the best tools available to solve their problem. Sometimes that's

a relational database accessed through JPA. But more often than not, a graph database like Neo4j is

the perfect fit for your project. I hope that Spring Data Neo4j will give you access to the power and

flexibility of graph databases while retaining the familiar productivity and convenience of the Spring

framework.

Enjoy the Spring Data Neo4j guide book and welcome to the wonderful world of graph databases!

Emil Eifrem, CEO of Neo Technology

1

Part I. Tutorial

This tutorial walks through the creation of a complete web application called cineasts.net, built with Spring Data

Neo4j. Cineasts are people who love movies, and the site is a gathering place for moviegoers. For cineasts.net

we decided to add a social aspect to the rating of movies, allowing friends to share their scores and get

recommendations for new friends and movies.

The tutorial takes the reader through the steps necessary to create the application. It provides the configuration

and code examples that are needed to understand what's happening in Spring Data Neo4j. The complete source

code for the app is available on Github.

http://spring.neo4j.org/cineasts

2

Chapter 1. Introducing our project

Allow me to introduce Cineasts.net

Once upon a time we wanted to build a social movie database. At first there was only the name:

Cineasts, the movie enthusiasts who have a burning passion for movies. So we went ahead and bought

the domain cineasts.net, and so we were off to a good start.

We had some ideas about the domain model too. There would obviously be actors playing roles in

movies. We also needed someone to rate the movies - enter the cineast. And cineasts, being the social

people they are, they wanted to make friends with other fellow cineasts. Imagine instantly finding

someone to watch a movie with, or share movie preferences with. Even better, finding new friends and

movies based on what you and your friends like.

When we looked for possible sources of data, IMDB was our first stop. But they're a bit expensive for

our taste, charging $15k USD for data access. Fortunately, we found themoviedb.org which provides

user-generated data for free. They also have liberal terms and conditions, and a nice API for retrieving

the data.

We had many more ideas, but we wanted to get something out there quickly. Here is how we envisioned

the final website:

http://cineasts.net
http://themoviedb.org

3

Chapter 2. The Spring stack

Being Spring developers, we naturally choose components from the Spring stack to do all the heavy

lifting. After all, we have the concept etched out, so we're already halfway there.

What database would fit both the complex network of cineasts, movies, actors, roles, ratings, and

friends, while also being able to support the recommendation algorithms that we had in mind? We

had no idea.

But hold your horses, there is this new Spring Data project, started in 2010, which brings the

convenience of the Spring programming model to NOSQL databases. That should be in line with what

we already know, providing us with a quick start. We had a look at the list of projects supporting

the different NOSQL databases out there. Only one of them mentioned the kind of social network

we were thinking of - Spring Data Neo4j for the Neo4j graph database. Neo4j's slogan of "value in

relationships" plus "Enterprise NOSQL" and the accompanying docs looked like what we needed. We

decided to give it a try.

2.1. Required setup

To set up the project we created a public Github account and began setting up the infrastructure

for a Spring web project using Maven as the build system. So we added the dependencies

for the Spring Framework libraries, added the web.xml for the DispatcherServlet, and the

applicationContext.xml in the webapp directory.

Example 2.1. Project pom.xml

<properties>

 <spring.version>3.0.7.RELEASE</spring.version>

</properties>

<dependencies>

<dependency>

 <groupId>org.springframework</groupId>

 <!-- abbreviated for all the dependencies -->

 <artifactId>spring-(core,context,aop,aspects,tx,webmvc)</artifactId>

 <version>${spring.version}</version>

</dependency>

<dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-test</artifactId>

 <version>${spring.version}</version>

 <scope>test</scope>

</dependency>

</dependencies>

The Spring stack

4

Example 2.2. Project web.xml

<listener>

 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

<servlet>

 <servlet-name>dispatcherServlet</servlet-name>

 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>dispatcherServlet</servlet-name>

 <url-pattern>/</url-pattern>

</servlet-mapping>

With this setup in place we were ready for the first spike: creating a simple MovieController showing

a static view. See the Spring Framework documentation for information on doing this.

Example 2.3. applicationContext.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/tx

 http://www.springframework.org/schema/tx/spring-tx-3.0.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <context:annotation-config/>

 <context:spring-configured/>

 <context:component-scan base-package="org.neo4j.cineasts">

 <context:exclude-filter type="annotation"

 expression="org.springframework.stereotype.Controller"/>

 </context:component-scan>

 <tx:annotation-driven mode="proxy"/>

</beans>

Example 2.4. dispatcherServlet-servlet.xml

<mvc:annotation-driven/>

<mvc:resources mapping="/images/**" location="/images/"/>

<mvc:resources mapping="/resources/**" location="/resources/"/>

<context:component-scan base-package="org.neo4j.cineasts.controller"/>

<bean id="viewResolver"

 class="org.springframework.web.servlet.view.InternalResourceViewResolver"

 p:prefix="/WEB-INF/views/" p:suffix=".jsp"/>

We spun up Tomcat in STS with the App and it worked fine. For completeness we also added Jetty

to the maven-config and tested it by invoking mvn jetty:run to see if there were any obvious issues

with the config. It all seemed to work just fine.

5

Chapter 3. The domain model

Setting the stage

We wanted to outline the domain model before diving into library details. We also looked at the data

model of the themoviedb.org data to confirm that it matched our expectations.

In Java code this looks pretty straightforward:

The domain model

6

Example 3.1. Domain model

class Movie {

 String id;

 String title;

 int year;

 Set<Role> cast;

}

class Actor {

 String id;

 String name;

 Set<Movie> filmography;

 Role playedIn(Movie movie, String role) { ... }

}

class Role {

 Movie movie;

 Actor actor;

 String role;

}

class User {

 String login;

 String name;

 String password;

 Set<Rating> ratings;

 Set<User> friends;

 Rating rate(Movie movie, int stars, String comment) { ... }

 void befriend(User user) { ... }

}

class Rating {

 User user;

 Movie movie;

 int stars;

 String comment;

}

Then we wrote some simple tests to show that the basic design of the domain is good enough so far.

Just creating a movie, populating it with actors, and allowing users to rate it.

7

Chapter 4. Learning Neo4j

Graphs ahead

Now we needed to figure out how to store our chosen domain model in the chosen database. First we

read up about graph databases, in particular our chosen one, Neo4j. The Neo4j data model consists

of nodes and relationships, both of which can have key/value-style properties. What does that mean,

exactly? Nodes are the graph database name for records, with property keys instead of column names.

That's normal enough. Relationships are the special part. In Neo4j, relationships are first-class citizens,

meaning they are more than a simple foreign-key reference to another record, relationships carry

information. So we can link together nodes into semantically rich networks. This really appealed to

us. Then we found that we were also able to index nodes and relationships by {key, value} pairs. We

also found that we could traverse relationships both imperatively using the core API, and declaratively

using a query-like Traversal Description. Besides those programmatic traversals there was the powerful

graph query language called Cypher and an interesting looking DSL named Gremlin. So lots of ways

of working with the graph.

We also learned that Neo4j is fully transactional and therefore upholds ACID guarantees for our data.

Durability is actually a good thing and we didn't have to scale to trillions of users and movies yet.

This is unusual for NOSQL databases, but easier for us to get our head around than non-transactional

eventual consistency. It also made us feel safe, though it also meant that we had to manage transactions.

Something to keep in mind later.

We started out by doing some prototyping with the Neo4j core API to get a feeling for how it works.

And also, to see what the domain might look like when it's saved in the graph database. After adding

the Maven dependency for Neo4j, we were ready to go.

Example 4.1. Neo4j Maven dependency

<dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j</artifactId>

 <version>1.6.M02</version>

</dependency>

http://neo4j.org
http://docs.neo4j.org/chunked/milestone/indexing.html
http://docs.neo4j.org/chunked/milestone/tutorials-java-embedded-traversal.html
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
https://github.com/tinkerpop/gremlin/wiki
http://en.wikipedia.org/wiki/ACID

Learning Neo4j

8

Example 4.2. Neo4j core API (transaction code omitted)

enum RelationshipTypes implements RelationshipType { ACTS_IN };

GraphDatabaseService gds = new EmbeddedGraphDatabase("/path/to/store");

Node forrest=gds.createNode();

forrest.setProperty("title","Forrest Gump");

forrest.setProperty("year",1994);

gds.index().forNodes("movies").add(forrest,"id",1);

Node tom=gds.createNode();

tom.setProperty("name","Tom Hanks");

Relationship role=tom.createRelationshipTo(forrest,ACTS_IN);

role.setProperty("role","Forrest");

Node movie=gds.index().forNodes("movies").get("id",1).getSingle();

assertEquals("Forrest Gump", movie.getProperty("title"));

for (Relationship role : movie.getRelationships(ACTS_IN,INCOMING)) {

 Node actor=role.getOtherNode(movie);

 assertEquals("Tom Hanks", actor.getProperty("name"));

 assertEquals("Forrest", role.getProperty("role"));

}

9

Chapter 5. Spring Data Neo4j

Conjuring magic

So far it had all been pure Spring Framework and Neo4j. However, using the Neo4j code in our domain

classes polluted them with graph database details. For this application, we wanted to keep the domain

classes clean. Spring Data Neo4j promised to do the heavy lifting for us, so we continued investigating

it.

Spring Data Neo4j comes with two mapping modes. The more powerful one depends heavily on

AspectJ, see ???, so we ignored it for the time being. The simple direct POJO-mapping copies the data

out of the graph and into our entities. Good enough for a web-application like ours.

The first step was to configure Maven:

Example 5.1. Spring Data Neo4j Maven configuration

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j</artifactId>

 <version>2.0.0.RELEASE</version>

</dependency>

The Spring context configuration was even easier, thanks to a provided namespace:

Example 5.2. Spring Data Neo4j context configuration

<beans xmlns="http://www.springframework.org/schema/beans" ...

 xmlns:neo4j="http://www.springframework.org/schema/data/neo4j"

 xsi:schemaLocation="... http://www.springframework.org/schema/data/neo4j

 http://www.springframework.org/schema/data/neo4j/spring-neo4j-2.0.xsd">

 ...

 <neo4j:config storeDirectory="data/graph.db"/>

 ...

</beans>

10

Chapter 6. Annotating the domain

Decorations

Looking at the Spring Data Neo4j documentation, we found a simple Hello World example and tried to

understand it. We also spotted a compact reference card which helped us a lot. The entity classes were

annotated with @NodeEntity. That was simple, so we added the annotation to our domain classes too.

Entity classes representing relationships were instead annotated with @RelationshipEntity. Property

fields were taken care of automatically. The only additional field we had to provide for all entities was

a id-field to store the node- and relationship-ids.

Example 6.1. Movie class with annotation

@NodeEntity

class Movie {

 @GraphId Long nodeId;

 String id;

 String title;

 int year;

 Set<Role> cast;

}

It was time to put our entities to the test. How could we now be assured that an attribute really was

persisted to the graph store? We wanted to load the entity and check the attribute. Either we could

have a Neo4jTemplate injected and use its findOne(id,type) method to load the entity. Or use a more

versatile Repository. The same goes for persisting entities, both Neo4jTemplate or the Repository

could be used. We decided to keep things simple for now.

So here's what our test ended up looking like:

Example 6.2. First test case

@Autowired Neo4jTemplate template;

@Test @Transactional public void persistedMovieShouldBeRetrievableFromGraphDb() {

 Movie forrestGump = template.save(new Movie("Forrest Gump", 1994));

 Movie retrievedMovie = template.findOne(forrestGump.getNodeId(), Movie.class);

 assertEqual("retrieved movie matches persisted one", forrestGump, retrievedMovie);

 assertEqual("retrieved movie title matches", "Forrest Gump", retrievedMovie.getTitle());

}

As Neo4j is transactional, we have to provide the transactional boundaries for mutating operations.

http://spring.neo4j.org/helloworld
http://spring.neo4j.org/notes

11

Chapter 7. Indexing

Do I know you?

There is an @Indexed annotation for fields. We wanted to try this out, and use it to guide the next test.

We added @Indexed to the id field of the Movie class. This field is intended to represent the external

ID that will be used in URIs and will be stable across database imports and updates. This time we went

with a simple GraphRepository to retrieve the indexed movie.

Example 7.1. Exact Indexing for Movie id

@NodeEntity class Movie {

 @Indexed String id;

 String title;

 int year;

}

@Autowired Neo4jTemplate template;

@Test @Transactional

 public void persistedMovieShouldBeRetrievableFromGraphDb() {

 int id = 1;

 Movie forrestGump = template.save(new Movie(id, "Forrest Gump", 1994));

 GraphRepository<Movie> movieRepository =

 template.repositoryFor(Movie.class);

 Movie retrievedMovie = movieRepository.findByPropertyValue("id", id);

 assertEqual("retrieved movie matches persisted one", forrestGump, retrievedMovie);

 assertEqual("retrieved movie title matches", "Forrest Gump", retrievedMovie.getTitle());

 }

12

Chapter 8. Repositories

Serving a good cause

We wanted to add repositories with domain-specific operations. Interestingly there was support for a

very advanced repository infrastructure. You just declare an entity specific repository interface and

get all commonly used methods for free without implementing any of boilerplate code.

So we started by creating a movie-related repository, simply by creating an empty interface.

Example 8.1. Movie repository

package org.neo4j.cineasts.repository;

public interface MovieRepository extends GraphRepository<Movie> {}

Then we enabled repository support in the Spring context configuration by simply adding:

Example 8.2. Repository context configuration

<neo4j:repositories base-package="org.neo4j.cineasts.repository"/>

Besides the existing repository operations (like CRUD, and many standard queries) it was possible

to declare custom methods, which we explored later. Those methods' names could be more domain

centric and expressive than the generic operations. For simple use-cases like finding by id's this is good

enough. So we first let Spring autowire our MovieController with the MovieRepository. That way

we could perform simple persistence operations.

Example 8.3. Usage of a repository

@Autowired MovieRepository repo;

...

 Movie movie = repo.findByPropertyValue("id",movieId);

We went on exploring the repository infrastructure. A very cool feature was something that we so far

only heard about from Grails developers. Deriving queries from method names. Impressive! So we

had a more explicit method for the id lookup.

Example 8.4. Derived movie-repository query method

public interface MovieRepository extends GraphRepository<Movie> {

 Movie getMovieById(String id);

}

In our wildest dreams we imagined the method names we would come up with, and what kinds of

queries those could generate. But some, more complex queries would be cumbersome to read and

write. So in those cases it is better to just annotate the finder method. We did this much later, and

just wanted to give you a peek into the future. There is much more, you can do with repositories, it

is worthwile to explore.

Repositories

13

Example 8.5. Annotated movie-repository query method

public interface MovieRepository extends GraphRepository<Movie> {

 @Query("start user=node:User({0}) match user-[r:RATED]->movie return movie order by r.stars desc limit 10")

 Iterable<Movie> getTopRatedMovies(User uer);

}

14

Chapter 9. Relationships

A convincing act

Our application was not very much fun yet, just storing movies and actors. After all, the power is in

the relationships between them. Fortunately, Neo4j treats relationships as first class citizens, allowing

them to be addressed individually and have properties assigned to them. That allows for representing

them as entities if needed.

9.1. Creating relationships

Relationships without properties ("anonymous" relationships) don't require any @RelationshipEntity

classes. "Unfortunately" we had none of those, because our relationships were richer. Therefore

we went with the Role relationship between Movie and Actor. It had to be annotated with

@RelationshipEntity and the @StartNode and @EndNode had to be marked. So our Role looked like

this:

Example 9.1. Role class

@RelationshipEntity

class Role {

 @StartNode Actor actor;

 @EndNode Movie movie;

 String role;

}

When writing a test for the Role we tried to create the relationship entity just by instantiating it with

new and saving it with the template, but we got an exception saying that it misses the relationship-type.

We had to add it to the @RelationshipEntity as an attribute (or as a @RelationshipType annotated

field in the RelationshipEntity). Another way to create instances of relationship-entities is to use the

methods provided by the template, like createRelationshipBetween.

Relationships

15

Example 9.2. Relating actors to movies

@RelationshipEntity(type="ACTS_IN")

class Role {

 @StartNode Actor actor;

 @EndNode Movie movie;

 String role;

}

class Actor {

...

 public Role playedIn(Movie movie, String roleName) {

 Role role = new Role(this, movie, roleName);

 this.roles.add(role);

 return role;

 }

}

 Role role = tomHanks.playedIn(forrestGump, "Forrest Gump");

 // either save the actor

 template.save(tomHanks);

 // or the role

 template.save(role);

 // alternative approach

 Role role = template.createRelationshipBetween(actor,movie,

 Role.class, "ACTS_IN");

9.2. Accessing related entities

Now we wanted to find connected entities. We already had fields for the relationships in both classes.

It was time to annotate them correctly. The Neo4j relationship type and direction were easy to figure

out. The direction even defaulted to outgoing, so we only had to specify it for the movie. If we want to

use the same relationship between the two entities we have to make sure to provide a dedicated type,

otherwise the field-names would be used resulting in different relationships.

Example 9.3. @RelatedTo usage

@NodeEntity

class Movie {

 @Indexed int id;

 String title;

 int year;

 @RelatedTo(type = "ACTS_IN", direction = Direction.INCOMING)

 Set<Actor> cast;

}

@NodeEntity

class Actor {

 @Indexed int id;

 String name;

 @RelatedTo(type = "ACTS_IN")

 Set<Movie> movies;

 public Role playedIn(Movie movie, String roleName) {

 return new Role(this,movie, roleName);

 }

}

Changes to the collections of related entities are reflected into the graph on saving of the entity.

Relationships

16

We made sure to add some tests for using the relationshhips, so we were assured that the collections

worked as advertised.

9.3. Accessing the relationship entities

But we still couldn't access the Role relationship entities themselves. It turned out that there was a

separate annotation @RelatedToVia for accessing the actual relationship entities. And we could declare

the field as an Iterable<Role>, with read-only semantics or on a Collection or Set<Role> field with

modifying semantics. So off we went, creating our first real relationship (just kidding).

To have the collections of relationships being read eagerly during the loading of the Movie we have

to annotate it with the @Fetch annotation. Otherwise Spring Data Neo4j refrains from following

relationships automatically. The risk of loading the whole graph into memory would be too high.

Example 9.4. @RelatedToVia usage

@NodeEntity

class Movie {

 @Indexed int id;

 String title;

 int year;

 @Fetch @RelatedToVia(type = "ACTS_IN", direction = Direction.INCOMING)

 Iterable<Roles> roles;

}

After watching the tests pass, we were confident that the changes to the relationship fields were really

stored to the underlying relationships in the graph. We were pretty satisfied with persisting our domain.

17

Chapter 10. Get it running

Curtains up!

Now we had a pretty complete application. It was time to put it to the test.

10.1. Populating the database

Before we opened the gates we needed to add some movie data. So we wrote a small class for populating

the database which could be called from our controller. To make it safe to call several times we added

index lookups to check for existing entries. A simple /populate endpoint for the controller that called

it would be enough for now.

Example 10.1. Populating the database - Controller

@Service

public class DatabasePopulator {

 @Transactional

 public List<Movie> populateDatabase() {

 Actor tomHanks = new Actor("1", "Tom Hanks");

 Movie forrestGump = new Movie("1", "Forrest Gump");

 tomHanks.playedIn(forrestGump,"Forrest");

 template.save(forrestGump);

 return asList(forrestGump);

 }

}

@Controller

public class MovieController {

 @Autowired private DatabasePopulator populator;

 @RequestMapping(value = "/populate", method = RequestMethod.POST)

 public String populateDatabase(Model model) {

 Collection<Movie> movies = populator.populateDatabase();

 model.addAttribute("movies",movies);

 return "/movies/list";

 }

}

Accessing the URI we could see the list of movies we had added.

10.2. Inspecting the datastore

Being the geeks we are, we also wanted to inspect the raw data in the database. Reading the Neo4j

docs, there were a couple of different ways of going about this.

10.2.1. Neoclipse visualization

First we tried Neoclipse, an Eclipse RCP application/plugin that opens an existing graph store and

visualizes its content. After getting an exception about concurrent access, we learned that we have to

use Neoclipse in read-only mode when our webapp was still running. Good to know.

http://docs.neo4j.org/
http://docs.neo4j.org/

Get it running

18

10.2.2. The Neo4j Shell

For console junkies there was also a shell that was able to connect to a running Neo4j instance (if it

was started with the enable_remote_shell=true parameter), or reads an existing graph store directly.

Example 10.2. Starting the Neo4j Shell

bash# neo4j-shell -readonly -path data/graph.db

bash# neo4j-shell -readonly -port 1337

The shell was very similar to a standard Bash shell. We were able to cd to between the nodes, and

ls the relationships and properties. There were also more advanced commands for indexing, queries

and traversals.

Get it running

19

Example 10.3. Neo4j Shell usage

neo4j-sh[readonly] (0)$ help

Available commands: index dbinfo ls rm alias set eval mv gsh env rmrel mkrel

 trav help pwd paths ... man cd

Use man <command> for info about each command.

neo4j-sh[readonly] (0)$ index --cd -g User login micha

neo4j-sh[readonly] (Micha,1)$ ls

*__type__ =[org.neo4j.cineasts.domain.User]

*login =[micha]

*name =[Micha]

*roles =[ROLE_ADMIN,ROLE_USER]

(me) --[FRIEND]-> (Olliver,2)

(me) --[RATED]-> (The Matrix,3)

neo4j-sh[readonly] (Micha,1)$ ls 2

*__type__ =[org.neo4j.cineasts.domain.User]

*login =[ollie]

*name =[Olliver]

*roles =[ROLE_USER]

(Olliver,2) <-[FRIEND]-- (me)

neo4j-sh[readonly] (Micha,1)$ cd 3

neo4j-sh[readonly] (The Matrix,3)$ ls

*__type__ =[org.neo4j.cineasts.domain.Movie]

*description =[Neo is a young software engineer and part-time hacker who is singled ...]

*genre =[Action]

*homepage =[http://whatisthematrix.warnerbros.com/]

...

*studio =[Warner Bros. Pictures]

*tagline =[Welcome to the Real World.]

*title =[The Matrix]

*trailer =[http://www.youtube.com/watch?v=UM5yepZ21pI]

*version =[324]

(me) <-[ACTS_IN]-- (Marc Aden,19)

(me) <-[ACTS_IN]-- (David Aston,18)

...

(me) <-[ACTS_IN]-- (Keanu Reeves,6)

(me) <-[DIRECTED]-- (Andy Wachowski,5)

(me) <-[DIRECTED]-- (Lana Wachowski,4)

(me) <-[RATED]-- (Micha,1)

20

Chapter 11. Web views

Showing off

After having put some data in the graph database, we also wanted to show it to the user. Adding the

controller method to show a single movie with its attributes and cast in a JSP was straightforward.

It basically just involved using the repository to look the movie up and add it to the model, and then

forwarding to the /movies/show view and voilá.

Example 11.1. Controller for showing movies

@RequestMapping(value = "/movies/{movieId}",

method = RequestMethod.GET, headers = "Accept=text/html")

public String singleMovieView(final Model model, @PathVariable String movieId) {

 Movie movie = repository.findById(movieId);

 model.addAttribute("id", movieId);

 if (movie != null) {

 model.addAttribute("movie", movie);

 model.addAttribute("stars", movie.getStars());

 }

 return "/movies/show";

}

Example 11.2. Populating the database - JSP /movies/show

<%@ page session="false" %>

 <%@ taglib uri="http://www.springframework.org/tags" prefix="s" %>

 <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

 <c:choose>

 <c:when test="${not empty movie}">

 <h2>${movie.title} (${stars} Stars)</h2>

 <c:if test="${not empty movie.roles}">

 <c:forEach items="${movie.roles}" var="role">

 <c:out value="${role.actor.name}" /> as

 <c:out value="${role.name}" />

 </c:forEach>

 </c:if>

 </c:when>

 <c:otherwise>

 No Movie with id ${id} found!

 </c:otherwise>

 </c:choose>

The UI had now evolved to this:

Web views

21

11.1. Searching

The next thing was to allow users to search for movies, so we needed some fulltext search capabilities.

As the default index provider implementation of Neo4j is based on Apache Lucene, we were delighted

to see that fulltext indexes were supported out of the box.

We happily annotated the title field of the Movie class with @Indexed(type = FULLTEXT). Next thing

we got an exception telling us that we had to specify a separate index name. So we simply changed it

to @Indexed(type = FULLTEXT, indexName = "search").

With derived finder methods, finding things became easy. By simply declaring a finder-method name

that expressed the required properties, it worked without annotations. Cool stuff and you could even

tell it that it should return pages of movies, its size and offset specified by a Pageable which also

contains sort information. Using the like operator indicates that fulltext search should be used, instead

of an exact search.

Example 11.3. Searching for movies

public interface MovieRepository ... {

 Movie findById(String id);

 Page<Movie> findByTitleLike(String title, Pageable page);

}

11.2. Listing results

We then used this result in the controller to render a page of movies, driven by a search box. The movie

properties and the cast were accessible through the getters in the domain classes.

http://lucene.apache.org/java/docs/index.html

Web views

22

Example 11.4. Search controller

@RequestMapping(value = "/movies",

method = RequestMethod.GET, headers = "Accept=text/html")

public String findMovies(Model model, @RequestParam("q") String query) {

 Page<Movie> movies = repository.findByTitleLike(query, new PageRequest(0,20));

 model.addAttribute("movies", movies);

 model.addAttribute("query", query);

 return "/movies/list";

}

Example 11.5. Search Results JSP

<h2>Movies</h2>

<c:choose>

 <c:when test="${not empty movies}">

 <dl class="listings">

 <c:forEach items="${movies}" var="movie">

 <dt>

 <c:out value="${movie.title}" />

 </dt>

 <dd>

 <c:out value="${movie.description}" escapeXml="true" />

 </dd>

 </c:forEach>

 </dl>

 </c:when>

 <c:otherwise>

 No movies found for query "${query}".

 </c:otherwise>

</c:choose>

The UI now looked like this:

Web views

23

24

Chapter 12. Adding social

Movies 2.0

So far, the website had only been a plain old movie database. We now wanted to add a touch of social

to it.

12.1. Users

So we started out by taking the User class that we'd already coded and made it a full-fledged Spring

Data Neo4j entity. We added the ability to create friends and to rate movies. With that we also added

a simple UserRepository that was able to look up users by ID.

The relationships of the user are his friends and the movie-ratings which is implemented with a Rating

Relationship-Entity. This time we used a different approach (for educational and curiosity purposes)

to create the Rating relationships. The createRelationshipBetween operation of the Neo4jTemplate

was our matchmaker of choice.

Example 12.1. Social entities

@NodeEntity

class User {

 @Indexed String login;

 String name;

 String password;

 @RelatedToVia(type = RATED)

 @Fetch Set<Rating> ratings;

 @RelatedTo(type = "FRIEND", direction=Direction.BOTH)

 @Fetch Set<User> friends;

 public Rating rate(Neo4jOperations template, Movie movie, int stars, String comment) {

 final Rating rating = template.createRelationshipBetween(this, movie, Rating.class, RATED, false);

 rating.rate(stars, comment);

 return template.save(rating);

 }

 public void addFriend(User user) {

 this.friends.add(user);

 }

}

@RelationshipEntity

class Rating {

 @StartNode User user;

 @EndNode Movie movie;

 int stars;

 String comment;

 public Rating rate(int stars, String comment) {

 this.stars = stars; this.comment = comment;

 return this;

 }

}

We extended the DatabasePopulator to add some users and ratings to the initial setup.

Adding social

25

Example 12.2. Populate users and ratings

@Transactional

public List<Movie> populateDatabase() {

 Actor tomHanks = new Actor("1", "Tom Hanks");

 Movie forestGump = new Movie("1", "Forrest Gump");

 tomHanks.playedIn(forestGump, "Forrest");

 template.save(tomHanks);

 User me = template.save(new User("micha", "Micha", "password"));

 Rating awesome = me.rate(template, forestGump, 5, "Awesome");

 User ollie = template.save(new User("ollie", "Oliver", "password"));

 ollie.rate(template,forestGump, 2, "ok");

 me.addFriend(ollie);

 template.save(me);

 return asList(forestGump);

}

12.2. Ratings for movies

We also put a ratings field into the Movie class to be able to get a movie's ratings, and also a method

to average its star rating.

Example 12.3. Getting the rating of a movie

class Movie {

 ...

 @RelatedToVia(type="RATED", direction = Direction.INCOMING)

 @Fetch Iterable<Rating> ratings;

 public int getStars() {

 int stars = 0, count = 0;

 for (Rating rating : ratings) {

 stars += rating.getStars(); count++;

 }

 return count == 0 ? 0 : stars / count;

 }

}

Fortunately our tests highlighted the division by zero error when calculating the stars for a movie

without ratings. The next steps were to add this information to the movie presentation in the UI, and

creating a user profile page. But for that to happen, users must first be able to log in.

26

Chapter 13. Adding Security

Protecting assets

To handle an active user in the webapp we had to put it in the session and add login and registration

pages. Of course the pages that were only meant for logged-in users had to be secured as well.

Being Spring users, we naturally used Spring Security for this. We wrote a simple

UserDetailsService by extending a repository with a custom implementation that takes care

of looking up the users and validating their credentials. The config is located in a separate

applicationContext-security.xml. But first, as always, Maven and web.xml setup.

Example 13.1. Spring Security pom.xml

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-web</artifactId>

 <version>${spring.version}</version>

</dependency>

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-config</artifactId>

 <version>${spring.version}</version>

</dependency>

Example 13.2. Spring Security web.xml

<context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/applicationContext-security.xml

 /WEB-INF/applicationContext.xml

 </param-value>

</context-param>

<listener>

 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

<filter>

 <filter-name>springSecurityFilterChain</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

 <filter-name>springSecurityFilterChain</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Adding Security

27

Example 13.3. Spring Security applicationContext-security.xml

<security:global-method-security secured-annotations="enabled">

</security:global-method-security>

<security:http auto-config="true" access-denied-page="/auth/denied">

 <security:intercept-url pattern="/admin/*" access="ROLE_ADMIN"/>

 <security:intercept-url pattern="/import/*" access="ROLE_ADMIN"/>

 <security:intercept-url pattern="/user/*" access="ROLE_USER"/>

 <security:intercept-url pattern="/auth/login" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:intercept-url pattern="/auth/register" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:intercept-url pattern="/**" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:form-login login-page="/auth/login"

 authentication-failure-url="/auth/login?login_error=true"

 default-target-url="/user"/>

 <security:logout logout-url="/auth/logout" logout-success-url="/" invalidate-session="true"/>

</security:http>

<security:authentication-manager>

 <security:authentication-provider user-service-ref="userRepository">

 <security:password-encoder hash="md5">

 <security:salt-source system-wide="cewuiqwzie"/>

 </security:password-encoder>

 </security:authentication-provider>

</security:authentication-manager>

Adding Security

28

Example 13.4. CinceastUserDetailsService interface and UserRepository custom
implementation

public interface CineastsUserDetailsService extends UserDetailsService {

 @Override

 CineastsUserDetails loadUserByUsername(String login)

 throws UsernameNotFoundException, DataAccessException;

 User getUserFromSession();

 @Transactional

 Rating rate(Movie movie, User user, int stars, String comment);

 @Transactional

 User register(String login, String name, String password);

 @Transactional

 void addFriend(String login, final User userFromSession);

}

public interface UserRepository extends GraphRepository<User>,

 RelationshipOperationsRepository<User>,

 CineastsUserDetailsService {

 User findByLogin(String login);

}

public class UserRepositoryImpl implements CineastsUserDetailsService {

 @Autowired private Neo4jOperations template;

 @Override

 public CineastsUserDetails loadUserByUsername(String login)

 throws UsernameNotFoundException, DataAccessException {

 final User user = findByLogin(login);

 if (user==null) throw

 new UsernameNotFoundException("Username not found: "+login);

 return new CineastsUserDetails(user);

 }

 private User findByLogin(String login) {

 return template.lookup(User.class,"login",login)

 .to(User.class).single();

 }

 @Override

 public User getUserFromSession() {

 SecurityContext context = SecurityContextHolder.getContext();

 Authentication authentication = context.getAuthentication();

 Object principal = authentication.getPrincipal();

 if (principal instanceof CineastsUserDetails) {

 CineastsUserDetails userDetails = (CineastsUserDetails) principal;

 return userDetails.getUser();

 }

 return null;

 }

}

public class CineastsUserDetails implements UserDetails {

 private final User user;

 public CineastsUserDetails(User user) {

 this.user = user;

 }

 @Override

 public Collection<GrantedAuthority> getAuthorities() {

 User.Roles[] roles = user.getRoles();

 if (roles ==null) return Collections.emptyList();

 return Arrays.<GrantedAuthority>asList(roles);

 }

 @Override

 public String getPassword() {

 return user.getPassword();

 }

 @Override

 public String getUsername() {

 return user.getLogin();

 }

 ...

 public User getUser() {

 return user;

 }

}

Adding Security

29

Any logged-in user was now available in the session, and could be used for all the social interactions.

The remaining work for this was mainly adding controller methods and JSPs for the views. We used

the helper method getUserFromSession() in the controllers to access the logged-in user and put it in

the model for rendering. Here's what the UI had evolved to:

30

Chapter 14. More UI

Oh the glamour

To create a nice user experience, we wanted to have a nice looking app. Not something that looked like

a toddler made it. So we got some user experience people involved and the results were impressive.

This sections presents some of the remaining screen shots of Cineasts.net.

More UI

31

More UI

32

33

Chapter 15. Importing Data

The dusty archives

It was now time to pull the data from themoviedb.org. Registering there and getting an API key was

simple, as was using the API on the command-line with curl. Looking at the JSON returned for movies

and people, we decided to enhance our domain model and add some more fields to enrich the UI.

Example 15.1. JSON movie response

[{"popularity":3,

"translated":true, "adult":false, "language":"en",

"original_name":"[Rec]", "name":"[Rec]", "alternative_name":"[REC]",

"movie_type":"movie",

"id":8329, "imdb_id":"tt1038988", "url":"http://www.themoviedb.org/movie/8329",

"votes":11, "rating":7.2,

"status":"Released",

"tagline":"One Witness. One Camera",

"certification":"R",

"overview":"\"REC\" turns on a young TV reporter and her cameraman who cover the night shift

 at the local fire station...

"keywords":["terror", "lebende leichen", "obsession", "camcorder", "firemen", "reality tv ",

 "bite", "cinematographer",

"attempt to escape", "virus", "lodger", "live-reportage", "schwerverletzt"],

"released":"2007-08-29",

"runtime":78,

"budget":0,

"revenue":0,

"homepage":"http://www.3l-filmverleih.de/rec",

"trailer":"http://www.youtube.com/watch?v=YQUkX_XowqI",

"genres":[{"type":"genre",

"url":"http://themoviedb.org/genre/horror",

"name":"Horror",

"id":27}],

"studios":[{"url":"http://www.themoviedb.org/company/2270", "name":"Filmax Group", "id":2270}],

"languages_spoken":[{"code":"es", "name":"Spanish", "native_name":"Espa\u00f1ol"}],

"countries":[{"code":"ES", "name":"Spain", "url":"http://www.themoviedb.org/country/es"}],

"posters":[{"image":{"type":"poster",

"size":"original", "height":1000, "width":706,

"url":"http://cf1.imgobject.com/posters/3a0/4cc8df415e73d650240003a0/rec-original.jpg",

"id":"4cc8df415e73d650240003a0"}},

....

"cast":[{"name":"Manuela Velasco",

"job":"Actor", "department":"Actors",

"character":"Angela Vidal",

"id":34793, "order":0, "cast_id":1,

"url":"http://www.themoviedb.org/person/34793",

"profile":"http://cf1.imgobject.com/profiles/390/.../manuela-velasco-thumb.jpg"},

...

{"name":"Gl\u00f2ria Viguer",

"job":"Costume Design", "department":"Costume \u0026 Make-Up",

"character":"",

"id":54531, "order":0, "cast_id":21,

"url":"http://www.themoviedb.org/person/54531",

"profile":""}],

"version":150, "last_modified_at":"2011-02-20 23:16:57"}]

http://themoviedb.org

Importing Data

34

Example 15.2. JSON actor response

[{"popularity":3,

"name":"Glenn Strange", "known_as":[{"name":"George Glenn Strange"}, {"name":"Glen Strange"},

{"name":"Glen 'Peewee' Strange"}, {"name":"Peewee Strange"}, {"name":"'Peewee' Strange"}],

"id":30112,

"biography":"",

"known_movies":4,

"birthday":"1899-08-16", "birthplace":"Weed, New Mexico, USA",

"url":"http://www.themoviedb.org/person/30112",

"filmography":[{"name":"Bud Abbott Lou Costello Meet Frankenstein",

"id":3073,

"job":"Actor", "department":"Actors",

"character":"The Frankenstein Monster",

"cast_id":23,

"url":"http://www.themoviedb.org/movie/3073",

"poster":"http://cf1.imgobject.com/posters/4ca/.../bud-abbott-lou-costello-meet-frankenstein-cover.jpg",

"adult":false, "release":"1948-06-15"},

...],

"profile":[],

"version":19, "last_modified_at":"2011-03-07 13:02:35"}]

For the import process we created a separate importer using Jackson (a JSON library) to fetch and

parse the data, and then some transactional methods in the MovieDbImportService to actually import

it as movies, roles, and actors. The importer used a simple caching mechanism to keep downloaded

actor and movie data on the filesystem, so that we didn't have to overload the remote API. In the code

below you can see that we've changed the actor to a person so that we can also accommodate the other

folks that participate in movie production.

Importing Data

35

Example 15.3. Importing the data

@Transactional

public Movie importMovie(String movieId) {

 Movie movie = movieRepository.findById(movieId);

 if (movie == null) { // Not found: Create fresh

 movie = new Movie(movieId,null);

 }

 Map data = loadMovieData(movieId);

 if (data.containsKey("not_found")) throw

 new RuntimeException("Data for Movie "+movieId+" not found.");

 movieDbJsonMapper.mapToMovie(data, movie);

 movieRepository.save(movie);

 relatePersonsToMovie(movie, data);

 return movie;

}

private void relatePersonsToMovie(Movie movie, Map data) {

 Collection<Map> cast = (Collection<Map>) data.get("cast");

 for (Map entry : cast) {

 String id = "" + entry.get("id");

 String jobName = (String) entry.get("job");

 Roles job = movieDbJsonMapper.mapToRole(jobName);

 if (job==null) {

 continue;

 }

 switch (job) {

 case DIRECTED:

 final Director director = doImportPerson(id, new Director(id));

 director.directed(movie);

 directorRepository.save(director);

 break;

 case ACTS_IN:

 final Actor actor = doImportPerson(id, new Actor(id));

 actor.playedIn(movie, (String) entry.get("character"));

 actorRepository.save(actor);

 break;

 }

 }

}

public void mapToMovie(Map data, Movie movie) {

 movie.setTitle((String) data.get("name"));

 movie.setLanguage((String) data.get("language"));

 movie.setTagline((String) data.get("tagline"));

 movie.setReleaseDate(toDate(data, "released", "yyyy-MM-dd"));

...

 movie.setImageUrl(selectImageUrl((List<Map>) data.get("posters"), "poster", "mid"));

}

The last part involved adding a protected URI to the MovieController to allow importing ranges of

movies. During testing, it became obvious that the calls to themoviedb.org were a limiting factor. As

soon as the data was stored locally, the Neo4j import was a sub-second deal.

36

Chapter 16. Recommendations

Movies! Friends! Bargains!

In the last part of this exercise we wanted to add recommendations to the app. One obvious

recommendation was movies that our fiends liked.

There was this query language called Cypher that looked a bit like SQL but expressed graph matching

queries. So we gave it a try, using the neo4j-shell, to incrementally expand the query, just by declaring

what relationships we wanted to be taken into account and which properties of nodes and relationships

to filter and sort on.

Example 16.1. Cypher based movie recommendation on Repository

interface MovieRepository extends GraphRepository<Movie> {

 @Query("

 start user=node({0})

 match user-[:FRIEND]-friend-[r:RATED]->movie

 return movie

 order by avg(r.stars) desc, count(*) desc

 limit 10

 ")

 Iterabe<Movie> recommendMovies(User me);

}

But we didn't have enough friends, so it was time to get some suggested. That would be like-minded

cineasts that rated movies similarly to us. Again Cypher to the rescue, this time only a bit more complex.

Something that became obvious with both queries is that graph queries are always local, so they start

from a node, or set of nodes or relationships, and then expand outwards from there.

Example 16.2. Cypher - Friend Recommendation on Repository

interface UserRepository extends GraphRepository<User> {

 @Query("

 start user=node({0})

 match user-[r:RATED]->movie<-[r2:RATED]-likeminded,

 user-[:FRIEND]-friend

 where r.stars > 3 and r2.stars >= 3

 return likeminded

 order by count(*) desc

 limit 10

 ")

 Iterabe<User> suggestFriends(User me);

}

The controllers simply called these methods, added their results to the model, and the view rendered

the recommendations alongside the user's own ratings.

37

Chapter 17. Conclusion

To new frontiers

Pretty neat. We were satisfied with what we got here with little effort and high performance. Lots of

opportunities to expand the social movie database showed up during development. Like adding more

social features like tagging, communication streams, location based features (cinemas) and much more.

But we leave you with that as an exercise to enjoy and explore. Thanks for following the tutorial and

make sure to get back to us with suggestions for improvements or reports about unexpected behaviours

at the discussion forums, or the issue tracker.

http://spring.neo4j.org/discussions
http://spring.neo4j.org/issues

	Cineasts.net - The Social Movie Database
	Table of Contents
	Foreword by Rod Johnson
	Foreword by Emil Eifrem
	Part I. Tutorial
	Chapter 1. Introducing our project
	Chapter 2. The Spring stack
	2.1. Required setup

	Chapter 3. The domain model
	Chapter 4. Learning Neo4j
	Chapter 5. Spring Data Neo4j
	Chapter 6. Annotating the domain
	Chapter 7. Indexing
	Chapter 8. Repositories
	Chapter 9. Relationships
	9.1. Creating relationships
	9.2. Accessing related entities
	9.3. Accessing the relationship entities

	Chapter 10. Get it running
	10.1. Populating the database
	10.2. Inspecting the datastore
	10.2.1. Neoclipse visualization
	10.2.2. The Neo4j Shell

	Chapter 11. Web views
	11.1. Searching
	11.2. Listing results

	Chapter 12. Adding social
	12.1. Users
	12.2. Ratings for movies

	Chapter 13. Adding Security
	Chapter 14. More UI
	Chapter 15. Importing Data
	Chapter 16. Recommendations
	Chapter 17. Conclusion

