Our application was not very much fun yet, just storing movies and actors. After all, the power is in the relationships between them. Fortunately, Neo4j treats relationships as first class citizens, allowing them to be addressed individually and have properties assigned to them. That allows for representing them as entities if needed.
Relationships without properties ("anonymous" relationships) don't require any @RelationshipEntity
classes. "Unfortunately" we had none of those, because our relationships were richer.
Therefore we went with the Role
relationship between Movie
and Actor
.
It had to be annotated with @RelationshipEntity
and the @StartNode
and @EndNode
had to be marked.
So our Role looked like this:
Example 9.1. Role class
@RelationshipEntity
class Role {
@StartNode Actor actor;
@EndNode Movie movie;
String role;
}
When writing a test for the Role
we tried to create the relationship entity just by
instantiating it with new
and saving it with the template,
but we got an exception saying that it misses the relationship-type.
We had to add it to the @RelationshipEntity
as an attribute (or as a @RelationshipType annotated
field in the RelationshipEntity). Another way to create
instances of relationship-entities is to use the methods provided by the template, like
createRelationshipBetween
.
Example 9.2. Relating actors to movies
@RelationshipEntity(type="ACTS_IN") class Role { @StartNode Actor actor; @EndNode Movie movie; String role; } class Actor { ... public Role playedIn(Movie movie, String roleName) { Role role = new Role(this, movie, roleName); this.roles.add(role); return role; } } Role role = tomHanks.playedIn(forrestGump, "Forrest Gump"); // either save the actor template.save(tomHanks); // or the role template.save(role); // alternative approach Role role = template.createRelationshipBetween(actor,movie, Role.class, "ACTS_IN");
Now we wanted to find connected entities. We already had fields for the relationships in both classes. It was time to annotate them correctly. The Neo4j relationship type and direction were easy to figure out. The direction even defaulted to outgoing, so we only had to specify it for the movie. If we want to use the same relationship between the two entities we have to make sure to provide a dedicated type, otherwise the field-names would be used resulting in different relationships.
Example 9.3. @RelatedTo usage
@NodeEntity class Movie { @Indexed int id; String title; int year; @RelatedTo(type = "ACTS_IN", direction = Direction.INCOMING) Set<Actor> cast; } @NodeEntity class Actor { @Indexed int id; String name; @RelatedTo(type = "ACTS_IN") Set<Movie> movies; public Role playedIn(Movie movie, String roleName) { return new Role(this,movie, roleName); } }
Changes to the collections of related entities are reflected into the graph on saving of the entity.
We made sure to add some tests for using the relationshhips, so we were assured that the collections worked as advertised.
But we still couldn't access the Role relationship entities themselves. It turned out that there was a separate
annotation @RelatedToVia
for accessing the actual relationship entities. And we could
declare the field as an Iterable<Role>
, with read-only semantics or on a
Collection
or Set<Role>
field with modifying semantics.
So off we went, creating our first real relationship (just kidding).
To have the collections of relationships being read eagerly during the loading of the Movie we have to annotate it with the @Fetch annotation. Otherwise Spring Data Neo4j refrains from following relationships automatically. The risk of loading the whole graph into memory would be too high.
Example 9.4. @RelatedToVia usage
@NodeEntity class Movie { @Indexed int id; String title; int year; @Fetch @RelatedToVia(type = "ACTS_IN", direction = Direction.INCOMING) Iterable<Roles> roles; }
After watching the tests pass, we were confident that the changes to the relationship fields were really stored to the underlying relationships in the graph. We were pretty satisfied with persisting our domain.