Spring Data Neo4j - Reference
Documentation

Michael Hunger, Oliver Gierke, Vince Bickers, Adam George, Luanne Misquitta,
Michal Bachman, Mark Angrish, Nicolas Mervaillie

Version 5.0.1.RELEASE, 2017-10-27

Table of Contents

Preface
1. Spring and Spring Data
2.NoSQL and Graph databases
2.1. Introducing Neo4j
3. Requirements

4. Additional Resources

4.1. Project metadata
4.2. Getting Help & give feedback

5. New & Noteworthy

5.1. What’s new in Spring Data Neo4j 5.0.0

6. Dependencies

6.1. Dependency management with Spring Boot
6.2. Spring Framework

7. Working with Spring Data Repositories

7.1. Core concepts

7.2. Query methods

7.3. Defining repository interfaces
7.3.1. Fine-tuning repository definition
7.3.2. Null handling of repository methods

7.3.3. Using Repositories with multiple Spring Data modules

7.4. Defining query methods
7.4.1. Query lookup strategies
7.4.2. Query creation
7.4.3. Property expressions
7.4.4. Special parameter handling
7.4.5. Limiting query results
7.4.6. Streaming query results
7.4.7. Async query results

7.5. Creating repository instances
7.5.1. XML configuration
7.5.2. JavaConfig
7.5.3. Standalone usage

7.6. Custom implementations for Spring Data repositories

7.6.1. Customizing individual repositories
7.6.2. Customize the base repository
7.7. Publishing events from aggregate roots
7.8. Spring Data extensions
7.8.1. Querydsl Extension

© 00 00 N N 09 O b= bk wN

W W W W DN DN DN DN DN DN DD DN DN DN DN DNDND R =R R R R ==
Gl U1 W W © 0 00 N O O O Ul W W N R, =R, 00Ul LUl W R, =, O O

7.8.2. Web support
7.8.3. Repository populators
7.8.4. Legacy web support
8. Auditing
8.1. Basics
8.1.1. Annotation based auditing metadata
8.1.2. Interface-based auditing metadata
8.1.3. AuditorAware
SDN Reference Documentation
9. Introduction
9.1. SDN Architecture
9.2. How to use this reference
10. Getting started
10.1. Using Boot
10.2. Using STS
10.3. Using Dependency Management
10.3.1. Maven
10.3.2. Gradle
10.4. Examples
10.5. Configuration
10.5.1. Driver Configuration
10.5.2. Spring Boot Applications
10.6. Connecting to Neo4j
11. Neo4j OGM Support
11.1. What is an OGM?
11.1.1. Understanding the Session
11.2. Basic Operations
11.3. Entity Persistence
11.4. Cypher Queries
11.5. Transactions
12. Neo4] Repositories
12.1. Introduction
12.2. Usage
12.3. Query Methods
12.3.1. Query and Finder Methods
12.3.2. Annotated queries
12.3.3. Named queries
12.3.4. Query results
12.3.5. Cypher examples

12.3.6. Queries derived from finder-method names

12.3.7. Mapping Query Results

36
42
44
47
47
47
47
47
49
50
50
52
53
53
53
54
54
35
35
35
56
58
58
59
39
39
60
61
61
61
62
62
63
63
63
65
66
66
66
68
68

12.3.8. Sorting and Paging
12.3.9. Projections
12.4. Transactions
12.4.1. Read only Transactions
12.4.2. Transaction Bound Events
12.5. Clustering support
12.5.1. Bookmark management
12.6. Miscellaneous
12.6.1. CDI integration
12.6.2. JSR-303 (Bean Validation) Support
12.6.3. Conversion Service
12.6.4. Projections
12.6.5. Auditing
Neo4j OGM Reference Documentation
13. Introduction
13.1. Overview
14. Getting Started
14.1. Versions
14.1.1. Compatibility
14.1.2. Transitive dependencies
14.2. Dependency Management
14.2.1. Maven
14.2.2. Gradle
15. Configuration
15.1. Configuration method
15.1.1. Using a properties file

15.1.2. Programmatically using Java

15.1.3. By providing a Neo4j driver instance

15.2. Driver Configuration
15.2.1. HTTP Driver
15.2.2. Bolt Driver
15.2.3. Embedded Driver
15.2.4. Credentials
15.2.5. Transport Layer Security (TLS/SSL)
15.2.6. Bolt connection testing
15.2.7. Eager connection verification
15.3. Logging
16. Annotating Entities
16.1. @NodeEntity: The basic building block

16.1.1. @Properties: dynamically mapping properties to graph

16.1.2. Runtime managed labels

69
69
72
73
74
75
75
75
75
76
76
78
80
81
82
82
84
84
84
84
84
85
86
87
87
87
87
87
88
88
88
88
90
90
91
92
92
93
93
94
95

16.2. @Relationship: Connecting node entities 96

16.2.1. Using more than one relationship of the same type 97
16.2.2. Ambiguity in relationships 98
16.2.3. Ordering 98
16.3. @RelationshipEntity: Rich relationships 98
16.4. Entity identifier 100
16.5. @Graphld: Neo4j id field 100
16.5.1. Entity Equality 101
16.5.2. Id Generation Strategy 101
16.6. @Property: Optional annotation for property fields 101
16.7. @PostLoad 102
16.8. Non-annotated properties and best practices 102
17. Indexing 103
17.1. Indexes and Constraints 103
17.2. Primary Constraints 103
17.3. Index Creation 103
18. Connecting to the Graph 105
18.1. SessionFactory 105
19. Using the OGM Session 106
19.1. Session Configuration 106
19.2. Basic operations 106
19.3. Persisting entities 107
19.3.1. Save depth 107
19.4. Loading Entities 109
19.4.1. Load depth 110
19.4.2. Query Strategy 110
19.4.3. Cypher queries 111
19.4.4. Sorting and paging 111

20. Type Conversion 113
20.1. Built-in type conversions 113
20.2. Custom Type Conversion 114
21. Filters 116
22. Events 117
22.1. Event types 117
22.2. Interfaces 117
22.3. Registering an EventListener 118
22.4. Using the EventListenerAdapter 119
22.5. Disposing of an EventListener 120
22.6. Connected objects 120
22.7. Events and types 121

22.8. Events and collections 121

22.9. Event ordering 122

22.10. Relationship events 122
22.11. Event uniqueness 123
23. Testing 124
23.1. Log levels 124
24. High Availability (HA) Support 125
24.1. Causal Clustering 125
24.1.1. Configuring the OGM 125
24.1.2. Design considerations for clustering 125
24.1.3. Hardware and cluster configuration 126
24.1.4. Target replica servers when possible 126
24.1.5. Use bookmarks to read your own writes 126
24.1.6. Retry mechanisms 127
24.2. Highly Available (HA) Cluster 127
24.2.1. Transaction binding in HA mode 127
24.2.2. Read-only transactions 127
24.2.3. Dynamic binding via a load balancer 128
Appendix 130
Appendix A: Namespace reference 131
The <repositories /> element 131
Appendix B: Populators namespace reference 132
The <populator /> element 132
Appendix C: Repository query keywords 133
Supported query keywords 133
Appendix D: Repository query return types 134
Supported query return types 134
Appendix E: Migration Guide 136
Migrating from 4.2 - 5.0 136
Migrating from 4.0/4.1 — 4.2 136
Migrating from pre 4.0 - 4.2 137
Package Changes 137
Annotation Changes 137
Custom Type Conversion 137
Date Format Changes 137
Indexing 138
Obsolete Annotations 138
Features No Longer Supported 138
Deprecation of Neo4jTemplate 139

Appendix F: Frequently asked questions 141

© 2010-2017 Graph Aware Ltd - Neo Technology, Inc. - Pivotal Software, Inc.
oo

H ‘ springdataNeo4j
-

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that
each copy contains this Copyright Notice, whether distributed in print or
electronically.

NOTE

Preface

The Spring Data Neo4] project applies core Spring concepts to the development of solutions using
the Neo4j graph data store. We provide "repositories”" as a high-level abstraction for storing and
querying documents. You will notice similarities to the JPA/Hibernate support in the Spring
Framework.

This document is the reference guide for Spring Data - Graph Support. It explains Graph module
concepts and semantics and the syntax for various store namespaces.

This section provides some basic introduction to Spring and Graph databases.

The Spring Data Commons section then describes the common foundation of all Spring Data
projects : the repositories. This part is taken from from SD commons project and may include
examples from other persistence type such as JPA.

The rest of the document describes the Spring Data Neo4j features and specifics. It includes the
Spring Data Neo4j reference, and the reference for OGM, on which SDN is based on. It assumes the
user is familiar with the Neo4j graph database as well as Spring concepts.

Chapter 1. Spring and Spring Data

Spring Data uses Spring framework’s core functionality, such as the IoC container, type conversion
system, expression language, JMX integration, and portable DAO exception hierarchy. While it is
not important to know the Spring APIs, understanding the concepts behind them is. At a minimum,
the idea behind IoC should be familiar for whatever IoC container you choose to use.

The core functionality of the Neo4] support can be used directly, with no need to invoke the IoC
services of the Spring Container. This is much like Hibernate Session or JPA EntityManager which
can be used 'standalone’ without any other services of the Spring container. To leverage all the
features of Spring Data Neo4j, such as the repository support, you will need to configure some parts
of the library using Spring.

To learn more about Spring, you can refer to the comprehensive (and sometimes disarming)
documentation that explains in detail the Spring Framework. There are a lot of articles, blog entries
and books on the matter - take a look at the Spring framework home page for more information.

https://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/core.html
https://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/core.html#beans
https://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/core.html#core-convert
https://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/core.html#core-convert
https://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/core.html#expressions
https://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/integration.html#jmx
https://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/data-access.html#dao-exceptions
http://spring.io/docs

Chapter 2. NoSQL and Graph databases

A graph database is a storage engine that is specialised in storing and retrieving vast networks of
information. It efficiently stores data as nodes and relationships and allows high performance
retrieval and querying of those structures. Properties can be added to both nodes and relationships.
Nodes can be labelled by zero or more labels, relationships are always directed and named.

Graph databases are well suited for storing most kinds of domain models. In almost all domains,
there are certain things connected to other things. In most other modelling approaches, the
relationships between things are reduced to a single link without identity and attributes. Graph
databases allow to keep the rich relationships that originate from the domain equally well-
represented in the database without resorting to also modelling the relationships as "things". There
is very little "impedance mismatch” when putting real-life domains into a graph database.

2.1. Introducing Neo4j

Neo4j is an open source NOSQL graph database. It is a fully transactional database (ACID) that
stores data structured as graphs consisting of nodes, connected by relationships. Inspired by the
structure of the real world, it allows for high query performance on complex data, while remaining
intuitive and simple for the developer.

Neo4j is very well-established. It has been in commercial development for 15 years and in
production for over 12 years. Most importantly, it has an active and contributing community
surrounding it, but it also:

* has an intuitive, rich graph-oriented model for data representation. Instead of tables, rows, and
columns, you work with a graph consisting of nodes, relationships, and properties.

* has a disk-based, native storage manager optimised for storing graph structures with maximum
performance and scalability.

* is scalable. Neo4j can handle graphs with many billions of nodes/relationships/properties on a
single machine, but can also be scaled out across multiple machines for high availability.

* has a powerful graph query language called Cypher, which allows users to efficiently read/write
data by expressing graph patterns.

* has a powerful traversal framework and query languages for traversing the graph.
 can be deployed as a standalone server, which is the recommended way of using Neo4;j
* can be deployed as an embedded (in-process) database, giving developers access to its core Java

API

In addition, Neo4j provides ACID transactions, durable persistence, concurrency control,
transaction recovery, high availability, and more. Neo4j is released under a dual free
software/commercial licence model.

The jumping off ground for learning about Neo4] is neo4j.com. Here is a list of other useful
resources:

* The Neo4j documentation introduces Neo4j and contains links to getting started guides,

http://neo4j.com/
http://neo4j.com/docs/stable/graphdb-neo4j.html
http://api.neo4j.org/
https://neo4j.com/
https://neo4j.com/docs/

reference documentation and tutorials.

The online sandbox provides a convenient way to interact with a Neo4j instance in combination
with the online tutorial.

Neo4] Java Bolt Driver
Neo4] Java Object Graph Mapper (OGM) Library

Several books available for purchase and videos to watch.

https://neo4j.com/sandbox/
https://neo4j.com/developer/get-started/
https://neo4j.com/developer/java/
http://neo4j.com/docs/ogm-manual/current/
https://neo4j.com/books/
https://www.youtube.com/neo4j

Chapter 3. Requirements

Spring Data Neo4j 5.0.x at minimum, requires:

* JDK Version 8 and above.
* Neo4j Graph Database 3.1 and above.
* Spring Framework 5.0.1.RELEASE and above.

If you plan on altering the version of the OGM make sure it is only in the 3.0.0+ release family.

Chapter 4. Additional Resources

4.1. Project metadata

 Version control - http://github.com/spring-projects/spring-data-neo4;j
* Bugtracker - https://jira.spring.io/browse/DATAGRAPH

* Release repository - https://repo.spring.io/libs-release

* Milestone repository - https://repo.spring.io/libs-milestone

* Snapshot repository - https://repo.spring.io/libs-snapshot

4.2. Getting Help & give feedback

If you encounter issues or you are just looking for advice, feel free to use one of the links below:
* The sample project: SDN University. More example projects for Spring Data Neo4j are available
in the Neo4j-Examples repository

* The main SpringSource project site contains links to basic project information such as source
code, JavaDocs, Issue tracking, etc.

» Talk and share with the community on the SDN/OGM Slack channel
» For more detailed questions, use Spring Data Neo4j on StackOverflow
» Use the templates for reporting issues (they can also be used to bootstrap your projects).

* For professional support feel free to contact Neo4j or GraphAware.

If you are new to Spring as well as to Spring Data, look for information about Spring projects.

http://github.com/spring-projects/spring-data-neo4j
https://jira.spring.io/browse/DATAGRAPH
https://repo.spring.io/libs-release
https://repo.spring.io/libs-milestone
https://repo.spring.io/libs-snapshot
https://github.com/neo4j-examples/sdn-university
https://github.com/neo4j-examples?query=sdn
http://projects.spring.io/spring-data-neo4j
https://neo4j-users.slack.com
http://stackoverflow.com/questions/tagged/spring-data-neo4j-5
https://github.com/neo4j-examples/neo4j-sdn-ogm-issue-report-template
http://www.neo4j.com
http://www.graphaware.com
http://www.springsource.org/projects

Chapter 5. New & Noteworthy

5.1. What’s new in Spring Data Neo4j 5.0.0

SDN 5.x is designed to work with Java 8, Neo4;j 3.1+, Spring 5 and Spring Boot 2.x.

Bolt is now the default database protocol.

For simplicity, annotations are now only supported on entity attributes, no more on accessors.
New id management ; database ids are not mandatory anymore.

Smarter deep querying based on domain model structure.

Dynamic properties allow mapping in Map structures.

Projections support.

Improved causal cluster support and bookmark management.

More flexible configuration.

Better Java 8 support : all type queries can now return stream results and Optional. Better date /
time management.

Internal metadata handling has been refactored for better reliability.

Auditing support (since 5.0.1)

When migrating from 4.x, please see the migration guide.

Chapter 6. Dependencies

Due to different inception dates of individual Spring Data modules, most of them carry different
major and minor version numbers. The easiest way to find compatible ones is by relying on the
Spring Data Release Train BOM we ship with the compatible versions defined. In a Maven project
youw’d declare this dependency in the <dependencyManagement /> section of your POM:

Example 1. Using the Spring Data release train BOM

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-releasetrain</artifactId>
<version>${release-train}</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>

The current release train version is Kay-SR1. The train names are ascending alphabetically and
currently available ones are listed here. The version name follows the following pattern: ${name}-
${release} where release can be one of the following:

BUILD-SNAPSHOT - current snapshots

M1, M2 etc. - milestones

RCT, RC2 etc. - release candidates

RELEASE - GA release

SR1, SR2 etc. - service releases

A working example of using the BOMs can be found in our Spring Data examples repository. If
that’s in place declare the Spring Data modules you’d like to use without a version in the
<dependencies /> block.

Example 2. Declaring a dependency to a Spring Data module

<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-jpa</artifactld>
</dependency>
<dependencies>

https://github.com/spring-projects/spring-data-commons/wiki/Release-planning
https://github.com/spring-projects/spring-data-examples/tree/master/bom

6.1. Dependency management with Spring Boot

Spring Boot already selects a very recent version of Spring Data modules for you. In case you want
to upgrade to a newer version nonetheless, simply configure the property spring-data-
releasetrain.version to the train name and iteration you’d like to use.

6.2. Spring Framework

The current version of Spring Data modules require Spring Framework in version 5.0.1.RELEASE or
better. The modules might also work with an older bugfix version of that minor version. However,
using the most recent version within that generation is highly recommended.

10

Chapter 7. Working with Spring Data
Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate
code required to implement data access layers for various persistence stores.

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data
repositories. The information in this chapter is pulled from the Spring Data
Commons module. It uses the configuration and code samples for the Java
Persistence API (JPA) module. Adapt the XML namespace declaration and the

IMPORTANT types to be extended to the equivalents of the particular module that you are
using. Namespace reference covers XML configuration which is supported
across all Spring Data modules supporting the repository API, Repository
query keywords covers the query method keywords supported by the
repository abstraction in general. For detailed information on the specific
features of your module, consult the chapter on that module of this
document.

7.1. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of
a surprise). It takes the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with
and to help you to discover interfaces that extend this one. The CrudRepository provides
sophisticated CRUD functionality for the entity class that is being managed.

11

Example 3. CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
extends Repository<T, ID> {

<S extends T> S save(S entity); ®

Optional<T> findById(ID primaryKey); @

Iterable<T> findA11l(); ©)
long count(); @
void delete(T entity); ®

boolean existsById(ID primaryKey); ®

// - more functionality omitted.

@ Saves the given entity.

@ Returns the entity identified by the given id.
® Returns all entities.

@ Returns the number of entities.

® Deletes the given entity.

® Indicates whether an entity with the given id exists.

We also provide persistence technology-specific abstractions like e.g. JpaRepository
or MongoRepository. Those interfaces extend CrudRepository and expose the
capabilities of the underlying persistence technology in addition to the rather
generic persistence technology-agnostic interfaces like e.g. CrudRepository.

NOTE

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 4. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable>
extends CrudRepository<T, ID> {

Iterable<T> findA11l(Sort sort);

Page<T> findAl1(Pageable pageable);
}

12

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // -+ get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

Example 5. Derived Count Query

interface UserRepository extends CrudRepository<User, Long> {

long countBylLastname(String lastname);

}

Example 6. Derived Delete Query

interface UserRepository extends CrudRepository<User, Long> {
long deleteBylLastname(String lastname);

List<User> removeBylLastname(String lastname);

}

7.2. Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With
Spring Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain
class and ID type that it will handle.

interface PersonRepository extends Repository<Person, Long> { -+ }
2. Declare query methods on the interface.

interface PersonRepository extends Repository<Person, Long> {
List<Person> findByLastname(String lastname);

}

3. Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

13

import org.springframework.data.jpa.repository.config.Enable]paRepositories;

@EnablelpaRepositories
class Config {}

or via XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any
other store, you need to change this to the appropriate namespace declaration of your store

module which should be exchanging jpa in favor of, for example, mongodb.

Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the
annotated class is used by default. To customize the package to scan use one of the

basePackage: - attribute of the data-store specific repository @Enable::--annotation.

4. Get the repository instance injected and use it.

class SomeClient {
private final PersonRepository repository;
SomeClient(PersonRepository repository) {
this.repository = repository;

}

void doSomething() {
List<Person> persons = repository.findByLastname("Matthews");

}
}

The sections that follow explain each step in detail.

14

7.3. Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods
for that domain type, extend CrudRepository instead of Repository.

7.3.1. Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you
can also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository
exposes a complete set of methods to manipulate your entities. If you prefer to be selective about
the methods being exposed, simply copy the ones you want to expose from CrudRepository into your
domain repository.

This allows you to define your own abstractions on top of the provided Spring Data

NOTE o . .
Repositories functionality.

Example 7. Selectively exposing CRUD methods

interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {
Optional<T> findById(ID id);

<S extends T> S save(S entity);
+

interface UserRepository extends MyBaseRepository<User, Long> {
User findByEmailAddress(EmailAddress emailAddress);

}

In this first step you defined a common base interface for all your domain repositories and exposed
findById(-:-) as well as save(::r).These methods will be routed into the base repository
implementation of the store of your choice provided by Spring Data ,e.g. in the case if JPA
SimpleJpaRepository, because they are matching the method signatures in CrudRepository. So the
UserRepository will now be able to save users, and find single ones by id, as well as triggering a
query to find Users by their email address.

Note, that the intermediate repository interface is annotated with

NOTE @NoRepositoryBean. Make sure you add that annotation to all repository interfaces
that Spring Data should not create instances for at runtime.

7.3.2. Null handling of repository methods

As of Spring Data 2.0, repository CRUD methods that return an individual aggregate instance use

15

Java 8’s Optional to indicate the potential absence of a value. Besides that, Spring Data supports to
return other wrapper types on query methods:

« com.google.common.base.Optional
« scala.Option

« i0.vavr.control.Option

* javaslang.control.Option (deprecated as Javaslang is deprecated)

Alternatively query methods can choose not to use a wrapper type at all. The absence of a query
result will then be indicated by returning null. Repository methods returning collections, collection
alternatives, wrappers, and streams are guaranteed never to return null but rather the
corresponding empty representation. See Repository query return types for details.

Nullability annotations

You can express nullability constraints for repository methods using Spring Framework’s
nullability annotations. They provide a tooling-friendly approach and opt-in null checks during
runtime:

» @NonNullApi - to be used on the package level to declare that the default behavior for parameters
and return values is to not accept or produce null values.

* @NonNull - to be used on a parameter or return value that must not be null (not needed on
parameter and return value where @NonNullApi applies).

* @Nullable —to be used on a parameter or return value that can be null.

Spring annotations are meta-annotated with JSR 305 annotations (a dormant but widely spread
JSR). JSR 305 meta-annotations allow tooling vendors like IDEA, Eclipse, or Kotlin to provide null-
safety support in a generic way, without having to hard-code support for Spring annotations. To
enable runtime checking of nullability constraints for query methods, you need to activate non-
nullability on package level using Spring’s @NonNul1Api in package-info.java:

Example 8. Declaring non-nullability in package-info.java

.springframework.lang.NonNul1lApi
package com.acme;

Once non-null defaulting is in place, repository query method invocations will get validated at
runtime for nullability constraints. Exceptions will be thrown in case a query execution result
violates the defined constraint, i.e. the method would return null for some reason but is declared as
non-nullable (the default with the annotation defined on the package the repository resides in). If
you want to opt-in to nullable results again, selectively use @Nullable that a method. Using the
aforementioned result wrapper types will continue to work as expected, i.e. an empty result will be
translated into the value representing absence.

16

http://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/core.html#null-safety
http://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/core.html#null-safety
https://docs.spring.io/spring/docs/5.0.1.RELEASE/javadoc-api/org/springframework/lang/NonNullApi.html
https://docs.spring.io/spring/docs/5.0.1.RELEASE/javadoc-api/org/springframework/lang/NonNull.html
https://docs.spring.io/spring/docs/5.0.1.RELEASE/javadoc-api/org/springframework/lang/Nullable.html
https://jcp.org/en/jsr/detail?id=305
https://www.jetbrains.com/help/idea/nullable-and-notnull-annotations.html
http://help.eclipse.org/oxygen/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/task-using_external_null_annotations.htm
https://kotlinlang.org/docs/reference/java-interop.html#null-safety-and-platform-types

Example 9. Using different nullability constraints

package com.acme; ©)
import org.springframework.lang.Nullable;
interface UserRepository extends Repository<User, Long> {

User getByEmailAddress(EmailAddress emailAddress); @

User findByEmailAddress(EmailAddress emailAdress); ®

Optional<User> findOptionalByEmailAddress(EmailAddress emailAddress); @
+

@ The repository resides in a package (or sub-package) for which we’ve defined non-null
behavior (see above).

@ Will throw an EmptyResultDataAccessException in case the query executed does not produce
a result. Will throw an IllegalArgumentException in case the emailAddress handed to the
method is null.

® Will return null in case the query executed does not produce a result. Also accepts null as
value for emailAddress.

@ Will return Optional.empty() in case the query executed does not produce a result. Will
throw an IllegalArgumentException in case the emailAddress handed to the method is null.

Nullability in Kotlin-based repositories

Kotlin has the definition of nullability constraints baked into the language. Kotlin code compiles to
bytecode which does not express nullability constraints using method signatures but rather
compiled-in metadata. Make sure to include the kotlin-reflect JAR in your project to enable
introspection of Kotlin’s nullability constraints. Spring Data repositories use the language
mechanism to define those constraints to apply the same runtime checks:

17

https://kotlinlang.org/docs/reference/null-safety.html

Example 10. Using nullability constraints on Kotlin repositories

interface UserRepository : Repository<User, String> {
fun findByUsername(username: String): User ©)

fun findByFirstname(firstname: String?): User? @

}

® The method defines both, the parameter as non-nullable (the Kotlin default) as well as the
result. The Kotlin compiler will already reject method invocations trying to hand null into
the method. In case the query execution vyields an empty result, an
EmptyResultDataAccessException will be thrown.

@ This method accepts null as parameter for firstname and returns null in case the query
execution does not produce a result.

7.3.3. Using Repositories with multiple Spring Data modules

Using a unique Spring Data module in your application makes things simple hence, all repository
interfaces in the defined scope are bound to the Spring Data module. Sometimes applications
require using more than one Spring Data module. In such case, it’s required for a repository
definition to distinguish between persistence technologies. Spring Data enters strict repository
configuration mode because it detects multiple repository factories on the class path. Strict
configuration requires details on the repository or the domain class to decide about Spring Data
module binding for a repository definition:

1. If the repository definition extends the module-specific repository, then it’s a valid candidate for
the particular Spring Data module.

2. If the domain class is annotated with the module-specific type annotation, then it’s a valid
candidate for the particular Spring Data module. Spring Data modules accept either 3rd party
annotations (such as JPA’s @Entity) or provide own annotations such as @Document for Spring
Data MongoDB/Spring Data Elasticsearch.

18

Example 11. Repository definitions using Module-specific Interfaces

interface MyRepository extends JpaRepository<User, Long> { }
@NoRepositoryBean

interface MyBaseRepository<T, ID extends Serializable> extends JpaRepository<T,
ID> {

}

interface UserRepository extends MyBaseRepository<User, Long> {

}

MyRepository and UserRepository extend JpaRepository in their type hierarchy. They are valid
candidates for the Spring Data JPA module.

Example 12. Repository definitions using generic Interfaces

interface AmbiguousRepository extends Repository<User, Long> {

}

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends CrudRepository<T,
ID> {

}

interface AmbiguousUserRepository extends MyBaseRepository<User, Long> {

}

AmbiguousRepository and AmbiguousUserRepository extend only Repository and CrudRepository in
their type hierarchy. While this is perfectly fine using a unique Spring Data module, multiple
modules cannot distinguish to which particular Spring Data these repositories should be
bound.

19

Example 13. Repository definitions using Domain Classes with Annotations

interface PersonRepository extends Repository<Person, Long> {

}

@Entity
class Person {

interface UserRepository extends Repository<User, Long> {

}

@Document
class User {

PersonRepository references Person which is annotated with the JPA annotation @Entity so this
repository clearly belongs to Spring Data JPA. UserRepository uses User annotated with Spring
Data MongoDB’s @Document annotation.

Example 14. Repository definitions using Domain Classes with mixed Annotations

interface JpaPersonRepository extends Repository<Person, Long> {

}

interface MongoDBPersonRepository extends Repository<Person, Long> {

}

@Entity
@Document
class Person {

This example shows a domain class using both JPA and Spring Data MongoDB annotations. It
defines two repositories, JpaPersonRepository and MongoDBPersonRepository. One is intended for
JPA and the other for MongoDB usage. Spring Data is no longer able to tell the repositories
apart which leads to undefined behavior.

Repository type details and identifying domain class annotations are used for strict repository

20

configuration identify repository candidates for a particular Spring Data module. Using multiple
persistence technology-specific annotations on the same domain type is possible to reuse domain
types across multiple persistence technologies, but then Spring Data is no longer able to determine
a unique module to bind the repository.

The last way to distinguish repositories is scoping repository base packages. Base packages define
the starting points for scanning for repository interface definitions which implies to have
repository definitions located in the appropriate packages. By default, annotation-driven
configuration uses the package of the configuration class. The base package in XML-based
configuration is mandatory.

Example 15. Annotation-driven configuration of base packages

(basePackages = "com.acme.repositories.jpa")
(basePackages = "com.acme.repositories.mongo")
interface Configuration { }

7.4. Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can
derive the query from the method name directly, or by using a manually defined query. Available
options depend on the actual store. However, there’s got to be a strategy that decides what actual
query is created. Let’s have a look at the available options.

7.4.1. Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query-lookup-strategy attribute in case of XML
configuration or via the querylLookupStrategy attribute of the Enable${store}Repositories annotation
in case of Java config. Some strategies may not be supported for particular datastores.

» CREATE attempts to construct a store-specific query from the query method name. The general
approach is to remove a given set of well-known prefixes from the method name and parse the
rest of the method. Read more about query construction in Query creation.

» USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can’t
find one. The query can be defined by an annotation somewhere or declared by other means.
Consult the documentation of the specific store to find available options for that store. If the
repository infrastructure does not find a declared query for the method at bootstrap time, it
fails.

o CREATE_IF_NOT_FOUND (default) combines CREATE and USE_DECLARED_QUERY. It looks up a declared
query first, and if no declared query is found, it creates a custom method name-based query.
This is the default lookup strategy and thus will be used if you do not configure anything
explicitly. It allows quick query definition by method names but also custom-tuning of these
queries by introducing declared queries as needed.

21

7.4.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes find---By,
read---By, query---By, count---By, and get---By from the method and starts parsing the rest of it. The
introducing clause can contain further expressions such as a Distinct to set a distinct flag on the
query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria.
At a very basic level you can define conditions on entity properties and concatenate them with And
and Or.

Example 16. Query creation from method names

interface PersonRepository extends Repository<User, Long> {

List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String
lastname);

// Enables the distinct flag for the query

List<Person> findDistinctPeopleBylLastnameOrFirstname(String lastname, String
firstname);

List<Person> findPeopleDistinctBylLastnameOrFirstname(String lastname, String
firstname);

// Enabling ignoring case for an individual property

List<Person> findByLastnameIgnoreCase(String lastname);

// Enabling ignoring case for all suitable properties

List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String
firstname);

// Enabling static ORDER BY for a query
List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
List<Person> findByLastnameOrderByFirstnameDesc(String lastname);

}

The actual result of parsing the method depends on the persistence store for which you create the
query. However, there are some general things to notice.

* The expressions are usually property traversals combined with operators that can be
concatenated. You can combine property expressions with AND and OR. You also get support for
operators such as Between, LessThan, GreaterThan, Like for the property expressions. The
supported operators can vary by datastore, so consult the appropriate part of your reference
documentation.

* The method parser supports setting an IgnoreCase flag for individual properties (for example,
findByLastnameIgnoreCase(::+)) or for all properties of a type that support ignoring case (usually
String instances, for example, findByLastnameAndFirstnameAllIgnoreCase(::+)). Whether ignoring
cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

22

* You can apply static ordering by appending an OrderBy clause to the query method that
references a property and by providing a sorting direction (Asc or Desc). To create a query
method that supports dynamic sorting, see Special parameter handling.

7.4.3. Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the
preceding example. At query creation time you already make sure that the parsed property is a
property of the managed domain class. However, you can also define constraints by traversing
nested properties. Assume a Person has an Address with a ZipCode. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting
the entire part (AddressZipCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the
way just described. If the first split does not match, the algorithm move the split point to the left
(Address, ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong
property. Suppose the Person class has an addressZip property as well. The algorithm would match
in the first split round already and essentially choose the wrong property and finally fail (as the
type of addressZip probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal
points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

As we treat underscore as a reserved character we strongly advise to follow standard Java naming
conventions (i.e. not using underscores in property names but camel case instead).

7.4.4. Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageable
and Sort to apply pagination and sorting to your queries dynamically.

23

Example 17. Using Pageable, Slice and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);
Slice<User> findBylLastname(String lastname, Pageable pageable);
List<User> findBylLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the
query method to dynamically add paging to your statically defined query. A Page knows about the
total number of elements and pages available. It does so by the infrastructure triggering a count
query to calculate the overall number. As this might be expensive depending on the store used,
Slice can be used as return instead. A Slice only knows about whether there’s a next Slice
available which might be just sufficient when walking through a larger result set.

Sorting options are handled through the Pageable instance too. If you only need sorting, simply add
an org.springframework.data.domain.Sort parameter to your method. As you also can see, simply
returning a List is possible as well. In this case the additional metadata required to build the actual
Page instance will not be created (which in turn means that the additional count query that would
have been necessary not being issued) but rather simply restricts the query to look up only the
given range of entities.

To find out how many pages you get for a query entirely you have to trigger an
NOTE additional count query. By default this query will be derived from the query you
actually trigger.

7.4.5. Limiting query results

The results of query methods can be limited via the keywords first or top, which can be used
interchangeably. An optional numeric value can be appended to top/first to specify the maximum
result size to be returned. If the number is left out, a result size of 1 is assumed.

24

Example 18. Limiting the result size of a query with Top and First

User findFirstByOrderByLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10BylLastname(String lastname, Pageable pageable);
Slice<User> findTop3BylLastname(String lastname, Pageable pageable);
List<User> findFirst10ByLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct keyword. Also, for the queries limiting the result
set to one instance, wrapping the result into an Optional is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number
of pages available) then it is applied within the limited result.

Note that limiting the results in combination with dynamic sorting via a Sort
NOTE parameter allows to express query methods for the 'K' smallest as well as for the 'K'
biggest elements.

7.4.6. Streaming query results

The results of query methods can be processed incrementally by using a Java 8 Stream<T> as return
type. Instead of simply wrapping the query results in a Stream data store specific methods are used
to perform the streaming.

Example 19. Stream the result of a query with Java 8 Stream<T>

("select u from User u")
Stream<User> findA11ByCustomQueryAndStream();
Stream<User> readAl1ByFirstnameNotNull();

("select u from User u")
Stream<User> streamAl1Paged(Pageable pageable);

A Stream potentially wraps underlying data store specific resources and must
NOTE therefore be closed after usage. You can either manually close the Stream using the
close() method or by using a Java 7 try-with-resources block.

25

Example 20. Working with a Stream<T> result in a try-with-resources block

try (Stream<User> stream = repository.findA11ByCustomQueryAndStream()) {
stream.forEach(:+);

}

NOTE Not all Spring Data modules currently support Stream<T> as a return type.

7.4.7. Async query results

Repository queries can be executed asynchronously using Spring’s asynchronous method execution
capability. This means the method will return immediately upon invocation and the actual query
execution will occur in a task that has been submitted to a Spring TaskExecutor.

Future<User> findByFirstname(String firstname); @
CompletableFuture<User> findOneByFirstname(String firstname); @

ListenableFuture<User> findOneBylLastname(String lastname); ©)

@ Use java.util.concurrent.Future as return type.
@ Use a Java 8 java.util.concurrent.CompletableFuture as return type.

® Use aorg.springframework.util.concurrent.ListenableFuture as return type.

7.5. Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One
way to do so is using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism although we generally recommend to use the Java-Config style
configuration.

7.5.1. XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

26

http://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/integration.html#scheduling
http://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/integration.html#scheduling

Example 21. Enabling Spring Data repositories via XML

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans’
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its sub-
packages for interfaces extending Repository or one of its sub-interfaces. For each interface found,
the infrastructure registers the persistence technology-specific FactoryBean to create the
appropriate proxies that handle invocations of the query methods. Each bean is registered under a
bean name that is derived from the interface name, so an interface of UserRepository would be
registered under userRepository. The base-package attribute allows wildcards, so that you can define
a pattern of scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Repository sub-interface located under the configured base package and creates a bean instance for
it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements inside
<repositories />. The semantics are exactly equivalent to the elements in Spring’s context
namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the
following configuration:

Example 22. Using exclude-filter element

<repositories base-package="com.acme.repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

7.5.2. JavaConfig

The repository infrastructure can also be triggered using a store-specific

27

http://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/core.html#beans-scanning-filters

@Enable${store}Repositories annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation. [1: JavaConfig in the Spring
reference documentation]

A sample configuration to enable Spring Data repositories looks something like this.

Example 23. Sample annotation based repository configuration

("com.acme.repositories")
class ApplicationConfiguration {

EntityManagerFactory entityManagerFactory() {
T
}
}

The sample uses the JPA-specific annotation, which you would change according to
the store module you actually use. The same applies to the definition of the
EntityManagerFactory bean. Consult the sections covering the store-specific
configuration.

NOTE

7.5.3. Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI
environments. You still need some Spring libraries in your classpath, but generally you can set up
repositories programmatically as well. The Spring Data modules that provide repository support
ship a persistence technology-specific RepositoryFactory that you can use as follows.

Example 24. Standalone usage of repository factory

RepositoryFactorySupport factory = --- // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

7.6. Custom implementations for Spring Data
repositories

In this section you will learn about repository customization and how fragments form a composite
repository.

When query method require a different behavior or can’t be implemented by query derivation
than it’s necessary to provide a custom implementation. Spring Data repositories easily allow you
to provide custom repository code and integrate it with generic CRUD abstraction and query

28

http://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/core.html#beans-java
http://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/core.html#beans-java

method functionality.

7.6.1. Customizing individual repositories

To enrich a repository with custom functionality, you first define a fragment interface and an
implementation for the custom functionality. Then let your repository interface additionally extend
from the fragment interface.

Example 25. Interface for custom repository functionality

interface CustomizedUserRepository {
void someCustomMethod(User user);

}

Example 26. Implementation of custom repository functionality

class CustomizedUserRepositoryImpl implements CustomizedUserRepository {

public void someCustomMethod(User user) {
// Your custom implementation

}
}

The most important bit for the class to be found is the Impl postfix of the name on it

NOTE .
compared to the fragment interface.

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can use standard dependency injection behavior to inject references to other beans like a
JdbcTemplate, take part in aspects, and so on.

Example 27. Changes to your repository interface
interface UserRepository extends CrudRepository<User, Long>,
CustomizedUserRepository {

// Declare query methods here

}

Let your repository interface extend the fragment one. Doing so combines the CRUD and custom
functionality and makes it available to clients.

Spring Data repositories are implemented by using fragments that form a repository composition.
Fragments are the base repository, functional aspects such as QueryDsl and custom interfaces along

29

with their implementation. Each time you add an interface to your repository interface, you
enhance the composition by adding a fragment. The base repository and repository aspect
implementations are provided by each Spring Data module.

Example 28. Fragments with their implementations

interface HumanRepository {
void someHumanMethod(User user);

}

class HumanRepositoryImpl implements HumanRepository {

public void someHumanMethod(User user) {
// Your custom implementation

}
}

interface EmployeeRepository {
void someEmployeeMethod(User user);

User anotherEmployeeMethod(User user);

}

class ContactRepositoryImpl implements ContactRepository {

public void someContactMethod(User user) {
// Your custom implementation

}

public User anotherContactMethod(User user) {
// Your custom implementation

}
}

Example 29. Changes to your repository interface

interface UserRepository extends CrudRepository<User, Long>, HumanRepository,
ContactRepository {

// Declare query methods here

}

Repositories may be composed of multiple custom implementations that are imported in the order
of their declaration. Custom implementations have a higher priority than the base implementation
and repository aspects. This ordering allows you to override base repository and aspect methods

30

and resolves ambiguity if two fragments contribute the same method signature. Repository
fragments are not limited to be used in a single repository interface. Multiple repositories may use
a fragment interface to reuse customizations across different repositories.

Example 30. Fragments overriding save(::+)

interface CustomizedSave<T> {
<S extends T> S save(S entity);

}

class CustomizedSaveImpl<T> implements CustomizedSave<T> {

public <S extends T> S save(S entity) {
// Your custom implementation

}
}

Example 31. Customized repository interfaces

interface UserRepository extends CrudRepository<User, Long>, CustomizedSave<User>

{
}

interface PersonRepository extends CrudRepository<Person, Long>, CustomizedSave
<Person> {

}

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementation fragments by scanning for classes below the package we found a repository in.
These classes need to follow the naming convention of appending the namespace element’s
attribute repository-impl-postfix to the found fragment interface name. This postfix defaults to

Impl.

Example 32. Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar"
/>

The first configuration example will try to look up a class
com.acme.repository.CustomizedUserRepositoryImpl to act as custom repository implementation,

31

whereas the second example will try to lookup
com.acme.repository.CustomizedUserRepositoryFooBar.

Resolution of ambiguity

If multiple implementations with matching class names get found in different packages, Spring
Data uses the bean names to identify the correct one to use.

Given the following two custom implementations for the CustomizedUserRepository introduced
above the first implementation will get picked. Its bean name is customizedUserRepositoryImpl
matches that of the fragment interface (CustomizedUserRepository) plus the postfix Impl.

Example 33. Resolution of amibiguous implementations

package com.acme.impl.one;
class CustomizedUserRepositoryImpl implements CustomizedUserRepository {

// Your custom implementation

}

package com.acme.impl.two;

@Component("specialCustomImpl")
class CustomizedUserRepositoryImpl implements CustomizedUserRepository {

// Your custom implementation

}

If you annotate the UserRepository interface with @Component(“specialCustom") the bean name plus
Impl matches the one defined for the repository implementation in com.acme.impl.two and it will be
picked instead of the first one.

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based
configuration and autowiring only, as it will be treated as any other Spring bean. If your
implementation fragment bean needs special wiring, you simply declare the bean and name it after
the conventions just described. The infrastructure will then refer to the manually defined bean
definition by name instead of creating one itself.

32

Example 34. Manual wiring of custom implementations

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class=":-">
<!-- further configuration -->
</beans:bean>

7.6.2. Customize the base repository

The preceding approach requires customization of all repository interfaces when you want to
customize the base repository behavior, so all repositories are affected. To change behavior for all
repositories, you need to create an implementation that extends the persistence technology-specific
repository base class. This class will then act as a custom base class for the repository proxies.

Example 35. Custom repository base class

class MyRepositoryImpl<T, ID extends Serializable>
extends SimpleJpaRepository<T, ID> {

private final EntityManager entityManager;

MyRepositoryImpl(JpaEntityInformation entityInformation,
EntityManager entityManager) {
super(entityInformation, entityManager);

// Keep the EntityManager around to used from the newly introduced methods.
this.entityManager = entityManager;

}

public <S extends T> S save(S entity) {
// implementation goes here

}
}
The class needs to have a constructor of the super class which the store-
specific repository factory implementation is using. In case the repository base
WARNING class has multiple constructors, override the one taking an EntityInformation
plus a store specific infrastructure object (e.g. an EntityManager or a template
class).

The final step is to make the Spring Data infrastructure aware of the customized repository base
class. In JavaConfig this is achieved by using the repositoryBaseClass attribute of the @Enable
*Repositories annotation:

33

Example 36. Configuring a custom repository base class using JavaConfig

@Configuration
@EnableJpaRepositories(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { -+ }

A corresponding attribute is available in the XML namespace.

Example 37. Configuring a custom repository base class using XML

<repositories base-package="com.acme.repository"
base-class="++-.MyRepositoryImpl" />

7.7. Publishing events from aggregate roots

Entities managed by repositories are aggregate roots. In a Domain-Driven Design application, these
aggregate roots usually publish domain events. Spring Data provides an annotation @DomainEvents
you can use on a method of your aggregate root to make that publication as easy as possible.

Example 38. Exposing domain events from an aggregate root

class AnAggregateRoot {

@DomainEvents @
Collection<Object> domainEvents() {
// -+ return events you want to get published here

}

@AfterDomainEventPublication @
void callbackMethod() {
// -+ potentially clean up domain events list

}

@ The method using @DomainEvents can either return a single event instance or a collection of
events. It must not take any arguments.

@ After all events have been published, a method annotated with
@AfterDomainEventPublication. It e.g. can be used to potentially clean the list of events to be
published.

The methods will be called every time one of a Spring Data repository’s save(::-) methods is called.

34

7.8. Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

7.8.1. Querydsl Extension

Querydsl is a framework which enables the construction of statically typed SQL-like queries via its
fluent APL

Several Spring Data modules offer integration with Querydsl via QueryDs1PredicateExecutor.

Example 39. QueryDslPredicateExecutor interface

public interface QueryDslPredicateExecutor<T> {
Optional<T> findById(Predicate predicate); @
Iterable<T> findAl1(Predicate predicate); @
long count(Predicate predicate); ©)
boolean exists(Predicate predicate); @

// - more functionality omitted.

}

@ Finds and returns a single entity matching the Predicate.
@ Finds and returns all entities matching the Predicate.
® Returns the number of entities matching the Predicate.

@ Returns if an entity that matches the Predicate exists.

To make use of Querydsl support simply extend QueryDslPredicateExecutor on your repository
interface.

Example 40. Querydsl integration on repositories

interface UserRepository extends CrudRepository<User, Long>,
QueryDs1PredicateExecutor<User> {

}

The above enables to write typesafe queries using Querydsl Predicate s.

35

http://www.querydsl.com/

Predicate predicate = user.firstname.equalsIgnoreCase("dave")
.and(user.lastname.startsWithIgnoreCase("mathews"));

userRepository.findAll(predicate);

7.8.2. Web support

This section contains the documentation for the Spring Data web support as it is
implemented as of Spring Data Commons in the 1.6 range. As it the newly
introduced support changes quite a lot of things we kept the documentation of the
former behavior in Legacy web support.

NOTE

Spring Data modules ships with a variety of web support if the module supports the repository
programming model. The web related stuff requires Spring MVC JARs on the classpath, some of
them even provide integration with Spring HATEOAS [2: Spring HATEOAS - https://github.com/
SpringSource/spring-hateoas]. In general, the integration support is enabled by using the
@EnableSpringDatallebSupport annotation in your JavaConfig configuration class.

Example 41. Enabling Spring Data web support

@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration {}

The @eEnableSpringDatalebSupport annotation registers a few components we will discuss in a bit. It
will also detect Spring HATEOAS on the classpath and register integration components for it as well
if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or
HateoasAwareSpringDataWebSupport as Spring beans:

Example 42. Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the
former -->

<bean class=
"org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

36

https://github.com/SpringSource/spring-hateoas
https://github.com/SpringSource/spring-hateoas

* A DomainClassConverter to enable Spring MVC to resolve instances of repository managed
domain classes from request parameters or path variables.

* HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort
instances from request parameters.

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method
signatures directly, so that you don’t have to manually lookup the instances via the repository:

Example 43. A Spring MVC controller using domain types in method signatures

("/users")
class UserController {

("/{id}")

String showUserForm(("id") User user, Model model) {

model.addAttribute("user", user);
return "userForm";

}
}

As you can see the method receives a User instance directly and no further lookup is necessary. The
instance can be resolved by letting Spring MVC convert the path variable into the id type of the
domain class first and eventually access the instance through calling findById(::-) on the repository
instance registered for the domain type.

Currently the repository has to implement CrudRepository to be eligible to be

NOTE . .
discovered for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as
an instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being
valid controller method arguments

37

Example 44. Using Pageable as controller method argument

("/users")
class UserController {

private final UserRepository repository;

UserController(UserRepository repository) {
this.repository = repository;

}

String showUsers(Model model, Pageable pageable) {

model.addAttribute("users", repository.findAll(pageable));
return "users";

}
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request
parameters using the following default configuration:

Table 1. Request parameters evaluated for Pageable instances

Page Page you want to retrieve, 0 indexed and defaults to 0.
size Sjze of the page you want to retrieve, defaults to 20.

sort Properties that should be sorted by in the format property,property(,ASC|DESC). Default sort
direction is ascending. Use multiple sort parameters if you want to switch directions, e.g.
?sort=firstname&sort=1astname,asc.

To customize this behavior register a bean implementing the interface
PageableHandlerMethodArgumentResolverCustomizer or SortHandlerMethodArgumentResolverCustomizer
respectively. It’s customize() method will get called allowing you to change settings. Like in the
following example.

SortHandlerMethodArgumentResolverCustomizer sortCustomizer() {
return s -> s.setPropertyDelimiter("<-->");

If setting the properties of an existing MethodArgumentResolver isn’t sufficient for your purpose
extend either SpringDataWlebConfiguration or the HATEOAS-enabled equivalent and override the
pageableResolver() or sortResolver() methods and import your customized configuration file
instead of using the @Enable-annotation.

In case you need multiple Pageable or Sort instances to be resolved from the request (for multiple
tables, for example) you can use Spring’s @Qualifier annotation to distinguish one from another.

38

The request parameters then have to be prefixed with ${qualifier}_. So for a method signature like
this:

String showUsers(Model model,
("foo") Pageable first,
("bar") Pageable second) { '+ }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(@, 20) but can be
customized using the @PageableDefault annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enriching the
content of a Page instance with the necessary Page metadata as well as links to let the clients easily
navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of
the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

Example 45. Using a PagedResourcesAssembler as controller method argument

class PersonController {
PersonRepository repository;

(value = "/persons", method = RequestMethod.GET)
HttpEntity<PagedResources<Person>> persons(Pageable pageable,
PagedResourcesAssembler assembler) {

Page<Person> persons = repository.findAll(pageable);
return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.0K);
b
}

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as
controller method argument. Calling toResources(:-+) on it will cause the following:

» The content of the Page will become the content of the PagedResources instance.

* The PagedResources will get a PageMetadata instance attached populated with information form
the Page and the underlying PageRequest.

* The PagedResources gets prev and next links attached depending on the page’s state. The links
will point to the URI the method invoked is mapped to. The pagination parameters added to the
method will match the setup of the PageableHandlerMethodArgumentResolver to make sure the
links can be resolved later on.

39

Assume we have 30 Person instances in the database. You can now trigger a request GET
http://localhost:8080/persons and youw’ll see something similar to this:

{ "links" : [{ "rel" : "next",
"href" : "http://localhost:8080/persons?page=1&size=20 }
1,

"content" : [
-+ // 20 Person instances rendered here

1,
"pageMetadata"” : {

"size" : 20,
"totalElements" : 30,
"totalPages" : 2,
"number" : 0

You see that the assembler produced the correct URI and also picks up the default configuration
present to resolve the parameters into a Pageable for an upcoming request. This means, if you
change that configuration, the links will automatically adhere to the change. By default the
assembler points to the controller method it was invoked in but that can be customized by handing
in a custom Link to be used as base to build the pagination links to overloads of the
PagedResourcesAssembler.toResource(') method.

Querydsl web support

For those stores having QueryDSL integration it is possible to derive queries from the attributes
contained in a Request query string.

This means that given the User object from previous samples a query string
?firstname=Dave&lastname=Matthews

can be resolved to
QUser.user.firstname.eq("Dave").and(QUser.user.lastname.eq("Matthews"))

using the Queryds1PredicateArgumentResolver.

The feature will be automatically enabled along @EnableSpringDataWebSupport when

NOTE
Querydsl is found on the classpath.

Adding a @QuerydslPredicate to the method signature will provide a ready to use Predicate which
can be executed via the QueryDs1PredicateExecutor.

40

http://localhost:8080/persons
http://localhost:8080/persons
http://localhost:8080/persons
http://www.querydsl.com/

Type information is typically resolved from the methods return type. Since those
TIP information does not necessarily match the domain type it might be a good idea to use
the root attribute of Queryds1Predicate.

@Controller
class UserController {

@Autowired UserRepository repository;

@RequestMapping(value = "/", method = RequestMethod.GET)
String index(Model model, @QuerydslPredicate(root = User.class) Predicate
predicate, @)
Pageable pageable, @RequestParam MultiValueMap<String, String>
parameters) {

model.addAttribute("users"”, repository.findAll(predicate, pageable));

return "index";

}
}

@ Resolve query string arguments to matching Predicate for User.

The default binding is as follows:

* Object on simple properties as eq.
* Object on collection like properties as contains.

* Collection on simple properties as in.

Those bindings can be customized via the bindings attribute of @Queryds1Predicate or by making use
of Java 8 default methods adding the Queryds1BinderCustomizer to the repository interface.

41

interface UserRepository extends CrudRepository<User, String>,
QueryDs1PredicateExecutor<User>,

@

Queryds1BinderCustomizer<QUser> {

@

default void customize(QuerydslBindings bindings, QUser user) {

bindings.bind(user.username).first((path, value) -> path.contains(value))

®
bindings.bind(String.class)
.first((StringPath path, String value) -> path.containsIgnoreCase(value));
@
bindings.excluding(user.password);
}
}

@ QueryDs1PredicateExecutor provides access to specific finder methods for Predicate.

@ Queryds1BinderCustomizer defined on the repository interface will be automatically picked
up and shortcuts @QuerydslPredicate(bindings=+--).

® Define the binding for the username property to be a simple contains binding.
@ Define the default binding for String properties to be a case insensitive contains match.

® Exclude the password property from Predicate resolution.

7.8.3. Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it
does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define
data with which to populate the repositories.

Assume you have a file data. json with the following content:

Example 46. Data defined in J[SON

[{ "_class" : "com.acme.Person",
"firstname" : "Dave",

"lastname" : "Matthews" },

{ "_class" : "com.acme.Person",
"firstname" : "Carter",

"lastname" : "Beauford" }]

42

You can easily populate your repositories by using the populator elements of the repository
namespace provided in Spring Data Commons. To populate the preceding data to your
PersonRepository, do the following:

Example 47. Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd">

<repository:jackson2-populator locations="classpath:data.json" />

</beans>

This declaration causes the data.json file to be read and deserialized via a Jackson ObjectMapper.

The type to which the JSON object will be unmarshalled to will be determined by inspecting the
_class attribute of the JSON document. The infrastructure will eventually select the appropriate
repository to handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring
OXM provides you with. See the Spring reference documentation for details.

43

http://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/data-access.html#oxm

Example 48. Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xmlns:oxm="http://www.springframework.org/schema/oxm"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm.xsd">

<repository:unmarshaller-populator locations="classpath:data.json"
unmarshaller-ref="unmarshaller" />

<oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

7.8.4. Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLs. By default your task is to transform that request parameter or URL part into the
domain class to hand it to layers below then or execute business logic on the entities directly. This
would look something like this:

44

@Controller
@RequestMapping("/users")
class UserController {

private final UserRepository userRepository;

UserController(UserRepository userRepository) {
Assert.notNull(repository, "Repository must not be null!");
this.userRepository = userRepository;

}

@RequestMapping("/{id}")
String showUserForm(@PathVariable("id") Long id, Model model) {

// Do null check for id
User user = userRepository.findById(id);
// Do null check for user

model.addAttribute("user", user);
return "user";

First you declare a repository dependency for each controller to look up the entity managed by the
controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a
findById(::-) call. Fortunately Spring provides means to register custom components that allow
conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that,
Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data
repositories registered in the ApplicationContext and registers a custom PropertyEditor for the
managed domain class.

<bean class=":--.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="webBindingInitializer">
<bean class="+--.web.bind.support.ConfigurableWebBindingInitializer">

<property name="propertyEditorRegistrars">
<bean class=
"org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
</property>
</bean>
</property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller
as follows, which reduces a lot of the clutter and boilerplate.

45

46

@Controller
@RequestMapping("/users")
class UserController {

@RequestMapping("/{id}")
String showUserForm(@PathVariable("id") User user, Model model) {

model.addAttribute("user", user);
return "userForm";
}
}

Chapter 8. Auditing

8.1. Basics

Spring Data provides sophisticated support to transparently keep track of who created or changed
an entity and the point in time this happened. To benefit from that functionality you have to equip
your entity classes with auditing metadata that can be defined either using annotations or by
implementing an interface.

8.1.1. Annotation based auditing metadata

We provide @CreatedBy, @LastModifiedBy to capture the user who created or modified the entity as
well as @CreatedDate and @LastModifiedDate to capture the point in time this happened.

Example 49. An audited entity

class Customer {
private User user;

private DateTime createdDate;

// -+ further properties omitted
}

As you can see, the annotations can be applied selectively, depending on which information you’d
like to capture. For the annotations capturing the points in time can be used on properties of type
JodaTimes DateTime, legacy Java Date and Calendar, JDK8 date/time types as well as long/Long.

8.1.2. Interface-based auditing metadata

In case you don’t want to use annotations to define auditing metadata you can let your domain
class implement the Auditable interface. It exposes setter methods for all of the auditing properties.

There’s also a convenience base class AbstractAuditable which you can extend to avoid the need to
manually implement the interface methods. Be aware that this increases the coupling of your
domain classes to Spring Data which might be something you want to avoid. Usually the annotation
based way of defining auditing metadata is preferred as it is less invasive and more flexible.

8.1.3. AuditorAware

In case you use either @CreatedBy or @LastModifiedBy, the auditing infrastructure somehow needs to
become aware of the current principal. To do so, we provide an AuditorAware<T> SPI interface that
you have to implement to tell the infrastructure who the current user or system interacting with

47

the application is. The generic type T defines of what type the properties annotated with @CreatedBy
or @LastModifiedBy have to be.

Here’s an example implementation of the interface using Spring Security’s Authentication object:

Example 50. Implementation of AuditorAware based on Spring Security

class SpringSecurityAuditorAware implements AuditorAware<User> {
public User getCurrentAuditor() {

Authentication authentication = SecurityContextHolder.getContext()
.getAuthentication();

if (authentication == null || !authentication.isAuthenticated()) {
return null;

}

return ((MyUserDetails) authentication.getPrincipal()).getUser();
}
}

The implementation is accessing the Authentication object provided by Spring Security and looks
up the custom UserDetails instance from it that you have created in your UserDetailsService
implementation. We’re assuming here that you are exposing the domain user through that
UserDetails implementation but you could also look it up from anywhere based on the
Authentication found.

48

SDN Reference Documentation

49

Chapter 9. Introduction

In order to understand what Spring Data Neo4j can do it’s important to understand how an SDN
application is structured and could have implications in how you design your application.

9.1. SDN Architecture

A high level look of the architecture looks like:

50

Application Code

Spring Data Neo4j (SDN)

Neo4jTransactionManager Neo4jRepository

Neo4j Object Graph Mapping (OGM)

Session SessionFactory Configuration
Neodj Bolt Driver Neodj HTTP Driver Neo4dj Embedded Driver
bolt HTTP Java

Neo4j Graph Database

e Drivers are used to connect to the database. At the moment these come in 3 variants:
Embedded, HTTP and the binary protocol Bolt.

* The Object Graph Mapper (OGM): This is similar to an ORM in that it maps database nodes to
java objects. This library is agnostic of any framework (including Spring).

51

» Spring Data Neo4j 4: Provides syntactic sugar and code on top of the OGM to help quickly build
Spring Based Neo4j/OGM apps.

Those coming from other Spring Data projects or are familiar with ORM products like JPA or
Hibernate may quickly recognise this architecture. A bulk of the heavy lifting has been moved into
the OGM.

It’s therefore worth noting that there will be backward compatibility issues when
NOTE migrating to version 4.X, so be sure to check the Migration Guide to avoid any
unwanted surprises.

9.2. How to use this reference

Spring Data Neo4j is largely broken up into two main components:

* OGM Support: Provides close integration between Spring Data and the OGM; the main
underlying technology used in SDN.

» Spring Data Repository Support: Provides Spring Repository support.

It is recommended SDN developers also familiarise themselves with the OGM. The OGM reference
documentation has been reproduced after this section for convenience.

52

Chapter 10. Getting started

Depending on what type of project you are doing there are several options when it comes to
creating a new SDN project:

 Use http://start.spring.io (for Spring Boot projects);
» Use the Spring Tool Suite (based on eclipse);

* Adding the required libraries using your dependency management tool.

If you plan on using Neo4j in server mode, you will also need a running instance. Refer to the
Getting Started section of the Neo4j Developer manual on how to get that up and running.

10.1. Using Boot

To create a Spring Boot project simply go to http://start.spring.io and specify a group and artifact
like: org.spring.neo4j.example and demo. In the Dependencies box type: "Neo4]". You can also add
any other Spring support like "Web" etc. Once you are satisfied with your dependencies hit the
generate button, download the zip and unzip into your workspace.

10.2. Using STS

To create a Spring project in STS go to File - New - Spring Template Project — Simple Spring
Utility Project — press Yes when prompted. Then enter a project and a package name such as
org.spring.neo4j.example.

Then add the following to pom.xml dependencies section.

<dependencies>
<!-- other dependency elements omitted -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-neo4j</artifactld>
<version>{version}</version>

</dependency>

</dependencies>
Also change the version of Spring in the pom.xml to be

<spring.framework.version>{springVersion}</spring.framework.version>

53

http://start.spring.io
https://spring.io/tools/sts
http://neo4j.com/docs/developer-manual/current/get-started
http://start.spring.io

10.3. Using Dependency Management

Spring Data Neo4j projects can be built using Maven, Gradle or any other tool that supports
Maven’s repository system.

For more in depth configuration details please consult the Configuration section of

NOTE
the OGM Reference Manual.

10.3.1. Maven

By default, SDN will use the BOLT driver to connect to Neo4j and you don’t need to declare it as a
separate dependency in your pom. If you want to use the embedded or HTTP drivers in your
production application, you must add the following dependencies as well. (This dependency on the
embedded driver is not required if you only want to use the embedded driver for testing. See the
section on Testing below for more information).

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-releasetrain</artifactId>
<version>${spring-data-releasetrain.version}</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>

<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-neod4j</artifactId>
</dependency>

<!-- add this dependency if you want to use the embedded driver -->
<dependency>
<groupId>org.neo4j</groupIld>
<artifactId>neo4j-ogm-embedded-driver</artifactId>
</dependency>

<!-- add this dependency if you want to use the HTTP driver -->
<dependency>
<groupld>org.neo4j</groupld>
<artifactId>neo4j-ogm-http-driver</artifactId>
</dependency>
</dependency>

54

Testing

Maven dependencies for testing SDN 5 applications

<dependency>
<groupId>org.neo4j.test</groupId>
<artifactId>neod4j-harness</artifactId>
<version>3.2.5</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-test</artifactId>
<version>${spring.version}</version>
<scope>test</scope>

</dependency>

10.3.2. Gradle

Gradle dependencies are basically the same as Maven:

dependencies {
compile 'org.springframework.data:spring-data-neo4j:{version}’

add this dependency if you want to use the embedded driver
compile 'org.neo4j:neo4j-ogm-embedded-driver:{ogm-version}'

add this dependency if you want to use the Http driver
compile 'org.neo4j:neo4j-ogm-http-driver:{ogm-version}'

10.4. Examples

There is an github repository with several examples that you can download and play around with
to get a feel for how the library works.

10.5. Configuration

Right now SDN only supports JavaConfig. There is no XML based support but this may change in
future.

For those not familiar with how to configure the Spring container using Java based
NOTE bean metadata instead of XML based metadata see the high level introduction in the

reference docs here as well as the detailed documentation here.

For most applications the following configuration is all that’s needed to get up and running.

55

https://github.com/spring-projects/spring-data-examples
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/new-in-3.0.html#new-java-configuration
http://docs.spring.io/spring/docs/4.2.9.RELEASE/spring-framework-reference/html/beans.html#beans-java-instantiating-container

Spring Data Neo4j repositories using JavaConfig

(basePackages = "org.neo4j.example.repository")

public class MyConfiguration {

public SessionFactory sessionFactory() {
// with domain entity base package(s)
return new SessionFactory(configuration(), "org.neo4j.example.domain");

public org.neo4j.ogm.config.Configuration configuration() {
ConfigurationSource properties = new ClasspathConfigurationSource(
"ogm.properties");
org.neo4j.ogm.config.Configuration configuration = new org.neo4j.ogm.config
.Configuration.Builder(properties).build();
return configuration;

}

public Neo4jTransactionManager transactionManager() {
return new Neo4jTransactionManager(sessionFactory());

}

Here we wire up a SessionFactory configured from defaults. We can change these defaults by
providing an ogm.properties file at the root of the classpath or by passing in a
org.neo4j.ogm.config.Configuration object. The last infrastructure component declared here is the
Neo4jTransactionManager. We finally activate Spring Data Neo4j repositories using the
@EnableNeo4jRepositories annotation. If no base package is configured it will use the one the
configuration class resides in.

Note that you will have to activate @EnableTransactionManagement explicitly to get annotation based
configuration at facades working as well as define an instance of this Neo4jTransactionManager with
the bean name transactionManager. The example above assumes you are using component
scanning.

To allow your query methods to be transactional simply use @Transactional at the repository
interface you define.

10.5.1. Driver Configuration
SDN provides support for connecting to Neo4j using different drivers.

The following drivers are available.

56

* Http driver
e Embedded driver

e Bolt driver

Java Configuration

To configure the Driver programmatically, create a Configuration bean and pass it as the first
argument to the SessionFactory constructor in your Spring configuration:

public org.neo4j.ogm.config.Configuration configuration() {
org.neo4j.ogm.config.Configuration confiqguration = new org.neo4j.ogm.config
.Configuration.Builder()
.uri("bolt://localhost")
.credentials("user", "secret")
.build();
return confiquration;

public SessionFactory sessionFactory() {
return new SessionFactory(configuration(), <packages>); @

}

@ packages is a list of java packages containing the annotated domain model.

Configuration can also be initialized from an external file like this.

public org.neo4j.ogm.config.Configuration configuration() {

ConfigurationSource properties = new ClasspathConfigurationSource("db.properties”
)i

return new org.neo4j.ogm.config.Configuration.Builder(properties).build();

}

where db.properties looks like

URI=bolt://localhost
username=user
password=secret

connection.pool.size=... #see java driver doc
encryption.level=... #see java driver doc
trust.strategy=... #see java driver doc
trust.certificate.file=... #isee java driver doc
connection.liveness.check.timeout=... #see java driver doc
verify.connection=... #see java driver doc

57

NOTE The driver is automatically inferred from the URI scheme.

To set up authentication, TLS or other advanced options please see the

NOTE . . .
Configuration section of the OGM Reference.

As of 4.2.0 the Neo4j OGM embedded driver no longer ships with the Neo4j kernel.
NOTE Users are expected to provide this dependency through their dependency
management system.

10.5.2. Spring Boot Applications
Spring Boot 2.0 works straight out of the box with Spring Data Neo4j 5.0.0.

Update your Spring Boot Maven POM with the following. You may need to add <repositories>
depending on versioning (when using milestone or snapshot versions).

<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-neo4j</artifactId>
</dependency>
</dependencies>

Then add to your Spring Boot configuration class these annotations:

@EnableNeo4jRepositories("com.company.project.repository")
@EntityScan(basePackages = "com.company.project.domain")

Configuring Events with Boot

When defining a Spring EventlListener. Simply defining a @Bean will automatically register it with
the SessionFactory.

10.6. Connecting to Neo4j

The SessionFactory is needed by SDN to create instances of org.neo4j.ogm.session.Session as
required. When constructed, it sets up the object-graph mapping metadata, which is then used
across all Session objects that it creates. As seen in the above example, the packages to scan for
domain object metadata should be provided to the SessionFactory constructor.

There should typically be only one SessionFactory per application.

58

Chapter 11. Neo4j OGM Support

To get started, you need only your domain model and the annotations provided by the OGM library.
You use annotations to mark domain objects to be reflected by nodes and relationships of the graph
database. For individual fields the annotations allow you to declare how they should be processed
and mapped to the graph. For property fields and references to other entities this is
straightforward.

Refer to the OGM documentation for more details.

11.1. What is an OGM?

An OGM (Object Graph Mapper) maps nodes and relationships in the graph to objects and
references in your domain model. Object instances are mapped to nodes while object references
are mapped using relationships, or serialized to properties (e.g. references to a Date). JVM
primitives are mapped to node or relationship properties. An OGM abstracts the database and
provides a convenient way to persist your domain model in the graph and query it without using
low level drivers. It also provides the flexibility to the developer to supply custom queries where
the queries generated by the OGM are insufficient.

The OGM can be thought of as analogous to Hibernate or JPA. It is expected users have a working
understanding of the OGM when using this guide.

Session now replaces Neo4jTemplate functionality as all functionality can be
WARNING . .
found on the OGM Session object.

SDN now allows you to wire up the OGM Session directly into your Spring managed beans.

While SDN Repository will cover a majority of user scenarios sometimes it doesn’t offer enough
options. The OGM’s Session offers a convenient API to interact more tightly with a Neo4j graph
database.

11.1.1. Understanding the Session

A Session is used to drive the object-graph mapping framework. All repository implementations are
driven by the Session. It keeps track of the changes that have been made to entities and their
relationships. The reason it does this is so that only entities and relationships that have changed get
persisted on save, which is particularly efficient when working with large graphs.

Sessions are usually bound to a thread by default and rely on the garbage collector to clean it up
once it is out of scope of processing. For most users this means there is nothing to configure.
Request/response type applications SDN will take care of Session management for you (as defined
in the Configuration section above). If you have a batch or long running desktop type application
you may want to know how you can control using the session a bit more.

59

Design Consideration: Session caching

Once an entity is tracked by the session, reloading this entity within the scope of the same
session will result in the session cache returning the previously loaded entity. However, the
subgraph in the session will expand if the entity or its related entities retrieve additional
relationships from the graph.

If you want to fetch fresh data from the graph, then this can be achieved by using a new
session or clearing the current sessions context using org.neo4j.ogm.session.Session.clear().

The lifetime of the Session can be managed in code. For example, associated with single fetch-
update-save cycle or unit of work.

If your application relies on long-running sessions then you may not see changes made from
other users and find yourself working with outdated objects. On the other hand, if your
sessions have too narrow a scope then your save operations can be unnecessarily expensive,
as updates will be made to all objects if the session isn’t aware of the those that were
originally loaded.

There’s therefore a trade off between the two approaches. In general, the scope of a Session
should correspond to a "unit of work" in your application.

11.2. Basic Operations

For Spring Data Neo4j, low level operations are handled by the OGM Session. Basic operations are
now entirely limited to CRUD operations on entities and executing arbitrary Cypher queries; more
low-level manipulation of the graph database is not possible.

NOTE There is no longer a way to manipulate relationship- and node-objects directly.

Given that the latest version of the framework is driven by Cypher queries alone, there’s no way to
work directly with Node and Relationship objects any more in remote server mode. Similarly, the
traverse() method has disappeared, again because the underlying query-driven model doesn’t
handle it in an efficient way.

If you find yourself in trouble because of the omission of these features, then your best options are:

1. Write a Cypher query to perform the operations on the nodes/relationships instead

2. Write a Neo4j server extension and call it over REST from your application

Of course, there are pros and cons to both of these approaches, but these are largely outside the
scope of this document. In general, for low-level, very high-performance operations like complex
graph traversals youw’ll get the best performance by writing a server-side extension. For most
purposes, though, Cypher will be performant and expressive enough to perform the operations that
you need.

60

11.3. Entity Persistence

Session allows you to save, load, loadAll and delete entities. The eagerness with which objects are
retrieved is controlled by specifying the 'depth' argument to any of the load methods.

All of these basic CRUD methods just call onto the underlying methods of Session, albeit with
transaction handling and exception translation managed for you by SDN’s Transaction Manager
bean.

11.4. Cypher Queries

The Session also allows execution of arbitrary Cypher queries via its query, queryForObject and
queryForObjects methods. Cypher queries that return tabular results should be passed into the query
method. An org.neo4j.ogm.session.result.Result is returned. This consists of
org.neo4j.ogm.session.result.QueryStatistics representing statistics of modifying cypher
statements if applicable, and an Iterable<Map<String,0Object>> containing the raw data, of which
nodes and relationships are mapped to domain entities if possible. The keys in each Map correspond
to the names listed in the return clause of the executed Cypher query.

Modifications made to the graph via Cypher queries directly will not be reflected in

NOTE . . i .
your domain objects within the session.

11.5. Transactions

If you configured the Neo4jTransactionManager bean, any Session that is managed by Spring will
automatically take part in Thread contextual Transactions. In order to do this you will need to wrap
your service code using @Transactional or the TransactionTemplate.

It is important to know that if you enable Transactions ALL code that uses the

NOTE . : . . .
Session or a Repository must be enclosed in a @Transactional annotation.

For more details see Transactions

61

Chapter 12. Neo4] Repositories

12.1. Introduction

This chapter will point out the specialties for repository support for Neo4] and the Neo4] OGM. This
builds on the core repository support explained in Working with Spring Data Repositories. So make
sure you’ve got a sound understanding of the basic concepts explained there.

The following table outlines the repositories functionality currently either supported, partially
supported or not supported in SDN:

Feature Supported in SDN Notes

CrudRepository support [check]

PagingAndSortingRepository [checK]

support

Derived Count Queries [checK]

JavaConfig annotation based [checK]

configuration

XML based configuration [checK]

Multi Spring Data module [check]

support

Configurable Query Lookup [times]

Strategy

Derived Query support [check] See Supported keywords for
query methods below

Derived Query Property [times]

expressions support

Paging and Slice support [checK]

Derived query paging limit [check]

support

Java 8 Streaming and Optional [checK]

support

@Async support [checK]

Custom behaviour on [check]

repositories

QueryDs1PredicateExecutor [times]

support

Web support (incl Spring Data [minus] Partial: QueryDSL not

REST) supported.

Repository populators [times]

62

12.2. Usage

The Repository instances are only created through Spring and can be auto-wired into your Spring
beans as required.

Using basic Neo4jRepository CRUD-methods

public interface PersonRepository extends Neo4jRepository<Person, Long> {}
public class MySpringBean {
private PersonRepository repo;

}

// then you can use the repository as you would any other object
Person michael = repo.save(new Person("Michael", 36));

Optional<Person> dave = repo.findById(123);

long numberOfPeople = repo.count();

The recommended way of providing repositories is to define a repository interface per domain
class. The underlying Spring repository infrastructure will automatically detect these repositories,
along with additional implementation classes, and create an injectable repository implementation
to be used in services or other spring beans.

The repositories provided by Spring Data Neo4j build on the composable repository infrastructure
in Spring Data Commons. These allow for interface-based composition of repositories consisting of
provided default implementations for certain interfaces and additional custom implementations
for other methods.

Spring Data Neo4j comes with a single
org.springframework.data.repository.PagingAndSortingRepository specialisation called
Neo4jRepository<T. ID> used for all object-graph mapping repositories. This sub-interface also adds
specific finder methods that take a depth argument to control the horizon with which related
entities are fetched and saved. Generally, it provides all the desired repository methods. If other
operations are required then the additional repository interfaces should be added to the individual
interface declaration.

12.3. Query Methods

12.3.1. Query and Finder Methods

Most of the data access operations you usually trigger on a repository result a query being executed
against the Neo4j database. Defining such a query is just a matter of declaring a method on the
repository interface

63

http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories

Example 51. PersonRepository with query methods

public interface PersonRepository extends PagingAndSortingRepository<Person,
String> {

List<Person> findByLastname(String lastname); ©)
Page<Person> findByFirstname(String firstname, Pageable pageable); @
Person findByShippingAddresses(Address address); ©)

Stream<Person> findA1l1By(); @

@ The method shows a query for all people with the given lastname. The query will be
derived parsing the method name for constraints which can be concatenated with And and
Or. Thus the method name will result in a query expression of {"lastname"” : lastname}.

@ Applies pagination to a query. Just equip your method signature with a Pageable parameter
and let the method return a Page instance and we will automatically page the query
accordingly.

® Shows that you can query based on properties which are not a primitive type.

@ Uses a Java 8 Stream which reads and converts individual elements while iterating the
stream.

Table 2. Supported keywords for query methods

Keyword Sample Cypher snippet
After findBylLaunchDateAfter(Date n.launchDate > date
date)
Before findByLaunchDateBefore(Date n.launchDate < date
date)
Containing findByNameContaining(String n.name CONTAINS namePart
(String) namePart)
Containing findByEmailAddressesContains(C ANY(collectionFields IN [addresses] WHERE
(Collection) ollection<String> addresses) collectionFields in n.emailAddresses)

findByEmailAddressesContains(S ANY(collectionFields IN address WHERE

tring address) collectionFields in n.emailAddresses)
In findByNameIn(Iterable<String> n.name IN names

names)
Between findByScoreBetween(double min, n.score >= min AND n.score <= max

double max)
StartingWith findByNameStartingWith(String n.name STARTS WITH nameStart

nameStart)

EndingWith findByNameEndingWith(String n.name ENDS WITH nameEnd
nameEnd)

Exists findByNameExists() EXISTS(n.name)

True findByActivatedIsTrue() n.activated = true

64

Keyword Sample Cypher snippet

False findByActivatedIsFalse() NOT(n.activated = true)

Is findByNameIs(String name) n.name = name

NotNull findByNameNotNull() NOT(n.name IS NULL)

Null findByNameNul1() n.name IS NULL

GreaterThan findByScoreGreaterThan(double n.score > score
score)

GreaterThanEqu findByScoreGreaterThanEqual(do n.score >= score

al uble score)

LessThan findByScorelLessThan(double n.score < score
score)

LessThanEqual findByScorelLessThanEqual(doubl n.score <= score
e score)

Like findByNameLike(String name) n.name =~ name

NotLike findByNameNotLike(String name) NOT(n.name =~ name)

Near findByLocationNear (Distance distance(point(n),point({latitude:lat,
distance, Point point) longitude:lon})) < distance

Regex findByNameRegex(String regex) n.name =~ regex

And findByNameAndDescription(Strin n.name = name AND n.description = description
g name, String description)

or findByNameOrDescription(String n.name = name OR n.description = description

name, String description)

12.3.2. Annotated queries

(Cannot be used to OR nested properties)

Queries using the Cypher graph query language can be supplied with the @Query annotation.

That means a repository method annotated with
@Query("MATCH (:Actor {name:{name}})-[:ACTED_IN]->(m:Movie) return m")
will use the supplied query query to retrieve data from Neo4;.

The named or indexed parameter {param} will be substituted by the actual method parameter. Node
and Relationship-Entities are handled directly and converted into their respective ids. All other
parameters types are provided directly (i.e. Strings, Longs, etc).

There is special support for the Pageable parameter from Spring Data Commons, which is
supported to add programmatic paging and slicing(alternatively static paging and sorting can be
supplied in the query string itself).

If it is required that paged results return the correct total count, the @Query annotation can be
supplied with a count query in the countQuery attribute. This query is executed separately after the
result query and its result is used to populate the number of elements on the Page.

Custom queries do not support a custom depth. Additionally, @Query does not
support mapping a path to domain entities, as such, a path should not be returned
from a Cypher query. Instead, return nodes and relationships to have them mapped
to domain entities.

NOTE

65

12.3.3. Named queries

Sometimes it makes sense to extract e.g. a long query. Spring Data Neo4j will look in the META-
INF/neo4j-named-queries.properties file to find named queries. If you provide a query property like
User.findByQuery=MATCH (e) WHERE e.name={name} RETURN e you can refer to this method by
providing a finder method in your repository. The repository has to support the given entity type
(in this example User) and the method has to be named as the defined one (findByQuery). As you can
see in the example it is possible to parameterize the query.

12.3.4. Query results

Typical results for queries are Iterable<Type>, Iterable<Map<String,0Object>> or simply Type. Nodes
and relationships are converted to their respective entities (if they exist). Other values are
converted using the registered conversion services (e.g. enums).

12.3.5. Cypher examples

MATCH (n) WHERE id(n)=9 RETURN n
returns the node with id 9

MATCH (movie:Movie {title:'Matrix'}) RETURN movie
returns the nodes which are indexed with title equal to 'Matrix’

MATCH (movie:Movie {title:'Matrix'})<« [:ACTS_IN]-(actor) RETURN actor.name
returns the names of the actors that have a ACTS_IN relationship to the movie node for 'Matrix

v

MATCH (movie:Movie {title:'Matrix'})< [r:RATED]-(user) WHERE r.stars > 3 RETURN user.name,
r.stars, r.comment

returns users names and their ratings (>3) of the movie titled 'Matrix'

MATCH (user:User {name='Michael'})-[:FRIEND]-(friend)-[r:RATED]->(movie) RETURN movie.title,
AVG(r.stars), COUNT(*) ORDER BY AVG(r.stars) DESC, COUNT(*) DESC

returns the movies rated by the friends of the user 'Michael', aggregated by movie.title, with
averaged ratings and rating-counts sorted by both

Examples of Cypher queries placed on repository methods with @Query where values are replaced
with method parameters, as described in the Annotated queries) section.

66

public interface MovieRepository extends Neo4jRepository<Movie, Long> {

// returns the node with id equal to idOfMovie parameter
@Query("MATCH (n) WHERE id(n)={@} RETURN n")
Movie getMovieFromId(Integer idOfMovie);

// returns the nodes which have a title according to the movieTitle parameter
@Query("MATCH (movie:Movie {title={@}}) RETURN movie")
Movie getMovieFromTitle(String movieTitle);

// same with optional result
@Query("MATCH (movie:Movie {title={@0}}) RETURN movie")
Optional<Movie> getMovieFromTitle(String movieTitle);

// returns a Page of Actors that have a ACTS_IN relationship to the movie node
with the title equal to movieTitle parameter.

@Query(value = "MATCH (movie:Movie {title={@}})<-[:ACTS_IN]-(actor) RETURN actor",
countQuery= "MATCH (movie:Movie {title={@}})<-[:ACTS_IN]-(actor) RETURN count(actor)")

Page<Actor> getActorsThatActInMovieFromTitle(String movieTitle, PageRequest page);

// returns a Page of Actors that have a ACTS_IN relationship to the movie node
with the title equal to movieTitle parameter with an accurate total count

@Query(value = "MATCH (movie:Movie {title={0}})<-[:ACTS_IN]-(actor) RETURN actor",
countQuery = "MATCH (movie:Movie {title={@}})<-[:ACTS_IN]-(actor) RETURN count(*)")

Page<Actor> getActorsThatActInMovieFromTitle(String movieTitle, Pageable page);

// returns a Slice of Actors that have a ACTS_IN relationship to the movie node
with the title equal to movieTitle parameter.

@Query("MATCH (movie:Movie {title={0@}})<-[:ACTS_IN]-(actor) RETURN actor")

Slice<Actor> getActorsThatActInMovieFromTitle(String movieTitle, Pageable page);

// returns users who rated a movie (movie parameter) higher than rating (rating
parameter)
@Query("MATCH (movie:Movie)<-[r:RATED]-(user) " +
"WHERE id(movie)={movieId} AND r.stars > {rating} " +
"RETURN user™")
Iterable<User> getUsersWhoRatedMovieFromTitle(@Param("movield") Movie movie,
@Param("rating") Integer rating);

// returns users who rated a movie based on movie title (movieTitle parameter)
higher than rating (rating parameter)
@Query("MATCH (movie:Movie {title:{@}})<-[r:RATED]-(user) " +
"WHERE r.stars > {1} " +
"RETURN user")
Iterable<User> getUsersWhoRatedMovieFromTitle(String movieTitle, Integer rating);

@Query(value = "MATCH (movie:Movie) RETURN movie;")
Stream<Movie> getAllMovies();

12.3.6. Queries derived from finder-method names

Using the metadata infrastructure in the underlying object-graph mapper, a finder method name
can be split into its semantic parts and converted into a cypher query. Navigation along
relationships will be reflected in the generated MATCH clause and properties with operators will end
up as expressions in the WHERE clause. The parameters will be used in the order they appear in the
method signature so they should align with the expressions stated in the method name.

Some examples of methods and corresponding Cypher queries of a PersonRepository
public interface PersonRepository extends Neo4jRepository<Person, Long> {

// MATCH (person:Person {name={0}}) RETURN person
Person findByName(String name);

// MATCH (person:Person)

// WHERE person.age = {0} AND person.married = {1}

// RETURN person

Iterable<Person> findByAgeAndMarried(int age, boolean married);

// MATCH (person:Person)

// WHERE person.age = {0}

// RETURN person ORDER BY person.name SKIP {skip} LIMIT {limit}
Page<Person> findByAge(int age, Pageable pageable);

// MATCH (person:Person)

// WHERE person.age = {0}

// RETURN person ORDER BY person.name
List<Person> findByAge(int age, Sort sort);

//Allow a custom depth as a parameter
Person findByName(String name, @Depth int depth);

//Fix the depth for the query
@Depth(value = 0)
Person findBySurname(String surname);

12.3.7. Mapping Query Results

For queries executed via @Query repository methods, it’s possible to specify a conversion of complex
query results to POJOs. These result objects are then populated with the query result data and can
be serialized and sent to a different part of the application, e.g. a frontend-ui. To take advantage of
this feature, use a class annotated with @QueryResult as the method return type.

68

Example of query result mapping
public interface MovieRepository extends Neo4jRepository<Movie, Long> {

("MATCH (movie:Movie)-[r:RATING]\->(), (movie)<-[:ACTS_IN]-(actor:Actor) " +
"WHERE movie.id={0} " +
"RETURN movie as movie, COLLECT(actor) AS 'cast', AVG(r.stars) AS
"averageRating'")
MovieData getMovieData(String movield);

public class MovieData {
Movie movie;
Double averageRating;
Set<Actor> cast;

12.3.8. Sorting and Paging

Spring Data Neo4j supports sorting and paging of results when using Spring Data’s Pageable and
Sort interfaces.

Repository-based paging

Pageable pageable = PageRequest.of(0, 3);
Page<Wor1ld> page = worldRepository.findAl1l(pageable, 0);

Repository-based sorting

Sort sort = new Sort(Sort.Direction.ASC, "name");
Iterable<Wor1ld> worlds = worldRepository.findAll(sort, 0)) {

Repository-based sorting with paging

Pageable pageable = PageRequest.of(®, 3, Sort.Direction.ASC, "name");
Page<Wor1ld> page = worldRepository.findAl1l(pageable, 0);

The total number of pages reported by the PagingAndSortingRepository findAll

NOTE
methods are estimates and should not be relied upon for accuracy

12.3.9. Projections

Spring Data Repositories usually return the domain model when using query methods. However,
sometimes, you may need to alter the view of that model for various reasons. In this section, you

69

will learn how to define projections to serve up simplified and reduced views of resources.

Look at the following domain model:

@NodeEntity
public class Cinema {

private Long 1id;
private String name, location;

@Relationship(type = "VISITED", direction = Relationship.INCOMING)
private Set<User> visited = new HashSet<>();

@Relationship(type = "BLOCKBUSTER", direction = Relationship.OUTGOING)
private Movie blockbusterOfTheWeek;

This Cinema has several attributes:

* idis the graph id
e name and location are data attributes

* visited and blockbusterOfTheWleek are links to other domain objects

Now assume we create a corresponding repository as follows:

public interface CinemaRepository extends Neo4jRepository<Cinema, Long> {

Cinema findByName(String name);

}

Spring Data will return the domain object including all of its attributes, including all the users that
visited this cinema. That can be a big amount of data and can lead to performance issues.

There are several ways to avoid that :

* use a custom depth for loading (see Queries derived from finder-method names)
* use a custom annotated query (see Annotated queries)

* use a projection

70

Example 52. Simple Projection

public interface CinemaNameAndBlockbuster { @

public String getName(); @
public Movie getBlockbusterOfTheWeek();

This projection has the following details:

@ A plain Java interface making it declarative.

@ Only some attributes of the entity are exported.

The CinemaNameAndBlockbuster projection only has getters for name and blockbusterOfTheWeek
meaning that it will not serve up any user information. The query method definition returns in this
case CinemaNameAndBlockbuster instead of Cinema.

interface CinemaRepository extends Neo4jRepository<Cinema, Long> {

CinemaNameAndBlockbuster findByName(String name);

}

Projections declare a contract between the underlying type and the method signatures related to
the exposed properties. Hence it is required to name getter methods according to the property
name of the underlying type. If the underlying property is named name, then the getter method must
be named getName otherwise Spring Data is not able to look up the source property. This type of
projection is also called closed projection.

Closed projections expose a subset of properties that could be used to optimize the
query in a way to reduce the selected fields from the data store. However, it is not
implemented at the moment. For performance sensitive querying, you can still use
custom queries with maps or QueryResult (see Mapping Query Results)

NOTE

The other type is, as you might imagine, an open projection.

Remodelling data

So far, you have seen how projections can be used to reduce the information that is presented to
the user. Projections can be used to adjust the exposed data model. You can add virtual properties
to your projection. Look at the following projection interface:

71

Example 53. Renaming a property

interface RenamedProperty { ©)

("#{target.name}")
String getCinemaName(); @

("#{target.blockbusterOfTheWeek.name}")
String getBlockbusterOfTheWeekName(); ®
+

This projection has the following details:

@ A plain Java interface making it declarative.
@ Expose the name attribute as a virtual property called cinemaName.

® Export the name sub-property of the linked Movie entity as a virtual property.

The backing domain model does not have these properties so we need to tell Spring Data from
where they are obtained. Virtual properties are the place where @Value comes into play. The
cinemaName getter is annotated with @Value to use SpEL expressions pointing to the backing property
name. You may have noticed name is prefixed with target which is the variable name pointing to the
backing object. Using @Value on methods allows defining where and how the value is obtained.

@Value gives full access to the target object and its nested properties. SpEL expressions are
extremely powerful as the definition is always applied to the projection method.

We could imagine this :

interface RenamedProperty {

("#{target.name} #{(target.location == null) ? '' : target.location}")
String getNameAndLocation();

}

In this example, the location is appended to the cinema name only if it is available.

12.4. Transactions

Neo4j is a transactional database, only allowing operations to be performed within transaction
boundaries. Spring Data Neo4j integrates nicely with both the declarative transaction support with
@Transactional as well as the manual transaction handling with TransactionTemplate.

Demarcating @Transactional is required for all methods that interact with SDN. CRUD methods on
Repository instances are transactional by default. If you are simply just looking up an object
through a repository for example, then you do not need to define anything else: SDN will take of
everything for you. That said, it is strongly recommended that you always annotate any service

72

https://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/core.html#expressions

boundaries to the database with a @Transactional annotation. This way all your code for that
method will always run in one transaction, even if you add a write operation later on.

More standard behaviour with Transactions is using a facade or service implementation that
typically covers more than one repository or database call as part of a 'Unit of Work'. Its purpose is
to define transactional boundaries for non-CRUD operations:

NOTE SDN only supports PROPAGATION_REQUIRED and ISOLATION_DEFAULT type transactions.

Using a facade to define transactions for multiple repository calls

class UserManagementImpl implements UserManagement {

private final UserRepository userRepository;
private final RoleRepository roleRepository;

public UserManagementImpl(UserRepository userRepository,
RoleRepository roleRepository) {
this.userRepository = userRepository;
this.roleRepository = roleRepository;

}

public void addRoleToAllUsers(String roleName) {
Role role = roleRepository.findByName(roleName);

for (User user : userRepository.findAll()) {
user.addRole(role);
userRepository.save(user);

}

This will cause call to addRoleToAllUsers(:-+) to run inside a transaction (participating in an existing
one or create a new one if none already running). The transaction configuration at the repositories
will be neglected then as the outer transaction configuration determines the actual one used.

It is highly recommended that users understand how Spring Transactions work. Below are some
excellent resources:

» Spring Transaction Management

» Upgrading to Spring Data Neo4;j 4.2

12.4.1. Read only Transactions

You can start a read only transaction by marking a class or method with
@Transactional(readOnly=true).

73

https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#spring-data-tier
https://graphaware.com/neo4j/2016/09/30/upgrading-to-sdn-42.html

Note that if you open a read only transaction from, for example a service
method, and then call a mutating method that is marked as read/write your
transaction semantics will always be defined by the outermost transaction. Be
wary!

CAUTION

12.4.2. Transaction Bound Events

SDN provides the ability to bind the listener of an event to a phase of the transaction. The typical
example is to handle the event when the transaction has completed successfully: this allows events
to be used with more flexibility when the outcome of the current transaction actually matters to the
listener.

Spring Framework is currently structured in such a way that the context is not aware of the
transaction support and has an open infrastructure to allow additional components to be registered
and influence the way event listeners are created.

The transaction module implements an EventlistenerFactory that looks for the new
@TransactionalEventlListener annotation. When this one is present, an extended event listener that
is aware of the transaction is registered instead of the default.

Example: An order creation listener.

public class MyComponent {

(condition = "#creationEvent.awesome")
public void handleOrderCreatedEvent(CreationEvent<Order> creationEvent) {

}

@TransactionalEventlListener is a regular @EventlListener and also exposes a TransactionPhase, the
default being AFTER_COMMIT. You can also hook other phases of the transaction (BEFORE_COMMIT,
AFTER_ROLLBACK and AFTER_COMPLETION that is just an alias for AFTER_COMMIT and AFTER_ROLLBACK).

By default, if no transaction is running the event isn’t sent at all as we can’t obviously honor the
requested phase, but there is a fallbackExecution attribute in @TransactionalEventListener that tells
Spring to invoke the listener immediately if there is no transaction.

Only public methods in a managed bean can be annotated with @EventListener to
NOTE consume events. @TransactionalEventListener is the annotation that provides

transaction-bound event support described here.

To find out more about Spring’s Event listening capabilities see the Spring reference manual and
How to build Transaction aware Eventing with Spring 4.2.

74

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#context-functionality-events-annotation
https://spring.io/blog/2015/02/11/better-application-events-in-spring-framework-4-2

12.5. Clustering support

12.5.1. Bookmark management

Neo4j causal clusters use bookmarks to manage read your own writes scenarios. Youll find
background information on the way causal clusters work in the Neo4j operations manual.

In SDN, you can use the bookmark management feature to handle these scenarios easily. You just
need to add :

* The @EnableBookmarkManagement annotation once on your spring configuration class.
* The @UseBookmark on each java method involved into your read your own writes scenarios
Every method annotated with @UseBookmark will then collect the bookmarks coming from the

database at the end of transactions. These bookmarks are then stored into a SDN managed context,
and reused on later calls to other @UseBookmark annotated methods.

WARNING @UseBookmark has to be used on ~@Transactional "annotated methods.

12.6. Miscellaneous

12.6.1. CDI integration

Instances of the repository interfaces are usually created by a container, which Spring is the most
natural choice when working with Spring Data. There’s sophisticated support to easily set up Spring
to create bean instances documented in Creating repository instances. Spring Data Neo4j ships with
a custom CDI extension that allows using the repository abstraction in CDI environments. The
extension is part of the JAR so all you need to do to activate it is dropping the Spring Data Neo4j JAR
into your classpath.

You can now set up the infrastructure by implementing a CDI Producer for the SessionFactory and

Session:

class sessionFactoryProducer {

public SessionFactory createSessionFactory() {
return new SessionFactory("package");

}

public void close(SessionFactory sessionFactory) {
sessionFactory.close();

}
}

The necessary setup can vary depending on the JavaEE environment you run in. It might also just

75

https://neo4j.com/docs/operations-manual/current/clustering/

be enough to redeclare a session as CDI bean as follows:

class CdiConfig {

public session session;

}

In this example, the container has to be capable of creating OGM Sessions itself. All the
configuration does is re-exporting the OGM Session as CDI bean.

The Spring Data Neo4] CDI extension will pick up all sessions availables as CDI beans and create a
proxy for a Spring Data repository whenever an bean of a repository type is requested by the
container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an
@Injected property:

class RepositoryClient {

PersonRepository repository;

public void businessMethod() {
List<Person> people = repository.findAll();
}
}

12.6.2. JSR-303 (Bean Validation) Support

Spring Data Neo4] allows developers to use JSR-303 annotations like @NotNull etc. on their domain
models. While this is provided it’s not a best practice. It is highly recommended to create JSR-303
annotations on actual Java Beans, similar to things like Data Transfer Objects (DTOs).

12.6.3. Conversion Service

It is possible to have Spring Data Neo4j use converters registered with Spring’s ConversionService.
In order to do this, provide
org.springframework.data.neo4j.conversion.MetaDataDrivenConversionService as a Spring bean.

Provide MetaDataDrivenConversionService as a Spring bean

public ConversionService conversionService() {
return new MetaDataDrivenConversionService(getSessionFactory().metaData());

}

76

http://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/html/validation.html#core-convert

Then, instead of defining an implementation of org.neo4j.ogm.typeconversion.AttributeConverter
on the @Convert annotation, use the graphPropertyType attribute to define the type to convert to.

Using graphPropertyType

public class MyEntity {

(graphPropertyType = Integer.class)
private DecimalCurrencyAmount fundValue;

Spring Data Neo4j will look for converters registered with Spring’s ConversionService that can
convert both to and from the type specified by graphPropertyType and use them if they exist.

Default converters and those defined explicitly via an implementation of
NOTE org.neodj.ogm.typeconversion.AttributeConverter will take precedence over
converters registered with Spring’s ConversionService.

As of SDN 4, this Neo4jRepository<T, ID> should be the interface from which your entity repository
interfaces inherit, with T being specified as the domain entity type to persist. ID is defined by the
field type annotated with @Id.

Examples of methods you get for free out of Neo4jRepository are as follows. For all of these
examples the ID parameter is a Long that matches the graph ID:

Load an entity instance via an id
Optional<T> findById(id)

Check for existence of an id in the graph
boolean existsById(id)

Iterate over all nodes of a node entity type
Iterable<T> findA11() Iterable<T> findAl1(Sort -:+) Page<T> findAll(Pageable -:-)

Count the instances of the repository entity type
Long count()

Save entities
T save(T) and Iterable<T> saveAll(Iterable<T>)

Delete graph entities
void delete(T), void deleteAll(Iterable<T>), and void deleteAll()

For users coming from versions before 4.2.x, Neo4jRepository has replaced

NOTE
GraphRepository but essentially has the same features.

77

12.6.4. Projections

Spring Data Repositories usually return the domain model when using query methods. However,
sometimes, you may need to alter the view of that model for various reasons. In this section, you
will learn how to define projections to serve up simplified and reduced views of resources.

Look at the following domain model:

public class Cinema {

private Long id;
private String name, location;

(type = "VISITED", direction = Relationship.INCOMING)
private Set<User> visited = new HashSet<>();

(type = "BLOCKBUSTER", direction = Relationship.0OUTGOING)
private Movie blockbusterOfTheWeek;

This Cinema has several attributes:

* idis the graph id
* name and location are data attributes

* visited and blockbusterOfThelWleek are links to other domain objects

Now assume we create a corresponding repository as follows:

public interface CinemaRepository extends Neo4jRepository<Cinema, Long> {

Cinema findByName(String name);

}

Spring Data will return the domain object including all of its attributes, including all the users that
visited this cinema. That can be a big amount of data and can lead to performance issues.

There are several ways to avoid that :

 use a custom depth for loading (see Queries derived from finder-method names)
* use a custom annotated query (see Annotated queries)

* use a projection

78

Example 54. Simple Projection

public interface CinemaNameAndBlockbuster { @

public String getName(); @
public Movie getBlockbusterOfTheWeek();

This projection has the following details:

@ A plain Java interface making it declarative.

@ Only some attributes of the entity are exported.

The CinemaNameAndBlockbuster projection only has getters for name and blockbusterOfTheWeek
meaning that it will not serve up any user information. The query method definition returns in this
case CinemaNameAndBlockbuster instead of Cinema.

interface CinemaRepository extends Neo4jRepository<Cinema, Long> {

CinemaNameAndBlockbuster findByName(String name);

}

Projections declare a contract between the underlying type and the method signatures related to
the exposed properties. Hence it is required to name getter methods according to the property
name of the underlying type. If the underlying property is named name, then the getter method must
be named getName otherwise Spring Data is not able to look up the source property. This type of
projection is also called closed projection.

Closed projections expose a subset of properties that could be used to optimize the
query in a way to reduce the selected fields from the data store. However, it is not
implemented at the moment. For performance sensitive querying, you can still use
custom queries with maps or QueryResult (see Mapping Query Results)

NOTE

The other type is, as you might imagine, an open projection.

Remodelling data

So far, you have seen how projections can be used to reduce the information that is presented to
the user. Projections can be used to adjust the exposed data model. You can add virtual properties
to your projection. Look at the following projection interface:

79

Example 55. Renaming a property

interface RenamedProperty { @

("#{target.name}")
String getCinemaName(); @

("#{target.blockbusterOfTheWeek.name}")
String getBlockbusterOfTheWeekName(); ®
+

This projection has the following details:

@ A plain Java interface making it declarative.
@ Expose the name attribute as a virtual property called cinemaName.

® Export the name sub-property of the linked Movie entity as a virtual property.

The backing domain model does not have these properties so we need to tell Spring Data from
where they are obtained. Virtual properties are the place where @Value comes into play. The
cinemaName getter is annotated with @Value to use SpEL expressions pointing to the backing property
name. You may have noticed name is prefixed with target which is the variable name pointing to the
backing object. Using @Value on methods allows defining where and how the value is obtained.

@Value gives full access to the target object and its nested properties. SpEL expressions are
extremely powerful as the definition is always applied to the projection method.

We could imagine this :

interface RenamedProperty {

("#{target.name} #{(target.location == null) ? '' : target.location}")
String getNameAndLocation();

}

In this example, the location is appended to the cinema name only if it is available.

12.6.5. Auditing

Spring Data Neo4j integrates into the Spring Data auditing infrastructure to keep track of who
created or changed an entity and the point in time this happened.

Please refer to the auditing section of the Spring Data reference.

80

https://docs.spring.io/spring/docs/5.0.1.RELEASE/spring-framework-reference/core.html#expressions

Neo4j OGM Reference
Documentation

This chapter is taken from the Official Neo4j OGM Reference

Documentation.

81

http://neo4j.com/docs/ogm-manual/current
http://neo4j.com/docs/ogm-manual/current

Chapter 13. Introduction

Neo4j OGM is a fast object-graph mapping library for Neo4j, optimised for server-based
installations utilising Cypher.

It aims to simplify development with the Neo4j graph database and like JPA, it uses annotations on
simple POJO domain objects to do so.

With a focus on performance, the OGM introduces a number of innovations, including:

* non-reflection based classpath scanning for much faster startup times;

» variable-depth persistence to allow you to fine-tune requests according to the characteristics of
your graph;

* smart object-mapping to reduce redundant requests to the database, improve latency and
minimise wasted CPU cycles; and

 user-definable session lifetimes, helping you to strike a balance between memory-usage and
server request efficiency in your applications.

13.1. Overview

This reference documentation is broken down into sections to help the user understand specifics of
how the OGM works.

Getting started

Getting started can sometimes be a chore. What versions of the OGM do you need? Where do
you get them from? What build tool should you use? Getting Started is the perfect place to well...
get started!

Configuration

Drivers, logging, properties, configuration via Java. How to make sense of all the options?
Configuration has got you covered.

Annotating your Domain Objects

To get started with your OGM application, you need only your domain model and the
annotations provided by the library. You use annotations to mark domain objects to be reflected
by nodes and relationships of the graph database. For individual fields the annotations allow
you to declare how they should be processed and mapped to the graph. For property fields and
references to other entities this is straightforward. Because Neo4j is a schema-free database, the
OGM uses a simple mechanism to map Java types to Neo4j nodes using labels. Relationships
between entities are first class citizens in a graph database and therefore worth a section of it’s
own describing their usage in Neo4j OGM.

Connecting to the Database

Managing how you connect to the database is important. Connecting to the Database has all the
details on what needs to happen to get you up and running.

82

Indexing and Primary Constraints

Indexing is an important part of any database. The Neo4j OGM provides a variety of features to
support the management of Indexes as well as the ability to query your domain objects by
something other than the internal Neo4j id. Indexing has everything you will want to know
when it comes to getting that working.

Interacting with the Graph Model

Neo4j OGM offers a session for interacting with the mapped entities and the Neo4j graph
database. Neo4j uses transactions to guarantee the integrity of your data and Neo4j OGM
supports this fully. The implications of this are described in the transactions section. To use
advanced functionality like Cypher queries, a basic understanding of the graph data model is
required. The graph data model is explained in the chapter about in the introduction chapter.

Type Conversion

The OGM provides support for default and bespoke type conversions, which allow you to
configure how certain data types are mapped to nodes or relationships in Neo4j. See Type
Converstion for more details.

Filtering your domain objects

Filters provides a simple API to append criteria to your stock Session.loadX() behaviour. This is
covered in more detail in Filters.

Reacting to Persistence events

The Events mechanism allows users to register event listeners for handling persistence events
related both to top-level objects being saved as well as connected objects. Event handling
discusses all the aspects of working with events.

Testing in your application
Sometimes you want to be able to run your tests against an in-memory version of the OGM.
Testing goes into more detail of how to set that up.

Support for High Availability

For those using Neo4j Enterprise, support for high availability is extremely important. The
chapter on High Availability goes into all the options the OGM provides to support this.

83

Chapter 14. Getting Started

14.1. Versions

Consult the version table to determine which version of the OGM to use with a particular version of
Neo4j and related technologies.

14.1.1. Compatibility

Neo4j OGM Neo4j Version Bolt Version® Spring Data Spring Boot
Version Neo4j Version Version
3.0.0+ 3.1x,3.2x 1.4.0+ 5.0.0+ 2.0.0+

2.1.0+ 2.3x,3.0x,31x 1.1.0+ 4.2.0+ 1.5.0+

2.0.2+ 2.3x,3.0x 1.0.0+ 4.1.2-4.1.6+ 1.4.x

2.0.1° 2.2.%,2.3X 1.0.0-RC1 41.0-411 1.4.x

1.1.5 2.1x,22.x23x N/A 4.0.0+ 1.4x

" These versions are no longer actively developed or supported.

* Not applicable to Embedded and HTTP drivers

14.1.2. Transitive dependencies

The following table list transitive dependencies between specific versions of projects related to
OGM. When reporting issues or asking for help on StackOverflow or neo4j-users slack channel
always verify versions used (e.g through mvn dependency:tree) and report them as well.

Spring Boot Version Spring Data Neo4j Neo4j OGM Version Bolt Version
Version
2.0.0 5.0.0 3.0.0 1.4.3
1.5.7 4.2.7 2.1.3 1.2.3
1.4.6 4.1.7 2.0.5 1.0.6
NOTE These versions can be overridden manually in pom.xml or build.gradle files.

14.2. Dependency Management

For building an application, your build automation tool needs to be configured to include the Neo4;j
OGM dependencies.

The OGM dependencies consist of neo4j-ogm-core, together with the relevant dependency
declarations on the driver you want to use. OGM provides support for connecting to Neo4j by
configuring one of the following Drivers:

* neo4j-ogm-http-driver - Uses HTTP to communicate between the OGM and a remote Neo4j

84

instance.
* neodj-ogm-embedded-driver - Connects directly to the Neo4j database engine.

* neodj-ogm-bolt-driver - Uses native Bolt protocol to communicate between the OGM and a
remote Neo4j instance.

If you’re not using a particular driver, you don’t need to declare it.

Neo4j OGM projects can be built using Maven, Gradle or any other build system that utilises
Maven’s artifact repository structure.

14.2.1. Maven
In the <dependencies> section of your pom.xml add the following:

Maven dependencies

<dependency>
<groupId>org.neo4j</groupld>
<artifactId>neo4j-ogm-core</artifactld>
<version>{ogm-version}</version>
<scope>compile</scope>

</dependency>

<!-- Only add if you're using the HTTP driver -->

<dependency>
<groupId>org.neo4j</groupld>
<artifactId>neo4j-ogm-http-driver</artifactId>
<version>{ogm-version}</version>
<scope>runtime</scope>

</dependency>

<!-- Only add if you're using the Embedded driver -->

<dependency>
<groupIld>org.neo4j</groupld>
<artifactId>neo4j-ogm-embedded-driver</artifactId>
<version>{ogm-version}</version>
<scope>runtime</scope>

</dependency>

<!-- Only add if you're using the Bolt driver -->

<dependency>
<groupId>org.neo4j</groupld>
<artifactId>neo4j-ogm-bolt-driver</artifactId>
<version>{ogm-version}</version>
<scope>runtime</scope>

</dependency>

If you plan on using a development (i.e. SNAPSHOT) version of the OGM you will need to add the
following to the <repositories> section of your pom.xml:

85

Neo4j Snapshot Repository

<repository>
<id>neo4j-snapshot-repository</id>
<name>Neo4j Maven 2 snapshot repository</name>
<url>http://m2.neo4j.org/content/repositories/snapshots</url>
</repository>

14.2.2. Gradle
Ensure the following dependencies are added to you build.gradle:

Gradle dependencies

dependencies {

compile 'org.neo4j:neodj-ogm-core:{ogm-version}'

runtime 'org.neo4j:neo4j-ogm-http-driver:{ogm-version}"' // Only add if you're
using the HTTP driver

runtime 'org.neo4j:neo4j-ogm-embedded-driver:{ogm-version}"' // Only add if you're
using the Embedded driver

runtime 'org.neo4j:neo4j-ogm-bolt-driver:{ogm-version}"' // Only add if you're
using the Bolt driver

}

If you plan on using a development (i.e. SNAPSHOT) version of the OGM you will need to add the
following section of your build.gradle:

Neo4j Snapshot Repository
repositories {

maven { url "http://m2.neodj.org/content/repositories/snapshots" }

}

86

Chapter 15. Configuration

15.1. Configuration method

There are several ways to supply configuration to the OGM:

* using a properties file
* programmatically using Java

* by providing an already configured Neo4j Java driver instance

These methods are described below. They are also available as code in the examples.

15.1.1. Using a properties file

Properties file on classpath:

ConfigurationSource props = new ClasspathConfigurationSource("my.properties");
Confiquration configuration = new Confiquration.Builder(props).build();

Properties file on filesystem:

ConfigurationSource props = new FileConfigurationSource("/etc/my.properties");
Confiquration configuration = new Confiquration.Builder(props).build();

15.1.2. Programmatically using Java

In cases where you are not be able to provide configuration via a properties file you can configure

the OGM programmatically instead.

The Configuration object provides a fluent API to set various configuration options. This object then

needs to be supplied to the SessionFactory constructor in order to be configured.

15.1.3. By providing a Neo4j driver instance

Just configure the driver as you would do for direct access to the database, and pass the driver

instance to the session factory.

This method allows the greatest flexibility and gives you access to the full range of low level

configuration options.

Example providing a bolt driver instance to OGM

org.neodj.driver.v1.Driver nativeDriver = ...;
Driver ogmDriver = new BoltDriver(nativeDriver);
new SessionFactory(ogmDriver, ...);

87

15.2. Driver Configuration

For configuration through properties file or configuration builder the driver is automatically
inferred from given URI. Empty URI means embedded driver with impermanent database.

15.2.1. HTTP Driver

Table 3. Basic HTTP Driver Configuration

ogm.properties Java Configuration
URI=http://user:password@localhost:7474 Configuration configuration = new
Configuration.Builder()
Luri(
"http://user:password@localhost:7474")
.build()
15.2.2. Bolt Driver

Note that for the URI, if no port is specified, the default Bolt port of 7687 is used. Otherwise, a port
can be specified with bolt://neo4j:password@localhost:1234.

Also, the bolt driver allows you to define a connection pool size, which refers to the maximum
number of sessions per URL. This property is optional and defaults to 50.

Table 4. Basic Bolt Driver Configuration

ogm.properties Java Configuration
URI=bolt://neodj:password@localhost Configuration configuration = new
connection.pool.size=150 Configuration.Builder()
Luri(

"bolt://neodj:password@localhost")
.setConnectionPoolSize(150)
.build()

A timeout to the database with the Bolt driver can be set by updating your Database’s neo4j.conf.
The exact setting to change can be found here.

15.2.3. Embedded Driver

You should use the Embedded driver if you don’t want to use a client-server model, or if your
application is running as a Neo4j Unmanaged Extension. You can specify a permanent data store
location to provide durability of your data after your application shuts down, or you can use an
impermanent data store, which will only exist while your application is running.

88

http://neo4j.com/docs/operations-manual/current/reference/configuration-settings/#config_dbms.transaction.timeout

As of 2.1.0 the Neo4j OGM embedded driver no longer ships with the Neo4j kernel.
NOTE Users are expected to provide this dependency through their dependency
management system. See Getting Started for more details.

Table 5. Permanent Data Store Embedded Driver Configuration

ogm.properties Java Configuration

URI=file:///var/tmp/neodj.db Configuration configuration = new
Configuration.Builder()
Luri(
“file:///var/tmp/neodj.db")
.build()

To use an impermanent data store which will be deleted on shutdown of the JVM, you just omit the
URI attribute.

Table 6. Impermanent Data Store Embedded Driver Configuration

ogm.properties Java Configuration

Leave empty Configuration configuration = new
Configuration.Builder().build()

Configuration in an Unmanaged Extension

When your application is running as unmanaged extension inside the Neo4j server itself, you will
need to set up OGM configuration slightly differently. Neo4j provides PluginLifecycle SPI that
allows to initialize extensions. Extend OgmPluginInitializer and list the full class name in META-
INF/services/org.neo4j.server.plugins.PluginLifecycle:

public class MyApplicationPluginInitializer extends OgmPluginInitializer {

public MyApplicationPluginInitializer() {
super (MyDomain.class.getPackage().getName());

}

This provides SessionFactory as injectable in your resources:

89

("/movies")
public static class MovieService {

private SessionFactory sessionFactory;

Don’t forget to list your resources in dbms.unmanaged_extension_classes property in

NOTE
Neo4j configuration file as you would with any other unmanaged extension.

15.2.4. Credentials

If you are using the HTTP or Bolt Driver you have a number of different ways to supply credentials
to the Driver Configuration.

ogm.properties Java Configuration
embedded Configuration configuration = new
URI=http://user:password@localhost:7474 Configuration.Builder()
Luri(
separately "bolt://user:password@localhost")
username="user" .build()

password="password"
Configuration configuration = new
Configuration.Builder()
.credentials("user",
"password")
.build()

Note: Currently only Basic Authentication is supported by the OGM. If you need to use more advanced
authentication scheme, use the native driver configuration method.

15.2.5. Transport Layer Security (TLS/SSL)

The Bolt and HTTP drivers also allow you to connect to Neo4j over a secure channel. These rely on
Transport Layer Security (aka TLS/SSL) and require the installation of a signed certificate on the
server.

In certain situations (e.g. some cloud environments) it may not be possible to install a signed
certificate even though you still want to use an encrypted connection.

To support this, both drivers have configuration settings allowing you to bypass certificate
checking, although they differ in their implementation.

90

Both of these strategies leave you vulnerable to a MITM attack. You should probably

NOTE
not use them unless your servers are behind a secure firewall.

Bolt

ogm.properties Java Configuration
#Encryption level (TLS), optional, Configuration config = new
defaults to REQUIRED. Configuration.Builder()
#Valid values are NONE,REQUIRED -
encryption.level=REQUIRED .encryptionLevel("REQUIRED")

.trustStrategy("TRUST_ON_FIRST_USE")

#Trust strategy, optional, not used if .trustCertFile("/tmp/cert")
not specified. .build();

#Valid values are
TRUST_ON_FIRST_USE,TRUST_SIGNED_CERTIFIC
ATES

trust.strateqy=TRUST_ON_FIRST_USE

#Trust certificate file, required if
trust.strategy is specified
trust.certificate.file=/tmp/cert

TRUST_ON_FIRST_USE means that the Bolt Driver will trust the first connection to a host to be safe and
intentional. On subsequent connections, the driver will verify that the host is the same as on that
first connection.

HTTP
ogm.properties Java Configuration
trust.strategy = ACCEPT_UNSIGNED Configuration configuration = new

Configuration.Builder()
.trustStrategy("ACCEPT_UNSIGNED
")
.build()

The ACCEPT_UNSIGNED strategy permits the HTTP Driver to accept Neo4j’s default snakeoil.cert (and
any other) unsigned certificate when connecting over HTTPS.

15.2.6. Bolt connection testing

In order to prevent some network problems while accessing a remote database, you may want to
tell the Bolt driver to test connections from the connection pool.

This is particularly useful when there are firewalls between the application tier and the database.

91

You can do that with the connection liveness parameter which indicates the interval at which the
connections will be tested. A value of 0 indicates that the connection will always be tested. A
negative value indicates that the connection will never be tested.

ogm.properties Java Configuration
interval, in milliseconds, to check Configuration config = new
for stale db connections (test-on- Configuration.Builder()
borrow) -
connection.liveness.check.timeout=1000 .connectionlLivenessCheckTimeout(
1000)
.build();

15.2.7. Eager connection verification

OGM by default does not connect to Neo4j server on application startup. This allows you to start the
application and database independently and Neo4j will be accessed on first read/write. To change
this behaviour set the property verify.connection (or Builder.verifyConnection(boolean)) to true.
This settings is valid only for Bolt and HTTP drivers.

15.3. Logging

Neo4j OGM uses SLF4] to log statements. In production, you can set the log level in a file called
logback.xml to be found at the root of the classpath. Please see the Logback manual for further
details.

92

http://logback.qos.ch/manual/

Chapter 16. Annotating Entities

16.1. @NodeEntity: The basic building block

The @NodeEntity annotation is used to declare that a POJO class is an entity backed by a node in the
graph database. Entities handled by the OGM must have one empty public constructor to allow the
library to construct the objects.

Fields on the entity are by default mapped to properties of the node. Fields referencing other node
entities (or collections thereof) are linked with relationships.

@NodeEntity annotations are inherited from super-types and interfaces. It is not necessary to
annotate your domain objects at every inheritance level.

If the label attribute is set then this will replace the default label applied to the node in the
database. The default label is just the simple class name of the annotated entity. All parent classes
(excluding java.lang.Object) are also added as labels so that retrieving a collection of nodes via a
parent type is supported.

Entity fields can be annotated with annotations like @Property, @Id, @GeneratedValue, @Transient or
@Relationship. All annotations live in the org.neo4j.ogm.annotation package. Marking a field with
the transient modifier has the same effect as annotating it with @Transient; it won’t be persisted to
the graph database.

Persisting an annotated entity
public class Actor extends DomainObject {

private Long 1id;

(name="name")
private String fullName;

(type="ACTED_IN", direction=Relationship.0UTGOING)
private List<Movie> filmography;

(label="Film")
public class Movie {

Long id;

(name="title")
private String name;

93

Saving a simple object graph containing one actor and one film using the above annotated objects
would result in the following being persisted in Neo4;.

(:Actor:DomainObject {name:'Tom Cruise'})-[:ACTED_IN]->(:Film {title: 'Mission
Impossible'})

When annotating your objects, you can choose to NOT apply the annotations on the fields. OGM will
then use conventions to determine property names in the database for each field.

Persisting a non-annotated entity
public class Actor extends DomainObject {

private Long 1id;
private String fullName;
private List<Movie> filmography;

}

public class Movie {

private Long 1id;
private String name;

In this case, a graph similar to the following would be persisted.

(:Actor:DomainObject {fullName:'Tom Cruise'})-[:FILMOGRAPHY]->(:Movie {name:'Mission
Impossible'})

While this will map successfully to the database, it’s important to understand that the names of the
properties and relationship types are tightly coupled to the class’s member names. Renaming any of
these fields will cause parts of the graph to map incorrectly, hence the recommendation to use
annotations.

Please read Non-annotated properties and best practices for more details and best pratices on this.

16.1.1. @Properties: dynamically mapping properties to graph

A @Properties annotation tells OGM to map values of a Map field in a node or relationship entity to
properties of a node or a relationship in the graph.

The property names are derived from field name or prefix, delimiter and keys in the Map. For
example Map field with name address containing following entries:

94

"street" => "Downing Street"
"number" => 10

will map to following node/relationship properties

address.street=Downing Street
address.number=10

Supported types for keys in the Map are String and Enum.

The values in the Map can be of any Java type equivalent to Cypher types. If full type information is
provided other Java types are also supported.

If annotation parameter allowCast is set to true then types that can be cast to corresponding Cypher

types are allowed as well.

The original type cannot be deduced and the value will be deserialized to
NOTE corresponding type - e.g. when Integer instance is put to ‘Map<String, Object> it will
be deserialized as Long.

public class Student {

private Map<String, Integer> properties = new HashMap<>();

private Map<String, Object> properties = new HashMap<>();

16.1.2. Runtime managed labels

As stated above, the label applied to a node is the contents of the @NodeEntity label property, or if

not specified, it will default to the simple class name of the entity. Sometimes it might be necessary

to add and remove additional labels to a node at runtime. We can do this using the @Labels

annotation. Let’s provide a facility for adding additional labels to the Student entity:

public class Student {

private List<String> labels = new ArraylList<>();

95

Now, upon save, the node’s labels will correspond to the entity’s class hierarchy plus whatever the
contents of the backing field are. We can use one @lLabels field per class hierarchy - it should be
exposed or hidden from sub-classes as appropriate.

Runtime labels must not conflict with static labels defined on node entities.

In a typical situation OGM issues one request per node entity type when saving
NOTE node entities to the database. Using many distinct labels will result into many
requests to the database (one request per unique combination of labels).

16.2. @Relationship: Connecting node entities

Every field of an entity that references one or more other node entities is backed by relationships in
the graph. These relationships are managed by the OGM automatically.

The simplest kind of relationship is a single object reference pointing to another entity (1:1). In this
case, the reference does not have to be annotated at all, although the annotation may be used to
control the direction and type of the relationship. When setting the reference, a relationship is
created when the entity is persisted. If the field is set to null, the relationship is removed.

Single relationship field

public class Movie {

private Actor topActor;

It is also possible to have fields that reference a set of entities (1:N). Neo4j OGM supports the
following types of entity collections:

« java.util.Vector

* java.util.List, backed by a java.util.ArraylList
* java.util.SortedSet, backed by a java.util.TreeSet
* java.util.Set, backed by a java.util.HashSet

* Arrays

96

Node entity with relationships

public class Actor {

(type = "TOP_ACTOR", direction = Relationship.INCOMING)
private Set<Movie> topActorIn;

(type = "ACTS_IN")
private Set<Movie> movies;

For graph to object mapping, the automatic transitive loading of related entities depends on the
depth of the horizon specified on the call to Session.load(). The default depth of 1 implies that
related node or relationship entities will be loaded and have their properties set, but none of their
related entities will be populated.

If this Set of related entities is modified, the changes are reflected in the graph once the root object
(Actor, in this case) is saved. Relationships are added, removed or updated according to the
differences between the root object that was loaded and the corresponding one that was saved..

Neo4j OGM ensures by default that there is only one relationship of a given type between any two
given entities. The exception to this rule is when a relationship is specified as either OUTGOING or
INCOMING between two entities of the same type. In this case, it is possible to have two relationships
of the given type between the two entities, one relationship in either direction.

If you don’t care about the direction then you can specify direction=Relationship.UNDIRECTED which
will guarantee that the path between two node entities is navigable from either side.

For example, consider the PARTNER relationship between two companies, where (A)-[:PARTNER_OF]
- (B) implies (B)-[:PARTNER_OF]—(A). The direction of the relationship does not matter; only the
fact that a PARTNER_OF relationship exists between these two companies is of importance. Hence an
UNDIRECTED relationship is the correct choice, ensuring that there is only one relationship of this type
between two partners and navigating between them from either entity is possible.

The direction attribute on a @Relationship defaults to OUTGOING. Any fields or
NOTE methods backed by an INCOMING relationship must be explicitly annotated with an
INCOMING direction.

16.2.1. Using more than one relationship of the same type

In some cases, you want to model two different aspects of a conceptual relationship using the same
relationship type. Here is a canonical example:

97

Clashing Relationship Type

class Person {
private Long id;
(type="0WNS")
private Car car;

(type="0WNS")
private Pet pet;

This will work just fine, however, please be aware that this is only because the end node types (Car
and Pet) are different types. If you wanted a person to own two cars, for example, then you’d have
to use a Collection of cars or use differently-named relationship types.

16.2.2. Ambiguity in relationships

In cases where the relationship mappings could be ambiguous, the recommendation is that:

» The objects be navigable in both directions.
* The @Relationship annotations are explicit.
Examples of ambiguous relationship mappings are multiple relationship types that resolve to the

same types of entities, in a given direction, but whose domain objects are not navigable in both
directions.

16.2.3. Ordering

Neo4j doesn’t have any ordering on relationships, so the relationships are fetched without any
specific ordering. If you want to impose order on collections of relationships you have several
options:

* use a SortedSet and implement Comparable

 sort relationships in @PostLoad annotated method

You can sort either by a property of a related node or by relationship property. To sort by
relationship property you need to use a relationship entity. See @RelationshipEntity: Rich
relationships.

16.3. @RelationshipEntity: Rich relationships

To access the full data model of graph relationships, POJOs can also be annotated with
@RelationshipEntity, making them relationship entities. Just as node entities represent nodes in the
graph, relationship entities represent relationships. Such POJOs allow you to access and manage
properties on the underlying relationships in the graph.

98

Fields in relationship entities are similar to node entities, in that they’re persisted as properties on
the relationship. For accessing the two endpoints of the relationship, two special annotations are
available: @StartNode and @EndNode. A field annotated with one of these annotations will provide
access to the corresponding endpoint, depending on the chosen annotation.

For controlling the relationship-type a String attribute called type is available on the
@RelationshipEntity annotation. Like the simple strategy for labelling node entities, if this is not
provided then the name of the class is used to derive the relationship type, although it’s converted
into SNAKE_CASE to honour the naming conventions of Neo4j relationships. As of the current
version of the OGM, the type must be specified on the @RelationshipEntity annotation as well as its
corresponding @Relationship annotations.

You must include @RelationshipEntity plus exactly one @StartNode field and one
@EndNode field on your relationship entity classes or the OGM will throw a
MappingException when reading or writing. It is not possible to use relationship
entities in a non-annotated domain model.

NOTE

A simple Relationship entity

public class Actor {
Long id;
private Role playedIn;

(type="PLAYED_IN")
public class Role {
private Long relationshipld;
private String title;
private Actor actor;
private Movie movie;

public class Movie {
private Long 1id;
private String title;

Note that the Actor also contains a reference to a Role. This is important for persistence, even when
saving the Role directly, because paths in the graph are written starting with nodes first and then
relationships are created between them. Therefore, you need to structure your domain models so
that relationship entities are reachable from node entities for this to work correctly.

Additionally, the OGM will not persist a relationship entity that doesn’t have any properties defined.
If you don’t want to include properties in your relationship entity then you should use a plain
@Relationship instead. Multiple relationship entities which have the same property values and
relate the same nodes are indistinguishable from each other and are represented as a single
relationship by the OGM.

99

The @RelationshipEntity annotation must appear on all leaf subclasses if they are
NOTE part of a class hierarchy representing relationship entities. This annotation is
optional on superclasses.

16.4. Entity identifier

Every node and relationship persisted to the graph must have an ID. The OGM uses this to identify
and re-connect the entity to the graph in memory. Identifier may be either a primary id or a native
graph id (the technical id attributed by Neo4j at node creation time).

For primary id use the @Id on a field of any supported type or a field with provided
AttributeConverter. A unique index is created for such property (if index creation is enabled). User
code should either set the id manually when the entity instance is created or id generation strategy
should be used. It is not possible to store an entity with null id value and no generation strategy.

NOTE Specifying primary id on a relationship entity is possible, but lookups by this id are
slow, because Neo4j database doesn’t support schema indexes on relationships.

For native graph id use @Id @GeneratedValue (with default strategy InternalldStrategy). The field

type must be Long. This id is assigned automatically upon saving the entity to the graph and user

code should never assign a value to it.

It must not be a primitive type because then an object in a transient state cannot be

NOTE .
represented, as the default value 0 would point to the reference node.

Do not rely on this ID for long running applications. Neo4j will reuse deleted
WARNING node ID’s. It is recommended users come up with their own unique identifier
for their domain objects (or use a UUID).

An entity can be looked up by this either type of id by using Session.load((Class<T>, ID) and
Session.loadA11(Class<T>, Collection<ID>) methods.

It is possible to have both natural and native id in one entity. In such situation lookups prefer the
primary id.

If the field of type Long is simply named 'id' then it is not necessary to annotate it with @Id
@GeneratedValue as the OGM will use it automatically as native id.

16.5. @Graphld: Neo4j id field

The @GraphId annotation is superseded by @Id @GeneratedValue and exists for backwards
compatibility. It is deprecated and will eventually be removed.

Do not rely on this ID for long running applications. Neo4j will reuse deleted

WARNING node ID’s. It is recommended users come up with their own unique identifier
for their domain objects (or use a UUID).

100

16.5.1. Entity Equality

Entity equality can be a grey area. There are many debatable issues, such as whether natural keys
or database identifiers best describe equality and the effects of versioning over time. Neo4j OGM
does not impose a dependency upon a particular style of equals() or hashCode() implementation.
The graph-id field is directly checked to see if two entities represent the same node and a 64-bit
hash code is used for dirty checking, so you’re not forced to write your code in a certain way!

You are free to write your equals and hashcode in a domain specific way for
managed entities. However, we strongly advise developers to not use the
@GraphId field in these implementations. This is because when you first
persist an entity, its hashcode changes because the OGM populates the
database ID on save. This causes problems if you had inserted the newly
created entity into a hash-based collection before saving.

WARNING

16.5.2. Id Generation Strategy

If the @Id annotation is used on its own it is expected that the field will be set by the application
code. To automatically generate and assign a value of the property the annotation @GeneratedValue
can be used.

The @GeneratedValue annotation has optional parameter strategy, which can be used to provide a
custom id generation strategy. The class must implement org.neo4j.ogm.id.IdStrategy interface.
The stragety class can either supply no argument constructor - in which case OGM will create an
instance of the strategy and call it. For situations where some external context is needed an
externally created instance can be registered with SessionFactory by using
SessionFactory.register(IdStrategy).

16.6. @Property: Optional annotation for property
fields

As we touched on earlier, it is not necessary to annotate property fields as they are persisted by
default. Fields that are annotated as @Transient or with transient are exempted from persistence.
All fields that contain primitive values are persisted directly to the graph. All fields convertible to a
String using the conversion services will be stored as a string. Neo4j OGM includes default type
converters that deal with the following types:

* java.util.Date to a String in the ISO 8601 format: "yyyy-MM-dd’T’"HH:mm:ss.SSSXXX"

* java.time.Instant to a String in the ISO 8601 with timezone format: "yyyy-MM-
dd’T’HH:mm:ss.SSSZ"

* java.time.LocalDate to a String in the ISO 8601 with format: "yyyy-MM-dd"
* java.math.BigInteger to a String property

* java.math.BigDecimal to a String property

* binary data (as byte[] or Byte[]) to base-64 String

* java.lang.Enum types using the enum’s name() method and Enum.valueOf()

101

Collections of primitive or convertible values are stored as well. They are converted to arrays of
their type or strings respectively. Custom converters are also specified by using @Convert - this is
discussed in detail later on.

Node property names can be explicitly assigned by setting the name attribute. For example
@Property(name="1last_name") String lastName. The node property name defaults to the field name
when not specified.

NOTE Property fields to be persisted to the graph must not be declared final.

16.7. @PostLoad

A method annotated with @PostLoad will be called once the entity is loaded from the database.

16.8. Non-annotated properties and best practices

Neo4j OGM supports mapping annotated and non-annotated objects models. It’s possible to save
any POJO without annotations to the graph, as the framework applies conventions to decide what to
do. This is useful in cases when you don’t have control over the classes that you want to persist. The
recommended approach, however, is to use annotations wherever possible, since this gives greater
control and means that code can be refactored safely without risking breaking changes to the labels
and relationships in your graph.

NOTE The support for non-annotated domain classes might be dropped in the future, to
allow startup optimizations.

Annotated and non-annotated objects can be used within the same project without issue.

The object graph mapping comes into play whenever an entity is constructed from a node or
relationship. This could be done explicitly during the lookup or create operations of the Session but
also implicitly while executing any graph operation that returns nodes or relationships and
expecting mapped entities to be returned.

Entities handled by the OGM must have one empty public constructor to allow the library to
construct the objects.

Unless annotations are used to specify otherwise, the framework will attempt to map any of an
object’s "simple" fields to node properties and any rich composite objects to related nodes. A
"simple"” field is any primitive, boxed primitive or String or arrays thereof, essentially anything that
naturally fits into a Neo4j node property. For related entities the type of a relationship is inferred by
the bean property name.

102

Chapter 17. Indexing

Indexing is used in Neo4j to quickly find nodes and relationships from which to start graph
operations.

17.1. Indexes and Constraints

Indexes based on labels and properties are supported with the @Index annotation. Any property
field annotated with @Index will use have an appropriate schema index created. For
@Index(unique=true) a constraint is created.

You may add as many indexes or constraints as you like to your class. If you annotate a field in a
class that is part of an inheritance hierarchy then the index or constraint will only be added to that
class’s label.

17.2. Primary Constraints

The primary property of the @Index annotation is deprecated since OGM 3 and
WARNING should not be used. The primary Kkey is solely provided by the @Id annotation.
See Entity identifier for more information.

17.3. Index Creation

By default index management is set to None.
If you would like the OGM to manage your schema creation there are several ways to go about it.

Only classes marked with @Index will be used. Indexes will always be generated with the containing
class’s label and the annotated property’s name. Index generation behaviour can be defined in
ogm.properties by defining a property called: indexes.auto and providing a value of:

Below is a table of all options available for configuring Auto-Indexing.

Option Description Properties Example Java Example

none (default) Nothing is done with - -
index and constraint
annotations.

validate Make sure the indexes.auto=validate config.setAutoIndex("v
connected database has alidate™);

all indexes and
constraints in place
before starting up

103

Option

assert

dump

104

Description

Drops all constraints
and indexes on startup
then builds indexes
based on whatever is
represented in OGM by
@Index. Handy during
development

Dumps the generated
constraints and indexes
to a file. Good for
setting up
environments. none:
Default. Simply marks
the field as using an
index.

Properties Example

indexes.auto=assert

indexes.auto=dump
indexes.auto.dump.dir=
<a directory>
indexes.auto.dump.file
name=<a filename>

Java Example

config.setAutoIndex("as
sert");

config.setAutoIndex("d
ump");
config.setDumpDir("XX
X");
config.setDumpFilenam
e("XXX");

Chapter 18. Connecting to the Graph

In order to interact with mapped entities and the Neo4j graph, your application will require a
Session, which is provided by the SessionFactory.

18.1. SessionFactory

The SessionFactory is needed by OGM to create instances of Session as required. This also sets up
the object-graph mapping metadata when constructed, which is then used across all Session objects
that it creates. The packages to scan for domain object metadata should be provided to the
SessionFactory constructor.

As seen in the configuration section, this is done by providing the SessionFactory a configuration

object:

SessionFactory sessionFactory = new SessionFactory(configuration,
"com.mycompany.app.domainclasses");

Or directly a Neo4j Java driver instance:

This can be done by providing to the SessionFactory a driver instance:

SessionFactory sessionFactory = new SessionFactory(driver,
"com.mycompany.app.domainclasses");

Multiple packages may be provided as well. If you would rather just pass in specific classes you can
also do that via an overloaded constructor.

Multiple packages

SessionFactory sessionFactory = new SessionFactory(configuration,
"first.package.domain", "second.package.domain",...);

The SessionFactory is an expensive object to create because it scans all the
NOTE requested packages to build up metadata. It should typically be set up once during
life of your application.

105

Chapter 19. Using the OGM Session

The Session provides the core functionality to persist objects to the graph and load them in a
variety of ways.

19.1. Session Configuration

A Session is used to drive the object-graph mapping framework. It keeps track of the changes that
have been made to entities and their relationships. The reason it does this is so that only entities
and relationships that have changed get persisted on save, which is particularly efficient when
working with large graphs. Once an entity is tracked by the session, reloading this entity within the
scope of the same session will result in the session cache returning the previously loaded entity.
However, the subgraph in the session will expand if the entity or its related entities retrieve
additional relationships from the graph.

If you want to fetch fresh data from the graph, then this can be achieved by using a new session or
clearing the current sessions context using Session.clear().

The lifetime of the Session can be managed in code. For example, associated with single fetch-
update-save cycle or unit of work.

If your application relies on long-running sessions then you may not see changes made from other
users and find yourself working with outdated objects. On the other hand, if your sessions have a
too narrow scope then your save operations can be unnecessarily expensive, as updates will be
made to all objects if the session isn’t aware of the those that were originally loaded.

There’s therefore a trade off between the two approaches. In general, the scope of a Session should
correspond to a "unit of work" in your application.

19.2. Basic operations

Basic operations are limited to CRUD operations on entities and executing arbitrary Cypher queries;
more low-level manipulation of the graph database is not possible.

NOTE There is no way to manipulate relationship- and node-objects directly.

Given that the Neo4j OGM framework is driven by Cypher queries alone, there’s no way to work
directly with Node and Relationship objects in remote server mode. Similarly, Traversal Framework
operations are not supported, again because the underlying query-driven model doesn’t handle it
in an efficient way.

If you find yourself in trouble because of the omission of these features, then your best options are:

1. Write a Cypher query to perform the operations on the nodes/relationships instead.

2. Write a Neo4j server extension and call it over REST from your application.

Of course, there are pros and cons to both of these approaches, but these are largely outside the
scope of this document. In general, for low-level, very high-performance operations like complex

106

graph traversals you’ll get the best performance by writing a server-side extension. For most
purposes, though, Cypher will be performant and expressive enough to perform the operations that
you need.

19.3. Persisting entities

Session allows to save, load, loadAll and delete entities with transaction handling and exception
translation managed for you. The eagerness with which objects are retrieved is controlled by
specifying the 'depth' argument to any of the load methods.

Entity persistence is performed through the save() method on the underlying Session object.

Under the bonnet, the implementation of Session has access to the MappingContext that keeps track
of the data that has been loaded from Neo4j during the lifetime of the session. Upon invocation of
save() with an entity, it checks the given object graph for changes compared with the data that was
loaded from the database. The differences are used to construct a Cypher query that persists the
deltas to Neo4j before repopulating it’s state based on the response from the database server.

The OGM doesn’t automatically commit when a transaction closes, so an explicit call to save(::*) is
required in order to persist changes to the database.

Example 56. Persisting entities

public class Person {
private String name;
public Person(String name) {
this.name = name;
}
}

// Store Michael in the database.
Person p = new Person("Michael");
session.save(p);

19.3.1. Save depth

As mentioned previously, save(entity) is overloaded as save(entity, depth), where depth dictates
the number of related entities to save starting from the given entity. The default depth, -1, will
persist properties of the specified entity as well as every modified entity in the object graph
reachable from it. This means that all affected objects in the entity model that are reachable from
the root object being persisted will be modified in the graph. This is the recommended approach
because it means you can persist all your changes in one request. The OGM is able to detect which
objects and relationships require changing, so you won’t flood Neo4j with a bunch of objects that
don’t require modification. You can change the persistence depth to any value, but you should not
make it less than the value used to load the corresponding data or you run the risk of not having
changes you expect to be made actually being persisted in the graph. A depth of 0 will persist only

107

the properties of the specified entity to the database.

Specifying the save depth is handy when it comes to dealing with complex collections, that could
potentially be very expensive to load.

Example 57. Relationship save cascading

class Movie {
String title;
Actor topActor;
public void setTopActor(Actor actor) {
topActor = actor;

class Actor {

String name;

Movie movie = new Movie("Polar Express");
Actor actor = new Actor("Tom Hanks");

movie.setTopActor(actor);

Neither the actor nor the movie has been assigned a node in the graph. If we were to call
session.save(movie), then the OGM would first create a node for the movie. It would then note that
there is a relationship to an actor, so it would save the actor in a cascading fashion. Once the actor
has been persisted, it will create the relationship from the movie to the actor. All of this will be
done atomically in one transaction.

The important thing to note here is that if session.save(actor) is called instead, then only the actor
will be persisted. The reason for this is that the actor entity knows nothing about the movie entity -
it is the movie entity that has the reference to the actor. Also note that this behaviour is not
dependent on any configured relationship direction on the annotations. It is a matter of Java
references and is not related to the data model in the database.

In the following example, the actor and the movie are both managed entities, having both been
previously persisted to the graph:

Example 58. Cascade for modified fields

actor.setBirthyear(1956);
session.save(movie);

108

In this case, even though the movie has a reference to the actor, the property
change on the actor will be persisted by the call to save(movie). The reason for this
is, as mentioned above, that cascading will be done for fields that have been
modified and reachable from the root object being saved.

NOTE

In the example below, session.save(user,1) will persist all modified objects reachable from user up
to one level deep. This includes posts and groups but not entities related to them, namely author,
comments, members or location. A persistence depth of 0 i.e. session.save(user,@) will save only the
properties on the user, ignoring any related entities. In this case, fullName is persisted but not
friends, posts or groups.

Persistence Depth
public class User {

private Long id;

private String fullName;
private List<Post> posts;
private List<Group> groups;

public class Post {

private Long 1id;

private String name;

private String content;

private User author;

private List<Comment> comments;

public class Group {

private Long id;

private String name;
private List<User> members;
private Location location;

19.4. Loading Entities

Entities can be loaded from the OGM through the use of the session.loadXXX() methods or via
session.query()/session.queryForObject() which will accept your own Cypher queries (See section
below on cypher queries).

Neo4j OGM includes the concept of persistence horizon (depth). On any individual request, the
persistence horizon indicates how many relationships should be traversed in the graph when

109

loading or saving data. A horizon of zero means that only the root object’s properties will be loaded
or saved, a horizon of 1 will include the root object and all its immediate neighbours, and so on.
This attribute is enabled via a depth argument available on all session methods, but the OGM
chooses sensible defaults so that you don’t have to specify the depth attribute unless you want
change the default values.

19.4.1. Load depth

By default, loading an instance will map that object’s simple properties and its immediately-related
objects (i.e. depth = 1). This helps to avoid accidentally loading the entire graph into memory, but
allows a single request to fetch not only the object of immediate interest, but also its closest
neighbours, which are likely also to be of interest. This strategy attempts to strike a balance
between loading too much of the graph into memory and having to make repeated requests for
data.

If parts of your graph structure are deep and not broad (for example a linked-list), you can increase
the load horizon for those nodes accordingly. Finally, if your graph will fit into memory, and you’d
like to load it all in one go, you can set the depth to -1.

On the other hand when fetching structures which are potentially very "bushy" (e.g. lists of things
that themselves have many relationships), you may want to set the load horizon to 0 (depth = 0) to
avoid loading thousands of objects most of which you won’t actually inspect.

When loading entities with a custom depth less than the one used previously to load
the entity within the session, existing relationships will not be flushed from the
session; only new entities and relationships are added. This means that reloading

NOTE entities will always result in retaining related objects loaded at the highest depth
within the session for those entities. If it is required to load entities with a lower
depth than previously requested, this must be done on a new session, or after
clearing your current session with Session.clear().

19.4.2. Query Strategy

When OGM loads entities through load* methods (including ones with filters) it uses LoadStrategy to
generate the RETURN part of the query.

Available load strategies are

* schema load strategy - uses metadata on domain entities and pattern comprehensions to
retrieve nodes and relationships (default since OGM 3.0)

» path load strategy - uses paths from root node to fetch related nodes, p=(n)-[0..]-() (default
before OGM 3.0)

The strategy can be overridden globally by calling SessionFactory.setlLoadStrategy(strategy) or for

single session only (e.g. when different strategy is more effective for given query) by calling
Session.setloadStrategy(strategy)

110

19.4.3. Cypher queries

Cypher is Neo4j’s powerful query language. It is understood by all the different drivers in the OGM
which means that your application code should run identically, whichever driver you choose to use.
This makes application development much easier: you can use the Embedded Driver for your
integration tests, and then plug in the HTTP Driver or the Bolt Driver when deploying your code
into a production client-server environment.

The Session also allows execution of arbitrary Cypher queries via its query, queryForObject and
queryForObjects methods. Cypher queries that return tabular results should be passed into the query
method which returns an Result. This consists of QueryStatistics representing statistics of
modifying cypher statements if applicable, and an Iterable<Map<String,Object>> containing the raw
data, which can be either used as-is or converted into a richer type if needed. The keys in each Map
correspond to the names listed in the return clause of the executed Cypher query.

queryForObject specifically queries for entities and as such, queries supplied to this method must
return nodes and not individual properties.

In the current version, custom queries do not support paging, sorting or a custom

depth. In addition, it does not support mapping a path to domain entities, as such, a

path should not be returned from a Cypher query. Instead, return nodes and
NOTE relationships to have them mapped to domain entities.

Modifications made to the graph via Cypher queries directly will not be reflected in

your domain objects within the session.

19.4.4. Sorting and paging

Neo4j OGM supports Sorting and Paging of results when using the Session object. The Session object
methods take independent arguments for Sorting and Pagination

Paging

Iterable<Wor1ld> worlds = session.loadAll(World.class,
new Pagination(pageNumber,itemsPerPage),

depth)

Sorting

Iterable<Wor1ld> worlds = session.loadAll(World.class,
new SortOrder().add("name"), depth)

Sort in descending order

Iterable<Wor1ld> worlds = session.loadAll(World.class,

new SortOrder().add(SortOrder.Direction.DESC,

"name"))

111

Sorting with paging

Iterable<Wor1ld> worlds = session.loadAll(World.class,
new SortOrder().add("name"), new Pagination
(pageNumber, itemsPerPage))

NOTE Neo4j OGM does not yet support sorting and paging on custom queries.

112

Chapter 20. Type Conversion

The object-graph mapping framework provides support for default and bespoke type conversions,
which allow you to configure how certain data types are mapped to nodes or relationships in Neo4;j.

20.1. Built-in type conversions

Neo4j OGM will automatically perform the following type conversions:

* java.util.Date to a String in the ISO 8601 format: "yyyy-MM-dd’T’HH:mm:ss.SSSXXX"

* java.time.Instant to a String in the ISO 8601 with timezone format: "yyyy-MM-
dd’'T’"HH:mm:ss.SSSZ"

* java.time.LocalDate to a String in the ISO 8601 with format: "yyyy-MM-dd"
* Any object that extends java.lang.Number to a String property
* binary data (as byte[] or Byte[]) to base-64 String as Cypher does not support byte arrays

* java.lang.Enum types using the enum’s name() method and Enum.valueOf()

Two Date converters are provided "out of the box":

1. @DateString
2. @Datelong

By default, the OGM will use the @DateString converter as described above. However if you want to
use a different date format, you can annotate your entity attribute accordingly:

Example of user-defined date format
public class MyEntity {

(uyy_MM_ddn)
private Date entityDate;

Alternatively, if you want to store java.util.Date or java.time.Instant as long values, use the
@DatelLong annotation:

Example of date stored as a long value

public class MyEntity {

private Date entityDate;

java.time.Instant dates are stored in the database using UTC.

113

Collections of primitive or convertible values are also automatically mapped by converting them to
arrays of their type or strings respectively.

NOTE Collections are not supported for java.time.Instant and java.time.LocalDate.

20.2. Custom Type Conversion

In order to define bespoke type conversions for particular members, you can annotate a field or
method with @Convert. One of either two convert implementations can be used. For simple cases
where a single property maps to a single field, with type conversion, specify an implementation of
AttributeConverter.

Example of mapping a single property to a field
public class MoneyConverter implements AttributeConverter<DecimalCurrencyAmount,

Integer> {

public Integer toGraphProperty(DecimalCurrencyAmount value) {
return value.getFullUnits() * 100 + value.getSubUnits();

}

public DecimalCurrencyAmount toEntityAttribute(Integer value) {
return new DecimalCurrencyAmount(value / 100, value % 100);

}

You could then apply this to your class as follows:

public class Invoice {

(MoneyConverter.class)
private DecimalCurrencyAmount value;

When more than one node property is to be mapped to a single field, use:
CompositeAttributeConverter.

114

Example of mapping multiple node entity properties onto a single instance of a type

/**

* This class maps latitude and longitude properties onto a Location type that
encapsulates both of these attributes.

*/

public class LocationConverter implements CompositeAttributeConverter<Location> {

@0verride
public Map<String, ?> toGraphProperties(Location location) {
Map<String, Double> properties = new HashMap<>();
if (location != null) {
properties.put("latitude"”, location.getlatitude());
properties.put("longitude”, location.getlLongitude());

}

return properties;
}
@0verride

public Location toEntityAttribute(Map<String, 7> map) {
Double latitude = (Double) map.get("latitude");
Double longitude = (Double) map.get("longitude");
if (latitude != null && longitude != null) {
return new Location(latitude, longitude);

}

return null;

And just as with an AttributeConverter, a CompositeAttributeConverter could be applied to your
class as follows:

@NodeEntity
public class Person {

@Convert(LocationConverter.class)
private Location location;

115

Chapter 21. Filters

Filters provide a mechanism for customising the where clause of Cypher generated by OGM. They
can be chained together with boolean operators, and associated with a comparison operator.
Additionally, each filter contains a FilterFunction. A filter function can be provided when the filter
is instantiated, otherwise, by default a PropertyComparison is used.

In the example below, we’re return a collection containing any satellites that are manned.
Example of using a Filter
Collection<Satellite> satellites = session.loadAll(Satellite.class, new Filter("

manned", EQUALS, true));

The filters should be considered as immutable. In previous versions, you could

WARNING
change filter values after instantiation, this is not the case anymore.

116

Chapter 22. Events

Neo4j OGM supports persistence events. This section describes how to intercept update and delete
events.

You may also check the @PostLoad annotation which is described here.

22.1. Event types

There are four types of events:

Event.LIFECYCLE.PRE_SAVE
Event.LIFECYCLE.POST_SAVE
Event.LIFECYCLE.PRE_DELETE
Event.LIFECYCLE.POST_DELETE

Events are fired for every @NodeEntity or @RelationshipEntity object that is created, updated or
deleted, or otherwise affected by a save or delete request. This includes:

» The top-level objects or objects being created, modified or deleted.
* Any connected objects that have been modified, created or deleted.

* Any objects affected by the creation, modification or removal of a relationship in the graph.

Events will only fire when one of the session.save() or session.delete() methods is
NOTE invoked. Directly executing Cypher queries against the database using
session.query() will not trigger any events.

22.2. Interfaces

The Events mechanism introduces two new interfaces, Event and EventListener.
The Event interface
The Event interface is implemented by PersistenceEvent. Whenever an application wishes to handle

an event it will be given an instance of Event, which exposes the following methods:

public interface Event {

Object getObject();
LIFECYCLE getLifeCycle();

enum LIFECYCLE {
PRE_SAVE, POST_SAVE, PRE_DELETE, POST_DELETE

}

117

The Event Listener interface
The EventListener interface provides methods allowing implementing classes to handle each of the

different Event types:

public interface EventlListener {

void onPreSave(Event event);
void onPostSave(Event event);
void onPreDelete(Event event);
void onPostDelete(Event event);

Although the Event interface allows you to retrieve the event type, in most cases,
NOTE your code won’t need it because the EventListener provides methods to capture
each type of event explicitly.

22.3. Registering an EventListener

There are two way to register an event listener:

e on an individual Session

 across multiple sessions by using a SessionFactory

In this example we register an anonymous EventListener to inject a UUID onto new objects before
they’re saved

118

class AddUuidPreSaveEventListener implements EventlListener {

void onPreSave(Event event) {
DomainEntity entity = (DomainEntity) event.getObject():
if (entity.getId() == null) {
entity.setUUID(UUID.randomUUID());

}
}
void onPostSave(Event event) {
}
void onPreDelete(Event event) {
}

void onPostDelete(Event event) {

EventListener eventlListener = new AddUuidPreSaveEventListener();

// register it on an individual session
session.register(eventListener);

// remove it.
session.dispose(eventListener);

// register it across multiple sessions
sessionFactory.register(eventListener);

// remove it.
sessionFactory.deregister(eventListener);

It’s possible and sometimes desirable to add several EventListener objects to the
session, depending on the application’s requirements. For example, our business
logic might require us to add a UUID to a new object, as well as manage wider

NOTE concerns such as ensuring that a particular persistence event won’t leave our
domain model in a logically inconsistent state. It’s usually a good idea to separate
these concerns into different objects with specific responsibilities, rather than
having one single object try to do everything.

22.4. Using the EventListenerAdapter

The EventListener above is fine, but we’ve had to create three methods for events we don’t intend to
handle. It would be preferable if we didn’t have to do this each time we needed an EventListener.

The EventlListenerAdapter is an abstract class providing a no-op implementation of the
EventListener interface. If you don’t need to handle all the different types of persistence event you
can create a subclass of EventListenerAdapter instead and override just the methods for the event
types you’re interested in.

For example:

119

class PreSaveEventListener extends EventlListenerAdaper {

void onPreSave(Event event) {
DomainEntity entity = (DomainEntity) event.getObject();
if (entity.id == null) {
entity.UUID = UUID.randomUUID();
}

22.5. Disposing of an EventListener

Something to bear in mind is that once an EventlListener has been registered it will continue to
respond to any and all persistence events. Sometimes you may want only to handle events for a
short period of time, rather than for the duration of the entire session.

If you're done with an EventListener you can stop it from firing any more events by invoking
session.dispose(:+), passing in the EventListener to be disposed of.

The process of collecting persistence events prior to dispatching them to any
EventListeners adds a small performance overhead to the persistence layer.

NOTE Consequently, the OGM is configured to suppress the event collection phase if there
are no EventListeners registered with the Session. Using dispose() when you’re
finished with an EventListener is good practice!

To remove an event listener across multiple sessions use the deregister method on the
SessionFactory.

22.6. Connected objects

As mentioned previously, events are not only fired for the top-level objects being saved but for all
their connected objects as well.

Connected objects are any objects reachable in the domain model from the top-level object being
saved. Connected objects can be many levels deep in the domain model graph.

In this way, the Events mechanism allows us to capture events for objects that we didn’t explicitly
save ourselves.

120

// initialise the graph

Folder folder = new Folder("folder");
Document a = new Document("a");
Document b = new Document("b");
folder.addDocuments(a, b);

session.save(folder);

// change the names of both documents and save one of them
a.setName("A");
b.setName("B");

\ \

// because ‘b‘ is reachable from ‘a‘ (via the common shared folder) they will both be

persisted,
// with PRE_SAVE and POST_SAVE events being fired for each of them
session.save(a);

22.7. Events and types

When we delete a Type, all the nodes with a label corresponding to that Type are deleted in the
graph. The affected objects are not enumerated by the Events mechanism (they may not even be
known). Instead, _DELETE events will be raised for the Type:

// 2 events will be fired when the type is deleted.
// - PRE_DELETE Document.class
// - POST_DELETE Document.class
session.delete(Document.class);

22.8. Events and collections

When saving or deleting a collection of objects, separate events are fired for each object in the
collection, rather than for the collection itself.

new Document("a");
new Document("b");

Document a
Document b

// 4 events will be fired when the collection is saved.
// - PRE_SAVE a

// - PRE_SAVE b

// - POST_SAVE a

// - POST_SAVE b

session.save(Arrays.asList(a, b));

121

22.9. Event ordering

Events are partially ordered. PRE_ events are guaranteed to fire before any POST_ event within the
same save or delete request. However, the internal ordering of the PRE_ events and POST_ events
with the request is undefined

Example: Partial ordering of events

Document a = new Document("a");
Document b = new Document("b");

// Although the save order of objects is implied by the request, the PRE_SAVE event
for ‘b’

// may be fired before the PRE_SAVE event for ‘a‘, and similarly for the POST_SAVE
events.

// However, all PRE_SAVE events will be fired before any POST_SAVE event.

session.save(Arrays.asList(a, b));

22.10. Relationship events

The previous examples show how events fire when the underlying node representing an entity is
updated or deleted in the graph. Events are also fired when a save or delete request results in the
modification, addition or deletion of a relationship in the graph.

For example, if you delete a Document object that is a member of a Folder’s documents collection,
events will be fired for the Document as well as the Folder, to reflect the fact that the relationship
between the folder and the document has been removed in the graph.

Example: Deleting a Document attached to a Folder

Folder folder = new Folder();
Document a = new Document("a");
folder.addDocuments(a);
session.save(folder);

// When we delete the document, the following events will be fired
// - PRE_DELETE a

// - POST_DELETE a

// - PRE_SAVE folder @

// - POST_SAVE folder

session.delete(a);

@ Note that the folder events are SAVE events, not DELETE events. The folder was not deleted.

122

The event mechanism does not try to synchronise your domain model. In this
WARNING example, the folder is still holding a reference to the Document, even though it
no longer exists in the graph. As always, your code must take care of domain

model synchronisation.

22.11. Event uniqueness

The event mechanism guarantees to not fire more than one event of the same type for an object in a
save or delete request.

Example: Multiple changes, single event of each type

// Even though we're making changes to both the folder node, and its relationships,
// only one PRE_SAVE and one POST_SAVE event will be fired.
folder.removeDocument(a);

folder.setName("newFolder");

session.save(folder);

123

Chapter 23. Testing

Doing integration testing with OGM requires a few basic steps :

* Add the neo4j-ogm-test artifact in you maven / gradle configuration
* Declare the Neo4jRule JUnit rule, to setup a Neo4j test server

» Setup the OGM configuration and SessionFactory

An example of a full running configuration can be found in the issue templates

23.1. Log levels

When running unit tests, it can be useful to see what the OGM is doing, and in particular to see the
Cypher requests being transferred between your application and the database. The OGM uses s1f4j
along with Logback as its logging framework and by default the log level for all the OGM
components is set to WARN, which does not include any Cypher output. To change the OGM log
level, create a file loghack-test.xml in your test resources folder, configured as shown below:

logback-test.xml

<?xml version="1.0" encoding="UTF-8"7>
<confiquration>

<appender name="console" class="ch.qos.logback.core.ConsoleAppender">
<encoder>
<pattern>%d %5p %40.40c:%4L - %m%n</pattern>
</encoder>
</appender>

<lles
~ Set the required log level for the OGM components here.
~ To just see Cypher statements set the level to "info"
~ For finer-grained diagnostics, set the level to "debug".
-->
<logger name="org.neo4j.ogm" level="info" />

<root level="warn">
<appender-ref ref="console" />

</root>

</configuration>

124

https://github.com/neo4j-examples/neo4j-sdn-ogm-issue-report-template/blob/master/ogm-3.0/src/test/java/org/neo4j/ogm/test/OgmTestCase.java

Chapter 24. High Availability (HA) Support

NOTE The clustering features are only available in Neo4j Enterprise Edition.

Neo4j offers two separate solutions for ensuring redundancy and performance in a high-demand
production environment:

 Causal Clustering

» Highly Available (HA) Cluster

Neo4j 3.1 introduced Causal Clustering — a brand-new architecture using the state-of-the-art Raft
protocol — that enables support for ultra-large clusters and a wider range of cluster topologies for
data center and cloud.

A Neo4j HA cluster is comprised of a single master instance and zero or more slave instances. All
instances in the cluster have full copies of the data in their local database files. The basic cluster
configuration usally consists of three instances.

24.1. Causal Clustering

To find out more about Causal Clustering architecture please see the reference.

Causal Clustering only works with the Neo4j Bolt Driver (1.1.0 onwards). Trying to set this up with
the HTTP or Embedded Driver will not work. The Bolt driver will fully handle any load balancing,
which operate in concert with the Causal Cluster to spread the workload. New cluster-aware
sessions, managed on the client-side by the Bolt drivers, alleviate complex infrastructure concerns
for developers.

24.1.1. Configuring the OGM
Not cluster specific side note: you may also want to configure connection testing.

To use clustering, simply configure your Bolt URI to use the bolt routing protocol:

URI=bolt+routing://instanced @

@ instance® must be one of your core cluster group (that accepts reads and writes).

24.1.2. Design considerations for clustering
In this section we go through important points to be aware of when using causal clustering.

* Review hardware and cluster configuration
» Target replica servers when possible
» Use bookmarks to read your own writes

¢ Plan for failure

125

https://neo4j.com/docs/operations-manual/current/clustering/

24.1.3. Hardware and cluster configuration

Hardware, and particularly network, can have a great impact on cluster stability. The deployment
scenario also plays a critical role. It has to be carefully chosen, each configuration having it
strengths and weaknesses.

Please read carefully the causal cluster reference to plan the best topology according to your needs.

You can also provide additional core instances in URIS property, separated by a comma. The URI
property still needs to be set and will be tried first, followed by entries from URIS property. Same
credentials are used for all instances. All listed instances must be core servers.

URI=bolt+routing://instance®
URIS=bolt+routing://instancel,bolt+routing://instance?

24.1.4. Target replica servers when possible

By default all Session 's Transaction s are set to read/write. This means reads and writes will always
hit the core cluster. To offload the core servers and improve performance, it is advised if possible to
route traffic to the replica servers. This is done in the application code, by declaring sessions /
transactions as read-only. You can call session.beginTransaction(Transaction.Type) with READ to do
that.

This is not always possible. You may only do this if you can afford to read some

NOTE
slightly outdated data.

24.1.5. Use bookmarks to read your own writes

Causal consistency allows you to specify guarantees around query ordering, including the ability to
read your own writes, view the last data you read, and later on, committed writes from other
users. The Bolt drivers collaborate with the core servers to ensure that all transactions are applied
in the same order using a concept of a bookmark.

The cluster returns a bookmark when it commits an update transaction, so then the driver links a
bookmark to the user’s next transaction. The server that received query starts this new
bookmarked transaction only when its internal state reached the desired bookmark. This
ensures that the view of related data is always consistent, that all servers are eventually updated,
and that users reading and re-reading data always see the same — and the latest — data.

If you have multiple application tier JVM instances you will need to manage this state across them.
The Session object allows you to retrieve bookmarks through the use of Session.getlLastBookmark()
and start new transactions with given bookmark through Session.beginTransaction(type,
bookmarks).

NOTE Do not generalize the use of bookmarks as they have impact on latency.

126

https://neo4j.com/docs/operations-manual/current/clustering/causal-clustering/

24.1.6. Retry mechanisms

The driver does its best to ensure a stable communication between the application tier and the
database. It handles low level failures (like connection loss), but cannot do much about higher level
failures (like cluster unavailability). However, due to the nature of distributed platforms, failures
arise. When the cluster is split among several datacenters, network issues can cause cluster
instability. Cluster members not being able to talk to each other can make the cluster, for example,
fall in read only mode, or trigger leader re-election.

For critical applications, these failures have to be anticipated, and also managed at the architecture
or application level. Even if the driver handles some low level retries, it is not always enough in
case of instability, as an application may involve complex business logic, and require coarse
grained units of work.

Solutions like application retries or message queuing are good candidates to handle this kind of
scenario.

24.2. Highly Available (HA) Cluster

A typical Neo4j HA cluster will consist of a master node and a couple of slave nodes for providing
failover capability and optionally for handling reads. (Although it is possible to write to slaves, this
is uncommon because it requires additional effort to synchronise a slave with the master node.)

Cluster Cluster
Management Management
Transaction Transaction
Propagation Propagation
Database Database
Neodj HA Neod] HA
Instance 1 Instance 3

Cluster
Management
Transaction
Propagation
Database
MNeod] HA it
Instance 2 | Current

Master J

24.2.1. Transaction binding in HA mode

When operating in HA mode, Neo4j does not make open transactions available across all nodes in
the cluster. This means we must bind every request within a specific transaction to the same node
in the cluster, or the commit will fail with 404 Not Found.

24.2.2. Read-only transactions

As of Version 2.0.5 read-only transactions are supported by the OGM.

127

Drivers

The Drivers have been updated to transmit additional information about the transaction type of the
current transaction to the server.

* The HTTP Driver implementation sets a HTTP Header "X-WRITE" to "1" for READ_WRITE
transactions (the default) or to "0" for READ_ONLY ones.

* The Embedded Driver can support both READ_ONLY and READ_WRITE (as of version 2.1.0).
» The native Bolt Driver can support both READ_ONLY and READ_WRITE (as of version 2.1.0).

24.2.3. Dynamic binding via a load balancer
In the Neo4j HA architecture, a cluster is typically fronted by a load balancer.

The following example shows how to configure your application and set up HAProxy as a load
balancer to route write requests to whichever machine in the cluster is currently identified as the
master, with read requests being distributed to any available machine in the cluster on a round-
robin basis.

This configuration will also ensure that requests against a specific transaction are directed to the
server where the transaction was created.

Example cluster fronted by HAProxy

1. haproxy: 10.0.2.200

2. neo4j-serverl: 10.0.1.10
3. neo4j-server2: 10.0.1.11
4. neo4j-server3: 10.0.1.12

OGM Binding via HAProxy

new Configuration.Builder().uri("http://10.0.2.200").build();

128

Sample haproxy.cfg

global
daemon
maxconn 256

defaults
mode http
timeout connect 5000ms
timeout client 50000ms
timeout server 50000ms

frontend http-in
bind *:80
acl write_hdr hdr_val(X-WRITE) eq 1
use_backend neo4j-master if write_hdr
default_backend neo4j-cluster

backend neo4j-cluster
balance roundrobin
create a sticky table so that requests with a transaction id are always sent to
the correct server
stick-table type integer size 1k expire 70s
stick match path,word(4,/)
stick store-response hdr(Location),word(6,/)
option httpchk GET /db/manage/server/ha/available
server s1 10.0.1.10:7474 maxconn 32
server s2 10.0.1.11:7474 maxconn 32
server s3 10.0.1.12:7474 maxconn 32

backend neo4j-master
option httpchk GET /db/manage/server/ha/master
server s1 10.0.1.10:7474 maxconn 32
server s2 10.0.1.11:7474 maxconn 32
server s3 10.0.1.12:7474 maxconn 32

listen admin

bind *:8080
stats enable

129

Appendix

130

Appendix A: Namespace reference

The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The
most important attribute is base-package which defines the package to scan for Spring Data
repository interfaces. [3: see XML configuration]

Table 7. Attributes

Name

base-package

repository-impl-
postfix

query-lookup-strategy

named-queries-location

consider-nested-
repositories

Description

Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific Spring
Data module) in auto detection mode. All packages below the configured
package will be scanned, too. Wildcards are allowed.

Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered
as candidates. Defaults to Impl.

Determines the strategy to be used to create finder queries. See Query
lookup strategies for details. Defaults to create-if-not-found.

Defines the location to look for a Properties file containing externally
defined queries.

Controls whether nested repository interface definitions should be
considered. Defaults to false.

131

Appendix B: Populators namespace
reference

The <populator /> element

The <populator /> element allows to populate the a data store via the Spring Data repository
infrastructure. [4: see XML configuration]

Table 8. Attributes

Name Description
locations Where to find the files to read the objects from the repository shall be
populated with.

132

Appendix C: Repository query keywords
Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query
derivation mechanism. However, consult the store-specific documentation for the exact list of
supported keywords, because some listed here might not be supported in a particular store.

Table 9. Query keywords

Logical keyword Keyword expressions

AND And

OR Or

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains
BETWEEN Between, IsBetween

ENDING_WITH EndingWith, IsEndingWith, EndsWith
EXISTS Exists

FALSE

GREATER_THAN

GREATER_THAN_EQUALS

False, IsFalse
GreaterThan, IsGreaterThan

GreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)
IS_EMPTY IsEmpty, Empty
IS_NOT_EMPTY IsNotEmpty, NotEmpty
IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN LessThan, IsLessThan

LESS_THAN_EQUAL

LessThanEqual, IsLessThanEqual

LIKE Like, IsLike

NEAR Near, IsNear

NOT Not, IsNot

NOT_IN NotIn, IsNotIn

NOT_LIKE NotLike, IsNotLike

REGEX Regex, MatchesRegex, Matches
STARTING_WITH StartingWith, IsStartingWith, StartsWith
TRUE True, IsTrue

WITHIN

Within, IsWithin

133

Appendix D: Repository query return types

Supported query return types

The following table lists the return types generally supported by Spring Data repositories. However,
consult the store-specific documentation for the exact list of supported return types, because some
listed here might not be supported in a particular store.

NOTE

Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data

stores that support geospatial queries.

Table 10. Query return types

Return type
void

Primitives
Wrapper types
I

Iterator<T>
Collection<T>
List<T>
Optional<T>

Option<T>

Stream<T>

Future<T>

CompletableFuture<T>

ListenableFuture

Slice

Page<T>

GeoResult<T>

134

Description

Denotes no return value.
Java primitives.

Java wrapper types.

An unique entity. Expects the query method to return one result at most.
In case no result is found null is returned. More than one result will
trigger an IncorrectResultSizeDataAccessException.

An Iterator.
A Collection.
A List.

A Java 8 or Guava Optional. Expects the query method to return one
result at most. In case no result is found Optional.empty()
/Optional.absent() is returned. More than one result will trigger an
IncorrectResultSizeDataAccessException.

An either Scala or JavaSlang Option type. Semantically same behavior as
Java 8’s Optional described above.

AJava 8 Stream.

A Future. Expects method to be annotated with @Async and requires
Spring’s asynchronous method execution capability enabled.

AJava 8 CompletableFuture. Expects method to be annotated with @Async
and requires Spring’s asynchronous method execution capability
enabled.

Aorg.springframework.util.concurrent.ListenableFuture. Expects method
to be annotated with @Async and requires Spring’s asynchronous method
execution capability enabled.

A sized chunk of data with information whether there is more data
available. Requires a Pageable method parameter.

A Slice with additional information, e.g. the total number of results.
Requires a Pageable method parameter.

A result entry with additional information, e.g. distance to a reference
location.

Return type Description

GeoResults<T> A list of GeoResult<T> with additional information, e.g. average distance to
a reference location.

GeoPage<T> A Page with GeoResult<T>, e.g. average distance to a reference location.

135

Appendix E: Migration Guide

Migrating from 4.2 - 5.0

Base class for repositories GraphRepository has been renamed Neo4jRepository and parameter
types change from <T> to <T, ID>.

All Repository methods can return Streams.

The repository method naming scheme has changed for SD commons 2.0 as part of DATACMNS-
944.

o for example, findOne repository methods are renamed findById and now return Optional<T>.
o please check the javadoc of org.springframework.data.repository.CrudRepository
Paged custom queries no longer accept queries without countQuery attribute.

The keywords Between and IsBetween in query methods now include the given limits in the
query. Use a combination of GreaterThan/isGreaterThan and LessThan/isLessThan (e.g.
isGreaterThanLowerLimitAndIsLessThanUpperLimit) to keep the exclusive behavior.

Id handling : Long native ids are not mandatory anymore. See Graphld field.
Primary indexes are now deprecated and replaced by @Id See Entity identifier.
Annotations on accessors are no longer valid. See Annotating entities.

Loading with depth -1 calls have to be reviewed (please see the OGM migration guide under
Migration from 2.1 to 3.0 / Performance and unlimited load depth).

The ogm.properties file and environment variable have been removed. You now have to provide
explicitly the configuration file or configure programmatically. See the configuration section.

The driver class name in the configuration is now inferred from connection URL.

Java 8 dates are now better supported ; the use of java.util.Date or converters is not required
anymore. You may want to switch to more fine grained date types like Instant. See conversions.

The query filters are now immutable. See Filters.

Migrating from 4.0/4.1 - 4.2

Spring Data Neo4j 4.2 significantly reduces complexity of configuration for application developers.
There is no longer a need to extend from Neo4jConfiguration or define a Session bean.
Configuration for various types of applications are described here

1.
2.

136

Remove any subclassing of Neo4jConfiguration

Define the sessionFactory bean with an instance of SessionFactory and the transactionManager
bean with an instance of Neo4jTransactionManager. Be sure to pass the SessionFactory into the
constructor for the transaction manager.

https://jira.spring.io/browse/DATACMNS-944
https://jira.spring.io/browse/DATACMNS-944

Migrating from pre 4.0 - 4.2

Package Changes

Because the Neo4j Object Graph Mapper can be used independently of Spring Data Neo4j, the core
annotations have been moved out of the spring framework packages:

org.springframework.data.neo4j.annotation — org.neo4j.ogm.annotation

The @Query and @QueryResult annotations are only supported in the Spring modules,
NOTE and are not used by the core mapping framework. These annotations have not
changed.

Annotation Changes

There have been some changes to the annotations that were used in previous versions of Spring
Data Neo4j. Wherever possible we have tried to maintain the previous annotations verbatim, but in
a few cases this has not been possible, usually for technical reasons but sometimes for aesthetic
ones. Our goal has been to minimise the number of annotations you need to use as well as trying to
make them more self-explanatory. The following annotations have been changed.

old New

@RelatedTo @Relationship
@RelatedToVia @Relationship
@GraphProperty @Property

@MapResult @QueryResult
@ResultColumn @Property

Relationship Direction.BOTH Relationship.UNDIRECTED

Custom Type Conversion

SDN provides automatic type conversion for the obvious candidates: byte[] and Byte[] arrays, Dates,
BigDecimal and BigInteger types. In order to define bespoke type conversions for particular entity
attribute, you can annotate a field or method with @Convert to specify your own implementation of
org.neodj.ogm.typeconversion.AttributeConverter.

You can find out more about type conversions here: Custom Converters

Date Format Changes
The default Date converter is @DateString.

SDN 3.x and earlier represented Dates as a String value consisting of the number of milliseconds
since January 1, 1970, 00:00:00 GMT.

If you are upgrading to SDN 4.x from these versions and your application used the default, then you
need to annotate your Date properties with @DatelLong. Moreover, the property values in the graph
need to be converted to numbers.

137

Upgrade Date properties to numbers

MATCH (n:Foo) //A1l nodes which contain date properties to be migrated

WHERE NOT HAS(n.migrated)// Take the first 10k nodes that haven't been migrated yet
WITH n LIMIT 10000

SET n.dateProperty = toInt(n.dateProperty),n.migrated=1 //where dateProperty is the
date with a String value to be migrated

RETURN count(n); //Run until the statement returns zero records

//Similar process to remove the migrated flag

However, if your application already represented Dates as @GraphProperty(propertyType =
Long.class) then simply changing this to @Datelong is sufficient.

Indexing

The best way to retrieve start nodes for traversals and queries is by using Neo4;j’s integrated index
facilities. SDN supports Index and Constraint management but differs in how it does this to
previous versions.

Obsolete Annotations

The following annotations are no longer used, either because they are no longer needed, or cannot
be supported via Cypher.

* @GraphTraversal

 @RelatedToVia

* @RelatedTo

* @TypeAlias

* @Fetch

Features No Longer Supported
Some features of the previous annotations have been dropped.

Overriding @Property Types

Support for overriding property types via arguments to @Property has been dropped. If your
attribute requires a non-default conversion to and from a database property, you can use a
Custom Converter instead.

@Relationship enforceTargetType

In previous versions of Spring Data Neo4j, you would have to add an enforceTargetType attribute
into every clashing @Relationship annotation. Thanks to changes in the underlying object-graph
mapping mechanism, this is no longer necessary.

138

Clashing Relationship Types

class Person {
(type="0WNS")
private Car car;

(type="0WNS")
private Pet pet;

Cross-store Persistence

Neo4j is dropping XA support and therefore SDN does not provide any capability for cross-store
persistence

TypeRepresentationStrategy

SDN 4 replaces the existing TypeRepresentionStrategy configuration with a straightforward
convention based on simple class-names or entities using @NodeEntity(label=":+)

Aspect] Support

Support for Aspect]-based persistence has been removed from SDN 4 as the write-and-read-
through approach only works with an integrated, embedded database, not Neo4j server. The
performance improvements in SDN 4 should make their use as a performance optimisation
unnecessary anyway.

Deprecation of Neo4jTemplate

It is highly recommended for users starting new SDN projects to use the OGM Session directly.
Neo4jTemplate has been kept to give upgrading users a better experience.

The Neo4jTemplate has been slimmed-down significantly for SDN 4. It contains the exact same
methods as Session. In fact Neo4jTemplate is just a very thin wrapper with an ability to support SDN
Exception Translation. Many of the operations are no longer needed or can be expressed with a
straightforward Cypher query.

If you do use Neo4jTemplate, then you should code against its Neo4jOperations interface instead of
the template class.

The following table shows the Neo4jTemplate functions that have been retained for version 4 of
Spring Data Neo4j. In some cases the method names have changed but the same functionality is
offered under the new version.

Table 11. Neo4j Template Method Migration
Old Method Name New Method Name Notes

findOne load Overloaded to take optional depth parameter

139

Old Method Name New Method Name Notes

findAll loadAll Overloaded to take optional depth parameter,
also now returns a Collection rather than a
Result

query query Return type changed from Result to be Iterable

save save

delete delete

count count No longer defines generic type parameters

findByIndexedValue loadByProperty Indexes are not supported natively, but you can

index node properties in your database setup
and use this method to find by them

To achieve the old template.fetch(entity) equivalent behaviour, you should call one of the load
methods specifying the fetch depth as a parameter.

It’s also worth noting that exec(GraphCallback) and the create::-() methods have been made
obsolete by Cypher. Instead, you should now issue a Cypher query to the new execute method to
create the nodes or relationships that you need.

Dynamic labels, properties and relationship types are not supported as of this version, server
extensions should be considered instead.

Built-In Query DSL Support

Previous versions of SDN allowed you to use a DSL to generate Cypher queries. There are many
different DSL libraries available and you’re free to use which of these - or none - that you want.
With Cypher changing on a regular basis, avoiding a DSL implementation in SDN means less
ongoing maintenance and less likelihood of your code being incompatible with future versions of
Neo4j.

Graph Traversal and Node/Relationship Manipulation

These features cannot be supported by Cypher and have therefore been dropped from
NeodjTemplate.

Please provide feedback on the new APIs of SDN 5 and the migration needs to spring-data-
neo4j@neotechnology.com or via a JIRA issue

140

mailto:spring-data-neo4j@neotechnology.com
mailto:spring-data-neo4j@neotechnology.com
https://jira.spring.io/browse/DATAGRAPH

Appendix F: Frequently asked questions

What is the difference between Neo4j OGM and Spring Data Neo4j (SDN)?

Spring Data Neo4j (SDN) uses the OGM under the covers. It’s like Spring Data JPA, where
JPA/Hibernate underly it. Most of the power of SDN actually comes from the OGM.

How do I set up my Spring Configuration with Spring WebMVC projects?

If you are using a Spring WebMVC application, the following configuration is all that’s required:

({"org.neo4j.example.web"})
("org.neo4j.example.repository")

public class MyWebAppConfiguration extends WebMvcConfigurerAdapter {

public OpenSessionInViewInterceptor openSessionInViewInterceptor() {
OpenSessionInViewInterceptor openSessionInViewInterceptor =
new OpenSessionInViewInterceptor();
openSessionInViewInterceptor.setSessionFactory(sessionFactory());
return openSessionInViewInterceptor;

public void addInterceptors(InterceptorRegistry registry) {
registry.addWebRequestInterceptor(openSessionInViewInterceptor());

public SessionFactory sessionFactory() {
// with domain entity base package(s)
return new SessionFactory("org.neo4j.example.domain");

public Neo4jTransactionManager transactionManager() throws Exception {
return new Neo4jTransactionManager(sessionFactory());

}

How do I set up my Spring Configuration with a Java Servlet 3.x+ Container project?

If you are using a Java Servlet 3.x+ Container, you can configure a Servlet filter with Spring’s
AbstractAnnotationConfigDispatcherServletInitializer. The configuration below will open a new
session for every web request then automatically close it on completion. SDN provides the
org.springframework.data.neo4j.web.support.OpenSessionInViewFilter to do this:

141

public class MyAppInitializer extends
AbstractAnnotationConfigDispatcherServlietInitializer {

@Override
protected void customizeRegistration(ServlietRegistration.Dynamic registration) {
registration.setInitParameter("throwExceptionIfNoHandlerFound", "true");

}

@override
protected Class<?>[] getRootConfigClasses() {
return new Class[] {ApplicationConfiguration.class} // if you have broken up
your configuration, this points to your non web application config/s.

}

@0verride
protected Class<?>[] getServletConfigClasses() {
throw new Class[] {WebConfiguration.class}; // a configuration that extends the
WebMvcConfiqgurerAdapter as seen above.

}

@Override

protected String[] getServletMappings() {
return new String[] {"/"};

}

protected Filter[] getServletFilters() {
return return new Filter[] {new OpenSessionInViewFilter()};

}

142

	Spring Data Neo4j - Reference Documentation
	Table of Contents
	Preface
	Chapter 1. Spring and Spring Data
	Chapter 2. NoSQL and Graph databases
	2.1. Introducing Neo4j

	Chapter 3. Requirements
	Chapter 4. Additional Resources
	4.1. Project metadata
	4.2. Getting Help & give feedback

	Chapter 5. New & Noteworthy
	5.1. What’s new in Spring Data Neo4j 5.0.0

	Chapter 6. Dependencies
	6.1. Dependency management with Spring Boot
	6.2. Spring Framework

	Chapter 7. Working with Spring Data Repositories
	7.1. Core concepts
	7.2. Query methods
	7.3. Defining repository interfaces
	7.3.1. Fine-tuning repository definition
	7.3.2. Null handling of repository methods
	7.3.3. Using Repositories with multiple Spring Data modules

	7.4. Defining query methods
	7.4.1. Query lookup strategies
	7.4.2. Query creation
	7.4.3. Property expressions
	7.4.4. Special parameter handling
	7.4.5. Limiting query results
	7.4.6. Streaming query results
	7.4.7. Async query results

	7.5. Creating repository instances
	7.5.1. XML configuration
	7.5.2. JavaConfig
	7.5.3. Standalone usage

	7.6. Custom implementations for Spring Data repositories
	7.6.1. Customizing individual repositories
	7.6.2. Customize the base repository

	7.7. Publishing events from aggregate roots
	7.8. Spring Data extensions
	7.8.1. Querydsl Extension
	7.8.2. Web support
	7.8.3. Repository populators
	7.8.4. Legacy web support

	Chapter 8. Auditing
	8.1. Basics
	8.1.1. Annotation based auditing metadata
	8.1.2. Interface-based auditing metadata
	8.1.3. AuditorAware

	SDN Reference Documentation
	Chapter 9. Introduction
	9.1. SDN Architecture
	9.2. How to use this reference

	Chapter 10. Getting started
	10.1. Using Boot
	10.2. Using STS
	10.3. Using Dependency Management
	10.3.1. Maven
	10.3.2. Gradle

	10.4. Examples
	10.5. Configuration
	10.5.1. Driver Configuration
	10.5.2. Spring Boot Applications

	10.6. Connecting to Neo4j

	Chapter 11. Neo4j OGM Support
	11.1. What is an OGM?
	11.1.1. Understanding the Session

	11.2. Basic Operations
	11.3. Entity Persistence
	11.4. Cypher Queries
	11.5. Transactions

	Chapter 12. Neo4J Repositories
	12.1. Introduction
	12.2. Usage
	12.3. Query Methods
	12.3.1. Query and Finder Methods
	12.3.2. Annotated queries
	12.3.3. Named queries
	12.3.4. Query results
	12.3.5. Cypher examples
	12.3.6. Queries derived from finder-method names
	12.3.7. Mapping Query Results
	12.3.8. Sorting and Paging
	12.3.9. Projections

	12.4. Transactions
	12.4.1. Read only Transactions
	12.4.2. Transaction Bound Events

	12.5. Clustering support
	12.5.1. Bookmark management

	12.6. Miscellaneous
	12.6.1. CDI integration
	12.6.2. JSR-303 (Bean Validation) Support
	12.6.3. Conversion Service
	12.6.4. Projections
	12.6.5. Auditing

	Neo4j OGM Reference Documentation
	Chapter 13. Introduction
	13.1. Overview

	Chapter 14. Getting Started
	14.1. Versions
	14.1.1. Compatibility
	14.1.2. Transitive dependencies

	14.2. Dependency Management
	14.2.1. Maven
	14.2.2. Gradle

	Chapter 15. Configuration
	15.1. Configuration method
	15.1.1. Using a properties file
	15.1.2. Programmatically using Java
	15.1.3. By providing a Neo4j driver instance

	15.2. Driver Configuration
	15.2.1. HTTP Driver
	15.2.2. Bolt Driver
	15.2.3. Embedded Driver
	15.2.4. Credentials
	15.2.5. Transport Layer Security (TLS/SSL)
	15.2.6. Bolt connection testing
	15.2.7. Eager connection verification

	15.3. Logging

	Chapter 16. Annotating Entities
	16.1. @NodeEntity: The basic building block
	16.1.1. @Properties: dynamically mapping properties to graph
	16.1.2. Runtime managed labels

	16.2. @Relationship: Connecting node entities
	16.2.1. Using more than one relationship of the same type
	16.2.2. Ambiguity in relationships
	16.2.3. Ordering

	16.3. @RelationshipEntity: Rich relationships
	16.4. Entity identifier
	16.5. @GraphId: Neo4j id field
	16.5.1. Entity Equality
	16.5.2. Id Generation Strategy

	16.6. @Property: Optional annotation for property fields
	16.7. @PostLoad
	16.8. Non-annotated properties and best practices

	Chapter 17. Indexing
	17.1. Indexes and Constraints
	17.2. Primary Constraints
	17.3. Index Creation

	Chapter 18. Connecting to the Graph
	18.1. SessionFactory

	Chapter 19. Using the OGM Session
	19.1. Session Configuration
	19.2. Basic operations
	19.3. Persisting entities
	19.3.1. Save depth

	19.4. Loading Entities
	19.4.1. Load depth
	19.4.2. Query Strategy
	19.4.3. Cypher queries
	19.4.4. Sorting and paging

	Chapter 20. Type Conversion
	20.1. Built-in type conversions
	20.2. Custom Type Conversion

	Chapter 21. Filters
	Chapter 22. Events
	22.1. Event types
	22.2. Interfaces
	22.3. Registering an EventListener
	22.4. Using the EventListenerAdapter
	22.5. Disposing of an EventListener
	22.6. Connected objects
	22.7. Events and types
	22.8. Events and collections
	22.9. Event ordering
	22.10. Relationship events
	22.11. Event uniqueness

	Chapter 23. Testing
	23.1. Log levels

	Chapter 24. High Availability (HA) Support
	24.1. Causal Clustering
	24.1.1. Configuring the OGM
	24.1.2. Design considerations for clustering
	24.1.3. Hardware and cluster configuration
	24.1.4. Target replica servers when possible
	24.1.5. Use bookmarks to read your own writes
	24.1.6. Retry mechanisms

	24.2. Highly Available (HA) Cluster
	24.2.1. Transaction binding in HA mode
	24.2.2. Read-only transactions
	24.2.3. Dynamic binding via a load balancer

	Appendix
	Appendix A: Namespace reference
	The <repositories /> element

	Appendix B: Populators namespace reference
	The <populator /> element

	Appendix C: Repository query keywords
	Supported query keywords

	Appendix D: Repository query return types
	Supported query return types

	Appendix E: Migration Guide
	Migrating from 4.2 → 5.0
	Migrating from 4.0/4.1 → 4.2
	Migrating from pre 4.0 → 4.2
	Package Changes
	Annotation Changes
	Custom Type Conversion
	Date Format Changes
	Indexing
	Obsolete Annotations
	Features No Longer Supported
	Deprecation of Neo4jTemplate

	Appendix F: Frequently asked questions

