

 BioMed Central Development Team

 PREFACE

The Spring Data Elasticsearch project applies core Spring concepts to the development of solutions using the Elasticsearch Search Engine. We have povided a "template" as a high-level abstraction for storing,querying,sorting and faceting documents. You will notice similarities to the Spring data solr and mongodb support in the Spring Framework.

Project Metadata

	
Version Control - https://github.com/spring-projects/spring-data-elasticsearch

	
Bugtracker - https://jira.spring.io/browse/DATAES

	
Release repository - https://repo.spring.io/libs-release

	
Milestone repository - https://repo.spring.io/libs-milestone

	
Snapshot repository - https://repo.spring.io/libs-snapshot

Requirements

Requires Elasticsearch 0.20.2 and above or optional dependency or not even that if you are using Embedded Node Client

 BioMed Central Development Team

 WORKING WITH SPRING DATA REPOSITORIES

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code required to implement data access layers for various persistence stores.

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data repositories. The information in this chapter is pulled from the Spring Data Commons module. It uses the configuration and code samples for the Java Persistence API (JPA) module. Adapt the XML namespace declaration and the types to be extended to the equivalents of the particular module that you are using. [repositories.namespace-reference] covers XML configuration which is supported across all Spring Data modules supporting the repository API, [repository-query-keywords] covers the query method keywords supported by the repository abstraction in general. For detailed information on the specific features of your module, consult the chapter on that module of this document.

Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a surprise). It takes the domain class to manage as well as the id type of the domain class as type arguments. This interface acts primarily as a marker interface to capture the types to work with and to help you to discover interfaces that extend this one. The CrudRepository provides sophisticated CRUD functionality for the entity class that is being managed.

CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
 extends Repository<T, ID> {

 <S extends T> S save(S entity); ①

 T findOne(ID primaryKey); ②

 Iterable<T> findAll(); ③

 Long count(); ④

 void delete(T entity); ⑤

 boolean exists(ID primaryKey); ⑥

 // … more functionality omitted.
}

	① Saves the given entity.

	② Returns the entity identified by the given id.

	③ Returns all entities.

	④ Returns the number of entities.

	⑤ Deletes the given entity.

	⑥ Indicates whether an entity with the given id exists.

We also provide persistence technology-specific abstractions like e.g. JpaRepository or MongoRepository. Those interfaces extend CrudRepository and expose the capabilities of the underlying persistence technology in addition to the rather generic persistence technology-agnostic interfaces like e.g. CrudRepository.

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional methods to ease paginated access to entities:

PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable>
 extends CrudRepository<T, ID> {

 Iterable<T> findAll(Sort sort);

 Page<T> findAll(Pageable pageable);
}

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {

 Long countByLastname(String lastname);
}

Derived Delete Query

public interface UserRepository extends CrudRepository<User, Long> {

 Long deleteByLastname(String lastname);

 List<User> removeByLastname(String lastname);

}

Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring Data, declaring those queries becomes a four-step process:

	
Declare an interface extending Repository or one of its subinterfaces and type it to the domain class and ID type that it will handle.

interface PersonRepository extends Repository<Person, Long> { … }

	
Declare query methods on the interface.

interface PersonRepository extends Repository<Person, Long> {
 List<Person> findByLastname(String lastname);
}

	
Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

import org.springframework.data.jpa.repository.config.EnableJpaRepositories;

@EnableJpaRepositories
class Config {}

or via XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jpa="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any other store, you need to change this to the appropriate namespace declaration of your store module which should be exchanging jpa in favor of, for example, mongodb.

Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the annotated class is used by default. To customize the package to scan use one of the basePackage… attribute of the data-store specific repository @Enable…-annotation.

	
Get the repository instance injected and use it.

public class SomeClient {

 @Autowired
 private PersonRepository repository;

 public void doSomething() {
 List<Person> persons = repository.findByLastname("Matthews");
 }
}

The sections that follow explain each step in detail.

Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, extend CrudRepository instead of Repository.

Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you can also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository exposes a complete set of methods to manipulate your entities. If you prefer to be selective about the methods being exposed, simply copy the ones you want to expose from CrudRepository into your domain repository.

This allows you to define your own abstractions on top of the provided Spring Data Repositories functionality.

Selectively exposing CRUD methods

@NoRepositoryBean
interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {

 T findOne(ID id);

 T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
 User findByEmailAddress(EmailAddress emailAddress);
}

In this first step you defined a common base interface for all your domain repositories and exposed findOne(…) as well as save(…).These methods will be routed into the base repository implementation of the store of your choice provided by Spring Data ,e.g. in the case if JPA SimpleJpaRepository, because they are matching the method signatures in CrudRepository. So the UserRepository will now be able to save users, and find single ones by id, as well as triggering a query to find Users by their email address.

Note, that the intermediate repository interface is annotated with @NoRepositoryBean. Make sure you add that annotation to all repository interfaces that Spring Data should not create instances for at runtime.

Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can derive the query from the method name directly, or by using a manually defined query. Available options depend on the actual store. However, there’s got to be a strategy that decides what actual query is created. Let’s have a look at the available options.

Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can configure the strategy at the namespace through the query-lookup-strategy attribute in case of XML configuration or via the queryLookupStrategy attribute of the Enable${store}Repositories annotation in case of Java config. Some strategies may not be supported for particular datastores.

	
CREATE attempts to construct a store-specific query from the query method name. The general approach is to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read more about query construction in Query creation.

	
USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can’t find one. The query can be defined by an annotation somewhere or declared by other means. Consult the documentation of the specific store to find available options for that store. If the repository infrastructure does not find a declared query for the method at bootstrap time, it fails.

	
CREATE_IF_NOT_FOUND (default) combines CREATE and USE_DECLARED_QUERY. It looks up a declared query first, and if no declared query is found, it creates a custom method name-based query. This is the default lookup strategy and thus will be used if you do not configure anything explicitly. It allows quick query definition by method names but also custom-tuning of these queries by introducing declared queries as needed.

Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building constraining queries over entities of the repository. The mechanism strips the prefixes find…By, read…By, query…By, count…By, and get…By from the method and starts parsing the rest of it. The introducing clause can contain further expressions such as a Distinct to set a distinct flag on the query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria. At a very basic level you can define conditions on entity properties and concatenate them with And and Or.

Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

 List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);

 // Enables the distinct flag for the query
 List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname);
 List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname);

 // Enabling ignoring case for an individual property
 List<Person> findByLastnameIgnoreCase(String lastname);
 // Enabling ignoring case for all suitable properties
 List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname);

 // Enabling static ORDER BY for a query
 List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
 List<Person> findByLastnameOrderByFirstnameDesc(String lastname);
}

The actual result of parsing the method depends on the persistence store for which you create the query. However, there are some general things to notice.

	
The expressions are usually property traversals combined with operators that can be concatenated. You can combine property expressions with AND and OR. You also get support for operators such as Between, LessThan, GreaterThan, Like for the property expressions. The supported operators can vary by datastore, so consult the appropriate part of your reference documentation.

	
The method parser supports setting an IgnoreCase flag for individual properties (for example, findByLastnameIgnoreCase(…)) or for all properties of a type that support ignoring case (usually String instances, for example, findByLastnameAndFirstnameAllIgnoreCase(…)). Whether ignoring cases is supported may vary by store, so consult the relevant sections in the reference documentation for the store-specific query method.

	
You can apply static ordering by appending an OrderBy clause to the query method that references a property and by providing a sorting direction (Asc or Desc). To create a query method that supports dynamic sorting, see Special parameter handling.

Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding example. At query creation time you already make sure that the parsed property is a property of the managed domain class. However, you can also define constraints by traversing nested properties. Assume a Person has an Address with a ZipCode. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting the entire part (AddressZipCode) as the property and checks the domain class for a property with that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits up the source at the camel case parts from the right side into a head and a tail and tries to find the corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with that head it takes the tail and continue building the tree down from there, splitting the tail up in the way just described. If the first split does not match, the algorithm move the split point to the left (Address, ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property. Suppose the Person class has an addressZip property as well. The algorithm would match in the first split round already and essentially choose the wrong property and finally fail (as the type of addressZip probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

As we treat underscore as a reserved character we strongly advise to follow standard Java naming conventions (i.e. not using underscores in property names but camel case instead).

Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the examples above. Besides that the infrastructure will recognize certain specific types like Pageable and Sort to apply pagination and sorting to your queries dynamically.

Using Pageable, Slice and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);

Slice<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the query method to dynamically add paging to your statically defined query. A Page knows about the total number of elements and pages available. It does so by the infrastructure triggering a count query to calculate the overall number. As this might be expensive depending on the store used, Slice can be used as return instead. A Slice only knows about whether there’s a next Slice available which might be just sufficient when walking thought a larger result set.

Sorting options are handled through the Pageable instance too. If you only need sorting, simply add an org.springframework.data.domain.Sort parameter to your method. As you also can see, simply returning a List is possible as well. In this case the additional metadata required to build the actual Page instance will not be created (which in turn means that the additional count query that would have been necessary not being issued) but rather simply restricts the query to look up only the given range of entities.

To find out how many pages you get for a query entirely you have to trigger an additional count query. By default this query will be derived from the query you actually trigger.

Limiting query results

The results of query methods can be limited via the keywords first or top, which can be used interchangeably. An optional numeric value can be appended to top/first to specify the maximum result size to be returned.
If the number is left out, a result size of 1 is assumed.

Limiting the result size of a query with Top and First

User findFirstByOrderByLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);

Slice<User> findTop3ByLastname(String lastname, Pageable pageable);

List<User> findFirst10ByLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct keyword. Also, for the queries limiting the result set to one instance, wrapping the result into an Optional is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number of pages available) then it is applied within the limited result.

Note that limiting the results in combination with dynamic sorting via a Sort parameter allows to express query methods for the 'K' smallest as well as for the 'K' biggest elements.

Streaming query results

The results of query methods can be processed incrementally by using a Java 8 Stream<T> as return type. Instead of simply wrapping the query results in a Stream data store specific methods are used to perform the streaming.

Stream the result of a query with Java 8 Stream<T>

@Query("select u from User u")
Stream<User> findAllByCustomQueryAndStream();

Stream<User> readAllByFirstnameNotNull();

@Query("select u from User u")
Stream<User> streamAllPaged(Pageable pageable);

A Stream potentially wraps underlying data store specific resources and must therefore be closed after usage. You can either manually close the Stream using the close() method or by using a Java 7 try-with-resources block.

Working with a Stream<T> result in a try-with-resources block

try (Stream<User> stream = repository.findAllByCustomQueryAndStream()) {
 stream.forEach(…);
}

Not all Spring Data modules currently support Stream<T> as a return type.

Async query results

Repository queries can be executed asynchronously using Spring’s asynchronous method execution capability. This means the method will return immediately upon invocation and the actual query execution will occur in a task that has been submitted to a Spring TaskExecutor.

@Async
Future<User> findByFirstname(String firstname); ①

@Async
CompletableFuture<User> findOneByFirstname(String firstname); ②

@Async
ListenableFuture<User> findOneByLastname(String lastname); ③

	① Use java.util.concurrent.Future as return type.

	② Use a Java 8 java.util.concurrent.CompletableFuture as return type.

	③ Use a org.springframework.util.concurrent.ListenableFuture as return type.

Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One way to do so is using the Spring namespace that is shipped with each Spring Data module that supports the repository mechanism although we generally recommend to use the Java-Config style configuration.

XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base package that Spring scans for you.

Enabling Spring Data repositories via XML

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its sub-packages for interfaces extending Repository or one of its sub-interfaces. For each interface found, the infrastructure registers the persistence technology-specific FactoryBean to create the appropriate proxies that handle invocations of the query methods. Each bean is registered under a bean name that is derived from the interface name, so an interface of UserRepository would be registered under userRepository. The base-package attribute allows wildcards, so that you can define a pattern of scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific Repository sub-interface located under the configured base package and creates a bean instance for it. However, you might want more fine-grained control over which interfaces bean instances get created for. To do this you use <include-filter /> and <exclude-filter /> elements inside <repositories />. The semantics are exactly equivalent to the elements in Spring’s context namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Using exclude-filter element

<repositories base-package="com.acme.repositories">
 <context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

JavaConfig

The repository infrastructure can also be triggered using a store-specific @Enable${store}Repositories annotation on a JavaConfig class. For an introduction into Java-based configuration of the Spring container, see the reference documentation.[1]

A sample configuration to enable Spring Data repositories looks something like this.

Sample annotation based repository configuration

@Configuration
@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {

 @Bean
 public EntityManagerFactory entityManagerFactory() {
 // …
 }
}

The sample uses the JPA-specific annotation, which you would change according to the store module you actually use. The same applies to the definition of the EntityManagerFactory bean. Consult the sections covering the store-specific configuration.

Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI environments. You still need some Spring libraries in your classpath, but generally you can set up repositories programmatically as well. The Spring Data modules that provide repository support ship a persistence technology-specific RepositoryFactory that you can use as follows.

Standalone usage of repository factory

RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

Custom implementations for Spring Data repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction and query method functionality.

Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation for the custom functionality. Use the repository interface you provided to extend the custom interface.

Interface for custom repository functionality

interface UserRepositoryCustom {
 public void someCustomMethod(User user);
}

Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

 public void someCustomMethod(User user) {
 // Your custom implementation
 }
}

The most important bit for the class to be found is the Impl postfix of the name on it compared to the core repository interface (see below).

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you can use standard dependency injection behavior to inject references to other beans like a JdbTemplate, take part in aspects, and so on.

Changes to the your basic repository interface

interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

 // Declare query methods here
}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and custom functionality and makes it available to clients.

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom implementations by scanning for classes below the package we found a repository in. These classes need to follow the naming convention of appending the namespace element’s attribute repository-impl-postfix to the found repository interface name. This postfix defaults to Impl.

Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />

The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl to act as custom repository implementation, whereas the second example will try to lookup com.acme.repository.UserRepositoryFooBar.

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based configuration and autowiring only, as it will be treated as any other Spring bean. If your custom implementation bean needs special wiring, you simply declare the bean and name it after the conventions just described. The infrastructure will then refer to the manually defined bean definition by name instead of creating one itself.

Manual wiring of custom implementations

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">
 <!-- further configuration -->
</beans:bean>

Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository interfaces. To add custom behavior to all repositories, you first add an intermediate interface to declare the shared behavior.

An interface declaring custom shared behavior

@NoRepositoryBean
public interface MyRepository<T, ID extends Serializable>
 extends PagingAndSortingRepository<T, ID> {

 void sharedCustomMethod(ID id);
}

Now your individual repository interfaces will extend this intermediate interface instead of the Repository interface to include the functionality declared. Next, create an implementation of the intermediate interface that extends the persistence technology-specific repository base class. This class will then act as a custom base class for the repository proxies.

Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
 extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

 private final EntityManager entityManager;

 public MyRepositoryImpl(JpaEntityInformation entityInformation,
 EntityManager entityManager) {
 super(entityInformation, entityManager);

 // Keep the EntityManager around to used from the newly introduced methods.
 this.entityManager = entityManager;
 }

 public void sharedCustomMethod(ID id) {
 // implementation goes here
 }
}

The class needs to have a constructor of the super class which the store-specific repository factory implementation is using. In case the repository base class has multiple constructors, override the one taking an EntityInformation plus a store specific infrastructure object (e.g. an EntityManager or a template class).

The default behavior of the Spring <repositories /> namespace is to provide an implementation for all interfaces that fall under the base-package. This means that if left in its current state, an implementation instance of MyRepository will be created by Spring. This is of course not desired as it is just supposed to act as an intermediary between Repository and the actual repository interfaces you want to define for each entity. To exclude an interface that extends Repository from being instantiated as a repository instance, you can either annotate it with @NoRepositoryBean (as seen above) or move it outside of the configured base-package.

The final step is to make the Spring Data infrastructure aware of the customized repository base class. In JavaConfig this is achieved by using the repositoryBaseClass attribute of the @Enable…Repositories annotation:

Configuring a custom repository base class using JavaConfig

@Configuration
@EnableJpaRepositories(repositoryBaseClass = MyRepositoryImpl.class)
class ApplicationConfiguration { … }

A corresponding attribute is available in the XML namespace.

Configuring a custom repository base class using XML

<repositories base-package="com.acme.repository"
 repository-base-class="….MyRepositoryImpl" />

Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of contexts. Currently most of the integration is targeted towards Spring MVC.

Web support

This section contains the documentation for the Spring Data web support as it is implemented as of Spring Data Commons in the 1.6 range. As it the newly introduced support changes quite a lot of things we kept the documentation of the former behavior in Legacy web support.

Spring Data modules ships with a variety of web support if the module supports the repository programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them even provide integration with Spring HATEOAS [2]. In general, the integration support is enabled by using the @EnableSpringDataWebSupport annotation in your JavaConfig configuration class.

Enabling Spring Data web support

@Configuration
@EnableWebMvc
@EnableSpringDataWebSupport
class WebConfiguration { }

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit. It will also detect Spring HATEOAS on the classpath and register integration components for it as well if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or HateoasAwareSpringDataWebSupport as Spring beans:

Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the former -->
<bean class="org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

	
A DomainClassConverter to enable Spring MVC to resolve instances of repository managed domain classes from request parameters or path variables.

	
HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort instances from request parameters.

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method signatures directly, so that you don’t have to manually lookup the instances via the repository:

A Spring MVC controller using domain types in method signatures

@Controller
@RequestMapping("/users")
public class UserController {

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);
 return "userForm";
 }
}

As you can see the method receives a User instance directly and no further lookup is necessary. The instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain class first and eventually access the instance through calling findOne(…) on the repository instance registered for the domain type.

Currently the repository has to implement CrudRepository to be eligible to be discovered for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as an instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being valid controller method arguments

Using Pageable as controller method argument

@Controller
@RequestMapping("/users")
public class UserController {

 @Autowired UserRepository repository;

 @RequestMapping
 public String showUsers(Model model, Pageable pageable) {

 model.addAttribute("users", repository.findAll(pageable));
 return "users";
 }
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request parameters using the following default configuration:

Table 1. Request parameters evaluated for Pageable instances

	page

	Page you want to retrieve, 0 indexed and defaults to 0.

	size

	Size of the page you want to retrieve, defaults to 20.

	sort

	Properties that should be sorted by in the format property,property(,ASC|DESC). Default sort direction is ascending. Use multiple sort parameters if you want to switch directions, e.g. ?sort=firstname&sort=lastname,asc.

To customize this behavior extend either SpringDataWebConfiguration or the HATEOAS-enabled equivalent and override the pageableResolver() or sortResolver() methods and import your customized configuration file instead of using the @Enable-annotation.

In case you need multiple Pageable or Sort instances to be resolved from the request (for multiple tables, for example) you can use Spring’s @Qualifier annotation to distinguish one from another. The request parameters then have to be prefixed with ${qualifier}_. So for a method signature like this:

public String showUsers(Model model,
 @Qualifier("foo") Pageable first,
 @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(0, 20) but can be customized using the @PageableDefaults annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enriching the content of a Page instance with the necessary Page metadata as well as links to let the clients easily navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

Using a PagedResourcesAssembler as controller method argument

@Controller
class PersonController {

 @Autowired PersonRepository repository;

 @RequestMapping(value = "/persons", method = RequestMethod.GET)
 HttpEntity<PagedResources<Person>> persons(Pageable pageable,
 PagedResourcesAssembler assembler) {

 Page<Person> persons = repository.findAll(pageable);
 return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.OK);
 }
}

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as controller method argument. Calling toResources(…) on it will cause the following:

	
The content of the Page will become the content of the PagedResources instance.

	
The PagedResources will get a PageMetadata instance attached populated with information form the Page and the underlying PageRequest.

	
The PagedResources gets prev and next links attached depending on the page’s state. The links will point to the URI the method invoked is mapped to. The pagination parameters added to the method will match the setup of the PageableHandlerMethodArgumentResolver to make sure the links can be resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET http://localhost:8080/persons and you’ll see something similar to this:

{ "links" : [{ "rel" : "next",
 "href" : "http://localhost:8080/persons?page=1&size=20 }
],
 "content" : [
 … // 20 Person instances rendered here
],
 "pageMetadata" : {
 "size" : 20,
 "totalElements" : 30,
 "totalPages" : 2,
 "number" : 0
 }
}

You see that the assembler produced the correct URI and also picks up the default configuration present to resolve the parameters into a Pageable for an upcoming request. This means, if you change that configuration, the links will automatically adhere to the change. By default the assembler points to the controller method it was invoked in but that can be customized by handing in a custom Link to be used as base to build the pagination links to overloads of the PagedResourcesAssembler.toResource(…) method.

QueryDSL web support

For those stores having QueryDSL integration it is possible to derive queries from the attributes contained in a Request query string.

This means that given the User object from previous samples a query string

?firstname=Dave&lastname=Matthews

can be resolved to

QUser.user.firstname.eq("Dave").and(QUser.user.lastname.eq("Matthews"))

using the QuerydslPredicateArgumentResolver.

The feature will be automatically enabled along @EnableSpringDataWebSupport when Querydsl is found on the classpath.

Adding a @QuerydslPredicate to the method signature will provide a ready to use Predicate which can be executed via the QueryDslPredicateExecutor.

Type information is typically resolved from the methods return type. Since those information does not necessarily match the domain type it might be a good idea to use the root attribute of QuerydslPredicate.

@Controller
class UserController {

 @Autowired UserRepository repository;

 @RequestMapping(value = "/", method = RequestMethod.GET)
 String index(Model model, @QuerydslPredicate(root = User.class) Predicate predicate, ①
 Pageable pageable, @RequestParam MultiValueMap<String, String> parameters) {

 model.addAttribute("users", repository.findAll(predicate, pageable));

 return "index";
 }
}

	① Resolve query string arguments to matching Predicate for User.

The default binding is as follows:

	
Object on simple properties as eq.

	
Object on collection like properties as contains.

	
Collection on simple properties as in.

Those bindings can be customized via the bindings attribute of @QuerydslPredicate or by making use of Java 8 default methods adding the QuerydslBinderCustomizer to the repository interface.

interface UserRepository extends CrudRepository<User, String>,
 QueryDslPredicateExecutor<User>, ①
 QuerydslBinderCustomizer<QUser> { ②

 @Override
 default public void customize(QuerydslBindings bindings, QUser user) {

 bindings.bind(user.username).first((path, value) -> path.contains(value)) ③
 bindings.bind(String.class)
 .first((StringPath path, String value) -> path.containsIgnoreCase(value)); ④
 bindings.excluding(user.password); ⑤
 }
}

	① QueryDslPredicateExecutor provides access to specific finder methods for Predicate.

	② QuerydslBinderCustomizer defined on the repository interface will be automatically picked up and shortcuts @QuerydslPredicate(bindings=…).

	③ Define the binding for the username property to be a simple contains binding.

	④ Define the default binding for String properties to be a case insensitive contains match.

	⑤ Exclude the password property from Predicate resolution.

Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it does not use SQL as the data definition language because it must be store-independent. Thus the populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define data with which to populate the repositories.

Assume you have a file data.json with the following content:

Data defined in JSON

[{ "_class" : "com.acme.Person",
 "firstname" : "Dave",
 "lastname" : "Matthews" },
 { "_class" : "com.acme.Person",
 "firstname" : "Carter",
 "lastname" : "Beauford" }]

You can easily populate your repositories by using the populator elements of the repository namespace provided in Spring Data Commons. To populate the preceding data to your PersonRepository , do the following:

Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:repository="http://www.springframework.org/schema/data/repository"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/repository
 http://www.springframework.org/schema/data/repository/spring-repository.xsd">

 <repository:jackson2-populator locations="classpath:data.json" />

</beans>

This declaration causes the data.json file to
be read and deserialized via a Jackson ObjectMapper.

The type to which the JSON object will be unmarshalled to will be determined by inspecting the _class attribute of the JSON document. The infrastructure will eventually select the appropriate repository to handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring OXM provides you with. See the Spring reference documentation for details.

Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:repository="http://www.springframework.org/schema/data/repository"
 xmlns:oxm="http://www.springframework.org/schema/oxm"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/repository
 http://www.springframework.org/schema/data/repository/spring-repository.xsd
 http://www.springframework.org/schema/oxm
 http://www.springframework.org/schema/oxm/spring-oxm.xsd">

 <repository:unmarshaller-populator locations="classpath:data.json"
 unmarshaller-ref="unmarshaller" />

 <oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class ids from URLs. By default your task is to transform that request parameter or URL part into the domain class to hand it to layers below then or execute business logic on the entities directly. This would look something like this:

@Controller
@RequestMapping("/users")
public class UserController {

 private final UserRepository userRepository;

 @Autowired
 public UserController(UserRepository userRepository) {
 Assert.notNull(repository, "Repository must not be null!");
 this.userRepository = userRepository;
 }

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") Long id, Model model) {

 // Do null check for id
 User user = userRepository.findOne(id);
 // Do null check for user

 model.addAttribute("user", user);
 return "user";
 }
}

First you declare a repository dependency for each controller to look up the entity managed by the controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a findOne(…) call. Fortunately Spring provides means to register custom components that allow conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that, Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data repositories registered in the ApplicationContext and registers a custom PropertyEditor for the managed domain class.

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
 <property name="webBindingInitializer">
 <bean class="….web.bind.support.ConfigurableWebBindingInitializer">
 <property name="propertyEditorRegistrars">
 <bean class="org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
 </property>
 </bean>
 </property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as follows, which reduces a lot of the clutter and boilerplate.

@Controller
@RequestMapping("/users")
public class UserController {

 @RequestMapping("/{id}")
 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);
 return "userForm";
 }
}

1 JavaConfig in the Spring reference documentation

2 Spring HATEOAS - https://github.com/SpringSource/spring-hateoas

 BioMed Central Development Team

 ELASTICSEARCH REPOSITORIES

This chapter includes details of the Elasticsearch repository implementation.

Introduction

Spring Namespace

The Spring Data Elasticsearch module contains a custom namespace allowing definition of repository beans as well as elements for instantiating a ElasticsearchServer .

Using the repositories element looks up Spring Data repositories as described in [repositories.create-instances] .

Setting up Elasticsearch repositories using Namespace

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:elasticsearch="http://www.springframework.org/schema/data/elasticsearch"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
http://www.springframework.org/schema/data/elasticsearch
http://www.springframework.org/schema/data/elasticsearch/spring-elasticsearch-1.0.xsd">

 <elasticsearch:repositories base-package="com.acme.repositories" />

</beans>

Using the Transport Client or Node Client element registers an instance of Elasticsearch Server in the context.

Transport Client using Namespace

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:elasticsearch="http://www.springframework.org/schema/data/elasticsearch"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
http://www.springframework.org/schema/data/elasticsearch
http://www.springframework.org/schema/data/elasticsearch/spring-elasticsearch-1.0.xsd">

 <elasticsearch:transport-client id="client" cluster-nodes="localhost:9300,someip:9300" />

</beans>

Node Client using Namespace

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:elasticsearch="http://www.springframework.org/schema/data/elasticsearch"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.1.xsd
http://www.springframework.org/schema/data/elasticsearch
http://www.springframework.org/schema/data/elasticsearch/spring-elasticsearch-1.0.xsd">

 <elasticsearch:node-client id="client" local="true"" />

</beans>

Annotation based configuration

The Spring Data Elasticsearch repositories support cannot only be activated through an XML namespace but also using an annotation through JavaConfig.

Spring Data Elasticsearch repositories using JavaConfig

@Configuration
@EnableElasticsearchRepositories(basePackages = "org/springframework/data/elasticsearch/repositories")
static class Config {

 @Bean
 public ElasticsearchOperations elasticsearchTemplate() {
 return new ElasticsearchTemplate(nodeBuilder().local(true).node().client());
 }
}

The configuration above sets up an Embedded Elasticsearch Server which is used by the ElasticsearchTemplate . Spring Data Elasticsearch Repositories are activated using the @EnableElasticsearchRepositories annotation, which essentially carries the same attributes as the XML namespace does. If no base package is configured, it will use the one the configuration class resides in.

Elasticsearch Repositores using CDI

The Spring Data Elasticsearch repositories can also be set up using CDI functionality.

Spring Data Elasticsearch repositories using JavaConfig

class ElasticsearchTemplateProducer {

 @Produces
 @ApplicationScoped
 public ElasticsearchOperations createElasticsearchTemplate() {
 return new ElasticsearchTemplate(nodeBuilder().local(true).node().client());
 }
}

class ProductService {

 private ProductRepository repository;

 public Page<Product> findAvailableBookByName(String name, Pageable pageable) {
 return repository.findByAvailableTrueAndNameStartingWith(name, pageable);
 }

 @Inject
 public void setRepository(ProductRepository repository) {
 this.repository = repository;
 }
}

Query methods

Query lookup strategies

The Elasticsearch module supports all basic query building feature as String,Abstract,Criteria or have it being derived from the method name.

Declared queries

Deriving the query from the method name is not always sufficient and/or may result in unreadable method names. In this case one might make either use of @Query annotation (see Using @Query Annotation).

Query creation

Generally the query creation mechanism for Elasticsearch works as described in [repositories.query-methods] . Here’s a short example of what a Elasticsearch query method translates into:

Query creation from method names

public interface BookRepository extends Repository<Book, String>
{
 List<Book> findByNameAndPrice(String name, Integer price);
}

The method name above will be translated into the following Elasticsearch json query

{ "bool" :
 { "must" :
 [
 { "field" : {"name" : "?"} },
 { "field" : {"price" : "?"} }
]
 }
}

A list of supported keywords for Elasticsearch is shown below.

Table 1. Supported keywords inside method names

	Keyword
	Sample
	Elasticsearch Query String

	And

	findByNameAndPrice

	{"bool" : {"must" : [{"field" : {"name" : "?"}},
 {"field" : {"price" : "?"}}]}}

	Or

	findByNameOrPrice

	{"bool" : {"should" : [{"field" : {"name" : "?"}},
 {"field" : {"price" : "?"}}]}}

	Is

	findByName

	{"bool" : {"must" : {"field" : {"name" : "?"}}}}

	Not

	findByNameNot

	{"bool" : {"must_not" : {"field" : {"name" : "?"}}}}

	Between

	findByPriceBetween

	{"bool" : {"must" : {"range" : {"price" : {"from" :
 ?,"to" : ?,"include_lower" : true,"include_upper" : true}}}}}

	LessThanEqual

	findByPriceLessThan

	{"bool" : {"must" : {"range" : {"price" : {"from" :
 null,"to" : ?,"include_lower" : true,"include_upper" :
 true}}}}}

	GreaterThanEqual

	findByPriceGreaterThan

	{"bool" : {"must" : {"range" : {"price" : {"from" :
 ?,"to" : null,"include_lower" : true,"include_upper" :
 true}}}}}

	Before

	findByPriceBefore

	{"bool" : {"must" : {"range" : {"price" : {"from" :
 null,"to" : ?,"include_lower" : true,"include_upper" :
 true}}}}}

	After

	findByPriceAfter

	{"bool" : {"must" : {"range" : {"price" : {"from" :
 ?,"to" : null,"include_lower" : true,"include_upper" :
 true}}}}}

	Like

	findByNameLike

	{"bool" : {"must" : {"field" : {"name" : {"query" :
 "?*","analyze_wildcard" : true}}}}}

	StartingWith

	findByNameStartingWith

	{"bool" : {"must" : {"field" : {"name" : {"query" :
 "?*","analyze_wildcard" : true}}}}}

	EndingWith

	findByNameEndingWith

	{"bool" : {"must" : {"field" : {"name" : {"query" :
 "*?","analyze_wildcard" : true}}}}}

	Contains/Containing

	findByNameContaining

	{"bool" : {"must" : {"field" : {"name" : {"query" :
 "?","analyze_wildcard" : true}}}}}

	In

	findByNameIn(Collection<String>names)

	{"bool" : {"must" : {"bool" : {"should" : [{"field" :
 {"name" : "?"}}, {"field" : {"name" : "?"}}]}}}}

	NotIn

	findByNameNotIn(Collection<String>names)

	{"bool" : {"must_not" : {"bool" : {"should" : {"field" :
 {"name" : "?"}}}}}}

	Near

	findByStoreNear

	Not Supported Yet !

	True

	findByAvailableTrue

	{"bool" : {"must" : {"field" : {"available" : true}}}}

	False

	findByAvailableFalse

	{"bool" : {"must" : {"field" : {"available" : false}}}}

	OrderBy

	findByAvailableTrueOrderByNameDesc

	{"sort" : [{ "name" : {"order" : "desc"} }],"bool" :
 {"must" : {"field" : {"available" : true}}}}

Using @Query Annotation

Declare query at the method using the @Query annotation.

public interface BookRepository extends ElasticsearchRepository<Book, String> {
 @Query("{"bool" : {"must" : {"field" : {"name" : "?0"}}}}")
 Page<Book> findByName(String name,Pageable pageable);
}

 BioMed Central Development Team

 MISCELLANEOUS ELASTICSEARCH OPERATION SUPPORT

This chapter covers additional support for Elasticsearch operations that cannot be directly accessed via the repository interface. It is recommended to add those operations as custom implementation as described in [repositories.custom-implementations] .

Filter Builder

Filter Builder improves query speed.

private ElasticsearchTemplate elasticsearchTemplate;

SearchQuery searchQuery = new NativeSearchQueryBuilder()
 .withQuery(matchAllQuery())
 .withFilter(boolFilter().must(termFilter("id", documentId)))
 .build();

Page<SampleEntity> sampleEntities =
 elasticsearchTemplate.queryForPage(searchQuery,SampleEntity.class);

Using Scan And Scroll For Big Result Set

Elasticsearch has scan and scroll feature for getting big result set in chunks. ElasticsearchTemplate has scan and scroll methods that can be used as below.

Using Scan and Scroll

SearchQuery searchQuery = new NativeSearchQueryBuilder()
 .withQuery(matchAllQuery())
 .withIndices("test-index")
 .withTypes("test-type")
 .withPageable(new PageRequest(0,1))
 .build();
String scrollId = elasticsearchTemplate.scan(searchQuery,1000,false);
List<SampleEntity> sampleEntities = new ArrayList<SampleEntity>();
boolean hasRecords = true;
while (hasRecords){
 Page<SampleEntity> page = elasticsearchTemplate.scroll(scrollId, 5000L , new ResultsMapper<SampleEntity>()
 {
 @Override
 public Page<SampleEntity> mapResults(SearchResponse response) {
 List<SampleEntity> chunk = new ArrayList<SampleEntity>();
 for(SearchHit searchHit : response.getHits()){
 if(response.getHits().getHits().length <= 0) {
 return null;
 }
 SampleEntity user = new SampleEntity();
 user.setId(searchHit.getId());
 user.setMessage((String)searchHit.getSource().get("message"));
 chunk.add(user);
 }
 return new PageImpl<SampleEntity>(chunk);
 }
 });
 if(page != null) {
 sampleEntities.addAll(page.getContent());
 hasRecords = page.hasNextPage();
 }
 else{
 hasRecords = false;
 }
 }
}

 BioMed Central Development Team

 NAMESPACE REFERENCE

The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The most important attribute is base-package which defines the package to scan for Spring Data repository interfaces.[1]

Table 1. Attributes

	Name
	Description

	base-package

	Defines the package to be used to be scanned for repository interfaces extending *Repository (actual interface is determined by specific Spring Data module) in auto detection mode. All packages below the configured package will be scanned, too. Wildcards are allowed.

	repository-impl-postfix

	Defines the postfix to autodetect custom repository implementations. Classes whose names end with the configured postfix will be considered as candidates. Defaults to Impl.

	query-lookup-strategy

	Determines the strategy to be used to create finder queries. See [repositories.query-methods.query-lookup-strategies] for details. Defaults to create-if-not-found.

	named-queries-location

	Defines the location to look for a Properties file containing externally defined queries.

	consider-nested-repositories

	Controls whether nested repository interface definitions should be considered. Defaults to false.

1 see [repositories.create-instances.spring]

 BioMed Central Development Team

 POPULATORS NAMESPACE REFERENCE

The <populator /> element

The <populator /> element allows to populate the a data store via the Spring Data repository infrastructure.[1]

Table 1. Attributes

	Name
	Description

	locations

	Where to find the files to read the objects from the repository shall be populated with.

1 see [repositories.create-instances.spring]

 BioMed Central Development Team

 REPOSITORY QUERY KEYWORDS

Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query derivation mechanism. However, consult the store-specific documentation for the exact list of supported keywords, because some listed here might not be supported in a particular store.

Table 1. Query keywords

	Logical keyword
	Keyword expressions

	AND

	And

	OR

	Or

	AFTER

	After, IsAfter

	BEFORE

	Before, IsBefore

	CONTAINING

	Containing, IsContaining, Contains

	BETWEEN

	Between, IsBetween

	ENDING_WITH

	EndingWith, IsEndingWith, EndsWith

	EXISTS

	Exists

	FALSE

	False, IsFalse

	GREATER_THAN

	GreaterThan, IsGreaterThan

	GREATER_THAN_EQUALS

	GreaterThanEqual, IsGreaterThanEqual

	IN

	In, IsIn

	IS

	Is, Equals, (or no keyword)

	IS_NOT_NULL

	NotNull, IsNotNull

	IS_NULL

	Null, IsNull

	LESS_THAN

	LessThan, IsLessThan

	LESS_THAN_EQUAL

	LessThanEqual, IsLessThanEqual

	LIKE

	Like, IsLike

	NEAR

	Near, IsNear

	NOT

	Not, IsNot

	NOT_IN

	NotIn, IsNotIn

	NOT_LIKE

	NotLike, IsNotLike

	REGEX

	Regex, MatchesRegex, Matches

	STARTING_WITH

	StartingWith, IsStartingWith, StartsWith

	TRUE

	True, IsTrue

	WITHIN

	Within, IsWithin

 BioMed Central Development Team

 REPOSITORY QUERY RETURN TYPES

Supported query return types

The following table lists the return types generally supported by Spring Data repositories. However, consult the store-specific documentation for the exact list of supported return types, because some listed here might not be supported in a particular store.

Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data stores that support geospatial queries.

Table 1. Query return types

	Return type
	Description

	void

	Denotes no return value.

	Primitives

	Java primitives.

	Wrapper types

	Java wrapper types.

	T

	An unique entity. Expects the query method to return one result at most. In case no result is found null is returned. More than one result will trigger an IncorrectResultSizeDataAccessException.

	Iterator<T>

	An Iterator.

	Collection<T>

	A Collection.

	List<T>

	A List.

	Optional<T>

	A Java 8 or Guava Optional. Expects the query method to return one result at most. In case no result is found Optional.empty()/Optional.absent() is returned. More than one result will trigger an IncorrectResultSizeDataAccessException.

	Stream<T>

	A Java 8 Stream.

	Future<T>

	A Future. Expects method to be annotated with @Async and requires Spring’s asynchronous method execution capability enabled.

	CompletableFuture<T>

	A Java 8 CompletableFuture. Expects method to be annotated with @Async and requires Spring’s asynchronous method execution capability enabled.

	ListenableFuture

	A org.springframework.util.concurrent.ListenableFuture. Expects method to be annotated with @Async and requires Spring’s asynchronous method execution capability enabled.

	Slice

	A sized chunk of data with information whether there is more data available. Requires a Pageable method parameter.

	Page<T>

	A Slice with additional information, e.g. the total number of results. Requires a Pageable method parameter.

	GeoResult<T>

	A result entry with additional information, e.g. distance to a reference location.

	GeoResults<T>

	A list of GeoResult<T> with additional information, e.g. average distance to a reference location.

	GeoPage<T>

	A Page with GeoResult<T>, e.g. average distance to a reference location.

OEBPS/nav.xhtml

Spring Data Elasticsearch

Table of Contents

		Preface

		Working with Spring Data Repositories

		Elasticsearch Repositories

		Miscellaneous Elasticsearch Operation Support

		Namespace reference

		Populators namespace reference

		Repository query keywords

		Repository query return types

OEBPS/images/jacket/cover.png

OEBPS/images/avatars/default.jpg

OEBPS/images/headshots/default.jpg

