
Spring Data for Apache Geode -
Reference Guide

Costin Leau, David Turanski, John Blum, Oliver Gierke

Version 2.0.3.RELEASE, 2018-01-24

Table of Contents
Preface. 2

1. Introduction . 3

2. Requirements . 4

3. New Features . 5

3.1. New in the 1.0.0.RELEASE . 5

3.2. New in the 1.1.0.RELEASE . 5

3.3. New in the 2.0.0.RELEASE . 5

Reference Guide . 7

4. Document Structure . 8

5. Bootstrapping Apache Geode with the Spring container . 9

5.1. Advantages of using Spring over Apache Geode cache.xml . 9

5.2. Using the Core Namespace. 9

5.3. Using the Data Access Namespace . 11

5.3.1. An Easy Way to Connect to Geode . 11

5.4. Configuring a Cache . 12

5.4.1. Advanced Cache Configuration. 14

5.4.2. Configuring a Geode CacheServer . 17

5.4.3. Configuring a Geode ClientCache . 18

5.5. Configuring a Region. 21

5.5.1. Using an externally configured Region. 21

5.5.2. Auto Region Lookup. 22

5.5.3. Configuring Regions. 23

5.5.4. Compression . 27

5.5.5. Subregions . 27

5.5.6. Region Templates . 28

5.5.7. Data Eviction (with Overflow). 33

5.5.8. Data Expiration . 33

5.5.9. Data Persistence . 38

5.5.10. Subscription Policy . 38

5.5.11. Local Region . 38

5.5.12. Replicated Region. 39

5.5.13. Partitioned Region . 39

5.5.14. Client Region . 41

5.5.15. JSON Support. 44

5.6. Configuring an Index . 44

5.6.1. Defining Indexes. 46

5.6.2. IgnoreIfExists and Override . 46

5.7. Configuring a DiskStore . 49

5.8. Configuring the Snapshot Service . 50

5.8.1. Snapshot Location . 51

5.8.2. Snapshot Filters . 52

5.8.3. Snapshot Events . 53

5.9. Configuring the Function Service . 54

5.10. Configuring WAN Gateways . 55

5.10.1. WAN Configuration in GemFire 7.0 . 55

6. Bootstrapping Apache Geode using Spring Annotations . 58

6.1. Introduction . 58

6.2. Bootstrapping Apache Geode applications with Spring . 59

6.3. Going in-detail on client/server applications . 60

6.4. Runtime configuration using Configurers . 63

6.5. Runtime configuration using Properties . 65

6.5.1. Properties of Properties . 67

6.6. Configuring embedded services . 67

6.6.1. Configuring an embedded Locator . 67

6.6.2. Configuring an embedded Manager . 69

6.6.3. Configuring the embedded HTTP Server . 70

6.6.4. Configuring the embedded Memcached Server (Gemcached) . 71

6.6.5. Configuring the embedded Redis Server . 71

6.7. Configuring Logging . 72

6.8. Configuring Statistics . 72

6.9. Configuring PDX . 73

6.10. Configuring SSL . 74

6.11. Configuring GemFire Properties . 75

6.12. Configuring Regions . 76

6.12.1. Configuring Type-specific Regions. 79

6.12.2. Configuring Eviction . 81

6.12.3. Configuring Expiration . 82

6.12.4. Configuring Compression. 83

6.12.5. Configuring Off-Heap . 84

6.12.6. Configuring Indexes . 84

6.12.7. Configuring Disk Stores . 88

6.13. Configuring Continuous Queries . 90

6.14. Configuring Spring’s Cache Abstraction. 92

6.15. Configuring Cluster Configuration Push . 94

6.16. Configuring Security . 96

6.16.1. Configuring Server Security . 96

6.16.2. Configuring Client Security . 98

6.17. Configuration Tips . 99

6.18. Configuration Organization . 99

6.19. Additional Configuration-based Annotations . 100

6.20. Conclusion . 101

7. Working with Apache Geode APIs. 102

7.1. GemfireTemplate . 102

7.2. Exception Translation. 102

7.3. Local, Cache Transaction Management . 103

7.4. Global, JTA Transaction Management . 103

7.5. Continuous Query (CQ). 107

7.5.1. Continuous Query Listener Container . 108

7.5.2. The ContinuousQueryListener and ContinuousQueryListenerAdapter 108

7.6. Wiring Declarable Components . 111

7.6.1. Configuration using template bean definitions. 112

7.6.2. Configuration using auto-wiring and annotations. 114

7.7. Support for the Spring Cache Abstraction . 115

8. Working with Apache Geode Serialization . 119

8.1. Wiring deserialized instances. 119

8.2. Auto-generating custom Instantiators. 120

9. POJO mapping . 121

9.1. Entity Mapping . 121

9.1.1. Entity Mapping by Region Type . 122

9.1.2. Repository Mapping. 122

9.2. Mapping PDX Serializer . 123

10. Spring Data Geode Repositories. 125

10.1. Introduction . 125

10.2. Spring XML Configuration. 125

10.3. Spring Java-based Configuration . 125

10.4. Executing OQL Queries . 126

10.5. OQL Query Extensions using Annotations . 128

11. Annotation Support for Function Execution . 131

11.1. Introduction . 131

11.2. Implementation vs Execution. 131

11.3. Implementing a Function . 132

11.3.1. Annotations for Function Implementation . 133

11.3.2. Batching Results . 134

11.3.3. Enabling Annotation Processing . 134

11.4. Executing a Function . 134

11.4.1. Annotations for Function Execution . 134

11.4.2. Enabling Annotation Processing . 135

11.5. Programmatic Function Execution . 135

11.6. Function Execution with PDX . 136

12. Apache Lucene Integration. 140

12.1. Lucene Template Data Accessors . 141

12.2. Annotation configuration support . 145

13. Bootstrapping a Spring ApplicationContext in Apache Geode . 146

13.1. Introduction . 146

13.2. Using Apache Geode to Bootstrap a Spring Context Started with Gfsh 146

13.3. Lazy-Wiring GemFire Components . 148

14. Sample Applications . 151

14.1. Hello World . 151

14.1.1. Starting and stopping the sample . 151

14.1.2. Using the sample . 151

14.1.3. Hello World Sample Explained. 153

Resources . 154

15. Useful Links . 155

Appendices. 156

Appendix A: Namespace reference . 157

The <repositories /> element . 157

Appendix B: Populators namespace reference. 158

The <populator /> element . 158

Appendix C: Repository query keywords. 159

Supported query keywords . 159

Appendix D: Repository query return types . 160

Supported query return types . 160

Appendix E: Spring Data Geode Schema . 162

© 2010-2017 The original authors.

NOTE

Copies of this document may be made for your own use and for distribution to
others provided that you do not charge any fee for such copies and further provided
that each copy contains this Copyright Notice whether distributed in print or
electronically.

1

Preface
Spring Data Geode focuses on integrating the Spring Framework’s powerful, non-invasive
programming model and concepts with Apache Geode to simplify configuration and development
of Java applications using Geode.

This document assumes the reader already has a basic familiarity with the Spring Framework and
Apache Geode concepts and APIs.

While every effort has been made to ensure this documentation is comprehensive and complete,
with no errors, some topics are beyond the scope of this document and may require more
explanation (e.g. data distribution management with partitioning for HA while still preserving
consistency). Additionally, some typos might have crept in. If you do spot mistakes or even more
serious errors and you can spare a few cycles, please do bring these issues to the attention of the
Spring Data Geode team by raising an appropriate issue.

Thank you.

2

https://jira.spring.io/browse/DATAGEODE

Chapter 1. Introduction
This reference guide for Spring Data Geode explains how to use the Spring Framework to configure
and develop applications with Apache Geode. It presents the basic concepts, semantics and
provides numerous examples to help you get started.

3

Chapter 2. Requirements
Spring Data Geode requires JDK 8.0, Spring Framework 5 and Apache Geode 1.2.0.

4

http://projects.spring.io/spring-framework
http://geode.apache.org/

Chapter 3. New Features

NOTE
As of version 2.0.0, Spring Data Geode is now a top-level module in the Spring Data
project.

3.1. New in the 1.0.0.RELEASE
• Upgrades to Apache Geode 1.0.0-incubating (GA) release.

• Upgrades to Spring Framework 4.3.4.RELEASE.

• Significant additions to the new Annotation-based configuration model.

• Support for CDI.

• Ability to configure Apache Geode’s Off-Heap memory support.

• Fix for premature destruction of client Pools before the Region’s configured to use these Pools.

• Support Repositories with multiple SD modules on the classpath.

• Support for forwardExpirationDestroy in the AsyncEventQueueFactoryBean API and XML
namespace.

• Handle case-insensitive OQL queries defined as Repository query methods.

• Enable explicit Cache names referring to Regions to be specified when using
GemfireCacheManager.

• Fix for ordered GemfireRepository.findAll(Sort) queries.

• GemfireCache.evict(key) now calls Region.remove(key).

• Fix RegionNotFoundException when executing Repository queries on client Regions configured
with a Pool targeted for a specific server group.

• Geode package namespace changed from com.gemstone.gemfire to org.apache.geode.

• Support for the Geode Integrated Security framework.

3.2. New in the 1.1.0.RELEASE
• Upgrades to Aapche Geode 1.1.0 (GA) release.

• Upgrades to Spring Framework 4.3.7.RELEASE.

• Upgrades to Spring Data Commons Ingalls-SR1.

• Additional improvements in the new Annotation-based configuration model.

• Support Apache Geode’s Apache Lucene Integration.

3.3. New in the 2.0.0.RELEASE
• Upgrades to Apache Geode 1.2.0 (GA) release.

• Upgrades to Spring Framework 5.0.0.RELEASE.

5

http://projects.spring.io/spring-data/

• Upgrades to Spring Data Commons Kay.

• Spring Data Geode joins the Spring Data Release Train (Kay) as a new Spring Data module.

• Additional improvements in the new Annotation-based configuration model.

• Support Apache Geode’s Apache Lucene Integration.

6

Reference Guide

7

Chapter 4. Document Structure
The following chapters explain the core functionality offered by Spring Data Geode for Apache
Geode.

Bootstrapping Apache Geode with the Spring container describes the configuration support
provided for bootstrapping, configuring, initializing and accessing Apache Geode Caches, Regions,
and related Distributed System components.

Working with Apache Geode APIs explains the integration between the Apache Geode APIs and the
various data access features available in Spring, such as transaction management and exception
translation.

Working with Apache Geode Serialization describes the enhancements for Apache Geode
(de)serialization and management of associated objects.

POJO mapping describes persistence mapping for POJOs stored in Apache Geode using Spring Data.

Spring Data Geode Repositories describes how to create and use Spring Data Repositories to access
data in Apache Geode.

Annotation Support for Function Execution describes how to create and use Apache Geode
Functions using Annotations.

Bootstrapping a Spring ApplicationContext in Apache Geode describes how to bootstrap a Spring
ApplicationContext running in an Apache Geode server using Gfsh.

Sample Applications describes the examples provided with the distribution to illustrate the various
features available in Spring Data Geode.

8

Chapter 5. Bootstrapping Apache Geode with
the Spring container
Spring Data Geode provides full configuration and initialization of the Apache Geode In-Memory
Data Grid (IMDG) using the Spring IoC container. The framework includes several classes to help
simplify the configuration of Apache Geode components including: Caches, Regions, Indexes,
DiskStores, Functions, WAN Gateways, persistence backup along with several other Distributed
System components in order to support a variety of use cases with minimal effort.

NOTE
This section assumes basic familiarity with Apache Geode. For more information,
see the Apache Geode product documentation.

5.1. Advantages of using Spring over Apache Geode
cache.xml

Spring Data Geode’s XML namespace supports full configuration of the Apache Geode In-Memory
Data Grid (IMDG). The XML namespace is the preferred way to configure Apache Geode in a Spring
context in order to properly manage Geode’s lifecycle inside the Spring container. While support
for Geode’s native cache.xml persists for legacy reasons, Geode application developers are
encouraged to do everything in Spring XML to take advantage of the many wonderful things Spring
has to offer such as modular XML configuration, property placeholders and overrides, SpEL, and
environment profiles. Behind the XML namespace, Spring Data Geode makes extensive use of
Spring’s FactoryBean pattern to simplify the creation, configuration and initialization of Geode
components.

Apache Geode provides several callback interfaces, such as CacheListener, CacheLoader and
CacheWriter, that allow developers to add custom event handlers. Using Spring’s IoC container, these
callbacks may be configured as normal Spring beans and injected into Geode components. This is a
significant improvement over native cache.xml, which provides relatively limited configuration
options and requires callbacks to implement Geode’s Declarable interface (see Wiring Declarable
Components to see how you can still use Declarables within Spring’s IoC/DI container).

In addition, IDEs, such as the Spring Tool Suite (STS), provide excellent support for Spring XML
namespaces including code completion, pop-up annotations, and real time validation, making them
easy to use.

5.2. Using the Core Namespace
To simplify configuration, Spring Data Geode provides a dedicated XML namespace for configuring
core Apache Geode components. It is possible to configure beans directly using Spring’s standard
<bean> definition. However, all bean properties are exposed via the XML namespace so there is little
benefit to using raw bean definitions. For more information about XML Schema-based
configuration in Spring, see the appendix in the Spring Framework reference documentation.

9

http://geode.apache.org/docs/
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#xsd-config

NOTE
Spring Data Repository support uses a separate XML namespace. See Spring Data
Geode Repositories for more information on how to configure Spring Data Geode
Repositories.

To use the Spring Data Geode XML namespace, simply declare it in your Spring XML configuration
meta-data:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:gfe="http://www.springframework.org/schema/geode"① ②
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/geode
http://www.springframework.org/schema/gemfire/spring-geode.xsd"> ③

 <bean id ... >

 <gfe:cache ...> ④

</beans>

① Spring Data Geode XML namespace prefix. Any name will do but through out this reference
documentation, gfe will be used.

② The XML namespace prefix is mapped to the URI.

③ The XML namespace URI location. Note that even though the location points to an external
address (which does exist and is valid), Spring will resolve the schema locally as it is included in
the Spring Data Geode library.

④ Example declaration using the XML namespace with the gfe prefix.

10

NOTE

It is possible to change the default namespace from beans to gfe. This is useful for
XML configuration composed mainly of Geode components as it avoids declaring
the prefix. To achieve this, simply swap the namespace prefix declaration above:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/geode" ①
 xmlns:beans="http://www.springframework.org/schema/beans" ②
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/geode
http://www.springframework.org/schema/gemfire/spring-geode.xsd">

 <beans:bean id ... > ③

 <cache ...> ④

</beans>

① The default namespace declaration for this XML document points to the Spring
Data Geode XML namespace.

② The beans namespace prefix declaration for Spring’s raw bean definitions.

③ Bean declaration using the beans namespace. Notice the prefix.

④ Bean declaration using the gfe namespace. Notice the lack of prefix since gfe is
the default namespace.

5.3. Using the Data Access Namespace
In addition to the core XML namespace (gfe), Spring Data Geode provides a gfe-data XML
namespace primarily intended to simplify the development of Apache Geode client applications.
This namespace currently contains support for Geode Repositories and function execution as well
as includes a <datasource> tag that offers a convenient way to connect to the Apache Geode data
grid.

5.3.1. An Easy Way to Connect to Geode

For many applications, a basic connection to a Geode data grid using default values is sufficient.
Spring Data Geode’s <datasource> tag provides a simple way to access data. The data source creates
a ClientCache and connection Pool. In addition, it will query the cluster servers for all existing root
Regions and create an (empty) client Region proxy for each one.

<gfe-data:datasource>
 <locator host="remotehost" port="1234"/>
</gfe-data:datasource>

11

The <datasource> tag is syntactically similar to <gfe:pool>. It may be configured with one or more
nested locator or server tags to connect to an existing data grid. Additionally, all attributes available
to configure a Pool are supported. This configuration will automatically create client Region beans
for each Region defined on cluster members connected to the Locator, so they may be seamlessly
referenced by Spring Data mapping annotations, GemfireTemplate, and wired into application
classes.

Of course, you can explicitly configure client Regions. For example, if you want to cache data in
local memory:

<gfe-data:datasource>
 <locator host="remotehost" port="1234"/>
</gfe-data:datasource>

<gfe:client-region id="Example" shortcut="CACHING_PROXY"/>

5.4. Configuring a Cache
To use Apache Geode, a developer needs to either create a new Cache or connect to an existing one.
With the current version of Geode, there can be only one open Cache per VM (technically, per
ClassLoader). In most cases, the Cache should only be created once.

NOTE

This section describes the creation and configuration of a peer cache member,
appropriate in peer-to-peer (P2P) topologies and cache servers. A cache member
can also be used in standalone applications and integration tests. However, in most
typical production systems, most application processes will act as cache clients,
creating a ClientCache instance instead. This is described in the sections Configuring
a Geode ClientCache and Client Region.

A peer cache with default configuration can be created with a very simple declaration:

<gfe:cache/>

During Spring container initialization, any application context containing this cache definition will
register a CacheFactoryBean that creates a Spring bean named gemfireCache referencing a Geode
Cache instance. This bean will refer to either an existing cache, or if one does not already exist, a
newly created one. Since no additional properties were specified, a newly created cache will apply
the default cache configuration.

All Spring Data Geode components that depend on the cache respect this naming convention, so
there is no need to explicitly declare the cache dependency. If you prefer, you can make the
dependency explicit via the cache-ref attribute provided by various SDG XML namespace elements.
Also, you can easily override the cache’s bean name using the id attribute:

<gfe:cache id="myCache"/>

12

A Geode Cache can be fully configured using Spring, however, Geode’s native XML configuration
file, cache.xml, is also supported. For situations where the Geode cache needs to be configured
natively, simply provide a reference to the Geode XML configuration file using the cache-xml-
location attribute:

<gfe:cache id="cacheConfiguredWithNativeXml" cache-xml-location="classpath:cache.xml
"/>

In this example, if a cache needs to be created, it will use a file named cache.xml located in the
classpath root to configure it.

NOTE
The configuration makes use of Spring’s Resource abstraction to locate the file. This
allows various search patterns to be used, depending on the runtime environment
or the prefix specified (if any) in the resource location.

In addition to referencing an external XML configuration file, a developer may also specify Geode
System properties using any of Spring’s Properties support features.

For example, the developer may use the properties element defined in the util namespace to
define Properties directly or load properties from a properties file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:gfe="http://www.springframework.org/schema/geode"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/geode
http://www.springframework.org/schema/gemfire/spring-geode.xsd
 http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd">

 <util:properties id="gemfireProperties" location="file:/path/to/gemfire.properties
"/>

 <gfe:cache properties-ref="gemfireProperties"/>

</beans>

Using a properties file is recommended for externalizing environment specific settings outside the
application configuration.

NOTE
Cache settings apply only if a new cache needs to be created. If an open cache
already exists in the VM, these settings are ignored.

13

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#resources
http://geode.apache.org/docs/guide/11/reference/topics/gemfire_properties.html

5.4.1. Advanced Cache Configuration

For advanced cache configuration, the cache element provides a number of configuration options
exposed as attributes or child elements:

①
<gfe:cache
 cache-xml-location=".."
 properties-ref=".."
 close="false"
 copy-on-read="true"
 critical-heap-percentage="90"
 eviction-heap-percentage="70"
 enable-auto-reconnect="false" ②
 lock-lease="120"
 lock-timeout="60"
 message-sync-interval="1"
 pdx-serializer-ref="myPdxSerializer"
 pdx-persistent="true"
 pdx-disk-store="diskStore"
 pdx-read-serialized="false"
 pdx-ignore-unread-fields="true"
 search-timeout="300"
 use-bean-factory-locator="true" ③
 use-cluster-configuration="false" ④
>

 <gfe:transaction-listener ref="myTransactionListener"/> ⑤

 <gfe:transaction-writer> ⑥
 <bean class="org.example.app.geode.transaction.TransactionWriter"/>
 </gfe:transaction-writer>

 <gfe:gateway-conflict-resolver ref="myGatewayConflictResolver"/> ⑦

 <gfe:dynamic-region-factory/> ⑧

 <gfe:jndi-binding jndi-name="myDataSource" type="ManagedDataSource"/> ⑨

</gfe:cache>

① Various cache options are supported by attributes. For further information regarding anything
shown in this example, please consult the Geode product documentation. The close attribute
determines whether the cache should be closed when the Spring application context is closed.
The default is true, however, for use cases in which multiple application contexts use the cache
(common in web applications), set this value to false.

② Setting the enable-auto-reconnect attribute to true (default is false), allows a disconnected Geode
member to automatically reconnect and rejoin the Geode cluster. See the Geode product
documentation for more details.

14

http://geode.apache.org/docs/
http://geode.apache.org/docs/guide/11/managing/autoreconnect/member-reconnect.html
http://geode.apache.org/docs/guide/11/managing/autoreconnect/member-reconnect.html

③ Setting the use-bean-factory-locator attribute to true (defaults to false) is only applicable when
both Spring (XML) configuration meta-data and Geode cache.xml is used to configure the Geode
cache node (whether client or peer). This option allows Geode components (e.g. CacheLoader)
expressed in cache.xml to be auto-wired with beans (e.g. DataSource) defined in the Spring
application context. This option is typically used in conjunction with cache-xml-location.

④ Setting the use-cluster-configuration attribute to true (default is false) enables a Geode
member to retrieve the common, shared Cluster-based configuration from a Locator. See the
Geode product documentation for more details.

⑤ Example of a TransactionListener callback declaration using a bean reference. The referenced
bean must implement TransactionListener. A TransactionListener can be implemented to handle
transaction related events (e.g. afterCommit, afterRollback).

⑥ Example of a TransactionWriter callback declaration using an inner bean declaration. The bean
must implement TransactionWriter. The TransactionWriter is a callback that is allowed to veto a
transaction.

⑦ Example of a GatewayConflictResolver callback declaration using a bean reference. The
referenced bean must implement http://geode.apache.org/releases/latest/javadoc/org/apache/
geode/cache/util/GatewayConflictResolver.html [GatewayConflictResolver]. A
GatewayConflictResolver is a Cache-level plugin that is called upon to decide what to do with
events that originate in other systems and arrive through the WAN Gateway.

⑧ Enable Geode’s DynamicRegionFactory, which provides a distributed Region creation service.

⑨ Declares a JNDI binding to enlist an external DataSource in a Geode transaction.

Enabling PDX Serialization

The example above includes a number of attributes related to Geode’s enhanced serialization
framework, PDX. While a complete discussion of PDX is beyond the scope of this reference guide, it
is important to note that PDX is enabled by registering a PdxSerializer which is specified via the
pdx-serializer attribute. Geode provides an implementing class
org.apache.geode.pdx.ReflectionBasedAutoSerializer that uses Java Reflection, however, it is
common for developers to provide their own implementation. The value of the attribute is simply a
reference to a Spring bean that implements the PdxSerializer interface.

More information on serialization support can be found in Working with Apache Geode
Serialization

Enabling auto-reconnect

Setting the <gfe:cache enable-auto-reconnect="[true|false*]> attribute to true should be done with
care.

Generally, 'auto-reconnect' should only be enabled in cases where Spring Data Geode’s XML
namespace is used to configure and bootstrap a new, non-application Geode Server to add to a
cluster. In other words, 'auto-reconnect' should not be enabled when Spring Data Geode is used to
develop and build an Geode application that also happens to be a peer cache member of the Geode
cluster.

The main reason for this is that most Geode applications use references to the Geode cache or

15

http://geode.apache.org/docs/guide/11/configuring/cluster_config/gfsh_persist.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/TransactionListener.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/TransactionWriter.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/util/GatewayConflictResolver.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/util/GatewayConflictResolver.html
http://geode.apache.org/docs/guide/11/developing/region_options/dynamic_region_creation.html

Regions in order to perform data access operations. These references are "injected" by the Spring
container into application components (e.g. DAOs or Repositories) for use by the application. When
a peer member is forcefully disconnected from the rest of the cluster, presumably because the peer
member has become unresponsive or a network partition separates one or more peer members
into a group too small to function as an independent distributed system, the peer member will
shutdown and all Geode component references (e.g. Cache, Regions, etc) become invalid.

Essentially, the current forced-disconnect processing logic in each peer member dismantles the
system from the ground up. The JGroups stack shuts down, the Distributed System is put in a
shutdown state and finally, the Cache is closed. Effectively, all memory references become stale and
are lost.

After being disconnected from the Distributed System a peer member enters a "reconnecting" state
and periodically attempts to rejoin the Distributed System. If the peer member succeeds in
reconnecting, the member rebuilds its "view" of the Distributed System from existing members and
receives a new Distributed System ID. Additionally, all Cache, Regions and other Geode components
are reconstructed. Therefore, all old references, which may have been injected into application by
the Spring container are now stale and no longer valid.

Geode makes no guarantee, even when using the Geode public Java API, that application Cache,
Region or other component references will be automatically refreshed by the reconnect operation.
As such, Geode applications must take care to refresh their own references.

Unfortunately, there is no way to be notified of a disconnect event, and subsequently, a reconnect
event. If that were the case, the application developer would have a clean way to know when to call
ConfigurableApplicationContext.refresh(), if even applicable for an application to do so, which is
why this "feature" of Apache Geode is not recommended for peer cache Geode applications.

For more information about 'auto-reconnect', see Geode’s product documentation.

Using Cluster-based Configuration

Apache Geode’s Cluster Configuration Service is a convenient way for any peer member joining the
cluster to get a "consistent view" of the cluster by using the shared, persistent configuration
maintained by a Locator. Using the Cluster-based Configuration ensures the peer member’s
configuration will be compatible with the Geode Distributed System when the member joins.

This feature of Spring Data Geode (setting the use-cluster-configuration attribute to true) works in
the same way as the cache-xml-location attribute, except the source of the Geode configuration
meta-data comes from the network via a Locator as opposed to a native cache.xml file residing in
the local file system.

All Geode native configuration meta-data, whether from cache.xml or from the Cluster
Configuration Service, gets applied before any Spring (XML) configuration meta-data. As such,
Spring’s config serves to "augment" the native Geode configuration meta-data and would most
likely be specific to the application.

Again, to enable this feature, just specify the following in the Spring XML config:

16

http://geode.apache.org/docs/guide/11/managing/autoreconnect/member-reconnect.html

 <gfe:cache use-cluster-configuration="true"/>

NOTE

While certain Geode tools, like Gfsh, have their actions "recorded" when schema-
like changes are made (e.g. gfsh>create region --name=Example --type=PARTITION),
Spring Data Geode’s configuration meta-data is not recorded. The same is true when
using Geode’s public Java API directly; it too is not recorded.

For more information on Geode’s Cluster Configuration Service, see the product documentation.

5.4.2. Configuring a Geode CacheServer

Spring Data Geode includes dedicated support for configuring a CacheServer, allowing complete
configuration through the Spring container:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:gfe="http://www.springframework.org/schema/geode"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/geode
http://www.springframework.org/schema/geode/spring-geode.xsd
">

 <gfe:cache/>

 <!-- Example depicting serveral Geode CacheServer configuration options -->
 <gfe:cache-server id="advanced-config" auto-startup="true"
 bind-address="localhost" host-name-for-clients="localhost" port=
"${geode.cache.server.port}"
 load-poll-interval="2000" max-connections="22" max-message-count="1000" max-
threads="16"
 max-time-between-pings="30000" groups="test-server">

 <gfe:subscription-config eviction-type="ENTRY" capacity="1000" disk-store=
"file://${java.io.tmpdir}"/>

 </gfe:cache-server>

 <context:property-placeholder location="classpath:cache-server.properties"/>

</beans>

The configuration above illustrates the cache-server element and the many options available.

17

http://geode.apache.org/docs/guide/11/configuring/cluster_config/gfsh_persist.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/server/CacheServer.html

NOTE

Rather than hard-coding the port, this configuration uses Spring’s context
namespace to declare a property-placeholder. property placeholder reads one or
more properties files and then replaces property placeholders with values at
runtime. This allows administrators to change values without having to touch the
main application configuration. Spring also provides the SpEL and the environment
abstraction to support externalization of environment-specific properties from the
main codebase, easing deployment across multiple machines.

NOTE

To avoid initialization problems, the CacheServer started by Spring Data Geode will
start after the Spring container has been fully initialized. This allows potential
Regions, Listeners, Writers or Instantiators defined declaratively to be fully
initialized and registered before the server starts accepting connections. Keep this
in mind when programmatically configuring these elements as the server might
start after your components and thus not be seen by the clients connecting right
away.

5.4.3. Configuring a Geode ClientCache

In addition to defining a Geode peer Cache, Spring Data Geode also supports the definition of a
Geode ClientCache in a Spring context. A ClientCache definition is very similar in configuration and
use to the Geode peer Cache and is supported by the
org.springframework.data.gemfire.client.ClientCacheFactoryBean.

The simplest definition of a Geode cache client using default configuration can be accomplished
with the following declaration:

<beans>
 <gfe:client-cache/>
</beans>

client-cache supports many of the same options as the cache element. However, as opposed to a
full-fledged peer cache member, a cache client connects to a remote cache server through a Pool.
By default, a Pool is created to connect to a server running on localhost, listening to port 40404. The
default Pool is used by all client Regions unless the Region is configured to use a specific Pool.

Pools can be defined with the pool element. This client-side Pool can be used to configure
connectivity directly to a server for individual entities or the entire cache through one or more
Locators.

For example, to customize the default Pool used by the client-cache, the developer needs to define
a Pool and wire it to the cache definition:

18

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#xsd-config-body-schemas-context
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-factory-placeholderconfigurer
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#expressions
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-environment
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-environment
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Cache.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientCache.html

<beans>
 <gfe:client-cache id="my-cache" pool-name="myPool"/>

 <gfe:pool id="myPool" subscription-enabled="true">
 <gfe:locator host="${geode.locator.host}" port="${geode.locator.port}"/>
 </gfe:pool>
</beans>

The <client-cache> element also has a ready-for-events attribute. If set to true, the client cache
initialization will include a call to ClientCache.readyForEvents().

Client-side configuration is covered in more detail in Client Region.

Geode’s DEFAULT Pool and Spring Data Geode Pool Definitions

If a Geode ClientCache is local-only, then no Pool definition is required. For instance, a developer
may define:

<gfe:client-cache/>

<gfe:client-region id="Example" shortcut="LOCAL"/>

In this case, the "Example" Region is LOCAL and no data is distributed between the client and a
server, therefore, no Pool is necessary. This is true for any client-side, local-only Region, as defined
by the Geode’s ClientRegionShortcut (all LOCAL_* shortcuts).

However, if a client Region is a (caching) proxy to a server-side Region, then a Pool is required.
There are several ways to define and use a Pool in this case.

When a client cache, Pool and proxy-based Region are all defined, but not explicitly identified,
Spring Data Geode will resolve the references automatically for you.

For example:

<gfe:client-cache/>

<gfe:pool>
 <gfe:locator host="${geode.locator.host}" port="${geode.locator.port}"/>
</gfe:pool>

<gfe:client-region id="Example" shortcut="PROXY"/>

In the example above, the client cache is identified as gemfireCache, the Pool as gemfirePool and the
client Region as "Example". However, the client cache will initialize Geode’s DEFAULT Pool from
gemfirePool and the client Region will use the gemfirePool when distributing data between the client
and the server.

19

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientCache.html#readyForEvents--
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/client/ClientRegionShortcut.html

Basically, Spring Data Geode resolves the above configuration to the following:

<gfe:client-cache id="gemfireCache" pool-name="gemfirePool"/>

<gfe:pool id="gemfirePool">
 <gfe:locator host="${geode.locator.host}" port="${geode.locator.port}"/>
</gfe:pool>

<gfe:client-region id="Example" cache-ref="gemfireCache" pool-name="gemfirePool"
shortcut="PROXY"/>

Geode still creates a Pool called "DEFAULT". Spring Data Geode will just cause the "DEFAULT" Pool to
be initialized from the gemfirePool. This is useful in situations where multiple Pools are defined and
client Regions are using separate Pools.

Consider the following:

<gfe:client-cache pool-name="locatorPool"/>

<gfe:pool id="locatorPool">
 <gfe:locator host="${geode.locator.host}" port="${geode.locator.port}"/>
</gfe:pool>

<gfe:pool id="serverPool">
 <gfe:server host="${geode.server.host}" port="${geode.server.port}"/>
</gfe:pool>

<gfe:client-region id="Example" pool-name="serverPool" shortcut="PROXY"/>

<gfe:client-region id="AnotherExample" shortcut="CACHING_PROXY"/>

<gfe:client-region id="YetAnotherExample" shortcut="LOCAL"/>

In this setup, the Geode client cache’s "DEFAULT" Pool is initialized from "locatorPool" as specified
with the pool-name attribute. There is no Spring Data Geode-defined gemfirePool since both Pools
were explicitly identified (named) "locatorPool" and "serverPool", respectively.

The "Example" Region explicitly refers to and uses the "serverPool" exclusively. The
"AnotherExample" Region uses Geode’s "DEFAULT" Pool, which was configured from the
"locatorPool" based on the client cache bean definition’s pool-name attribute.

Finally, the "YetAnotherExample" Region will not use a Pool since it is LOCAL.

NOTE
The "AnotherExample" Region would first look for a Pool bean named gemfirePool,
but that would require the definition of an anonymous Pool bean (i.e. <gfe:pool/>)
or a Pool bean explicitly named gemfirePool (e.g. <gfe:pool id="gemfirePool"/>).

20

NOTE
We could have either named "locatorPool", "gemfirePool", or made the Pool bean
definition anonymous and it would have the same effect as the above configuration.

5.5. Configuring a Region
A Region is required to store and retrieve data from the cache. org.apache.geode.cache.Region is an
interface extending java.util.Map and enables basic data access using familiar key-value semantics.
The Region interface is wired into application classes that require it so the actual Region type is
decoupled from the programming model. Typically, each Region is associated with one domain
object, similar to a table in a relational database.

Geode implements the following types of Regions:

• REPLICATE - Data is replicated across all cache members that define the Region. This provides
very high read performance but writes take longer to perform the replication.

• PARTITION - Data is partitioned into buckets (sharded) among cache members that define the
Region. This provides high read and write performance and is suitable for large data sets that
are too big for a single node.

• LOCAL - Data only exists on the local node.

• Client - Technically, a client Region is a LOCAL Region that acts as a PROXY to a REPLICATE or
PARTITION Region hosted on cache servers in a cluster. It may hold data created or fetched
locally. Alternately, it can be empty. Local updates are synchronized to the cache server. Also, a
client Region may subscribe to events in order to stay up-to-date (synchronized) with changes
originating from remote processes that access the same server Region.

For more information about the various Region types and their capabilities as well as configuration
options, please refer to Apache Geode’s documentation on Region Types.

5.5.1. Using an externally configured Region

To reference Regions already configured in a Geode native cache.xml file, use the lookup-region
element. Simply declare the target Region name with the name attribute. For example, to declare a
bean definition identified as ordersRegion for an existing Region named Orders, you can use the
following bean definition:

<gfe:lookup-region id="ordersRegion" name="Orders"/>

If name is not specified, the bean’s id will be used as the name of the Region. The example above
becomes:

<!-- lookup for a Region called 'Orders' -->
<gfe:lookup-region id="Orders"/>

21

http://geode.apache.org/docs/guide/11/developing/region_options/region_types.html

CAUTION
If the Region does not exist, an initialization exception will be thrown. To
configure new Regions, proceed to the appropriate sections below.

In the previous examples, since no cache name was explicitly defined, the default naming
convention (gemfireCache) was used. Alternately, one can reference the cache bean with the cache-
ref attribute:

<gfe:cache id="myCache"/>
<gfe:lookup-region id="ordersRegion" name="Orders" cache-ref="myCache"/>

lookup-region provides a simple way of retrieving existing, pre-configured Regions without
exposing the Region semantics or setup infrastructure.

5.5.2. Auto Region Lookup

"auto-lookup" allows all Regions defined in a Geode native cache.xml file to be imported into a
Spring application context when using the`cache-xml-location` attribute on the <gfe:cache>
element.

For instance, given a cache.xml file of…

<?xml version="1.0" encoding="UTF-8"?>
<cache xmlns="http://geode.apache.org/schema/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://geode.apache.org/schema/cache
http://geode.apache.org/schema/cache/cache-1.0.xsd"
 version="1.0">

 <region name="Parent" refid="REPLICATE">
 <region name="Child" refid="REPLICATE"/>
 </region>

</cache>

A developer may import the cache.xml file as follows…

<gfe:cache cache-xml-location="cache.xml"/>

The developer may then use the <gfe:lookup-region> element (e.g. <gfe:lookup-region

id="Parent"/>) to reference specific Regions as beans in the Spring context, or the user may choose
to import all Regions defined in cache.xml with:

<gfe:auto-region-lookup/>

Spring Data Geode will automatically create beans for all Geode Regions defined in cache.xml that

22

have not been explicitly added to the Spring context with explicit <gfe:lookup-region> bean
declarations.

It is important to realize that Spring Data Geode uses a Spring BeanPostProcessor to post process the
cache after it is both created and initialized to determine the Regions defined in Geode to add as
beans in the Spring application context.

You may inject these "auto-looked-up" Regions like any other bean defined in the Spring application
context with 1 exception; you may need to define a depends-on association with the ‘gemfireCache’
bean as follows…

package example;

import ...

@Repository("appDao")
@DependsOn("gemfireCache")
public class ApplicationDao extends DaoSupport {

 @Resource(name = "Parent")
 private Region<?, ?> parent;

 @Resource(name = "/Parent/Child")
 private Region<?, ?> child;

 ...
}

The example above is applicable when using Spring’s component-scan functionality.

If you are declaring your components using Spring XML config, then you would do…

<bean class="example.ApplicationDao" depends-on="gemfireCache"/>

This ensures the Geode cache and all the Regions defined in cache.xml get created before any
components with auto-wire references when using the new <gfe:auto-region-lookup> element.

5.5.3. Configuring Regions

Spring Data Geode provides comprehensive support for configuring any type of Region via the
following elements:

• LOCAL Region: <local-region>

• PARTITION Region: <partitioned-region>

• REPLICATE Region: <replicated-region>

• Client Region: <client-region>

23

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/beans/factory/config/BeanPostProcessor.html

Please see the Apache Geode documentation for a comprehensive description of Region Types.

Common Region Attributes

The following table lists attributes available for all Region types:

Table 1. Common Region Attributes

Name Values Description

cache-ref Geode Cache bean reference The name of the bean defining the
Geode Cache (by default
'gemfireCache').

cloning-enabled boolean, default:false When true, the updates are applied to
a clone of the value and then the clone
is saved to the cache. When false, the
value is modified in place in the cache.

close boolean, default:false Determines whether the Region
should be closed at shutdown.

concurrency-
checks-enabled

boolean, default:true Determines whether members
perform checks to provide consistent
handling for concurrent or out-of-
order updates to distributed Regions.

data-policy See Geode’s Data Policy The Region’s Data Policy. Note, not all
Data Policies are supported for every
Region type.

destroy boolean, default:false Determines whether the Region
should be destroyed at shutdown.

disk-store-ref The name of a configured Disk Store. A reference to a bean created via the
disk-store element.

disk-synchronous boolean, default:true Determines whether Disk Store writes
are synchronous.

id Any valid bean name. Will be the Region name by default if
no name attribute is specified.

ignore-if-exists boolean, default:false Ignores this bean definition if the
Region already exists in the cache,
resulting in a lookup instead.

ignore-jta boolean, default:false Determines whether this Region will
participate in JTA transactions.

index-update-type synchronous or asynchronous,
default:synchronous

Determines whether Indices will be
updated synchronously or
asynchronously on entry creation.

initial-capacity integer, default:16 The initial memory allocation for the
number of Region entries.

key-constraint Any valid, fully-qualified Java class
name.

Expected key type.

24

http://geode.apache.org/docs/guide/11/developing/region_options/region_types.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/DataPolicy.html

Name Values Description

load-factor float, default:.75 Sets the initial parameters on the
underlying
java.util.ConcurrentHashMap used for
storing Region entries.

name Any valid Region name. The name of the Region. If not
specified, it will assume the value of
the id attribute (a.k.a. bean name).

persistent *boolean, default:false Determines whether the Region will
persist entries to local disk (Disk
Store).

shortcut See http://geode.apache.org/releases/
latest/javadoc/org/apache/geode/cache/
RegionShortcut.html

The RegionShortcut for this Region.
Allows easy initialization of the Region
based on pre-defined defaults.

statistics boolean, default:false Determines whether the Region
reports statistics.

template The name of a Region Template. A reference to a bean created via one
of the *region-template elements.

value-constraint Any valid, fully-qualified Java class
name.

Expected value type.

CacheListeners

CacheListeners are registered with a Region to handle Region events such as when entries are
created, updated, destroyed and so on. A CacheListener can be any bean that implements the
CacheListener interface. A Region may have multiple listeners, declared using the cache-listener
element nested in the containing *-region element.

In the example below, there are two CacheListener’s declared. The first references a named, top-
level Spring bean; the second is an anonymous inner bean definition.

<gfe:replicated-region id="regionWithListeners">
 <gfe:cache-listener>
 <!-- nested CacheListener bean reference -->
 <ref bean="myListener"/>
 <!-- nested CacheListener bean definition -->
 <bean class="org.example.app.geode.cache.AnotherSimpleCacheListener"/>
 </gfe:cache-listener>

 <bean id="myListener" class="org.example.app.geode.cache.SimpleCacheListener"/>
</gfe:replicated-region>

The following example uses an alternate form of the cache-listener element with the ref attribute.
This allows for more concise configuration when defining a single CacheListener. Note, the
namespace only allows a single cache-listener element so either the style above or below must be
used.

25

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheListener.html

WARNING
Using ref and a nested declaration in the cache-listener element is illegal. The
two options are mutually exclusive and using both in the same element will
result in an exception.

<beans>
 <gfe:replicated-region id="exampleReplicateRegionWithCacheListener">
 <gfe:cache-listener ref="myListener"/>
 </gfe:replicated-region>

 <bean id="myListener" class="example.CacheListener"/>
</beans>

NOTE

Bean Reference Conventions

The cache-listener element is an example of a common pattern used in the
namespace anywhere Geode provides a callback interface to be implemented in
order to invoke custom code in response to Cache or Region events. Using Spring’s
IoC container, the implementation is a standard Spring bean. In order to simplify
the configuration, the schema allows a single occurrence of the cache-listener
element, but it may contain nested bean references and inner bean definitions in
any combination if multiple instances are permitted. The convention is to use the
singular form (i.e., cache-listener vs cache-listeners) reflecting that the most
common scenario will in fact be a single instance. We have already seen examples
of this pattern in the advanced cache configuration example.

CacheLoaders and CacheWriters

Similar to cache-listener, the namespace provides cache-loader and cache-writer elements to
register these Geode components respectively for a Region.

A CacheLoader is invoked on a cache miss to allow an entry to be loaded from an external data
source, such as a database. A CacheWriter is invoked before an entry is created or updated, intended
for synchronizing to an external data source. The difference is Geode only supports at most a single
instance CacheLoader and CacheWriter per Region. However, either declaration style may be used.

Example:

26

<beans>
 <gfe:replicated-region id="exampleReplicateRegionWithCacheLoaderAndCacheWriter">
 <gfe:cache-loader ref="myLoader"/>
 <gfe:cache-writer>
 <bean class="example.CacheWriter"/>
 </gfe:cache-writer>
 </gfe:replicated-region>

 <bean id="myLoader" class="example.CacheLoader">
 <property name="dataSource" ref="mySqlDataSource"/>
 </bean>

 <!-- DataSource bean definition -->
</beans>

See CacheLoader and CacheWriter in the Apache Geode documentation for more details.

5.5.4. Compression

Geode Regions may also be compressed in order to reduce JVM memory consumption and pressure
to possibly avoid stop the world GCs. When you enable compression for a Region, all values stored
in the Region, in-memory are compressed while keys and indexes remain uncompressed. New
values are compressed when put into Region and all values are decompressed automatically when
read back from the Region. Values are not compressed when persisted to disk or when sent over the
wire to other peer members or clients.

Example:

<beans>
 <gfe:replicated-region id="exampleReplicateRegionWithCompression">
 <gfe:compressor>
 <bean class="org.apache.geode.compression.SnappyCompressor"/>
 </gfe:compressor>
 </gfe:replicated-region>
</beans>

Please refer to Apache Geode’s documentation for more information on Region Compression.

5.5.5. Subregions

Spring Data Geode also supports Subregions, allowing Regions to be arranged in a hierarchical
relationship.

For example, Geode allows for a /Customer/Address Region and a different /Employee/Address
Region. Additionally, a Subregion may have it’s own Subregions and its own configuration. A
Subregion does not inherit attributes from the parent Region. Regions types may be mixed and
matched subject to Geode constraints. A Subregion is naturally declared as a child element of a
Region. The Subregion’s name attribute is the simple name. The above example might be

27

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheLoader.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheWriter.html
http://gemfire.docs.pivotal.io/geode/managing/region_compression/region_compression.html

configured as:

<beans>
 <gfe:replicated-region name="Customer">
 <gfe:replicated-region name="Address"/>
 </gfe:replicated-region>

 <gfe:replicated-region name="Employee">
 <gfe:replicated-region name="Address"/>
 </gfe:replicated-region>
</beans>

Note that the Monospaced ([id]) attribute is not permitted for a Subregion. The Subregions will be
created with bean names /Customer/Address and /Employee/Address, respectively. So they may
be injected using the full path name into other application beans that need them, such as
GemfireTemplate. The full path should also be used in OQL query strings.

5.5.6. Region Templates

Spring Data Geode also supports Region Templates. This feature allows developers to define
common Region configuration settings and attributes once and reuse the configuration among
many Region bean definitions declared in the Spring application context.

Spring Data Geode includes 5 Region template tags in namespace:

Table 2. Region Template Tags

Tag Name Description

<gfe:region-template> Defines common, generic Region attributes; extends regionType
in the namespace.

<gfe:local-region-template> Defines common, 'Local' Region attributes; extends
localRegionType in the namespace.

<gfe:partitioned-region-
template>

Defines common, 'PARTITION' Region attributes; extends
partitionedRegionType in the namespace.

<gfe:replicated-region-
template>

Defines common, 'REPLICATE' Region attributes; extends
replicatedRegionType in the namespace.

<gfe:client-region-template> Defines common, 'Client' Region attributes; extends
clientRegionType in the namespace.

In addition to the tags, concrete <gfe:*-region> elements along with the abstract <gfe:*-region-
template> elements have a template attribute used to define the Region Template from which the
Region will inherit its configuration. Region Templates may even inherit from other Region
Templates.

Here is an example of 1 possible configuration…

28

<beans>
 <gfe:async-event-queue id="AEQ" persistent="false" parallel="false" dispatcher-
threads="4">
 <gfe:async-event-listener>
 <bean class="example.AeqListener"/>
 </gfe:async-event-listener>
 </gfe:async-event-queue>

 <gfe:region-template id="BaseRegionTemplate" initial-capacity="51" load-factor="
0.85" persistent="false" statistics="true"
 key-constraint="java.lang.Long" value-constraint="java.lang.String">
 <gfe:cache-listener>
 <bean class="example.CacheListenerOne"/>
 <bean class="example.CacheListenerTwo"/>
 </gfe:cache-listener>
 <gfe:entry-ttl timeout="600" action="DESTROY"/>
 <gfe:entry-tti timeout="300 action="INVLIDATE"/>
 </gfe:region-template>

 <gfe:region-template id="ExtendedRegionTemplate" template="BaseRegionTemplate" load-
factor="0.55">
 <gfe:cache-loader>
 <bean class="example.CacheLoader"/>
 </gfe:cache-loader>
 <gfe:cache-writer>
 <bean class="example.CacheWriter"/>
 </gfe:cache-writer>
 <gfe:async-event-queue-ref bean="AEQ"/>
 </gfe:region-template>

 <gfe:partitioned-region-template id="PartitionRegionTemplate" template=
"ExtendedRegionTemplate"
 copies="1" load-factor="0.70" local-max-memory="1024" total-max-memory="16384"
value-constraint="java.lang.Object">
 <gfe:partition-resolver>
 <bean class="example.PartitionResolver"/>
 </gfe:partition-resolver>
 <gfe:eviction type="ENTRY_COUNT" threshold="8192000" action="OVERFLOW_TO_DISK"/>
 </gfe:partitioned-region-template>

 <gfe:partitioned-region id="TemplateBasedPartitionRegion" template=
"PartitionRegionTemplate"
 copies="2" local-max-memory="8192" persistent="true" total-buckets="91"/>
</beans>

Region Templates work for Subregions as well. Notice that 'TemplateBasedPartitionRegion' extends
'PartitionRegionTemplate', which extends 'ExtendedRegionTemplate' that extends
'BaseRegionTemplate'. Attributes and sub-elements defined in subsequent, inherited Region bean
definitions override what is in the parent.

29

How Templating Works

Spring Data Geode applies Region Templates when the Spring application context configuration
meta-data is parsed, and therefore, must be declared in the order of inheritance. In other words,
parent templates must be defined before children. This ensures the proper configuration is applied,
especially when element attributes or sub-elements are "overridden".

IMPORTANT

It is equally important to remember the Region types must only inherit from
other similar typed Regions. For instance, it is not possible for a
<gfe:replicated-region> to inherit from a <gfe:partitioned-region-

template>.

NOTE Region Templates are single-inheritance.

Caution concerning Regions, Subregions and Lookups

Previously, one of the underlying properties of the replicated-region, partitioned-region, local-
region and client-region elements in the Spring Data Geode XML namespace was to perform a
lookup first before attempting to create a Region. This was done in case the Region already existed,
which would be the case if the Region was defined in an imported Geode native cache.xml
configuration file. Therefore, the lookup was performed first to avoid any errors. This was by
design and subject to change.

This behavior has been altered and the default behavior is now to create the Region first. If the
Region already exists, then the creation logic fails-fast and an appropriate exception is thrown.
However, much like the CREATE TABLE IF NOT EXISTS … DDL syntax, the Spring Data Geode <*-
region> namespace elements now includes a ignore-if-exists attribute, which re-instates the old
behavior by performing a lookup of an existing Region identified by name, first. If an existing
Region by name is found and ignore-if-exists is set to true, then the Region bean definition
defined in Spring config is ignored.

WARNING

The Spring team highly recommends that the replicated-region, partitioned-
region, local-region and client-region namespace elements be strictly used for
defining new Regions only. One problem that could arise if the Regions defined
by these elements already existed and the Region elements performed a
lookup first is if the developer defined different Region semantics and
behaviors for eviction, expiration, subscription, etc in his/her application
config, then the Region definition may not match and could exhibit contrary
behaviors to those required by the application. Even worse, the application
developer may want to define the Region as a distributed Region (e.g.
PARTITION) but in fact the existing Region definition is LOCAL.

IMPORTANT
Recommended Practice - Only use replicated-region, partitioned-region,
local-region and client-region namespace elements to define new Regions.

Consider the following native Geode cache.xml configuration file…

30

<?xml version="1.0" encoding="UTF-8"?>
<cache xmlns="http://geode.apache.org/schema/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://geode.apache.org/schema/cache
http://geode.apache.org/schema/cache/cache-1.0.xsd"
 version="1.0">

 <region name="Customers" refid="REPLICATE">
 <region name="Accounts" refid="REPLICATE">
 <region name="Orders" refid="REPLICATE">
 <region name="Items" refid="REPLICATE"/>
 </region>
 </region>
 </region>

</cache>

Also consider that you may have defined an application DAO as follows…

public class CustomerAccountDao extends GemDaoSupport {

 @Resource(name = "Customers/Accounts")
 private Region customersAccounts;

 ...
}

Here, we are injecting a reference to the Customers/Accounts Region in our application DAO. As such,
it is not uncommon for a developer to define beans for all or even some of these Regions in Spring
XML configuration meta-data as follows…

31

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/geode
http://www.springframework.org/schema/gemfire/spring-geode.xsd
">

 <gfe:cache cache-xml-location="classpath:cache.xml"/>

 <gfe:lookup-region name="Customers/Accounts"/>
 <gfe:lookup-region name="Customers/Accounts/Orders"/>

</beans>

The Customers/Accounts and Customers/Accounts/Orders Regions are referenced as beans in the
Spring application context as "Customers/Accounts" and "Customers/Accounts/Orders", respectively.
The nice thing about using the lookup-region element and the corresponding syntax above is that it
allows a developer to reference a Subregion directly without unnecessarily defining a bean for the
parent Region (i.e. Customers).

However, if now the developer changes his/her configuration meta-data syntax to using the nested
format, like so…

<gfe:lookup-region name="Customers">
 <gfe:lookup-region name="Accounts">
 <gfe:lookup-region name="Orders"/>
 </gfe:lookup-region>
</gfe:lookup-region>

Or, perhaps the developer erroneously chooses to use the top-level replicated-region element along
with the ignore-if-exists attribute set to perform a lookup first, as in…

<gfe:replicated-region name="Customers" persistent="true" ignore-if-exists="true">
 <gfe:replicated-region name="Accounts" persistent="true" ignore-if-exists="true">
 <gfe:replicated-region name="Orders" persistent="true" ignore-if-exists="true"/>
 </gfe:replicated-region>
</gfe:replicated-region>

Then the Region beans defined in the Spring application context will consist of the following: {
"Customers", "/Customers/Accounts", "/Customers/Accounts/Orders" }. This means the dependency
injected reference above (i.e. @Resource(name = "Customers/Accounts")) is now broken since no bean
with name "Customers/Accounts" is actually defined.

32

Geode is flexible in referencing both parent Regions and Subregions with or without the leading
forward slash. For example, the parent can be referenced as "/Customers" or "Customers" and the
child as "/Customers/Accounts" or just "Customers/Accounts". However, _Spring Data _Geode is very
specific when it comes to naming beans after Regions, typically always using the forward slash (/) to
represent Subregions (e.g. "/Customers/Accounts").

Therefore, it is recommended that users either use the nested lookup-region syntax as shown above,
or define direct references with a leading forward slash (/) like so…

<gfe:lookup-region name="/Customers/Accounts"/>
<gfe:lookup-region name="/Customers/Accounts/Orders"/>

The example above where the nested replicated-region elements were used to reference the
Subregions serves to illustrate the problem stated earlier. Are the Customers, Accounts and Orders
Regions/Subregions persistent or not? Not, since the Regions were defined in the native Geode
cache.xml configuration file as REPLICATES and will exist by the time the cache is initialized, or once
the <gfe:cache> bean is processed.

5.5.7. Data Eviction (with Overflow)

Based on various constraints, each Region can have an eviction policy in place for evicting data
from memory. Currently, in Geode, eviction applies to the Least Recently Used entry (also known as
LRU). Evicted entries are either destroyed or paged to disk (referred to as overflow to disk).

Spring Data Geode supports all eviction policies (entry count, memory and heap usage) for
PARTITION Regions, REPLICATE Regions and client, local Regions using the nested eviction
element.

For example, to configure a PARTITION Region to overflow to disk if the memory size exceeds more
than 512 MB, a developer would specify the following configuration:

<gfe:partitioned-region id="examplePartitionRegionWithEviction">
 <gfe:eviction type="MEMORY_SIZE" threshold="512" action="OVERFLOW_TO_DISK"/>
</gfe:partitioned-region>

IMPORTANT
Replicas cannot use local destroy eviction since that would invalidate them.
See the Geode docs for more information.

When configuring Regions for overflow, it is recommended to configure the storage through the
disk-store element for maximum efficiency.

For a detailed description of eviction policies, please refer to the Geode documentation on Eviction.

5.5.8. Data Expiration

Apache Geode allows you to control how long entries exist in the cache. Expiration is driven by
elapsed time, as opposed to Eviction, which is driven by the entry count or heap/memory usage.

33

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
http://geode.apache.org/docs/guide/11/developing/eviction/chapter_overview.html

Once an entry expires it may no longer be accessed from the cache.

Geode supports the following Expiration types:

• Time-to-Live (TTL) - The amount of time in seconds that an object may remain in the cache
after the last creation or update. For entries, the counter is set to zero for create and put
operations. Region counters are reset when the Region is created and when an entry has its
counter reset.

• Idle Timeout (TTI) - The amount of time in seconds that an object may remain in the cache
after the last access. The Idle Timeout counter for an object is reset any time its TTL counter is
reset. In addition, an entry’s Idle Timeout counter is reset any time the entry is accessed through
a get operation or a netSearch. The Idle Timeout counter for a Region is reset whenever the Idle
Timeout is reset for one of its entries.

Each of these may be applied to the Region itself or entries in the Region. Spring Data Geode
provides <region-ttl>, <region-tti>, <entry-ttl> and <entry-tti> Region child elements to specify
timeout values and expiration actions.

For example:

<gfe:partitioned-region id="examplePartitionRegionWithExpiration">
 <gfe:region-ttl timeout="30000" action="INVALIDATE"/>
 <gfe:entry-tti timeout="600" action="LOCAL_DESTROY"/>
</gfe:replicated-region>

For a detailed description of expiration policies, please refer to the Geode documentation on
Expiration.

Annotation-based Data Expiration

With Spring Data Geode, a developer has the ability to define Expiration policies and settings on
individual Region Entry values, or rather, application domain objects directly. For instance, a
developer might define Expiration settings on a Session-based application domain object like so…

@Expiration(timeout = "1800", action = "INVALIDATE")
public class SessionBasedApplicationDomainObject {
 ...
}

In addition, a developer may also specify Expiration type specific settings on Region Entries using
@IdleTimeoutExpiration and @TimeToLiveExpiration annotations for Idle Timeout (TTI) and Time-to-
Live (TTL) Expiration, respectively…

34

http://geode.apache.org/docs/guide/11/developing/expiration/chapter_overview.html

@TimeToLiveExpiration(timeout = "3600", action = "LOCAL_DESTROY")
@IdleTimeoutExpiration(timeout = "1800", action = "LOCAL_INVALIDATE")
@Expiration(timeout = "1800", action = "INVALIDATE")
public class AnotherSessionBasedApplicationDomainObject {
 ...
}

Both @IdleTimeoutExpiration and @TimeToLiveExpiration take precedence over the generic
@Expiration annotation when more than one Expiration annotation type is specified, as shown
above. Though, neither @IdleTimeoutExpiration nor @TimeToLiveExpiration overrides the other;
rather they may compliment each other when different Region Entry Expiration types, such as TTL
and TTI, are configured.

NOTE

All @Expiration-based annotations apply only to Region Entry values. Expiration for
a "Region" is not covered by Spring Data Geode’s Expiration annotation support.
However, Apache Geode and Spring Data Geode do allow you to set Region
Expiration using the SDG XML namespace, like so…

<gfe:*-region id="Example" persistent="false">
 <gfe:region-ttl timeout="600" action="DESTROY"/>
 <gfe:region-tti timeout="300" action="INVALIDATE"/>
</gfe:*-region>

Spring Data Geode’s @Expiration annotation support is implemented with Geode’s CustomExpiry
interface. Refer to Geode’s documentation on Configuring Data Expiration for more details

The Spring Data Geode AnnotationBasedExpiration class (and CustomExpiry implementation) is
responsible for processing the SDG @Expiration annotations and applying the Expiration policy and
settings appropriately for Region Entry Expiration on request.

To use Spring Data Geode to configure specific Geode Regions to appropriately apply the Expiration
policy and settings applied to your application domain objects annotated with @Expiration-based
annotations, you must…

1. Define a bean in the Spring ApplicationContext of type AnnotationBasedExpiration using the
appropriate constructor or one of the convenient factory methods. When configuring
Expiration for a specific Expiration type, such as Idle Timeout or Time-to-Live, then you should
use one of the factory methods in the AnnotationBasedExpiration class, like so…

<bean id="ttlExpiration" class=
"org.springframework.data.gemfire.expiration.AnnotationBasedExpiration"
 factory-method="forTimeToLive"/>

<gfe:partitioned-region id="Example" persistent="false">
 <gfe:custom-entry-ttl ref="ttlExpiration"/>
</gfe:partitioned-region>

35

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CustomExpiry.html
http://geode.apache.org/docs/guide/11/developing/expiration/configuring_data_expiration.html

NOTE
To configure Idle Timeout (TTI) Expiration instead, then you would of course use
the forIdleTimeout factory method along with the <gfe:custom-entry-tti

ref="ttiExpiration"/> element to set TTI.

2. (optional) Annotate your application domain objects that will be stored in the Region with
Expiration policies and custom settings using one of Spring Data Geode’s @Expiration

annotations: @Expiration, @IdleTimeoutExpiration and/or @TimeToLiveExpiration

3. (optional) In cases where particular application domain objects have not been annotated with
Spring Data Geode’s @Expiration annotations at all, but the Geode Region is configured to use
SDG’s custom AnnotationBasedExpiration class to determine the Expiration policy and settings
for objects stored in the Region, then it is possible to set "default" Expiration attributes on the
AnnotationBasedExpiration bean by doing the following…

<bean id="defaultExpirationAttributes" class=
"org.apache.geode.cache.ExpirationAttributes">
 <constructor-arg value="600"/>
 <constructor-arg value="#{T(org.apache.geode.cache.ExpirationAction).DESTROY}"/>
</bean>

<bean id="ttiExpiration" class=
"org.springframework.data.gemfire.expiration.AnnotationBasedExpiration"
 factory-method="forIdleTimeout">
 <constructor-arg ref="defaultExpirationAttributes"/>
</bean>

<gfe:partitioned-region id="Example" persistent="false">
 <gfe:custom-entry-tti ref="ttiExpiration"/>
</gfe:partitioned-region>

You may have noticed that Spring Data Geode’s @Expiration annotations use a String as the
attributes type rather than, and perhaps more appropriately, being strongly typed, i.e. int for
'timeout' and SDG’S ExpirationActionType for 'action'. Why is that?

Well, enter one of Spring Data Geode’s other features, leveraging Spring’s core infrastructure for
configuration convenience: Property Placeholders and Spring Expression Language (SpEL).

For instance, a developer can specify both the Expiration 'timeout' and 'action' using Property
Placeholders in the @Expiration annotation attributes…

@TimeToLiveExpiration(timeout = "${geode.region.entry.expiration.ttl.timeout}"
 action = "${geode.region.entry.expiration.ttl.action}")
public class ExampleApplicationDomainObject {
 ...
}

Then, in your Spring XML config or in JavaConfig, you would declare the following beans…

36

<util:properties id="expirationSettings">
 <prop key="geode.region.entry.expiration.ttl.timeout">600</prop>
 <prop key="geode.region.entry.expiration.ttl.action">INVALIDATE</prop>
 ...
</util:properties>

<context:property-placeholder properties-ref="expirationProperties"/>

This is both convenient when multiple application domain objects might share similar Expiration
policies and settings, or when you wish to externalize the configuration.

However, a developer may want more dynamic Expiration configuration determined by the state of
the running system. This is where the power of SpEL comes in and is the recommended approach,
actually. Not only can you refer to beans in the Spring context and access bean properties, invoke
methods, etc, the values for Expiration 'timeout' and 'action' can be strongly typed. For example
(building on the example above)…

<util:properties id="expirationSettings">
 <prop key="geode.region.entry.expiration.ttl.timeout">600</prop>
 <prop key="geode.region.entry.expiration.ttl.action"
>#{T(org.springframework.data.gemfire.expiration.ExpirationActionType).DESTROY}</prop>
 <prop key="geode.region.entry.expiration.tti.action"
>#{T(org.apache.geode.cache.ExpirationAction).INVALIDATE}</prop>
 ...
</util:properties>

<context:property-placeholder properties-ref="expirationProperties"/>

Then, on your application domain object…

@TimeToLiveExpiration(timeout =
"@expirationSettings['geode.region.entry.expiration.ttl.timeout']"
 action = "@expirationSetting['geode.region.entry.expiration.ttl.action']")
public class ExampleApplicationDomainObject {
 ...
}

You can imagine that the 'expirationSettings' bean could be a more interesting and useful object
rather than a simple instance of java.util.Properties. In this example, even the Properties
(expirationSettings) uses SpEL to base the action value on the actual Expiration action enumerated
type leading to more quickly identified failures if the types ever change.

All of this has been demonstrated and tested in the Spring Data Geode test suite, by way of example.
See the source for further details.

37

https://github.com/spring-projects/spring-data-geode

5.5.9. Data Persistence

Regions can be persistent. Geode ensures that all the data you put into a Region that is configured
for persistence will be written to disk in a way that is recoverable the next time you recreate the
Region. This allows data to be recovered after machine or process failure, or even after an orderly
shutdown and subsequent restart of the Geode data node.

To enable persistence with Spring Data Geode, simply set the persistent attribute to true on any of
the <*-region> elements. For example…

<gfe:partitioned-region id="examplePersitentPartitionRegion" persistent="true"/>

Persistence may also be configured using the data-policy attribute; set the attribute’s value to one
of Geode’s DataPolicy settings. For example…

<gfe:partitioned-region id="anotherExamplePersistentPartitionRegion" data-policy=
"PERSISTENT_PARTITION"/>

The DataPolicy must match the Region type and must also agree with the persistent attribute if also
explicitly set. An initialization exception will be thrown if the persistent attribute is set to false yet
a persistent DataPolicy was specified (e.g. PERSISTENT_REPLICATE, PERSISTENT_PARTITION).

When persisting Regions, it is recommended to configure the storage through the disk-store
element for maximum efficiency. The DiskStore is referenced using the disk-store-ref attribute.
Additionally, the Region may perform disk writes synchronously or asynchronously:

<gfe:partitioned-region id="yetAnotherExamplePersistentPartitionRegion" persistent=
"true"
 disk-store-ref="myDiskStore" disk-synchronous="true"/>

This is discussed further in Configuring a DiskStore

5.5.10. Subscription Policy

Geode allows configuration of peer-to-peer (P2P) event messaging to control the entry events that
the Region will receive. Spring Data Geode provides the <gfe:subscription/> sub-element to set the
subscription policy on REPLICATE and PARTITION Regions to either ALL or CACHE_CONTENT.

<gfe:partitioned-region id="examplePartitionRegionWithCustomSubscription">
 <gfe:subscription type="CACHE_CONTENT"/>
</gfe:partitioned-region>

5.5.11. Local Region

Spring Data Geode offers a dedicated local-region element for creating local Regions. Local Regions,

38

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/DataPolicy.html
http://geode.apache.org/docs/guide/11/developing/events/configure_p2p_event_messaging.html

as the name implies, are standalone, meaning they do not share data with any other distributed
system member. Other than that, all common Region configuration options apply.

A minimal declaration looks as follows (again, the example relies on the Spring Data Geode
namespace naming conventions to wire the cache):

<gfe:local-region id="exampleLocalRegion"/>

Here, a local Region is created (if one doesn’t exist already). The name of the Region is the same as
the bean id (exampleLocalRegion) and the bean assumes the existence of a Geode cache named
gemfireCache.

5.5.12. Replicated Region

One of the common Region types is a REPLICATE Region or replica. In short, when a Region is
configured to be a REPLICATE, every member that hosts the Region stores a copy of the Region’s
entries locally. Any update to a REPLICATE Region is distributed to all copies of the Region. When a
replica is created, it goes through an initialization stage in which it discovers other replicas and
automatically copies all the entries. While one replica is initializing you can still continue to use the
other replica.

Spring Data Geode offers a replicated-region element. A minimal declaration looks as follows. All
common configuration options are available for REPLICATE Regions.

<gfe:replicated-region id="exampleReplica"/>

Refer to Geode’s documentation on Distributed and Replicated Regions for more details.

5.5.13. Partitioned Region

Another Region type supported out-of-the-box by the Spring Data Geode namespace is the
PARTITION Region.

To quote the Geode docs:

"A partitioned region is a region where data is divided between peer servers hosting the region so
that each peer stores a subset of the data. When using a partitioned region, applications are
presented with a logical view of the region that looks like a single map containing all of the data in
the region. Reads or writes to this map are transparently routed to the peer that hosts the entry that
is the target of the operation. Geode divides the domain of hashcodes into buckets. Each bucket is
assigned to a specific peer, but may be relocated at any time to another peer in order to improve
the utilization of resources across the cluster."

A partition is created using the partitioned-region element. Its configuration options are similar to
that of the replicated-region plus the partition specific features such as the number of redundant
copies, total maximum memory, number of buckets, partition resolver and so on.

Below is a quick example on setting up a PARTITION Region with 2 redundant copies:

39

http://geode.apache.org/docs/guide/11/developing/distributed_regions/chapter_overview.html

<gfe:partitioned-region id="examplePartitionRegion" copies="2" total-buckets="17">
 <gfe:partition-resolver>
 <bean class="example.PartitionResolver"/>
 </gfe:partition-resolver>
</gfe:partitioned-region>

Refer to Geode’s documentation on Partitioned Regions for more details.

Partitioned Region Attributes

The following table offers a quick overview of configuration options specific to PARTITION Regions.
These are in addition to the common Region configuration options described above.

Table 3. partitioned-region attributes

Name Values Description

copies 0..4 The number of copies for each
partition for high-availability. By
default, no copies are created meaning
there is no redundancy. Each copy
provides extra backup at the expense
of extra storage.

colocated-with valid region name The name of the PARTITION Region
with which this newly created
PARTITION Region is collocated.

local-max-memory positive integer The maximum amount of memory in
megabytes used by the Region in this
process.

total-max-memory any integer value The maximum amount of memory in
megabytes used by the Region in all
processes.

partition-listener bean name The name of the PartitionListener
used by this Region, for handling
partition events.

partition-resolver bean name The name of the PartitionResolver
used by this Region, for custom
partitioning.

recovery-delay any long value The delay in milliseconds that existing
members will wait before satisfying
redundancy after another member
crashes. -1 (the default) indicates that
redundancy will not be recovered
after a failure.

40

http://geode.apache.org/docs/guide/11/developing/partitioned_regions/chapter_overview.html

Name Values Description

startup-recovery-
delay

any long value The delay in milliseconds that new
members will wait before satisfying
redundancy. -1 indicates that adding
new members will not trigger
redundancy recovery. The default is to
recover redundancy immediately
when a new member is added.

5.5.14. Client Region

Apache Geode supports various deployment topologies for managing and distributing data. Geode
topologies is outside the scope of this documentation. However, to quickly recap, Geode’s supported
topologies can be classified in short as: peer-to-peer (p2p), client-server, and wide area network
(WAN). In the last two configurations, it is common to declare client Regions which connect to a
cache server.

Spring Data Geode offers dedicated support for such configuration through client-cache, client-
region and pool elements. As the names imply, the former defines a client Region while the latter
defines a Pool of connections to be used/shared by the various client Regions.

Below is a typical client Region configuration:

<bean id="myListener" class="example.CacheListener"/>

<!-- client Region using the default SDG gemfirePool Pool -->
<gfe:client-region id="Example">
 <gfe:cache-listener ref="myListener"/>
</gfe:client-region>

<!-- client Region using its own dedicated Pool -->
<gfe:client-region id="AnotherExample" pool-name="myPool">
 <gfe:cache-listener ref="myListener"/>
</gfe:client-region>

<!-- Pool definition -->
<gfe:pool id="myPool" subscription-enabled="true">
 <gfe:locator host="remoteHost" port="12345"/>
</gfe:pool>

As with the other Region types, client-region supports CacheListener``s as well as a CacheLoader
and CacheWriter. It also requires a connection Pool for connecting to either a set of Locators or
Servers. Each client Region can have its own Pool or they can share the same one.

41

NOTE

In the above example, the Pool is configured with locator. A Locator is a separate
process used to discover cache servers and peer data members in the distributed
system and are recommended for production systems. It is also possible to
configure the Pool to connect directly to one or more cache servers using the server
element.

For a full list of options to set on the client and especially on the Pool, please refer to the Spring Data
Geode schema (Spring Data Geode Schema) and Geode’s documentation on Client/Server
Configuration.

Client Interests

To minimize network traffic, each client can separately define its own 'interests' policies, indicating
to Geode the data it actually requires. In Spring Data Geode, 'interests' can be defined for each client
Region separately. Both Key-based and Regular Expression-based interest types are supported.

For example:

<gfe:client-region id="Example" pool-name="myPool">
 <gfe:key-interest durable="true" result-policy="KEYS">
 <bean id="key" class="java.lang.String">
 <constructor-arg value="someKey"/>
 </bean>
 </gfe:key-interest>
 <gfe:regex-interest pattern=".*" receive-values="false"/>
</gfe:client-region>

A special key, ALL_KEYS, means 'interest' is registered for all keys. The same can be accomplished
using a regex of ".*".

The <gfe:*-interest> Key and Regular Expression elements support 3 attributes: durable, receive-
values and result-policy.

durable indicates whether the 'interest' policy and subscription queue created for the client when
the client connects to 1 or more servers in the cluster is maintained across client sessions. If the
client goes away and comes back, a "durable" subscription queue on the server(s) for the client is
maintained while the client is disconnected, and when the client reconnects, the client will receive
any events that occurred while the client was disconnected from the servers(s) in the cluster.

A subscription queue on the servers in the cluster is maintained for each Pool of connections
defined in the client where subscription has also been "enabled" for that Pool. The subscription
queue is used to store, and possibly conflate, events sent to the client. If the subscription queue is
durable, it persists between client sessions (i.e. connections), potentially up to a specified timeout (if
the client does not return within a given time frame in order to reduce resource consumption on
servers in the cluster). If the subscription queue is not "durable", then it will be destroyed when the
client disconnects. All you need to decide is, for your application use case, is it important for the
cache client to receive events while it is disconnected, or is it only important for the application
(cache client) to receive the "latest" events after it reconnects.

42

http://geode.apache.org/docs/guide/11/topologies_and_comm/cs_configuration/chapter_overview.html
http://geode.apache.org/docs/guide/11/topologies_and_comm/cs_configuration/chapter_overview.html

The receive-values attribute indicates whether or not the entry values are received for create and
update events. If true, values are received; if false, only invalidation events are received.

And finally, the 'result-policy` is an enumeration of: KEYS, KEYS_VALUE and NONE. The default is
KEYS_VALUES. The result-policy controls the initial dump when the client first connects to initialize
the local cache, essentially seeding the client with events for all the entries that match the interest
policy.

Client-side interests registration does not do much good without enabling subscription on the Pool
as mentioned above. In fact, it is an error to attempt interests registration without subscription
enabled. To do so, you simply…

<gfe:pool ... subscription-enabled="true">
 ...
</gfe:pool>

In addition to subscription-enabled, can you also set subscription-ack-interval, subscription-
message-tracking-timeout and subscription-redundancy. subscription-redundancy is used to control
how many copies of the subscription queue should be maintained by the servers in the cluster. If
redundancy is greater than 1, and the "primary" subscription queue (i.e. server) goes down, then a
"secondary" subscription queue will take over, keeping the client from missing events in a HA
scenario.

In addition to the Pool settings, the server-side Regions use an additional attribute, enable-
subscription-conflation, to control the conflation of events that will be sent to the clients. This can
also help further minimize network traffic and is useful in situations where the application only
cares about the latest value of an entry. However, in cases where the application is keeping a time
series of events that occurred, conflation is going to hinder that use case. The default value is false.
An example Region configuration on the server for which the client contains a corresponding client
[CACHING_]PROXY Region with interests in Keys in this server Region, would look like…

<gfe:partitioned-region name="ServerSideRegion" enable-subscription-conflation="true">
 ...
</gfe:partitioned-region>

To control the amount of time in seconds that "durable" subscription queue is maintained after a
client is disconnected from the server(s) in the cluster, set the durable-client-timeout attribute on
the <gfe:client-cache> element like so…

<gfe:client-cache durable-client-timeout="600">
 ...
</gfe:client-cache>

A full, in-depth discussion of how client interests work and capabilities is beyond the scope of this
document.

43

Please refer to Apache Geode’s documentation on Client-to-Server Event Distribution for more
details.

5.5.15. JSON Support

Apache Geode has support for caching JSON documents in Regions along with the ability to query
stored JSON documents using the Geode OQL. JSON documents are stored internally as PdxInstance
types using the JSONFormatter class to perform conversion to and from JSON documents (as a
String).

Spring Data Geode provides the <gfe-data:json-region-autoproxy/> element to enable a AOP, Spring
component to advise appropriate, proxied Region operations, which effectively encapsulates the
JSONFormatter, thereby allowing your applications to work directly with JSON Strings.

In addition, Java objects written to JSON configured Regions will be automatically converted to
JSON using Jackson’s ObjectMapper. Reading these values back will be returned as a JSON String.

By default, <gfe-data:json-region-autoproxy/> performs the conversion for all Regions. To apply
this feature to selected Regions, provide a comma delimited list of Region bean ids via the region-
refs attribute. Other attributes include a pretty-print flag (defaults to false) and convert-returned-
collections.

Also by default, the results of the getAll() and values() Region operations will be converted for
configured Regions. This is done by creating a parallel data structure in local memory. This can
incur significant overhead for large collections, so set the convert-returned-collections to false if
you would like to disable automatic conversion for these Region operations.

NOTE

Certain Region operations, specifically those that use Geode’s proprietary
Region.Entry such as: entries(boolean), entrySet(boolean) and getEntry() type are
not targeted for AOP advice. In addition, the entrySet() method which returns a
Set<java.util.Map.Entry<?, ?>> is also not affected.

Example configuration:

<gfe-data:json-region-autoproxy region-refs="myJsonRegion" pretty-print="true"
convert-returned-collections="false"/>

This feature also works seamlessly with GemfireTemplate operations, provided that the template is
declared as a Spring bean. Currently, the native QueryService operations are not supported.

5.6. Configuring an Index
Apache Geode allows Indexes (or Indices) to be created on Region data to improve the performance
of OQL queries.

In Spring Data Geode (SDG), Indexes are declared with the index element:

44

http://gemfire.docs.pivotal.io/geode/developing/events/how_client_server_distribution_works.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/PdxInstance.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/JSONFormatter.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#aop-introduction
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#aop-introduction

<gfe:index id="myIndex" expression="someField" from="/SomeRegion" type="HASH"/>

In Spring Data Geode’s XML schema (a.k.a. SDG namespace), Index bean declarations are not bound
to a Region, unlike Geode’s native cache.xml. Rather, they are top-level elements just like
<gfe:cache>. This allows a developer to declare any number of Indexes on any Region whether they
were just created or already exist, a significant improvement over Geode’s native cache.xml format.

An Index must have a name. A developer may give the Index an explicit name using the name
attribute, otherwise the bean name (i.e. value of the id attribute) of the Index bean definition is used
as the Index name.

The expression and from clause form the main components of an Index, identifying the data to index
(i.e. the Region identified in the from clause) along with what criteria (i.e. expression) is used to
index the data. The expression should be based on what application domain object fields are used in
the predicate of application-defined OQL queries used to query and lookup the objects stored in the
Region.

For example, if I have a Customer that has a lastName property…

@Region("Customers")
class Customer {

 @Id
 Long id;

 String lastName;
 String firstName;

 ...
}

And, I also have an application defined SD[G] Repository to query for Customers…

interface CustomerRepository extends GemfireRepository<Customer, Long> {

 Customer findByLastName(String lastName);

 ...
}

Then, the SD[G] Repository finder/query method would result in the following OQL statement being
executed…

SELECT * FROM /Customers c WHERE c.lastName = '$1'

Therefore, I might want to create an Index like so…

45

<gfe:index id="myIndex" name="CustomersLastNameIndex" expression="lastName" from=
"/Customers" type="HASH"/>

The from clause must refer to a valid, existing Region and is how an Index gets applied to a Region.
This is not Sprig Data Geode specific; this is a feature of Apache Geode.

The Index type maybe 1 of 3 enumerated values defined by Spring Data Geode’s IndexType
enumeration: FUNCTIONAL, HASH and PRIMARY_KEY.

Each of the enumerated values correspond to one of the QueryService create[|Key|Hash]Index
methods invoked when the actual Index is to be created (or "defined"; more on "defining" Indexes
below). For instance, if the IndexType is PRIMARY_KEY, then the QueryService.createKeyIndex(..) is
invoked to create a KEY Index.

The default is FUNCTIONAL and results in one of the QueryService.createIndex(..) methods being
invoked.

See the Spring Data Geode XML schema for a full set of options.

For more information on Indexing in Apache Geode, see Working with Indexes in Apache Geode’s
User Guide.

5.6.1. Defining Indexes

In addition to creating Indexes upfront as Index bean definitions are processed by Spring Data
Geode on Spring container initialization, you may also define all of your application Indexes prior
to creating them by using the define attribute, like so…

<gfe:index id="myDefinedIndex" expression="someField" from="/SomeRegion" define="true
"/>

When define is set to true (defaults to false), this will not actually create the Index right then and
there. All "defined" Indexes are created all at once, when the Spring ApplicationContext is
"refreshed", or, that is, when a ContextRefreshedEvent is published by the Spring container. Spring
Data Geode registers itself as an ApplicationListener listening for the ContextRefreshedEvent. When
fired, Spring Data Geode will call QueryService.createDefinedIndexes().

Defining Indexes and creating them all at once helps promote speed and efficiency when creating
Indexes.

See Creating Multiple Indexes at Once for more details.

5.6.2. IgnoreIfExists and Override

Two Spring Data Geode Index configuration options warrant special mention here: ignoreIfExists
and override.

These options correspond to the ignore-if-exists and override attributes on the <gfe:index>

46

http://docs.spring.io/spring-data-gemfire/docs/current/api/org/springframework/data/gemfire/IndexType.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/query/QueryService.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/query/QueryService.html#createKeyIndex-java.lang.String-java.lang.String-java.lang.String-
http://geode.apache.org/docs/guide/11/developing/query_index/query_index.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/query/QueryService.html#createDefinedIndexes--
http://geode.apache.org/docs/guide/11/developing/query_index/create_multiple_indexes.html

element in Spring Data Geode’s XML schema, respectively.

WARNING

Make sure you absolutely understand what you are doing before using either
of these options. These options can affect the performance and/or resources
(e.g. memory) consumed by your application at runtime. As such, both of these
options are disabled (i.e. set to false) in SDG by default.

NOTE
These options are only available in Spring Data Geode and exist to workaround
known limitations with Apache Geode; there are no equivalent options or
functionality available in Geode itself.

Each option significantly differs in behavior and entirely depends on the type of Geode Index
Exception thrown. This also means that neither option has any effect if a Geode Index-type
Exception is not thrown. These options are meant to specifically handle Geode
IndexExistsExceptions and IndexNameConflictExceptions, which can occur for various, sometimes
obscure reasons. But, in general…

• An IndexExistsException is thrown when there exists another Index with the same definition
but different name when attempting to create an Index.

• An IndexNameConflictException is thrown when there exists another Index with the same name
but possibly different definition when attempting to create an Index.

Spring Data Geode’s default behavior is to fail-fast, always! So, neither Index Exception will be
"handled" by default; these Index Exceptions are simply wrapped in a SDG GemfireIndexException
and rethrown. If you wish for Spring Data Geode to handle them for you, then you can set either of
these Index bean definition options.

IgnoreIfExists always takes precedence over Override, primarily because it uses less resources
given it returns the "existing" Index in both exceptional cases.

IgnoreIfExists Behavior

When an IndexExistsException is thrown and ignoreIfExists is set to true (or <gfe:index ignore-if-
exists="true">), then the Index that would have been created by this Index bean definition /
declaration will be "ignored", and the "existing" Index will be returned.

There is very little consequence in returning the "existing" Index since the Index "definition" is the
same, as deemed by Geode itself, not SDG.

However, this also means that no Index with the “name” specified in your Index bean definition /
declaration will "actually" exist from Geode’s perspective either (i.e. with
QueryService.getIndexes()). Therefore, you should be careful when writing OQL query statements
that use Query Hints, especially Hints that refer to the application Index being "ignored". Those
Query Hints will need to be changed.

Now, when an IndexNameConflictException is thrown and ignoreIfExists is set to true (or <gfe:index
ignore-if-exists="true">), then the Index that would have been created by this Index bean
definition / declaration will also be "ignored", and the "existing" Index will be returned, just like
when an IndexExistsException is thrown.

47

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/query/IndexExistsException.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/query/IndexNameConflictException.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/query/QueryService.html#getIndexes--

However, there is more risk in returning the "existing" Index and "ignoring" the application’s
definition of the Index when an IndexNameConflictException is thrown since, for a
IndexNameConflictException, while the "names" of the conflicting Indexes are the same, the
"definitions" could very well be different! This obviously could have implications for OQL queries
specific to the application, where you would presume the Indexes were defined specifically with
the application data access patterns and queries in mind. However, if like named Indexes differ in
definition, this might not be the case. So, make sure you verify.

NOTE

SDG makes a best effort to inform the user when the Index being ignored is
significantly different in its definition from the "existing" Index. However, in order
for SDG to accomplish this, it must be able to "find" the existing Index, which is
looked up using the Geode API (the only means available).

Override Behavior

When an IndexExistsException is thrown and override is set to true (or <gfe:index

override="true">), then the Index is effectively "renamed". Remember, IndexExistsExceptions are
thrown when multiple Indexes exist, all having the same "definition" but different "names".

Spring Data Geode can only accomplish this using Geode’s API, by first "removing" the "existing"
Index and then "recreating" the Index with the new name. It is possible that either the remove or
subsequent create invocation could fail. There is no way to execute both actions atomically and
rollback this joint operation if either fails.

However, if it succeeds, then you have the same problem as before with the "ignoreIfExists" option.
Any existing OQL query statement using "Query Hints" referring to the old Index by name must be
changed.

Now, when an IndexNameConflictException is thrown and override is set to true (or <gfe:index
override="true">), then potentially the "existing" Index will be "re-defined". I say "potentially",
because it is possible for the "like-named", "existing" Index to have exactly the same definition and
name when an IndexNameConflictException is thrown.

If so, SDG is smart and will just return the "existing" Index as is, even on override. There is no harm
in this since both the "name" and the "definition" are exactly the same. Of course, SDG can only
accomplish this when SDG is able to "find" the "existing" Index, which is dependent on Geode’s APIs.
If it cannot find it, nothing happens and a SDG GemfireIndexException is thrown wrapping the
IndexNameConflictException.

However, when the "definition" of the "existing" Index is different, then SDG will attempt to
"recreate" the Index using the Index definition specified in the Index bean definition /declaration.
Make sure this is what you want and make sure the Index definition matches your expectations and
application requirements.

How does IndexNameConflictExceptions actually happen?

It is probably not all that uncommon for IndexExistsExceptions to be thrown, especially when
multiple configuration sources are used to configure Geode (e.g. Spring Data Geode, Geode Cluster
Config, maybe Geode native cache.xml, the API, etc, etc). You should definitely prefer 1 configuration

48

method here and stick with it.

However, when does an IndexNameConflictException get thrown?

One particular case is an Index defined on a PARTITION Region (PR). When an Index is defined on a
PARTITION Region (e.g. "X"), Geode distributes the Index definition (and name) to other peer members
in the cluster that also host the same PARTITION Region (i.e. "X"). The distribution of this Index
definition to and subsequent creation of this Index by peer members on a "need-to-know" basis (i.e.
those hosting the same PR) is performed asynchronously.

During this window of time, it is possible that these "pending" PR Indexes will not be identifiable by
Geode, such as with a call to QueryService.getIndexes() or with QueryService.getIndexes(:Region).

As such, the only way for SDG or other Geode cache client applications (not involving Spring) to
know for sure, is to just attempt to create the Index. If it fails with either an
IndexNameConflictException, or even an IndexExistsException, then you will know. This is because
the QueryService Index creation waits on "pending" Index definitions, where as the other Geode API
calls do not.

In any case, SDG makes a best effort and attempts to inform the user what has or is happening
along with the corrective action. Given all Geode QueryService.createIndex(..) methods are
synchronous, "blocking" operations, then the state of Geode should be consistent and accessible
after either of these Index-type Exceptions are thrown, in which case, SDG can inspect the state of
the system and respond/act accordingly, based on the user’s desired configuration.

In all other cases, SDG will simply fail-fast!

5.7. Configuring a DiskStore
Spring Data Geode supports DiskStore configuration via the disk-store element.

For example:

<gfe:disk-store id="diskStore1" queue-size="50" auto-compact="true"
 max-oplog-size="10" time-interval="9999">
 <gfe:disk-dir location="/gemfire/store1/" max-size="20"/>
 <gfe:disk-dir location="/gemfire/store2/" max-size="20"/>
</gfe:disk-store>

DiskStores are used by Regions for file system persistent backup and overflow of evicted entries as
well as persistent backup of WAN Gateways. Multiple Geode components may share the same
DiskStore. Additionally, multiple file system directories may be defined for a single DiskStore.

Please refer to Apache Geode’s documentation for a complete explanation of the configuration
options.

49

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/query/QueryService.html#getIndexes--
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/query/QueryService.html#getIndexes-org.apache.geode.cache.Region-
http://geode.apache.org/docs/guide/11/developing/storing_data_on_disk/chapter_overview.html
http://geode.apache.org/docs/guide/11/developing/storing_data_on_disk/chapter_overview.html

5.8. Configuring the Snapshot Service
Spring Data Geode supports Cache and Region snapshots using Apache Geode’s Snapshot Service. The
out-of-the-box Snapshot Service support offers several convenient features to simplify the use of
Geode’s Cache and Region Snapshot Service APIs.

As the Apache Geode documentation describes, snapshots allow you to save and subsequently
reload the cached data later, which can be useful for moving data between environments, such as
from production to a staging or test environment in order to reproduce data-related issues in a
controlled context. You can imagine combining Spring Data Geode’s Snapshot Service support with
Spring’s bean definition profiles to load snapshot data specific to the environment as necessary.

Spring Data Geode’s support for Apache Geode’s Snapshot Service begins with the <gfe-

data:snapshot-service> element from the <gfe-data> namespace.

For example, I might want to define Cache-wide snapshots to be loaded as well as saved using a
couple snapshot imports and a data export definition as follows:

<gfe-data:snapshot-service id="gemfireCacheSnapshotService">
 <gfe-data:snapshot-import location=
"/absolute/filesystem/path/to/import/fileOne.snapshot"/>
 <gfe-data:snapshot-import location=
"relative/filesystem/path/to/import/fileTwo.snapshot"/>
 <gfe-data:snapshot-export
 location="/absolute/or/relative/filesystem/path/to/export/directory"/>
</gfe-data:snapshot-service>

You can define as many imports and/or exports as you like. You can define just imports or just
exports. The file locations and directory paths can be absolute, or relative to the Spring Data Geode
application, JVM process’s working directory.

This is a pretty simple example and the Snapshot Service defined in this case refers to the Geode
Cache with the default name of gemfireCache (as described in Configuring a Cache). If you name your
cache bean definition something other than the default, than you can use the cache-ref attribute to
refer to the cache bean by name:

<gfe:cache id="myCache"/>
...
<gfe-data:snapshot-service id="mySnapshotService" cache-ref="myCache">
 ...
</gfe-data:snapshot-service>

It is also straightforward to define a Snapshot Service for a particular Geode Region by specifying
the region-ref attribute:

50

http://geode.apache.org/docs/guide/11/managing/cache_snapshots/chapter_overview.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/snapshot/CacheSnapshotService.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/snapshot/RegionSnapshotService.html
http://geode.apache.org/docs/guide/11/managing/cache_snapshots/chapter_overview.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-definition-profiles

<gfe:partitioned-region id="Example" persistent="false" .../>
...
<gfe-data:snapshot-service id="gemfireCacheRegionSnapshotService" region-ref="Example
">
 <gfe-data:snapshot-import location="relative/path/to/import/example.snapshot/>
 <gfe-data:snapshot-export location="/absolute/path/to/export/example.snapshot/>
</gfe-data:snapshot-service>

When the region-ref attribute is specified, Spring Data Geode’s SnapshotServiceFactoryBean resolves
the region-ref attribute value to a Region bean defined in the Spring context and proceeds to create
a RegionSnapshotService. The snapshot import and export definitions function the same way,
however, the location must refer to a file on export.

NOTE
Geode is strict about imported snapshot files actually existing before they are
referenced. For exports, Geode will create the snapshot file if it does not already
exist. If the snapshot file for export already exists, the data will be overwritten.

TIP

Spring Data Geode includes a suppress-import-on-init attribute on the <gfe-

data:snapshot-service> element to suppress the configured Snapshot Service from
trying to import data into the Cache or Region on initialization. This is useful when
data exported from 1 Region is used to feed the import of another Region, for example.

5.8.1. Snapshot Location

For a Cache-based Snapshot Service (i.e. CacheSnapshotService) a developer would typically pass it a
directory containing all the snapshot files to load rather than individual snapshot files, as the
overloaded load method in the CacheSnapshotService API indicates.

NOTE
Of course, a developer may use the other, overloaded load(:File[],

:SnapshotFormat, :SnapshotOptions) method variant to get specific about which
snapshot files are to be loaded into the Geode Cache.

However, Spring Data Geode recognizes that a typical developer workflow might be to extract and
export data from one environment into several snapshot files, zip all of them up, and then
conveniently move the ZIP file to another environment for import.

Therefore, Spring Data Geode enables the developer to specify a JAR or ZIP file on import for a Cache
-based Snapshot Service as follows:

 <gfe-data:snapshot-service id="cacheBasedSnapshotService" cache-ref="gemfireCache">
 <gfe-data:snapshot-import location="/path/to/snapshots.zip"/>
 </gfe-data:snapshot-service>

Spring Data Geode will conveniently extract the provided ZIP file and treat it like a directory import
(load).

51

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/snapshot/RegionSnapshotService.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/snapshot/CacheSnapshotService.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/snapshot/CacheSnapshotService.html#load-java.io.File-org.apache.geode.cache.snapshot.SnapshotOptions.SnapshotFormat-

5.8.2. Snapshot Filters

The real power of defining multiple snapshot imports and exports is realized through the use of
snapshot filters. Snapshot filters implement Apache Geode’s SnapshotFilter interface and are used
to filter Region entries for inclusion into the Region on import and for inclusion into the snapshot
on export.

Spring Data Geode makes it brain dead simple to utilize snapshot filters on import and export using
the filter-ref attribute or an anonymous, nested bean definition:

<gfe:cache/>

<gfe:partitioned-region id="Admins" persistent="false"/>
<gfe:partitioned-region id="Guests" persistent="false"/>

<bean id="activeUsersFilter" class="example.geode.snapshot.filter.ActiveUsersFilter/>

<gfe-data:snapshot-service id="adminsSnapshotService" region-ref="Admins">
 <gfe-data:snapshot-import location="/path/to/import/users.snapshot">
 <bean class="example.geode.snapshot.filter.AdminsFilter/>
 </gfe-data:snapshot-import>
 <gfe-data:snapshot-export location="/path/to/export/active/admins.snapshot" filter-
ref="activeUsersFilter"/>
</gfe-data:snapshot-service>

<gfe-data:snapshot-service id="guestsSnapshotService" region-ref="Guests">
 <gfe-data:snapshot-import location="/path/to/import/users.snapshot">
 <bean class="example.geode.snapshot.filter.GuestsFilter/>
 </gfe-data:snapshot-import>
 <gfe-data:snapshot-export location="/path/to/export/active/guests.snapshot" filter-
ref="activeUsersFilter"/>
</gfe-data:snapshot-service>

In addition, more complex snapshot filters can be expressed with the ComposableSnapshotFilter
Spring Data Geode provided class. This class implements Geode’s SnapshotFilter interface as well as
the Composite software design pattern.

In a nutshell, the Composite software design pattern allows developers to compose multiple objects
of the same type and treat the aggregate as single instance of the object type, a very powerful and
useful abstraction.

ComposableSnapshotFilter has two factory methods, 'and' and 'or', allowing developers to logically
combine individual snapshot filters using the AND and OR logical operators, respectively. The
factory methods take a list of SnapshotFilters.

In this case, the developer is only limited by his/her imagination to leverage this powerful
construct.

For instance:

52

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/snapshot/SnapshotFilter.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/snapshot/SnapshotFilter.html
https://en.wikipedia.org/wiki/Composite_pattern
https://en.wikipedia.org/wiki/Composite_pattern

<bean id="activeUsersSinceFilter" class=
"org.springframework.data.gemfire.snapshot.filter.ComposableSnapshotFilter"
 factory-method="and">
 <constructor-arg index="0">
 <list>
 <bean class="org.example.app.gemfire.snapshot.filter.ActiveUsersFilter"/>
 <bean class="org.example.app.gemfire.snapshot.filter.UsersSinceFilter"
 p:since="2015-01-01"/>
 </list>
 </constructor-arg>
</bean>

The developer could then go onto combine the activesUsersSinceFilter with another filter using
'or' like so:

<bean id="covertOrActiveUsersSinceFilter" class=
"org.springframework.data.gemfire.snapshot.filter.ComposableSnapshotFilter"
 factory-method="or">
 <constructor-arg index="0">
 <list>
 <ref bean="activeUsersSinceFilter"/>
 <bean class="example.geode.snapshot.filter.CovertUsersFilter"/>
 </list>
 </constructor-arg>
</bean>

5.8.3. Snapshot Events

By default, Spring Data Geode uses Apache Geode’s Snapshot Services on startup to import data and
shutdown to export data. However, you may want to trigger periodic, event-based snapshots, for
either import or export from within your Spring application.

For this purpose, Spring Data Geode defines two additional Spring application events, extending
Spring’s ApplicationEvent class for imports and exports, respectively:
ImportSnapshotApplicationEvent and ExportSnapshotApplicationEvent.

The two application events can be targeted at the entire Geode Cache, or individual Geode Regions.
The constructors in these classes accept an optional Region pathname (e.g. "/Example") as well as 0
or more SnapshotMetadata instances.

The array of SnapshotMetadata is used to override the snapshot meta-data defined by <gfe-
data:snapshot-import> and <gfe-data:snapshot-export> sub-elements in XML, which will be used in
cases where snapshot application events do not explicitly provide SnapshotMetadata. Each individual
SnapshotMetadata instance can define it’s own location and filters properties.

Import/export snapshot application events are received by all snapshot service beans defined in the
Spring ApplicationContext. However, import/export events are only processed by "matching"
Snapshot Service beans.

53

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/ApplicationEvent.html

A Region-based [Import|Export]SnapshotApplicationEvent matches if the Snapshot Service bean
defined is a RegionSnapshotService and it’s Region reference (as determined by the region-ref
attribute) matches the Region’s pathname specified by the snapshot application event.

A Cache-based [Import|Export]SnapshotApplicationEvent (i.e. a snapshot application event without a
Region pathname) triggers all Snapshot Service beans, including any RegionSnapshotService beans,
to perform either an import or export, respectively.

It is very easy to use Spring’s ApplicationEventPublisher interface to fire import and/or export
snapshot application events from your application like so:

@Component
public class ExampleApplicationComponent {

 @Autowired
 private ApplicationEventPublisher eventPublisher;

 @Resource(name = "Example")
 private Region<?, ?> example;

 public void someMethod() {
 ...

 SnapshotFilter myFilter = ...;

 SnapshotMetadata exportSnapshotMetadata = new SnapshotMetadata(new File(System
.getProperty("user.dir"),
 "/path/to/export/data.snapshot"), myFilter, null);

 eventPublisher.publishEvent(new ExportSnapshotApplicationEvent(this, example
.getFullPath(), exportSnapshotMetadata);

 ...
 }
}

In this particular example, only the "/Example" Region’s Snapshot Service bean will pick up and
handle the export event, saving the filtered, "/Example" Region’s data to the "data.snapshot" file in a
sub-direcrtory of the application’s working directory.

Using Spring application events and messaging subsystem is a good way to keep your application
loosely coupled. It is also not difficult to imagine that the snapshot application events could be fired
on a periodic basis using Spring’s Scheduling services.

5.9. Configuring the Function Service
Spring Data Geode provides annotation support for implementing and registering Apache Geode
Functions.

54

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/ApplicationEventPublisher.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#scheduling-task-scheduler

Spring Data Geode also provides namespace support for registering Apache Geode Functions for
remote Function execution.

Please refer to Apache Geode' documentation for more information on the Function execution
framework.

Geode Functions are declared as Spring beans and must implement the
org.apache.geode.cache.execute.Function interface or extend
org.apache.geode.cache.execute.FunctionAdapter.

The namespace uses a familiar pattern to declare functions:

<gfe:function-service>
 <gfe:function>
 <bean class="example.FunctionOne"/>
 <ref bean="function2"/>
 </gfe:function>
</gfe:function-service>

<bean id="function2" class="example.FunctionTwo"/>

5.10. Configuring WAN Gateways
WAN Gateways provide a way to synchronize Apache Geode Distributed Systems across geographic
areas. Spring Data Geode provides namespace support for configuring WAN Gateways as illustrated
in the following examples.

5.10.1. WAN Configuration in GemFire 7.0

In the example below, GatewaySenders are configured for a PARTITION Region by adding child
elements to the Region (gateway-sender and gateway-sender-ref).

A GatewaySender may register EventFilters and TransportFilters. Also shown below is an example
configuration of an AsyncEventQueue which must also be wired into a Region (not shown).

55

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/execute/Function.html
http://geode.apache.org/docs/guide/11/developing/function_exec/chapter_overview.html

<gfe:partitioned-region id="region-with-inner-gateway-sender" >
 <gfe:gateway-sender remote-distributed-system-id="1">
 <gfe:event-filter>
 <bean class="org.springframework.data.gemfire.example.SomeEventFilter"/>
 </gfe:event-filter>
 <gfe:transport-filter>
 <bean class="org.springframework.data.gemfire.example.SomeTransportFilter
"/>
 </gfe:transport-filter>
 </gfe:gateway-sender>
 <gfe:gateway-sender-ref bean="gateway-sender"/>
</gfe:partitioned-region>

<gfe:async-event-queue id="async-event-queue" batch-size="10" persistent="true" disk-
store-ref="diskstore"
 maximum-queue-memory="50">
 <gfe:async-event-listener>
 <bean class="example.AsyncEventListener"/>
 </gfe:async-event-listener>
</gfe:async-event-queue>

<gfe:gateway-sender id="gateway-sender" remote-distributed-system-id="2">
 <gfe:event-filter>
 <ref bean="event-filter"/>
 <bean class="org.springframework.data.gemfire.example.SomeEventFilter"/>
 </gfe:event-filter>
 <gfe:transport-filter>
 <ref bean="transport-filter"/>
 <bean class="org.springframework.data.gemfire.example.SomeTransportFilter"/>
 </gfe:transport-filter>
</gfe:gateway-sender>

<bean id="event-filter" class=
"org.springframework.data.gemfire.example.AnotherEventFilter"/>
<bean id="transport-filter" class=
"org.springframework.data.gemfire.example.AnotherTransportFilter"/>

On the other end of a GatewaySender is a corresponding GatewayReceiver to receive Gateway events.
The GatewayReceiver may also be configured with EventFilters and TransportFilters.

<gfe:gateway-receiver id="gateway-receiver" start-port="12345" end-port="23456" bind-
address="192.168.0.1">
 <gfe:transport-filter>
 <bean class="org.springframework.data.gemfire.example.SomeTransportFilter"/>
 </gfe:transport-filter>
</gfe:gateway-receiver>

Please refer to the Apache Geode documentation for a detailed explanation of all the configuration

56

http://geode.apache.org/docs/guide/11/topologies_and_comm/multi_site_configuration/chapter_overview.html

options.

57

Chapter 6. Bootstrapping Apache Geode
using Spring Annotations
Spring Data Geode (SDG) 2.0 introduces a new Annotation-based configuration model to bootstrap
Apache Geode with the Spring container.

The primary motivation for introducing an Annotation-based approach to the configuration of
Apache Geode in a Spring context is to enable application developers to get up and running as
quickly and as easily as possible.

6.1. Introduction
Apache Geode can be very difficult to setup and use successfully given all the configuration
properties, configuration options (cache.xml, Gfsh + Cluster Configuration, Spring XML/Java-based
configuration) along with different supported topologies (client/server, P2P, WAN) and Distributed
System Design Patterns (e.g. shared-nothing architecture). The Annotation-based configuration
model aims to simplify all this plus more.

The Annotation-based configuration model is an alternative to XML-based configuration using
Spring Data Geode’s XML Namespace. With XML, an application developer would use the spring-
gemfire (gfe) schema for configuration and the spring-data-gemfire (gfe-data) schema for data
access related concerns. See Bootstrapping Apache Geode with the Spring Container for more
details.

NOTE
As of SDG 2.0, the new Annotation-based configuration model does not yet have
configuration support for Apache Geode’s WAN components and topology.

Like Spring Boot, Spring Data Geode’s Annotation-based configuration model was designed as an
opinionated, convention over configuration approach for using Apache Geode. Indeed, the
Annotation-based configuration model was inspired by Spring Boot as well as several other Spring
and Spring Data projects.

By following convention, all Annotations provide reasonable and sensible defaults for all the
attributes out-of-the-box. The default value for a given Annotation attribute directly corresponds to
the default value provided in Apache Geode for the same configuration property or setting.

The intention is to let an application developer enable an Apache Geode feature or an embedded
service by simply declaring the Annotation on his/her Spring @Configuration or
@SpringBootApplcation class without needing to unnecessarily configure a large number of
attributes or properties just to use the feature.

Again, getting up and running as quickly and as easily as possible is the primary objective.

However, the option to customize the configuration meta-data and behavior of Apache Geode is
there should an application developer need it and Spring Data Geode’s Annotation-based
configuration will quietly back away. The application developer simply just needs to specify the
configuration attributes s/he wishes to adjust. And, as we will see below, there are several ways to

58

http://geode.apache.org/docs/guide/12/reference/topics/gemfire_properties.html
http://geode.apache.org/docs/guide/12/reference/topics/gemfire_properties.html
http://geode.apache.org/docs/guide/12/reference/topics/chapter_overview_cache_xml.html
http://geode.apache.org/docs/guide/12/tools_modules/gfsh/chapter_overview.html
http://geode.apache.org/docs/guide/12/configuring/chapter_overview.html
http://geode.apache.org/docs/guide/12/topologies_and_comm/cs_configuration/chapter_overview.html
http://geode.apache.org/docs/guide/12/topologies_and_comm/p2p_configuration/chapter_overview.html
http://geode.apache.org/docs/guide/12/topologies_and_comm/multi_site_configuration/chapter_overview.html
https://cwiki.apache.org/confluence/display/GEODE/Geode+Internal+Architecture?src=contextnavpagetreemode
https://cwiki.apache.org/confluence/display/GEODE/Geode+Internal+Architecture?src=contextnavpagetreemode

configure an Apache Geode feature or embedded service using Annotations.

All the new SDG Annotations can be found in the
org.springframework.data.gemfire.config.annotation package.

6.2. Bootstrapping Apache Geode applications with
Spring
Like all Spring Boot applications that begin by annotating the application class with
@SpringBootApplication, a Spring Boot application can easily become an Apache Geode cache
application simply by declaring 1 of 3 main Annotations:

1. @ClientCacheApplication

2. @PeerCacheApplication

3. @CacheServerApplication

These 3 Annotations are the Spring/Apache Geode application developer’s starting point.

To realize the intent behind these Annotations, a user must understand that there are 2 types of
cache instances that can be created with Apache Geode: a client or a peer.

A Spring Boot application can be configured as an Apache Geode cache client (i.e. with an instance
of ClientCache), which communicates with an existing, standalone cluster of Apache Geode servers
used to manage the application’s data. The client/server topology is the most typical system
architecture employed when using Apache Geode and the user can make her Spring Boot
application a cache client simply by annotating it with @ClientCacheApplication.

Alternatively, a Spring Boot application may be a peer member of an Apache Geode cluster. That is,
the application itself is just another server in the cluster of servers that will manage data. The
application creates an "embedded" peer Cache instance when a developer annotates his/her
application class with @PeerCacheApplication.

By extension, the application may also serve as a CacheServer for cache clients, allowing clients to
connect and perform data access operations on the server. This is accomplished by annotating the
application class with @CacheServerApplication in place of @PeerCacheApplication, which will create
a peer Cache instance along with the CacheServer.

NOTE

An Apache Geode Server is not necessarily a "Cache Server" by default. That is, it is
not necessarily setup to service cache clients just because it is a "server". A Geode
Server can just be a peer member/data node of the cluster that manages data
without servicing any clients while other peer members in the cluster are setup to
service clients in addition to managing data. It also possible to setup certain peer
members as non-data node, data accessors that can service clients as CacheServers
as well, but is well beyond the scope of this document.

By way of example, if I wanted to create a Spring Boot, Apache Geode cache client application, I
would start with…

59

http://geode.apache.org/docs/guide/12/developing/region_options/data_hosts_and_accessors.html

Spring-based Apache Geode ClientCache application

@SpringBootApplication
@ClientCacheApplication
class ClientApplication { .. }

And, if I wanted to create a Spring Boot application with an embedded peer Cache instance, where
my application will be a server and peer member of a cluster, or distributed system formed by
Apache Geode, then I would start with…

Spring-based Apache Geode embedded peer Cache application

@SpringBootApplication
@PeerCacheApplication
class ServerApplication { .. }

Alternatively, a user may use the @CacheServerApplication annotation in place of
@PeerCacheApplication, which will create both an "embedded" peer Cache instance along with a
CacheServer running on "localhost", listening on the default cache server port, 40404…

Spring-based Apache Geode embedded CacheServer Application

@SpringBootApplication
@CacheServerApplication
class ServerApplication { .. }

6.3. Going in-detail on client/server applications
There are multiple ways that a client can connect to and communicate with servers in a Geode
cluster. The most common and recommended approach is to use Apache Geode Locators.

NOTE

A cache client can connect to 1 or more Locators in the Geode cluster instead of
directly to a CacheServer. The advantage of using Locators over direct CacheServer
connections is that Locators provide meta-data about the cluster to which clients
are connected. This meta-data includes information like which servers have the
least amount of load, or which servers contain the data of interests to the client. A
Locator also provides fail-over capabilities in case a CacheServer goes down. By
enabling the PR single-hop capability in the client Pool, the client is routed directly
to the server containing the data the client needs access to.

NOTE

Locators are also peer members in a cluster. Locators actually constitute what
makes up a cluster of Geode nodes; i.e. all nodes connected by a Locator make up a
cluster of peers and new members use Locators to join a cluster and find other
members.

Since Apache Geode sets up a "DEFAULT" Pool connected to a CacheServer running on "localhost",
listening on port 40404 by default when a ClientCache instance is created, there is nothing special a

60

user need do to utilize the client/server topology. Simply annotate your server-side Spring Boot
application with @CacheServerApplication and your client-side Spring Boot application with
@ClientCacheApplication and you are all set.

You can even start your servers using Gfsh’s start server command if you prefer. Your Spring Boot
@ClientCacheApplication will still connect to the server regardless of how it is started. Although, we
think you will prefer to configure and start your servers using the Spring Data Geode approach,
with Annotations.

However, as an application developer, you will no doubt want to customize the "DEFAULT" Pool
setup by Apache Geode to possibly connect to 1 or more Locators, for instance…

Spring-based Apache Geode ClientCache application using Locators

@SpringBootApplication
@ClientCacheApplication(locators = {
 @Locator(host = "boombox" port = 11235),
 @Locator(host = "skullbox", port = 12480)
})
class ClientApplication { .. }

Along with the locators attribute, the @ClientCacheApplication annotation has a servers attribute
that can be used to specify 1 or more nested @Server annotations that enable the cache client to
connect directly to 1 or more servers.

NOTE
You can only use either the locators or servers attribute, but not both, which is
enforced by Apache Geode.

A user may also configure additional Pools, other than the "DEFAULT" Pool provided by Apache
Geode when a ClientCache instance is created with the @ClientCacheApplication annotation, by
using the @EnablePool and @EnablePools annotations.

NOTE
@EnablePools is a composite annotation that aggregates several nested @EnablePool
annotations on a single class. Java 8 and earlier does not allow more than 1
annotation of the same type to be declared on a class.

61

Spring-based Apache Geode ClientCache application using multiple named Pools

@SpringBootApplication
@ClientCacheApplication(logLevel = "info")
@EnablePool(name = "VenusPool", servers = @Server(host = "venus", port = 48484),
 min-connections = 50, max-connections = 200, ping-internal = 15000,
 prSingleHopEnabled = true, readTimeout = 20000, retryAttempts = 1,
 subscription-enable = true)
@EnablePools(pools = {
 @EnablePool(name = "SaturnPool", locators = @Locator(host="skullbox", port=20668),
 subsription-enabled = true),
 @EnablePool(name = "NeptunePool", severs = {
 @Server(host = "saturn", port = 41414),
 @Server(host = "neptune", port = 42424)
 }, min-connections = 25))
})
class ClientApplication { .. }

The name attribute is the only required attribute of the @EnablePool annotation. As we will see below,
the value of name corresponds to both the name of the Pool bean created in the Spring context as
well as the name used to reference the corresponding configuration properties. It is also the name
of the Pool registered and used in Apache Geode.

Similarly, on the server, a user can configure multiple CacheServers that a client can connect to…

Spring-based Apache Geode CacheServer application using multiple named CacheServers

@SpringBootApplication
@CacheSeverApplication(logLevel = "info", autoStartup = true, maxConnections = 100)
@EnableCacheServer(name = "Venus", autoStartup = true,
 hostnameForClients = "venus", port = 48484)
@EnableCacheServers(servers = {
 @EnableCacheServer(name = "Saturn", hostnameForClients = "saturn", port = 41414),
 @EnableCacheServer(name = "Neptune", hostnameForClients = "neptune", port = 42424)
})
class ServerApplication { .. }

NOTE
Like @EnablePools, @EnableCacheServers is a composite annotation for aggregating
multiple @EnableCacheServer annotations on a single class.

One thing an observant reader may have noticed is, in all cases, the user is specifying hard-coded
values for hostnames, ports as well other configuration-oriented Annotation attributes. This is not
ideal when a user’s application gets promoted and deployed to different environments, such as
from DEV to QA to STAGING to PROD.

How does an application developer handle dynamic configuration determined at runtime?

62

6.4. Runtime configuration using Configurers
Another goal when designing the Annotation-based configuration model was to preserve Type-
Safety in the Annotation attributes. For example, if an attribute could be expressed as an int, like a
port number, then the attribute’s type should be an int.

Unfortunately, this is not conducive to dynamic and resolvable configuration at runtime.

One of the finer features of Spring is the ability to use property placeholders or SpEL expressions in
properties or attributes of the configuration meta-data when configuring beans in a Spring context.
Although, this would require all Annotation attributes be Strings thereby giving up Type-Safety; not
acceptable!

So, Spring Data Geode borrows from another commonly used pattern in Spring, Configurers. Many
different Configurer interfaces are provided out-of-the-box in Spring Web MVC, such as the
org.springframework.web.servlet.config.annotation.ContentNegotiationConfigurer.

Configurers are a way to allow application developers to receive a callback and customize the
configuration of a component on startup. The framework calls back to user-provided code to adjust
the configuration at runtime. One of the more common uses of this pattern is to supply conditional
configuration based on the application’s runtime environment.

Spring Data Geode provides several Configurer callback interfaces to customize different aspects of
Annotation-based configuration meta-data at runtime, before the Sring managed beans that the
Annotations create are initialized:

• ClientCacheConfigurer

• PeerCacheConfigurer

• CacheServerConfigurer

• ContinuousQueryListenerContainerConfigurer

• DiskStoreConfigurer

• IndexConfigurer

• PoolConfigurer

• RegionConfigurer

For example, we can use the CacheServerConfigurer and ClientCacheConfigurer to customize the port
numbers used by our CacheServer and ClientCache applications, respectively.

First, in our server application…

63

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/servlet/config/annotation/ContentNegotiationConfigurer.html

Customizing a Spring Boot CacheServer application with a CacheServerConfigurer

@SpringBootApplication
@CacheServerApplication(name = "SpringApplication", logLevel = "info")
class ServerApplication {

 @Bean
 CacheServerConfigurer cacheServerPortConfigurer(
 @Value("${geode.cache.server.host:localhost}") String cacheServerHost
 @Value("${geode.cache.server.port:40404}") int cacheServerPort) {

 return (beanName, cacheServerFactoryBean) -> {
 cacheServerFactoryBean.setBindAddress(cacheServerHost);
 cacheServerFactoryBean.setHostnameForClients(cacheServerHost);
 cacheServerFactoryBean.setPort(cacheServerPort);
 };
 }
}

Then, in our client application…

Customizing a Spring Boot ClientCache application with a ClientCacheConfigurer

@SpringBootApplication
@ClientCacheApplication(logLevel = "info")
class ClientApplication {

 @Bean
 ClientCacheConfigurer clientCachePoolPortConfigurer(
 @Value("${geode.cache.server.host:localhost}") String cacheServerHost
 @Value("${geode.cache.server.port:40404}") int cacheServerPort) {

 return (beanName, clientCacheFactoryBean) ->
 clientCacheFactoryBean.setServers(Collections.singletonList(
 new ConnectionEndpoint(cacheServerHost, cacheServerPort)));
 }
}

By using the provided Configurers, a user is able to receive a callback in order to further customize
the configuration that is enabled by the associated Annotation.

In addition, when the Configurer is declared as a bean in the Spring context, the bean definition can
take advantage of other Spring container features, such as property placeholders, or SpEL
expressions in @Value annotations on factory method parameters, and so on.

All Spring Data Geode-provided Configurers take 2 bits of information in the callback: the name of
the bean created in the Spring context by the Annotation along with a reference to the FactoryBean
used by the Annotation to configure the Geode component (e.g. a ClientCache instance with SDG’s
ClientCacheFactoryBean).

64

NOTE

SDG FactoryBeans are part of the SDG public API and are what an application
developer would use in Spring’s Java-based container configuration if this new
Annotation-based configuration model were not provided. Indeed, the Annotations
themselves are using these very same FactoryBeans for their configuration.

Given a Configurer can be declared as a regular bean definition like any other, it is not difficult to
imagine a user combining different Spring configuration options, such as the use of Spring Profiles
with Conditions as well as other features to create even more sophisticated and flexible
configuration.

However, Configurers are not the only option.

6.5. Runtime configuration using Properties
In addition to Configurers, each Annotation attribute in the Annotation-based configuration model
is associated with a corresponding configuration property, prefixed with spring.data.gemfire., that
can be declared in Spring Boot application.properties.

Building on our examples above, the client’s application.properties would define…

Client application.properties

spring.data.gemfire.cache.log-level=info
spring.data.gemfire.cache.pool.venus.servers=venus[48484]
spring.data.gemfire.cache.pool.venus.max-connections=200
spring.data.gemfire.cache.pool.venus.min-connections=50
spring.data.gemfire.cache.pool.venus.ping-interval=15000
spring.data.gemfire.cache.pool.venus.pr-single-hop-enabled=true
spring.data.gemfire.cache.pool.venus.read-timeout=20000
spring.data.gemfire.cache.pool.venus.subscription-enabled=true
spring.data.gemfire.cache.pool.saturn.locators=skullbox[20668]
spring.data.gemfire.cache.pool.saturn.subscription-enabled=true
spring.data.gemfire.cache.pool.neptune.servers=saturn[41414],neptune[42424]
spring.data.gemfire.cache.pool.neptune.min-connections=25

And, the server’s application.properties would define…

Server application.properties

spring.data.gemfire.cache.log-level=info
spring.data.gemfire.cache.server.port=40404
spring.data.gemfire.cache.server.Venus.port=43434
spring.data.gemfire.cache.server.Saturn.port=41414
spring.data.gemfire.cache.server.Neptune.port=41414

Then, we can simplify the @ClientCacheApplication class to…

65

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-java

Spring @ClientCacheApplication class

@SpringBootApplication
@ClientCacheApplication
@EnablePools(pools = {
 @EnablePool(name = "VenusPool"),
 @EnablePool(name = "SaturnPool"),
 @EnablePool(name = "NeptunePool")
})
class ClientApplication { .. }

And, the @CacheServerApplication class as…

Spring @CacheServerApplication class

@SpringBootApplication
@CacheServerApplication(name = "SpringApplication")
@EnableCacheServers(servers = {
 @EnableCacheServer(name = "Venus"),
 @EnableCacheServer(name = "Saturn"),
 @EnableCacheServer(name = "Neptune")
})
class ServerApplication { .. }

The example above illustrates why it is import to "name" your Annotation-based beans (other than
it is required in certain cases). Doing so makes it possible to reference the bean in a Spring context
from XML, properties and even Java. It is even possible to inject Annotation-defined beans into an
application class, for whatever purpose; for example…

@Component
class MyApplicationComponent {

 @Resource(name = "Saturn")
 CacheServer saturnCacheServer;

 ...
}

Likewise, naming a Annotated-defined bean allows you to code a Configurer to customize a specific,
"named" bean since the beanName is 1 of 2 arguments passed to the callback.

Often times, an associated Annotation attribute property takes 2 forms: a "named" property along
with an "unnamed" property.

For example…

66

spring.data.gemfire.cache.server.bind-address=10.105.20.1
spring.data.gemfire.cache.server.Venus.bind-address=10.105.20.2
spring.data.gemfire.cache.server.Saturn...
spring.data.gemfire.cache.server.Neptune...

While there are 3 named CacheServers above, there is 1 unnamed CacheServer property that serves
as the default value for any unspecified value for that property even for "named" CacheServers. So,
while "Venus" sets and overrides its own bind-address, "Saturn" and "Neptune" inherit from the
unnamed spring.data.gemfire.cache.server.bind-address property.

Refer to an Annotation’s Javadoc for which Annotation attributes support property-based
configuration, and whether they support "named" properties over just "default", unnamed
properties.

6.5.1. Properties of Properties

Of course, in Spring fashion, you can even express Properties in terms of other Properties, whether
that is using a Spring Boot application.properties file or by using the @Value annotation in your
Java class…

Properties of Properties

spring.data.gemfire.cache.server.port=${geode.cache.server.port:40404}

Or, in Java…

 @Bean
 CacheServerConfigurer cacheServerPortConfigurer(
 @Value("${geode.cache.server.port:${some.other.property:40404}}") int
cacheServerPort) {

 ...
 }
}

Property placeholder nesting can be arbitrarily deep.

6.6. Configuring embedded services
Apache Geode provides the ability to start many different embedded services required by an
application depending on the use case.

6.6.1. Configuring an embedded Locator

As mentioned previously, Apache Geode Locators are used by clients to connect with and find
servers in a cluster as well as by new members joining an existing cluster to find other peers.

67

It is often convenient for application developers as they are developing their Spring Boot, Spring
Data Geode applications to startup up a small cluster of 2 or 3 Apache Geode servers. Rather than
starting a separate Locator process, a user can simply annotate her @CacheServerApplication class
with @EnableLocator.

Spring, Apache Geode CacheServer application running an embedded Locator

@SpringBootApplication
@CacheServerApplication
@EnableLocator
class ServerApplication { .. }

The @EnableLocator annotation starts and embedded Locator in the Spring, Apache Geode
CacheServer application process running on "localhost", listening on the default Locator port 10334.
It is possible to customize the host (a.k.a bind address) and port that the embedded Locator binds to
using the corresponding Annotation attributes.

Then, it is possible to start other Spring Boot, @CacheServerApplication enabled applications
connecting to this Locator with…

Spring, Apache Geode CacheServer application connecting to a Locator

@SpringBootApplication
@CacheServerApplication(locators = "localhost[10334]")
class ServerApplication { .. }

You may even combine both application classes shown above into a single class and use your IDE
feature to create different run profile configurations to create and run different instances of the
same class with slightly modified configuration using Java System Properties…

Spring CacheServer application running an embedded Locator and connecting to the Locator

@SpringBootApplication
@CacheServerApplication(locators = "localhost[10334]")
public class ServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(ServerApplication.class);
 }

 @EnableLocator
 @Profile("embedded-locator")
 static class Configuration {
 }
}

Then, for each run profile, a user simply sets and changes the following System properties…

68

IDE run profile configuration

spring.data.gemfire.cache.name=SpringCacheServerOne
spring.data.gemfire.cache.server.port=41414
spring.profiles.active=embedded-locator

Only 1 of the run profiles for the ServerApplication class should be set with the
-Dspring.profiles.active=embedded-locator Java System Property. Then, simply change the name and
cache.server.port for each of the other run profiles and you’ll have yourself a small
cluster/distributed system of Geode Servers.

NOTE
The @EnableLocator annotation was meant to be a development-time annotation
only and not something an application developer should use in production. It is
recommended that Locators be stand-alone, independent processes in the cluster.

More details on how Apache Geode Locators work can be found here.

6.6.2. Configuring an embedded Manager

An Apache Geode Manager is another peer member/node in the cluster that is responsible for
"management" activities. Management activities include things like creating Regions, Indexes,
DiskStores, etc. The Manager allows a JMX-enabled client (e.g. Gfsh shell tool) to connect to the
manager to manage the cluster. It is also possible to connect to a Manager with JDK provided tools
like JConsole or JVisualVM, given these are both JMX-enabled clients as well.

Perhaps we would also like to make our Spring @CacheServerApplication shown above a Manager as
well. Simply annotate your Spring @Configurtion or @SpringBootApplication class with
@EnableManager and you are done. By default, the Manager binds to "localhost" listening on the
default Apache Geode Manager port 1099. Several aspects of the Manager can be configured with
the Annotation attributes or corresponding properties.

Spring CacheServer application running an embedded Manager

@SpringBootApplication
@CacheServerApplication(locators = "localhost[10334]")
public class ServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(ServerApplication.class);
 }

 @EnableLocator
 @EnableManager
 @Profile("embedded-locator-manager")
 static class Configuration {
 }
}

With the above class, you can even use Gfsh to connect to this server and manage it.

69

http://geode.apache.org/docs/guide/12/topologies_and_comm/topology_concepts/how_member_discovery_works.html

$ gfsh
 _________________________ __
 / _____/ ______/ ______/ /____/ /
 / / __/ /___ /_____ / _____ /
 / /__/ / ____/ _____/ / / / /
/______/_/ /______/_/ /_/ 1.2.1

Monitor and Manage Apache Geode

gfsh>connect
Connecting to Locator at [host=localhost, port=10334] ..
Connecting to Manager at [host=10.99.199.5, port=1099] ..
Successfully connected to: [host=10.99.199.5, port=1099]

gfsh>list members
Name	Id
SpringCacheServerOne | 10.99.199.5(SpringCacheServerOne:14842)<ec><v0>:1024
SpringCacheServerTwo | 10.99.199.5(SpringCacheServerTwo:14844)<v1>:1025
SpringCacheServerThree | 10.99.199.5(SpringCacheServerThree:14846)<v2>:1026

Because we also have the embedded Locator enabled, we were able to connect indirectly to the
Manager through the Locator. The Locator allows JMX clients to connect and find a Manager node
in the cluster. If none exist, the Locator will assume the role of the Manager. However, if no Locator
existed, then we would need to connect directly to the Manager using…

Gfsh connect command connecting directly to the Manager

gfsh>connect --jmx-manager=localhost[1099]

NOTE

Like the @EnableLocator annotation, the @EnableManager annotation was also meant
to be a development-time only and not something an application developer should
use in production. It is recommended that Managers, like Locators, be stand-alone,
independent processes in the cluster.

More details on Apache Geode Management and Monitoring can be found here.

6.6.3. Configuring the embedded HTTP Server

Apache Geode is also capable of running an embedded HTTP server. The current implementation is
backed by Eclipse Jetty.

The embedded HTTP server is used to host Apache Geode’s Management (Admin) REST API (not a
publicly advertised API), the Developer REST API and the Pulse Monitoring Web Application.

However, to use any of these Apache Geode provided Web applications, you must have a full
installation of Apache Geode installed on your system, and you must set the GEMFIRE environment
variable to your installation directory.

70

http://geode.apache.org/docs/guide/12/managing/book_intro.html
https://www.eclipse.org/jetty/
http://geode.apache.org/docs/guide/12/rest_apps/book_intro.html
http://geode.apache.org/docs/guide/12/tools_modules/pulse/pulse-overview.html

To enable the embedded HTTP server, simply add the @EnableHttpService annotation to any
@PeerCacheApplication or @CacheServerApplication annotated class…

Spring CacheServer application running an embedded HTTP server

@SpringBootApplication
@CacheServerApplication
@EnableHttpService
public class ServerApplication { .. }

By default, the embedded HTTP server listens on port 7070 for HTTP client requests. Of course, you
can use the Annotation attributes or corresponding configuration properties to adjust the
configuration as needed.

Follow the links above for more details on HTTP support.

6.6.4. Configuring the embedded Memcached Server (Gemcached)

Apache Geode also implements the Memcached protocol with the ability to service Memcached
clients. That is Memcached clients can connect to an Apache Geode cluster and perform
Memcached operations as if the Apache Geode Servers in the cluster were actual Memcached
Servers.

To enable the embedded Memcached Service, simply add the @EnableMemcachedServer annotation to
any @PeerCacheApplication or @CacheServerApplication annotated class…

Spring CacheServer application running an embedded Memcached Server

@SpringBootApplication
@CacheServerApplication
@EnabledMemcachedServer
public class ServerApplication { .. }

More details on Apache Geode’s Gemcached service can be found here.

6.6.5. Configuring the embedded Redis Server

Apache Geode also implements the Redis Server protocol, which enables Redis clients to
communicate with a cluster of Apache Geode Servers and issue Redis commands. As of this writing,
the Redis Server protocol support in Apache Geode is still experimental.

To enable the embedded Redis Service, simply add the @EnableRedisServer annotation to any
@PeerCacheApplication or @CacheServerApplication annotated class…

71

http://geode.apache.org/docs/guide/12/tools_modules/gemcached/chapter_overview.html

Spring CacheServer application running an embedded Redis Server

@SpringBootApplication
@CacheServerApplication
@EnableRedisServer
public class ServerApplication { .. }

More details on Apache Geode’s Redis Adapter can be found here.

6.7. Configuring Logging
Often times it is necessary to turn up logging in order to understand exactly what Apache Geode is
doing and when.

To enable Logging, simply annotate your application class with @EnableLogging and set the
appropriate attributes or associated properties…

Spring ClientCache application with Logging enabled

@SpringBootApplication
@ClientCacheApplication
@EnableLogging(logLevel="info", logFile=
"/absolute/file/system/path/to/application.log)
public class ClientApplication { .. }

While the logLevel attribute can be specified with all the cache-based application annotations (e.g.
@ClientCacheApplication(logLevel="info")), it is easier to customize logging behavior with the
@EnableLogging annotation.

See the @EnableLogging annotation Javadoc for more details.

6.8. Configuring Statistics
To gain even deeper insight into Apache Geode during runtime, an application developer can
enable Statistics. Gathering statistical data facilitates system analysis and troubleshooting when
complex problems occur, which are often distributed in nature and timing is a factor.

When Statistics are enabled, a user can use Apache Geode’s VSD (Visual Statistics Display) tool to
analyze the statistical data that is collected.

To enable Statistics, simply annotate your application class with @EnableStatistics…

Spring ClientCache application with Statistics enabled

@SpringBootApplication
@ClientCacheApplication
@EnableStatistics
public class ClientApplication { .. }

72

http://geode.apache.org/docs/guide/12/tools_modules/redis_adapter.html
http://gemfire.docs.pivotal.io/gemfire/tools_modules/vsd/chapter_overview.html
http://gemfire.docs.pivotal.io/gemfire/tools_modules/vsd/chapter_overview.html
http://gemfire.docs.pivotal.io/gemfire/tools_modules/vsd/chapter_overview.html

Enabling Statistics on a server is particularly valuable when evaluating performance, which is as
simple as annotating your @PeerCacheApplication or @CacheServerApplication class with
@EnableStatistics.

Use the @EnableStatistics annotation attributes or associated properties to customize the Statistics
gathering and collection process.

See the @EnableStatistics annotation Javadoc for more details.

More details on Apache Geode’s Statistics can be found here.

6.9. Configuring PDX
One of the more powerful features of Apache Geode is PDX Serialization. While a complete
discussion on PDX is well beyond the scope of this document, serialization using PDX is a much
better alternative to Java Serialization, with the following benefits…

1. PDX uses a centralized Type Registry to keep the serialized bytes of an object more compact.

2. PDX is a neutral serialization format allowing both Java and Native Clients to operate on the
same data set.

3. PDX supports versioning and allows object fields to be added or removed with affecting
applications using either older or newer versions of the PDX serialized, application domain
object types that change, without data loss.

4. PDX allows object fields to be accessed individually or in OQL query projections and predicates
without the object needing to be de-serialized first.

In general, serialization in Apache Geode is needed anytime data is transferred to/from clients and
servers or between peers in a cluster for normal distribution and replication processes as well as
when data is overflowed or persisted to disk.

To enable PDX, simply annotate your application class with @EnablePdx…

Spring ClientCache application with PDX enabled

@SpringBootApplication
@ClientCacheApplication
@EnablePdx
public class ClientApplication { .. }

Typically, an application’s domain object types will either implement the
org.apache.geode.pdx.PdxSerializable interface, or an application developer will choose to
implement and register the non-invasive org.apache.geode.pdx.PdxSerializer interface to handle
the application domain object types that need to be serialized.

Unfortunately, Apache Geode only allows one PdxSerializer to be registered, which suggests that all
application domain object types should be handled by a "single" PdxSerializer instance. But, that is
a serious anti-pattern and foolish practice to be sure.

73

http://gemfire.docs.pivotal.io/gemfire/managing/statistics/chapter_overview.html
http://geode.apache.org/docs/guide/12/developing/data_serialization/gemfire_pdx_serialization.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/PdxSerializable.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/PdxSerializer.html

Even though only a single PdxSerializer instance can be registered with Apache Geode, it makes
sense to create a PdxSerializer implementation per application domain object type.

By using the Composite Software Design Pattern, the application developer can provide an
implementation of the PdxSerializer interface that aggregates of all application domain object type-
specific PdxSerializer instances but acts as a single PdxSerializer instance, and register it.

You can declare this Composite PdxSerializer as a managed bean in the Spring context and refer to
this Composite PdxSerializer by bean name in the @EnablePdx annotation using the
serializerBeanName attribute. Spring Data Geode will take care of registering it with Apache Geode
on the user’s behalf.

Spring ClientCache application with PDX enabled, using a custom, composite PdxSerializer

@SpringBootApplication
@ClientCacheApplication
@EnablePdx(serializerBeanName = "compositePdxSerializer")
public class ClientApplication {

 @Bean
 PdxSerializer compositePdxSerializer() {
 return new CompositePdxSerializerBuilder()...
 }
}

It is also possible to declare Apache Geode’s org.apache.geode.pdx.ReflectionBasedAutoSerializer as
a bean definition in a Spring context. Alternatively, you can use Spring Data Geode’s more robust,
org.springframework.data.gemfire.mapping.MappingPdxSerializer, which uses Spring Data mapping
meta-data and infrastructure applied to the serialization process for more efficient handling than
reflection alone.

Many other aspects and features of PDX can be adjusted with the @EnablePdx annotation attributes
or associated configuration properties.

See the @EnablePdx annotation Javadoc for more details.

6.10. Configuring SSL
Equally important to serializing data to be transferred over-the-wire is securing the data while in
transit. Of course, the common way to accomplish this in Java is using the Secure Sockets Extension
(SSE) and Transport Layer Security (TLS).

To enable SSL, simply annotate your application class with @EnableSsl and set the necessary SSL
configuration attributes (e.g. keystores, usernames/passwords, etc)…

74

https://en.wikipedia.org/wiki/Composite_pattern
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/ReflectionBasedAutoSerializer.html
https://docs.spring.io/spring-data-gemfire/docs/current/api/org/springframework/data/gemfire/mapping/MappingPdxSerializer.html

Spring ClientCache application with SSL enabled

@SpringBootApplication
@ClientCacheApplication
@EnableSsl
public class ClientApplication { .. }

Different Apache Geode components: GATEWAY, HTTP, JMX, LOCATOR, SERVER can be individually
configured with SSL, or they can all be collectively configured all at once to use SSL using the
CLUSTER enumerated value.

It is easy to specify which Apache Geode components that the SSL configuration settings should
applied to using the nested @EnableSsl annotation Component enum…

Spring ClientCache application with SSL enabled by Aache Geode component

@SpringBootApplication
@ClientCacheApplication
@EnableSsl(components = { GATEWAY, LOCATOR, SERVER })
public class ClientApplication { .. }

In addition component-level SSL configuration, ciphers, protocols and keystore/truststore
information can also be specified using the corresponding Annotation attribute or associated
configuration properties.

See the @EnableSsl annotation Javadoc for more details.

More details on Apache Geode SSL support can be found here.

6.11. Configuring GemFire Properties
While many of the gemfire.properties are conveniently encapsulated in and abstracted with an
Annotation in the SDG Annotation-based configuration model, the less commonly used Geode
Properties are still accessible from the @EnableGemFireProperties annotation.

Using the @EnableGemFireProperties annotation on your application class is convenient and a nice
alternative to creating a gemfire.properties file or setting Geode Properties as Java System
properties on the command-line when launching your application.

TIP

It is recommended that these Geode Properties be set in a gemfire.properties file when
deploying your application to production. But, at development-time, it can be
convenient to set these properties individually, as needed, for prototyping and/or
testing purposes.

A few examples of some of the less common Geode Properties that a user usually need not worry
about include, but are not limited to: ack-wait-threshold, disable-tcp, socket-buffer-size, etc.

To individually set any Geode Property, simply annotate your application class with

75

http://gemfire.docs.pivotal.io/geode/managing/security/ssl_overview.html
http://geode.apache.org/docs/guide/12/reference/topics/gemfire_properties.html

@EnableGemFireProperties and set the Geode Properties you want to change from the default, out-of-
the-box value set by Apache Geode…

Spring ClientCache application with specific Geode Properties set

@SpringBootApplication
@ClientCacheApplication
@EnableGemFireProperties(conflateEvents = true, socketBufferSize = 16384)
public class ClientApplication { .. }

Keep in mind, some of the Geode Properties are client specific (e.g. conflateEvents) while others are
server specific (e.g. distributedSystemId, enableNetworkPartitionDetection, enforceUniqueHost,
memberTimeout, redundancyZone).

More details on Apache Geode properties can be found here.

6.12. Configuring Regions
So far, outside of PDX, our discussion has centered around configuring Apache Geode’s more
administrative functions: creating a cache instance, starting embedded services, enabling Logging,
Statistics and SSL, using gemfire.properties to affect very low-level configuration and behavior.
While all these configuration options are important, none of them relate directly to the application.
In other words, we still need some place to store our application data and make it generally
available and accessible.

Apache Geode organizes data in a cache into Regions. You can think of a Region as a table in a
relational database. Generally, a Region should only store a single type of object making it more
conducive for building effective Indexes. We will talk about Indexing later.

Previously, Spring Data Geode users needed to explicitly define and declare the Regions used in
their applications to store data by writing very verbose Spring configuration meta-data, whether a
user was using SDG’s FactoryBeans from the API in Spring’s Java-based container configuration…

76

http://geode.apache.org/docs/guide/12/reference/topics/gemfire_properties.html
http://geode.apache.org/docs/guide/12/basic_config/data_regions/chapter_overview.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-java

Example Region bean definition using Spring Java-based container configuration

@Configuration
class GeodeConfiguration {

 @Bean("Example")
 PartitionedRegionFactoryBean exampleRegion(GemFireCache gemfireCache) {

 PartitionedRegionFactoryBean<Long, Example> exampleRegion =
 new PartitionedRegionFactoryBean<>();

 exampleRegion.setCache(gemfireCache);
 exampleRegion.setClose(false);
 exampleRegion.setPersistent(true);

 return exampleRegion;
 }

 ...
}

Or, using XML…

Example Region bean definition using the SDG XML Namespace

 <gfe:partitioned-region id="exampleRegion" name="Example" persistent="true">
 ...
 </gfe:partitioned-region>

While neither Java nor XML configuration is hard to do, it is cumbersome, especially if an
application has a large number of Regions that need to be defined. Many relational database-based
applications can literally have 100s or even 1000s of tables.

Ugh!

Now users can define and configure Regions based on their application domain objects (entities).
No longer does a user need to explicitly define Region bean definitions in Spring configuration
meta-data, unless finer-grained control is required.

To simplify Region creation, Spring Data Geode combines the use of SD Repositories with the
expressive power of Annotation-based configuration using the new @EnableEntityDefinedRegions
annotation.

NOTE

Most Spring Data application developers should already be familiar with the Spring
Data Repository abstraction and Spring Data Geode’s implementation/extension of
the SD Repository abstraction, which has been specifically customized to optimize
data access operations for Apache Geode.

First, an application developer starts by defining the application domain objects…

77

https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories

Application domain object type modeling a Book

@Region("Books")
class Book {

 @Id
 private ISBN isbn;

 private Author author;

 private Category category;

 private LocalDate releaseDate;

 private Publisher publisher;

 private String title;

}

Next, the application developer would define a basic Repository for Books by extending Spring Data
Commons org.springframework.data.repository.CrudRepository interface…

Repository for Books

interface BookRepository extends CrudRepository<Book, ISBN> { .. }

The org.springframe.data.repository.CrudRepository is a Data Access Object (DAO) providing basic
data access operations (CRUD) along with support for simple queries (e.g. findById(..)). The user
can define additional, more sophisticated queries simply by declaring query methods on the
Repository interface (e.g. List<BooK> findByAuthor(Author author);).

Under-the-hood, Spring Data Geode provides an implementation of this interface when the Spring
container is bootstrapped. SDG will even implement the query methods defined by the user so long
as the user follows simple conventions.

Now, when a user defined the Book class, she also specified the Region in which instances of Book
will be mapped and stored by declaring the Spring Data Geode mapping annotation, @Region on the
entity’s type. Of course, if the entity type (i.e. Book) referenced in the type parameter of the
Repository interface (i.e. BookRepository) is not annotated with @Region, the name is derived from
the simple class name of the entity type (i.e. "Book").

Spring Data Geode uses the mapping context containing mapping meta-data for all the entities
defined in your application to determine all the Regions that will be needed at runtime.

To enable and use this feature, simply annotate the application class with
@EnableEntityDefinedRegions…

78

Entity-defined Region Configuration

@SpringBootApplication
@ClientCacheApplication
@EnableGemfireRepositories
@EnableEntityDefinedRegions(basePackages = "example.app.domain")
class ClientApplication { .. }

TIP
Creating Regions from entity classes is the most useful when using Spring Data
Repositories in your application. Spring Data Geode’s Repository support is enabled
with the @EnableGemfireRepositories annotation.

By default, the @EnableEntityDefinedRegions annotation will scan for entity classes recursively
starting from the package of the configuration class on which the @EnableEntityDefinedRegions
annotation is defined.

However, it is common to limit the search during the scan by setting the basePackages attribute with
the package names containing your application entity classes.

Alternatively, a user can use the more type-safe basePackageClasses attribute for specifying the
package to scan by setting the attribute to an entity type in the package containing the entity’s class,
or by using a non-entity placeholder class in the package specifically created for identifying the
package to scan. For example…

Entity-defined Region Configuration using the Entity class type

@SpringBootApplication
@ClientCacheApplication
@EnableGemfireRepositories
@EnableEntityDefinedRegions(basePackageClasses = {
 example.app.books.domain.Book.class,
 example.app.customers.domain.Customer.class
})
class ClientApplication { .. }

In addition to specifying the location where to begin the scan, like Spring’s @ComponentScan
annotation, a user can specify include and exclude filters with all the same semantics of the
org.springframework.context.annotation.ComponentScan.Filter annotation.

See the @EnableEntityDefinedRegion annotation Javadoc for more details.

6.12.1. Configuring Type-specific Regions

Apache Geode supports many different types of Regions. Each type corresponds to the Region’s
DataPolicy, which determines exactly how the data in the Region will be managed (e.g.
distributed/replicated, etc).

79

http://geode.apache.org/docs/guide/12/developing/region_options/region_types.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/DataPolicy.html

NOTE
Other configuration settings also can affect how data is managed like the Region’s
scope. See Storage and Distribution Options in the Apache Geode User Guide for
more details.

When user annotate their application domain object types with the generic @Region mapping
annotation, Spring Data Geode will decide which type of Region to create. SDG’s default strategy
takes the cache type into consideration when determining the type of Region to create.

For example, if the application was declared as a ClientCache using the @ClientCacheApplication
annotation, then SDG would create a client PROXY Region. Or, if the application was declared as a
peer Cache using either the @PeerCacheApplication or @CacheServerApplication annotations, then SDG
would create a server PARTITION Region.

Of course, an application developer is always able to override the default when necessary. To
override the default applied by Spring Data Geode, 4 new Region mapping annotations have been
introduced:

• ClientRegion

• LocalRegion

• PartitionRegion

• ReplicateRegion

The ClientRegion mapping annotation is specific to client applications. All other Region mapping
annotations listed above can only be used in server applications.

It is sometimes necessary for client applications to create and use "local-only" Regions, perhaps to
aggregate data from other Regions in order to analyze the data locally and carry out some function
performed by the application for the user. In this case, the data may not necessarily need to be
distributed back to the server, not unless other applications need access to the results. This Region
might even be temporary and discarded after use, which could be accomplished with Idle-Timeout
(TTI) and Time-To-Live (TTL) expiration policies on the Region itself (NOTE: this is independent of
and different from "entry" TTI/TTL expiration policies).

In any case, if a user wanted to create a local-only, client Region where the data is not gong to be
distributed to a corresponding Region with the same name on the server, the user would specify the
@ClientRegion mapping annotation and set the shortcut attribute to ClientRegionShortcut.LOCAL…

Spring ClientCache application with a local-only, client Region

@ClientRegion(shortcut = ClientRegionShortcut.LOCAL)
class ClientLocalEntityType { .. }

All Region type-specific annotations provide additional attributes that are both common across
Region types as well as specific to only that type of Region (e.g. the collocatedWith and
redundantCopies attributes in the PartitionRegion annotation apply to PARTITION Regions only).

More details on Apache Geode Region Types can be found here.

80

http://geode.apache.org/docs/guide/12/developing/region_options/storage_distribution_options.html
http://geode.apache.org/docs/guide/12/developing/region_options/region_types.html

6.12.2. Configuring Eviction

Managing data with Apache Geode is an active task. More than likely, tuning will be required and a
combination of features (e.g. both Eviction and Expiration) will need to be employed to effectively
manage your data in memory with Apache Geode.

Given that Apache Geode is an In-Memory Data Grid (IMDG), data is managed in "memory" and
distributed to other nodes that participate in a cluster in order to minimize latency, maximize
throughput and ensure that data is highly available. Since not all of an application’s data is going to
typically fit in memory, even across an entire cluster of nodes, much less on a single node, capacity
can be increased by adding new nodes to the cluster. This is commonly referred to as linear scale-
out (rather than scaling up, which means to add more memory, more CPU, more disk, more
network bandwidth, basically more of every system resource in order to handle the load).

Still, even with a cluster of nodes, it is usually imperative that only the most important data be kept
in memory. Running out-of-memory, or even nearing full capacity, is rarely, if ever, a good thing.
Stop-the-world GCs or worse, OutOfMemoryErrors, will bring your application to a screaming halt.

So, to help manage memory and keep the most important data around, Apache Geode supports
LRU-based Eviction. That is, Apache Geode evicts Region entries based on when those entries were
last accessed by using the Least Recently Used algorithm.

To enable Eviction, simply annotate the application class with @EnableEviction…

Spring application with Eviction enabled

@SpringBootApplication
@PeerCacheApplication
@EnableEviction(policies = {
 @EvictionPolicy(regionNames = "Books", action = EvictionActionType.INVALIDATE),
 @EvictionPolicy(regionNames = { "Customers", "Orders" }, maximum = 90,
 action = EvictionActionType.OVERFLOW_TO_DISK,
 type = EvictonPolicyType.HEAP_PERCENTAGE)
})
class ServerApplication { .. }

Eviction policies are usually set on the Regions in the server(s).

As shown above, the policies attribute can specify 1 or more nested @EvictionPolicy annotations,
each 1 individually catered to 1 or more Regions where the Eviction policy needs to be applied.

Additionally, a user can reference a custom implementation of Apache Geode’s
org.apache.geode.cache.util.ObjectSizer interface defined as a bean in the Spring context and
referenced by name using the objectSizerName attribute.

An ObjectSizer allows the user to define the criteria used to evaluate and determine the the size of
objects stored in the Region.

See the @EnableEviction annotation Javadoc for a complete list of Eviction configuration options.

81

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/util/ObjectSizer.html

More details on Apache Geode Eviction can be found here.

6.12.3. Configuring Expiration

Along with Eviction, Expiration can also be used to manage memory by allowing entries stored in a
Region to expire. Both Time-to-Live (TTL) and Idle-Timeout (TTI) based entry expiration policies are
supported in Apache Geode.

Spring Data Geode’s Annotation-based Expiration configuration is based on earlier, existing entry
expiration annotation support that was added in Spring Data Geode many releases ago.

Essentially, Spring Data Geode’s Expiration annotation support is based on a provided, custom
implementation of Apache Geode’s org.apache.geode.cache.CustomExpiry interface. This custom
implementation inspects the user’s application domain objects stored in a Region for the presence
of type-level Expiration annotations.

Spring Data Geode provides the following Expiration annotations used on application domain
object types, out-of-the-box…

• Expiration

• IdleTimeoutExpiration

• TimeToLiveExpiration

An application domain object type can be annotated with 1 or more of the Expiration annotations,
like so…

Applicaton domain object specific Expiration policy

@Region("Books")
@TimeToLiveExpiration(timeout = 30000, action = "INVALIDATE")
class Book { .. }

To enable Expiration, simply annotate the application class with @EnableExpiration…

Spring application with Expiration enabled

@SpringBootApplication
@PeerCacheApplication
@EnableExpiration
class ServerApplication { .. }

In addition to application domain object type-level Expiration policies, individual Expiration
policies on a Region-by-Region basis can be configured directly with the @EnableExpiration
annotation as well.

82

http://geode.apache.org/docs/guide/12/developing/eviction/chapter_overview.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CustomExpiry.html

Spring application with global Expiration policies

@SpringBootApplication
@PeerCacheApplication
@EnableExpiration(policies = {
 @ExpirationPolicy(regionNames = "Books", types = ExpirationType.TIME_TO_LIVE),
 @ExpirationPolicy(regionNames = { "Customers", "Orders" }, timeout = 30000,
 action = ExpirationActionType.LOCAL_DESTROY)
})
class ServerApplication { .. }

Expiration policies are usually set on the Regions in the server(s).

See the @EnableExpiration annotation Javadoc for a complete list of Expiration configuration
options.

More details on Apache Geode Expiration can be found here.

6.12.4. Configuring Compression

In addition to Eviction and Expiration a user may also configure his or her data Regions to use
Compression in order to reduce memory consumption.

Apache Geode allows users to compress in-memory Region values using pluggable Compressors, or
different compression codecs. Out-of-the-box, Apache Geode uses Google’s Snappy library.

To enable Compression support, simply annotate the application class with @EnableCompression…

Spring application with Compression enabled

@SpringBootApplication
@ClientCacheApplication
@EnableCompression(compressorBeanName = "MyCompressor", regionNames = { "Customers",
"Orders" })
class ClientApplication { .. }

NOTE Neither the compressorBeanName nor the regionNames attributes are required.

The compressorBeanName defaults to “SnappyCompressor” enabling Apache Geode’s provided
SnappyCompressor by default.

The regionNames attribute is an array of Region names specifying the Regions that will have
compression enabled. By default, all Regions will compress values if the regionNames attribute is not
explicitly set.

TIP

Alternatively, a user may use the spring.data.gemfire.cache.compression.compressor-
bean-name and spring.data.gemfire.cache.compression.region-names properties in the
application.properties file to set and configure the values of these @EnableCompression
annotation attributes.

83

http://geode.apache.org/docs/guide/12/developing/expiration/chapter_overview.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/compression/Compressor.html
http://google.github.io/snappy/
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/compression/SnappyCompressor.html

WARNING

To use Apache Geode’s Region Compression feature, you must include the
org.iq80.snappy:snappy dependency in your Maven pom.xml or build.gradle file
when using Gradle. This is only necessary if you use Apache Geode’s default,
out-of-the-box support for Region Compression, which uses the
SnappyCompressor by default. Of course, if you are using another compression
library, you will need to include dependencies for that compression library on
your application’s classpath. Additionally, you will need to implement Apache
Geode’s Compressors to adapt your compression library of choice, define it as a
bean in the Spring context, and then set the compressorBeanName to this custom
bean definition.

See the @EnableCompression annotation Javadoc for more details.

More details on Apache Geode Compression can be found here.

6.12.5. Configuring Off-Heap

Another effective means for reducing pressure on the JVM’s Heap memory and minimize GC
activity is to use Apache Geode’s Off-Heap memory support. Rather than storing Region entries on
the JVM Heap, entries are stored in the system’s main memory.

To enable Off-Heap support, simple annotate the application class with @EnableOffHeap…

Spring application with Off-Heap enabled

@SpringBootApplication
@PeerCacheApplication
@EnableOffHeap(memorySize = 8192m regionNames = { "Customers", "Orders" })
class ServerApplication { .. }

The memorySize attribute is required. The value for the memorySize attribute specifies the amount of
main memory a Region is allowed to use in either megabytes (m) or gigabytes (g).

The regionNames attribute is an array of Region names specifying the Regions that will store entries
in main memory. By default, all Regions will use main memory if the regionNames attribute is not
explicitly set.

TIP

Alternatively, a user may use the spring.data.gemfire.cache.off-heap.memory-size and
spring.data.gemfire.cache.off-heap.region-names properties in the
application.properties file to set and configure the values of these @EnableOffHeap
annotation attributes.

See the @EnableOffHeap annotation Javadoc for more details.

6.12.6. Configuring Indexes

There is not much use in storing data in Regions unless the data can be retrieved.

In addition to Region.get(key) operations, particularly when the key of the value of interest is

84

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/compression/SnappyCompressor.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/compression/Compressor.html
http://gemfire91.docs.pivotal.io/geode/managing/region_compression.html

known in advance, data is commonly retrieved by executing queries on the Regions containing the
data. With Apache Geode, queries are written using the Object Query Language (OQL), and the
specific data set that a client wishes to access is expressed in the query’s predicate (e.g. SELECT *
FROM /Books b WHERE b.author.name = 'Jon Doe').

Generally, querying without Indexes is not very efficient. When executing queries without an
Index, Apache Geode performs the equivalent of a full table scan.

Indexes are created and maintained for fields on objects used in query predicates to match the data
of interests, expressed by the query’s projection. Different types of Indexes can be created, such as
Key and Hash Indexes.

Spring Data Geode makes it very easy to create Indexes on Regions where the data is stored and
accessed. Rather than explicitly declaring Index bean definitions using Spring config as before…

Index bean definition using Java config

@Bean("BookIsbnIndex")
IndexFactoryBean bookIsbnIndex(GemFireCache gemfireCache) {

 IndexFactoryBean bookIsbnIndex = new IndexFactoryBean();

 bookIsbnIndex.setCache(gemfireCache);
 bookIsbnIndex.setName("BookIsbnIndex");
 bookIsbnIndex.setExpression("isbn");
 bookIsbnIndex.setFrom("/Books"));
 bookIsbnIndex.setType(IndexType.KEY);

 return bookIsbnIndex;
}

Or, in XML…

Index bean definition using XML

 <gfe:index id="BooksIsbnIndex" expression="isbn" from="/Books" type="KEY"/>

Indexes can now be created directly from the fields defined on application domain object types that
a user knows will be used in query predicates to speedup those queries. Indexes will be applied
even for OQL queries generated from user-defined query methods on an application’s Repository
interfaces.

Re-using the example Book class from above, we can annotate the fields on Book that we know will
be used in queries we define with query methods in the BookRepository interface…

85

http://geode.apache.org/docs/guide/12/developing/query_index/creating_key_indexes.html
http://geode.apache.org/docs/guide/12/developing/query_index/creating_hash_indexes.html

Application domain object type modeling a Book using Indexes

@Region("Books")
class Book {

 @Id
 private ISBN isbn;

 @Indexed
 private Author author;

 private Category category;

 private LocalDate releaseDate;

 private Publisher publisher;

 @LuceneIndexed
 private String title;

}

In our new Book class definition, we annotated the author field with @Indexed and the title field
with @LuceneIndexed. Also, the isbn field had previously been annotated with Spring Data’s @Id
annotation, which identifies the field containing the unique identifier for Book instances, and in
Spring Data Geode, the @Id annotated field or property is used as the key in the Region when storing
the entry.

• @Id annotated fields/properties result in the creation of an Apache Geode KEY Index.

• @Indexed annotated fields/properties result in the creation of an Apache Geode HASH Index
(default).

• @LuceneIndexed annotated fields/properties result in the creation of an Apache Geode Lucene
Index, used in text-based searches with Apache Geode’s Lucene Integration and support.

When the @Indexed annotation is used without setting any attributes, the Index name, expression, and
fromClause are derived from the field/property of the object on which the @Indexed annotation has
been added. The expression is exactly the name of the field or property. The fromClause is derived
from the @Region annotation on the object’s class (or the simple name of the domain object class if
the @Region annotation was not specified).

Of course, any of the @Indexed annotation attributes may be explicitly set to override the default
values provided by Spring Data Geode.

86

Application domain object type modeling a Book using cutomized Indexes

@Region("Books")
class Book {

 @Id
 private ISBN isbn;

 @Indexed(name = "BookAuthorNameIndex", expression = "author.name", type =
"FUNCTIONAL")
 private Author author;

 private Category category;

 private LocalDate releaseDate;

 private Publisher publisher;

 @LuceneIndexed(name = "BookTitleIndex", destory = true)
 private String title;

}

The name of the Index, which is auto-generated when not explicitly set, is also used as the name of
the bean registered in the Spring context for the Index. If necessary, this Index bean could even be
injected by name into another application component.

The generated name of the Index follows the pattern: <Region Name><Field/Property Name><Index
Type>Idx. For example, the name of the author Index would be, “BooksAuthorHashIdx”.

To enable Indexing, simply annotate the application class with @EnableIndexing…

Spring application with Indexing enabled

@SpringBootApplication
@PeerCacheApplication
@EnableEntityDefinedRegions
@EnableIndexing
class ServerApplication { .. }

NOTE

The @EnablingIndexing annotation has no effect unless the
@EnableEntityDefinedRegions is also declared. Essentially, Indexes are defined from
entity class types, and entity classes must be scanned in order to inspect the entity’s
fields and properties for the presence of Index annotations. Without this scan,
Index annotations would not be found. It is also imperative that you limit the scope
of the scan.

While Lucene queries are not supported on Spring Data Geode Repositories (yet), SDG does provide
comprehensive support for Apache Geode Lucene queries using the familiar Spring Template

87

https://docs.spring.io/spring-data-gemfire/docs/current/reference/html/#bootstrap:lucene

pattern.

Finally, we close with a few extra things to keep in mind when using Indexes:

1. While OQL Indexes are not required to execute OQL Queries, Lucene Indexes are required to
execute Lucene, text-based searches.

2. In addition, OQL Indexes are not persisted to disk; they are maintained only in memory. So,
when an Apache Geode node is restarted, the Index must be rebuilt.

3. You also need to be aware of the overhead associated in maintaining Indexes, particularly since
an Index is stored exclusively in memory, and especially when Region entries are updated.
Index "maintenance" can be configured as an asynchronous task.

Another optimization that can be utilized when re-starting your Spring application where Indexes
have to be rebuilt is to first define all the Indexes upfront and then create them all at once, which,
in Spring Data Geode, happens when the Spring context is refreshed.

Indexes can be defined upfront then created all at once by setting the define attribute on the
@EnableIndexing annotation to true.

See Creating Multiple Indexes at Once in Apache Geode’s User Guide for more details.

Creating sensible Indexes is an important task since it is possible for an Index to do more harm
than good if not properly designed.

See both the @Indexed annotation and @LuceneIndexed annotation Javadoc for complete list of
configuration options.

More details on Apache Geode OQL Queries can be found here.

More details on Apache Geode Indexes can be found here.

More details on Apache Geode Lucene Queries can be found here.

6.12.7. Configuring Disk Stores

Regions can be configured to persist data to disk. Regions can also be configured to overflow data to
disk when Region entries are evicted. In both cases, a DiskStore is required to persist or overflow
the data. When an explicit DiskStore has not been set on a Region with persistence or overflow
configured, then Apache Geode will use the "DEFAULT" DiskStore.

However, it is possible and recommended to define Region-specific DiskStores when persisting or
overflowing data to disk.

Spring Data Geode provides Annotation support for defining and creating application Region
DiskStores by annotating the application class with the @EnableDiskStore and @EnableDiskStores
annotations.

TIP
@EnableDiskStores is a composite annotation for aggregating 1 or more
@EnableDiskStore annotations.

88

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionFactory.html#setIndexMaintenanceSynchronous-boolean-
http://geode.apache.org/docs/guide/12/developing/query_index/create_multiple_indexes.html
http://geode.apache.org/docs/guide/12/developing/querying_basics/chapter_overview.html
http://geode.apache.org/docs/guide/12/developing/query_index/query_index.html
http://geode.apache.org/docs/guide/12/tools_modules/lucene_integration.html

For example, while Book product information might mostly consist of reference data, from some
external data source (e.g. Amazon), Order data is most likely going to be transactional in nature and
something the application is going to need to retain, maybe even overflow to disk if the transaction
volume is high enough, or so any Book publisher hopes, anyway.

Using the @EnableDiskStore annotation, I can define and create a DiskStore as follows…

Spring application defining a DiskStore

@SpringBootApplication
@PeerCacheApplication
@EnableDiskStore(name = "OrdersDiskStore", autoCompact = true, compactionThreshold =
70,
 maxOplogSize = 512, diskDirectories = @DiskDiretory(location =
"/absolute/path/to/order/disk/files"))
class ServerApplication { .. }

Again, more than 1 DiskStore can be defined using the composite, @EnableDiskStores annotation.

Like other Annotations in Spring Data Geode’s Annotation-based configuration model, both
@EnableDiskStore and @EnableDiskStores have many attributes along with associated configuration
properties to apply additional configuration to DiskStores created at runtime.

Additionally, the @EnableDiskStores annotation defines certain common DiskStore attributes that
apply to all DiskStores created from @EnableDiskStore annotations composed with the
@EnableDiskStores annotation itself. Individual DiskStore configuration can override a particular
global setting, but the @EnableDiskStores annotation defines common configuration attributes for all
DiskStores out of convenience.

Spring Data Geode also provides the DiskStoreConfigurer callback interface that can be declared in
Java config and used instead of configuration properties to customize a DiskStore at runtime…

89

Spring application with custom DiskStore configuration

@SpringBootApplication
@PeerCacheApplication
@EnableDiskStore(name = "OrdersDiskStore", autoCompact = true, compactionThreshold =
70,
 maxOplogSize = 512, diskDirectories = @DiskDiretory(location =
"/absolute/path/to/order/disk/files"))
class ServerApplication {

 @Bean
 DiskStoreConfigurer ordersDiskStoreDiretoryConfigurer(
 @Value("${orders.disk.store.location}") String location) {

 return (beanName, diskStoreFactoryBean) -> {

 if ("OrdersDiskStore".equals(beanName) {
 diskStoreFactoryBean.setDiskDirs(Collections.singletonList(new DiskDir
(location));
 }
 }
 }
}

See the @EnableDiskStore and @EnableDiskStores annotation Javadoc for more details on the
available attributes as well as associated configuration properties.

More details on Apache Geode Region Persistence and Overflow (using Disk Stores) can be found
here.

6.13. Configuring Continuous Queries
Another very important and useful feature of Apache Geode is Continuous Querying.

In a world of Internet-enabled things, events and streams of data are coming in from everywhere.
Being able to handle and process a large stream of data and react to events in real-time, as they
happen, is becoming an increasingly important requirement for many applications. One example is
self-driving vehicles. Being able to receive, filter, transform, analyze and act on data in real-time is
a key differentiator and characteristic of real-time enabled applications.

Fortunately, Apache Geode was ahead of its time in this regard. Using Continuous Queries (CQ) a
client application can express the data, or events it is interested in and register listeners to handle
and process the events as they arrive. The data that a client application may be interested in is
expressed in a OQL query, where the query predicate is used to filter, or identify the data of
interests. When data is changed or added and it matches the criteria defined in the query predicate
of the registered CQ, the client application is notified.

Spring Data Geode makes defining and registering CQs along with an associated listener to handler
and process CQ events without all the cruft of Apache Geode’s plumbing, a non-event (no pun

90

http://geode.apache.org/docs/guide/12/developing/storing_data_on_disk/chapter_overview.html
http://geode.apache.org/docs/guide/12/developing/continuous_querying/chapter_overview.html

intended). SDG’s new Annotation-based configuration for CQs builds on the already existing
Continuous Query support in the Continuous Query Listener Container.

For instance, say a Book publisher wants to register interests in and receive notification anytime
orders (demand) for a Book exceeds the current inventory (supply), then the publisher’s print
application might register the following CQ…

Spring ClientCache application with registered CQ and Listener.

@SpringBootApplication
@ClientCacheApplication(subcriptionEnabled = true)
@EnableContinuousQueries
class PublisherPrintApplication {

 @ContinuousQuery(name = "DemandExceedsSupply", query =
 "SELECT book.* FROM /Books book, /Inventory inventory
 WHERE book.title = 'How to crush it in the Book business like Amazon"
 AND inventory.isbn = book.isbn
 AND inventory.available < (
 SELECT sum(order.lineItems.quantity)
 FROM /Orders order
 WHERE order.status = 'pending'
 AND order.lineItems.isbn = book.isbn
)
 ")
 void handleSupplyProblem(CqEvent event) {
 // start printing more Books, fast!
 }
}

To enable Continuous Queries, simply annotate your application class with
@EnableContinuousQueries.

Defining Continuous Queries is as simple as annotating any Spring @Component annotated POJO class
methods with the @ContinuousQuery annotation, in similar fashion to SDG’s Function annotated POJO
methods. A method defined with a CQ using the @ContinuousQuery annotation will be called anytime
data matching the query predicate is added or changed.

Additionally, the POJO method signature should adhere to the requirements outlined in the section
on ContinuousQueryListener and ContinuousQueryListenerAdapter.

See the @EnableContinuousQueries and @ContinuousQuery annotation Javadoc for more details on
available attributes and configuration settings.

More details on Spring Data Geode’s Continuous Query support can be found here.

More details on Apache Geode’s Continuous Queries can be found here.

91

http://geode.apache.org/docs/guide/12/developing/continuous_querying/chapter_overview.html

6.14. Configuring Spring’s Cache Abstraction
With Spring Data Geode, Apache Geode can be used as a caching provider in Spring’s Cache
Abstraction.

In Spring’s Cache Abstraction, the caching annotations (e.g. @Cacheable) identify the cache on which
a cache lookup is performed before invoking a potentially expensive operation, or where the
results of an application service method are cached after the operation is invoked.

In Spring Data Geode, a Spring Cache corresponds directly to a Region. The Region must exist before
any @Cacheable application service method is called. This is true for any of Spring’s caching
annotations (i.e. @Cacheable, @CachePut and @CacheEvict) that identify the cache to use in the
operation.

For instance, our publisher’s Point-of-Sale (POS) application might have a feature to determine, or
lookup the Price of a Book during a sales transaction.

@Service
class PointOfSaleService

 @Cacheable("BookPrices")
 Price runPriceCheckFor(Book book) {
 ...
 }

 @Transactional
 Receipt checkout(Order order) {
 ...
 }

 ...
}

To make the application developer’s life easier when using Spring Data Geode and Apache Geode
with Spring’s Cache Abstraction, 2 new features have been added to the new Annotation-based
configuration model.

Given the following Spring caching configuration…

92

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache

Enabling Caching using Apache Geode with Spring Data Geode

@EnableCaching
class CachingConfiguration {

 @Bean
 GemfireCacheManager cacheManager(GemFireCache gemfireCache) {

 GemfireCacheManager cacheManager = new GemfireCacheManager();

 cacheManager.setCache(gemfireCache);

 return cacheManager;
 }

 @Bean("BookPricesCache")
 PartitionedRegionFactoryBean<Book, Price> bookPricesRegion(GemFireCache
gemfireCache) {

 PartitionedRegionFactoryBean<Book, Price> bookPricesRegion =
 new PartitionedRegionFactoryBean<>();

 bookPricesRegion.setCache(gemfireCache);
 bookPricesRegion.setClose(false);
 bookPricesRegion.setPersistent(false);

 return bookPricesRegion;
 }

 @Bean("PointOfSaleService")
 PointOfSaleService pointOfSaleService(..) {
 return new PointOfSaleService(..);
 }
}

Using Spring Data Geode’s new features, the same caching configuration can be simplified to…

Enabling GemFire Caching

@EnableGemfireCaching
@EnableCachingDefinedRegions
class CachingConfiguration {

 @Bean("PointOfSaleService")
 PointOfSaleService pointOfSaleService(..) {
 return new PointOfSaleService(..);
 }
}

First, the @EnableGemfireCaching annotation replaces both the Spring EnableCaching annotation along

93

with the need to declare an explicit cacheManager bean definition in the Spring config.

Second, the @EnableCachingDefinedRegions annotation, like the @EnableEntityDefinedRegions

annotation described in Configuring Regions, inspects all the Spring caching annotated application
service components to identify all the caches that will be needed by the application at runtime and
creates Regions in Apache Geode for these caches on application startup.

The Region created is local to the application process that created the Region. If the application is a
peer Cache, then the Region will only exist on the application node. If the application is a
ClientCache, then SDG creates a client PROXY Region and expects that a Region with the same name
already exists on the servers in the cluster.

NOTE
SDG cannot determine the cache required by a service method using a Spring
CacheResolver to resolve the cache used in the operation at runtime.

NOTE

SDG does not currently identify JCache, JSR-107 cache annotations used on
application service components. Refer to the core Spring Framework Reference
Guide for the equivalent Spring caching annotation to use in place of JCache, JSR-107
caching annotations.

Refer to the section, Support for the Spring Cache Abstraction for more details on using Apache
Geode as a caching provider in Spring’s Cache Abstraction.

More details on Spring’s Cache Abstraction can be found here.

6.15. Configuring Cluster Configuration Push
This may be the most exciting new feature in Spring Data Geode.

When a client application class is annotated with @EnableClusterConfiguration, any Regions or
Indexes defined and declared as beans in the Spring context by the client application are "pushed"
to the cluster of servers to which the client is connected. Not only that, but this "push" is performed
in such a way that Apache Geode will remember the configuration pushed by the client. If all the
nodes in the cluster go down, they will come back up with the same configuration as before.

In a sense, this feature is not much different than if a user were to use Gfsh to create the Regions
and Indexes on all the servers in the cluster. Except now, with Spring Data Geode, users does not
need to use Gfsh to create Regions and Indexes. The user’s Spring Boot application, enabled with the
power of Spring Data Geode, already contains all the configuration meta-data SDG needs to create
Regions and Indexes for the user.

When users are using the Spring Data Repository abstraction, we know all the Regions (e.g. @Region
annotated entity types) and Indexes (e.g. @Indexed annotated entity fields and properties) that the
users' application will need. When users are using Spring’s Cache Abstraction, we also know all the
Regions for all the caches identified in the caching annotations that the application is going to need.
Essentially, the user is already telling us everything we need to know just by developing her
application with the entire Spring Framework and all of its provided services, infrastructure, etc,
whether expressed in Annotation meta-data, Java, XML or otherwise, and whether for

94

https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-jsr-107
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache-jsr-107
https://docs.spring.io/spring/docs/current/spring-framework-reference/integration.html#cache

configuration, for mapping, or whatever purpose.

The user can focus on her application business logic along with using the framework provided
services and supporting infrastructure (e.g. Spring Data Repositories, Spring’s Transaction
Management, Spring Caching, etc) and Spring Data Geode will take care of all the Apache Geode
plumbing required by those framework services on the user’s behalf.

Pushing configuration from the client to the servers in the cluster and having the cluster remember
it is made possible in part by the use of Apache Geode’s Cluster Configuration service. Apache
Geode’s Cluster Configuration service is also the same service used by Gfsh to record schema-related
changes issued by the user to the cluster from the shell.

Of course, since the cluster "remembers" the prior configuration pushed by a client from a previous
run perhaps, Spring Data Geode is careful not to stomp on any existing Regions and Indexes already
defined in the servers. This is especially important when Regions already contain data.

NOTE

Currently there is no option to overwrite any existing Region or Index definitions.
To recreate a Region or Index, the user must use Gfsh to destroy the Region or Index
first and then restart the client application so that configuration will be pushed up
to the server again. Alternatively a user can just use Gfsh to (re-)define the Regions
and Indexes manually.

NOTE
Unlike Gfsh, Spring Data Geode only supports the creation of Regions and Indexes
on the servers from a client. For advanced configuration and use cases, Gfsh should
be used to manage the cluster.

For a moment, imagine the power expressed in the following configuration…

Spring ClientCache application

@SpringBootApplication
@ClientCacheApplication
@EnableCachingDefinedRegions
@EnableEntityDefinedRegions
@EnableIndexing
@EnableGemfireCaching
@EnableGemfireRepositories
@EnableClusterConfiguration
class ClientApplication { .. }

An application developer instantly gets a Spring Boot, Apache Geode ClientCache application using
Spring Data Repositories with Spring’s Cache Abstraction, using Apache Geode as the caching
provider, where Regions and Indexes are not only created on the client, but pushed to the servers
in the cluster.

All the application developer need do is define the application’s domain model objects annotated
with mapping and Index annotations, define Repository interfaces supporting basic data access
operations and querying for each of the entity types, define the service components containing the
business logic manipulating the entities, declare the appropriate annotations on service methods

95

http://geode.apache.org/docs/guide/12/configuring/cluster_config/gfsh_persist.html

that require caching, transactional behavior, etc, and the developer is in business. Nothing the user
did in this case pertains to infrastructure and plumbing required in the application’s back-end
services (e.g. Apache Geode). Database users have similar features, no Spring, Apache Geode
developers can too.

When combined with a couple more Spring Data Geode Annotations…

• @EnableContinuousQueries

• @EnableGemfireFunctionExecutions

• @EnableGemfireCacheTransactions

Then, the application is really going to start to take flight.

See the @EnableClusterConfiguration annotation Javadoc for more details.

6.16. Configuring Security
Without a doubt, application Security is extremely important and Spring Data Geode provides
comprehensive support for securing both Apache Geode clients and servers.

Recently, Apache Geode introduced a new Integrated Security framework, replacing its old
Authentication and Authorization Security model, for handling authentication and authorization.
One of the main features and benefits of this new Security framework is that it integrates with
Apache Shiro and can therefore delegate both authentication and authorization requests to Apache
Shiro when enforcing security.

The following demonstrates how Spring Data Geode can simplify Apache Geode’s Security story
even further.

6.16.1. Configuring Server Security

There are several different ways in which a user can configure Security for servers in an Apache
Geode cluster.

1. Implement the Apache Geode org.apache.geode.security.SecurityManager interface and set
Apache Geode’s security-manager property to refer to your application SecurityManager

implementation by the FQCN. Alternatively, users can construct and initialize an instance of
their SecurityManager implementation and set it with
CacheFactory.setSecurityManager(:SecurityManager) method when creating an instance of an
Apache Geode peer Cache.

2. Create an Apache Shiro shiro.ini file with the users, roles and permissions defined for your
application, then set the Apache Geode security-shiro-init property to refer to this shiro.ini
file, which must be available in the CLASSPATH.

3. Using just Apache Shiro, annotate your Spring Boot application class with Spring Data Geode’s
new @EnableSecurity annotation and define 1 or more Apache Shiro Realms (as needed) as beans
in the Spring context for accessing your application’s Security meta-data (i.e. authorized users,
roles and permissions), and your done!

The problem with the first approach is that a user must implement his/her own SecurityManager,

96

http://geode.apache.org/docs/guide/12/managing/security/implementing_security.html
https://shiro.apache.org/
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheFactory.html#setSecurityManager-org.apache.geode.security.SecurityManager-
https://shiro.apache.org/configuration.html
https://shiro.apache.org/realm.html

which can be quite tedious and error prone. Implementing a custom SecurityManager does afford a
user some flexibility in accessing Security meta-data from whatever data source stores the meta-
data, such as LDAP or even a proprietary, internal data source, but then that is a problem already
solved by configuring and using Apache Shiro Realms, which is more universally known and non-
Apache Geode specific.

TIP
See Apache Geode’s Security examples for Authentication and Authorization as 1
possible way to implement your own custom, application specific SecurityManager.

The second approach using an Apache Shiro INI file is marginally better, but a user still needs to be
familiar with the INI file format in the first place. Additionally, an INI file is static and not easily
updatable at runtime.

The third approach is the most ideal since it adheres to widely known and industry accepted
concepts (i.e. Apache Shiro’s Security framework) and is easy to setup…

Spring server application using Apache Shiro

@SpringBootApplication
@CacheServerApplication
@EnableSecurity
class ServerApplication {

 @Bean
 PropertiesRealm shiroRealm() {
 PropertiesRealm propertiesRealm = new PropertiesRealm();
 propertiesRealm.setResourcePath("classpath:shiro.properties");
 propertiesRealm.setPermissionResolver(new GeodePermissionResolver());
 return propertiesRealm;
 }
}

NOTE

The configured Realm shown in the example above could have easily been any of
Apache Shiro’s supported Realms out-of-the-box (ActiveDirectory, JDBC, JNDI, LDAP,
or even a Realm supporting the INI format) or even a custom implementation of an
Apache Shiro Realm implemented by the user. See Apache Shiro’s documentation on
Realms for more details.

When Apache Shiro is on the CLASSPATH of the servers in the cluster and 1 or more Apache Shiro
Realms have been defined as beans in the Spring context, Spring Data Geode will detect this
configuration and use Apache Shiro as the Security provider to secure your Apache Geode servers
when the @EnableSecurity annotation is used.

TIP
Earlier, information was posted on Spring Data Geode’s support for Apache Geode’s
new Integrated Security framework using Apache Shiro in this spring.io blob post.

See the @EnableSecurity annotation Javadoc for more details on available attributes and associated
configuration properties.

97

http://geode.apache.org/docs/guide/12/managing/security/authentication_examples.html
http://geode.apache.org/docs/guide/12/managing/security/authorization_example.html
https://shiro.apache.org/static/1.3.2/apidocs/org/apache/shiro/realm/activedirectory/package-frame.html
https://shiro.apache.org/static/1.3.2/apidocs/org/apache/shiro/realm/jdbc/package-frame.html
https://shiro.apache.org/static/1.3.2/apidocs/org/apache/shiro/realm/jndi/package-frame.html
https://shiro.apache.org/static/1.3.2/apidocs/org/apache/shiro/realm/ldap/package-frame.html
https://shiro.apache.org/static/1.3.2/apidocs/org/apache/shiro/realm/text/IniRealm.html
https://shiro.apache.org/realm.html
https://shiro.apache.org/realm.html
https://spring.io/blog/2016/11/10/spring-data-geode-1-0-0-incubating-release-released

More details on Apache Geode Security can be found here.

6.16.2. Configuring Client Security

The Security story would not be complete without discussing how to secure Spring-based, Apache
Geode cache client applications.

Apache Geode’s process to securing a client application is, well, rather involved. In a nutshell, a
user essentially needs to…

1. Provide an implementation of the org.apache.geode.security.AuthInitialize interface.

2. Set the Apache Geode security-client-auth-init (System) property to refer to the custom,
application-provided AuthInitialize interface.

3. And finally, a user would typically specify the user credentials in a proprietary, Apache Geode
gfsecurity.properties file.

Spring Data Geode simplifies all of that using the same @EnableSecurity annotation as applied to
server applications. In other words, the same @EnableSecurity annotation handles Security for both
client and server applications. This makes it easier for users when they decide to switch their
applications from an embedded peer Cache application to a ClientCache application, for instance.
Simply change the SDG annotation from @PeerCacheApplication or @CacheServerApplication to
@ClientCacheApplication and you are done.

Effectively, all a user need do on the client is…

Spring client application using @EnableSecurity

@SpringBootApplication
@ClientCacheApplication
@EnableSecurity
class ClientApplication { .. }

Then define the familiar Spring Boot application.properties file containing the required username
and password Security properties and you are all set.

Spring Boot application.properties file with the required Security credentials

spring.data.gemfire.security.username=jackBlack
spring.data.gemfire.security.password=b@cK!nB1@cK

That was easy!

TIP
By default, Spring Boot can find an application.properties file when placed in the root
of the application’s CLASSPATH. Of course, Spring supports may ways to to locate
resources using its Resource abstraction.

See the @EnableSecurity annotation Javadoc for more details on available attributes and associated
configuration properties.

98

http://geode.apache.org/docs/guide/12/managing/security/chapter_overview.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/security/AuthInitialize.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#resources

More details on Apache Geode Security can be found here.

6.17. Configuration Tips
The following tips will help users get the most out of using the new Annotation-based configuration
model.

6.18. Configuration Organization
As we saw in the section on Configuring Cluster Configuration Push, when many Apache Geode
and/or Spring Data Geode features are enabled using Annotations, we start to stack a lot of
Annotations on the Spring @Configuration or @SpringBootApplication class. In this situation, it makes
sense to start compartmentalizing the configuration a bit.

For instance, given…

Spring ClientCache application with the kitcken sink to boot

@SpringBootApplication
@ClientCacheApplication
@EnableContinuousQueries
@EnableCachingDefinedRegions
@EnableEntityDefinedRegions
@EnableIndexing
@EnableGemfireCaching
@EnableGemfireFunctionExecutions
@EnableGemfireRepositories
@EnableGemfireCacheTransactions
@EnableClusterConfiguration
class ClientApplication { .. }

We could break this configuration down by concern. For example…

99

http://geode.apache.org/docs/guide/12/managing/security/chapter_overview.html

Spring ClientCache application with the kitcken sink to boot

@SpringBootApplication
@Import({ CachingConfiguration.class, GeodeConfiguration.class,
 QueriesAndFunctionsConfiguration.class, RepositoryConfiguration.class })
class ClientApplication { .. }

@EnableGemfireCaching
@EnableCachingDefinedRegions
class CachingConfiguration { .. }

@ClientCacheApplication
@EnableClusterConfiguration
@EnableGemfireCacheTransactions
class GeodeConfiguration { .. }

@EnableContinuousQueries
@EnableGemfireFunctionExecutions
class QueriesAndFunctionsConfiguration {

 @ContinuousQuery(..)
 void processCqEvent(CqEvent event) {
 ...
 }
}

@EnableGemfireRepositories
@EnableEntityDefinedRegions
@EnableIndexing
class RepositoryConfiguration { .. }

Spring does not care. Organize your application configuration as you see fit.

6.19. Additional Configuration-based Annotations
SDG Annotations you never heard of…

The following SDG Annotations were not discussed in this reference documentation either because
the Annotation supports a deprecated feature of Apache Geode, or there are better, alternative
ways to accomplishing the function that the Annotation provides.

• @EnableAuth - enable Apache Geode’s old Authentication/Authorization Security model.
(Deprecated; use Apache Geode’s new Integrated Security framework discussed here).

• @EnableAutoRegionLookup - Not recommended. Essentially, this Annotation supports finding
Regions defined in external configuration meta-data (e.g. cache.xml, or Cluster Configuration
when applied to a server) and registers those Regions as beans in the Spring context
automatically. Users should generally prefer Spring config when using Spring and Spring Data
Geode. See Configuring Regions and Configuring Cluster Configuration Push instead.

100

• @EnableBeanFactoryLocator - enables the SDG GemfireBeanFactoryLocator feature, which is only
useful, again, when using external configuration meta-data (e.g. cache.xml). For example, if a
user defines a CacheLoader on a Region defined in cache.xml, the user can still auto-wire this
CacheLoader with say, a relational database DataSource bean defined in Spring confif. This
Annotation takes advantage of this SDG feature and might be useful for users who have a large
amount of legacy configuration meta-data, like cache.xml files.

• @EnableGemFireAsLastResource - is actually discussed in Global - JTA Transaction Management
with Apache Geode.

• @EnableMcast - enables Apache Geode’s old peer discovery mechanism using UDP-based Multi-
cast Networking. (Deprecated; users should be using Apache Geode Locators instead; see
Configuring Locators.

• @EnableRegionDataAccessTracing - is useful for debugging purposes; the Annotation enables
tracing for all data access operations performed on a Region by registering an AOP Aspect that
proxies all Regions declared as beans in the Spring context, intercepting the Region op and
logging the event.

6.20. Conclusion
As we learned in the previous sections, there is a tremendous amount of power provided by Spring
Data Geode's new Annotation-based configuration model. Hopefully, it lives up to its goal of making
it easier for users to get started quickly when using Apache Geode with Spring.

Keep in mind when using the new Annotations that it does not preclude you, the application
developer, from using Java config, or even XML, if you prefer. You can even combine all 3
approaches by using Spring’s @Import and @ImportResource annotations on a Spring @Configuration
or @SpringBootApplication class, if you like. The moment you explicitly provide a bean definition
that would otherwise be provided by Spring Data Geode using an Annotation, the Annotation-based
configuration backs away.

In certain cases you may even need to fallback to Java config, as in the Configurers case, to handle
more complex or conditional configuration logic that is not easily expressed in or cannot be
accomplished using Annotations. Do not be alarmed; this is to be expected.

For example, another case where Java config or XML will be needed is when configuring Apache
Geode WAN components, which currently do not have any Annotation configuration support.
However, defining and registering WAN components is as simple as using the
org.springframework.data.gemfire.wan.GatewaReceiverFactoryBean and
org.springframework.data.gemfire.wan.GatewaySenderFactoryBean API classes in Java configuration
on your Spring @Configuration or @SpringBootApplication classes (recommended).

The Annotations were not meant to handle every situation; the Annotations were meant to help
application developers get up and running as quickly and as easily as possible, especially during
development.

101

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/Import.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/ImportResource.html

Chapter 7. Working with Apache Geode APIs
Once the Apache Geode Cache and Regions have been configured, they can be injected and used
inside application objects. This chapter describes the integration with Spring’s Transaction
Management functionality and DAO exception hierarchy. This chapter also covers support for
dependency injection of Geode managed objects.

7.1. GemfireTemplate
As with many other high-level abstractions provided by Spring projects, Spring Data Geode provides
a template to simplify Geode data access. The class provides several one-liner methods containing
common Region operations, but also has the ability to execute code against the native Geode API
without having to deal with Geode checked exceptions by using a GemfireCallback.

The template class requires a Geode Region instance, and once configured, is thread-safe and can be
reused across multiple application classes:

<bean id="gemfireTemplate" class="org.springframework.data.gemfire.GemfireTemplate"
p:region-ref="SomeRegion"/>

Once the template is configured, a developer can use it alongside GemfireCallback to work directly
with the Geode Region without having to deal with checked exceptions, threading or resource
management concerns:

template.execute(new GemfireCallback<Iterable<String>>() {
 public Iterable<String> doInGemfire(Region region) throws GemFireCheckedException,
GemFireException {
 Region<String, String> localRegion = (Region<String, String>) region;

 localRegion.put("1", "one");
 localRegion.put("3", "three");

 return localRegion.query("length < 5");
 }
});

For accessing the full power of the Apache Geode query language, a developer can use the find and
findUnique methods, which, as opposed to the query method, can execute queries across multiple
Regions, execute projections, and the like.

The find method should be used when the query selects multiple items (through`SelectResults`)
and the latter, findUnique, as the name suggests, when only one object is returned.

7.2. Exception Translation
Using a new data access technology requires not only accommodating a new API but also handling

102

exceptions specific to that technology.

To accommodate the exception handling case, the Spring Framework provides a technology
agnostic and consistent exception hierarchy that abstracts the application from proprietary, and
usually "checked", exceptions to a set of focused runtime exceptions.

As mentioned in Spring Framework’s documentation, Exception translation can be applied
transparently to your Data Access Objects (DAO) through the use of the @Repository annotation and
AOP by defining a PersistenceExceptionTranslationPostProcessor bean. The same exception
translation functionality is enabled when using Geode as long as the CacheFactoryBean is declared,
e.g. using either a <gfe:cache/> or <gfe:client-cache> declaration, which acts as an exception
translator and is automatically detected by the Spring infrastructure and used accordingly.

7.3. Local, Cache Transaction Management
One of the most popular features of the Spring Framework is Transaction Management.

If you are not familiar with Spring’s transaction abstraction then we strongly recommend reading
about Spring’s Transaction Management infrastructure as it offers a consistent programming model
that works transparently across multiple APIs and can be configured either programmatically or
declaratively (the most popular choice).

For Apache Geode, Spring Data Geode provides a dedicated, per-cache, PlatformTransactionManager
that, once declared, allows Region operations to be executed atomically through Spring:

<gfe:transaction-manager id="txManager" cache-ref="myCache"/>

NOTE

The example above can be simplified even further by eliminating the cache-ref
attribute if the Geode cache is defined under the default name, gemfireCache. As
with the other Spring Data Geode namespace elements, if the cache bean name is
not configured, the aforementioned naming convention will be used. Additionally,
the transaction manager name is “gemfireTransactionManager” if not explicitly
specified.

Currently, Apache Geode supports optimistic transactions with read committed isolation.
Furthermore, to guarantee this isolation, developers should avoid making in-place changes that
manually modify values present in the cache. To prevent this from happening, the transaction
manager configures the cache to use copy on read semantics by default, meaning a clone of the
actual value is created each time a read is performed. This behavior can be disabled if needed
through the copyOnRead property.

For more information on the semantics and behavior of the underlying Geode transaction manager,
please refer to the Geode CacheTransactionManager Javadoc as well as the documentation.

7.4. Global, JTA Transaction Management
It is also possible for Apache Geode to participate in a Global, JTA based transaction, such as a

103

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#dao-exceptions
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#orm-exception-translation
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#transaction
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#transaction-motivation
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/CacheTransactionManager.html
http://geode.apache.org/docs/guide/11/developing/transactions/chapter_overview.html

transaction managed by an Java EE Application Server (e.g. WebSphere Application Server, a.k.a.
WAS) using Container Managed Transactions (CMT) along with other JTA resources.

However, unlike many other JTA "compliant" resources (e.g. JMS Message Brokers like ActiveMQ),
Apache Geode is not an XA compliant resource. Therefore, Apache Geode must be positioned as the
"Last Resource" in a JTA transaction (prepare phase) since it does not implement the 2-phase commit
protocol, or rather does not handle distributed transactions.

Many managed environments with CMT maintain support for "Last Resource", non-XA compliant
resources in JTA transactions though it is not actually required in the JTA spec. More information
on what a non-XA compliant, "Last Resource" means can be found in Red Hat’s documentation. In
fact, Red Hat’s JBoss project, Narayana is one such LGPL Open Source implementation. Narayana
refers to this as "Last Resource Commit Optimization" (LRCO). More details can be found here.

However, whether you are using Apache Geode in a standalone environment with an Open Source
JTA Transaction Management implementation that supports "Last Resource", or a managed
environment (e.g. Java EE AS such as WAS), Spring Data Geode has you covered.

There are a series of steps you must complete to properly use Apache Geode as a "Last Resource" in
a JTA transaction involving more than 1 transactional resource. Additionally, there can only be 1
non-XA compliant resource (e.g. Apache Geode) in such an arrangement.

1) First, you must complete Steps 1-4 in Geode’s documentation here.

NOTE
#1 above is independent of your Spring [Boot] and/or [Data Geode] application and
must be completed successfully.

2) Referring to Step 5 in Geode’s documentation, Spring Data Geode’s Annotation support will
attempt to set the GemFireCache, copyOnRead property for you when using the
@EnableGemFireAsLastResource annotation.

However, if SDG’s auto-configuration is unsuccessful then you must explicitly set the copy-on-read
attribute on the <gfe:cache> or <gfe:client-cache> element in XML or the copyOnRead property of the
SDG CacheFactoryBean class in JavaConfig to true. For example…

Peer Cache XML:

 <gfe:cache ... copy-on-read="true"/>

Peer Cache JavaConfig:

104

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/5/html/Administration_And_Configuration_Guide/lrco-overview.html
http://narayana.io/
http://narayana.io//docs/project/index.html#d0e1859
http://geode.apache.org/docs/guide/11/developing/transactions/JTA_transactions.html#task_sln_x3b_wk
http://geode.apache.org/docs/guide/11/developing/transactions/JTA_transactions.html#task_sln_x3b_wk
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/GemFireCache.html#setCopyOnRead-boolean-

 @Bean
 CacheFacatoryBean gemfireCache() {

 CacheFactoryBean gemfireCache = new CacheFactoryBean();

 gemfireCache.setClose(true);
 gemfireCache.setCopyOnRead(true);

 return gemfireCache;
 }

Client Cache XML:

 <gfe:client-cache ... copy-on-read="true"/>

Client Cache JavaConfig:

 @Bean
 ClientCacheFacatoryBean gemfireCache() {

 ClientCacheFactoryBean gemfireCache = new ClientCacheFactoryBean();

 gemfireCache.setClose(true);
 gemfireCache.setCopyOnRead(true);

 return gemfireCache;
 }

NOTE
explicitly setting the copy-on-read attribute or optionally the copyOnRead property
really should not be necessary.

3) At this point, you skip Steps 6-8 in Geode’s documentation and let Spring Data Geode work its
magic. All you need do is annotate your Spring @Configuration class with Spring Data Geode’s new
@EnableGemFireAsLastResource annotation and a combination of Spring’s Transaction Management
infrastructure and Spring Data Geode’s @EnableGemFireAsLastResource configuration does the trick.

The configuration looks like this…

@Configuration
@EnableGemFireAsLastResource
@EnableTransactionManagement(order = 1)
class GeodeConfiguration {

 ...
}

105

http://geode.apache.org/docs/guide/11/developing/transactions/JTA_transactions.html#task_sln_x3b_wk
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#transaction

The only requirements are…

3.1) The @EnableGemFireAsLastResource annotation must be declared on the same Spring
@Configuration class where Spring’s @EnableTransactionManagement annotation is also specified.

3.2) The order attribute of the @EnableTransactionManagement annotation must be explicitly set to an
integer value that is not Integer.MAX_VALUE or Integer.MIN_VALUE (defaults to Integer.MAX_VALUE).

Of course, hopefully you are aware that you also need to configure Spring’s JtaTransactionManager
when using JTA Transactions like so..

@Bean
public JtaTransactionManager transactionManager(UserTransaction userTransaction) {

 JtaTransactionManager transactionManager = new JtaTransactionManager();

 transactionManager.setUserTransaction(userTransaction);

 return transactionManager;
}

NOTE

The configuration in section Local, Cache Transaction Management does not apply
here. The use of Spring Data Geode’s GemfireTransactionManager is applicable only in
"Local", Cache Transactions, not "Global", JTA Transactions. Therefore, you do not
configure the SDG GemfireTransactionManager in this case. You configure Spring’s
JtaTransactionManager as shown above.

For more details on using Spring’s Transaction Management with JTA, see here.

Effectively, Spring Data Geode’s @EnableGemFireAsLastResource annotation imports configuration
containing 2 Aspect bean definitions that handles the Geode
o.a.g.ra.GFConnectionFactory.getConnection() and o.a.g.ra.GFConnection.close() operations at the
appropriate points during the transactional operation.

Specifically, the correct sequence of events are…

1. jtaTransation.begin()

2. GFConnectionFactory.getConnection()

3. Call the application’s @Transactional service method

4. Either jtaTransaction.commit() or jtaTransaction.rollback()

5. Finally, GFConnection.close()

This is consistent with how you, as the application developer, would code this manually if you had
to use the JTA API + Geode API yourself, as shown in the Geode example.

Thankfully, Spring does the heavy lifting for you and all you need do after applying the appropriate
configuration (shown above) is…

106

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#transaction-application-server-integration
http://geode.apache.org/docs/guide/11/developing/transactions/jca_adapter_example.html#concept_swv_z2p_wk

@Service
class MyTransactionalService ... {

 @Transactional
 public <Return-Type> someTransactionalMethod() {
 // perform business logic interacting with and accessing multiple JTA resources
atomically, here
 }

 ...
}

#1 & #4 above are appropriately handled for you by Spring’s JTA based PlatformTransactionManager
once the @Transactional boundary is entered by your application (i.e. when the
MyTransactionSerivce.someTransactionalMethod() is called).

#2 & #3 are handled by Spring Data Geode’s new Aspects enabled with the
@EnableGemFireAsLastResource annotation.

#3 of course is the responsibility of your application.

Indeed, with the appropriate logging configured, you will see the correct sequence of events…

2017-Jun-22 11:11:37 TRACE TransactionInterceptor - Getting transaction for
[example.app.service.MessageService.send]

2017-Jun-22 11:11:37 TRACE GemFireAsLastResourceConnectionAcquiringAspect - Acquiring
GemFire Connection
from GemFire JCA ResourceAdapter registered at [gfe/jca]

2017-Jun-22 11:11:37 TRACE MessageService - PRODUCER [Message :
[{ @type = example.app.domain.Message, id= MSG0000000000, message = SENT }],
JSON : [{"id":"MSG0000000000","message":"SENT"}]]

2017-Jun-22 11:11:37 TRACE TransactionInterceptor - Completing transaction for
[example.app.service.MessageService.send]

2017-Jun-22 11:11:37 TRACE GemFireAsLastResourceConnectionClosingAspect - Closed
GemFire Connection @ [Reference [...]]

For more details on using Apache Geode in JTA transactions, see here.

For more details on configuring Apache Geode as a "Last Resource", see here.

7.5. Continuous Query (CQ)
A powerful functionality offered by Apache Geode is Continuous Query (or CQ). In short, CQ allows
one to create and register an OQL query, and then automatically be notified when new data that

107

http://geode.apache.org/docs/guide/11/developing/transactions/JTA_transactions.html
http://geode.apache.org/docs/guide/11/developing/transactions/JTA_transactions.html#concept_csy_vfb_wk
http://geode.apache.org/docs/guide/11/developing/continuous_querying/chapter_overview.html

gets added to Geode matches the query predicate. Spring Data Geode provides dedicated support for
CQs through the org.springframework.data.gemfire.listener package and its listener container;
very similar in functionality and naming to the JMS integration in the Spring Framework; in fact,
users familiar with the JMS support in Spring, should feel right at home.

Basically Spring Data Geode allows methods on POJOs to become end-points for CQ. Simply define
the query and indicate the method that should be called to be notified when there is a match.
Spring Data Geode takes care of the rest. This is very similar to Java EE’s message-driven bean style,
but without any requirement for base class or interface implementations, based on Apache Geode.

NOTE
Currently, Continuous Query is only supported in Geode’s client/server topology.
Additionally, the client Pool used is required to have the subscription enabled.
Please refer to the Geode documentation for more information.

7.5.1. Continuous Query Listener Container

Spring Data Geode simplifies creation, registration, life-cycle and dispatch of CQ events by taking
care of the infrastructure around CQ with the use of SDG’s ContinuousQueryListenerContainer, which
does all the heavy lifting on behalf of the user. Users familiar with EJB and JMS should find the
concepts familiar as it is designed as close as possible to the support provided in the Spring
Framework with its Message-driven POJOs (MDPs).

The SDG ContinuousQueryListenerContainer acts as an event (or message) listener container; it is
used to receive the events from the registered CQs and invoke the POJOs that are injected into it.
The listener container is responsible for all threading of message reception and dispatches into the
listener for processing. It acts as the intermediary between an EDP (Event-driven POJO) and the
event provider and takes care of creation and registration of CQs (to receive events), resource
acquisition and release, exception conversion and the like. This allows you, as an application
developer, to write the (possibly complex) business logic associated with receiving an event (and
reacting to it), and delegate the boilerplate Geode infrastructure concerns to the framework.

The listener container is fully customizable. A developer can chose either to use the CQ thread to
perform the dispatch (synchronous delivery) or a new thread (from an existing pool) for an
asynchronous approach by defining the suitable java.util.concurrent.Executor (or Spring’s
TaskExecutor). Depending on the load, the number of listeners or the runtime environment, the
developer should change or tweak the executor to better serve her needs. In particular, in managed
environments (such as app servers), it is highly recommended to pick a proper TaskExecutor to take
advantage of its runtime.

7.5.2. The ContinuousQueryListener and ContinuousQueryListenerAdapter

The ContinuousQueryListenerAdapter class is the final component in Spring Data Geode CQ support.
In a nutshell, class allows you to expose almost any implementing class as an EDP with minimal
constraints. ContinuousQueryListenerAdapter implements the ContinuousQueryListener interface, a
simple listener interface similar to Geode’s CqListener.

Consider the following interface definition. Notice the various event handling methods and their
parameters:

108

http://geode.apache.org/docs/guide/11/developing/continuous_querying/implementing_continuous_querying.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/query/CqListener.html

public interface EventDelegate {
 void handleEvent(CqEvent event);
 void handleEvent(Operation baseOp);
 void handleEvent(Object key);
 void handleEvent(Object key, Object newValue);
 void handleEvent(Throwable throwable);
 void handleQuery(CqQuery cq);
 void handleEvent(CqEvent event, Operation baseOp, byte[] deltaValue);
 void handleEvent(CqEvent event, Operation baseOp, Operation queryOp, Object key,
Object newValue);
}

package example;

class DefaultEventDelegate implements EventDelegate {
 // implementation elided for clarity...
}

In particular, note how the above implementation of the EventDelegate interface has no Geode
dependencies at all. It truly is a POJO that we can and will make into an EDP via the following
configuration.

NOTE
the class does not have to implement an interface; an interface is only used to better
showcase the decoupling between the contract and the implementation.

109

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/gemfire
http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
">

 <gfe:client-cache/>

 <gfe:pool subscription-enabled="true">
 <gfe:server host="localhost" port="40404"/>
 </gfe:pool>

 <gfe:cq-listener-container>
 <!-- default handle method -->
 <gfe:listener ref="listener" query="SELECT * FROM /SomeRegion"/>
 <gfe:listener ref="another-listener" query="SELECT * FROM /AnotherRegion" name
="myQuery" method="handleQuery"/>
 </gfe:cq-listener-container>

 <bean id="listener" class="example.DefaultMessageDelegate"/>
 <bean id="another-listener" class="example.DefaultMessageDelegate"/>
 ...
<beans>

NOTE

The example above shows a few of the various forms that a listener can have; at its
minimum, the listener reference and the actual query definition are required. It’s
possible, however, to specify a name for the resulting Continuous Query (useful for
monitoring) but also the name of the method (the default is handleEvent). The
specified method can have various argument types, the EventDelegate interface lists
the allowed types.

The example above uses the Spring Data Geode namespace to declare the event listener container
and automatically register the listeners. The full blown, beans definition is displayed below:

110

<!-- this is the Event Driven POJO (MDP) -->
<bean id="eventListener" class=
"org.springframework.data.gemfire.listener.adapter.ContinuousQueryListenerAdapter">
 <constructor-arg>
 <bean class="gemfireexample.DefaultEventDelegate"/>
 </constructor-arg>
</bean>

<!-- and this is the event listener container... -->
<bean id="gemfireListenerContainer" class=
"org.springframework.data.gemfire.listener.ContinuousQueryListenerContainer">
 <property name="cache" ref="gemfireCache"/>
 <property name="queryListeners">
 <!-- set of CQ listeners -->
 <set>
 <bean class=
"org.springframework.data.gemfire.listener.ContinuousQueryDefinition" >
 <constructor-arg value="SELECT * FROM /SomeRegion" />
 <constructor-arg ref="eventListener"/>
 </bean>
 </set>
 </property>
</bean>

Each time an event is received, the adapter automatically performs type translation between the
Geode event and the required method argument(s) transparently. Any exception caused by the
method invocation is caught and handled by the container (by default, being logged).

7.6. Wiring Declarable Components
Apache Geode XML configuration (usually referred to as cache.xml) allows user objects to be
declared as part of the configuration. Usually these objects are CacheLoaders or other pluggable
callback components supported by Geode. Using native Geode configuration, each user type
declared through XML must implement the Declarable interface, which allows arbitrary
parameters to be passed to the declared class through a Properties instance.

In this section, we describe how you can configure these pluggable components when defined in
cache.xml using Spring while keeping your Cache/Region configuration defined in cache.xml. This
allows your pluggable components to focus on the application logic and not the location or creation
of DataSources or other collaborators.

However, if you are starting a green field project, it is recommended that you configure Cache,
Region, and other pluggable Geode components directly in Spring. This avoids inheriting from the
Declarable interface or the base class presented in this section.

See the following sidebar for more information on this approach.

111

Eliminate Declarable components

A developer can configure custom types entirely through Spring as mentioned in Configuring
a Region. That way, a developer does not have to implement the Declarable interface, and also
benefits from all the features of the Spring IoC container (not just dependency injection but
also life-cycle and instance management).

As an example of configuring a Declarable component using Spring, consider the following
declaration (taken from the Declarable Javadoc):

<cache-loader>
 <class-name>com.company.app.DBLoader</class-name>
 <parameter name="URL">
 <string>jdbc://12.34.56.78/mydb</string>
 </parameter>
</cache-loader>

To simplify the task of parsing, converting the parameters and initializing the object, Spring Data
Geode offers a base class (WiringDeclarableSupport) that allows Geode user objects to be wired
through a template bean definition or, in case that is missing, perform auto-wiring through the
Spring IoC container. To take advantage of this feature, the user objects need to extend
WiringDeclarableSupport, which automatically locates the declaring BeanFactory and performs
wiring as part of the initialization process.

Why is a base class needed?

In the current Geode release there is no concept of an object factory and the types declared
are instantiated and used as is. In other words, there is no easy way to manage object
creation outside Apache Geode.

7.6.1. Configuration using template bean definitions

When used, WiringDeclarableSupport tries to first locate an existing bean definition and use that as
the wiring template. Unless specified, the component class name will be used as an implicit bean
definition name.

Let’s see how our DBLoader declaration would look in that case:

112

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/Declarable.html

class DBLoader extends WiringDeclarableSupport implements CacheLoader {

 private DataSource dataSource;

 public void setDataSource(DataSource dataSource){
 this.dataSource = dataSource;
 }

 public Object load(LoaderHelper helper) { ... }
}

<cache-loader>
 <class-name>com.company.app.DBLoader</class-name>
 <!-- no parameter is passed (use the bean's implicit name, which is the class name)
-->
</cache-loader>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
">

 <bean id="dataSource" ... />

 <!-- template bean definition -->
 <bean id="com.company.app.DBLoader" abstract="true" p:dataSource-ref="dataSource"/>
</beans>

In the scenario above, as no parameter was specified, a bean with the id/name
com.company.app.DBLoader was used as a template for wiring the instance created by Geode. For
cases where the bean name uses a different convention, one can pass in the bean-name parameter in
the Geode configuration:

<cache-loader>
 <class-name>com.company.app.DBLoader</class-name>
 <!-- pass the bean definition template name as parameter -->
 <parameter name="bean-name">
 <string>template-bean</string>
 </parameter>
</cache-loader>

113

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
">

 <bean id="dataSource" ... />

 <!-- template bean definition -->
 <bean id="template-bean" abstract="true" p:dataSource-ref="dataSource"/>

</beans>

NOTE
The template bean definitions do not have to be declared in XML. Any format is
allowed (Groovy, annotations, etc).

7.6.2. Configuration using auto-wiring and annotations

By default, if no bean definition is found, WiringDeclarableSupport will autowire the declaring
instance. This means that unless any dependency injection metadata is offered by the instance, the
container will find the object setters and try to automatically satisfy these dependencies. However,
a developer can also use JDK 5 annotations to provide additional information to the auto-wiring
process.

TIP
We strongly recommend reading the dedicated chapter in the Spring documentation
for more information on the supported annotations and enabling factors.

For example, the hypothetical DBLoader declaration above can be injected with a Spring-configured
DataSource in the following way:

class DBLoader extends WiringDeclarableSupport implements CacheLoader {

 // use annotations to 'mark' the needed dependencies
 @javax.inject.Inject
 private DataSource dataSource;

 public Object load(LoaderHelper helper) { ... }
}

114

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-factory-autowire
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-annotation-config

<cache-loader>
 <class-name>com.company.app.DBLoader</class-name>
 <!-- no need to declare any parameters since the class is auto-wired -->
</cache-loader>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
">

 <!-- enable annotation processing -->
 <context:annotation-config/>

</beans>

By using the JSR-330 annotations, the CacheLoader code has been simplified since the location and
creation of the DataSource has been externalized and the user code is concerned only with the
loading process. The DataSource might be transactional, created lazily, shared between multiple
objects or retrieved from JNDI. These aspects can easily be configured and changed through the
Spring container without touching the DBLoader code.

7.7. Support for the Spring Cache Abstraction
Spring Data Geode provides an implementation of the Spring Cache Abstraction to position Apache
Geode as a caching provider in Spring’s caching infrastructure.

To use Apache Geode as a backing implementation, a "caching provider" in Spring’s Cache
Abstraction, simply add GemfireCacheManager to your configuration:

115

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#cache

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/gemfire
http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
 http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd">

 <!-- enable declarative caching -->
 <cache:annotation-driven/>

 <gfe:cache id="gemfire-cache"/>

 <!-- declare GemfireCacheManager; must have a bean ID of 'cacheManager' -->
 <bean id="cacheManager" class=
"org.springframework.data.gemfire.cache.GemfireCacheManager"
 p:cache-ref="gemfire-cache">

</beans>

NOTE
The cache-ref attribute on the CacheManager bean definition is not necessary if the
default cache bean name is used (i.e. "gemfireCache"), i.e. <gfe:cache> without an
explicit ID.

When the GemfireCacheManager (Singleton) bean instance is declared and declarative caching is
enabled (either in XML with <cache:annotation-driven/> or in JavaConfig with Spring’s
@EnableCaching annotation), the Spring caching annotations (e.g. @Cacheable) identify the "caches"
that will cache data in-memory using Geode Regions.

These caches (i.e. Regions) must exist before the caching annotations that use them otherwise an
error will occur.

By way of example, suppose you have a Customer Service application with a CustomerService
application component that performs caching…

@Service
class CustomerService {

@Cacheable(cacheNames="Accounts", key="#customer.id")
Account createAccount(Customer customer) {
 ...
}

Then you will need the following config.

116

XML:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/gemfire
http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
 http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd">

 <!-- enable declarative caching -->
 <cache:annotation-driven/>

 <bean id="cacheManager" class=
"org.springframework.data.gemfire.cache.GemfireCacheManager">

 <gfe:cache/>

 <gfe:partitioned-region id="accountsRegion" name="Accounts" persistent="true" ...>
 ...
 </gfe:partitioned-region>
</beans>

JavaConfig:

117

@Configuration
@EnableCaching
class ApplicationConfiguration {

 @Bean
 CacheFactoryBean gemfireCache() {
 return new CacheFactoryBean();
 }

 @Bean
 GemfireCacheManager cacheManager() {
 GemfireCacheManager cacheManager = GemfireCacheManager();
 cacheManager.setCache(gemfireCache());
 return cacheManager;
 }

 @Bean("Accounts")
 PartitionedRegionFactoryBean accountsRegion() {
 PartitionedRegionFactoryBean accounts = new PartitionedRegionFactoryBean();

 accounts.setCache(gemfireCache());
 accounts.setClose(false);
 accounts.setPersistent(true);

 return accounts;
 }
}

Of course, you are free to choose whatever Region type you like (e.g. REPLICATE, PARTITION,
LOCAL, etc).

For more details on Spring’s Cache Abstraction, again, please refer to the documentation.

118

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#cache

Chapter 8. Working with Apache Geode
Serialization
To improve overall performance of the Apache Geode In-memory Data Grid, Geode supports a
dedicated serialization protocol, called PDX, that is both faster and offers more compact results
over standard Java serialization in addition to works transparently across various language
platforms (Java, C++, .NET). Please refer to PDX Serialization Features and PDX Serialization
Internals for more details.

This chapter discusses the various ways in which Spring Data Geode simplifies and improves
Geode’s custom serialization in Java.

8.1. Wiring deserialized instances
It is fairly common for serialized objects to have transient data. Transient data is often dependent
on the system or environment where it lives at a certain point in time. For instance, a DataSource is
environment specific. Serializing such information is useless, and potentially even dangerous, since
it is local to a certain VM/machine. For such cases, Spring Data Geode offers a special Instantiator
that performs wiring for each new instance created by Geode during deserialization.

Through such a mechanism, one can rely on the Spring container to inject and manage certain
dependencies making it easy to split transient from persistent data and have rich domain objects
in a transparent manner.

Spring users might find this approach similar to that of @Configurable). The WiringInstantiator
works just like WiringDeclarableSupport, trying to first locate a bean definition as a wiring template
and falling back to autowiring otherwise.

Please refer to the previous section (Wiring Declarable Components) for more details on wiring
functionality.

To use this SDG Instantiator, simply declare it as a bean:

<bean id="instantiator" class=
"org.springframework.data.gemfire.serialization.WiringInstantiator">
 <!-- DataSerializable type -->
 <constructor-arg>org.pkg.SomeDataSerializableClass</constructor-arg>
 <!-- type id -->
 <constructor-arg>95</constructor-arg>
</bean>

During the Spring container startup, once it is being initialized, the Instantiator will, by default,
register itself with the Geode serialization system and perform wiring on all instances of
SomeDataSerializableClass created by Geode during deserialization.

119

http://geode.apache.org/docs/guide/11/developing/data_serialization/PDX_Serialization_Features.html
https://cwiki.apache.org/confluence/display/GEODE/PDX+Serialization+Internals
https://cwiki.apache.org/confluence/display/GEODE/PDX+Serialization+Internals
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/Instantiator.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#aop-atconfigurable

8.2. Auto-generating custom Instantiators
For data intensive applications, a large number of instances might be created on each machine as
data flows in. Out-of-the-box, Geode uses reflection to create new types, but for some scenarios, this
might prove to be expensive. As always, it is good to perform profiling to quantify whether this is
the case or not. For such cases, Spring Data Geode allows the automatic generation of Instatiator
classes which instantiate a new type (using the default constructor) without the use of reflection:

<bean id="instantiatorFactory" class=
"org.springframework.data.gemfire.serialization.InstantiatorFactoryBean">
 <property name="customTypes">
 <map>
 <entry key="org.pkg.CustomTypeA" value="1025"/>
 <entry key="org.pkg.CustomTypeB" value="1026"/>
 </map>
 </property>
</bean>

The definition above, automatically generates two Instantiators for two classes, namely
CustomTypeA and CustomTypeB and registers them with Geode, under user id 1025 and 1026. The two
Instantiators avoid the use of reflection and create the instances directly through Java code.

120

Chapter 9. POJO mapping

9.1. Entity Mapping
Spring Data Geode provides support to map entities that will be stored in a Region in the Geode In-
Memory Data Grid. The mapping metadata is defined using annotations on application domain
classes just like this:

Example 1. Mapping a domain class to a Geode Region

@Region("People")
public class Person {

 @Id Long id;

 String firstname;
 String lastname;

 @PersistenceConstructor
 public Person(String firstname, String lastname) {
 // …
 }

 …
}

The first thing you notice here is the @Region annotation that can be used to customize the Region in
which an instance of the Person class is stored. The @Id annotation can be used to annotate the
property that shall be used as the cache (Region) key, identifying the Region entry. The
@PersistenceConstructor annotation helps to disambiguate multiple, potentially available
constructors taking parameters and explicitly marking the constructor annotated as the constructor
to be used to construct entities. In an application domain class with no or only a single constructor
you can omit the annotation.

In addition to storing entities in top-level Regions, entities can be stored in Sub-Regions as well.

For instance:

121

@Region("/Users/Admin")
public class Admin extends User {
 …
}

@Region("/Users/Guest")
public class Guest extends User {
 …
}

Be sure to use the full-path of the Geode Region, as defined with the Spring Data Geode XML
namespace using the id or name attributes of the <*-region> element.

9.1.1. Entity Mapping by Region Type

In addition to the @Region annotation, Spring Data Geode also recognizes the Region type-specific
mapping annotations: @ClientRegion, @LocalRegion, @PartitionRegion and @ReplicateRegion.

Functionally, these annotations are treated exactly the same as the generic @Region annotation in
the SDG mapping infrastructure. However, these additional mapping annotations are useful in
Spring Data Geode’s` Annotation configuration model. When combined with the
@EnableEntityDefinedRegions configuration annotation on _Spring @Configuration annotated class, it
is possible to generate Regions in the local cache, whether the application is a client or peer.

These annotations allow you, the developer, to be more specific about what type of Region that
your application entity class should be mapped to, and also has an impact on the data management
policies of the Region (e.g. partition (a.k.a. sharding) vs. just replicating data).

Using these Region type-specific mapping annotations with the SDG Annotation config model saves
you from having to explicitly define these Regions in config.

The details of the new Annotation configuration model will be discussed in more detail in a
subsequent releaase.

9.1.2. Repository Mapping

As an alternative to specifying the Region in which the entity will be stored using the @Region
annotation on the entity class, you can also specify the @Region annotation on the entity’s
Repository. See Spring Data Geode Repositories for more details.

However, let’s say you want to store a Person in multiple Geode Regions (e.g. People and Customers),
then you can define your corresponding Repository interface extensions like so:

122

@Region("People")
public interface PersonRepository extends GemfireRepository<Person, String> {
…
}

@Region("Customers")
public interface CustomerRepository extends GemfireRepository<Person, String> {
...
}

Then, using each Repository individually, you can store the entity in multiple Geode Regions.

@Service
class CustomerService {

 CustomerRepository customerRepo;

 PersonRepository personRepo;

 Customer update(Customer customer) {
 customerRepo.save(customer);
 personRepo.save(customer);
 return customer;
 }

It is not difficult to imagine wrapping the update service method in a Spring managed transaction,
either as a local cache transaction or a global transaction.

9.2. Mapping PDX Serializer
Spring Data Geode provides a custom PdxSerializer implementation that uses the mapping
information to customize entity serialization. Beyond that, it allows customizing the entity
instantiation by using the Spring Data EntityInstantiator abstraction. By default the serializer uses
a ReflectionEntityInstantiator that will use the persistence constructor of the mapped entity
(either the default constructor, a singly declared constructor or an explicitly annotated constructor
annotated with the @PersistenceConstructor annotation).

To provide values for constructor parameters it will read fields with name of the constructor
parameters from the supplied PdxReader.

123

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/PdxSerializer.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/pdx/PdxReader.html

Example 2. Using @Value on entity constructor parameters

public class Person {

 public Person(@Value("#root.foo") String firstname, @Value("bean") String
lastname) {
 // …
 }
}

An entity class annotated in this way will have the field foo read from the PdxReader and passed to
the constructor parameter value for firstname. The value for lastname will be the Spring bean with
the name bean.

124

Chapter 10. Spring Data Geode Repositories

10.1. Introduction
Spring Data Geode provides support to use the Spring Data Repository abstraction to easily persist
entities into Geode along with execute queries. A general introduction to the Repository
programming model is provided here.

10.2. Spring XML Configuration
To bootstrap Spring Data Repositories, you use the <repositories/> element from the Spring Data
Geode Data namespace:

Example 3. Bootstrap Spring Data Geode Repositories in XML

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:gfe-data="http://www.springframework.org/schema/data/geode"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/geode
http://www.springframework.org/schema/data/geode/spring-data-geode.xsd>

 <gfe-data:repositories base-package="com.example.acme.repository"/>

</beans>

This configuration snippet looks for interfaces below the configured base package and creates
Repository instances for those interfaces backed by a SimpleGemFireRepository.

IMPORTANT
You must have your application domain classes correctly mapped to
configured Regions or the bootstrap process will fail otherwise.

10.3. Spring Java-based Configuration
Alternatively, many users prefer to use Spring’s Java-based container configuration.

Using this approach, it is a simple matter to bootstrap Spring Data Repositories using the SDG
@EnableGemfireRepositories annotation:

125

http://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#repositories
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-java

Example 4. Bootstrap Spring Data Geode Repositories with @EnableGemfireRepositories

@SpringBootApplication
@EnableGemfireRepositories(basePackages = "com.example.acme.repository")
class SpringApplication {
 ...
}

Rather than use the basePackages attribute, you may prefer to use the type-safe basePackageClasses
attribute instead. The basePackageClasses allows you to specify the package containing all your
application Repository classes by specifying just one of your application Repository interface types.
Consider creating a special no-op marker class or interface in each package that serves no other
purpose than to identify the location of application Repositories referenced by this attribute.

In addition to the basePackage[sClasses] attributes, like Spring’s @ComponentScan annotation, the
@EnableGemfireRepositories annotation provides include and exclude filters, based on Spring’s
ComponentScan.Filter type. You can use the filterType attribute to filter by different aspects, such as
whether an application Repository type is annotated with a particular Annotation or extends a
particular class type, and so on. See the FilterType Javadoc for more details.

The @EnableGemfireRepositories annotation also provides the ability to specify the location of
named OQL queries, which reside in a Java Properties file, using the namedQueriesLocation attribute.
The property name must match the name of a Repository query method and the property value is
the OQL query you want executed when the Repository query method is called.

The repositoryImplementationPostfix attribute can be set to an alternate value (defaults to "Impl") if
your application requires 1 or more custom Repository implementations. This feature is commonly
used to extend the Spring Data Repository infrastructure in order to implement a feature not
provided out-of-the-box (OOTB) by the data store (e.g. SDG).

One example of where custom Repository implementations are needed with Apache Geode is when
performing Joins. Joins are not supported by SDG Repositories OOTB. With an Apache Geode
PARTITION Region, the Join must be performed on collocated PARTITION Regions even, since Apache
Geode does not support "distributed" Joins. In addition, the Equi-Join OQL Query must be performed
inside a Geode Function. See here for more details on Apache Geode Equi-Join Queries.

Many other aspects of the SDG’s Repository infrastructure extension maybe customized as well. See
the @EnableGemfireRepositories Javadoc for more details on all configuration settings.

10.4. Executing OQL Queries
Spring Data Geode Repositories enable the definition of query methods to easily execute Geode OQL
Queries against the Region the managed entity is mapped to.

126

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/ComponentScan.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/ComponentScan.Filter.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/FilterType.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/FilterType.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/annotation/FilterType.html
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories.custom-implementations
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories.custom-implementations
https://docs.spring.io/spring-data/commons/docs/current/reference/html/#repositories.custom-implementations
http://geode.apache.org/docs/guide/12/developing/partitioned_regions/join_query_partitioned_regions.html
https://docs.spring.io/spring-data/gemfire/docs/current/api/org/springframework/data/gemfire/repository/config/EnableGemfireRepositories.html
https://docs.spring.io/spring-data/gemfire/docs/current/api/org/springframework/data/gemfire/repository/config/EnableGemfireRepositories.html
https://docs.spring.io/spring-data/gemfire/docs/current/api/org/springframework/data/gemfire/repository/config/EnableGemfireRepositories.html

Example 5. Sample Repository

@Region("People")
public class Person { … }

public interface PersonRepository extends CrudRepository<Person, Long> {

 Person findByEmailAddress(String emailAddress);

 Collection<Person> findByFirstname(String firstname);

 @Query("SELECT * FROM /People p WHERE p.firstname = $1")
 Collection<Person> findByFirstnameAnnotated(String firstname);

 @Query("SELECT * FROM /People p WHERE p.firstname IN SET $1")
 Collection<Person> findByFirstnamesAnnotated(Collection<String> firstnames);
}

The first query method listed here will cause the following OQL query to be derived: SELECT x FROM
/People x WHERE x.emailAddress = $1. The second query method works the same way except it’s
returning all entities found whereas the first query method expects a single result to be found.

In case the supported keywords are not sufficient to expresss and declare your OQL query, or the
method name becomes too verbose, you can annotate the query methods with @Query as seen for
methods 3 and 4.

Table 4. Supported keywords for query methods

Keyword Sample Logical result

GreaterThan findByAgeGreaterThan(int age) x.age > $1

GreaterThanEqual findByAgeGreaterThanEqual(int age) x.age >= $1

LessThan findByAgeLessThan(int age) x.age < $1

LessThanEqual findByAgeLessThanEqual(int age) x.age ⇐ $1

IsNotNull, NotNull findByFirstnameNotNull() x.firstname =! NULL

IsNull, Null findByFirstnameNull() x.firstname = NULL

In findByFirstnameIn(Collection<String>
x)

x.firstname IN SET $1

NotIn findByFirstnameNotIn(Collection<Strin
g> x)

x.firstname NOT IN SET $1

IgnoreCase findByFirstnameIgnoreCase(String
firstName)

x.firstname.equalsIgnoreCase($1)

(No keyword) findByFirstname(String name) x.firstname = $1

Like findByFirstnameLike(String name) x.firstname LIKE $1

Not findByFirstnameNot(String name) x.firstname != $1

IsTrue, True findByActiveIsTrue() x.active = true

127

Keyword Sample Logical result

IsFalse, False findByActiveIsFalse() x.active = false

10.5. OQL Query Extensions using Annotations
Many query languages, such as Apache Geode’s OQL (Object Query Language), have extensions that
are not directly supported by Spring Data Commons' Repository infrastructure.

One of Spring Data Commons' Repository infrastructure goals is to function as the lowest common
denominator in order to maintain support for and portability across the widest array of data stores
available and in use for application development today. Technically, this means developers can
access multiple different data stores supported by Spring Data Commons within their applications
by reusing their existing application-specific Repository interfaces, a very convenient and powerful
abstraction.

To support Geode’s OQL Query language extensions and preserve portability across different data
stores, Spring Data Geode adds support for OQL Query extensions using Java Annotations. These
Annotations will be ignored by other Spring Data Repository implementations (e.g. Spring Data JPA
or Spring Data Redis) that do not have similar query language extensions.

For instance, many data stores will most likely not implement Geode’s OQL IMPORT keyword. By
implementing IMPORT as an Annotation (i.e. @Import) rather than as part of the query method
signature (specifically, the method 'name'), then this will not interfere with the parsing
infrastructure when evaluating the query method name to construct another data store language
appropriate query.

Currently, the set of Geode OQL Query language extensions that are supported by Spring Data
Geode include:

Table 5. Supported Geode OQL extensions for Repository query methods

Keyword Annotation Description Arguments

HINT @Hint OQL Query Index Hints String[] (e.g. @Hint({
"IdIdx", "TxDateIdx" }))

IMPORT @Import Qualify application-specific
types.

String (e.g.
@Import("org.example.app
.domain.Type"))

LIMIT @Limit Limit the returned query
result set.

Integer (e.g. @Limit(10);
default is
Integer.MAX_VALUE)

TRACE @Trace Enable OQL Query specific
debugging.

NA

As an example, suppose you have a Customers application domain class and corresponding Geode
Region along with a CustomerRepository and a query method to lookup Customers by last name, like
so…

128

http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/query_index/query_index_hints.html#topic_cfb_mxn_jq
http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/query_select/the_import_statement.html#concept_2E9F15B2FE9041238B54736103396BF7
http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/query_select/the_select_statement.html#concept_85AE7D6B1E2941ED8BD2A8310A81753E__section_25D7055B33EC47B19B1B70264B39212F
http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/query_additional/query_debugging.html#concept_2D557E24AAB24044A3DB36B3124F6748

Example 6. Sample Customers Repository

package ...;

import org.springframework.data.annotation.Id;
import org.springframework.data.gemfire.mapping.annotation.Region;
...

@Region("Customers")
public class Customer ... {

 @Id
 private Long id;

 ...
}

package ...;

import org.springframework.data.gemfire.repository.GemfireRepository;
...

public interface CustomerRepository extends GemfireRepository<Customer, Long> {

 @Trace
 @Limit(10)
 @Hint("LastNameIdx")
 @Import("org.example.app.domain.Customer")
 List<Customer> findByLastName(String lastName);

 ...
}

This will result in the following OQL Query:

<TRACE> <HINT 'LastNameIdx'> IMPORT org.example.app.domain.Customer; SELECT * FROM /Customers x
WHERE x.lastName = $1 LIMIT 10

Spring Data Geode’s Repository extension and support is careful not to create conflicting
declarations when the OQL Annotation extensions are used in combination with the @Query
annotation.

As another example, suppose you have a raw @Query annotated query method defined in your
CustomerRepository like so…

129

Example 7. CustomerRepository

public interface CustomerRepository extends GemfireRepository<Customer, Long> {

 @Trace
 @Limit(10)
 @Hint("CustomerIdx")
 @Import("org.example.app.domain.Customer")
 @Query("<TRACE> <HINT 'ReputationIdx'> SELECT DISTINCT * FROM /Customers c WHERE
c.reputation > $1 ORDER BY c.reputation DESC LIMIT 5")
 List<Customer>
findDistinctCustomersByReputationGreaterThanOrderByReputationDesc(Integer
reputation);
}

This query method results in the following OQL Query:

IMPORT org.example.app.domain.Customer; <TRACE> <HINT 'ReputationIdx'> SELECT DISTINCT * FROM
/Customers x WHERE x.reputation > $1 ORDER BY c.reputation DESC LIMIT 5

As you can see, the @Limit(10) annotation will not override the LIMIT defined explicitly in the raw
query. As well, @Hint("CustomerIdx") annotation does not override the HINT explicitly defined in the
raw query. Finally, the @Trace annotation is redundant and has no additional effect.

NOTE

The "ReputationIdx" Index is probably not the most sensible index given the
number of Customers who will possibly have the same value for their reputation,
which will effectively reduce the effectiveness of the index. Please choose indexes
and other optimizations wisely as an improper or poorly choosen index can have
the opposite effect on your performance given the overhead in maintaining the
index. The "ReputationIdx" was only used to serve the purpose of the example.

130

Chapter 11. Annotation Support for Function
Execution

11.1. Introduction
Spring Data Geode includes annotation support to simplify working with Geode Function Execution.
Under-the-hood, the Apache Geode API provides classes to implement and register Geode Functions
that are deployed on Geode servers, which may then be invoked by other peer member applications
or remotely from cache clients.

Functions can execute in parallel, distributed among multiple Geode servers in the cluster,
aggregating results with the map-reduce pattern that are sent back to the caller. Functions can also
be targeted to run on a single server or Region. The Apache Geode API supports remote execution
of Functions targeted using various predefined scopes: on Region, on members [in groups], on
servers, etc. The implementation and execution of remote Functions, as with any RPC protocol,
requires some boilerplate code.

Spring Data Geode, true to Spring’s core value proposition, aims to hide the mechanics of remote
Function execution and allow developers to focus on core POJO programming and business logic.
To this end, Spring Data Geode introduces annotations to declaratively register public methods of a
POJO class as Geode Functions along with the ability to invoke registered Functions [remotely] via
annotated interfaces.

11.2. Implementation vs Execution
There are two separate concerns to address implementation and execution.

First is Function implementation (server-side), which must interact with the FunctionContext to
access the invocation arguments, ResultsSender as well as other execution context information. The
Function implementation typically accesses the Cache and/or Regions and is registered with the
FunctionService under a unique Id.

A cache client application invoking a Function does not depend on the implementation. To invoke a
Function, the application instantiates an Execution providing the Function ID, invocation
arguments and the Function target, which defines its scope: Region, server, servers, member or
members. If the Function produces a result, the invoker uses a ResultCollector to aggregate and
acquire the execution results. In certain cases, a custom ResultCollector implementation is
required and may be registered with the Execution.

NOTE

'Client' and 'Server' are used here in the context of Function execution, which may
have a different meaning than client and server in Geode’s client-server topology.
While it is common for an application using a ClientCache to invoke a Function on
one or more Geode servers in a cluster, it is also possible to execute Functions in a
peer-to-peer (P2P) configuration, where the application is a member of the cluster
hosting a peer Cache. Keep in mind that a peer member cache application is subject
to all the same constraints of being a peer member of the cluster.

131

http://geode.apache.org/docs/guide/11/developing/function_exec/chapter_overview.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/execute/Function.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/execute/FunctionContext.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/execute/ResultSender.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/execute/FunctionService.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/execute/Execution.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/execute/ResultCollector.html

11.3. Implementing a Function
Using Geode APIs, the FunctionContext provides a runtime invocation context that includes the
client’s calling arguments and a ResultSender implementation to send results back to the client.
Additionally, if the Function is executed on a Region, the FunctionContext is actually an instance of
RegionFunctionContext, which provides additional information such as the target Region on which
the Function was invoked and any Filter (set of specific keys) associated with the Execution, etc. If
the Region is a PARTITION Region, the Function should use the PartitionRegionHelper to extract
only the local data.

Using Spring, a developer can write a simple POJO and use the Spring container to bind one or more
of it’s public methods to a Function. The signature for a POJO method intended to be used as a
Function must generally conform to the client’s execution arguments. However, in the case of a
Region execution, the Region data may also be provided (presumably the data held in the local
partition if the Region is a PARTITION Region). Additionally, the Function may require the Filter
that was applied, if any. This suggests that the client and server share a contract for the calling
arguments but that the method signature may include additional parameters to pass values
provided by the FunctionContext. One possibility is for the client and server to share a common
interface, but this is not strictly required. The only constraint is that the method signature includes
the same sequence of calling arguments with which the Function was invoked after the additional
parameters are resolved.

For example, suppose the client provides a String and int as the calling arguments. These are
provided in the FunctionContext as an array:

Object[] args = new Object[] { "test", 123 };

Then, the Spring container should be able to bind to any method signature similar to the following.
Let’s ignore the return type for the moment:

public Object method1(String s1, int i2) {...}
public Object method2(Map<?, ?> data, String s1, int i2) {...}
public Object method3(String s1, Map<?, ?> data, int i2) {...}
public Object method4(String s1, Map<?, ?> data, Set<?> filter, int i2) {...}
public void method4(String s1, Set<?> filter, int i2, Region<?,?> data) {...}
public void method5(String s1, ResultSender rs, int i2);
public void method6(FunctionContest context);

The general rule is that once any additional arguments, i.e. Region data and Filter, are resolved, the
remaining arguments must correspond exactly, in order and type, to the expected Function method
parameters. The method’s return type must be void or a type that may be serialized (either as a
java.io.Serializable, DataSerializable or PdxSerializable). The latter is also a requirement for the
calling arguments. The Region data should normally be defined as a Map, to facilitate unit testing,
but may also be of type Region if necessary. As shown in the example above, it is also valid to pass
the FunctionContext itself, or the ResultSender, if you need to control how the results are returned to
the client.

132

11.3.1. Annotations for Function Implementation

The following example illustrates how SDG’s Function annotations are used to expose POJO
methods as GemFire Functions:

@Component
public class ApplicationFunctions {

 @GemfireFunction
 public String function1(String value, @RegionData Map<?, ?> data, int i2) { ... }

 @GemfireFunction("myFunction", batchSize=100, HA=true, optimizedForWrite=true)
 public List<String> function2(String value, @RegionData Map<?, ?> data, int i2,
@Filter Set<?> keys) { ... }

 @GemfireFunction(hasResult=true)
 public void functionWithContext(FunctionContext functionContext) { ... }

}

Note, the class itself must be registered as a Spring bean and each Geode Function is annotated with
@GemfireFunction. In this example, Spring’s @Component annotation was used, but you may register
the bean by any method supported by Spring (e.g. XML configuration or with a Java configuration
class using Spring Boot). This allows the Spring container to create an instance of this class and
wrap it in a PojoFunctionWrapper. Spring creates a wrapper instance for each method annotated
with @GemfireFunction. Each wrapper instance shares the same target object instance to invoke the
corresponding method.

TIP
The fact that the POJO Function class is a Spring bean may offer other benefits since it
shares the ApplicationContext with Geode components such as the Cache and Regions.
These may be injected into the class if necessary.

Spring creates the wrapper class and registers the Function(s) with Geode’s Function Service. The
Function id used to register the Functions must be unique. Using convention it defaults to the
simple (unqualified) method name. The name can be explicitly defined using the id attribute of the
@GemfireFunction annotation. The @GemfireFunction annotation also provides other configuration
attributes, HA and optimizedForWrite, which correspond to properties defined by Geode’s Function
interface. If the method’s return type is void, then the hasResult property is automatically set to
false; otherwise, if the method returns a value the hasResult attributes is set to true.

Even for void return types, the annotation’s hasResult attribute can be set to true to override this
convention, as shown in the functionWithContext method above. Presumably, the intention is to use
the ResultSender directly to send results to the caller.

The PojoFunctionWrapper implements Geode’s Function interface, binds method parameters and
invokes the target method in its execute() method. It also sends the method’s return value using the
ResultSender.

133

http://docs.spring.io/spring-data-gemfire/docs/current/api/org/springframework/data/gemfire/function/PojoFunctionWrapper.html
http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/execute/Function.html

11.3.2. Batching Results

If the return type is an array or Collection, then some consideration must be given to how the
results are returned. By default, the PojoFunctionWrapper returns the entire array or Collection at
once. If the number of elements in the array or Collection quite is large, it may incur a performance
penalty. To divide the payload into smaller, more maneable chunks, you can set the batchSize
attribute, as illustrated in function2, above.

TIP

If you need more control of the ResultSender, especially if the method itself would use
too much memory to create the Collection, you can pass the ResultSender, or access it
via the FunctionContext and use it directly within the method to sends results back to
the caller.

11.3.3. Enabling Annotation Processing

In accordance with Spring standards, you must explicitly activate annotation processing for
@GemfireFunction annotations.

Using XML:

<gfe:annotation-driven/>

Or by annotating a Java configuration class:

@Configuration
@EnableGemfireFunctions
class ApplicationConfiguration { .. }

11.4. Executing a Function
A process invoking a remote Function needs to provide the Function’s ID, calling arguments, the
execution target (onRegion, onServers, onServer, onMember, onMembers) and optionally, a Filter
set. Using Spring Data Geode, all a developer need do is define an interface supported by
annotations. Spring will create a dynamic proxy for the interface, which will use the
FunctionService to create an Execution, invoke the Execution and coerce the results to the defined
return type, if necessary. This technique is very similar to the way Spring Data Geode’s Repository
extension works, thus some of the configuration and concepts should be familiar. Generally, a single
interface definition maps to multiple Function executions, one corresponding to each method
defined in the interface.

11.4.1. Annotations for Function Execution

To support client-side Function execution, the following SDG Function annotations are provided:
@OnRegion, @OnServer, @OnServers, @OnMember, @OnMembers. These annotations correspond to the
Execution implementations prodided by Geode’s FunctionService. Each annotation exposes the
appropriate attributes. These annotations also provide an optional resultCollector attribute whose

134

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/execute/FunctionService.html

value is the name of a Spring bean implementing the ResultCollector to use for the execution.

CAUTION

The proxy interface binds all declared methods to the same execution
configuration. Although, it is expected that single method interfaces will be
common, all methods in the interface are backed by the same proxy instance
and therefore all share the same configuration.

Here are a few examples:

@OnRegion(region="SomeRegion", resultCollector="myCollector")
public interface FunctionExecution {

 @FunctionId("function1")
 String doIt(String s1, int i2);

 String getString(Object arg1, @Filter Set<Object> keys);

}

By default, the Function ID is the simple (unqualified) method name. The @FunctionId annotation
can be used to bind this invocation to a different Function ID.

11.4.2. Enabling Annotation Processing

The client-side uses Spring’s classpath component scanning capability to discover annotated
interfaces. To enable Function execution annotation processing in XML:

<gfe-data:function-executions base-package="org.example.myapp.geode.functions"/>

The function-executions element is provided in the gfe-data namespace. The base-package attribute
is required to avoid scanning the entire classpath. Additional filters are provided as described in
the Spring reference documentation.

Optionally, a developer can annotate her Java configuration class:

@EnableGemfireFunctionExecutions(basePackages = "org.example.myapp.geode.functions")

11.5. Programmatic Function Execution
Using the Function execution annotated interface defined in the previous section, simply auto-wire
your interface into an application bean that will invoke the Function:

135

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/execute/ResultCollector.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-scanning-filters

@Component
public class MyApplication {

 @Autowired
 FunctionExecution functionExecution;

 public void doSomething() {
 functionExecution.doIt("hello", 123);
 }
}

Alternately, you can use a Function execution template directly. For example,
GemfireOnRegionFunctionTemplate creates an onRegion Function Execution.

Example 8. Using the GemfireOnRegionFunctionTemplate

Set<?, ?> myFilter = getFilter();
Region<?, ?> myRegion = getRegion();
GemfireOnRegionOperations template = new GemfireOnRegionFunctionTemplate(myRegion
);
String result = template.executeAndExtract("someFunction", myFilter, "hello",
"world", 1234);

Internally, Function Executions always return a List. executeAndExtract assumes a singleton List
containing the result and will attempt to coerce that value into the requested type. There is also an
execute method that returns the List as is. The first parameter is the Function ID. The Filter
argument is optional. The following arguments are a variable argument List.

11.6. Function Execution with PDX
When using Spring Data Geode’s Function annotation support combined with Apache Geode’s PDX
Serialization, there are a few logistical things to keep in mind.

As explained above, and by way of example, typically developers will define Geode Functions using
POJO classes annotated with Spring Data Geode Function annotations like so…

public class OrderFunctions {

 @GemfireFunction(...)
 Order process(@RegionData data, Order order, OrderSource orderSourceEnum, Integer
count) { ... }

}

136

http://geode.apache.org/docs/guide/11/developing/data_serialization/gemfire_pdx_serialization.html
http://geode.apache.org/docs/guide/11/developing/data_serialization/gemfire_pdx_serialization.html
http://docs.spring.io/spring-data-gemfire/docs/current/api/org/springframework/data/gemfire/function/annotation/package-summary.html

NOTE

The Integer type, count parameter is arbitrary as is the separation of the Order class
and OrderSource Enum, which might be logical to combine. However, the arguments
were setup this way to demonstrate the problem with Function executions in the
context of PDX.

Your Order and OrderSource enum might be as follows…

public class Order ... {

 private Long orderNumber;
 private Calendar orderDateTime;
 private Customer customer;
 private List<Item> items

 ...
}

public enum OrderSource {
 ONLINE,
 PHONE,
 POINT_OF_SALE
 ...
}

Of course, a developer may define a Function Execution interface to call the 'process' Geode Server
Function…

@OnServer
public interface OrderProcessingFunctions {
 Order process(Order order, OrderSource orderSourceEnum, Integer count);
}

Clearly, this process(..) Order Function is being called from a client-side with a ClientCache (i.e.
<gfe:client-cache/>) based application. This implies that the Function arguments must also be
serializable. The same is true when invoking peer-to-peer member Functions (e.g. @OnMember(s))
between peers in the cluster. Any form of `distribution requires the data transmitted between
client and server, or peers, to be serialized.

Now, if the developer has configured Geode to use PDX for serialization (instead of Java
serialization, for instance) it is common for developers to also set the pdx-read-serialized attribute
to true in their configuration of the Geode server(s)…

<gfe:cache ... pdx-read-serialized="true"/>

Or from a Geode cache client application…

137

<gfe:client-cache ... pdx-read-serialized="true"/>

This causes all values read from the cache (i.e. Regions) as well as information passed between
client and servers, or peers, to remain in serialized form, including, but not limited to, Function
arguments.

Geode will only serialize application domain object types that you have specifically configured
(registered), with either Geode’s ReflectionBasedAutoSerializer, or specifically (and recommended)
using a "custom" Geode PdxSerializer. If you are using Spring Data Geode’s Repository extension to
Spring Data Common’s Repository abstraction and infrastructure, you might even want to consider
using Spring Data Geode’s MappingPdxSerializer, which uses a entity’s mapping meta-data to
determine data from the application domain object that will be serialized to the PDX instance.

What is less than apparent, though, is that Geode automatically handles Java Enum types regardless
of whether they are explicitly configured or not (i.e. registered with a
ReflectionBasedAutoSerializer using a regex pattern and the classes parameter, or are handled by
a "custom" Geode PdxSerializer), despite the fact that Java Enums implement java.io.Serializable.

So, when a developer sets pdx-read-serialized to true on Geode Servers where the Geode Functions
(including Spring Data Geode Function annotated POJO classes) are registered, then the developer
may encounter surprising behavior when invoking the Function Execution.

What the developer may pass as arguments when invoking the Function is…

orderProcessingFunctions.process(new Order(123, customer, Calendar.getInstance(),
items), OrderSource.ONLINE, 400);

But, what the Geode Function on the Server gets is…

process(regionData, order:PdxInstance, :PdxInstanceEnum, 400);

The Order and OrderSource have been passed to the Function as PDX instances. Again, this is all
because pdx-read-serialized is set to true, which may be necessary in cases where the Geode
Servers are interacting with multiple different clients (e.g. Java, native clients, such as C++/C#, etc).

This flies in the face of Spring Data Geode’s "strongly-typed", Function annotated POJO class method
signatures, as the developer is expecting application domain object types, not PDX serialized
instances.

So, Spring Data Geode includes enhanced Function support to automatically convert method
arguments passed to the Function that are of type PDX to the desired application domain object
types defined by the Function method’s parameter types.

However, this also requires the developer to explicitly register a Geode PdxSerializer on the Geode
Servers where Spring Data Geode Function annotated POJOs are registered and used, e.g. …

138

http://gemfire-90-javadocs.docs.pivotal.io/org/apache/geode/pdx/ReflectionBasedAutoSerializer.html
http://gemfire-90-javadocs.docs.pivotal.io/org/apache/geode/pdx/PdxSerializer.html
http://docs.spring.io/spring-data-gemfire/docs/current/api/org/springframework/data/gemfire/mapping/MappingPdxSerializer.html
http://gemfire-90-javadocs.docs.pivotal.io/org/apache/geode/pdx/PdxInstance.html

<bean id="customPdxSerializer" class=
"x.y.z.geode.serialization.pdx.MyCustomPdxSerializer"/>

<gfe:cache ... pdx-serializer-ref="customPdxSerializeer" pdx-read-serialized="true"/>

Alternatively, a developer my use Geode’s ReflectionBasedAutoSerializer for convenience. Of
course, it is recommended that you use a "custom" PdxSerializer where possible to maintain finer
grained control over your serialization strategy.

Finally, Spring Data Geode is careful not to convert your Function arguments if you treat your
Function arguments generically, or as one of Geode’s PDX types…

@GemfireFunction
public Object genericFunction(String value, Object domainObject, PdxInstanceEnum enum)
{
 ...
}

Spring Data Geode only converts PDX type data to the corresponding application domain types if
and only if the corresponding application domain types are on the classpath the the Function
annotated POJO method expects it.

For a good example of "custom", "composed" application-specific Geode PdxSerializers as well as
appropriate POJO Function parameter type handling based on the method signatures, see Spring
Data Geode’s ClientCacheFunctionExecutionWithPdxIntegrationTest class.

139

http://gemfire-90-javadocs.docs.pivotal.io/org/apache/geode/pdx/ReflectionBasedAutoSerializer.html
https://github.com/spring-projects/spring-data-gemfire/blob/1.0.0.APACHE-GEODE-INCUBATING-RELEASE/src/test/java/org/springframework/data/gemfire/function/ClientCacheFunctionExecutionWithPdxIntegrationTest.java

Chapter 12. Apache Lucene Integration
Apache Geode integrates with Apache Lucene to allow developers to index and search on data
stored in Apache Geode using Lucene queries. Search-based queries also includes the capability to
page through query results.

Additionally, Spring Data Geode adds support for query projections based on Spring Data Commons
Projection infrastructure. This feature enables the query results to be projected into first-class,
application domain types as needed or required by the application use case.

However, a Lucene Index must be created first before any Lucene search-based query can be ran. A
LuceneIndex can be created in Spring (Data GemFire) XML config like so…

<gfe:lucene-index id="IndexOne" fields="fieldOne, fieldTwo" region-path="/Example"/>

Additionally, Apache Lucene allows the specification of Analyzers per field and can be configured
using…

<gfe:lucene-index id="IndexTwo" lucene-service-ref="luceneService" region-path=
"/AnotherExample">
 <gfe:field-analyzers>
 <map>
 <entry key="fieldOne">
 <bean class="example.AnalyzerOne"/>
 </entry>
 <entry key="fieldTwo">
 <bean class="example.AnalyzerTwo"/>
 </entry>
 </map>
 </gfe:field-analyzers>
</gfe:lucene-index>

Of course, the Map can be specified as a top-level bean definition and referenced using the ref
attribute on the nested <gfe:field-analyzers> element like this, <gfe-field-analyzers

ref="refToTopLevelMapBeanDefinition"/>.

Alternatively, a LuceneIndex can be declared in Spring Java config, inside a @Configuration class
with…

140

http://geode.apache.org/
http://lucene.apache.org/
http://lucene.apache.org/core/6_5_0/core/org/apache/lucene/analysis/Analyzer.html

@Bean(name = "People")
@DependsOn("personTitleIndex")
PartitionedRegionFactoryBean<Long, Person> peopleRegion(GemFireCache gemfireCache) {
 PartitionedRegionFactoryBean<Long, Person> peopleRegion = new
PartitionedRegionFactoryBean<>();

 peopleRegion.setCache(gemfireCache);
 peopleRegion.setClose(false);
 peopleRegion.setPersistent(false);

 return peopleRegion;
}

@Bean
LuceneIndexFactoryBean personTitleIndex(GemFireCache gemFireCache) {
 LuceneIndexFactoryBean luceneIndex = new LuceneIndexFactoryBean();

 luceneIndex.setCache(gemFireCache);
 luceneIndex.setFields("title");
 luceneIndex.setRegionPath("/People");

 return luceneIndex;
}

There are a few limitations of Apache Geode’s, Apache Lucene integration support. First, a
LuceneIndex can only be created on a Geode PARTITION Region. Second, all LuceneIndexes must be
created before the the Region on which the LuceneIndex is applied.

It is possible that these Apache Geode restrictions will not apply in a future release which is why
the SDG LuceneIndexFactoryBean API takes a reference to the Region directly as well, rather than just
the Region path.

This is more ideal if think about the case in which users may want to define a LuceneIndex on an
existing Region with data at a later point during the application’s lifecycle and as requirements
demand. Where possible, SDG strives to stick to strongly-typed objects.

Now that we have a LuceneIndex we can perform Lucene based data access operations, such as
queries.

12.1. Lucene Template Data Accessors
Spring Data Geode provides 2 primary templates for Lucene data access operations, depending on
how low a level your application is prepared to deal with.

The LuceneOperations interface defines query operations using Apache Geode Lucene types.

141

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/lucene/package-frame.html

public interface LuceneOperations {

 <K, V> List<LuceneResultStruct<K, V>> query(String query, String defaultField [,
int resultLimit]
 , String... projectionFields);

 <K, V> PageableLuceneQueryResults<K, V> query(String query, String defaultField,
 int resultLimit, int pageSize, String... projectionFields);

 <K, V> List<LuceneResultStruct<K, V>> query(LuceneQueryProvider queryProvider [,
int resultLimit]
 , String... projectionFields);

 <K, V> PageableLuceneQueryResults<K, V> query(LuceneQueryProvider queryProvider,
 int resultLimit, int pageSize, String... projectionFields);

 <K> Collection<K> queryForKeys(String query, String defaultField [, int
resultLimit]);

 <K> Collection<K> queryForKeys(LuceneQueryProvider queryProvider [, int
resultLimit]);

 <V> Collection<V> queryForValues(String query, String defaultField [, int
resultLimit]);

 <V> Collection<V> queryForValues(LuceneQueryProvider queryProvider [, int
resultLimit]);
}

NOTE The [, int resultLimit] indicates that the resultLimit parameter is optional.

The operations in the LuceneOperations interface match the operations provided by the Apache
Geode’s LuceneQuery interface. However, SDG has the added value of translating proprietary
Geode or Lucene Exceptions into Spring’s highly consistent and expressive DAO Exception
Hierarchy, particularly as many modern data access operations involve more than single store or
repository.

Additionally, SDG’s LuceneOperations interface can shield your application from interface breaking
changes introduced by the underlying Apache Geode or Apache Lucene APIs when they do and will
occur.

However, it would be remorse to only offer a Lucene Data Access Object that only uses Apache
Geode and Apache Lucene data types (e.g. Geode’s LuceneResultStruct), therefore SDG gives you the
ProjectingLuceneOperations interface to remedy these important application concerns.

142

http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/lucene/LuceneQuery.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#dao-exceptions
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#dao-exceptions

public interface ProjectingLuceneOperations {

 <T> List<T> query(String query, String defaultField [, int resultLimit], Class<T>
projectionType);

 <T> Page<T> query(String query, String defaultField, int resultLimit, int
pageSize, Class<T> projectionType);

 <T> List<T> query(LuceneQueryProvider queryProvider [, int resultLimit], Class<T>
projectionType);

 <T> Page<T> query(LuceneQueryProvider queryProvider, int resultLimit, int
pageSize, Class<T> projectionType);
}

The ProjectingLuceneOperations interface primarily uses application domain object types to work
with your application data. The query method variants accept a projection type and the template
applies the query results to instances of the given projection type using the Spring Data Commons
Projection infrastructure.

Additionally, the template wraps the paged Lucene query results in an instance of the Spring Data
Commons abstraction representing a Page. The same projection logic can still be applied to the
results in the page and are lazily projected as each page in the collection is accessed.

By way of example, suppose I have a class representing a Person like so…

class Person {

 Gender gender;

 LocalDate birthDate;

 String firstName;
 String lastName;

 ...

 String getName() {
 return String.format("%1$s %2$s", getFirstName(), getLastName());
 }
}

Additionally, I might have a single interface to represent people as Customers depending on my
application view…

143

interface Customer {

 String getName()
}

If I define the following LuceneIndex…

@Bean
LuceneIndexFactoryBean personLastNameIndex(GemFireCache gemfireCache) {
 LuceneIndexFactoryBean personLastNameIndex = new LuceneIndexFactoryBean();

 personLastNameIndex.setCache(gemfireCache);
 personLastNameIndex.setFields("lastName");
 personLastNameIndex.setRegionPath("/People");

 return personLastNameIndex;
}

Then it is a simple matter to query for people as either Person objects…

List<Person> people = luceneTemplate.query("lastName: D*", "lastName", Person.class);

Or as a Page of type Customer…

Page<Customer> customers = luceneTemplate.query("lastName: D*", "lastName", 100, 20,
Customer.class);

The Page can then be used to fetch individual pages of results…

List<Customer> firstPage = customers.getContent();

Conveniently, the Spring Data Commons Page interface implements java.lang.Iterable<T> too
making it very easy to iterate over the content as well.

The only restriction to the Spring Data Commons Projection infrastructure is that the projection
type must be an interface. However, it is possible to extend the provided, out-of-the-box (OOTB) SDC
Projection infrastructure and provide a custom ProjectionFactory that uses CGLIB to generate
proxy classes as the projected entity.

A custom ProjectionFactory can be set on a Lucene template using
setProjectionFactory(:ProjectionFactory).

144

http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/projection/ProjectionFactory.html
https://github.com/cglib/cglib

12.2. Annotation configuration support
Finally, Spring Data Geode provides Annotation configuration support for LuceneIndexes. Eventually,
the SDG Lucene support will find its way into the Repository infrastructure extension for Apache
Geode so that Lucene queries can be expressed as methods on an application Repository interface,
much like the OQL support today.

However, in the meantime, if you want to conveniently express LuceneIndexes, you can do so
directly on your application domain objects like so…

@PartitionRegion("People")
class Person {

 Gender gender;

 @Index
 LocalDate birthDate;

 String firstName;

 @LuceneIndex;
 String lastName;

 ...
}

You must be using the SDG Annotation configuration support along with the
@EnableEntityDefineRegions and @EnableIndexing Annotations to enable this feature…

@PeerCacheApplication
@EnableEntityDefinedRegions
@EnableIndexing
class ApplicationConfiguration {

 ...
}

Given our definition of the Person class above, the SDG Annotation configuration support will find
the Person entity class definition, determine that people will be stored in a PARTITION Region called
"People" and that the Person will have an OQL Index on birthDate along with a LuceneIndex on
lastName.

More will be described with this feature in subsequent releases.

145

http://docs.spring.io/spring-data-gemfire/docs/current/reference/html/#gemfire-repositories.executing-queries

Chapter 13. Bootstrapping a Spring
ApplicationContext in Apache Geode

13.1. Introduction
Normally, a Spring-based application will bootstrap Apache Geode using Spring Data Geode’s. Just by
specifying a <gfe:cache/> element using the _Spring Data Geode XML namespace, a single, embedded
Geode peer Cache instance is created and initialized with default settings in the same JVM process as
your application.

However, it is sometimes necessary, perhaps a requirement imposed by your IT organization, that
Geode be fully managed and operated using the provided Apache Geode tool suite, such as with
Gfsh. By using Gfsh, Geode will bootstrap your Spring application context rather than the other way
around. Instead of an application server, or a Java main class using Spring Boot, whatever, Geode
does the bootstrapping and will host your application.

Keep in mind, however, that Geode is not an application server. In addition, there are limitations to
using this approach where Geode cache configuration is concerned.

13.2. Using Apache Geode to Bootstrap a Spring
Context Started with Gfsh
In order to bootstrap a Spring application context in Geode when starting a Geode Server process
using Gfsh, a user must make use of Geode’s Initalizer functionality. An Initializer block can declare
a callback application that is launched after the cache is initialized by Geode.

An Initializer is declared within an initializer element using a minimal snippet of Geode’s native
cache.xml. The cache.xml file is required in order to bootstrap the Spring application context, much
like a minimal snippet of Spring XML config is needed to bootstrap a Spring application context
configured with component scanning (e.g. <context:component-scan base-packages="…"/>)

Fortunately, such an Initializer is already conveniently provided by the framework, the
SpringContextBootstrappingInitializer. A typical, yet very minimal configuration for this class
inside Geodes’s cache.xml file will look like this:

146

http://geode.apache.org/docs/guide/11/tools_modules/gfsh/chapter_overview.html
http://geode.apache.org/docs/guide/11/basic_config/the_cache/setting_cache_initializer.html
http://geode.apache.org/docs/guide/11/reference/topics/cache_xml.html#initializer
http://docs.spring.io/spring-data-gemfire/docs/current/api/org/springframework/data/gemfire/support/SpringContextBootstrappingInitializer.html

<?xml version="1.0" encoding="UTF-8"?>
<cache xmlns="http://geode.apache.org/schema/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://geode.apache.org/schema/cache
http://geode.apache.org/schema/cache/cache-1.0.xsd"
 version="1.0">

 <initializer>
 <class-
name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer</c
lass-name>
 <parameter name="contextConfigLocations">
 <string>classpath:application-context.xml</string>
 </parameter>
 </initializer>

</cache>

The SpringContextBootstrappingInitializer class follows similar conventions as Spring’s
ContextLoaderListener class used to bootstrap a Spring application context inside a Web Application,
where application context configuration files are specified with the contextConfigLocations Servlet
Context Parameter.

In addition, the SpringContextBootstrappingInitializer class can also be used with a basePackages
parameter to specify a comma-separated list of base packages containing appropriately annotated
application components that the Spring container will search in order to find and create Spring
beans and other application components on the classpath:

<?xml version="1.0" encoding="UTF-8"?>
<cache xmlns="http://geode.apache.org/schema/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://geode.apache.org/schema/cache
http://geode.apache.org/schema/cache/cache-1.0.xsd"
 version="1.0">

 <initializer>
 <class-
name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer</c
lass-name>
 <parameter name="basePackages">
 <string>org.mycompany.myapp.services,org.mycompany.myapp.dao,...</string>
 </parameter>
 </initializer>

</cache>

Then, with a properly configured and constructed CLASSPATH along with cache.xml file shown above,
specified as a command-line option when starting a Geode Server in Gfsh, the command-line would

147

be:

gfsh>start server --name=Server1 --log-level=config ...
 --classpath="/path/to/application/classes.jar:/path/to/spring-data-geode
-<major>.<minor>.<maint>.RELEASE.jar"
 --cache-xml-file="/path/to/geode/cache.xml"

The application-context.xml can be any valid Spring context configuration meta-data including all
the SDG namespace elements. The only limitation with this approach is that a GemFire cache
cannot be configured using the Spring Data Geode namespace. In other words, none of the
<gfe:cache/> element attributes, such as cache-xml-location, properties-ref, critical-heap-

percentage, pdx-serializer-ref, lock-lease, etc, can be specified. If used, these attributes will be
ignored.

The reason for this is that Geode itself has already created an initialized the cache before the
Initializer gets invoked. As such, the cache will already exist and since it is a "Singleton", it cannot
be re-initialized or have any of it’s configuration augmented.

13.3. Lazy-Wiring GemFire Components
Spring Data Geode already provides existing support for wiring Geode components, such as
CacheListeners, CacheLoaders, CacheWriters and so on, that are declared and created by Geode in
cache.xml using SDG’s WiringDeclarableSupport class as described in Configuration using auto-
wiring and annotations. However, this only works when Spring is the one doing the bootstrapping
(i.e. bootstrapping Geode).

When your Spring application context is bootstrapped by Geode, then these Geode application
components go unnoticed since the Spring application context does not even exist yet! The Spring
application context will not get created until Geode calls the Initializer block, which only occurs
after all the other Geode components and configuration have already been created and initialized.

So, in order to solve this problem, a new LazyWiringDeclarableSupport class was introduced that is,
in a sense, Spring application context aware. The intention of this abstract base class is that any
implementing class will register itself to be configured by the Spring container that will eventually
be created by Geode once the Initializer is called. In essence, this give your Geode defined
application components a chance to be configured and auto-wired with Spring beans defined in the
Spring application context.

In order for your Geode application components to be auto-wired by the Spring container, create an
application class that extends the LazyWiringDeclarableSupport and annotate any class member that
needs to be provided as a Spring bean dependency, similar to:

148

public class UserDataSourceCacheLoader extends LazyWiringDeclarableSupport
 implements CacheLoader<String, User> {

 @Autowired
 private DataSource userDataSource;

 ...
}

As implied in the CacheLoader example above, you might necessarily (although, rarely) have defined
both a Region and CacheListener component in Geode cache.xml. The CacheLoader may need access
to an application DAO, or perhaps a Spring application context defined JDBC DataSource for loading
Users into a Geode REPLICATE Region on start.

CAUTION

Be careful when mixing the different life-cycles of Apache Geode and the Spring
Container together in this manner as not all use cases and scenarios are
supported. The Geode cache.xml configuration would be similar to the following
(which comes from SDG’s test suite):

149

<?xml version="1.0" encoding="UTF-8"?>
<cache xmlns="http://geode.apache.org/schema/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://geode.apache.org/schema/cache
http://geode.apache.org/schema/cache/cache-1.0.xsd"
 version="1.0">

 <region name="Users" refid="REPLICATE">
 <region-attributes initial-capacity="101" load-factor="0.85">
 <key-constraint>java.lang.String</key-constraint>
 <value-constraint>
org.springframework.data.gemfire.repository.sample.User</value-constraint>
 <cache-loader>
 <class-name>

org.springframework.data.gemfire.support.SpringContextBootstrappingInitializerIntegrat
ionTest$UserDataStoreCacheLoader
 </class-name>
 </cache-loader>
 </region-attributes>
 </region>

 <initializer>
 <class-
name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer</c
lass-name>
 <parameter name="basePackages">
 <string>org.springframework.data.gemfire.support.sample</string>
 </parameter>
 </initializer>

</cache>

150

Chapter 14. Sample Applications

NOTE
Sample applications are now maintained in the Spring GemFire Examples
repository.

The Spring Data Geode project also includes one sample application. Named "Hello World", the
sample application demonstrates how to configure and use Apache Geode inside a Spring
application. At runtime, the sample offers a shell to the user allowing her to run various commands
against the data grid. It provides an excellent starting point for users unfamiliar with the essential
components or with Spring and GemFire concepts.

The sample is bundled with the distribution and is Maven-based. A developer can easily import
them into any Maven-aware IDE (such as Spring Tool Suite) or run them from the command-line.

14.1. Hello World
The Hello World sample application demonstrates the core functionality of the Spring Data Geode
project. It bootstraps Geode, configures it, executes arbitrary commands against the cache and
shuts it down when the application exits. Multiple instances of the application can be started at the
same time and they will work together, sharing data without any user intervention.

NOTE

Running under Linux

If you experience networking problems when starting Geode or the samples, try
adding the following system property java.net.preferIPv4Stack=true to the
command line (e.g. -Djava.net.preferIPv4Stack=true). For an alternative (global) fix
especially on Ubuntu see SGF-28.

14.1.1. Starting and stopping the sample

Hello World is designed as a stand-alone Java application. It features a main class which can be
started either from your IDE of choice (in Eclipse/STS through Run As/Java Application) or from the
command-line through Maven using mvn exec:java. A developer can also use java directly on the
resulting artifact if the classpath is properly set.

To stop the sample, simply type exit at the command-line or press Ctrl+C to stop the JVM and
shutdown the Spring container.

14.1.2. Using the sample

Once started, the sample will create a shared data grid and allow the user to issue commands
against it. The output will likely look as follows:

151

https://github.com/spring-projects/spring-gemfire-examples
https://spring.io/tools/sts
https://jira.spring.io/browse/SGF-28

INFO: Created GemFire Cache [Spring GemFire World] v. X.Y.Z
INFO: Created new cache region [myWorld]
INFO: Member xxxxxx:50694/51611 connecting to region [myWorld]
Hello World!
Want to interact with the world ? ...
Supported commands are:

get <key> - retrieves an entry (by key) from the grid
put <key> <value> - puts a new entry into the grid
remove <key> - removes an entry (by key) from the grid
...

For example to add new items to the grid one can use:

-> Bold Section qName:emphasis level:5, chunks:[put 1 unu] attrs:[role:bold]
INFO: Added [1=unu] to the cache
null
-> Bold Section qName:emphasis level:5, chunks:[put 1 one] attrs:[role:bold]
INFO: Updated [1] from [unu] to [one]
unu
-> Bold Section qName:emphasis level:5, chunks:[size] attrs:[role:bold]
1
-> Bold Section qName:emphasis level:5, chunks:[put 2 two] attrs:[role:bold]
INFO: Added [2=two] to the cache
null
-> Bold Section qName:emphasis level:5, chunks:[size] attrs:[role:bold]
2

Multiple instances can be ran at the same time. Once started, the new VMs automatically see the
existing Region and its information:

INFO: Connected to Distributed System ['Spring GemFire World'=xxxx:56218/49320@yyyyy]
Hello World!
...

-> Bold Section qName:emphasis level:5, chunks:[size] attrs:[role:bold]
2
-> Bold Section qName:emphasis level:5, chunks:[map] attrs:[role:bold]
[2=two] [1=one]
-> Bold Section qName:emphasis level:5, chunks:[query length = 3] attrs:[role:bold]
[one, two]

Experiment with the example, start (and stop) as many instances as you want, run various
commands in one instance and see how the others react. To preserve data, at least one instance
needs to be alive all times. If all instances are shutdown, the grid data is completely destroyed.

152

14.1.3. Hello World Sample Explained

Hello World uses both Spring XML and annotations for its configuration. The initial bootstrapping
configuration is app-context.xml, which includes the cache configuration defined in the cache-
context.xml file and performs classpath component scanning for Spring components.

The cache configuration defines the GemFire cache, Region and for illustrative purposes, a simple
CacheListener that acts as a logger.

The main beans are HelloWorld and CommandProcessor which rely on the GemfireTemplate to interact
with the distributed fabric. Both classes use annotations to define their dependency and life-cycle
callbacks.

153

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-classpath-scanning
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-annotation-config

Resources
In addition to this reference documentation, there are a number of other resources that may help
you learn how to use Apache Geode with the Spring Framework. These additional, third-party
resources are enumerated in this section.

154

Chapter 15. Useful Links
• Spring Data GemFire Project Page

• Spring Data Geode source code

• Spring Data Geode JIRA

• Spring Data GemFire on StackOverflow

• Archive of the Spring Data GemFire Forum on Spring IO

• Apache Geode Home Page

• Apache Geode Documentation

• Apache Geode Community

• Apache Geode source code

• Apache Geode JIRA

• Apache Geode on StackOverflow

155

http://projects.spring.io/spring-data-gemfire
https://github.com/spring-projects/spring-data-geode
https://jira.spring.io/browse/DATAGEODE
http://stackoverflow.com/questions/tagged/spring-data-gemfire
http://forum.spring.io/forum/spring-projects/data/gemfire
http://geode.apache.org/
http://geode.apache.org/docs/
http://geode.apache.org/community/
https://github.com/apache/geode
https://issues.apache.org/jira/browse/GEODE/?selectedTab=com.atlassian.jira.jira-projects-plugin:summary-panel
http://stackoverflow.com/search?q=Apache%20Geode

Appendices

156

Appendix A: Namespace reference

The <repositories /> element
The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The
most important attribute is base-package which defines the package to scan for Spring Data
repository interfaces. [1: see [repositories.create-instances.spring]]

Table 6. Attributes

Name Description

base-package Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific Spring
Data module) in auto detection mode. All packages below the configured
package will be scanned, too. Wildcards are allowed.

repository-impl-
postfix

Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered
as candidates. Defaults to Impl.

query-lookup-strategy Determines the strategy to be used to create finder queries. See
[repositories.query-methods.query-lookup-strategies] for details. Defaults
to create-if-not-found.

named-queries-location Defines the location to look for a Properties file containing externally
defined queries.

consider-nested-
repositories

Controls whether nested repository interface definitions should be
considered. Defaults to false.

157

Appendix B: Populators namespace
reference

The <populator /> element
The <populator /> element allows to populate the a data store via the Spring Data repository
infrastructure. [2: see [repositories.create-instances.spring]]

Table 7. Attributes

Name Description

locations Where to find the files to read the objects from the repository shall be
populated with.

158

Appendix C: Repository query keywords

Supported query keywords
The following table lists the keywords generally supported by the Spring Data repository query
derivation mechanism. However, consult the store-specific documentation for the exact list of
supported keywords, because some listed here might not be supported in a particular store.

Table 8. Query keywords

Logical keyword Keyword expressions

AND And

OR Or

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains

BETWEEN Between, IsBetween

ENDING_WITH EndingWith, IsEndingWith, EndsWith

EXISTS Exists

FALSE False, IsFalse

GREATER_THAN GreaterThan, IsGreaterThan

GREATER_THAN_EQUALS GreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)

IS_EMPTY IsEmpty, Empty

IS_NOT_EMPTY IsNotEmpty, NotEmpty

IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN LessThan, IsLessThan

LESS_THAN_EQUAL LessThanEqual, IsLessThanEqual

LIKE Like, IsLike

NEAR Near, IsNear

NOT Not, IsNot

NOT_IN NotIn, IsNotIn

NOT_LIKE NotLike, IsNotLike

REGEX Regex, MatchesRegex, Matches

STARTING_WITH StartingWith, IsStartingWith, StartsWith

TRUE True, IsTrue

WITHIN Within, IsWithin

159

Appendix D: Repository query return types

Supported query return types
The following table lists the return types generally supported by Spring Data repositories. However,
consult the store-specific documentation for the exact list of supported return types, because some
listed here might not be supported in a particular store.

NOTE
Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data
stores that support geospatial queries.

Table 9. Query return types

Return type Description

void Denotes no return value.

Primitives Java primitives.

Wrapper types Java wrapper types.

T An unique entity. Expects the query method to return one result at most.
In case no result is found null is returned. More than one result will
trigger an IncorrectResultSizeDataAccessException.

Iterator<T> An Iterator.

Collection<T> A Collection.

List<T> A List.

Optional<T> A Java 8 or Guava Optional. Expects the query method to return one
result at most. In case no result is found Optional.empty()
/Optional.absent() is returned. More than one result will trigger an
IncorrectResultSizeDataAccessException.

Option<T> An either Scala or JavaSlang Option type. Semantically same behavior as
Java 8’s Optional described above.

Stream<T> A Java 8 Stream.

Future<T> A Future. Expects method to be annotated with @Async and requires
Spring’s asynchronous method execution capability enabled.

CompletableFuture<T> A Java 8 CompletableFuture. Expects method to be annotated with @Async
and requires Spring’s asynchronous method execution capability
enabled.

ListenableFuture A org.springframework.util.concurrent.ListenableFuture. Expects method
to be annotated with @Async and requires Spring’s asynchronous method
execution capability enabled.

Slice A sized chunk of data with information whether there is more data
available. Requires a Pageable method parameter.

Page<T> A Slice with additional information, e.g. the total number of results.
Requires a Pageable method parameter.

GeoResult<T> A result entry with additional information, e.g. distance to a reference
location.

160

Return type Description

GeoResults<T> A list of GeoResult<T> with additional information, e.g. average distance to
a reference location.

GeoPage<T> A Page with GeoResult<T>, e.g. average distance to a reference location.

161

Appendix E: Spring Data Geode Schema
• Spring Data for Apache Geode Core Schema (gfe-namespace)

• Spring Data for Apache Geode Data Access Schema (gfe-data-namespace)

162

http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
http://www.springframework.org/schema/gemfire/spring-data-gemfire.xsd
http://www.springframework.org/schema/gemfire/spring-data-gemfire.xsd
http://www.springframework.org/schema/gemfire/spring-data-gemfire.xsd

	Spring Data for Apache Geode - Reference Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Chapter 2. Requirements
	Chapter 3. New Features
	3.1. New in the 1.0.0.RELEASE
	3.2. New in the 1.1.0.RELEASE
	3.3. New in the 2.0.0.RELEASE

	Reference Guide
	Chapter 4. Document Structure
	Chapter 5. Bootstrapping Apache Geode with the Spring container
	5.1. Advantages of using Spring over Apache Geode cache.xml
	5.2. Using the Core Namespace
	5.3. Using the Data Access Namespace
	5.3.1. An Easy Way to Connect to Geode

	5.4. Configuring a Cache
	5.4.1. Advanced Cache Configuration
	5.4.2. Configuring a Geode CacheServer
	5.4.3. Configuring a Geode ClientCache

	5.5. Configuring a Region
	5.5.1. Using an externally configured Region
	5.5.2. Auto Region Lookup
	5.5.3. Configuring Regions
	5.5.4. Compression
	5.5.5. Subregions
	5.5.6. Region Templates
	5.5.7. Data Eviction (with Overflow)
	5.5.8. Data Expiration
	5.5.9. Data Persistence
	5.5.10. Subscription Policy
	5.5.11. Local Region
	5.5.12. Replicated Region
	5.5.13. Partitioned Region
	5.5.14. Client Region
	5.5.15. JSON Support

	5.6. Configuring an Index
	5.6.1. Defining Indexes
	5.6.2. IgnoreIfExists and Override

	5.7. Configuring a DiskStore
	5.8. Configuring the Snapshot Service
	5.8.1. Snapshot Location
	5.8.2. Snapshot Filters
	5.8.3. Snapshot Events

	5.9. Configuring the Function Service
	5.10. Configuring WAN Gateways
	5.10.1. WAN Configuration in GemFire 7.0

	Chapter 6. Bootstrapping Apache Geode using Spring Annotations
	6.1. Introduction
	6.2. Bootstrapping Apache Geode applications with Spring
	6.3. Going in-detail on client/server applications
	6.4. Runtime configuration using Configurers
	6.5. Runtime configuration using Properties
	6.5.1. Properties of Properties

	6.6. Configuring embedded services
	6.6.1. Configuring an embedded Locator
	6.6.2. Configuring an embedded Manager
	6.6.3. Configuring the embedded HTTP Server
	6.6.4. Configuring the embedded Memcached Server (Gemcached)
	6.6.5. Configuring the embedded Redis Server

	6.7. Configuring Logging
	6.8. Configuring Statistics
	6.9. Configuring PDX
	6.10. Configuring SSL
	6.11. Configuring GemFire Properties
	6.12. Configuring Regions
	6.12.1. Configuring Type-specific Regions
	6.12.2. Configuring Eviction
	6.12.3. Configuring Expiration
	6.12.4. Configuring Compression
	6.12.5. Configuring Off-Heap
	6.12.6. Configuring Indexes
	6.12.7. Configuring Disk Stores

	6.13. Configuring Continuous Queries
	6.14. Configuring Spring’s Cache Abstraction
	6.15. Configuring Cluster Configuration Push
	6.16. Configuring Security
	6.16.1. Configuring Server Security
	6.16.2. Configuring Client Security

	6.17. Configuration Tips
	6.18. Configuration Organization
	6.19. Additional Configuration-based Annotations
	6.20. Conclusion

	Chapter 7. Working with Apache Geode APIs
	7.1. GemfireTemplate
	7.2. Exception Translation
	7.3. Local, Cache Transaction Management
	7.4. Global, JTA Transaction Management
	7.5. Continuous Query (CQ)
	7.5.1. Continuous Query Listener Container
	7.5.2. The ContinuousQueryListener and ContinuousQueryListenerAdapter

	7.6. Wiring Declarable Components
	7.6.1. Configuration using template bean definitions
	7.6.2. Configuration using auto-wiring and annotations

	7.7. Support for the Spring Cache Abstraction

	Chapter 8. Working with Apache Geode Serialization
	8.1. Wiring deserialized instances
	8.2. Auto-generating custom Instantiators

	Chapter 9. POJO mapping
	9.1. Entity Mapping
	9.1.1. Entity Mapping by Region Type
	9.1.2. Repository Mapping

	9.2. Mapping PDX Serializer

	Chapter 10. Spring Data Geode Repositories
	10.1. Introduction
	10.2. Spring XML Configuration
	10.3. Spring Java-based Configuration
	10.4. Executing OQL Queries
	10.5. OQL Query Extensions using Annotations

	Chapter 11. Annotation Support for Function Execution
	11.1. Introduction
	11.2. Implementation vs Execution
	11.3. Implementing a Function
	11.3.1. Annotations for Function Implementation
	11.3.2. Batching Results
	11.3.3. Enabling Annotation Processing

	11.4. Executing a Function
	11.4.1. Annotations for Function Execution
	11.4.2. Enabling Annotation Processing

	11.5. Programmatic Function Execution
	11.6. Function Execution with PDX

	Chapter 12. Apache Lucene Integration
	12.1. Lucene Template Data Accessors
	12.2. Annotation configuration support

	Chapter 13. Bootstrapping a Spring ApplicationContext in Apache Geode
	13.1. Introduction
	13.2. Using Apache Geode to Bootstrap a Spring Context Started with Gfsh
	13.3. Lazy-Wiring GemFire Components

	Chapter 14. Sample Applications
	14.1. Hello World
	14.1.1. Starting and stopping the sample
	14.1.2. Using the sample
	14.1.3. Hello World Sample Explained

	Resources
	Chapter 15. Useful Links

	Appendices
	Appendix A: Namespace reference
	The <repositories /> element

	Appendix B: Populators namespace reference
	The <populator /> element

	Appendix C: Repository query keywords
	Supported query keywords

	Appendix D: Repository query return types
	Supported query return types

	Appendix E: Spring Data Geode Schema

