Spring Data JPA - Reference Documentation

1.3.4.RELEASE

OliverGierkeSenior ConsultantSpringSource - a division of VMwareogierke@vmware.com

Copyright © 2008-2013The original authors

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

please define productname in your docbook file!

Table of Contents

L ==Vt PSPPSR iv
1. ProjeCt METATALAceeetiieeiii ettt ettt e et e et e e et e e e r e eees iv
|. Reference DOCUMENTALIONiiieiiiieeiiti e e e et e ettt r e e e e e e en e na e e e e e eennnes 1
1. Working with Spring Data REPOSILONIESiiiuniiiiiiiiie e 2
R Ofo (I oo (o] o = PPN 2

2 @ U =Y oY A 43711 T o £ 3
Defining repository INTEIACESvviui i 4
Fine-tuning repository definitioncooeiiiiiii e 4

Defining query MethOdSoiiiiiiii e e e e e 4

QuEry 100KUP SIFAEOIESietiiiiti ettt e e eaens 5

QUETY CIEALION ...ieiti ettt ettt ettt e e e e et e e eeaans 5

Property @XPreSSIONSoiiieeiiieririiie ettt e e e e e e r e e 6

Special parameter handlingoooiiiiii e 6

Creating repoSItOry INSLANCESc.uuuiiiiiiiieieiii ettt 7

XML CONFIQUIALION ..ovuiiie e e e e e e e ean s 7

JAVACONTIG et e 8

StANAAIONE USAQGE ...evuiiiiiiii ettt e e e e 8

1.3. Custom implementations for Spring Data repoSitoriescccevevvvieeinieiiiieeieeeannn, 8
Adding custom behavior to single repoSItOriesccociuuiiiiiiiiiiie e, 9

Adding custom behavior to all repOSItONIESviiiiiiiiiiii e 10

1.4, SPring Data EXIENSIONSieuuiiiiieeie e ee e e et e e e e et e e et e et e e e e aaanaes 12
Domain class web binding for Spring MVC ... 12

WED PAGINALION ...uuiiiiiii e et 14
=T 0T 1S 1 (0] YA o 1o 01U] = 1 (] ¢ 15

N | N =T o To]| 0] [T PP 17
2% T |1 o o 11 od 1T o I PP 17
SPriNG NAMESPACE ..evuuiiiinieeieeei et ettt e e et e et e e e e et e et a et e e e aaneret e ranaeeanas 17
Annotation based coNfiQUIratioNcoouiiiiiiiii e 18

2.2, QUETY MELNOAS ...ttt e eaaas 19

(O U=V (o To) (U o JRS) (= (=0 = 19

QUETY CrBALION ...t ittt ettt e e e e et e e et e et e e eneaeaaaes 19

Using JPA NamMedQUETIESiiiiiiiieiiii ettt e et e s 20

L LS o (220 TH = o P 21

UsSiNg Named ParameEterSc..iiiuiieii ettt e e e e e e e e 22

MOITYING QUETIES ...ttt ettt e e 22

APPIYING QUETY NINES ... 23

2.3. SPECITICALIONS ...ttt et 23

2.4, TranSaCONAlILYccoouuiiiiii e 25
Transactional query MethodsSoovuiiiiiiii e 26

2.5, LOCKING .ttt et e et ea e aa e 27

P G U o 11 oo [PP PP PPPPTI 27
BaASICS ittt 27
Annotation based auditing metadataccooviiiiiiiiiii 27
Interface-based auditing metadatacccoovveiiiiiiniiiiii 28

AUAITOTAWAEI ...ttt e e e e e 28

General auditing coNfIQUIAtioNoiiuiiiii e 28

A A /1 ~o =1 [F= T 1= o 11 P 29

Spring Data JPA -
1.3.4.RELEASE Reference Documentation ii

please define productname in your docbook file!

Merging PersiStENCE UNITScieeuuiiiiiiiieieii et 29

Classpath scanning for @Entity classes and JPA mapping filescccc.oeeeennnnn. 29

L1 1IN0 (=T |- 4o) o [N 30

LY o] o 1=T oo | PP PP PPPPTTRTUPPIN 32
A. NaMESPACE FEFEIEINCE ...t eaaens 33

A.l. The <repositories /> elementcc.cccoiiiiiiiiiiiiiiii e 33

B. RepOSItOry qQUENY KEYWOITSuiiieiiiieiiii ettt ettt e e e e et e e e e s 34

B.1. Supported query KEYWOITSuiiiiiiiii i 34

C. Frequently asked QUESLIONScciuuiiiiiiiiiiie e e e e e e e e e e e et e e eaaaeees 36
(€1(0 1S | Y TP OP PP P TPPPPTPRPPPIN 37

Spring Data JPA -
1.3.4.RELEASE Reference Documentation iii

please define productname in your docbook file!

Preface

1 Project metadata

» Version control - git://github.com/SpringSource/spring-data-jpa.git
» Bugtracker - https://jira.springsource.org/browse/DATAJPA

* Release repository - http://repo.springsource.org/libs-release

» Milestone repository - http://repo.springsource.org/libs-milestone
* Snapshot repository - http://repo.springsource.org/libs-snapshot

Spring Data JPA -
1.3.4.RELEASE Reference Documentation

git://github.com/SpringSource/spring-data-jpa.git
https://jira.springsource.org/browse/DATAJPA
http://repo.springsource.org/libs-release
http://repo.springsource.org/libs-milestone
http://repo.springsource.org/libs-snapshot

Part I. Reference Documentation

please define productname in your docbook file!

1. Working with Spring Data Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code
required to implement data access layers for various persistence stores.

©

Important

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data repositories. The
information in this chapter is pulled from the Spring Data Commons module. It uses the
configuration and code samples for the Java Persistence APl (JPA) module. Adapt the XML
namespace declaration and the types to be extended to the equivalents of the particular module
that you are using. Appendix A, Namespace reference covers XML configuration which is
supported across all Spring Data modules supporting the repository API, Appendix B, Repository
query keywords covers the query method method keywords supported by the repository
abstraction in general. For detailed information on the specific features of your module, consult
the chapter on that module of this document.

1.1 Core concepts

The central interface in Spring Data repository abstraction is Reposi t or y (probably not that much of
a surprise). It takes the the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with and
to help you to discover interfaces that extend this one. The Cr udReposi t or y provides sophisticated
CRUD functionality for the entity class that is being managed.

Oo0Ooogogo

public interface CrudRepository<T, |ID extends Serializable>

ext ends Repository<T, |ID> {

|
<S extends T> S save(S entity);

O
T findOne(ID pri maryKey);

O
Iterabl e<T> findAll ();
Long count () ;

O
void delete(T entity);

O
bool ean exi sts(1D pri maryKey);

O

/1 ..nmore functionality omtted.

Saves the given entity.

Returns the entity identified by the given id.
Returns all entities.

Returns the number of entities.

Deletes the given entity.

Indicates whether an entity with the given id exists.

Example 1.1 Cr udReposi t ory interface

Spring Data JPA -

1.3.4.RELEASE Reference Documentation

please define productname in your docbook file!

Usually we will have persistence technology specific sub-interfaces to include additional technology
specific methods. We will now ship implementations for a variety of Spring Data modules that implement
CrudRepository.

On top of the Cr udReposi t ory there is a Pagi ngAndSor t i ngReposi t ory abstraction that adds
additional methods to ease paginated access to entities:

public interface Pagi ngAndSorti ngRepository<T, |D extends Serializabl e>
extends CrudRepository<T, |D> {

Iterabl e<T> findAl | (Sort sort);

Page<T> fi ndAl | (Pageabl e pageabl e);
}

Example 1.2 PagingAndSortingRepository

Accessing the second page of User by a page size of 20 you could simply do something like this:

Pagi ngAndSorti ngReposi t ory<User, Long> repository = // ..get access to a bean
Page<User > users = repository.findAl | (new PageRequest (1, 20));

1.2 Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring
Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Reposi t ory or one of its subinterfaces and type it to the domain
class that it will handle.

‘ public interface PersonRepository extends Repository<User, Long> { ...}

2. Declare query methods on the interface.

‘ Li st <Person> findByLastnane(String | astnane);

3. Set up Spring to create proxy instances for those interfaces.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xml ns: beans="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://wwm. springfranmewor k. or g/ schema/ dat a/ j pa"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmewor k. or g/ schema/ dat a/ j pa
http://ww. springframework. org/ schema/ dat a/ j pa/ spri ng-j pa. xsd" >

<repositories base-package="com acne. repositories" />

</ beans>

© Note

The JPA namespace is used in this example. If you are using the repository abstraction for
any other store, you need to change this to the appropriate namespace declaration of your
store module which should be exchanging j pa in favor of, for example, nongodb.

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 3

please define productname in your docbook file!

4. Get the repository instance injected and use it.

public class Sonedient {

@\ut owi r ed
private PersonRepository repository;

public void doSonet hi ng() {
Li st <Person> persons = repository.findByLastnanme("Matthews");

}

}

The sections that follow explain each step.
Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Reposi t ory and be typed to the domain class and an ID type. If you want to expose CRUD methods
for that domain type, extend Cr udReposi t or y instead of Reposi t ory.

Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
Pagi ngAndSor t i ngReposi t ory. Alternatively, if you do not want to extend Spring Data interfaces,
you can also annotate your repository interface with @RepositoryDefinition. Extending
CrudReposi tory exposes a complete set of methods to manipulate your entities. If you prefer
to be selective about the methods being exposed, simply copy the ones you want to expose from
Cr udReposi t ory into your domain repository.

interface MyBaseRepository<T, |ID extends Serializabl e> extends Repository<T, |ID> {
T findOne(ID id);
T save(T entity);

}

interface UserRepository extends MyBaseRepository<User, Long> {

User findByEnail Address(Enail Address enmi | Addr ess) ;
}

Example 1.3 Selectively exposing CRUD methods

In this first step you defined a common base interface for all your domain repositories and exposed
findOne(..) aswellassave(..) .These methods will be routed into the base repository implementation
of the store of your choice provided by Spring Data because they are matching the method signatures
in Cr udReposi t ory. So the User Reposi t ory will now be able to save users, and find single ones
by id, as well as triggering a query to find User s by their email address.

Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can derive
the query from the method name directly, or by using an additionally created query. Available options
depend on the actual store. However, there's got to be an strategy that decides what actual query is
created. Let's have a look at the available options.

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 4

please define productname in your docbook file!

Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query-1 ookup- strategy attribute. Some
strategies may not be supported for particular datastores.

CREATE

CREATE attempts to construct a store-specific query from the query method name. The general approach
is to remove a given set of well-known prefixes from the method name and parse the rest of the method.
Read more about query construction in the section called “Query creation”.

USE_DECLARED_QUERY

USE_DECLARED_ QUERY tries to find a declared query and will throw an exception in case it can't find
one. The query can be defined by an annotation somewhere or declared by other means. Consult the
documentation of the specific store to find available options for that store. If the repository infrastructure
does not find a declared query for the method at bootstrap time, it fails.

CREATE_IF_NOT_FOUND (default)

CREATE_| F_NOT_FOUND combines CREATE and USE_DECL ARED QUERY. It looks up a declared query
first, and if no declared query is found, it creates a custom method name-based query. This is the default
lookup strategy and thus will be used if you do not configure anything explicitly. It allows quick query
definition by method names but also custom-tuning of these queries by introducing declared queries
as needed.

Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes f i nd..By, r ead...
By, and get ..By from the method and starts parsing the rest of it. The introducing clause can contain
further expressions such as a Di sti nct to set a distinct flag on the query to be created. However, the
first By acts as delimiter to indicate the start of the actual criteria. At a very basic level you can define
conditions on entity properties and concatenate them with And and O

public interface PersonRepository extends Repository<User, Long> {
Li st <Per son> fi ndByEmai | Addr essAndLast nane(Enai | Addr ess enmi | Address, String | astnane);

/'l Enables the distinct flag for the query
Li st <Person> fi ndDi sti nct Peopl eByLast naneOr Fi rstname(String | astname, String firstnane);
Li st <Person> fi ndPeopl eDi sti nct ByLast nameOr Firstnane(String | astname, String firstnane);

/1 Enabling ignoring case for an individual property

Li st <Person> fi ndByLast nanel gnoreCase(String | astnane);

/] Enabling ignoring case for all suitable properties

Li st <Person> fi ndBylLast naneAndFi r st naneAl | | gnoreCase(String | astname, String firstnane);

/1 Enabling static ORDER BY for a query
Li st <Person> fi ndByLast naneOr der ByFi r st nanmeAsc(String | ast nane);
Li st <Per son> fi ndByLast naneOr der ByFi r st nameDesc(Stri ng | ast nane) ;

}

Example 1.4 Query creation from method names

The actual result of parsing the method depends on the persistence store for which you create the query.
However, there are some general things to notice.

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 5

please define productname in your docbook file!

* The expressions are usually property traversals combined with operators that can be concatenated.
You can combine property expressions with AND and OR. You also get support for operators such as
Bet ween, LessThan, Gr eat er Than, Li ke for the property expressions. The supported operators
can vary by datastore, so consult the appropriate part of your reference documentation.

* The method parser supports setting an |gnoreCase flag for individual properties, for
example,fi ndByLast nanmel gnhor eCase(..)) or for all properties of a type that support ignoring case
(usually St ri ngs, for example, f i ndByLast nameAndFi r st naneAl | | gnor eCase(..)). Whether
ignoring cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

* You can apply static ordering by appending an Or der By clause to the query method that references
a property and by providing a sorting direction (Asc or Desc). To create a query method that supports
dynamic sorting, see the section called “Special parameter handling”.

Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding
example. At query creation time you already make sure that the parsed property is a property of the
managed domain class. However, you can also define constraints by traversing nested properties.
Assume Per sons have Addr esses with Zi pCodes. In that case a method name of

Li st <Per son> fi ndByAddr essZi pCode(Zi pCode zi pCode);

creates the property traversal x. addr ess. zi pCode. The resolution algorithm starts with interpreting
the entire part (Addr essZi pCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, Addr essZi p and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the way
just described. If the first split does not match, the algorithm move the split point to the left (Addr ess,
Zi pCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property.
Suppose the Per son class has an addr essZi p property as well. The algorithm would match in the first
split round already and essentially choose the wrong property and finally fail (as the type of addr essZi p
probably has no code property). To resolve this ambiguity you can use _ inside your method name to
manually define traversal points. So our method name would end up like so:

Li st <Per son> fi ndByAddr ess_Zi pCode(Zi pCode zi pCode);

Special parameter handling

To handle parameters to your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageabl e and
Sor t to apply pagination and sorting to your queries dynamically.

Page<User > findByLast name(String | astname, Pageabl e pageabl e);
Li st<User> findByLastnane(String |astnanme, Sort sort);

Li st<User> findByLastnane(String | astnane, Pageabl e pageabl e);

Example 1.5 Using Pageable and Sort in query methods

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 6

please define productname in your docbook file!

The first method allows you to pass an or g. spri ngf r amewor k. dat a. donai n. Pageabl e instance
to the query method to dynamically add paging to your statically defined query. Sorting options
are handled through the Pageabl e instance too. If you only need sorting, simply add an
org. springfranmewor k. dat a. domai n. Sort parameter to your method. As you also can see,
simply returning a Li st is possible as well. In this case the additional metadata required to build the
actual Page instance will not be created (which in turn means that the additional count query that would
have been necessary not being issued) but rather simply restricts the query to look up only the given
range of entities.

@ Note

To find out how many pages you get for a query entirely you have to trigger an additional count
query. By default this query will be derived from the query you actually trigger.

Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. The easiest
way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism.

XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns: beans="http://ww. spri ngfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://ww. spri ngframewor k. org/ schena/ dat a/ j pa"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ dat a/ j pa
http://ww. springframework. org/ schema/ dat a/ j pa/ spri ng-j pa. xsd" >

<repositori es base-package="com acne. repositories" />

</ beans: beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its subpackages
for interfaces extending Repository or one of its subinterfaces. For each interface found, the
infrastructure registers the persistence technology-specific Fact or yBean to create the appropriate
proxies that handle invocations of the query methods. Each bean is registered under a bean name that
is derived from the interface name, so an interface of User Reposi t ory would be registered under
user Reposi tory. The base- package attribute allows wildcards, so that you can have a pattern of
scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Reposi t ory subinterface located under the configured base package and creates a bean instance
for it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements
inside <r eposi tori es />. The semantics are exactly equivalent to the elements in Spring's context
namespace. For details, see Spring reference documentation on these elements.

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 7

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

please define productname in your docbook file!

For example, to exclude certain interfaces from instantiation as repository, you could use the following
configuration:

<repositories base-package="com acne. repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SonmeReposi t or y from being instantiated.
Example 1.6 Using exclude-filter element

JavaConfig

The repository infrastructure can also be triggered using a store-specific @&tnabl e
${ st ore} Reposi t ori es annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation.?

A sample configuration to enable Spring Data repositories looks something like this.

@conf i guration
@nabl eJpaReposi tori es("com acne. repositories")
cl ass ApplicationConfiguration {

@ean
public EntityManager Factory entityManagerFactory() ({
I/
}
}

Example 1.7 Sample annotation based repository configuration

@ Note

The sample uses the JPA-specific annotation, which you would change according to the store
module you actually use. The same applies to the definition of the Enti t yManager Fact ory
bean. Consult the sections covering the store-specific configuration.

Standalone usage

You can also use the repository infrastructure outside of a Spring container. You still need some
Spring libraries in your classpath, but generally you can set up repositories programmatically as
well. The Spring Data modules that provide repository support ship a persistence technology-specific
Reposi t or yFact ory that you can use as follows.

Reposi t oryFact orySupport factory = ...// Instantiate factory here
User Repository repository = factory. get Repository(UserRepository.class);

Example 1.8 Standalone usage of repository factory

1.3 Custom implementations for Spring Data repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

2.]avaConfig in the Spring reference documentation - http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/
html/beans.html#beans-java

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 8

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java

please define productname in your docbook file!

Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation for
the custom functionality. Use the repository interface you provided to extend the custom interface.

interface UserRepositoryCustom {

public voi d soneCust omVet hod(User user);
}

Example 1.9 Interface for custom repository functionality

cl ass UserRepositorylnmpl inplenments UserRepositoryCustom {

public voi d sonmeCust omvet hod(User user) {
/1 Your custom i npl enentation
}
}

© Note

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So
you can use standard dependency injection behavior to inject references to other beans, take
part in aspects, and so on.

Example 1.10 Implementation of custom repository functionality

public interface UserRepository extends CrudRepository<User, Long> UserRepositoryCustom {

/| Decl are query nethods here

}

Let your standard repository interface extend the custom one. Doing so makes CRUD and custom
functionality available to clients.
Example 1.11 Changes to the your basic repository interface

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element's attribute r eposi t or y-
i mpl - post fi x to the found repository interface name. This postfix defaults to | npl .

<repositories base-package="com acne. repository" />

<repositories base-package="com acne. repository" repository-inpl-postfix="FooBar" />

Example 1.12 Configuration example

The first configuration example will try to look up a class
com acne. reposi tory. User Reposi t oryl npl to act as custom repository implementation, where
the second example will try to lookup com acne. reposi t ory. User Reposi t or yFooBar .

Manual wiring

The preceding approach works well if your custom implementation uses annotation-based configuration
and autowiring only, as it will be treated as any other Spring bean. If your custom implementation bean

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 9

please define productname in your docbook file!

needs special wiring, you simply declare the bean and name it after the conventions just described.
The infrastructure will then refer to the manually defined bean definition by name instead of creating
one itself.

<repositori es base-package="com acne. repository" />

<beans: bean i d="userRepositoryl npl" class=".">
<l-- further configuration -->
</ beans: bean>

Example 1.13 Manual wiring of custom implementations (1)

Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces.

1. To add custom behavior to all repositories, you first add an intermediate interface to declare the
shared behavior.

public interface MyRepository<T, |D extends Serializable>
ext ends JpaRepository<T, |D> {

voi d sharedCust omvet hod(I D id);

}
Example 1.14 An interface declaring custom shared behavior

Now your individual repository interfaces will extend this intermediate interface instead of the
Reposi t ory interface to include the functionality declared.

2. Next, create an implementation of the intermediate interface that extends the persistence technology-
specific repository base class. This class will then act as a custom base class for the repository
proxies.

public class MyRepositoryl mpl <T, |D extends Serializable>
extends Si npl eJpaRepository<T, |D> inplenments M/Repository<T, |D> {

private EntityManager entityManager;

/'l There are two constructors to choose from either can be used.
public MyRepositorylnpl (O ass<T> donmi nd ass, EntityManager entityManager) {
super (donmi nCl ass, entityManager);

/1 This is the recormended nethod for accessing inherited class dependenci es.
this.entityManager = entityManager;
}

public voi d sharedCustomvet hod(ID id) {
/1 inmplenentation goes here

}
}

Example 1.15 Custom repository base class

The default behavior of the Spring <r eposi t ori es / > namespace is to provide an implementation
for all interfaces that fall under the base- package. This means that if left in its current state, an

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 10

please define productname in your docbook file!

implementation instance of MyReposi t or y will be created by Spring. This is of course not desired
as it is just supposed to act as an intermediary between Reposi t ory and the actual repository
interfaces you want to define for each entity. To exclude an interface that extends Reposi t or y from
being instantiated as a repository instance, you can either annotate it with @loReposi t or yBean or
move it outside of the configured base- package.

3. Then create a custom repository factory to replace the default Reposi t or yFact or yBean that will
in turn produce a custom Reposi t or yFact ory. The new repository factory will then provide your
MyReposi t oryl npl asthe implementation of any interfaces that extend the Reposi t or y interface,
replacing the Si npl eJpaReposi t ory implementation you just extended.

public class M/RepositoryFact oryBean<R ext ends JpaRepository<T, |> T, | extends
Seri al i zabl e>
ext ends JpaRepositoryFactoryBean<R, T, |> {

protect ed RepositoryFactorySupport createRepositoryFactory(EntityManager
entityManager) ({

return new MyRepositoryFactory(entityManager);
}

private static class M/RepositoryFactory<T, | extends Serializabl e> extends
JpaReposi toryFactory {

private EntityManager entityManager;

publ i c MyRepositoryFactory(EntityManager entityManager) {
super (entityManager);

this.entityManager = entityManager;
}

protected Object get Target Repository(RepositoryMtadata netadata) {

return new MyRepositorylnpl <T, 1>((Cd ass<T>) netadat a. get Domai nCl ass(),
entityManager);
}

protected C ass<?> get Reposi t or yBased ass(Reposi t or yMet adat a net adata) {

/'l The RepositoryMetadata can be safely ignored, it is used by the
JpaReposi t or yFact ory
//to check for QueryDsl JpaRepository's which is out of scope.
return MyRepository. cl ass;
}
}
}

Example 1.16 Custom repository factory bean

4. Finally, either declare beans of the custom factory directly or use the f act ory- cl ass attribute of
the Spring namespace to tell the repository infrastructure to use your custom factory implementation.

<repositories base-package="com acne. repository"
factory-cl ass="com acne. M/Reposi t or yFact or yBean" />

Example 1.17 Using the custom factory with the namespace

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 11

please define productname in your docbook file!

1.4 Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLSs. By default your task is to transform that request parameter or URL part into the domain
class to hand it to layers below then or execute business logic on the entities directly. This would look
something like this:

@ontroll er
@Request Mappi ng("/ users")
public class UserController {

private final UserRepository userRepository;

@\ut owi red
public UserController(UserRepository userRepository) {
Assert.notNul | (repository, "Repository nust not be null!");

user Reposi tory = userRepository;

}

@request Mappi ng("/{id}")
public String showUser Forn(@at hVari abl e("id") Long id, Mdel nodel) ({

/1 Do null check for id
User user = userRepository.findOne(id);
/1 Do null check for user

nmodel . addAttri bute("user", user);
return "user";

First you declare a repository dependency for each controller to look up the entity managed by
the controller or repository respectively. Looking up the entity is boilerplate as well, as it's always
a findOne(..) call. Fortunately Spring provides means to register custom components that allow
conversion between a St ri ng value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java Propert yEdi t ors had to be used. To integrate with
that, Spring Data offers a Dormai nCl assPr opert yEdi t or Regi st r ar, which looks up all Spring Data
repositories registered in the Appl i cati onCont ext and registers a custom Propert yEdi t or for
the managed domain class.

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 12

please define productname in your docbook file!

<bean cl ass="...web. servl et. nm/c. annot ati on. Annot ati onMet hodHand| er Adapt er" >
<property nanme="webBi ndinglnitializer">
<bean cl ass="...web. bi nd. support. Confi gurabl eWebBi ndi nglnitializer">

<property nane="propertyEditorRegistrars">

<bean cl ass="org. spri ngframework. dat a. repository. support. Domai nCl assPropertyEditorRegi strar"
/>
</ property>
</ bean>
</ property>
</ bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as
follows, which reduces a lot of the clutter and boilerplate.

@ontroll er
@Request Mappi ng("/ users")
public class UserController {

@Request Mappi ng("/{id}")
public String showUser For n{ @at hVari abl e("i d") User user, Mdel nodel) {

nmodel . addAttri bute("user", user);
return "userForm';

ConversionService

In Spring 3.0 and later the Pr oper t yEdi t or support is superseded by a new conversion infrastructure
that eliminates the drawbacks of PropertyEditors and uses a stateless X to Y conversion
approach. Spring Data now ships with a Domai nCl assConvert er that mimics the behavior of
Domai nCl assPropert yEdi t or Regi strar. To configure, simply declare a bean instance and pipe
the Conver si onSer vi ce being used into its constructor:

<mvc: annot ati on-driven conversi on-servi ce="conversi onServi ce" />

<bean cl ass="org. spri ngfranewor k. dat a. reposi tory. support. Domai nCl assConverter">
<constructor-arg ref="conversi onService" />
</ bean>

If you are using JavaConfig, you can simply extend Spring MVC's WebMscConf i gur at i onSupport
and hand the For mat i ngConver si onSer vi ce that the configuration superclass provides into the
Domai nCl assConvert er instance you create.

cl ass WebConfigurati on extends WebM/cConfi gurati onSupport {
/1 Other configuration omtted

@Bean
publ i ¢ Domai nCl assConverter<?> domai nC assConverter () {
return new Domai nCl assConvert er <Formatti ngConver si onServi ce>(m/cConver si onService());

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 13

please define productname in your docbook file!

Web pagination

When working with pagination in the web layer you usually have to write a lot of boilerplate code yourself
to extract the necessary metadata from the request. The less desirable approach shown in the example
below requires the method to contain an Ht t pSer vl et Request parameter that has to be parsed
manually. This example also omits appropriate failure handling, which would make the code even more
verbose.

@ontrol ler
@Request Mappi ng("/ users")
public class UserController {

/1 DI code omtted

@request Mappi ng
public String showdsers(Mdel nodel, HttpServletRequest request) {

int page = I nteger.parselnt(request.getParaneter("page"));
int pageSi ze = |nteger. parselnt(request.get Paraneter("pageSi ze"));

Pageabl e pageabl e = new PageRequest (page, pageSi ze);

nmodel . addAttri bute("users", userService. getUsers(pageabl e));
return "users";

The bottom line is that the controller should not have to handle the functionality of extracting pagination
information from the request. So Spring includes a Pageabl eAr gunent Resol ver that will do the work
for you.

<bean cl ass="...web. servl et. mvc. annot ati on. Annot ati onMet hodHandl er Adapt er " >
<property nane="cust omAr gunent Resol vers" >
<list>
<bean cl ass="org. spri ngframewor k. dat a. web. Pageabl eAr gunent Resol ver" />
</[list>
</ property>
</ bean>

This configuration allows you to simplify controllers down to something like this:

@ontrol ler
@Request Mappi ng("/ users")
public class UserController {

@Request Mappi ng
public String showdsers(Mdel nodel, Pageable pageable) {

nodel . addAttri bute("users", userRepository.findAll (pageable));
return "users";

The Pageabl eAr gurent Resol ver automatically resolves request parameters to build a
PageRequest instance. By default it expects the following structure for the request parameters.

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 14

please define productname in your docbook file!

Table 1.1. Request parameters evaluated by Pageabl eAr gunent Resol ver

page Page you want to retrieve.

page. si ze Size of the page you want to retrieve.
page. sort Property that should be sorted by.
page.sort.dir Direction that should be used for sorting.

In case you need multiple Pageabl es to be resolved from the request (for multiple tables, for example)
you can use Spring's @ual i fi er annotation to distinguish one from another. The request parameters
then have to be prefixed with ${ qual i fi er} _. So for a method signature like this:

public String showdsers(Mdel nodel,
@ualifier("foo") Pageable first,
@ualifier("bar") Pageable second) { ...}

you have to populate f oo_page and bar _page and the related subproperties.
Configuring a global default on bean declaration

The Pageabl eAr gunent Resol ver will use a PageRequest with the first page and a page size of 10
by default. It will use that value if it cannot resolve a PageRequest from the request (because of missing
parameters, for example). You can configure a global default on the bean declaration directly. If you
might need controller method specific defaults for the Pageabl e, annotate the method parameter with
@ageabl eDef aul t s and specify page (through pageNunber), page size (through val ue), sort (list
of properties to sort by), and sort Di r (the direction to sort by) as annotation attributes:

public String showUsers(Mdel nodel,
@ageabl eDef aul t s(pageNumber = 0, value = 30) Pageabl e pageable) { ...}

Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
Dat aSour ce using SQL scripts. A similar abstraction is available on the repositories level, although
it does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring's OXM abstraction) and JSON (through Jackson) to define data
with which to populate the repositories.

Assume you have a file dat a. j son with the following content:

[{ "_class" : "com acne. Person",
"firstname" : "Dave",
"l ast name" : "Matthews" },
{ "_class" : "com acne. Person",
"firstname" : "Carter",
"l ast name" : "Beauford" }]

Example 1.18 Data defined in JSON

You can easily populate your repositories by using the populator elements of the repository namespace
provided in Spring Data Commons. To populate the preceding data to your Per sonRepository , do
the following:

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 15

please define productname in your docbook file!

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: repository="http://ww. springfranmework. or g/ schema/ dat a/ r eposi tory"
xsi : schemaLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranewor k. or g/ schena/ dat a/ reposi tory

<reposi tory:jackson-popul ator |ocation="cl asspath: data.json" />

</ beans>

Example 1.19 Declaring a Jackson repository populator

http://ww. springframework. org/ scherma/ dat a/ reposi tory/ spring-repository.xsd">

This declaration causes the dat a. j son file being read, deserialized by a Jackson Obj ect Mapper.
The type to which the JSON object will be unmarshalled to will be determined by inspecting the _cl ass
attribute of the JSON document. The infrastructure will eventually select the appropriate repository to

handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmar shal | er - popul at or element. You configure it to use one of the XML marshaller options Spring

OXM provides you with. See the Spring reference documentation for details.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: repository="http://ww. springfranmework. org/ schema/ dat a/ reposi tory"
xm ns: oxn¥"http://ww. springframewor k. or g/ schenma/ oxnt
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schenma/ dat a/ r eposi tory
http://ww. spri ngfranewor k. or g/ schena/ dat a/ r eposi tory/ spri ng-repository. xsd
http://ww. springfranework. or g/ schema/ oxm
http://ww. springframework. or g/ schema/ oxm spri ng- oxm xsd" >

ref ="unmarshal ler" />
<oxm j axb2- mar shal | er cont ext Pat h="com acme" />

</ beans>

<reposi tory: unmarshal | er- popul ator |ocation="cl asspath: data.json" unmarshall er-

Example 1.20 Declaring an unmarshalling repository populator (using JAXB)

Spring Data JPA -
1.3.4.RELEASE Reference Documentation

16

???

please define productname in your docbook file!

2. JPA Repositories

This chapter includes details of the JPA repository implementation.

2.1 Introduction

Spring namespace

The JPA module of Spring Data contains a custom namespace that allows defining repository beans.
It also contains certain features and element attributes that are special to JPA. Generally the JPA
repositories can be set up using the r eposi t ori es element:

<?xm version="1.0" encodi ng="UTF-8"?>

</ beans>

<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:jpa="http://ww. springfranmework. org/ schema/ dat a/ j pa"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ dat a/ j pa
http://ww. springframework. org/ schema/ dat a/ j pa/ spri ng-j pa. xsd">

<j pa: repositories base-package="com acne. repositories" />

Example 2.1 Setting up JPA repositories using the namespace

Using this element looks up Spring Data repositories as described in the section called “Creating
repository instances”. Beyond that it activates persistence exception translation for all beans annotated
with @Reposi t ory to let exceptions being thrown by the JPA presistence providers be converted into

Spring's Dat aAccessExcept i on hierarchy.

Custom namespace attributes

Beyond the default attributes of the r eposi t ori es element the JPA namespace offers additional
attributes to gain more detailled control over the setup of the repositories:

Table 2.1. Custom JPA-specific attributes of the repositories element

entity-nmanager-factory-ref

transacti on- manager - r ef

Explicitly wire the Enti t yManager Fact ory to
be used with the repositories being detected
by the repositories element. Usually used
if multiple EntityManager Factory beans
are used within the application. If not
configured we will automatically lookup the
single EntityManager Fact ory configured in
the Appl i cat i onCont ext .

Explicitly wire the
Pl at f or nTr ansact i onManager to be used
with the repositories being detected by
the repositories element. Usually only
necessary if multiple transaction managers

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 17

please define productname in your docbook file!

and/or EntityManager Factory beans have
been configured. Default to a single defined
Pl at f or nTr ansact i onManager inside the
current Appl i cat i onCont ext .

Annotation based configuration

The Spring Data JPA repositories support cannot only be activated through an XML namespace but
also using an annotation through JavaConfig.

@confi guration

@nabl eJpaReposi tori es
@nabl eTr ansact i onManagenent
class ApplicationConfig {

@Bean
publ i c Dat aSour ce dataSource() {

EnbeddedDat abaseBui | der bui |l der = new EnbeddedDat abaseBui | der () ;
return buil der. set Type(EnbeddedDat abaseType. HSQ.) . bui | d() ;
}

@ean
public EntityManager Factory entityManagerFactory() ({

Hi ber nat eJpaVendor Adapt er vendor Adapter = new Hi ber nat eJpaVendor Adapt er () ;
vendor Adapt er . set Gener at eDdl (true);

Local Cont ai ner Ent i t yManager Fact or yBean factory = new
Local Cont ai ner Ent i t yManager Fact or yBean() ;

factory. set JpaVendor Adapt er (vendor Adapt er) ;

factory. set PackagesToScan("com acne. donai n") ;

factory. set Dat aSour ce(dat aSource());

factory. afterPropertiesSet();

return factory. get Object();
}

@ean
publ i c Pl atforniransacti onManager transacti onManager () {

JpaTransacti onManager txManager = new JpaTransacti onManager () ;
t xManager . set Ent i t yManager Fact ory(entityManager Factory());
return txManager;
}
}

Example 2.2 Spring Data JPA repositories using JavaConfig

The just shown configuration class sets up an embedded HSQL database using the
EnbeddedDat abaseBui | der API of spring-jdbc. We then set up a Enti t yManager Fact ory and
use Hibernate as sample persistence provider. The last infrastructure component declared here
is the JpaTransacti onManager . We eventually activate Spring Data JPA repositories using the
@nabl eJpaReposi t ori es annotation which essentially carries the same attributes as the XML
namespace does. If no base package is configured it will use the one the configuration class resides in.

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 18

please define productname in your docbook file!

2.2 Query methods

Query lookup strategies

The JPA module supports defining a query manually as String or have it being derived from the method
name.

Declared queries

Although getting a query derived from the method name is quite convenient, one might face the situation
in which either the method name parser does not support the keyword one wants to use or the method
name would get unnecessarily ugly. So you can either use JPA named queries through a naming
convention (see the section called “Using JPA NamedQueries” for more information) or rather annotate
your query method with @uer y (see the section called “Using @Query” for details).

Query creation

Generally the query creation mechanism for JPA works as described in Section 1.2, “Query methods”.
Here's a short example of what a JPA query method translates into:

public interface UserRRepository extends Repository<User, Long> {

Li st <User> findByEnmai | Addr essAndLast nane(String emai | Address, String |astnane);
}

We will create a query using the JPA criteria API from this but essentially this translates into the following
query:

select u from User u where u.enail Address = ?1 and u.l astname = ?2

Spring Data JPA will do a property check and traverse nested properties as described in ???. Here's
an overview of the keywords supported for JPA and what a method containing that keyword essentially
translates to.

Example 2.3 Query creation from method names
Table 2.2. Supported keywords inside method names

Keyword Sample JPQL snippet

And fi ndByLast nameAndFi rstnane. where x.lastnanre = ?1 and
x.firstname = ?2

O fi ndByLast nameOr Fi r st nane...where x. | astnane = ?1 or x.firstname
= 72

Bet ween fi ndBySt ar t Dat eBet ween ...wWhere x.startDate between 1? and ?2

LessThan fi ndByAgeLessThan ...wWhere x.age < ?1

GreaterThan findByAgeG eater Than ...where x.age > ?1

After findBySt art Dat eAft er ...where x.startDate > ?1

Bef ore fi ndBySt art Dat eBef ore ...wWhere x.startDate < ?1

I sNul | fi ndByAgel sNul | ...where x.age is null

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 19

please define productname in your docbook file!

Keyword Sample JPQL snippet

I sNot Nul | , NotfNuidBy Age(| s) Not Nul | ...where x.age not null

Li ke fi ndByFi r st naneLi ke ...where x.firstname |ike ?1

Not Li ke fi ndByFi r st nameNot Li ke ...where x.firstnane not like ?1

StartingWthfindByFirstnaneStarti ngWthwhere x.firstname |ike ?1 (parameter
bound with appended %

Endi ngWth findByFirstnaneEndi ngWth...where x.firstnane |ike ?1 (parameter
bound with prepended %

Contai ning findByFirstnaneContaining..where x.firstname |ike ?1 (parameter
bound wrapped in %9

Or der By fi ndByAgeOr der ByLast naneDeseher e x. age = ?1 order by x. | ast nanme
desc
Not fi ndByLast nameNot ...where x.lastnanme <> ?1
In fi ndByAgel n(Col | ecti on<Age>where x.age in ?1
ages)
Not I n fi ndByAgeNot I n(Col | ecti on<Aghere x.age not in ?1
age)
True fi ndByActiveTrue() ...where x.active = true
Fal se fi ndByActi veFal se() ...wWhere x.active = fal se
© Note

I n and Not | n also take any subclass of Col | ect i on as parameter as well as arrays or varargs.
For other syntactical versions of the very same logical operator check Appendix B, Repository
query keywords.

Using JPA NamedQueries

© Note

The examples use simple <named- query /> element and @NanedQuery annotation. The
queries for these configuration elements have to be defined in JPA query language. Of course
you can use <namned- nat i ve- query /> or @anedNat i veQuer y too. These elements allow
you to define the query in native SQL by losing the database platform independence.

XML named query definition

To use XML configuration simply add the necessary <naned- query /> element to the or m xm JPA
configuration file located in META- | NF folder of your classpath. Automatic invocation of named queries
is enabled by using some defined naming convention. For more details see below.

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 20

please define productname in your docbook file!

<naned- query nane="User.findByLast nane" >
<query>sel ect u from User u where u.lastname = ?1</query>
</ naned- quer y>

Example 2.4 XML named query configuration
As you can see the query has a special name which will be used to resolve it at runtime.
Annotation configuration

Annotation configuration has the advantage of not needing another configuration file to be edited,
probably lowering maintenance costs. You pay for that benefit by the need to recompile your domain
class for every new query declaration.

@ntity
@NanedQuery(nanme = "User. fi ndByEmai | Addr ess",
query = "select u fromUser u where u.enuil Address = ?1")

public class User {

}
Example 2.5 Annotation based named query configuration

Declaring interfaces

To allow execution of these hamed queries all you need to do is to specify the User Repository as
follows:

public interface UserRepository extends JpaRepository<User, Long> {
Li st<User> findByLastnane(String |astnane);

User findByEnmail Address(String enail Address);
}

Example 2.6 Query method declaration in UserRepository

Spring Data will try to resolve a call to these methods to a named query, starting with the simple name
of the configured domain class, followed by the method name separated by a dot. So the example here
would use the named queries defined above instead of trying to create a query from the method name.

Using @Query

Using named queries to declare queries for entities is a valid approach and works fine for a small number
of queries. As the queries themselves are tied to the Java method that executes them you actually can
bind them directly using the Spring Data JPA @er y annotation rather than annotating them to the
domain class. This will free the domain class from persistence specific information and co-locate the
guery to the repository interface.

Queries annotated to the query method will take precedence over queries defined using @anedQuer y
or named queries declared in orm xm .

public interface UserRepository extends JpaRepository<User, Long> {

@uery("select u fromUser u where u.enunil Address = ?1")
User findByEmail Address(String enail Address);

}
Example 2.7 Declare query at the query method using @uery

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 21

please define productname in your docbook file!

Using advanced LI KE expressions

The query execution mechanism for manually defined queries using @uery allow the definition of
advanced LI KE expressions inside the query definition.

public interface UserRepository extends JpaRepository<User, Long> {

@uery("select u fromUser u where u.firstnane |ike %1")
Li st <User > fi ndByFirstnaneEndsWth(String firstnane);

}
Example 2.8 Advanced LI KE expressions in @uery

In the just shown sample LI KE delimiter character %is recognized and the query transformed into a
valid JPQL query (removing the %. Upon query execution the parameter handed into the method call
gets augmented with the previously recognized LI KE pattern.

Native queries

The @uer y annotation allows to execute native queries by setting the nat i veQuer y flag to true. Note,
that we currently don't support execution of pagination or dynamic sorting for native queries as we'd
have to manipulate the actual query declared and we cannot do this reliably for native SQL.

public interface UserRepository extends JpaRepository<User, Long> {

@uery(val ue = "SELECT FROM USERS WHERE ENMAI L_ADDRESS = ?0", nativeQuery = true)
User findByEnmil Address(String emai | Address);
}

Example 2.9 Declare a native query at the query method using @uery

Using named parameters

By default Spring Data JPA will use position based parameter binding as described in all the samples
above. This makes query methods a little error prone to refactoring regarding the parameter position.
To solve this issue you can use @ar amannotation to give a method parameter a concrete name and
bind the name in the query:

public interface UserRepository extends JpaRepository<User, Long> {

@uery("select u fromUser u where u.firstnane = :firstnane or u.lastnanme = :|astnanme")
User findBylLast naneOr Firstname(@aran("| astnane") String |astnane,
@aram"firstnane") String firstnane);

Note that the method parameters are switched according to the occurrence in the query defined.
Example 2.10 Using named parameters

Modifying queries

All the sections above describe how to declare queries to access a given entity or collection of entities.
Of course you can add custom modifying behaviour by using facilities described in Section 1.3, “Custom
implementations for Spring Data repositories”. As this approach is feasible for comprehensive custom
functionality, you can achieve the execution of modifying queries that actually only need parameter
binding by annotating the query method with @vbdi f yi ng:

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 22

please define productname in your docbook file!

@ndi fyi ng
@uery("update User u set u.firstnane = ?1 where u.lastnane = ?2")
int setFixedFirstnaneFor(String firstname, String |astnane);

Example 2.11 Declaring manipulating queries

This will trigger the query annotated to the method as updating query instead of a selecting one. As
the Enti t yManager might contain outdated entities after the execution of the modifying query, we
automatically clear it (see JavaDoc of Ent i t yManager .cl ear () for details). This will effectively drop
all non-flushed changes still pending in the Ent i t yManager . If you don't wish the Enti t yManager
to be cleared automatically you can set @/bdi f yi ng annotation's cl ear Aut onmat i cal | y attribute to
fal se;

Applying query hints

To apply JPA QueryHi nts to the queries declared in your repository interface you can use the
Quer yHi nts annotation. It takes an array of JPA Quer yH nt annotations plus a boolean flag to
potentially disable the hints applied to the addtional count query triggered when applying pagination.

public interface UserRepository extends Repository<User, Long> {

@ueryH nts(value = { @ueryH nt(nane = "nane", value = "value")},
forCounting = fal se)
Page<User > findByLast nanme(String | ast name, Pageabl e pageabl e);

}

The just shown declaration would apply the configured Quer yHi nt for that actually query but omit
applying it to the count query triggered to calculate the total number of pages.
Example 2.12 Using QueryHints with a repository method

2.3 Specifications

JPA 2 introduces a criteria API that can be used to build queries programmatically. Writingacriteri a
you actually define the where-clause of a query for a domain class. Taking another step back these
criteria can be regarded as predicate over the entity that is described by the JPA criteria API constraints.

Spring Data JPA takes the concept of a specification from Eric Evans' book "Domain Driven
Design", following the same semantics and providing an API to define such Speci fi cati ons using
the JPA criteria API. To support specifications you can extend your repository interface with the
JpaSpeci fi cati onExecut or interface:

public interface CustomerRepository extends CrudRepository<Custoner, Long>,
JpaSpeci fi cati onExecut or {

The additional interface carries methods that allow you to execute Speci fi cati ons in a variety of
ways.

For example, the f i ndAl | method will return all entities that match the specification:

Li st<T> findAl | (Specification<T> spec);

The Speci fi cati on interface is as follows:

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 23

please define productname in your docbook file!

public interface Specification<T> {
Predi cate toPredi cate(Root<T> root, CriteriaQuery<?> query,
CriteriaBuilder builder);

Okay, so what is the typical use case? Speci fi cat i ons can easily be used to build an extensible set
of predicates on top of an entity that then can be combined and used with JpaReposi t or y without the
need to declare a query (method) for every needed combination. Here's an example:

public class Custoner Specs {

public static Specification<Customer> isLongTernmCustoner() {
return new Specificati on<Custoner>() ({
public Predicate toPredicate(Root<Custoner> root, CriteriaQuery<?> query,
CriteriaBuilder builder) {

Local Date date = new Local Date(). m nusYears(2);
return buil der.| essThan(root.get (Custoner_.createdAt), date);
}
b
}

public static Specification<Custoner> hasSal esO Mor eThan(Mont ar yAnount val ue) {
return new Specification<Custoner>() {
public Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,
CriteriaBuilder builder) {

/'l build query here
}
}s
}
}

Example 2.13 Specifications for a Customer

Admittedly the amount of boilerplate leaves room for improvement (that will hopefully be reduced by
Java 8 closures) but the client side becomes much nicer as you will see below. The Cust onmer _ type is
a metamodel type generated using the JPA Metamodel generator (see the Hibernate implementation's
documentation for example). So the expression Cust ormer _. cr eat edAt is asuming the Cust omer
having a cr eat edAt attribute of type Dat e. Besides that we have expressed some criteria on a
business requirement abstraction level and created executable Speci fi cati ons. So a client might
use a Speci fi cati on as follows:

Li st <Custoner> custoners = custonerRepository.findAll (isLongTernCustoner());

Example 2.14 Using a simple Specification

Okay, why not simply create a query for this kind of data access? You're right. Using a single
Speci ficati on does not gain a lot of benefit over a plain query declaration. The power of
Speci fi cati ons really shines when you combine them to create new Speci fi cati on objects. You
can achieve this through the Speci fi cat i ons helper class we provide to build expressions like this:

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 24

http://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/en-US/html_single/#whatisit
http://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/en-US/html_single/#whatisit

please define productname in your docbook file!

Monet ar yAnobunt anount = new Mnet ar yAnount (200. 0, Currenci es. DOLLAR);
Li st <Cust oner > custonmers = custoner Repository.findAll (
wher e(i sLongTer nCust oner ()) . or (hasSal esOf Mor eThan(anmount))) ;

As you can see, Specifications offers some glue-code methods to chain and combine
Speci fications. Thus extending your data access layer is just a matter of creating new
Speci fi cati on implementations and combining them with ones already existing.

Example 2.15 Combined Specifications

2.4 Transactionality

CRUD methods on repository instances are transactional by default. For reading operations the
transaction configuration readOnly flag is set to true, all others are configured with a plain
@ransactional so that default transaction configuration applies. For details see JavaDoc of
Reposi tory. If you need to tweak transaction configuration for one of the methods declared in
Reposi t ory simply redeclare the method in your repository interface as follows:

public interface UserRepository extends JpaRepository<User, Long> {
@verride
@ransactional (ti meout = 10)

public List<User> findAll();

/'l Further query nethod decl arations

This will cause the fi ndAl | () method to be executed with a timeout of 10 seconds and without the
readOnl y flag.

Example 2.16 Custom transaction configuration for CRUD

Another possibility to alter transactional behaviour is using a facade or service implementation that
typically covers more than one repository. Its purpose is to define transactional boundaries for non-
CRUD operations:

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 25

please define productname in your docbook file!

@er vi ce
cl ass User Managenent | npl inpl ements User Managenent {

private final UserRepository userRepository;
private final Rol eRepository rol eRepository;

@\ut owi r ed

publ i ¢ User Managenent | npl (User Reposi tory user Repository,
Rol eReposi tory rol eRepository) ({
this.userRepository = userRepository;
this.rol eRepository = rol eRepository;

}

@r ansact i onal
public voi d addRol eToAl | Users(String rol eNanme) {

Rol e rol e = rol eRepository. fi ndByName(rol eNan®e) ;

for (User user : userRepository.findAl()) {
user. addRol e(rol e);
user Reposi tory. save(user);

}

This will cause call to addRol eToAl | User s(..) to run inside a transaction (participating in an existing
one or create a new one if none already running). The transaction configuration at the repositories will
be neglected then as the outer transaction configuration determines the actual one used. Note that you
will have to activate <t x: annot ati on-dri ven /> explicitly to get annotation based configuration at
facades working. The example above assumes you are using component scanning.

Example 2.17 Using a facade to define transactions for multiple repository calls

Transactional query methods

To allow your query methods to be transactional simply use @r ansacti onal at the repository
interface you define.

@r ansactional (readOnly = true)
public interface UserRepository extends JpaRepository<User, Long> {

Li st <User > findByLast name(String | astnane);

@ndi fyi ng

@r ansact i onal

@uery("delete fromUser u where u.active = fal se")
voi d del etel nacti veUsers();

Typically you will want the r eadOnl y flag set to true as most of the query methods will only read data. In
contrast to that del et el nacti veUser s() makes use of the @wbdi f yi ng annotation and overrides
the transaction configuration. Thus the method will be executed with r eadOnl y flag set to false.
Example 2.18 Using @Transactional at query methods

© Note

It's definitely reasonable to use transactions for read only queries and we can mark them as
such by setting the r eadOnl y flag. This will not, however, act as check that you do not trigger a
manipulating query (although some databases reject | NSERT and UPDATE statements inside a

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 26

please define productname in your docbook file!

read only transaction). The r eadOnl y flag instead is propagated as hint to the underlying JDBC
driver for performance optimizations. Furthermore, Spring will perform some optimizations on the
underlying JPA provider. E.g. when used with Hibernate the flush mode is set to NEVERwhen you
configure a transaction as r eadOnl y which causes Hibernate to skip dirty checks (a noticeable
improvement on large object trees).

2.5 Locking

To specify the lock mode to be used the @.ock annotation can be used on query methods:

interface UserRepository extends Repository<User, Long> {

/1 Plain query nethod
@.ock(LockModeType. READ)
Li st<User> findByLastnane(String |astnane);

}
Example 2.19 Defining lock metadata on query methods

This method declaration will cause the query being triggered to be equipped with the LockMbdeType
READ. You can also define locking for CRUD methods by redeclaring them in your repository interface
and adding the @.ock annotation:

interface UserRepository extends Repository<User, Long> {

/'l Redecl aration of a CRUD net hod
@ock(LockMdeType. READ) ;
Li st<User> findAll ();

}

Example 2.20 Defining lock metadata on CRUD methods

2.6 Auditing

Basics

Spring Data provides sophisticated support to transparently keep track of who created or changed an
entity and the point in time this happened. To benefit from that functionality you have to equip your
entity classes with auditing metadata that can be defined either using annotations or by implementing
an interface.

Annotation based auditing metadata

We provide @r eat edBy, @.ast Modi fi edBy to capture the user who created or modified the entity
as well as @r eat edDat e and @.ast Modi fi edDat e to capture the point in time this happened.

cl ass Custoner {

@Cr eat edBy
private User user;

@r eat edDat e
private DateTi ne createdDat e;

/1 ..further properties omtted

}
Example 2.21 An audited entity

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 27

please define productname in your docbook file!

As you can see, the annotations can be applied selectively, depending on which information you'd
like to capture. For the annotations capturing the points in time can be used on properties of type
org.joda.time.DateTine,java. util.Date aswellas| ong/Long.

Interface-based auditing metadata

In case you don't want to use annotations to define auditing metadata you can let your domain class
implement the Audi t abl e interface. It exposes setter methods for all of the auditing properties.

There's also a convenience base class Abst r act Audi t abl e which you can extend to avoid the need
to manually implement the interface methods. Be aware that this increases the coupling of your domain
classes to Spring Data which might be something you want to avoid. Usually the annotation based way
of defining auditing metadata is preferred as it is less invasive and more flexible.

AuditorAware

In case you use either @r eat edBy or @.ast Modi f i edBy, the auditing infrastructure somehow needs
to become aware of the current principal. To do so, we provide an Audi t or Awar e<T> SPI interface
that you have to implement to tell the infrastructure who the current user or system interacting with the
application is. The generic type T defines of what type the properties annotated with @Cr eat edBy or
@.ast Modi fi edBy have to be.

Here's an example implementation of the interface using Spring Security's Aut hent i cat i on object:

cl ass SpringSecurityAuditorAware inplenments AuditorAware<User> {
public User getCurrentAuditor() {

Aut henti cati on authentication =
Securi t yCont ext Hol der . get Cont ext (). get Aut henti cati on();

if (authentication == null || !'authentication.isAuthenticated()) {
return null;

}

return ((MyUserDetails) authentication.getPrincipal()).getUser();

}
}

Example 2.22 Implementation of AuditorAware based on Spring Security

The implementation is accessing the Aut hent i cat i on object provided by Spring Security and looks
up the custom User Det ai | s instance from it that you have created in your User Det ai | sSer vi ce
implementation. We're assuming here that you are exposing the domain user through that
User Det ai | s implementation but you could also look it up from anywhere based on the
Aut hent i cat i on found.

General auditing configuration
Spring Data JPA ships with an entity listener that can be used to trigger capturing auditing information.

So first you have to register the Audi ti ngEnt i tyLi st ener inside your orm xnl to be used for all
entities in your persistence contexts:

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 28

please define productname in your docbook file!

<per si st ence-uni t - net adat a>
<persi stence-unit-defaul t s>
<entity-listeners>
<entity-listener class="...data.jpa.donmain.support.AuditingEntityListener" />
</entity-listeners>
</ per si st ence- uni t - def aul t s>
</ per si st ence-uni t - met adat a>

Example 2.23 Auditing configuration orm.xml

Now activating auditing functionality is just a matter of adding the Spring Data JPA auditi ng
namespace element to your configuration:

<j pa: audi ti ng auditor-aware-ref="yourAudi t or Anar eBean" />

Example 2.24 Activating auditing in the Spring configuration

As you can see you have to provide a bean that implements the Audi t or Awar e interface which looks
as follows:

public interface AuditorAware<T, |ID extends Serializable> {

T getCurrent Audi tor();
}

Example 2.25 Audi t or Awar e interface

Usually you will have some kind of authentication component in your application that tracks the user
currently working with the system. This component should be Audi t or Awar e and thus allow seamless
tracking of the auditor.

2.7 Miscellaneous

Merging persistence units

Spring supports having multiple persistence units out of the box. Sometimes, however, you might want
to modularize your application but still make sure that all these modules run inside a single persistence
unit at runtime. To do so Spring Data JPA offers a Per si st enceUni t Manager implementation that
automatically merges persistence units based on their name.

<bean cl ass="...Local Cont ai ner Enti t yManager Fact or yBean" >
<property nane="persi stenceUni t Manager" >
<bean cl ass="... Mergi ngPer si st enceUni t Manager" />
</ property
</ bean>

Example 2.26 Using MergingPersistenceUnitmanager
Classpath scanning for @Entity classes and JPA mapping files

A plain JPA setup requires all annotation mapped entity classes listed in
ormxnm. Same applies to XML mapping files. Spring Data JPA provides a
Cl asspat hScanni ngPer si st enceUni t Post Pr ocessor that gets a base package configured and
optionally takes a mapping filename pattern. It will then scan the given package for classes annotated
with @ntity or @/appedSuper cl ass and also loads the configuration files matching the filename
pattern and hands them to the JPA configuration. The PostProcessor has to be configured like this

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 29

please define productname in your docbook file!

<bean cl ass="... Local Cont ai ner Enti t yManager Fact or yBean" >
<property nanme="persi stenceUnit Post Processors" >
<list>

<bean cl ass="org. spri ngfranework. dat a. j pa. support. Cl asspat hScanni ngPer si st enceUni t Post Processor" >
<constructor-arg val ue="com acne. domai n" />
<property nane="nappi ngFi | eNanePattern" val ue="**/*Mappi ng. xm " />
</ bean>
</list>
</ property>
</ bean>

Example 2.27 Using ClasspathScanningPersistenceUnitPostProcessor

© Note

As of Spring 3.1 a package to scan <can be configured on the
Local Cont ai ner Enti t yManager Fact or yBean directly to enable classpath scanning for
entity classes. See the JavaDoc for details.

CDl integration

Instances of the repository interfaces are usually created by a container, which Spring is the most natural
choice when working with Spring Data. There's sophisticated support to easily set up Spring to create
bean instances documented in the section called “Creating repository instances”. As of version 1.1.0
Spring Data JPA ships with a custom CDI extension that allows using the repository abstraction in CDI
environments. The extension is part of the JAR so all you need to do to activate it is dropping the Spring
Data JPA JAR into your classpath.

You can now set up the infrastructure by implementing a CDI Producer for the
Enti t yManager Fact ory:

class EntityManager Fact oryProducer {

@r oduces
@\ppl i cat i onScoped
public EntityManager Factory createEntityManagerFactory() ({
return Persistence. createEntityManager Factory("my-presistence-unit");

}

public void close(@i sposes EntityManagerFactory entityManager Factory) {
entityManager Factory. cl ose();
}
}

The Spring Data JPA CDI extension will pick up all Enti t yManager s availables as CDI beans and
create a proxy for a Spring Data repository whenever an bean of a repository type is requested by the
container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an @ nj ect ed

property:

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 30

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/orm/jpa/LocalContainerEntityManagerFactoryBean.html#setPackagesToScan(java.lang.String...)

please define productname in your docbook file!

class RepositoryCient {

@ nj ect
Per sonReposi tory repository;

public void busi nessMet hod() {

Li st <Person> people = repository.findAll();

}
}

Spring Data JPA -
1.3.4.RELEASE Reference Documentation

31

Part Il. Appendix

please define productname in your docbook file!

Appendix A. Namespace reference

A.1 The <repositori

es /> element

The <reposi tories /> element triggers the setup of the Spring Data repository infrastructure. The
most important attribute is base- package which defines the package to scan for Spring Data repository

interfaces.!

Table A.1. Attributes

Name

Description

base- package

repository-inpl-postfix

Defines the package to be used to be scanned for repository
interfaces extending * Reposi t or y (actual interface is determined
by specific Spring Data module) in auto detection mode. All
packages below the configured package will be scanned, too.
Wildcards are allowed.

Defines the postfix to autodetect custom repository
implementations. Classes whose names end with the configured
postfix will be considered as candidates. Defaults to | npl .

guery-| ookup-strat egy

Determines the strategy to be used to create finder queries. See
the section called “Query lookup strategies” for details. Defaults to
create-if-not-found.

Lsee the section called “XML configuration”

1.3.4.RELEASE

Spring Data JPA -
Reference Documentation 33

please define productname in your docbook file!

Appendix B. Repository query
keywords

B.1 Supported query keywords
The following table lists the keywords generally supported by the Spring Data repository query derivation
mechanism. However, consult the store-specific documentation for the exact list of supported keywords,

because some listed here might not be supported in a particular store.

Table B.1. Query keywords

Logical keyword Keyword expressions

AND And

OR o

AFTER After,|sAfter

BEFCRE Before, | sBefore

CONTAI NI NG Cont ai ni ng, | sCont ai ni ng, Cont ai ns
BETWEEN Bet ween, | sBet ween

ENDI NG W TH Endi ngWt h, | seEndi ngWt h, EndsWt h
EXI STS Exi sts
FALSE Fal se, | sFal se

GREATER THAN GreaterThan, | sG eater Than

GREATER_THAN EQGAESt er ThanEqual , | sGr eat er ThanEqual

I'N In,Isln

IS I s, Equal s, (or no keyword)

| S_NOT_NULL Not Nul |, I sNot Nul |

I S_NULL Nul I, 1sNull
LESS THAN LessThan, | sLessThan

LESS THAN EQUALLessThanEqual , | sLessThanEqual

LI KE Li ke, I sLi ke

NEAR Near, | sNear

NOT Not , | sNot

NOT_I N Not I n, I sNot I n
NOT_LI KE Not Li ke, | sNot Li ke

Spring Data JPA -
1.3.4.RELEASE Reference Documentation 34

please define productname in your docbook file!

Logical keyword
REGEX
STARTI NG W TH

TRUE

Keyword expressions
Regex, Mat chesRegex, Mat ches
StartingWth,lsStartingWth, StartsWth

True, | sTrue

W THI N

Wthin,|sWthin

1.3.4.RELEASE

Spring Data JPA -
Reference Documentation

35

please define productname in your docbook file!

Appendix C. Frequently asked
guestions

C.1.

C.1.1.

C.2.

C.2.1

C.3.

C.3.1.

Common

I'd like to get more detailed logging information on what methods are called inside
JpaReposi tory, e.g. How can | gain them?

You can make use of Cust oni zabl eTr acel nt er cept or provided by Spring:

<bean i d="custoni zabl eTracel nterceptor" cl ass="
org. springframewor k. aop. i nt ercept or. Cust om zabl eTr acel nt ercept or" >
<property nane="enter Message" val ue="Entering $[net hodNane] ($[argunents])"/>
<property nanme="exitMessage" val ue="Leavi ng $[net hodNane] (): $[returnVal ue]"/>
</ bean>

<aop: confi g>
<aop: advi sor advi ce-ref ="cust om zabl eTracel nterceptor"
poi nt cut =" executi on(public *
org. springframework. dat a. j pa. repository. JpaRepository+. *(..))"/>
</ aop: confi g>

Infrastructure

Currently | have implemented a repository layer based on Hi ber nat eDaoSupport . | create a
Sessi onFact or y by using Spring's Annot at i onSessi onFact or yBean. How do | get Spring
Data repositories working in this environment?

You have to replace Annot at i onSessi onFact or yBean with the
Local Cont ai ner Enti t yManager Fact oryBean. Supposed you have registered it
under entityManager Factory you can reference it in you repositories based on
Hi ber nat eDaoSupport as follows:

<bean cl ass="com acne. Your DaoBasedOnHi ber nat eDaoSupport ">
<property name="sessi onFactory">
<bean factory-bean="entityManager Factory" factory-nethod="get Sessi onFactory" />
</ property>
</ bean>

Example C.1 Looking up a SessionFactory from an HibernateEntityManagerFactory
Auditing

| want to use Spring Data JPA auditing capabilities but have my database already set up to set
modification and creation date on entities. How to prevent Spring Data from setting the date
programmatically.

Just use the set - dat es attribute of the audi t i ng namespace element to false.

Spring Data JPA -

1.3.4.RELEASE Reference Documentation 36

please define productname in your docbook file!

Glossary
A

AOP

C

Commons DBCP

CRUD

DAO

Dependency Injection

E

EclipseLink

H

Hibernate

J

JPA

Spring

Aspect oriented programming

Commons DataBase Connection Pools - Library of the Apache
foundation offering pooling implementations of the Dat aSour ce
interface.

Create, Read, Update, Delete - Basic persistence operations

Data Access Object - Pattern to separate persisting logic from the
object to be persisted

Pattern to hand a component's dependency to the component
from outside, freeing the component to lookup the dependant
itself. For more information see http://en.wikipedia.org/wiki/
Dependency_ Injection.

Object relational mapper implementing JPA - http://
www.eclipselink.org

Object relational mapper implementing JPA - http://www.hibernate.org

Java Persistence Api

Java application framework - http://www.springframework.org

1.3.4.RELEASE

Spring Data JPA -
Reference Documentation 37

http://en.wikipedia.org/wiki/Dependency_Injection
http://en.wikipedia.org/wiki/Dependency_Injection
http://www.eclipselink.org
http://www.eclipselink.org
http://www.hibernate.org
http://www.springframework.org

	Spring Data JPA - Reference Documentation
	Table of Contents
	Preface
	1 Project metadata

	Part I. Reference Documentation
	1. Working with Spring Data Repositories
	1.1 Core concepts
	1.2 Query methods
	Defining repository interfaces
	Fine-tuning repository definition

	Defining query methods
	Query lookup strategies
	Query creation
	Property expressions
	Special parameter handling

	Creating repository instances
	XML configuration
	JavaConfig
	Standalone usage

	1.3 Custom implementations for Spring Data repositories
	Adding custom behavior to single repositories
	Adding custom behavior to all repositories

	1.4 Spring Data extensions
	Domain class web binding for Spring MVC
	Web pagination
	Repository populators

	2. JPA Repositories
	2.1 Introduction
	Spring namespace
	Annotation based configuration

	2.2 Query methods
	Query lookup strategies
	Query creation
	Using JPA NamedQueries
	Using @Query
	Using named parameters
	Modifying queries
	Applying query hints

	2.3 Specifications
	2.4 Transactionality
	Transactional query methods

	2.5 Locking
	2.6 Auditing
	Basics
	Annotation based auditing metadata
	Interface-based auditing metadata
	AuditorAware

	General auditing configuration

	2.7 Miscellaneous
	Merging persistence units
	Classpath scanning for @Entity classes and JPA mapping files
	CDI integration

	Part II. Appendix
	Appendix A. Namespace reference
	A.1 The <repositories /> element

	Appendix B. Repository query keywords
	B.1 Supported query keywords

	Appendix C. Frequently asked questions
	Glossary

