Spring Data JPA - Reference Documentation

Copyright ©

please define productname in your docbook file!

Table of Contents

... iv
TR 1= = Lo PPN 1
(o 1Tt 0 0 T=Y =T - | - ii
1. Working with Spring Data REPOSILONIESiiiuniiiiiiiiie e 3
R Ofo (I oo (o] o = PPN 3

2 @ U =Y oY A 43711 T o £ 4

1.3. Defining repository INtEITACEScouuiiiiie e 5
Fine-tuning repository definition ... 5

1.4. Defining query Methodsccouniiiiiii e 6
QUETY I00KUP SIFAEOIESietiiiei ettt e e e e e eaa e eees 6

QUETY CIBALION ...eieti ettt ettt ettt ettt ettt et e e e e et e e e eba e e enaans 7

Property @XPreSSIONSiiieiiieeriiiiie e et ettt e et e e e e et et e e e e e 8

Special parameter handling ... 8

Limiting QUETY FESUILSieiii e 9

1.5. Creating repoSItory INSTANCESivveiiiiiei e e e e e e e e e e e eanaeee 9
XML CONFIQUIALION ...ttt et e e e e e e e eaa e ees 10

USING FIHEIS .o 10

JAVACONTIG it 10
StANdaAlONE USBGEieviiiiiieii et 11

1.6. Custom implementations for Spring Data repoSitoriesccoovveiiviinieiiiiineeeiiiee, 11
Adding custom behavior to single repoSItOriescc.vvveiiviiieiie e 11
CONFIQUIALION ... et et eaans 12

Adding custom behavior to all repOSItONIESviiiiiiiiiiii e 12

1.7. Spring Data EXIENSIONSceuuiiiiieeie e e e e e e e e e e e et e et e e e e e aanaes 14
VAT oYU o] o Lo] o AP TUPTPPT 14

BaSIiC WED SUPPOIT ..ot 15

Hypermedia support for Pageablescccoooviiiiii i, 17

REPOSILOrY POPUIALOTSeeiiiieei e 18

Legacy WED SUPPOITiiiiiiie et e 19

Domain class web binding for Spring MVCccoooiiiiiiiiicr e, 19

WeED PagINALION ...c.uniiie e e 21

[I. Reference DOCUMENTALIONiiueiiii et e e e e e e e et e et e e et r e e et e e eaeeeenns 24
N | = =T oo] 0] [25
2 R [1 (o To [F L)oo H TSP TUPPPTTRPPPPTN 25
SPFNG NAMESPACE ...eevuiieiiiii ettt ettt e et e et e et et e e e era e e e eban s 25

Custom namespace attribULESovvviieiiiieiir e 25

Annotation based coNfiQUIrationcoouiiiiiiiiii e 26

2.2. PErSiStiNG ENLLIES ...ovvuiiiiiiii et et e 27

ST- YTV =Y 0 (1= 27

Entity state detection Strate€giesoooeuiiiiiiiiiiiii e 27

2.3. QUETY MELNOAS ...ttt e e 27
QuUETY 100KUP SITAtEOIES ...uevviiiii e e e e et e e e e e e e e e e aanas 27

DECIared QUETIES .. .euiiii it 27

QUETY CIEALION ...eiiti ettt et ettt e e et e e et et e e et et e e e eeba e eaees 28

Using JPA NamMedQUEIIESuieeniiiiiieeieee e e e e e e e e e e e e e e e e et e e e e eanns 29

XML named query definition ... 30

Annotation CONfIQUIAtIoNccoiuuiiiiiiiii e 30

Spring Data JPA -
Reference Documentation ii

please define productname in your docbook file!

Declaring iNLEIACESiiiiiiiiiieiie e 30

USING @QUETY ettt ettt et e e e et e e et et e e e e et e e e e eaa e as 30

USIiNG NAMEd PArAMELEIS ...uuiiiiiiiii e e e e e e e e e e e e e et e et e e st s e e e e eaaeees 31

USING SPEL EXPIrESSIONS ...ovuiiiiiiiiieeiiii ettt ettt e e e e e e ni s 31

MOITYING QUETIES ...t e e e e 33

APPIYING QUETY NINES ...t e s 33
Configuring Fetch- and LoadGraphsooveiiiiiiiiiiiiieecc e 34

A (o1 = To [o] o Tol=T [0 =TSOt 34

2.5, SPECIfICALIONS ...iiveiiii i 35

2.6, TranSACONAlILYccoouuieiiiii ettt 37
Transactional query methodsiiiiiiii e 38

2 R o T (1T PP 39

2.8, AUDIIING ettt ettt et e e 39
2T T [39
Annotation based auditing metadataccooveiiiieiii 39
Interface-based auditing metadataccooveeiiiiiiiiiiiiii e 40

0 Lo [o] AN Y7 V= P 40

2.9, JPA AUAIING .eveiiiieeeeee ettt et 41
General auditing CoNfIQUIatioNcoouuuiiiiiie e 41

G T 1V 1Yo =Y] = T g 1= o 11 42
3.1. Merging PersiStENCE UNILSuuiiiiiiiii e e e e e e e e e aaas 42
Classpath scanning for @Entity classes and JPA mapping filesc.cc..cceeunnne. 42

K o1 | a1 1=To = 110] o IR PSPPSR 42

LY o o T=T o 44
A. NaMESPACE FEFEIEINCE ...ttt e e et e eeenens 45
A.1. The <repositories /> IEMENToi i 45

B. Populators Namespace refEreNCEoiiiiiiiii e 46
B.1. The <populator /> IEeMENTiiiiii e 46

C. RepOSItOry qUETY KEYWOITScoouiiiiiiii ettt e ee e e enes 47
C.1. Supported qUErY KEYWOITScciiiieiii i e e e e e e e e e 47

D. Frequently asked QUESTIONSccouuuiiiiiiiieiiii ettt 49
20 A o T T T o 49

D.2. INfTASIIUCTUIE ...ttt et e e e e e eneas 49

[JRCT AN [11 (] o E PP SPPPTTRN 49

B GlOSSAIY ..ttt e e et aaea 50

Spring Data JPA -
Reference Documentation iii

please define productname in your docbook file!

© 2008-2014 The original authors.

© Note

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this

Copyright Notice, whether distributed in print or electronically.

Spring Data JPA -
Reference Documentation

Part |. Preface

please define productname in your docbook file!

Project metadata

» Version control - http://github.com/spring-projects/spring-data-jpa

» Bugtracker - https://jira.spring.io/browse/DATAJPA

» Release repository - https://repo.spring.io/libs-release

» Milestone repository - https://repo.spring.io/libs-milestone

» Snapshot repository - https://repo.spring.io/libs-snapshot

Spring Data JPA -
Reference Documentation

http://github.com/spring-projects/spring-data-jpa
https://jira.spring.io/browse/DATAJPA
https://repo.spring.io/libs-release
https://repo.spring.io/libs-milestone
https://repo.spring.io/libs-snapshot

please define productname in your docbook file!

1. Working with Spring Data Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code
required to implement data access layers for various persistence stores.

©

Important

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data repositories. The
information in this chapter is pulled from the Spring Data Commons module. It uses the
configuration and code samples for the Java Persistence APl (JPA) module. Adapt the XML
namespace declaration and the types to be extended to the equivalents of the particular module
that you are using. Appendix A, Namespace reference covers XML configuration which is
supported across all Spring Data modules supporting the repository API, Appendix C, Repository
guery keywords covers the query method keywords supported by the repository abstraction in
general. For detailed information on the specific features of your module, consult the chapter on
that module of this document.

1.1 Core concepts

The central interface in Spring Data repository abstraction is Reposi t or y (probably not that much of
a surprise). It takes the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with and
to help you to discover interfaces that extend this one. The Cr udReposi t or y provides sophisticated
CRUD functionality for the entity class that is being managed.

Oo0Ooogogo

public interface CrudRepository<T, |ID extends Serializable>

ext ends Repository<T, |ID> {

<S extends T> S save(S entity); O

T findOne(ID pri maryKey); O
Iterabl e<T> findAll (); a0
Long count (); O
void delete(T entity); O

bool ean exists(ID primryKey); 0O

/1 ..nmore functionality omtted.

Saves the given entity.

Returns the entity identified by the given id.
Returns all entities.

Returns the number of entities.

Deletes the given entity.

Indicates whether an entity with the given id exists.

Example 1.1 CrudRepository interface

Spring Data JPA -
Reference Documentation 3

please define productname in your docbook file!

© Note

We also provide persistence technology-specific abstractions like e.g. JpaRepository or
MongoReposi t ory. Those interfaces extend Cr udReposi t or y and expose the capabilities of
the underlying persistence technology in addition to the rather generic persistence technology-
agnostic interfaces like e.g. CrudRepository.

On top of the Cr udReposi t ory there is a Pagi ngAndSor ti ngReposi t ory abstraction that adds
additional methods to ease paginated access to entities:

public interface Pagi ngAndSorti ngRepository<T, |D extends Serializable>
extends CrudRepository<T, |D> {

| terabl e<T> findAl Il (Sort sort);

Page<T> fi ndAl | (Pageabl e pageabl e);

}
Example 1.2 PagingAndSortingRepository

Accessing the second page of User by a page size of 20 you could simply do something like this:

Pagi ngAndSort i ngReposi t ory<User, Long> repository = // ...get access to a bean
Page<User > users = repository.findAl | (new PageRequest (1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

public interface User Repository extends CrudRepository<User, Long> {

Long count ByLast nane(String | astnane);

}
Example 1.3 Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {
Long del et eByLast name(String | ast nane);
Li st <User > renpveByLast nane(String | ast nane);

}
Example 1.4 Derived Delete Query

1.2 Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring
Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain class
and ID type that it will handle.

interface PersonRepository extends Repository<User, Long> { ...}

2. Declare query methods on the interface.

Spring Data JPA -
Reference Documentation 4

please define productname in your docbook file!

interface PersonRepository extends Repository<User, Long> {
Li st <Person> findByLastnane(String | astnane);

}

3. Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

i mport org.springframework. data.jpa.repository. config. Enabl eJpaRepositories;

@Enabl eJpaReposi tori es
class Config {}

or via XML configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:j pa="http://ww. springfranmewor k. org/ schema/ dat a/ j pa"
xsi : schemalLocat i on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://wwv. spri ngfranewor k. or g/ schema/ dat a/ j pa
http://ww. springframework. org/ schema/ dat a/ j pa/ spri ng-j pa. xsd">

<j pa: reposi tori es base-package="com acne. repositories"/>

</ beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any other
store, you need to change this to the appropriate namespace declaration of your store module which
should be exchanging j pa in favor of, for example, mongodb. Also, note that the JavaConfig variant
doesn’t configure a package explictly as the package of the annotated class is used by default. To
customize the package to scan

4. Get the repository instance injected and use it.

public class Somedient {

@\ut owi r ed
private PersonRepository repository;

public void doSonet hi ng() {
Li st <Per son> persons = repository.findByLastnanme("Matthews");

}

The sections that follow explain each step in detail.

1.3 Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods for
that domain type, extend Cr udReposi t ory instead of Reposi tory.

Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
Pagi ngAndSorti ngReposi t ory. Alternatively, if you do not want to extend Spring Data interfaces,

Spring Data JPA -
Reference Documentation 5

please define productname in your docbook file!

you can also annotate your repository interface with @RepositoryDefinition. Extending
CrudReposi tory exposes a complete set of methods to manipulate your entities. If you prefer
to be selective about the methods being exposed, simply copy the ones you want to expose from
Cr udReposi t ory into your domain repository.

© Note

This allows you to define your own abstractions on top of the provided Spring Data Repositories
functionality.

@NoReposi t or yBean
interface MyBaseRepository<T, |ID extends Serializable> extends Repository<T, |ID> {

T findOne(ID id);

T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
User findByEnai| Address(Enai | Address emai | Address);

}
Example 1.5 Selectively exposing CRUD methods

In this first step you defined a common base interface for all your domain repositories and exposed
findOne(..) aswellassave(..) .These methods will be routed into the base repository implementation
of the store of your choice provided by Spring Data ,e.g. in the case if JPA Si npl eJpaReposi tory,
because they are matching the method signatures in Cr udReposi t or y. So the User Reposi t or y will
now be able to save users, and find single ones by id, as well as triggering a query to find User s by
their email address.

© Note

Note, that the intermediate repository interface is annotated with @NoReposi t or yBean. Make
sure you add that annotation to all repository interfaces that Spring Data should not create
instances for at runtime.

1.4 Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can derive
the query from the method name directly, or by using an manually defined query. Available options
depend on the actual store. However, there's got to be an strategy that decides what actual query is
created. Let's have a look at the available options.

Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query- | ookup- strat egy attribute in case
of XML configuration or via the quer yLookupSt r at egy attribute of the Enable${store}Repositories
annotation in case of Java config. Some strategies may not be supported for particular datastores.

» CREATE attempts to construct a store-specific query from the query method name. The general
approach is to remove a given set of well-known prefixes from the method name and parse the rest
of the method. Read more about query construction in the section called “Query creation”.

Spring Data JPA -
Reference Documentation 6

please define productname in your docbook file!

» USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can't
find one. The query can be defined by an annotation somewhere or declared by other means.
Consult the documentation of the specific store to find available options for that store. If the repository
infrastructure does not find a declared query for the method at bootstrap time, it fails.

» CREATE_| F_NOT_FOUND (default) combines CREATE and USE_DECLARED QUERY. It looks up a
declared query first, and if no declared query is found, it creates a custom method name-based query.
This is the default lookup strategy and thus will be used if you do not configure anything explicitly. It
allows quick query definition by method names but also custom-tuning of these queries by introducing
declared queries as needed.

Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes fi nd..By,
read..By, query..By, count ..By, and get ..By from the method and starts parsing the rest of it. The
introducing clause can contain further expressions such as a Di sti nct to set a distinct flag on the
query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria. At a
very basic level you can define conditions on entity properties and concatenate them with And and Or .

public interface PersonRepository extends Repository<User, Long> {
Li st <Per son> fi ndByEmai | Addr essAndLast nane(Enai | Addr ess enmi | Address, String | astnane);

/'l Enables the distinct flag for the query
Li st <Person> fi ndDi sti nct Peopl eByLast naneOr Fi rstname(String |astname, String firstnane);
Li st <Per son> fi ndPeopl eDi sti nct ByLast nameOr Firstnane(String | astname, String firstnane);

/1 Enabling ignoring case for an individual property

Li st <Person> fi ndByLast nanel gnoreCase(String | astnane);

/1 Enabling ignoring case for all suitable properties

Li st <Person> fi ndByLast naneAndFi r st naneAl | | gnoreCase(String | astname, String firstnane);

/1 Enabling static ORDER BY for a query
Li st <Person> fi ndByLast naneOr der ByFi r st nanmeAsc(String | ast nane);
Li st <Per son> fi ndByLast naneOr der ByFi r st nameDesc(Stri ng | ast nane) ;

}

Example 1.6 Query creation from method names

The actual result of parsing the method depends on the persistence store for which you create the query.
However, there are some general things to notice.

» The expressions are usually property traversals combined with operators that can be concatenated.
You can combine property expressions with AND and OR. You also get support for operators such as
Bet ween, LessThan, Gr eat er Than, Li ke for the property expressions. The supported operators
can vary by datastore, so consult the appropriate part of your reference documentation.

» The method parser supports setting an | gnor eCase flag for individual properties (for example,
fi ndByLast nanel gnor eCase(..)) or for all properties of a type that support ignoring case (usually
St ri ng instances, for example, f i ndByLast naneAndFi r st naneAl | | gnor eCase(..)). Whether
ignoring cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

Spring Data JPA -
Reference Documentation 7

please define productname in your docbook file!

* You can apply static ordering by appending an Or der By clause to the query method that references
a property and by providing a sorting direction (Asc or Desc). To create a query method that supports
dynamic sorting, see the section called “Special parameter handling”.

Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding
example. At query creation time you already make sure that the parsed property is a property of the
managed domain class. However, you can also define constraints by traversing nested properties.
Assume a Per son has an Addr ess with a Zi pCode. In that case a method name of

Li st <Per son> fi ndByAddr essZi pCode(Zi pCode zi pCode) ;

creates the property traversal x. addr ess. zi pCode. The resolution algorithm starts with interpreting
the entire part (Addr essZi pCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, Addr essZi p and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the way
just described. If the first split does not match, the algorithm move the split point to the left (Addr ess,
Zi pCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property.
Suppose the Per son class has an addr essZi p property as well. The algorithm would match in the first
split round already and essentially choose the wrong property and finally fail (as the type of addr essZi p
probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal points.
So our method name would end up like so:

Li st <Person> fi ndByAddr ess_Zi pCode(Zi pCode zi pCode) ;

If your property names contain underscores (e.g. f i r st _namne) you can escape the underscore in the
method name with a second underscore. For a fi r st _nane property the query method would have
to be named fi ndByFi rst __name(..).

Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageabl e and
Sort to apply pagination and sorting to your queries dynamically.

Page<User > findByLast name(String | astname, Pageabl e pageabl e);
Sli ce<User> findByLast name(String | astnane, Pageabl e pageabl e);
Li st<User> findByLastnane(String |astnane, Sort sort);

Li st <User> findByLastname(String | astname, Pageabl e pageabl e);

Example 1.7 Using Pageable, Slice and Sort in query methods

The first method allows you to pass an or g. spri ngf r amewor k. dat a. donai n. Pageabl e instance
to the query method to dynamically add paging to your statically defined query. A Page knows about the

Spring Data JPA -
Reference Documentation 8

please define productname in your docbook file!

total number of elements and pages available. It does so by the infrastructure triggering a count query
to calculate the overall number. As this might be expensive depending on the store used, Sl i ce can
be used as return instead. A Sl i ce only knows about whether there’s a next Sl i ce available which
might be just sufficient when walking thought a larger result set.

Sorting options are handled through the Pageabl e instance too. If you only need sorting, simply add
an or g. spri ngfranmewor k. dat a. donai n. Sort parameter to your method. As you also can see,
simply returning a Li st is possible as well. In this case the additional metadata required to build the
actual Page instance will not be created (which in turn means that the additional count query that would
have been necessary not being issued) but rather simply restricts the query to look up only the given
range of entities.

@ Note

To find out how many pages you get for a query entirely you have to trigger an additional count
query. By default this query will be derived from the query you actually trigger.

Limiting query results

The results of query methods can be limited via the keywords first or t op, which can be used
interchangeably. An optional numeric value can be appended to top/first to specify the maximum result
size to be returned. If the number is left out, a result size of 1 is assumed.

User findFirstByOrderByLastname();

User findTopByO der ByAgeDesc();

Page<User > queryFirst10ByLast nane(String | astname, Pageabl e pageabl e);
Sli ce<User> findTop3ByLastnane(String | ast name, Pageabl e pageabl e);

Li st<User> fi ndFirst10ByLastnane(String | astnanme, Sort sort);

Li st <User> findToplOByLast name(String | ast nane, Pageabl e pageabl e);

Example 1.8 Limiting the result size of a query with Top and Fi r st

The limiting expressions also support the Di sti nct keyword. Also, for the queries limiting the result
set to one instance, wrapping the result into an Opt i onal is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number of
pages available) then it is applied within the limited result.

© Note

Note that limiting the results in combination with dynamic sorting via a Sor t parameter allows to
express query methods for the 'K' smallest as well as for the 'K' biggest elements.

1.5 Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One way
to do so is using the Spring namespace that is shipped with each Spring Data module that supports the
repository mechanism although we generally recommend to use the Java-Config style configuration.

Spring Data JPA -
Reference Documentation 9

please define productname in your docbook file!

XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xml ns: beans="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns="http://ww. spri ngframewor k. or g/ schena/ dat a/ j pa"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ dat a/ j pa
http://ww. spri ngfranewor k. or g/ schena/ dat a/ j pa/ spri ng-j pa. xsd" >

<repositori es base-package="com acne.repositories" />

</ beans: beans>

Example 1.9 Enabling Spring Data repositories via XML

In the preceding example, Spring is instructed to scan com acne. repositori es and all its sub-
packages for interfaces extending Reposi t or y or one of its sub-interfaces. For each interface found,
the infrastructure registers the persistence technology-specific Fact or yBean to create the appropriate
proxies that handle invocations of the query methods. Each bean is registered under a bean name that
is derived from the interface name, so an interface of User Reposi t ory would be registered under
user Reposi t ory. The base- package attribute allows wildcards, so that you can define a pattern of
scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Reposi t ory sub-interface located under the configured base package and creates a bean instance
for it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements
inside <r eposi tori es />. The semantics are exactly equivalent to the elements in Spring’s context
namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the following
configuration:

<repositories base-package="com acne. repositories">

<cont ext:exclude-filter type="regex" expression=".*SonmeRepository" />
</repositories>

Example 1.10 Using exclude-filter element

This example excludes all interfaces ending in SomeReposi t or y from being instantiated.
JavaConfig

The repository infrastructure can also be triggered using a store-specific @tnabl e
${store} Reposi tori es annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation.?

A sample configuration to enable Spring Data repositories looks something like this.

2JavaConfiq in the Spring reference documentation

Spring Data JPA -
Reference Documentation 10

http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/beans.html#beans-scanning-filters
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/beans.html#beans-java

please define productname in your docbook file!

@Configuration
@nabl eJpaReposi tories("com acne. repositories")
cl ass ApplicationConfiguration {

@ean
public EntityManager Factory entityManagerFactory() ({
/...
}
}

Example 1.11 Sample annotation based repository configuration

© Note

The sample uses the JPA-specific annotation, which you would change according to the store
module you actually use. The same applies to the definition of the Ent i t yManager Fact ory
bean. Consult the sections covering the store-specific configuration.

Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI environments.
You still need some Spring libraries in your classpath, but generally you can set up repositories
programmatically as well. The Spring Data modules that provide repository support ship a persistence
technology-specific RepositoryFactory that you can use as follows.

Reposi toryFactorySupport factory = ...// Instantiate factory here
User Repository repository = factory. get Repository(UserRepository.class);

Example 1.12 Standalone usage of repository factory

1.6 Custom implementations for Spring Data repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation for
the custom functionality. Use the repository interface you provided to extend the custom interface.

interface UserRepositoryCustom {
public void soneCust omVet hod(User user);

}
Example 1.13 Interface for custom repository functionality

cl ass UserRepositorylnpl inplenents User RepositoryCustom {

public voi d sonmeCust omvet hod(User user) {
/1 Your custom i npl enentation

}
}

Example 1.14 Implementation of custom repository functionality

Spring Data JPA -
Reference Documentation 11

please define productname in your docbook file!

© Note

The most important bit for the class to be found is the | npl postfix of the name on it compared
to the core repository interface (see below).

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can use standard dependency injection behavior to inject references to other beans like a JdbTemplate,
take part in aspects, and so on.

interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

/| Declare query mnethods here

}
Example 1.15 Changes to the your basic repository interface

Let your standard repository interface extend the custom one. Doing so combines the CRUD and custom
functionality and makes it available to clients.

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element’s attribute r eposi t or y-
i mpl - post fi x to the found repository interface name. This postfix defaults to | npl .

<repositories base-package="com acne.repository" />

<repositories base-package="com acne. repository" repository-inpl-postfix="FooBar" />

Example 1.16 Configuration example

The first configuration example will try to look up a class
com acre. repository. User Reposi toryl npl to act as custom repository implementation,
whereas the second example will try to lookup com acne. r eposi t ory. User Reposi t or yFooBar .

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based configuration
and autowiring only, as it will be treated as any other Spring bean. If your custom implementation bean
needs special wiring, you simply declare the bean and name it after the conventions just described.
The infrastructure will then refer to the manually defined bean definition by name instead of creating
one itself.

<repositories base-package="com acne. repository" />

<!-- further configuration -->
</ beans: bean>

Example 1.17 Manual wiring of custom implementations

Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces.

Spring Data JPA -
Reference Documentation 12

please define productname in your docbook file!

1. To add custom behavior to all repositories, you first add an intermediate interface to declare the
shared behavior.

public interface MyRepository<T, |D extends Serializable>
ext ends JpaRepository<T, |D> {

voi d shar edCust omvet hod(I D id);
}

Example 1.18 An interface declaring custom shared behavior

2. Now your individual repository interfaces will extend this intermediate interface instead of the
Repository interface to include the functionality declared.

3. Next, create an implementation of the intermediate interface that extends the persistence technology-
specific repository base class. This class will then act as a custom base class for the repository
proxies.

public class My/Repositoryl nmpl <T, |D extends Serializable>
extends Si npl eJpaRepository<T, |D> inplenments M/Repository<T, |D> {

private EntityManager entityManager;

/'l There are two constructors to choose from either can be used.
public MyRepositorylnpl (O ass<T> donmi nd ass, EntityManager entityManager) {
super (donmi nCl ass, entityManager);

/1 This is the recormended nethod for accessing inherited class dependenci es.
this.entityManager = entityManager;
}

public voi d sharedCustomvet hod(ID id) {
/1 inmplenentation goes here

}
}

Example 1.19 Custom repository base class

The default behavior of the Spring <r eposi t ori es / > namespace is to provide an implementation
for all interfaces that fall under the base- package. This means that if left in its current state, an
implementation instance of MyRepository will be created by Spring. This is of course not desired as it
is just supposed to act as an intermediary between Repository and the actual repository interfaces you
want to define for each entity. To exclude an interface that extends Repository from being instantiated
as a repository instance, you can either annotate it with @NoRepositoryBean or move it outside of
the configured base- package.

4. Then create a custom repository factory to replace the default RepositoryFactoryBean that will
in turn produce a custom RepositoryFactory. The new repository factory will then provide your
MyRepositorylmpl as the implementation of any interfaces that extend the Repository interface,
replacing the SimpleJpaRepository implementation you just extended.

Spring Data JPA -
Reference Documentation 13

please define productname in your docbook file!

public class M/RepositoryFact oryBean<R ext ends JpaRepository<T, |> T, | extends
Seri al i zabl e>
ext ends JpaRepositoryFactoryBean<R, T, |> {

protect ed RepositoryFactorySupport createRepositoryFactory(EntityManager
entityManager) ({

return new MyRepositoryFactory(entityManager);

}

private static class M/RepositoryFactory<T, | extends Serializabl e> extends
JpaReposi toryFactory {

private EntityManager entityManager;

publ i c MyRepositoryFactory(EntityManager entityManager) {
super (entityManager);

this.entityManager = entityManager;
}

protected Object get Target Repository(RepositoryMtadata netadata) {

return new MyRepositorylnpl <T, 1>((Cd ass<T>) netadat a. get Domai nCl ass(),
entityManager);
}

protected C ass<?> get Reposi t or yBased ass(Reposi t or yMet adat a net adata) {

/'l The RepositoryMetadata can be safely ignored, it is used by the
JpaReposi t or yFact ory
//to check for QueryDslJpaRepository's which is out of scope.
return MyRepository. cl ass;
}
}
}

Example 1.20 Custom repository factory bean

5. Finally, either declare beans of the custom factory directly or use the f act or y- cl ass attribute of
the Spring namespace to tell the repository infrastructure to use your custom factory implementation.

<repositories base-package="com acne. repository"
factory-cl ass="com acne. M/Reposi t or yFact or yBean" />

Example 1.21 Using the custom factory with the namespace

1.7 Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

Web support

© Note

This section contains the documentation for the Spring Data web support as it is implemented
as of Spring Data Commons in the 1.6 range. As it the newly introduced support changes quite

Spring Data JPA -
Reference Documentation 14

please define productname in your docbook file!

a lot of things we kept the documentation of the former behavior in the section called “Legacy
web support”.

Spring Data modules ships with a variety of web support if the module supports the repository
programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them
even provide integration with Spring HATEOAS %n general, the integration support is enabled by using
the @nabl eSpri ngDat aWwebSupport annotation in your JavaConfig configuration class.

@onfiguration

@Enabl eWWebM/c

@nabl eSpri ngDat aWwebSuppor t
cl ass WebConfiguration { }

Example 1.22 Enabling Spring Data web support

The @nabl eSpri ngbDat aWwebSupport annotation registers a few components we will discuss in a
bit. It will also detect Spring HATEOAS on the classpath and register integration components for it as
well if present.

Alternatively, if you are using XML configuration, register either Spri ngDat aWwebSupport or
Hat eoasAwar eSpr i ngDat aWwebSupport as Spring beans:

<bean cl ass="org. spri ngf ranewor k. dat a. web. confi g. Spri ngDat aWebConfi gurati on" />

<l-- |f you're using Spring HATEOAS as wel| register this one *instead* of the forner -->
<bean cl ass="org. spri ngfranewor k. dat a. web. confi g. Hat eoasAwar eSpr i ngDat aWebConf i gurati on" /
>

Example 1.23 Enabling Spring Data web support in XML
Basic web support
The configuration setup shown above will register a few basic components:

» A Domai nCl assConverter to enable Spring MVC to resolve instances of repository managed
domain classes from request parameters or path variables.

* Handl er Met hodAr gunrent Resol ver implementations to let Spring MVC resolve Pageable and
Sort instances from request parameters.

DomainClassConverter

The Domai nCl assConvert er allows you to use domain types in your Spring MVC controller method
signatures directly, so that you don’t have to manually lookup the instances via the repository:

@ontroll er
@Request Mappi ng("/ users")
public class UserController {

@request Mappi ng("/{id}")
public String showUser For n{ @at hVari abl e("id") User user, Mdel nodel) {

nodel . addAttri bute("user", user);
return "userForm';

}

}
Example 1.24 A Spring MVC controller using domain types in method signatures

3Spring HATEOAS - https://github.com/SpringSource/spring-hateoas

Spring Data JPA -
Reference Documentation 15

https://github.com/SpringSource/spring-hateoas
https://github.com/SpringSource/spring-hateoas

please define productname in your docbook file!

As you can see the method receives a User instance directly and no further lookup is necessary. The
instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain
class first and eventually access the instance through calling fi ndOne(..) on the repository instance
registered for the domain type.

© Note

Currently the repository has to implement Cr udReposi t or y to be eligible to be discovered for
conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a Pageabl eHandl er Met hodAr gunent Resol ver
as well as an instance of Sort Handl er Met hodAr gunent Resol ver. The registration enables
Pageabl e and Sort being valid controller method arguments

@ontrol ler
@Request Mappi ng("/ users")
public class UserController {

@\utow red UserRepository repository;

@request Mappi ng
public String showUsers(Mdel nodel, Pageabl e pageable) {

nodel . addAttri bute("users", repository.findAll (pageable));
return "users";

}
}

Example 1.25 Using Pageable as controller method argument

This method signature will cause Spring MVC try to derive a Pageable instance from the request
parameters using the following default configuration:

Table 1.1. Request parameters evaluated for Pageable instances

page Page you want to retrieve.
si ze Size of the page you want to retrieve.
sort Properties that should be sorted by in the format

property, property(, ASC| DESC) . Default
sort direction is ascending. Use multiple sor t
parameters if you want to switch directions, e.g.
?sort =firstnanme&sort =l ast nane, asc.

To customize this behavior extend either Spr i ngDat aWwebConf i gur at i on or the HATEOAS-enabled
equivalent and override the pageabl eResol ver () or sort Resol ver () methods and import your
customized configuration file instead of using the @nabl e-annotation.

In case you need multiple Pageabl e or Sort instances to be resolved from the request (for multiple
tables, for example) you can use Spring’s @ual i f i er annotation to distinguish one from another. The
request parameters then have to be prefixed with ${ qual i fi er} _. So for a method signature like this:

public String showlUsers(Mdel nodel,
@ualifier("foo") Pageable first,
@ualifier("bar") Pageable second) { ...}

Spring Data JPA -
Reference Documentation 16

please define productname in your docbook file!

you have to populate f oo_page and bar _page etc.

The default Pageabl e handed into the method is equivalent to a new PageRequest (0, 20) but can
be customized using the @Pageabl eDef aul t s annotation on the Pageabl e parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResour ces that allows enrichting the
content of a Page instance with the necessary Page metadata as well as links to let the clients easily
navigate the pages. The conversion of a Page to a PagedResour ces is done by an implementation of
the Spring HATEOAS Resour ceAssenbl er interface, the PagedResour cesAssenbl er.

@ontrol | er
cl ass PersonController {

@\ut owi red PersonRepository repository;

@Request Mappi ng(val ue = "/ persons", method = Request Met hod. GET)
Ht t pEnt i t y<PagedResour ces<Per son>> per sons(Pageabl e pageabl e,
PagedResour cesAssenbl er assenbl er) {

Page<Per son> persons = repository.findAll (pageable);
return new ResponseEntity<>(assenbl er.toResources(persons), HttpStatus.OK);
}
}

Example 1.26 Using a PagedResourcesAssembler as controller method argument

Enabling the configuration as shown above allows the PagedResour cesAssenbl er to be used as
controller method argument. Calling t oResour ces(..) on it will cause the following:

» The content of the Page will become the content of the PagedResour ces instance.

» The PagedResour ces will get a PageMet adat a instance attached populated with information form
the Page and the underlying PageRequest .

» The PagedResour ces gets pr ev and next links attached depending on the page’s state. The links
will point to the URI the method invoked is mapped to. The pagination parameters added to the method
will match the setup of the Pageabl eHandl er Met hodAr gunent Resol ver to make sure the links
can be resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET http://
| ocal host : 8080/ per sons and you'll see something similar to this:

{ "links" : [{ "rel" : "next",
“href" : "http://]ocal host: 8080/ per sons?page=1&si ze=20 }
1.
"content" : [
.../l 20 Person instances rendered here

]

ageMet adata" : {
"size" : 20,

"total El enents" : 30,
"total Pages" : 2,
"nunmber" : 0

Spring Data JPA -
Reference Documentation 17

http://localhost:8080/persons
http://localhost:8080/persons

please define productname in your docbook file!

You see that the assembler produced the correct URI and also picks up the default configuration
present to resolve the parameters into a Pageabl e for an upcoming request. This means, if
you change that configuration, the links will automatically adhere to the change. By default the
assembler points to the controller method it was invoked in but that can be customized by
handing in a custom Li nk to be used as base to build the pagination links to overloads of the
PagedResour cesAssenbl er. t oResour ce(..) method.

Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
Dat aSour ce using SQL scripts. A similar abstraction is available on the repositories level, although
it does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define
data with which to populate the repositories.

Assume you have a file dat a. j son with the following content:

[{ "_class" : "com acne. Person",
"firstname" : "Dave",
"l ast name" : "Matthews" },
{ "_class" : "com acne. Person",
"firstname" : "Carter",
"l astname" : "Beauford" }]

Example 1.27 Data defined in JSON

You can easily populate your repositories by using the populator elements of the repository namespace
provided in Spring Data Commons. To populate the preceding data to your PersonRepository , do the
following:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: reposi tory="http://ww. springframework. org/ schema/ dat a/ r eposi t ory"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ scherma/ dat a/ r eposi tory
http://ww. springframework. or g/ schenma/ dat a/ r eposi t ory/ spri ng-repository. xsd">

<repository:jackson-popul ator |ocati ons="cl asspat h: data.json" />

</ beans>

Example 1.28 Declaring a Jackson repository populator
This declaration causes the dat a. j son file to be read and deserialized via a Jackson Obj ect Mapper.

The type to which the JISON object will be unmarshalled to will be determined by inspecting the cl ass
attribute of the JSON document. The infrastructure will eventually select the appropriate repository to
handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmar shal | er - popul at or element. You configure it to use one of the XML marshaller options Spring
OXM provides you with. See the Spring reference documentation for details.

Spring Data JPA -
Reference Documentation 18

http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/oxm.html

please define productname in your docbook file!

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: repository="http://ww. springfranmework. or g/ schema/ dat a/ r eposi tory"
xm ns: oxm="ht t p: / / www. spri ngf ramewor k. or g/ schema/ oxn'
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans

http://wwv. spri ngfranewor k.
http://ww. springfranmewor k.
http://ww. springframework.
http://ww. spri ngfranewor k.
http://ww. springfranmewor k.

or g/ schema/ beans/ spri ng- beans. xsd

or g/ schema/ dat a/ reposi tory

or g/ schena/ dat a/ reposi t ory/ spri ng-reposi tory. xsd
or g/ schema/ oxm

or g/ schenma/ oxm spri ng- oxm xsd" >

<reposi tory: unnarshal | er - popul at or | ocati ons="cl asspat h: dat a. j son"
unnar shal | er-ref="unmarshal l er" />

<oxm j axb2- mar shal | er cont ext Pat h="com acne" />

</ beans>

Example 1.29 Declaring an unmarshalling repository populator (using JAXB)

Legacy web support
Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLSs. By default your task is to transform that request parameter or URL part into the domain
class to hand it to layers below then or execute business logic on the entities directly. This would look
something like this:

@ontrol ler

@Request Mappi ng("/ users")

public class UserController {
private final UserRepository userRepository;

@\ut owi r ed

public UserController(UserRepository userRepository) {
Assert.notNul | (repository, "Repository nust not be null!");
this.userRepository = userRepository;

}

@Request Mappi ng("/{id}")

public String showUser Forn(@at hVari abl e("id") Long id, Mdel nodel) ({
/1 Do null check for id
User user = userRepository.findOne(id);
/1 Do null check for user

nmodel . addAttri bute("user",
return "user";

user);

First you declare a repository dependency for each controller to look up the entity managed by
the controller or repository respectively. Looking up the entity is boilerplate as well, as it's always
a findOne(..) call. Fortunately Spring provides means to register custom components that allow
conversion between a St ri ng value to an arbitrary type.

Spring Data JPA -

Reference Documentation 19

please define productname in your docbook file!

PropertyEditors

For Spring versions before 3.0 simple Java Pr opert yEdi t ors had to be used. To integrate with
that, Spring Data offers a Dormai nCl assPr opert yEdi t or Regi st r ar, which looks up all Spring Data
repositories registered in the Appl i cati onCont ext and registers a custom Propert yEdi t or for
the managed domain class.

<bean cl ass="...web. servl et. mvc. annot ati on. Annot ati onMet hodHand| er Adapt er " >
<property nanme="webBi ndinglnitializer">
<bean cl ass="...web. bi nd. support. Confi gurabl eWebBi ndi nglnitializer">

<property nanme="propertyEditorRegistrars">

<bean cl ass="org. spri ngframework. dat a. repository. support. Domai nCl assPropertyEditorRegi strar"
/>
</ property>
</ bean>
</ property>
</ bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as
follows, which reduces a lot of the clutter and boilerplate.

@ontrol ler
@Request Mappi ng("/ users")
public class UserController {

@Request Mappi ng("/{id}")
public String showUser For n{ @at hVari abl e("id") User user, Mdel nodel) {

nmodel . addAttri bute("user", user);
return "user Fornt;

ConversionServiceln Spring 3.0 and later the Propert yEdi t or support is superseded by a new
conversion infrastructure that eliminates the drawbacks of Pr opert yEdi t or s and uses a stateless
X to Y conversion approach. Spring Data now ships with a Domai nCl assConvert er that mimics
the behavior of Domai nCl assPropert yEdi t or Regi strar. To configure, simply declare a bean
instance and pipe the Conver si onSer vi ce being used into its constructor:

<mvc: annot ati on-driven conversi on-servi ce="conversi onServi ce" />

<bean cl ass="org. spri ngframework. dat a. reposi tory. support. Domai nCl assConverter">
<constructor-arg ref="conversi onService" />
</ bean>

If you are using JavaConfig, you can simply extend Spring MVC’s WebMrcConf i gur at i onSuppor t
and hand the For mat i ngConver si onSer vi ce that the configuration superclass provides into the
Domai nCl assConvert er instance you create.

Spring Data JPA -
Reference Documentation 20

please define productname in your docbook file!

cl ass WebConfiguration extends WebM/cConfi gurati onSupport {
/1 Other configuration omtted

@ean
publ i ¢ Domai nCl assConvert er<?> domai nC assConverter () {
return new Domai nCl assConvert er <For matti ngConver si onSer vi ce>(mvcConver si onServi ce());

}

}
Web pagination

When working with pagination in the web layer you usually have to write a lot of boilerplate code yourself
to extract the necessary metadata from the request. The less desirable approach shown in the example
below requires the method to contain an H t pSer vl et Request parameter that has to be parsed
manually. This example also omits appropriate failure handling, which would make the code even more
verbose.

@ontroller
@Request Mappi ng("/ users")
public class UserController {

/1 DI code omtted

@Request Mappi ng
public String showdsers(Mdel nodel, HttpServletRequest request) {

int page = Integer.parselnt(request.getParaneter("page"));
int pageSi ze = |nteger. parselnt(request. getParaneter ("pageSi ze"));

Pageabl e pageabl e = new PageRequest (page, pageSi ze);

nmodel . addAttri bute("users", userService. get Users(pageabl e));
return "users";

The bottom line is that the controller should not have to handle the functionality
of extracting pagination information from the request. So Spring Data ships with a
Pageabl eHandl er Met hodAr gunment Resol ver that will do the work for you. The Spring MVC
JavaConfig support exposes a WebMscConfi gur ati onSupport helper class to customize the
configuration as follows:

@Configuration
public class WebConfig extends WebM/cConfi gurati onSupport {

@verride
protected void addAr gurment Resol ver s(Li st <Handl er Met hodAr gunent Resol ver >
ar gunent Resol vers) {
ar gunment Resol ver s. add(new Pageabl eHandl er Met hodAr gurment Resol ver ());
}
}

If you're stuck with XML configuration you can register the resolver as follows:

Spring Data JPA -
Reference Documentation 21

please define productname in your docbook file!

<bean cl ass="...web. servl et. n/c. net hod. annot at i on. Request Mappi ngHandl| er Adapt er" >
<property nanme="cust omAr gunent Resol vers" >
<list>
<bean cl ass="org. spri ngf ranewor k. dat a. web. Pageabl eHand| er Met hodAr gunent Resol ver" />
</list>
</ property>
</ bean>

Once you've configured the resolver with Spring MVC it allows you to simplify controllers down to
something like this:

@ontrol ler
@request Mappi ng("/ users")
public class UserController {

@request Mappi ng
public String showUsers(Mdel nodel, Pageable pageable) {

nmodel . addAttri bute("users", userRepository.findAll (pageable));
return "users";

}

}

The Pageabl eArgunent Resol ver automatically resolves request parameters to build a
PageRequest instance. By default it expects the following structure for the request parameters.

Table 1.2. Request parameters evaluated by PageableHandlerMethodArgumentResolver

page Page you want to retrieve, 0 indexed and
defaults to 0.

si ze Size of the page you want to retrieve, defaults to
20.
sort A collection of sort directives in the format

($propertynane,) [asc| desc] ?.

Pagination URL parameter examples. To retrieve the third page with a maximum page size of 100
with the data sorted by the email property in ascending order use the following url parameter:

?page=2&si ze=100&sort =emai | , asc

To sort the data by multiple properties in different sort order use the following URL parameter:

?sort =f 0o, asc&sort =bar, desc

In case you need multiple Pageabl e instances to be resolved from the request (for multiple tables, for
example) you can use Spring’s @ual i fi er annotation to distinguish one from another. The request
parameters then have to be prefixed with ${ qual i fi er} _. So for a method signature like this:

public String showUsers(Mdel nodel,
@ualifier("foo") Pageable first,
@ualifier("bar") Pageable second) { ...}

you have to populate f oo_page and bar _page and the related subproperties.

Spring Data JPA -
Reference Documentation 22

please define productname in your docbook file!

Configuring a global default on bean declaration the Pageabl eAr gunent Resol ver will use a
PageRequest with the first page and a page size of 10 by default. It will use that value if it cannot resolve
a PageRequest from the request (because of missing parameters, for example). You can configure a
global default on the bean declaration directly. If you might need controller method specific defaults for
the Pageabl e, annotate the method parameter with @ageabl eDef aul t s and specify page (through
pageNunber), page size (through val ue), sort (list of properties to sort by), and sortDi r (the
direction to sort by) as annotation attributes:

public String showUsers(Mdel nodel,
@ageabl eDef aul t s(pageNumber = 0, value = 30) Pageabl e pageable) { ...}

Spring Data JPA -
Reference Documentation 23

Part Il. Reference Documentation

please define productname in your docbook file!

2. JPA Repositories

This chapter will point out the specialties for repository support for JPA. This builds on the core repository
support explained in Chapter 1, Working with Spring Data Repositories. So make sure you've got a
sound understanding of the basic concepts explained there.

2.1 Introduction

Spring namespace

The JPA module of Spring Data contains a custom namespace that allows defining repository beans.
It also contains certain features and element attributes that are special to JPA. Generally the JPA
repositories can be set up using the r eposi t ori es element:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:jpa="http://ww. springframework. org/ schema/ dat a/ j pa"
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ dat a/ j pa
http://ww. springframework. org/ schema/ dat a/ j pa/ spri ng-j pa. xsd" >

<j pa: reposi tories base-package="com acne. repositories" />

</ beans>

Example 2.1 Setting up JPA repositories using the namespace

Using this element looks up Spring Data repositories as described in Section 1.5, “Creating repository
instances”. Beyond that it activates persistence exception translation for all beans annotated with
@reposi tory to let exceptions being thrown by the JPA persistence providers be converted into
Spring’s Dat aAccessExcept i on hierarchy.

Custom namespace attributes

Beyond the default attributes of the r eposi t ori es element the JPA namespace offers additional
attributes to gain more detailed control over the setup of the repositories:

Table 2.1. Custom JPA-specific attributes of the repositories element

entity-manager-factory-ref Explicitly wire the Ent i t yManager Fact ory
to be used with the repositories being detected
by the r eposi t ori es element. Usually
used if multiple Ent i t yManager Fact ory
beans are used within the application. If
not configured we will automatically lookup
the Ent i t yManager Fact or y bean with
the name ent i t yManager Fact ory in the
Appl i cati onCont ext.

transacti on- manager - r ef Explicitly wire the
Pl at f or nTr ansact i onManager to be

Spring Data JPA -
Reference Documentation 25

please define productname in your docbook file!

used with the repositories being detected by
the r eposi t ori es element. Usually only
necessary if multiple transaction managers
and/or Ent i t yManager Fact or y beans have
been configured. Default to a single defined

Pl at f or nTr ansact i onManager inside the
current Appl i cat i onCont ext .

Note that we require a Pl at f or mlr ansact i onManager bean namedtransacti onManager to be
present if no explicitt r ansact i on- manager - r ef is defined.

Annotation based configuration

The Spring Data JPA repositories support cannot only be activated through an XML namespace but
also using an annotation through JavaConfig.

@onfiguration

@nabl eJpaReposi tori es
@nabl eTr ansact i onManagenent
class ApplicationConfig {

@Bean
publ i c DataSource dataSource() ({

EnbeddedDat abaseBui | der bui | der = new EnbeddedDat abaseBui | der () ;
return buil der. set Type(EnbeddedDat abaseType. HSQ.) . bui 1 d() ;

}

@ean
public EntityManager Factory entityManagerFactory() ({

Hi ber nat eJpaVendor Adapt er vendor Adapt er = new Hi ber nat eJpaVendor Adapt er () ;
vendor Adapt er . set Gener at eDdl (true);

Local Cont ai ner Ent i t yManager Fact oryBean factory = new
Local Cont ai ner Ent i t yManager Fact or yBean() ;

factory. set JpaVendor Adapt er (vendor Adapt er) ;

factory. set PackagesToScan("com acne. domai n") ;

factory. set Dat aSour ce(dat aSource());

factory. afterPropertiesSet();

return factory. get Object();
}

@Bean

public Pl atfornmlransacti onManager transacti onManager () {

JpaTransacti onManager txManager = new JpaTransacti onManager () ;
t xManager . set Enti t yManager Fact ory(entit yManager Factory());
return txManager;
}
}

Example 2.2 Spring Data JPA repositories using JavaConfig

The just shown configuration class sets up an embedded HSQL database using the
EnbeddedDat abaseBui | der API of spring-jdbc. We then set up a EntityManager Factory
and use Hibernate as sample persistence provider. The last infrastructure component declared
here is the JpaTransacti onManager . We finally activate Spring Data JPA repositories using the

Spring Data JPA -
Reference Documentation 26

please define productname in your docbook file!

@nabl eJpaReposi t ori es annotation which essentially carries the same attributes as the XML
namespace does. If no base package is configured it will use the one the configuration class resides in.

2.2 Persisting entities

Saving entities

Saving an entity can be performed via the Cr udReposi t ory. save(..) -Method. It will persist or merge
the given entity using the underlying JPA Ent i t yManager . If the entity has not been persisted yet
Spring Data JPA will save the entity via a call to the ent i t yManager . per si st (..) method, otherwise
the ent i t yManager . ner ge(..) method will be called.

Entity state detection strategies
Spring Data JPA offers the following strategies to detect whether an entity is new or not:

Table 2.2. Options for detection whether an entity is new in Spring Data JPA

Id-Property inspection (default) By default Spring Data JPA inspects the
identifier property of the given entity. If the
identifier property is nul | , then the entity will be
assumed as new, otherwise as not new.

Implementing Per si st abl e If an entity implements Per si st abl e, Spring
Data JPA will delegate the new detection to
the i sNew(..) method of the entity. See the
JavaDoc for details.

Implementing Enti t yl nf or mati on You can customize the Enti tyl nfornmati on
abstraction used in the Si npl eJpaRepository
implementation by creating a subclass of
JpaReposi t or yFact ory and overriding
the get Entityl nformation(..)
method accordingly. You then have to
register the custom implementation of
JpaReposi t or yFact ory as a Spring bean.
Note that this should be rarely necessary. See
the JavaDoc for details.

2.3 Query methods

Query lookup strategies

The JPA module supports defining a query manually as String or have it being derived from the method
name.

Declared queries

Although getting a query derived from the method name is quite convenient, one might face the situation
in which either the method name parser does not support the keyword one wants to use or the method
name would get unnecessarily ugly. So you can either use JPA named queries through a naming
convention (see the section called “Using JPA NamedQueries” for more information) or rather annotate
your query method with @uer y (see the section called “Using @Query” for details).

Spring Data JPA -
Reference Documentation 27

http://docs.spring.io/spring-data/data-commons/docs/current/api/index.html?org/springframework/data/domain/Persistable.html
http://docs.spring.io/spring-data/data-jpa/docs/current/api/index.html?org/springframework/data/jpa/repository/support/JpaRepositoryFactory.html

please define productname in your docbook file!

Query creation

Generally the query creation mechanism for JPA works as described in Section 1.2, “Query methods”.
Here’s a short example of what a JPA query method translates into:

public interface UserRRepository extends Repository<User, Long> {

Li st <User> fi ndByEnai | Addr essAndLast nane(Stri ng emai | Address, String |astnane);
}

We will create a query using the JPA criteria API from this but essentially this translates into the following
query:sel ect u fromUser u where u.enail Address = ?1 and u. |l astname = ?2. Spring
Data JPA will do a property check and traverse nested properties as described in the section called
“Property expressions”. Here’s an overview of the keywords supported for JPA and what a method
containing that keyword essentially translates to.
Example 2.3 Query creation from method names

Table 2.3. Supported keywords inside method names

Keyword Sample JPQL snippet

And fi ndByLast naneAndFi r st nane.where x.l astnane = ?1
and x.firstnane = ?2

O fi ndByLast nameOr Fi r st nane...where x.| astnane = ?1
or x.firstnane = ?2

I s, Equal s fi ndByFi r st nane,fi ndByFi r st nemaxles ki hdBgFhasenaneEqual s
1?

Bet ween fi ndBySt ar t Dat eBet ween ...wWhere x.startDate
bet ween 1? and ?2

LessThan fi ndByAgeLessThan ...wWhere x.age < ?1

LessThanEqual fi ndByAgeLessThanEqual ...where x.age # ?1

Great er Than fi ndByAgeG eat er Than ...wWhere x.age > 7?1

Gr eat er ThanEqual fi ndByAgeG eat er ThanEqual ... where x.age >= ?1

After findBySt art Dat eAf t er ...Where x.startDate > ?
1

Bef ore fi ndBySt art Dat eBef or e ...where x.startDate < ?
1

I sNul | fi ndByAgel sNul | ...where x.age is null

I sNot Nul |, Not Nul | findByAge(|s) Not Nul | ...where x.age not null

Li ke fi ndByFir st naneLi ke ...wWhere x.firstnane
li ke ?1

Not Li ke fi ndByFi r st nameNot Li ke ...where x.firstnane not
li ke ?1

Spring Data JPA -
Reference Documentation 28

please define productname in your docbook file!

Keyword

Starti ngWth

Sample JPQL snippet

findByFirstnaneStarti ngWthwhere x.firstnane
i ke ?1 (parameter bound
with appended %)

Endi ngWth fi ndByFi r st naneEndi ngWt h...where x.firstnane
i ke ?1 (parameter bound
with prepended %

Cont ai ni ng fi ndByFi r st naneCont ai ni ng...where x.firstname
i ke ?1 (parameter bound
wrapped in %9

Or der By fi ndByAgeOr der ByLast naneDesohere x.age = ?1
order by x.|astnane
desc

Not fi ndByLast nameNot ...where x.lastname <> ?
1

In fi ndByAgel n(Col | ecti on<Age>where x.age in ?1

ages)
Not I n fi ndByAgeNot I n(Col | ecti on<Aghere x.age not in ?1
age)

True findByActiveTrue() ...where x.active = true

Fal se findByActi veFal se() ...where x.active =
fal se

| gnor eCase fi ndByFi r st nanel gnor eCase... where
UPPER(x. firstane) =
UPPER(?1)

© Note

I n and Not | n also take any subclass of Col | ect i on as parameter as well as arrays or varargs.
For other syntactical versions of the very same logical operator check Appendix C, Repository

query keywords.

Using JPA NamedQueries

© Note

The examples use simple <nanmed- query /> element and @NanedQuery annotation. The
queries for these configuration elements have to be defined in JPA query language. Of course
you can use <naned- nati ve- query /> or @anedNat i veQuery too. These elements allow
you to define the query in native SQL by losing the database platform independence.

Spring Data JPA -

Reference Documentation 29

please define productname in your docbook file!

XML named query definition

To use XML configuration simply add the necessary <naned- query /> element to the or m xm JPA
configuration file located in META- | NF folder of your classpath. Automatic invocation of named queries
is enabled by using some defined haming convention. For more details see below.

<naned- query nane="User. fi ndByLast name" >
<query>sel ect u from User u where u.l astname = ?1</ query>
</ naned- quer y>

Example 2.4 XML named query configuration
As you can see the query has a special name which will be used to resolve it at runtime.
Annotation configuration

Annotation configuration has the advantage of not needing another configuration file to be edited,
probably lowering maintenance costs. You pay for that benefit by the need to recompile your domain
class for every new query declaration.

@ntity
@NanmedQuery(nanme = "User. fi ndByEnai | Addr ess",
query = "select u fromUser u where u.enuil Address = ?1")

public class User {

}
Example 2.5 Annotation based named query configuration

Declaring interfaces

To allow execution of these hamed queries all you need to do is to specify the User Reposi t ory as
follows:

public interface UserRepository extends JpaRepository<User, Long> {
Li st <User> findByLast name(String | astnane);

User findByEnail Address(String enmil Address);
}

Example 2.6 Query method declaration in UserRepository

Spring Data will try to resolve a call to these methods to a named query, starting with the simple name
of the configured domain class, followed by the method name separated by a dot. So the example here
would use the named queries defined above instead of trying to create a query from the method name.

Using @Query

Using named queries to declare queries for entities is a valid approach and works fine for a small number
of queries. As the queries themselves are tied to the Java method that executes them you actually can
bind them directly using the Spring Data JPA @uery annotation rather than annotating them to the
domain class. This will free the domain class from persistence specific information and co-locate the
guery to the repository interface.

Queries annotated to the query method will take precedence over queries defined using @anedQuer y
or named queries declared in or m xni .

Spring Data JPA -
Reference Documentation 30

please define productname in your docbook file!

public interface UserRepository extends JpaRepository<User, Long> {

@uery("select u fromUser u where u.ennil Address = ?1")
User findByEnmil Address(String emai | Address);
}

Example 2.7 Declare query at the query method using @Query

Using advanced LI KE expressionsThe query execution mechanism for manually defined queries using
@Query allow the definition of advanced LI KE expressions inside the query definition.

public interface UserRepository extends JpaRepository<User, Long> {

@uery("select u fromUser u where u.firstnane |ike %1")
Li st <User> findByFirstnaneEndsWth(String firstnane);
}

Example 2.8 Advanced like-expressions in @Query

In the just shown sample LI KE delimiter character %is recognized and the query transformed into a
valid JPQL query (removing the %. Upon query execution the parameter handed into the method call
gets augmented with the previously recognized LI KE pattern.

Native queriesThe @uer y annotation allows to execute native queries by setting the nati veQuery
flag to true. Note, that we currently don’t support execution of pagination or dynamic sorting for native
gueries as we'd have to manipulate the actual query declared and we cannot do this reliably for native
SQL.

public interface UserRepository extends JpaRepository<User, Long> {

@uery(val ue = "SELECT * FROM USERS WHERE EMAI L_ADDRESS = ?0", nativeQuery = true)
User findByEnmail Address(String emai | Address);
}

Example 2.9 Declare a native query at the query method using @Query

Using named parameters

By default Spring Data JPA will use position based parameter binding as described in all the samples
above. This makes query methods a little error prone to refactoring regarding the parameter position.
To solve this issue you can use @ar amannotation to give a method parameter a concrete name and
bind the name in the query.

public interface UserRepository extends JpaRepository<User, Long> {

@uery("select u fromUser u where u.firstnane = :firstnane or u.lastnanme = :I|astnanme")
User findBylLastnaneO Firstnane(@aran("|lastnane") String |astnane,
@aran("firstnane”) String firstnane);

}
Example 2.10 Using named parameters

Note that the method parameters are switched according to the occurrence in the query defined.
Using SpEL expressions

As of Spring Data JPA release 1.4 we support the usage of restricted SpEL template expressions in
manually defined queries via @uer y. Upon query execution these expressions are evaluated against
a predefined set of variables. We support the following list of variables to be used in a manual query.

Spring Data JPA -
Reference Documentation 31

please define productname in your docbook file!

Table 2.4. Supported variables inside SpEL based query templates

Variable Usage Description
entityNane select x from Inserts the ent i t yNane of
#{#enti tyNane} x the domain type associated

with the given Repository. The
enti t yNane is resolved as
follows: If the domain type has
set the name property on the
@Ent i t y annotation then it will
be used. Otherwise the simple
class-name of the domain type
will be used.

The following example demonstrates one use case for the #{#ent i t yNane} expression in a query
string where you want to define a repository interface with a query method with a manually defined
query. In order not to have to state the actual entity name in the query string of a @uer y annotation
one can use the #{ #ent i t yNane} Variable.

© Note

The ent i t yName can be customized via the @nt i t y annotation. Customizations via or m xni
are not supported for the SpEL expressions.

@ntity
public class User {

@d
@zener at edVal ue
Long i d;

String | astnane;

}

public interface UserRepository extends JpaRepository<User, Long> {

@uery("select u from#{#entityNane} u where u.lastnane = ?1")
Li st <User> findByLast name(String | astnane);

}
Example 2.11 Using SpEL expressions in repository query methods - entityName

Of course you could have just used User in the query declaration directly but that would require you to
change the query as well. The reference to #ent i t yNane will pick up potential future remappings of
the User class to a different entity name (e.g. by using @ntity(name = "M/User").

Another use case for the #{ #ent i t yNanme} expression in a query string is if you want to define a
generic repository interface with specialized repository interfaces for a concrete domain type. In order
not to have to repeat the definition of custom query methods on the concrete interfaces you can use the
entity name expression in the query string of the @uer y annotation in the generic repository interface.

Spring Data JPA -
Reference Documentation 32

please define productname in your docbook file!

@appedSuper cl ass
public abstract class Abstract MappedType {

String attribute
}

@ntity
public class ConcreteType extends Abstract MappedType { ...}

@NoReposi t or yBean
public interface MappedTypeRepository<T extends Abstract MappedType>
ext ends Repository<T, Long> {

@uery("select t from#{#entityNanme} t where t.attribute = ?1")
Li st<T> findAl | ByAttribute(String attribute);

}

public interface ConcreteRepository
ext ends MappedTypeRepository<ConcreteType> { ...}

Example 2.12 Using SpEL expressions in repository query methods - entityName with inheritance

In the example the interface MappedTypeRepository is the common parent interface for
a few domain types extending Abstract MappedType. It also defines the generic method
findAl I ByAttri bute(..) which can be used on instances of the specialized repository interfaces. If
you now invoke fi ndByAl | Attri bute(..) onConcret eRepository the query being executed will
beselect t from ConcreteType t where t.attribute = ?1.

Modifying queries

All the sections above describe how to declare queries to access a given entity or collection of entities.
Of course you can add custom modifying behaviour by using facilities described in Section 1.6, “Custom
implementations for Spring Data repositories”. As this approach is feasible for comprehensive custom
functionality, you can achieve the execution of modifying queries that actually only need parameter
binding by annotating the query method with @bdi f yi ng:

@ndi fying
@uery("update User u set u.firstname = ?1 where u.l astnanme = ?2")
int setFixedFirstnaneFor(String firstname, String |astnane);

Example 2.13 Declaring manipulating queries

This will trigger the query annotated to the method as updating query instead of a selecting one. As the
Enti t yManager might contain outdated entities after the execution of the modifying query, we do not
automatically clear it (see JavaDoc of Ent i t yManager . cl ear () for details) since this will effectively
drop all non-flushed changes still pending in the Ent i t yManager . If you wish the Ent i t yManager
to be cleared automatically you can set @di f yi ng annotation’s cl ear Aut onat i cal | y attribute
totrue.

Applying query hints
To apply JPA query hints to the queries declared in your repository interface you can use the

@uer yH nt s annotation. It takes an array of JPA @uer yH nt annotations plus a boolean flag to
potentially disable the hints applied to the addtional count query triggered when applying pagination.

Spring Data JPA -
Reference Documentation 33

please define productname in your docbook file!

public interface UserRepository extends Repository<User, Long> {

@ueryHi nts(val ue = { @ueryHi nt(name = "nanme", value = "value")},
forCounting = fal se)
Page<User > findByLast nanme(String | ast name, Pageabl e pageabl e);

}
Example 2.14 Using QueryHints with a repository method

The just shown declaration would apply the configured @uer yHi nt for that actually query but omit
applying it to the count query triggered to calculate the total number of pages.

Configuring Fetch- and LoadGraphs

The JPA 2.1 specification introduced support for specifiying Fetch- and LoadGraphs that we also support
via the @nt i t yG aph annotation which allows to reference a @NanedEnt i t yGr aph definition, that
can be annotated on an entity, to be used to configure the fetch plan of the resulting query. The type
(Fetch / Load) of the fetching can be configured viathe t ype attribute on the @nt i t yG aph annotation.
Please have a look at the JPA 2.1 Spec 3.7.4 for further reference.

@ntity
@anmedEnt i t yGraph(nane = "G oupl nfo.detail",

attri buteNodes = @anedAttri but eNode(" menbers"))
public class Gouplnfo {

/'l default fetch node is |azy.
@/manyToMany
Li st <G oupMenber > nmenbers = new Arrayli st <G oupMenber >();

}
Example 2.15 Defining a named entity graph on an entity.

@Reposi tory
public interface GoupRepository extends CrudRepository<G ouplnfo, String> {

@ntityG aph(value = "Grouplnfo.detail", type = EntityG aphType. LOAD)
Groupl nfo get ByGroupNane(String nane);

}
Example 2.16 Referencing a named entity graph definition on an repository query method.

2.4 Stored procedures

The JPA 2.1 specification introduced support for calling stored procedures via the JPA criteria query API.
We Introduced the @°r ocedur e annotation for declaring stored procedure metadata on a repository
method.

i3
DROP procedure | F EXI STS pl usli nout
!5
CREATE procedure pluslinout (INarg int, OUT res int)
BEG N ATOM C
set res = arg = 1;
END
I

Example 2.17 The definition of the puslinout procedure in HSQL DB.

Spring Data JPA -
Reference Documentation 34

please define productname in your docbook file!

Metadata for stored procedures can be configured via the NanmedSt or edPr ocedur eQuer y annotation
on an entity type.

@ntity
@anmedSt or edPr ocedur eQuery(nanme = "User. pl usl", procedureNane = "plusli nout", paraneters =
{
@5t or edPr ocedur ePar anet er (nmode = Par anet er Mode. IN, nane = "arg", type = Integer.class)
@t or edPr ocedur ePar anet er (nbde = Par anet er Mode. OUT, nanme = "res", type =

I nteger.cl ass) })
public class User {}

Example 2.18 StoredProcedure metadata definitions on an entity.

Stored procedures can be referenced from a repository method in multiple ways. The stored procedure
to be called can either be defined directly via the val ue or procedur eNane attribute of the
@°r ocedur e annotation or indirectly via the namne attribute. If no name is configured the name of the
repository method is used as a fallback.

@°r ocedur e("pl usli nout™)
I nteger explicitlyNanedPl usli nout (I nteger arg);

Example 2.19 Referencing explicitly mapped procedure with name "pluslinout” in database.

@Pr ocedur e(procedur eNane = "pl usli nout")
I nteger pluslinout (I nteger arg);

Example 2.20 Referencing implicity mapped procedure with name "pluslinout” in database via
pr ocedur eNane alias.

@rocedure(nane = "User.plusll O')
I nteger entityAnnot at edCust onNanedPr ocedur ePl usll O @aran{"arg”) |Integer arg);

Example 2.21 Referencing explicitly mapped named stored procedure "User.plus1lO" in EntityManager.

@r ocedur e
I nteger plusl(@aran{"arg") Integer arg);

Example 2.22 Referencing implicitly mapped named stored procedure "User.plusl" in EntityManager
via method-name.

2.5 Specifications

JPA 2 introduces a criteria API that can be used to build queries programmatically. Writingacriteri a
you actually define the where-clause of a query for a domain class. Taking another step back these
criteria can be regarded as predicate over the entity that is described by the JPA criteria API constraints.

Spring Data JPA takes the concept of a specification from Eric Evans' book "Domain Driven
Design", following the same semantics and providing an API to define such specifications using
the JPA criteria API. To support specifications you can extend your repository interface with the
JpaSpeci fi cati onExecut or interface:

public interface CustomerRepository extends CrudRepository<Custoner, Long>
JpaSpeci fi cati onExecut or {

The additional interface carries methods that allow you to execute specifications in a variety of ways.
For example, the fi ndAl | method will return all entities that match the specification:

Spring Data JPA -
Reference Documentation 35

please define productname in your docbook file!

Li st<T> findAl | (Specification<T> spec);

The Speci fi cati on interface is defined as follows:

public interface Specification<T> {
Predi cate toPredi cate(Root<T> root, CriteriaQuery<?> query,
CriteriaBuilder builder);

Okay, so what is the typical use case? Specifications can easily be used to build an extensible set of
predicates on top of an entity that then can be combined and used with JpaReposi t or y without the
need to declare a query (method) for every needed combination. Here’'s an example:

public class CustonerSpecs {

public static Specification<Custoner> isLongTernCustoner() {
return new Specification<Custoner>() {
publ i c Predicate toPredicate(Root<Customer> root, CriteriaQuery<?> query,
CriteriaBuilder builder) {

Local Date date = new Local Date(). m nusYears(2);
return builder.|essThan(root.get(_Custoner.createdAt), date);
}
b
}

public static Specification<Custoner> hasSal esOf MoreThan(Mont ar yAnmount val ue) {
return new Speci fication<Custoner>() {
public Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,
CriteriaBuilder builder) {

/1 build query here
}
b
}
}

Example 2.23 Specifications for a Customer

Admittedly the amount of boilerplate leaves room for improvement (that will hopefully be reduced by
Java 8 closures) but the client side becomes much nicer as you will see below. The _Cust omrer type is
a metamodel type generated using the JPA Metamodel generator (see the Hibernate implementation’s
documentation for example). So the expression _Cust oner. cr eat edAt is asuming the Cust oner
having a cr eat edAt attribute of type Dat e. Besides that we have expressed some criteria on a
business requirement abstraction level and created executable Speci fi cati ons. So a client might
use a Speci fi cati on as follows:

Li st <Cust oner > custoners = customer Repository. findAl | (isLongTernCustoner());

Example 2.24 Using a simple Specification

Okay, why not simply create a query for this kind of data access? You're right. Using a single
Speci fication does not gain a lot of benefit over a plain query declaration. The power of
specifications really shines when you combine them to create new Speci fi cat i on objects. You can
achieve this through the Speci fi cat i ons helper class we provide to build expressions like this:

Spring Data JPA -
Reference Documentation 36

http://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/en-US/html_single/#whatisit
http://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/en-US/html_single/#whatisit

please define productname in your docbook file!

Monet ar yAnobunt anount = new Mnet ar yAnount (200. 0, Currenci es. DOLLAR);
Li st <Cust oner > custonmers = custoner Repository.findAll (
wher e(i sLongTer nCust oner ()) . or (hasSal esOf Mor eThan(anmount))) ;

As you can see, Specifications offers some glue-code methods to chain and combine
Speci fi cati on instances. Thus extending your data access layer is just a matter of creating new
Speci fi cati on implementations and combining them with ones already existing.

Example 2.25 Combined Specifications

2.6 Transactionality

CRUD methods on repository instances are transactional by default. For reading operations the
transaction configuration readOnly flag is set to true, all others are configured with a plain
@ransactional so that default transaction configuration applies. For details see JavaDoc of
Cr udReposi t ory. If you need to tweak transaction configuration for one of the methods declared in a
repository simply redeclare the method in your repository interface as follows:

public interface User Repository extends CrudRepository<User, Long> {
@verride
@ransactional (ti meout = 10)

public List<User> findAll();

/'l Further query nethod decl arations

This will cause the fi ndAl | () method to be executed with a timeout of 10 seconds and without the
readOnl y flag.
Example 2.26 Custom transaction configuration for CRUD

Another possibility to alter transactional behaviour is using a facade or service implementation that
typically covers more than one repository. Its purpose is to define transactional boundaries for non-
CRUD operations:

Spring Data JPA -
Reference Documentation 37

please define productname in your docbook file!

@er vi ce
cl ass User Managenent | npl inpl ements User Managenent {

private final UserRepository userRepository;
private final Rol eRepository rol eRepository;

@\ut owi r ed

publ i ¢ User Managenent | npl (User Reposi tory user Repository,
Rol eReposi tory rol eRepository) ({
this.userRepository = userRepository;
this.rol eRepository = rol eRepository;

}

@r ansact i onal
public voi d addRol eToAl | Users(String rol eNanme) {

Rol e rol e = rol eRepository. fi ndByName(rol eNan®e) ;

for (User user : userRepository.findAl()) {
user. addRol e(rol e);
user Reposi tory. save(user);

}

This will cause call to addRol eToAl | User s(..) to run inside a transaction (participating in an existing
one or create a new one if none already running). The transaction configuration at the repositories will
be neglected then as the outer transaction configuration determines the actual one used. Note that
you will have to activate <t x: annot ati on-dri ven /> or use @nabl eTransact i onManagenent
explicitly to get annotation based configuration at facades working. The example above assumes you
are using component scanning.

Example 2.27 Using a facade to define transactions for multiple repository calls
Transactional query methods

To allow your query methods to be transactional simply use @r ansacti onal at the repository
interface you define.

@ransactional (readOnly = true)
public interface UserRepository extends JpaRepository<User, Long> {

Li st <User> findByLastname(String |astnane);

@ndi fyi ng

@r ansacti onal

@uery("delete fromUser u where u.active = fal se")
voi d del etel nactiveUsers();

Typically you will want the readOnly flag set to true as most of the query methods will only read data. In
contrast to that del et el nacti veUser s() makes use of the @wdi f yi ng annotation and overrides
the transaction configuration. Thus the method will be executed with r eadOnl y flag setto f al se.
Example 2.28 Using @Transactional at query methods

@ Note

It's definitely reasonable to use transactions for read only queries and we can mark them as
such by setting the r eadOnl y flag. This will not, however, act as check that you do not trigger a

Spring Data JPA -
Reference Documentation 38

please define productname in your docbook file!

manipulating query (although some databases reject | NSERT and UPDATE statements inside a
read only transaction). The r eadOnl y flag instead is propagated as hint to the underlying JDBC
driver for performance optimizations. Furthermore, Spring will perform some optimizations on the
underlying JPA provider. E.g. when used with Hibernate the flush mode is set to NEVERwhen you
configure a transaction as r eadOnl y which causes Hibernate to skip dirty checks (a noticeable
improvement on large object trees).

2.7 Locking

To specify the lock mode to be used the @.ock annotation can be used on query methods:

interface UserRepository extends Repository<User, Long> {

/1 Plain query nethod
@ock(LockMddeType. READ)
Li st <User> findByLastname(String | astnane);

}
Example 2.29 Defining lock metadata on query methods

This method declaration will cause the query being triggered to be equipped with the LockMbdeType
READ. You can also define locking for CRUD methods by redeclaring them in your repository interface
and adding the @.ock annotation:

interface UserRRepository extends Repository<User, Long> {

/'l Redecl aration of a CRUD net hod
@.ock(LockMdeType. READ) ;
Li st <User> findAll ();

}

Example 2.30 Defining lock metadata on CRUD methods

2.8 Auditing

Basics

Spring Data provides sophisticated support to transparently keep track of who created or changed an
entity and the point in time this happened. To benefit from that functionality you have to equip your
entity classes with auditing metadata that can be defined either using annotations or by implementing
an interface.

Annotation based auditing metadata

We provide @r eat edBy, @.ast Modi fi edBy to capture the user who created or modified the entity
as well as @r eat edDat e and @.ast Modi fi edDat e to capture the point in time this happened.

Spring Data JPA -
Reference Documentation 39

please define productname in your docbook file!

cl ass Custoner {

@Cr eat edBy
private User user;

@r eat edDat e
private DateTi ne createdDat e;

/1 ..further properties omtted

}
Example 2.31 An audited entity

As you can see, the annotations can be applied selectively, depending on which information you'd like
to capture. For the annotations capturing the points in time can be used on properties of type JodaTimes
Dat eTi e, legacy Java Dat e and Cal endar , JDK8 date/time types as well as | ong/Long.

Interface-based auditing metadata

In case you don’t want to use annotations to define auditing metadata you can let your domain class
implement the Audi t abl e interface. It exposes setter methods for all of the auditing properties.

There’s also a convenience base class Abst r act Audi t abl e which you can extend to avoid the need
to manually implement the interface methods. Be aware that this increases the coupling of your domain
classes to Spring Data which might be something you want to avoid. Usually the annotation based way
of defining auditing metadata is preferred as it is less invasive and more flexible.

AuditorAware

In case you use either @r eat edBy or @.ast Modi f i edBy, the auditing infrastructure somehow needs
to become aware of the current principal. To do so, we provide an Audi t or Awar e<T> SPI interface
that you have to implement to tell the infrastructure who the current user or system interacting with the
application is. The generic type T defines of what type the properties annotated with @Cr eat edBy or
@.ast Modi fi edBy have to be.

Here’s an example implementation of the interface using Spring Security’s Aut hent i cat i on object:
class SpringSecurityAuditorAware inplenments AuditorAwar e<User> {
public User getCurrentAuditor() {

Aut henti cati on authentication =
Securi t yCont ext Hol der . get Cont ext (). get Aut henti cati on();

if (authentication == null || !authentication.isAuthenticated()) {
return null;

}

return ((MyUserDetails) authentication.getPrincipal()).getUser();
}

}
Example 2.32 Implementation of AuditorAware based on Spring Security

The implementation is accessing the Aut hent i cat i on object provided by Spring Security and looks
up the custom User Det ai | s instance from it that you have created in your User Det ai | sSer vi ce
implementation. We're assuming here that you are exposing the domain user through that
User Det ai | s implementation but you could also look it up from anywhere based on the
Aut hent i cat i on found.

Spring Data JPA -
Reference Documentation 40

please define productname in your docbook file!

2.9 JPA Auditing

General auditing configuration

Spring Data JPA ships with an entity listener that can be used to trigger capturing auditing information.
So first you have to register the Audi t i ngEnti t yLi st ener inside your or m xnl to be used for all
entities in your persistence contexts:

Note that the auditing feature requires spri ng- aspects. j ar to be on the classpath.

<per si st ence-uni t - net adat a>
<persi stence-unit-defaul t s>
<entity-listeners>
<entity-listener class="..data.jpa.domain.support.AuditingEntityListener" />
</entity-listeners>
</ persi st ence- uni t -def aul t s>
</ persi st ence-uni t - met adat a>

Example 2.33 Auditing configuration orm.xml

Now activating auditing functionality is just a matter of adding the Spring Data JPA auditi ng
namespace element to your configuration:

<j pa: audi ti ng auditor-aware-ref="yourAudi t or Anar eBean" />

Example 2.34 Activating auditing using XML configuration

As of Spring Data JPA 1.5, auditing can be enabled by annotating a configuration class with the
@EnableJpaAuditing annotation.

@Configuration
@Enabl eJpaAudi ti ng
class Config {

@ean
publ i ¢ Audit or Awar e<Audi t abl eUser > audi t or Provi der () {

return new AuditorAwarel npl ();

}
}

Example 2.35 Activating auditing via Java configuration

If you expose a bean of type AuditorAware to the ApplicationContext, the auditing infrastructure will
pick it up automatically and use it to determine the current user to be set on domain types. If you have
multiple implementations registered in the ApplicationContext, you can select the one to be used by
explicitly setting the audi t or Awar eRef attribute of @EnableJpaAuditing.

Spring Data JPA -
Reference Documentation 41

please define productname in your docbook file!

3. Miscellaneous

3.1 Merging persistence units

Spring supports having multiple persistence units out of the box. Sometimes, however, you might want
to modularize your application but still make sure that all these modules run inside a single persistence
unit at runtime. To do so Spring Data JPA offers a Per si st enceUni t Manager implementation that
automatically merges persistence units based on their name.

<bean cl ass="... Local Cont ai ner Enti t yManager Fact or yBean" >
<property nane="persistenceUnit Manager" >
<bean cl ass="... Mergi ngPer si st enceUni t Manager" />
</ property>
</ bean>

Example 3.1 Using MergingPersistenceUnitmanager
Classpath scanning for @Entity classes and JPA mapping files

A plain JPA setup requires all annotation mapped entity classes listed in or m xm . Same applies to XML
mapping files. Spring Data JPA provides a ClasspathScanningPersistenceUnitPostProcessor that gets
a base package configured and optionally takes a mapping filename pattern. It will then scan the given
package for classes annotated with @Entity or @MappedSuperclass and also loads the configuration
files matching the filename pattern and hands them to the JPA configuration. The PostProcessor has
to be configured like this:

<bean cl ass="... Local Cont ai ner Enti t yManager Fact or yBean" >
<property nane="persi stenceUnit Post Processors" >
<list>

<bean cl ass="org. spri ngfranework. dat a. j pa. support. Cl asspat hScanni ngPer si st enceUni t Post Processor" >
<constructor-arg val ue="com acne. domai n" />
<property nane="nmappi ngFi | eNanePattern" val ue="**/*Mappi ng. xm " />
</ bean>
</list>
</ property>
</ bean>

Example 3.2 Using ClasspathScanningPersistenceUnitPostProcessor

@ Note

As of Spring 3.1 a package to scan <can be configured on the
LocalContainerEntityManagerFactoryBean directly to enable classpath scanning for entity
classes. See the JavaDoc for details.

3.2 CDl integration

Instances of the repository interfaces are usually created by a container, which Spring is the most
natural choice when working with Spring Data. There’s sophisticated support to easily set up Spring to
create bean instances documented in Section 1.5, “Creating repository instances”. As of version 1.1.0
Spring Data JPA ships with a custom CDI extension that allows using the repository abstraction in CDI
environments. The extension is part of the JAR so all you need to do to activate it is dropping the Spring
Data JPA JAR into your classpath.

Spring Data JPA -
Reference Documentation 42

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/orm/jpa/LocalContainerEntityManagerFactoryBean.html#setPackagesToScan(java.lang.String...)

please define productname in your docbook file!

You can now set up the infrastructure by implementing a CDI Producer for the
Enti t yManager Fact ory and Ent i t yManager :

cl ass EntityManager Fact or yProducer {

@°r oduces
@\ppl i cati onScoped
public EntityManager Factory createEntityManagerFactory() ({
return Persistence. createEntityManager Factory("my-presistence-unit");

}

public void close(@i sposes EntityManager Factory entityManager Factory) {
enti tyManager Factory. cl ose();

}

@r oduces

@request Scoped

public EntityManager createEntityManager (EntityManagerFactory entityManagerFactory) {
return entityManager Factory. creat eEntityManager ();

}

public void close(@i sposes EntityManager entityManager) {
entityManager. cl ose();
}
}

The necessary setup can vary depending on the JavaEE environment you run in. It might also just be
enough to redeclare a Ent i t yManager as CDI bean as follows:

class Cdi Config {

@r oduces

@Request Scoped

@rer si st enceCont ext

public EntityManager entityManager;

In this example, the container has to be capable of creating JPA Enti t yManager s itself. All the
configuration does is re-exporting the JPA Ent i t yManager as CDI bean.

The Spring Data JPA CDI extension will pick up all EntityManagers availables as CDI beans and create
a proxy for a Spring Data repository whenever an bean of a repository type is requested by the container.
Thus obtaining an instance of a Spring Data repository is a matter of declaring an @ nj ect ed property:

class Repositorydient {

@ nj ect
Per sonRepository repository;

public void businessMet hod() {
Li st <Person> people = repository.findAll();

}

}

Spring Data JPA -
Reference Documentation 43

Part lll. Appendix

please define productname in your docbook file!

Appendix A. Namespace reference

A.1 The <repositories /> element

The <reposi tories /> element triggers the setup of the Spring Data repository infrastructure. The
most important attribute is base- package which defines the package to scan for Spring Data repository

interfaces.!

Table A.1. Attributes

Name

Description

base- package

Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific Spring
Data module) in auto detection mode. All packages below the configured
package will be scanned, too. Wildcards are allowed.

repository-inmpl-
post fi x

qguery-1| ookup-
strat egy

naned- queri es-
| ocati on

Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered
as candidates. Defaults to | mpl .

Determines the strategy to be used to create finder queries. See the
section called “Query lookup strategies” for details. Defaults to cr eat e-
i f-not-found.

Defines the location to look for a Properties file containing externally
defined queries.

consi der - nest ed-
repositories

Controls whether nested repository interface definitions should be
considered. Defaults to f al se.

Lsee the section called “XML configuration”

Spring Data JPA -
Reference Documentation

45

please define productname in your docbook file!

Appendix B. Populators namespace
reference

B.1 The <populator /> element

The <popul at or /> element allows to populate the a data store via the Spring Data repository
infrastructure.

Table B.1. Attributes

Name Description

| ocati ons Where to find the files to read the objects from the repository shall be
populated with.

Lsee the section called “XML configuration”

Spring Data JPA -
Reference Documentation 46

please define productname in your docbook file!

Appendix C. Repository query
keywords

C.1 Supported query keywords
The following table lists the keywords generally supported by the Spring Data repository query derivation
mechanism. However, consult the store-specific documentation for the exact list of supported keywords,

because some listed here might not be supported in a particular store.

Table C.1. Query keywords

Logical keyword Keyword expressions

AND And

OR O

AFTER After,|sAfter

BEFCRE Before, | sBefore

CONTAI NI NG Cont ai ni ng, | sCont ai ni ng, Cont ai ns
BETWEEN Bet ween, | sBet ween

ENDI NG W TH Endi ngWt h, | sendi ngWt h, EndsWt h
EXI STS Exi sts

FALSE Fal se, | sFal se

GREATER_THAN Great er Than, | sGreat er Than

GREATER_THAN EQUALSGr eat er ThanEqual , | sGr eat er ThanEqual

I'N In,Isln

IS I s, Equal s, (or no keyword)
|' S _NOT_NULL Not Nul |, I sNot Nul |

'S NULL Nul |, I sNul |

LESS THAN LessThan, | sLessThan

LESS THAN EQUAL LessThanEqual , | sLessThanEqual

LI KE Li ke, I sLi ke

NEAR Near, | sNear

NOT Not , | sNot

NOT_I N Not I n, I sNotln
NOT_LI KE Not Li ke, | sNot Li ke

Spring Data JPA -
Reference Documentation 47

please define productname in your docbook file!

Logical keyword
REGEX
STARTI NG W TH

TRUE

Keyword expressions
Regex, Mat chesRegex, Mat ches
StartingWth,IsStartingWth,StartsWth

True, | sTrue

W THI N

Wthin,|sWthin

Spring Data JPA -
Reference Documentation

48

please define productname in your docbook file!

Appendix D. Frequently asked
guestions

D.1 Common

D.1.1.I'd like to get more detailed logging information on what methods are called inside
JpaReposi t ory, e.g. How can | gain them?

You can make use of Cust o zabl eTr acel nt er cept or provided by Spring:

<bean i d="custom zabl eTracel nterceptor" cl ass="
org. springfranmewor k. aop. i nt er cept or. Cust om zabl eTr acel nt ercept or ">
<property nane="enter Message" val ue="Entering $[met hodNane] ($[argunents])"/>
<property nanme="exitMessage" val ue="Leavi ng $[net hodNane] (): $[returnVal ue]"/>
</ bean>

<aop: confi g>
<aop: advi sor advi ce-ref="cust onm zabl eTr acel nt er cept or "
poi nt cut =" executi on(public *
org. springframewor k. dat a. j pa. reposi tory. JpaRepository+. *(..))"/>
</ aop: confi g>

D.2 Infrastructure

D.2.1. Currently | have implemented a repository layer based on Hi ber nat eDaoSupport . | create a
Sessi onFact or y by using Spring’s Annot at i onSessi onFact or yBean. How do | get Spring
Data repositories working in this environment?

You have to replace Annot at i onSessi onFact or yBean with the
Hi ber nat eJpaSessi onFact or yBean as follows:

<bean i d="sessionFactory" class="org.springfranework.ormjpa.vendor. H bernat eJpaSessi onFact or yBean" >
<property nane="entityManager Factory" ref="entityManagerFactory"/>
</ bean>

Example D.1 Looking up a SessionFactory from a HibernateEntityManagerFactory

D.3 Auditing

D.3.1. | want to use Spring Data JPA auditing capabilities but have my database already set up to set
modification and creation date on entities. How to prevent Spring Data from setting the date
programmatically.

Just use the set - dat es attribute of the audi t i ng namespace element to false.

Spring Data JPA -
Reference Documentation 49

please define productname in your docbook file!

Appendix E. Glossary

AOP
Aspect oriented programming

Commons DBCP
Commons DataBase Connection Pools - Library of the Apache foundation offering pooling
implementations of the DataSource interface.

CRUD
Create, Read, Update, Delete - Basic persistence operations

DAO
Data Access Object - Pattern to separate persisting logic from the object to be persisted

Dependency Injection
Pattern to hand a component’s dependency to the component from outside, freeing the
component to lookup the dependant itself. For more information see http://en.wikipedia.org/wiki/
Dependency_Injection.

EclipseLink
Object relational mapper implementing JPA - http://www.eclipselink.org

Hibernate
Object relational mapper implementing JPA - http://www.hibernate.org

JPA
Java Persistence API

Spring
Java application framework - http://projects.spring.io/spring-framework

Spring Data JPA -
Reference Documentation 50

http://en.wikipedia.org/wiki/Dependency_Injection
http://en.wikipedia.org/wiki/Dependency_Injection
http://en.wikipedia.org/wiki/Dependency_Injection
http://en.wikipedia.org/wiki/Dependency_Injection
http://www.eclipselink.org
http://www.eclipselink.org
http://www.hibernate.org
http://www.hibernate.org
http://projects.spring.io/spring-framework
http://projects.spring.io/spring-framework

	Spring Data JPA - Reference Documentation
	Table of Contents
	
	Part I. Preface
	Project metadata
	1. Working with Spring Data Repositories
	1.1 Core concepts
	1.2 Query methods
	1.3 Defining repository interfaces
	Fine-tuning repository definition

	1.4 Defining query methods
	Query lookup strategies
	Query creation
	Property expressions
	Special parameter handling
	Limiting query results

	1.5 Creating repository instances
	XML configuration
	Using filters

	JavaConfig
	Standalone usage

	1.6 Custom implementations for Spring Data repositories
	Adding custom behavior to single repositories
	Configuration
	Manual wiring

	Adding custom behavior to all repositories

	1.7 Spring Data extensions
	Web support
	Basic web support
	DomainClassConverter
	HandlerMethodArgumentResolvers for Pageable and Sort

	Hypermedia support for Pageables

	Repository populators
	Legacy web support
	Domain class web binding for Spring MVC
	PropertyEditors

	Web pagination

	Part II. Reference Documentation
	2. JPA Repositories
	2.1 Introduction
	Spring namespace
	Custom namespace attributes

	Annotation based configuration

	2.2 Persisting entities
	Saving entities
	Entity state detection strategies

	2.3 Query methods
	Query lookup strategies
	Declared queries

	Query creation
	Using JPA NamedQueries
	XML named query definition
	Annotation configuration
	Declaring interfaces

	Using @Query
	Using named parameters
	Using SpEL expressions
	Modifying queries
	Applying query hints
	Configuring Fetch- and LoadGraphs

	2.4 Stored procedures
	2.5 Specifications
	2.6 Transactionality
	Transactional query methods

	2.7 Locking
	2.8 Auditing
	Basics
	Annotation based auditing metadata
	Interface-based auditing metadata
	AuditorAware

	2.9 JPA Auditing
	General auditing configuration

	3. Miscellaneous
	3.1 Merging persistence units
	Classpath scanning for @Entity classes and JPA mapping files

	3.2 CDI integration

	Part III. Appendix
	Appendix A. Namespace reference
	A.1 The <repositories /> element

	Appendix B. Populators namespace reference
	B.1 The <populator /> element

	Appendix C. Repository query keywords
	C.1 Supported query keywords

	Appendix D. Frequently asked questions
	D.1 Common
	D.2 Infrastructure
	D.3 Auditing

	Appendix E. Glossary

