Spring Data Redis
Reference Documentation

Costin Leau

Spring Data Redis Reference Documentation
by Costin Leau

1.0.1.RELEASE

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies
and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Data Redis

Table of Contents

== o= PSR iv

[gL T [¥ o1 o o TSP PPTPPR 1

1. Why Spring Data REAIS? ...t a e 2

2. REQUITEIMENTS ...ccoeiiiiiiee e 3

I €T 1T 0o IR = (= o SO 4

3Ll FITSE SEEPS ..t 4

KNOWING SPITNG ittt ettt e e 4

Knowing NOSQL and Key Value SIOreSccooiuiiiiiiiiiiie e 4

Trying Out The SAMPIESccoiiiee e a e 4

I N\ L= o I = | o PR 4

COMMUNILY SUPPOI ... 5

Professional SUPPOITueviiiiiiee e 5

3.3. FOllOWiNg DeVEIOPIMENTccoiiiiiiiiiieiee e 5

I1. Reference DOCUMENEALIONcciuiiiiieiee e ettt e e e s e e e e e e e e s e e e e e e e s s snntbeeaeeeeeseenneees 6

(= o [EE= 0o o o] SRR 7

4.1, RediS REQUITEMENLSuviiiiieiiiiiiiiiie e e e e eer e e e e e s e st re e e e e e e e s s e eaabraaeeeeeeeseannes 7

4.2. Redis SUPPOrt High LEVEl VIEWuviiiiiiiiiiiiiiiiiiiiiiiiiinieininennnnnennnenenrnnnnnnnnnnnnnnnn.. 7

4.3. CoNNECLING 10 REAIS ...t 7

Redi sConnecti on and Redi sConnecti oNFact Oryccccccoevvveeeiniineennne 8

Configuring JediS CONMNECIONcoiuiiiieeiiiiie ettt 8

Configuring JREAIS CONNECLONccoi it e e e 9

Configuring RIC CONNECLONccoeiiiiiiiieiee e e e e e et e e e e e e e e e e e e e s e eanarreeeee s 9

Configuring SRP CONNECLOTuuuuuuuriiiiiiiiiiinniennnenennnna . 10

4.4. Working with Objects through Redi sTenpl at €ccccevviiiiiiiieceee 10

4.5. String-focused CONVENIENCE CIASSESccuvriieiiiiiee ettt 12

IS - = (= SRR 13

4.7. Redis Messaging/PUDSUDcooviiiiiiiiiiieieee e 13

Sending/Publishing MESSAGEScociiiiiiiee e 14

Receiving/Subscribing for MESSAgESuuruririieiiiieanaaannnes 14

Message Listener COMAINEISccoiiiirieiiiiiie e 15

The MessageLi st ener Adapt 5 ... 15

4.8. SUPPOIT ClESSESvviieiiiiiie etttk e e s e e et e e e s nbn e e e s anneeees 17

Support for Spring Cache ADSIraCtion ..o, 18

4.9. ROAAMEP @NEAovviiiiiie i 18

TN o 0= 0 [P 19

A. Spring Data RedisS SCheMA(S)eeriiiiiiiiiiiie e 20
Spring Data Redis

1.0.1.RELEASE Reference Documentation i

Spring Data Redis

Preface

The Spring Data Redis project applies core Spring concepts to the development of solutions using a
key-value style datastore. We provide a"template" asahigh-level abstraction for sending and receiving
messages. Y ou will notice similarities to the JDBC support in the Spring Framework.

Spring Data Redis
1.0.1.RELEASE Reference Documentation

Part I. Introduction

This document is the reference guide for Spring Data Redis (SDR) Support. It explains Key Vaue
modul e concepts and semantics and the syntax for various stores namespaces.

For an introduction to key value stores or Spring, or Spring Data examples, please refer to Chapter 3,
Getting Sarted - this documentation refers only to Spring Data Redis Support and assumes the user is
familiar with the key value storages and Spring concepts.

Spring Data Redis

1. Why Spring Data Redis?

The Spring Framework is the leading full-stack Java/JEE application framework. It provides a
lightweight container and a non-invasive programming model enabled by the use of dependency
injection, AOP, and portable service abstractions.

NoSQL storages provide an alternative to classical RDBMS for horizontal scalability and speed. In
terms of implementation, Key Value stores represent one of the largest (and oldest) member in the
NoSQL space.

The Spring Data Redis (or SDR) framework makesit easy to write Spring applicationsthat use the Redis
key value store by eliminating the redundant tasks and boiler place code required for interacting with
the store through Spring's excellent infrastructure support.

Spring Data Redis
1.0.1.RELEASE Reference Documentation 2

http://en.wikipedia.org/wiki/NoSQL

Spring Data Redis

2. Requirements

Spring Data Redis 1.x binaries requires JDK level 6.0 and above, and Spring Framework 3.0.x and
above.

In terms of key value stores, Redis 2.2.x is required.

Spring Data Redis
1.0.1.RELEASE Reference Documentation

http://www.springsource.org/documentation
http://code.google.com/p/redis/

Spring Data Redis

3. Getting Started

Learning a new framework is not always straight forward. In this section, we (the Spring Data team)
tried to provide, what we think is, an easy to follow guide for starting with Spring Data Key Vaue
module. Of course, fed free to create your own learning 'path' as you see fit and, if possible, please
report back any improvements to the documentation that can help others.

3.1 First Steps

As explained in Chapter 1, Why Soring Data Redis?, Spring Data Redis (SDR) provides integration
between Spring framework and the Redis key value store. Thus, it is important to become acquainted
with both of these frameworks (storages or environments depending on how you want to hame them).
Throughout the SDR documentation, each section provides links to resources relevant however, it is
best to become familiar with these topics beforehand.

Knowing Spring

Spring Data uses heavily Spring framework's core functionality, such as the 10C container, resource
abstract or AOP infrastructure. While it is not important to know the Spring APIs, understanding the
concepts behind them is. At a minimum, the idea behind |0C should be familiar. These being said, the
more knowledge one has about the Spring, the faster she will pick Spring Data Key Vaue. Besides
the very comprehensive (and sometimes disarming) documentation that explains in detail the Spring
Framework, there are alot of articles, blog entries and books on the matter - take alook at the Spring
framework home page for more information. In general, this should be the starting point for devel opers
wanting to try Spring DKV.

Knowing NoSQL and Key Value stores

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of solutions,
terms and patterns (to make things worth even theterm itself has multiple meanings). While some of the
principlesare common, it iscrucial that the user isfamiliar to some degree with the stores supported by
SDKV. The best way to get acquainted to this solutionsis to read their documentation and follow their
examples - it usually doesn't take more then 5-10 minutes to go through them and if you are coming
from an RDMBS-only background many times these exercises can be an eye opener.

Trying Out The Samples

One can find various samples for key value stores in the dedicated example repo, at http://github.com/
SpringSource/spring-data-keyvalue-examples. For Spring Redis, of interest isther et wi sj sample,
a Twitter-clone built on top of Redis which can be run locally or be deployed into the cloud. See its
documentation, the following blog entry or the live instance for more information.

3.2 Need Help?

If you encounter issues or you are just looking for an advice, feel free to use one of the links below:

Spring Data Redis
1.0.1.RELEASE Reference Documentation 4

http://static.springframework.org/spring/docs/3.0.x/reference/spring-core.html
http://static.springframework.org/spring/docs/3.0.x/reference/beans.html
http://static.springframework.org/spring/docs/3.0.x/reference/resources.html
http://static.springframework.org/spring/docs/3.0.x/reference/aop.html
http://www.springsource.org/documentation
http://www.google.com/search?q=nosoql+acronym
https://github.com/SpringSource/spring-data-keyvalue-examples
https://github.com/SpringSource/spring-data-keyvalue-examples
http://static.springsource.org/spring-data/data-keyvalue/examples/retwisj/current/
http://blog.springsource.com/2011/04/27/getting-started-redis-spring-cloud-foundry/
http://retwisj.cloudfoundry.com/

Spring Data Redis

Community Support

The Spring Data forum is a message board for al Spring Data (not just Key Value) users to share
information and help each other. Note that registration is needed only for posting.

Professional Support

Professional, from-the-source support, with guaranteed response time, is available from SpringSource,
the company behind Spring Data and Spring.

3.3 Following Development

For information on the Spring Data source code repository, nightly builds and snapshot artifacts please
see the Spring Data home page.

You can help make Spring Data best serve the needs of the Spring community by interacting with
devel opers through the Spring Community forums.

If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring Data
issue tracker.

To stay up to date with the latest news and announcements in the Spring eco system, subscribe to the
Spring Community Portal.

Lastly, you can follow the SpringSource Data blog or the project team on Twitter (Costin)

Spring Data Redis
1.0.1.RELEASE Reference Documentation 5

http://forum.springframework.org/forumdisplay.php?f=80
http://www.springsource.com
http://www.springsource.org/spring-data
http://forum.springsource.org
https://jira.springframework.org/browse/DATAKV
http://www.springframework.org/
http://blog.springsource.com/category/data-access/
http://twitter.com/costinl

Part Il. Reference Documentation

Document structure

This part of the reference documentation explains the core functionality offered by Spring Data Redis.

Chapter 4, Redis support introduces the Redis modul e feature set.

Spring Data Redis

4. Redis support

One of the key value stores supported by Spring Data is Redis. To quote the project home page: “
Redis is an advanced key-value store. It is similar to memcached but the dataset is not volatile, and
values can be strings, exactly like in memcached, but also lists, sets, and ordered sets. All this data
types can be manipulated with atomic operations to push/pop elements, add/remove elements, perform
server side union, intersection, difference between sets, and so forth. Redis supports different kind of
sorting abilities.”

Spring Data Redis provides easy configuration and access to Redis from Spring application. Offers both
low-level and high-level abstraction for interacting with the store, freeing the user from infrastructural
concerns.

4.1 Redis Requirements

Spring Redis requires Redis 2.0 or above (Redis 2.2 is recommended) and Java SE 6.0 or above. In
terms of language bindings (or connectors), Spring Redis integrates with Jedis, JRedis and RJC, three
popular open source Javalibraries for Redis. If you are aware of any other connector that we should be
integrating is, please send us feedback.

4.2 Redis Support High Level View

The Redis support provides several components (in order of dependencies):

* Low-Level Abstractions- for configuring and handling communication with Redisthrough the various
connector libraries supported as described in Section 4.3, “Connecting to Redis”.

» High-Level Abstractions - providing a generified, user friendly template classes for interacting with
Redis. Section 4.4, “Working with Objects through Redi sTenpl at e” explains the abstraction
builds on top of the low-level Connect i on API to handle the infrastructural concerns and object
conversion.

» Support Classes - that offer reusable components (built on the aforementioned abstractions) such as
java.util. Coll ection or Spring 3.1 cache implementation backed by Redis as documented
in Section 4.8, “ Support Classes’

For most tasks, the high-level abstractions and support services are the best choice. Note that at any
point, one can move between layers- for example, it'svery easy to get ahold of thelow level connection
(or even the native libray) to communicate directly with Redis.

4.3 Connecting to Redis

One of the first tasks when using Redis and Spring is to connect to the store through the 10C
container. To do that, a Java connector (or binding) is required; currently Spring Redis has
support for Jedis and JRedis. No matter the library one chooses, there only one set of Spring
Redis APl that one needs to use that behaves consistently across all connectors, namely the
org. springframewor k. data. redi s. connecti on package and its Redi sConnecti on

Spring Data Redis
1.0.1.RELEASE Reference Documentation 7

http://redis.io
http://github.com/xetorthio/jedis
http://github.com/alphazero/jredis
http://github.com/e-mzungu/rjc
http://blog.springsource.com/2011/02/23/spring-3-1-m1-caching/

Spring Data Redis

and Redi sConnecti onFact ory interfaces for working respectively for retrieving active
connecti on to Redis.

Redi sConnecti on and Redi sConnecti onFact ory

Redi sConnect i on provides the building block for Redis communication as it handles the
communication with the Redis back-end. It also automatically translates the underlying connecting
library exceptions to Spring's consistent DAO exception hierarchy so one can switch the connectors
without any code changes as the operation semantics remain the same.

Note

For the corner caseswherethe nativelibrary APl isrequired, Redi sConnect i on providesa
dedicated method get Nat i veConnect i on which returns the raw, underlying object used
for communication.

Active Redi sConnect i on are created through Redi sConnect i onFact ory. In addition, the
factories act as Per si st enceExcepti onTr ansl at or meaning once declared, allow one to do
transparent exception translation for example through the use of the @Reposi t or y annotation and
AOP. For more information see the dedicated section in Spring Framework documentation.

Note

Depending on the underlying configuration, the factory can return a new connection or an
existing connection (in case a pool is used).

The easiest way to work with a Redi sConnecti onFactory is to configure the appropriate
connector through the |oC container and inject it into the using class.

Connector features

Unfortunately, currently, not connectors support al of Redis features - in particular JRedis
does not have support for hashes yet though this is currently being worked on. When
invoking a method on the Connect i on API that is unsupported by the underlying library, a
Unsupport edQOper at i onExcept i on isthrown. This situation is likely to be fixed in the
future, as the various connectors mature.

Configuring Jedis connector

Jedis is one of the connectors supported by the Key Vaue module through the
org. spri ngfranmewor k. dat a. redi s. connect i on. j edi s package. Initssmplesform, the
Jedis configuration looks as follow:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocat i on="
http://ww. springframework. org/ schema/ beans http://ww. spri ngfranework. or g/ schema/ beans/ spri ng- bean:

<!-- Jedis ConnectionFactory -->
<bean i d="j edi sConnectionFactory" class="org.springfranework. data.redis.connection.jedis.Jedi sConnectionF
</ beans>

Spring Data Redis
1.0.1.RELEASE Reference Documentation 8

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/dao.html#dao-exceptions
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/orm.html#orm-exception-translation
http://github.com/xetorthio/jedis

Spring Data Redis

For production use however, one might want to tweak the settings such as the host or password:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://wwm. spri ngframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. spri ngfranework. org/ schema/ p"
xsi : schemalLocati on="
http://ww. springframework. org/ schema/ beans http://ww. spri ngfranework. or g/ schema/ beans/ spri ng- bean:

<bean i d="j edi sConnectionFactory" class="org.springfranework. data.redis.connection.jedis.Jedi sConnectionF
p: host - name="server" p:port="6379"/>
</ beans>

Configuring JRedis connector

JRedis is another popular, open-source connector supported by Spring Redis through the
org. spri ngfranmewor k. dat a. redi s. connecti on. j redi s package.

Note
Since JRedis itself does not support (yet) Redis 2.x commands, Spring Redis uses an updated
fork available here.

A typical JRedis configuration can looks like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springframework. org/ schema/ p"
xsi : schemalLocat i on="
http://ww. springframework. org/ schema/ beans http://ww. spri ngfranework. or g/ schema/ beans/ spri ng- bean:

<bean i d="jredi sConnectionFactory" class="org. springfranmework. data.redis.connection.jredis.Jredi sConnecti
p: host - name="server" p:port="6379"/>
</ beans>

As one can note, the configuration is quite similar to the Jedis one.

! I mportant

Currently, JRedis does not have support for binary keys. This forces the
Jr edi sConnect i on to perform encoding internally (through base64 schema). In practice,
thismeansit's safe to read/write arbitrary data however the Redis key stored valueswill differ
from the decoded ones, even in the simplest cases, since everything (no matter the format) is
encoded. Thiswill not be the case for Redis values.

This issue is currently being addressed in the JRedis project and once fixed, will be
incorporated by Spring Data Rediis.

Configuring RJC connector

RJC is the third, open-source connector supported by Spring Redis through the
org. springframewor k. dat a. redi s. connecti on. rj c package.

Similar to the other connectors, atypical RJC configuration can looks like this:

Spring Data Redis
1.0.1.RELEASE Reference Documentation 9

http://github.com/alphazero/jredis
http://github.com/anthonylauzon/jredis
http://en.wikipedia.org/wiki/Base64
http://github.com/e-mzungu/rjc

Spring Data Redis

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://wmv springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springfranmework. org/ schema/ p"
Xsi : schemalLocat i on="
http://ww. springfranework. org/ schena/ beans http://ww. springfranework. or g/ schena/ beans/ spri ng- bean:

<bean id="rjcConnectionFactory" class="org.springframework. data.redis.connection.rjc.R cConnectionFactory
p: host - name="server" p:port="6379"/>
</ beans>

As one can note, the configuration is quite similar to the Jredis or Jedis one.

1 I mportant

Currently, RJC does not have support for binary keys. This forces the Rj cConnecti on to
perform encoding internally (through base64 schema). In practice, thismeansit's safe to read/
write arbitrary data however the Redis key stored values will differ from the decoded ones,
even in the simplest cases, since everything (no matter the format) is encoded. This will not
be the case for Redis values.

Thisissueis currently being addressed in the RJC project and once fixed, will be incorporated
by Spring Data Redis.

Configuring SRP connector

SRP (an acronym for Sam's Redis Protocol) is the forth, open-source connector supported by Spring
Redisthrough the or g. spri ngf ramewor k. dat a. redi s. connecti on. sr p package.

By now, its configuration is probably easy to guess::

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://wwm. springframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. spri ngfranework. org/ schema/ p"
xsi : schemalLocat i on="
http://ww. springframework. org/ schema/ beans http://ww. spri ngfranework. or g/ schema/ beans/ spri ng- bean:

<bean id="srpConnectionFactory" class="org.springframework. data.redis.connection.srp.SrpConnectionFactory
p: host - name="server" p:port="6379"/>
</ beans>

Needless to say, the configuration is quite similar to that of the other connectors.

4.4 Working with Objects through Redi sTenpl at e

Most users ae likely to use RedisTenplate and its coresponding package
org. spri ngframewor k. dat a. redi s. cor e - the template is in fact the central class of the
Redismodule duetoitsrich feature set. Thetemplate offersahigh-level abstraction for Redisinteraction
- while Redi sConnect i on offer low level methods that accept and return binary values (byt e
arrays), the template takes care of serialization and connection management, freeing the user from
dealing with such details.

Spring Data Redis
1.0.1.RELEASE Reference Documentation 10

http://en.wikipedia.org/wiki/Base64
https://github.com/spullara/redis-protocol

Spring Data Redis

Moreover, the template provides operations views (following the grouping from Redis command
reference) that offer rich, generified interfacesfor working against a certain type or certain key (through
the KeyBound interfaces) as described below:

Table 4.1. Operational views

Interface Description
Key Type Operations
Val ueQper ati ons Redis string (or value) operations
Li st Operati ons Redislist operations
Set Operati ons Redis set operations
ZSet Qper ati ons Redis zset (or sorted set) operations
HashQper ati ons Redis hash operations
Key Bound Operations
BoundVal ueQper ati ons Redis string (or value) key bound operations
BoundLi st Oper ati ons Redis|list key bound operations
BoundSet Oper ati ons Redis set key bound operations
BoundZSet Oper ati ons Redis zset (or sorted set) key bound operations
BoundHashQper ati ons Redis hash key bound operations

Once configured, the template is thread-safe and can be reused across multiple instances.

Out of the box, Redi sTenpl at e uses a Java-based serializer for most of its operations. This
means that any object written or read by the template will be serializer/deserialized through Java. The
serialization mechanism can be easily changed on the template and the Redis module offers severa
implementationsavailableintheor g. spri ngf r amewor k. dat a. redi s. seri al i zer package
- see Section 4.6, “ Serializers’ for more information. Note that the template requires all keysto be non-
null - values can be null as long as the underlying serializer accepts them; read the javadoc of each
seriaizer for more information.

For caseswhere a certain template view is needed, onethe view as adependency and inject thetempl ate:
the container will automatically perform the conversion eliminating the opsFor [X] calls:

<?xm version="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://wmv springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springfranmework. org/ schema/ p"

Xsi : schemaLocat i on="
http://ww. springframework. org/ schema/ beans http://ww. spri ngfranework. org/ schema/ beans/ spri ng- bean:

<bean i d="j edi sConnectionFactory" class="org. springfranmework. data. redi s. connection.jedis.Jedi sConnectionF
p: use-pool ="true"/>

<!-- redis tenplate definition -->

Spring Data Redis
1.0.1.RELEASE Reference Documentation 11

http://redis.io/commands

Spring Data Redis

<bean id="redi sTenpl ate" cl ass="org. springframework. data. redi s. core. Redi sTenpl at e"
p: connection-factory-ref="jedi sConnecti onFactory"/>

</ beans>

public class Exanple {

/'l inject the actual tenplate
@Resour ce(nane="r edi sTenpl ate")
private RedisTenpl ate<String, String> tenplate;

/] inject the tenplate as ListQperations
@\ut owi r ed
private ListOperations<String, String> |istOps;

public void addLink(String userld, URL url) {
|listOps.|eftPush(userld, url.toExternal Form());
}

}

4.5 String-focused convenience classes

Since it's quite the keys and values stored in Redis can be j ava.l ang. Stri ng, the Redis
modules provides two extensions to Redi sConnecti on and Redi sTenpl at e respectively the
StringRedi sConnection (and its Def aul t St ri ngRedi sConnecti on implementation)
and St ri ngRedi sTenpl at e as a convenient one-stop solution for intensive String operations.
In addition to be bound to String keys, the template and the connection use the
St ri ngRedi sSeri al i zer underneath which meansthe stored keys and val ues are human readable
(assuming the same encoding is used both in Redis and your code). For example:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wmn springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springfranmework. org/ schema/ p"
xsi : schemalLocat i on="
http://ww. springfranework. org/ schena/ beans http://ww. springfranework. or g/ schena/ beans/ spri ng- bean:

<bean i d="j edi sConnecti onFactory" class="org. springfranmework. data. redis.connection.jedis.Jedi sConnectionF:
p: use-pool ="true"/>

<bean id="stringRedi sTenpl ate" cl ass="org. springfranmework. data. redis. core. StringRedi sTenpl ate"
p: connecti on-factory-ref="jedi sConnectionFactory"/>

</ beans>

public class Exanple {

@\ut owi r ed
private StringRedi sTenpl ate redi sTenpl at e;

public void addLi nk(String userld, URL url) {
redi sTenpl at e. opsFor List().leftPush(userld, url.toExternal Form());
}
}

Spring Data Redis
1.0.1.RELEASE Reference Documentation 12

Spring Data Redis

As with the other Spring templates, Redi sTenpl at e and St ri ngRedi sTenpl at e alow the
developer to talk directly to Redisthrough the Redi sCal | back interface: this gives complete control
to the developer asit talks directly to the Redi sConnect i on.

public void useCall back() {
redi sTenpl at e. execut e(new Redi sCal | back<Ooj ect >() {

publ i c Obj ect dol nRedi s(Redi sConnecti on connection) throws DataAccessException {
Long si ze = connection. dbSi ze();

1)

4.6 Serializers

From the framework perspective, the data stored in Redis are just bytes. While Redis itself
supports various types, for the most part these refer to the way the data is stored rather then
what it represents. It is up to the user to decide whether the information gets translated into
Strings or any other objects. The conversion between the user (custom) types and raw data (and
vice-versa) is handled in Spring Redis Redis through the Redi sSeri al i zer interface (package
org. springframework. data. redi s. seri al i zer) which as the name implies, takes care
of the serialization process. Multiple implementations are available out of the box, two of which
have been aready mentioned before in this documentation: the St r i ngRedi sSeri al i zer andthe
JdkSeri alizati onRedi sSeri al i zer. However one can use OxnSeri al i zer for Object/
XML mapping through Spring 3 OXM support or JacksonJsonRedi sSeri al i zer for storing
datain JSON format. Do note that the storage format is not limited only to values - it can be used for
keys, values or hashes without any restrictions.

4.7 Redis Messaging/PubSub

Spring Data provides dedicated messaging integration for Redis, very similar in functionality and
naming to the IMS integration in Spring Framework; in fact, users familiar with the JMS support in
Spring, should feel right at home.

Redis messaging can be roughly divided into two areas of functionality, namely the production
or publication and consumption or subscription of messages, hence the shortcut pubsub (Publish/
Subscribe). The Redi sTenpl at e classis used for message production. For asynchronous reception
similar to Java EE's message-driven bean style, Spring Data provides a dedicated message listener
containers that is used to create Message-Driven POJOs (MDPs) and for synchronous reception, the
Redi sConnect i on contract.

The package org. springfranmewor k. dat a. redi s. connecti on and
org. springframework. data. redis.|istener provide the core functionality for using
Redis messaging.

Spring Data Redis
1.0.1.RELEASE Reference Documentation 13

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html
http://en.wikipedia.org/wiki/JSON

Spring Data Redis

Sending/Publishing messages

To publish a message, one can use, as with the other operations, either the low-level
Redi sConnect i on or the high-level Redi sTenpl at e. Both entities offer the publ i sh method
that accepts as argument the message that needs to be sent as well as the destination channel. While
Redi sConnect i on requiresraw-data (array of bytes), theRedi sTenpl at e allow arbitrary objects
to be passed in as messages:

/'l send nessage through connection
Redi sConnection con = ..

byte[] msg = ..

byte[] channel = ..

con. publ i sh(nmsg, channel);
/1 send nessage through RedisTenpl ate

Redi sTenpl ate tenplate = ..
tenpl at e. convert AndSend("hel I o!'", "world");

Receiving/Subscribing for messages

On the receiving side, one can subscribe to one or multiple channels either by naming them directly or
by using pattern matching. Thelatter approachisquite useful asit not only allows multiple subscriptions
to be created with one command but to also listen on channels not yet created at subscription time (as
long as match the pattern).

At thelow-level, Redi sConnect i on offerssubscri be and pSubscr i be methods that map the
Redis commands for subscribing by channel respectively by pattern. Note that multiple channels or
patterns can be used as arguments. To change the subscription of a connection or simply query whether
it is listening or not, Redi sConnect i on provides get Subscri pti on and i sSubscri bed
method.

! I mportant
' Subscribing commands are synchronized and thus blocking. That is, calling subscribe on a
connection will cause the current thread to block as it will start waiting for messages - the
thread will be released only if the subscription is canceled, that is an additional thread invokes
unsubscri be respectively pUnsubscr i be on the same connection. See message listener
container below for a solution to these problem.

As mentioned above, one subscribed a connection starts waiting for messages - no other commands
can beinvoked on it except for adding new subscriptions or modifying/canceling the existing ones, that
isinvoking anything elsethen subscri be, pSubscri be, unsubscri be, pUnsubscri be oris
illegal and will through an exception.

In order to subscribe for messages, one needs to implement the MessagelLi st ener callback: each
time anew message arrives, the callback getsinvoked and the user code executed through onMessage
method. Theinterface gives access not only to the actual message but to the channel it has been received
through and the pattern (if any) used by the subscription to match the channel. Thisinformation allows
the callee to differentiate between various messages not just by content but also through data.

Spring Data Redis
1.0.1.RELEASE Reference Documentation 14

Spring Data Redis

Message Listener Containers

Due to its blocking nature, low-level subscription is not attractive as it requires connection
and thread management for every single listener. To alleviate this problem, Spring Data offers
Redi sMessageli st ener Cont ai ner which doesall the heavy lifting on behalf of the user - users
familiar with EJB and JM S should find the concepts familiar asit is designed as close as possible to the
support in Spring Framework and its message-driven POJOs (MDPs)

Redi sMessagelLi st ener Cont ai ner acts as a message listener container; it is used to receive
messages from a Redis channel and drive the Messagel istener that are injected into it. The listener
container is responsible for al threading of message reception and dispatches into the listener for
processing. A messagelistener container istheintermediary between an MDP and amessaging provider,
and takes care of registering to receive messages, resource acquisition and rel ease, exception conversion
and suchlike. Thisallowsyou as an application devel oper to write the (possibly complex) businesslogic
associated with receiving a message (and reacting to it), and delegates boilerplate Redis infrastructure
concerns to the framework.

Further more, to minimize the application footprint, Redi sMessagelLi st ener Cont ai ner
performsallows one connection and onethread to be shared by multiplelisteners even though they do not
share a subscription. Thus no matter how many listeners or channels an application tracks, the runtime
cost will remain the samethrough out itslifetime. Moreover, the container allows runtime configuration
changes so one can add or remove listeners while an application is running without the need for restart.
Additionally, the container uses alazy subscription approach, using aRedi sConnect i on only when
needed - if all the listeners are unsubscribed, cleanup is automatically performed and the used thread
released.

To help with the asynch manner of messages, the container requires a
java.util.concurrent. Executor (or Spring's TaskExecutor) for dispatching the
messages. Depending on theload, the number of listenersor the runtime environment, one should change
or tweak the executor to better serve her needs - in particular in managed environments (such as app
servers), it ishighly recommended to pick aaproper TaskExecut or to take advantage of itsruntime.

The MessagelLi st ener Adapt er

The Messageli st ener Adapt er classisthefinal component in Spring's asynchronous messaging
support: in a nutshell, it allows you to expose almost any class as a MDP (there are of course some
constraints).

Consider the following interface definition. Notice that although the interface extends the
Messageli stener interfface, it can dill be used as a MDP via the use of the
Messageli st ener Adapt er class. Notice also how the various message handling methods are
strongly typed according to the contents of the various Mes sage typesthat they can receive and handle.
In addition, the channel or pattern to which a message is sent can be passed in to the method as the
second argument of type String:

public interface MessageDel egate {

voi d handl eMessage(String nessage);

Spring Data Redis
1.0.1.RELEASE Reference Documentation 15

Spring Data Redis

voi d handl eMessage(Map nmessage)
voi d handl eMessage(byte[] nessage);
voi d handl eMessage(Seri al i zabl e nmessage) ;

/'l pass the channel/pattern as well
voi d handl eMessage(Seri al i zabl e nessage, String channel);

public class Default MessageDel egate i npl ements MessageDel egate {
/1 inmplenentation elided for clarity..

}

In particular, note how the above implementation of the MessageDel egat e interface (the above
Def aul t MessageDel egat e class) hasno Redis dependencies at all. It truly isaPOJO that we will
make into an MDP viathe following configuration.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: redi s="http://wwm. springfranmewor k. org/ schema/ redi s"
xsi : schemaLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans http://ww. spri ngfranmewor k. or g/ schenma/ b
http://ww. springframework. org/ schema/redis http://ww.springfranework. org/ schema/redi s/ spring-redi

<l-- the default ConnectionFactory -->

<redi s: |istener-container>
<!-- the nethod attribute can be skipped as the default nmethod name is "handl eMessage" -->
<redis:listener ref="listener" nethod="handl eMessage" topi c="chatroont />

</redis:|istener-container>
<bean id="listener" class="redi sexanpl e. Def aul t MessageDel egate"/ >

<beans>

Note
The listener topic can be either a channel (e.g. t opi c="chat r oont') or a pattern (e.g.
t opi c="*roon")

The example above uses the Redis namespace to declare the message listener container and
automatically register the POJOs as listeners. The full blown, beans definition is displayed below:

<l-- this is the Message Driven PQJO (MDP) -->
<bean i d="nessageli stener" class="org. springfranework. data.redis.|istener.adapter.MssagelLi st ener Adapter">
<constructor-arg>
<bean cl ass="r edi sexanpl e. Def aul t MessageDel egat e"/ >
</ constructor-arg>
</ bean>

<I-- and this is the nessage |istener container... -->
<bean id="redi sContainer" class="org.springframework. data.redis.|istener.Redi sMessagelLi st ener Cont ai ner">
<property nanme="connectionFactory" ref="connecti onFactory"/>
<property name="nessageLi st eners">
<!-- map of listeners and their associated topics (channels or/and patterns) -->
<map>
<entry key-ref="nessageli stener">
<bean cl ass="org. springframework. data.redis.|istener.Channel Topi c">

Spring Data Redis
1.0.1.RELEASE Reference Documentation 16

Spring Data Redis

<constructor-arg val ue="chatrooni >
</ bean>
</entry>
</ map>
</ property>
</ bean>

Each time a message is received, the adapter automatically performs translation (using the configured
Redi sSeri al i zer) between the low-level format and the required object type transparently. Any
exception caused by the method invocation is caught and handled by the container (by default, being
logged).

4.8 Support Classes

Package or g. spri ngf ramewor k. dat a. r edi s. support offers various reusable components
that rely on Redis as a backing store. Curently the package contains various JDK-based interface
implementations on top of Redis such as atomic counters and JDK Col | ecti ons.

The atomic counters make it easy to wrap Redis key incrementation while the collections allow
easy management of Redis keys with minimal storage exposure or APl leakage: in particular the
Redi sSet and Redi sZSet interfaces offer easy access to the set operations supported by Redis
such asi nt er secti on and uni on while Redi sLi st implementsthe Li st , Queue and Deque
contracts (and their equivalent blocking siblings) on top of Redis, exposing the storageasaFIFO (First-
In-First-Out), LIFO (Last-In-First-Out) or capped collection with minimal configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springframework. org/ schema/ p"
xsi : schemaLocat i on="
http://ww. spri ngfranework. org/ schena/ beans http://ww. springfranework. or g/ schena/ beans/ spri ng- bean:

<bean i d="queue" class="org.springframework.data.redis.support.collections. DefaultRedisList">
<constructor-arg ref="redi sTenpl at"/>
<constructor-arg val ue="queue-key"/>

</ bean>

</ beans>

public class Anot her Exanpl e {

/'l injected
private Deque<String> queue

public void addTag(String tag) ({
queue. push(tag);
}
}

As shown in the example above, the consuming code is decoupled from the actual storage
implementation - in fact there is no indication that Redis is used underneath. This makes moving
from development to production environments transparent and highly increases testability (the Redis
implementation can just as well be replaced with an in-memory one).

Spring Data Redis
1.0.1.RELEASE Reference Documentation 17

http://download.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/util/Collection.html

Spring Data Redis

Support for Spring Cache Abstraction

Spring Redis provides an implementation for Spring 3.1 cache abstraction through the
org. springframework. data.redi s. cache package. To use Redis as a backing
implementation, ssimply add Redi sCacheManager to your configuration:

<beans xm ns="http://ww. spri ngfranework. or g/ schema/ beans" xml ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst
xm ns: cache="http: //wwm. spri ngf ranmewor k. or g/ schema/ cache"
xm ns: c="http://ww. springframework. org/ schema/ c"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans http://ww. spri ngfranmework. or g/ schena/ bea
http://ww. spri ngfranework. org/ schena/ cache http://ww. springfranework. or g/ schena/ cache/ spri ng- cache.:
<I-- turn on declarative caching -->
<cache: annot ati on-driven />

<!-- declare Redis Cache Manager -->
<bean i d="cacheManager" class="org. springframework. data.redis.cache. Redi sCacheManager" c:tenplate-ref="re
</ beans>

4.9 Roadmap ahead

Spring Data Redis project isin its early stages. We are interested in feedback, knowing what your use
cases are, what are the common patters you encounter so that the Redis modul e better servesyour needs.
Do contact us using the channels mentioned above, we are interested in hearing from you!

Spring Data Redis
1.0.1.RELEASE Reference Documentation 18

http://static.springsource.org/spring/docs/3.1.0.M2/spring-framework-reference/html/cache.html

Part lll. Appendixes

Document structure

Various appendixes outside the reference documentation.

Appendix A, Soring Data Redis Schema(s) defines the schemas provided by Spring Data Redis.

Spring Data Redis

Appendix A. Spring Data Redis
Schema(s)

Core schema

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schema xm ns="http://ww. spri ngfranmewor k. org/ schena/redi s"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: tool ="http://ww. spri ngframewor k. org/ schena/t ool "
t ar get Nanespace="htt p://ww. spri ngf ramewor k. or g/ schena/ r edi s"
el ement For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">

<xsd:inmport nanmespace="http://ww. springframework. org/ schema/tool" schemaLocati on="http://ww. springfrane

<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines the configuration elements for the Spring Data Redis support.
Allows for configuring Redis listener containers in XML 'shortcut' style
]]></ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: el ement nanme="|i st ener-contai ner">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Container of Redis listeners. Al listeners will be hosted by the sane container
]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org.springframework. data.redis.|istener.Redi sMessageli st ener Cont ai ner"/ >
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane="listener" type="listenerType" m nCccurs="0" maxCccurs="unbounded"/>
</ xsd: sequence>
<xsd:attribute name="connection-factory" type="xsd:string" defaul t="redi sConnecti onFactory">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
A reference to the Redis ConnectionFactory bean
Default is "redi sConnectionFactory"
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org.springframework. dat a. redi s. connecti on. Connecti onFactory"/>
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd:attribute name="t ask-executor" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
A reference to a Spring TaskExecutor (or standard JDK 1.5 Executor) for executing
Redis |istener invokers. Default is a SinpleAsyncTaskExecut or
]]></ xsd: docunent ati on>

Spring Data Redis
1.0.1.RELEASE Reference Documentation 20

Spring Data Redis

<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="java.util.concurrent.Executor"/>
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="subscription-task-executor" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
A reference to a Spring TaskExecutor (or standard JDK 1.5 Executor) for |istening
to Redis messages. By default reuses the 'task-executor' val ue
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="java.util.concurrent.Executor"/>
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd:attribute name="topic-serializer" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
A reference to the RedisSerializer strategy for converting Redis channel s/patterns to
serialized format. Default is a StringRedisSerializer
]]></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expected-type type="org.springframework. data.redis.serializer.RedisSerializer"/>
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="phase" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
The lifecycle phase within which this container should start and stop. The | ower
the value the earlier this container will start and the later it will stop. The
default is Integer. MAX VALUE neaning the container will start as |ate as possible
and stop as soon as possible
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: conpl exType nanme="|i st ener Type" >
<xsd:attribute name="ref" type="xsd:string" use="required">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The bean nane of the |istener object, inplenenting
the Messagelistener interface or defining the specified |istener method
Requi red
]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref"/>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd:attribute name="topic" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[

Spring Data Redis
1.0.1.RELEASE Reference Documentation 21

Spring Data Redis

The topics(s) to which the listener is subscribed. Can be (in Redis term nology) a
channel or/and a pattern. Miltiple values can be specified by separating themwth
spaces. Patterns can be specified by using the '*' character
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="net hod" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
The nane of the listener method to invoke. |If not specified
the target bean is supposed to inplenment the Messageli stener
interface or provide a nethod naned ' handl eMessage’
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="serializer" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
A reference to the RedisSerializer strategy for converting Redis Messages to
|'istener nethod argunents. Default is a StringRedisSerializer
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org.springframework. data.redis.serializer.RedisSerializer"/>
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
</ xsd: conpl exType>

<xsd: el enent nane="col | ecti on">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Factory creating collections on top of Redis keys
]]></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org.springframework. data.redis.support.collections.RedisCollectionFactoryBean
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd:attribute name="id" type="xsd:|D'>
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
The nane of the Redis collection.]]></xsd:docunentation>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="key" type="xsd:string" use="optional">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Redi s key of the created collection. Defaults to bean id
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="tenpl ate" type="xsd:string" defaul t="redi sTenpl ate">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
A reference to a RedisTenpl ate bean.Default is "redisTenpl ate".
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">

Spring Data Redis
1.0.1.RELEASE Reference Documentation 22

Spring Data Redis

<t ool : expect ed-type type="org. springframework. dat a. redi s. core. Redi sTenpl ate"/ >
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd: attribute name="type" defaul t="LIST" use="optional">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The collection type (default is list).
If the key exists, its type takes priority. The type is used to disanbiguate the collection type (nmap vs pr«
specify one in case the key is m ssing.]]></xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: si mpl eType>
<xsd:restriction base="xsd:string">
<xsd: enunerati on val ue="LIST"/>
<xsd: enunerati on val ue="SET"/>
<xsd: enuner ati on val ue="ZSET"/ >
<xsd: enunerati on val ue="NMAP"/ >
<xsd: enuner ati on val ue="PROPERTI ES"/ >
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: attri bute>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schema>

Spring Data Redis
1.0.1.RELEASE Reference Documentation 23

	Spring Data Redis Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. Why Spring Data Redis?
	2. Requirements
	3. Getting Started
	3.1 First Steps
	Knowing Spring
	Knowing NoSQL and Key Value stores
	Trying Out The Samples

	3.2 Need Help?
	Community Support
	Professional Support

	3.3 Following Development

	Part II. Reference Documentation
	4. Redis support
	4.1 Redis Requirements
	4.2 Redis Support High Level View
	4.3 Connecting to Redis
	RedisConnection and RedisConnectionFactory
	Configuring Jedis connector
	Configuring JRedis connector
	Configuring RJC connector
	Configuring SRP connector

	4.4 Working with Objects through RedisTemplate
	4.5 String-focused convenience classes
	4.6 Serializers
	4.7 Redis Messaging/PubSub
	Sending/Publishing messages
	Receiving/Subscribing for messages
	Message Listener Containers
	The MessageListenerAdapter

	4.8 Support Classes
	Support for Spring Cache Abstraction

	4.9 Roadmap ahead

	Part III. Appendixes
	Appendix A. Spring Data Redis Schema(s)

