Spring Data Redis Reference Documentation

1.1.0.RELEASE

Costin Leau SpringSource , Jennifer Hickey SpringSource

Copyright ©

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Data Redis

Table of Contents

L 1= 7= Lo iii
I 01 oo [N o1 o] o H PP PSPPSR 1
1. Why Spring Data REAIS?ccuuiiiiiiiiiiei ettt e e 2

2. REQUITBIMENES ..ttt ittt et e et e ettt e e et et e e e e et e e e eabereeeeata s e eeentnneeeenes 3

T 1= 11 g To] = 1 (=0 4

N I T 51 S (=] o1 T PP 4

KNOWING SPFIING ittt e et e et eeeba s 4

Knowing NoSQL and Key Value SIOreScc.oviiiiiiiiiiiiii e e ais 4

Trying Out The SAMPIES ... e 4

3.2, NEEA HeIP? e ettt 4

(70 1210418014 VARST U1 o] o L] o (PPN 4

Professional SUPPOITttt 5

3.3. FOlIOWING DEVEIOPIMENTieiiiiieiiii et 5

[I. Reference DOCUMENTALIONuuuuii ettt e et e e e e e e e 6
o = Te [LS U o] o] ¢ AP UPTUUPTR PPN 7

4.1. RediS REQUIFEMENTS . .oouui ittt e e 7

4.2. Redis Support High LeVEl VIEWooiiiii e e 7

4.3. CoNNECHiNG 10 REAIS . .cuuiiiiiiii et e e s 7

Redi sConnecti on and Redi sConnecti ONFaCt Orycccooveviviniiiiiiineeiininnnnn. 7

Configuring JedisS CONNECIONiiiiicii e e 8

Configuring JRedIS CONNECTLONiieiieiii i 9

Configuring SRP CONNECLONuiiiiiiiiieiii e 9

Configuring LEettUCe CONNECIONuiiiiiieii e e e 10

4.4. Working with Objects through Redi sTenmpl at €c.coooviiiiiiiiiiii e, 10

4.5, String-focused CONVENIENCE ClASSEScceuuuiiiiiiiiieieii e 12

4.6. SEIIAIIZEIS ...coieeiiiii e 13

4.7. Redis Messaging/PUBDSUD ... 13
Sending/PubliShing MESSAGEScciiiiiiiiiii e 13
Receiving/Subscribing for MeSSagesovvvviiiiiiiiii e 14

Message Listener CONtAINEISoiiuiiiiii e e e 14

The MessageLi st ener Adapt 5 ... 15

4.8. ReiS TraNSACHONSvvvueiieeeiiiitiii ettt e e e e e e e e e e e e e e e ennnaeas 17

4.9, PIPEIINING .ttt et e a e e e e 17

4.10. REAIS SCHPLING ...uieeiitiiieiiit et e et e e et e e b 18

I YU o] oo o A F= 11 PP 20

Support for Spring Cache ADSIractionociiiiiiiiiii e 20

4.12. ROAAMAP @NEAGciiiiiieiiii e 21

LTI Y o] o T=T o 1= P 22
A. Spring Data RedisS SCNEMA(S)uuiiuuiiiiieiii e 23

Spring Data Redis
1.1.0.RELEASE Reference Documentation ii

Spring Data Redis

Preface

The Spring Data Redis project applies core Spring concepts to the development of solutions using a
key-value style data store. We provide a "template" as a high-level abstraction for sending and receiving
messages. You will notice similarities to the JDBC support in the Spring Framework.

Spring Data Redis
1.1.0.RELEASE Reference Documentation

Part I. Introduction

This document is the reference guide for Spring Data Redis (SDR) Support. It explains Key Value module
concepts and semantics and the syntax for various stores namespaces.

For an introduction to key value stores or Spring, or Spring Data examples, please refer to Chapter 3,
Getting Started - this documentation refers only to Spring Data Redis Support and assumes the user is
familiar with the key value storages and Spring concepts.

Spring Data Redis

1. Why Spring Data Redis?

The Spring Framework is the leading full-stack Java/JEE application framework. It provides a lightweight
container and a non-invasive programming model enabled by the use of dependency injection, AOP,
and portable service abstractions.

NoSQL storages provide an alternative to classical RDBMS for horizontal scalability and speed. In terms
of implementation, Key Value stores represent one of the largest (and oldest) members in the NoSQL
space.

The Spring Data Redis (or SDR) framework makes it easy to write Spring applications that use the Redis
key value store by eliminating the redundant tasks and boiler plate code required for interacting with the
store through Spring's excellent infrastructure support.

Spring Data Redis
1.1.0.RELEASE Reference Documentation 2

http://en.wikipedia.org/wiki/NoSQL

Spring Data Redis

2. Requirements

Spring Data Redis 1.x binaries requires JDK level 6.0 and above, and Spring Framework 3.0.x and
above.

In terms of key value stores, Redis 2.4.x or higher is required. Spring Data Redis is currently tested
against the latest 2.4 and 2.6 releases.

Spring Data Redis
1.1.0.RELEASE Reference Documentation 3

http://www.springsource.org/documentation
http://redis.io

Spring Data Redis

3. Getting Started

Learning a new framework is not always straight forward. In this section, we (the Spring Data team)
tried to provide, what we think is, an easy to follow guide for starting with the Spring Data Redis module.
Of course, feel free to create your own learning 'path' as you see fit and, if possible, please report back
any improvements to the documentation that can help others.

3.1 First Steps

As explained in Chapter 1, Why Spring Data Redis?, Spring Data Redis (SDR) provides integration
between Spring framework and the Redis key value store. Thus, it is important to become acquainted
with both of these frameworks (storages or environments depending on how you want to name them).
Throughout the SDR documentation, each section provides links to resources relevant however, it is
best to become familiar with these topics beforehand.

Knowing Spring

Spring Data uses heavily Spring framework’s core functionality, such as the loC container, resource
abstract or AOP infrastructure. While it is not important to know the Spring APIs, understanding the
concepts behind them is. At a minimum, the idea behind I0C should be familiar. That being said, the
more knowledge one has about the Spring, the faster she will pick up Spring Data Redis. Besides
the very comprehensive (and sometimes disarming) documentation that explains in detail the Spring
Framework, there are a lot of articles, blog entries and books on the matter - take a look at the Spring
framework home page for more information. In general, this should be the starting point for developers
wanting to try Spring DR.

Knowing NoSQL and Key Value stores

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of solutions,
terms and patterns (to make things worse even the term itself has multiple meanings). While some of
the principles are common, it is crucial that the user is familiar to some degree with the stores supported
by SDR. The best way to get acquainted with these solutions is to read their documentation and follow
their examples - it usually doesn't take more then 5-10 minutes to go through them and if you are coming
from an RDMBS-only background many times these exercises can be an eye opener.

Trying Out The Samples

One can find various samples for key value stores in the dedicated example repo, at http://github.com/
SpringSource/spring-data-keyvalue-examples. For Spring Data Redis, of interest is the retw sj
sample, a Twitter-clone built on top of Redis which can be run locally or be deployed into the cloud. See
its documentation, the following blog entry or the live instance for more information.

3.2 Need Help?
If you encounter issues or you are just looking for advice, feel free to use one of the links below:
Community Support

The Spring Data forum is a message board for all Spring Data (not just Redis) users to share information
and help each other. Note that registration is needed only for posting.

Spring Data Redis
1.1.0.RELEASE Reference Documentation 4

http://static.springframework.org/spring/docs/3.0.x/reference/spring-core.html
http://static.springframework.org/spring/docs/3.0.x/reference/beans.html
http://static.springframework.org/spring/docs/3.0.x/reference/resources.html
http://static.springframework.org/spring/docs/3.0.x/reference/aop.html
http://www.springsource.org/documentation
http://www.google.com/search?q=nosoql+acronym
https://github.com/SpringSource/spring-data-keyvalue-examples
https://github.com/SpringSource/spring-data-keyvalue-examples
http://static.springsource.org/spring-data/data-keyvalue/examples/retwisj/current/
http://blog.springsource.com/2011/04/27/getting-started-redis-spring-cloud-foundry/
http://retwisj.cloudfoundry.com/
http://forum.springframework.org/forumdisplay.php?f=80

Spring Data Redis

Professional Support

Professional, from-the-source support, with guaranteed response time, is available from SpringSource,
the company behind Spring Data and Spring.

3.3 Following Development

For information on the Spring Data source code repository, nightly builds and snapshot artifacts please
see the Spring Data home page.

You can help make Spring Data best serve the needs of the Spring community by interacting with
developers through the Spring Community forums.

If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring Data
issue tracker.

To stay up to date with the latest news and announcements in the Spring eco system, subscribe to the
Spring Community Portal.

Lastly, you can follow the SpringSource Data blog or the project team on Twitter (Jennifer)

Spring Data Redis
1.1.0.RELEASE Reference Documentation 5

http://www.springsource.com
http://www.springsource.org/spring-data
http://forum.springsource.org
https://jira.springsource.org/browse/DATAREDIS
http://www.springframework.org/
http://blog.springsource.com/category/data-access/
http://twitter.com/jencompgeek

Part Il. Reference Documentation

Document structure

This part of the reference documentation explains the core functionality offered by Spring Data Redis.

Chapter 4, Redis support introduces the Redis module feature set.

Spring Data Redis

4. Redis support

One of the key value stores supported by Spring Data is Redis. To quote the project home page: “
Redis is an advanced key-value store. It is similar to memcached but the dataset is not volatile, and
values can be strings, exactly like in memcached, but also lists, sets, and ordered sets. All this data
types can be manipulated with atomic operations to push/pop elements, add/remove elements, perform
server side union, intersection, difference between sets, and so forth. Redis supports different kind of
sorting abilities.”

Spring Data Redis provides easy configuration and access to Redis from Spring applications. It
offers both low-level and high-level abstractions for interacting with the store, freeing the user from
infrastructural concerns.

4.1 Redis Requirements

Spring Redis requires Redis 2.4 or above and Java SE 6.0 or above . In terms of language bindings (or
connectors), Spring Redis integrates with Jedis, JRedis, SRP and Lettuce, four popular open source
Java libraries for Redis. If you are aware of any other connector that we should be integrating with,
please send us feedback.

4.2 Redis Support High Level View

The Redis support provides several components (in order of dependencies):

» Low-Level Abstractions - for configuring and handling communication with Redis through the various
connector libraries supported as described in Section 4.3, “Connecting to Redis”.

» High-Level Abstractions - providing generified, user friendly template classes for interacting with
Redis. Section 4.4, “Working with Objects through Redi sTenpl at e” explains the abstraction built on
top of the low-level Connect i on API to handle the infrastructural concerns and object conversion.

» Support Classes - that offer reusable components (built on the aforementioned abstractions) such as
java.util. Coll ection or Spring 3.1 cache implementation backed by Redis as documented in
Section 4.11, “Support Classes”

For most tasks, the high-level abstractions and support services are the best choice. Note that at any
point, one can move between layers - for example, it's very easy to get a hold of the low level connection
(or even the native libray) to communicate directly with Redis.

4.3 Connecting to Redis

One of the first tasks when using Redis and Spring is to connect to the store through the IoC container. To
do that, a Java connector (or binding) is required. No matter the library one chooses, there is only one set
of Spring Data Redis API that one needs to use that behaves consistently across all connectors, namely
the or g. spri ngf ranewor k. dat a. redi s. connect i on package and its Redi sConnect i on and
Redi sConnect i onFact ory interfaces for working with and retrieving active connect i ons to Redis.

Redi sConnecti on and Redi sConnecti onFactory

Redi sConnecti on provides the building block for Redis communication as it handles the
communication with the Redis back-end. It also automatically translates the underlying connecting

Spring Data Redis
1.1.0.RELEASE Reference Documentation 7

http://redis.io
http://github.com/xetorthio/jedis
http://github.com/alphazero/jredis
http://github.com/spullara/redis-protocol
http://github.com/wg/lettuce
http://blog.springsource.com/2011/02/23/spring-3-1-m1-caching/

Spring Data Redis

library exceptions to Spring's consistent DAO exception hierarchy so one can switch the connectors
without any code changes as the operation semantics remain the same.

© Note

For the corner cases where the native library API is required, Redi sConnect i on provides a
dedicated method get Nat i veConnect i on which returns the raw, underlying object used for
communication.

Active Redi sConnecti ons are created through Redi sConnecti onFactory. In addition, the
factories act as Per si st enceExcepti onTransl at or s, meaning once declared, they allow one
to do transparent exception translation. For example, exception translation through the use of the
@Reposi tory annotation and AOP. For more information see the dedicated section in Spring
Framework documentation.

© Note

Depending on the underlying configuration, the factory can return a new connection or an existing
connection (in case a pool or shared native connection is used).

The easiest way to work with a Redi sConnect i onFact ory is to configure the appropriate connector
through the 1oC container and inject it into the using class.

Connector features

Unfortunately, currently, not all connectors support all Redis features. When invoking
a method on the Connection API that is unsupported by the underlying library, a
Unsupport edOper at i onExcept i on is thrown. This situation is likely to be fixed in the future,
as the various connectors mature.

Configuring Jedis connector

Jedis is one of the connectors supported by the Spring Data Redis module through the
org. spri ngfranmewor k. dat a. redi s. connecti on. j edi s package. Inits simplest form, the Jedis
configuration looks as follow:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwmv. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. spri ngfranework. org/ schema/
beans/ spri ng- beans. xsd" >

<I-- Jedis ConnectionFactory -->
<bean i d="j edi sConnecti onFactory" cl ass="org.springfranmework. data. redis.connection.jedis.Jedi sConnectionF:
>
</ beans>

For production use however, one might want to tweak the settings such as the host or password:

Spring Data Redis
1.1.0.RELEASE Reference Documentation 8

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/dao.html#dao-exceptions
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/orm.html#orm-exception-translation
http://github.com/xetorthio/jedis

Spring Data Redis

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springframework. org/ schema/ p"
xsi : schemalLocat i on="
http://ww. springfranmewor k. or g/ schema/ beans http://ww. springframewor k. or g/ schema/
beans/ spri ng- beans. xsd" >

<bean i d="j edi sConnecti onFactory" cl ass="org.springfranmework. data. redis.connection.jedis.Jedi sConnectionF
p: host - name="server" p:port="6379"/>
</ beans>

Configuring JRedis connector

JRedis is another popular, open-source connector supported by Spring Data Redis through the
org. springframewor k. dat a. redi s. connecti on. j redi s package.

A typical JRedis configuration can looks like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springfranmework. org/ schema/ p"
xsi : schemalLocat i on="
http://ww. springfranmework. or g/ schema/ beans http://ww. spri ngframewor k. or g/ schema/
beans/ spri ng- beans. xsd" >

<bean id="jredi sConnectionFactory" class="org.springfranework.data.redis.connection.jredis.Jredi sConnecti
p: host - name="server" p:port="6379"/>
</ beans>

The configuration is quite similar to Jedis, with one notable exception. By default, the
Jedi sConnecti onFact ory pools connections. In order to use a connection pool with JRedis,
configure the Jr edi sConnect i onFact or y with an instance of Jr edi sPool . For example:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. spri ngfranework. org/ schema/
beans/ spri ng- beans. xsd" >

<bean i d="jredi sConnecti onFactory"
cl ass="org. spri ngframewor k. dat a. redi s. connecti on. jredis. Jredi sConnecti onFact ory">
<const ruct or - ar g>
<bean
cl ass="org. spri ngframewor k. dat a. redi s. connection. jredis. Def aul t Jredi sPool ">
<constructor-arg val ue="Il ocal host" />
<constructor-arg val ue="6379" />
</ bean>
</ const ructor - ar g>
</ bean>

</ beans>

Configuring SRP connector

SRP (an acronym for Sam's Redis Protocol) is the third open-source connector supported by Spring
Data Redis through the or g. spri ngf ranmewor k. dat a. r edi s. connect i on. sr p package.

Spring Data Redis
1.1.0.RELEASE Reference Documentation 9

http://github.com/alphazero/jredis
https://github.com/spullara/redis-protocol

Spring Data Redis

By now, its configuration is probably easy to guess:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springfranmewor k. or g/ schema/ p"
xsi : schemalLocat i on="
http://ww. springframework. org/ schema/ beans http://ww. spri ngfranework. org/ schema/
beans/ spri ng- beans. xsd" >

<bean i d="srpConnectionFactory" class="org.springframework. data.redis.connection.srp. SrpConnectionFactory
p: host - nanme="server" p: port="6379"/>
</ beans>

Needless to say, the configuration is quite similar to that of the other connectors.
Configuring Lettuce connector

Lettuce is the fourth open-source connector supported by Spring Data Redis through the
org. springframewor k. dat a. redi s. connecti on. | ettuce package.

Its configuration is probably easy to guess:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springfranework. org/ schema/ p"
xsi : schemalLocat i on="
http://ww. springframework. org/ schema/ beans http://ww. spri ngfranework. org/ schema/
beans/ spri ng- beans. xsd" >

<bean i d="IlettuceConnectionFactory" class="org.springfranework. data.redis.connection.l|ettuce.LettuceConne
p: host - name="server" p:port="6379"/>
</ beans>

There are also a few Lettuce-specific connection parameters that can be tweaked. By
default, all LettuceConnections created by the LettuceConnecti onFactory share the
same thread-safe native connection for all non-blocking and non-transactional operations.
Set shareNativeConnection to false to use a dedicated connection each time.
Let t uceConnecti onFact ory can also be configured with a LettucePool to use for pooling
blocking and transactional connections, or all connections if shar eNat i veConnect i on is set to false.

4.4 Working with Objects through Redi sTenpl at e

Most users are likely to wuse RedisTenplate and its coresponding package
org. spri ngfranmewor k. dat a. redi s. cor e - the template is in fact the central class of the Redis
module due to its rich feature set. The template offers a high-level abstraction for Redis interactions.
While Redi sConnect i on offers low level methods that accept and return binary values (byt e arrays),
the template takes care of serialization and connection management, freeing the user from dealing with
such details.

Moreover, the template provides operations views (following the grouping from Redis command
reference) that offer rich, generified interfaces for working against a certain type or certain key (through
the KeyBound interfaces) as described below:

Spring Data Redis
1.1.0.RELEASE Reference Documentation 10

https://github.com/wg/lettuce
http://redis.io/commands

Spring Data Redis

Table 4.1. Operational views

Interface Description

Key Type Operations

Val ueQper ati ons Redis string (or value) operations
Li st Operati ons Redis list operations

Set Oper ati ons Redis set operations

ZSet OQper ati ons Redis zset (or sorted set) operations
HashQOper ati ons Redis hash operations

Key Bound Operations

BoundVal ueQOper at i ons Redis string (or value) key bound operations
BoundLi st Oper ati ons Redis list key bound operations
BoundSet Qper ati ons Redis set key bound operations
BoundZSet Oper ati ons Redis zset (or sorted set) key bound operations
BoundHashQper ati ons Redis hash key bound operations

Once configured, the template is thread-safe and can be reused across multiple instances.

Out of the box, Redi sTenpl at e uses a Java-based serializer for most of its operations. This means
that any object written or read by the template will be serializer/deserialized through Java. The
serialization mechanism can be easily changed on the template, and the Redis module offers several
implementations available inthe or g. spri ngf ramewor k. dat a. redi s. seri al i zer package - see
Section 4.6, “Serializers” for more information. You can also set any of the serializers to null and use
RedisTemplate with raw byt e arrays by setting the enabl eDef aul t Seri al i zer property to false.
Note that the template requires all keys to be non-null - values can be null as long as the underlying
serializer accepts them; read the javadoc of each serializer for more information.

For cases where a certain template view is needed, declare the view as a dependency and inject the
template: the container will automatically perform the conversion eliminating the opsFor [X] calls:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. spri ngfranework. org/ schema/ p"
xsi : schemaLocat i on="
http://ww. springfranmework. or g/ schema/ beans http://ww. springframewor k. or g/ schema/
beans/ spri ng- beans. xsd" >

<bean i d="j edi sConnecti onFactory" class="org. springfranework. data.redis. connection.jedis.Jedi sConnecti onF;
p: use-pool ="true"/>

<l-- redis tenplate definition -->

<bean i d="redi sTenpl ate" cl ass="org. spri ngfranework. data.redi s. core. Redi sTenpl at e"
p: connecti on-factory-ref="jedi sConnectionFactory"/>

</ beans>

Spring Data Redis
1.1.0.RELEASE Reference Documentation 11

Spring Data Redis

public class Exanple {

/'l inject the actual tenplate
@\ut owi r ed
private Redi sTenpl ate<String, String> tenplate;

/1 inject the tenplate as ListQperations
@Resour ce(nane="r edi sTenpl ate")
private ListOperations<String, String> |istOps;

public void addLink(String userld, URL url) {
|'istOps.|eftPush(userld, url.toExternal Forn());
}
}

4.5 String-focused convenience classes

Since it's quite common for the keys and values stored in Redis to be j ava. |l ang. Stri ng, the
Redis modules provides two extensions to Redi sConnecti on and Redi sTenpl at e, respectively
the Stri ngRedi sConnecti on (and its Def aul t St ri ngRedi sConnect i on implementation) and
St ri ngRedi sTenpl at e as a convenient one-stop solution for intensive String operations. In addition
to being bound to St ri ng keys, the template and the connection use the St ri ngRedi sSeri al i zer
underneath which means the stored keys and values are human readable (assuming the same encoding
is used both in Redis and your code). For example:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springfranmewor k. or g/ schema/ p"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. spri ngfranework. org/ schema/
beans/ spri ng- beans. xsd" >

<bean i d="j edi sConnecti onFactory" cl ass="org.springframework. data. redis.connection.jedis.Jedi sConnecti onF:
p: use-pool ="true"/>

<bean i d="stringRedi sTenpl ate" cl ass="org. spri ngfranmework. data.redi s. core. Stri ngRedi sTenpl at e"
p: connecti on-factory-ref="jedi sConnecti onFactory"/>

</ beans>

public class Exanple {

@\ut owi r ed
private StringRedi sTenpl ate redi sTenpl at e;

public void addLink(String userld, URL url) {
redi sTenpl at e. opsFor Li st ().l eftPush(userld, url.toExternal Form());
}
}

As with the other Spring templates, Redi sTenpl at eand St ri ngRedi sTenpl at e allow the developer
to talk directly to Redis through the Redi sCal | back interface. This gives complete control to the
developer as it talks directly to the Redi sConnect i on. Note that the callback receives an instance of
Stri ngRedi sConnecti on when a St ri ngRedi sTenpl at e is used.

Spring Data Redis
1.1.0.RELEASE Reference Documentation 12

Spring Data Redis

public void useCall back() {
redi sTenpl at e. execut e(new Redi sCal | back<Obj ect >() {

public Object dol nRedi s(Redi sConnecti on connection) throws DataAccessException {
Long size = connection. dbSi ze();
/1 Can cast to StringRedi sConnection if using a StringRedi sTenpl ate
((StringRedi sConnecti on)connection).set("key", "value");

1)

4.6 Serializers

From the framework perspective, the data stored in Redis is just bytes. While Redis itself supports
various types, for the most part these refer to the way the data is stored rather then what it
represents. It is up to the user to decide whether the information gets translated into Strings
or any other objects. The conversion between the user (custom) types and raw data (and
vice-versa) is handled in Spring Data Redis through the Redi sSeri al i zer interface (package
org.springframework. data. redi s. serializer) which as the name implies, takes care of
the serialization process. Multiple implementations are available out of the box, two of which have
been already mentioned before in this documentation: the Stri ngRedi sSeri alizer and the
JdkSeri al i zati onRedi sSeri al i zer. However one can use Oxnferi al i zer for Object/XML
mapping through Spring 3 OXM support or JacksonJsonRedi sSeri al i zer for storing data in JSON
format. Do note that the storage format is not limited only to values - it can be used for keys, values
or hashes without any restrictions.

4.7 Redis Messaging/PubSub

Spring Data provides dedicated messaging integration for Redis, very similar in functionality and naming
to the JMS integration in Spring Framework; in fact, users familiar with the JMS support in Spring should
feel right at home.

Redis messaging can be roughly divided into two areas of functionality, namely the production
or publication and consumption or subscription of messages, hence the shortcut pubsub (Publish/
Subscribe). The Redi sTenpl at e class is used for message production. For asynchronous reception
similar to Java EE's message-driven bean style, Spring Data provides a dedicated message listener
container that is used to create Message-Driven POJOs (MDPs) and for synchronous reception, the
Redi sConnect i on contract.

The package org. springframewor k. data. redi s. connecti on and
org. springframework. data. redi s.|istener provide the core functionality for using Redis
messaging.

Sending/Publishing messages

To publish a message, one can use, as with the other operations, either the low-level
Redi sConnect i on or the high-level Redi sTenpl at e. Both entities offer the publ i sh method that
accepts as argument the message that needs to be sent as well as the destination channel. While
Redi sConnect i on requires raw-data (array of bytes), the Redi sTenpl at e allow arbitrary objects to
be passed in as messages:

Spring Data Redis
1.1.0.RELEASE Reference Documentation 13

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/oxm.html
http://en.wikipedia.org/wiki/JSON

Spring Data Redis

/'l send nessage through connection
Redi sConnection con = ..

byte[] nmsg = ..

byte[] channel = ..

con. publ i sh(nmsg, channel);
/'l send nmessage through Redi sTenpl ate

Redi sTenpl ate tenplate = ..
tenpl at e. convert AndSend("hello!", "world");

Receiving/Subscribing for messages

On the receiving side, one can subscribe to one or multiple channels either by naming them directly or
by using pattern matching. The latter approach is quite useful as it not only allows multiple subscriptions
to be created with one command but to also listen on channels not yet created at subscription time (as
long as they match the pattern).

At the low-level, Redi sConnect i on offers subscri be and pSubscri be methods that map the Redis
commands for subscribing by channel respectively by pattern. Note that multiple channels or patterns
can be used as arguments. To change the subscription of a connection or simply query whether it is
listening or not, Redi sConnect i on provides get Subscri pti on andi sSubscri bed method.

© Important
When using Jedis or JRedis connectors, subscribing commands are synchronous and thus
blocking. That is, calling subscribe on a connection will cause the current thread to block as it
will start waiting for messages - the thread will be released only if the subscription is canceled,
that is an additional thread invokes unsubscri be or pUnsubscri be on the same connection.
See message listener container below for a solution to this problem.

As mentioned above, once subscribed a connection starts waiting for messages. No other commands
can be invoked on it except for adding new subscriptions or modifying/canceling the existing ones. That
is, invoking anything other then subscri be, pSubscri be,unsubscri be, orpUnsubscri be isillegal
and will throw an exception.

In order to subscribe for messages, one needs to implement the MessagelLi st ener callback: each
time a new message arrives, the callback gets invoked and the user code executed through onMessage
method. The interface gives access not only to the actual message but to the channel it has been
received through and the pattern (if any) used by the subscription to match the channel. This information
allows the callee to differentiate between various messages not just by content but also through data.

Message Listener Containers

Due to its blocking nature, low-level subscription is not attractive as it requires connection
and thread management for every single listener. To alleviate this problem, Spring Data offers
Redi sMessageli st ener Cont ai ner which does all the heavy lifting on behalf of the user - users
familiar with EJB and JMS should find the concepts familiar as it is designed as close as possible to the
support in Spring Framework and its message-driven POJOs (MDPs)

Redi sMessageli st ener Cont ai ner acts as a message listener container; it is used to receive
messages from a Redis channel and drive the MessageListeners that are injected into it. The listener
container is responsible for all threading of message reception and dispatches into the listener for
processing. A message listener container is the intermediary between an MDP and a messaging

Spring Data Redis
1.1.0.RELEASE Reference Documentation 14

Spring Data Redis

provider, and takes care of registering to receive messages, resource acquisition and release, exception
conversion and the like. This allows you as an application developer to write the (possibly complex)
business logic associated with receiving a message (and reacting to it), and delegates boilerplate Redis
infrastructure concerns to the framework.

Furthermore, to minimize the application footprint, Redi sMessagelLi st ener Cont ai ner allows one
connection and one thread to be shared by multiple listeners even though they do not share a
subscription. Thus no matter how many listeners or channels an application tracks, the runtime cost
will remain the same through out its lifetime. Moreover, the container allows runtime configuration
changes so one can add or remove listeners while an application is running without the need for restart.
Additionally, the container uses a lazy subscription approach, using a Redi sConnect i on only when
needed - if all the listeners are unsubscribed, cleanup is automatically performed and the used thread
released.

To help with the asynch manner of messages, the container requires a
java.util.concurrent. Executor (or Spring's TaskExecut or) for dispatching the messages.
Depending on the load, the number of listeners or the runtime environment, one should change or tweak
the executor to better serve her needs - in particular in managed environments (such as app servers),
it is highly recommended to pick a a proper TaskExecut or to take advantage of its runtime.

The MessagelLi st ener Adapt er

The Messageli st ener Adapt er class is the final component in Spring's asynchronous messaging
support: in a nutshell, it allows you to expose almost any class as a MDP (there are of course some
constraints).

Consider the following interface definition. Notice that although the interface extends the
Messageli st ener interface, it can still be used as a MDP via the use of the
MessagelLi st ener Adapt er class. Notice also how the various message handling methods are
strongly typed according to the contents of the various Message types that they can receive and handle.
In addition, the channel or pattern to which a message is sent can be passed in to the method as the
second argument of type String:

public interface MessageDel egate {
voi d handl eMessage(String nessage);
voi d handl eMessage(Map nessage) ;
voi d handl eMessage(byte[] nessage);
voi d handl eMessage(Seri al i zabl e nmessage) ;

/| pass the channel/pattern as well
voi d handl eMessage(Seri al i zabl e nessage, String channel);

public class Defaul t MessageDel egate i npl enents MessageDel egate {
/] inplenmentation elided for clarity...

}

In particular, note how the above implementation of the MessageDel egat e interface (the above
Def aul t MessageDel egat e class) has no Redis dependencies at all. It truly is a POJO that we will
make into an MDP via the following configuration.

Spring Data Redis
1.1.0.RELEASE Reference Documentation 15

Spring Data Redis

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: redi s="http://ww. springfranework. org/ schena/ r edi s"

xsi : schemaLocati on="htt p: //wm\ spri ngfranmewor k. or g/ schema/ beans http://
www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd

http://ww. springframework. org/ schema/redis http://ww. springfranework. org/ schema/

redi s/ spring-redis. xsd">

<l-- the default ConnectionFactory -->
<redis:|istener-container>
<l-- the nmethod attribute can be ski pped as the default nethod name is "handl eMessage"
-->
<redis:|istener ref="Iistener" nethod="handl eMessage" topic="chatroont />

</redis:|istener-container>

<bean id="listener" class="redi sexanpl e. Def aul t MessageDel egate"/ >
<beans>
@ Note

The listener topic can be either a channel (e.g. t opi c="chatrooni) or a pattern (e.g.
t opi c="*roont")

The example above uses the Redis namespace to declare the message listener container and
automatically register the POJOs as listeners. The full blown, beans definition is displayed below:

<l-- this is the Message Driven PQJO (MDP) -->
<bean i d="nessagelLi stener"
cl ass="org. springframewor k. data. redi s. |istener. adapt er. MessagelLi st ener Adapt er" >
<const ruct or - ar g>
<bean cl ass="r edi sexanpl e. Def aul t MessageDel egat e"/ >
</ constructor-ar g>
</ bean>

<l-- and this is the nessage |istener container... -->
<bean i d="redi sContai ner" class="org.springfranmework.data.redis.|istener.Redi sMessageli st ener Cont ai ner" >
<property nane="connecti onFactory" ref="connectionFactory"/>
<property nane="nmessagelLi st eners">
<I-- map of listeners and their associated topics (channels or/and patterns) -->
<map>
<entry key-ref="nessageli stener">
<bean cl ass="org. spri ngfranmework. data. redi s. | i stener. Channel Topi c">
<constructor-arg val ue="chat roont >
</ bean>
</entry>
</ map>
</ property>
</ bean>

Each time a message is received, the adapter automatically performs translation (using the configured
Redi sSeri al i zer) between the low-level format and the required object type transparently. Any
exception caused by the method invocation is caught and handled by the container (by default, being
logged).

Spring Data Redis
1.1.0.RELEASE Reference Documentation 16

Spring Data Redis

4.8 Redis Transactions

Redis provides support for transactions through the nul ti , exec, and di scar d commands. These
operations are available on Redi sTenpl at e, however Redi sTenpl at e is not guaranteed to execute
all operations in the transaction using the same connection.

Spring Data Redis provides the Sessi onCal | back interface for use when multiple operations need to
be performed with the same connect i on, as when using Redis transactions. For example:

1)
System out. println("Nunber of itenms added to set: " + txResults.get(0));

// execute a transaction
Li st <Obj ect> txResults = redi sTenpl at e. execut e(new Sessi onCal | back<Li st <Cbj ect >>() {
public List<Object> execute(Redi sOperations operations) throws DataAccessException {

operations. multi();

oper ati ons. opsFor Set (). add("key", "val uel");

/1 This will contain the results of all ops in the transaction
return operations. exec();

Redi sTenpl at e will use its value, hash key, and hash value serializers to deserialize all results of
exec before returning. There is an additional exec method that allows you to pass a custom serializer
for transaction results.

o

Note

An important change has been made to the exec methods of Redi sConnection and
Redi sTenpl at e in version 1.1. Previously these methods returned the results of transactions
directly from the connectors. This means that the data types often differed from those returned
from the methods of Redi sConnect i on. For example, zAdd returns a boolean indicating that
the element has been added to the sorted set. Most connectors return this value as a long and
Spring Data Redis performs the conversion. Another common difference is that most connectors
return a status reply (usually the String "OK") for operations like set . These replies are typically
discarded by Spring Data Redis. Prior to 1.1, these conversions were not performed on the results
of exec. Also, results were not deserialized in Redi sTenpl at e, so they often included raw byte
arrays. If this change breaks your application, you can set convert Pi pel i neAndTxResul ts
to false on your Redi sConnect i onFact or y to disable this behavior.

4.9 Pipelining

Redis provides support for pipelining, which involves sending multiple commands to the server without
waiting for the replies and then reading the replies in a single step. Pipelining can improve performance
when you need to send several commands in a row, such as adding many elements to the same List.

Spring Data Redis provides several Redi sTenpl at e methods for executing commands in a pipeline.
If you don't care about the results of the pipelined operations, you can use the standard execut e
method, passing t r ue for the pi pel i ne argument. The execut ePi pel i ned methods will execute
the provided Redi sCal | back or Sessi onCal | back in a pipeline and return the results. For example:

Spring Data Redis

1.1.0.RELEASE Reference Documentation 17

http://redis.io/topics/transactions
http://redis.io/topics/pipelining

Spring Data Redis

/I pop a specified nunber of items froma queue
Li st <Obj ect> results = stringRedi sTenpl at e. execut ePi pel i ned(new Redi sCal | back<Obj ect >() {
public Object dol nRedi s(Redi sConnecti on connection) throws DataAccessException {
St ri ngRedi sConnecti on stringRedi sConn = (StringRedi sConnecti on)connecti on;
for(int i=0; i< batchSize; i++) {
stri ngRedi sConn. r Pop(" nyqueue");
}

return null;

1)

The example above executes a bulk right pop of items from a queue in a pipeline. The resul t s List
contains all of the popped items. Redi sTenpl at e usesits value, hash key, and hash value serializers to
deserialize all results before returning, so the returned items in the above example will be Strings. There
are additional execut ePi pel i ned methods that allow you to pass a custom serializer for pipelined
results.

Note that the value returned from the Redi sCal | back is required to be null, as this value is discarded
in favor of returning the results of the pipelined commands.

@ Note

An important change has been made to the cl osePi pel i ne method of Redi sConnecti on
in version 1.1. Previously this method returned the results of pipelined operations directly
from the connectors. This means that the data types often differed from those returned by
the methods of Redi sConnecti on. For example, zAdd returns a boolean indicating that
the element has been added to the sorted set. Most connectors return this value as a long
and Spring Data Redis performs the conversion. Another common difference is that most
connectors return a status reply (usually the String "OK") for operations like set. These
replies are typically discarded by Spring Data Redis. Prior to 1.1, these conversions were not
performed on the results of cl osePi pel i ne. If this change breaks your application, you can set
convert Pi pel i neAndTxResul t s to false on your Redi sConnect i onFact ory to disable
this behavior.

4.10 Redis Scripting

Redis versions 2.6 and higher provide support for execution of Lua scripts through the eval and
evalsha commands. Spring Data Redis provides a high-level abstraction for script execution that handles
serialization and automatically makes use of the Redis script cache.

Scripts can be run through the execut e methods of Redi sTenpl at e. RedisTemplate uses a
configurable Scr i pt Execut or to execute the provided script. By default, the Scri pt Execut or takes
care of serializing the provided keys and arguments and deserializing the script result. This is done with
the Redi sTenpl at e key and value serializers. There is an additional execut e method that allows you
to pass custom serializers for the script arguments and result.

The default Scri pt Execut or optimizes performance by retrieving the SHA1 of the script and
attempting first to run eval sha, falling back to eval if the script is not yet present in the Redis script
cache.

Here's an example that executes a common "check-and-set" scenario using a Lua script. This is an
ideal use case for a Redis script, as it requires that we execute a set of commands atomically and the
behavior of one command is influenced by the result of another.

Spring Data Redis
1.1.0.RELEASE Reference Documentation 18

http://redis.io/commands/eval
http://redis.io/commands/evalsha

Spring Data Redis

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans http://
www. spri ngframewor k. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean id="script" class="org.springfranework.data.redis.core.script.DefaultRedisScript">
<property nane="| ocati on" val ue="cl asspat h: META- | NF/ scri pt s/ checkandset .| ua"/>
<property nane="resul t Type" val ue="j ava. | ang. Bool ean"/ >
</ bean>

</ beans>

public class Exanple {

@\ut owi r ed
Redi sScri pt <Bool ean> scri pt;

publ i ¢ bool ean checkAndSet (String expectedVal ue, String newval ue) {
return redi sTenpl at e. execut e(script, Collections.singletonList("key"),
expect edVval ue, newval ue);

-- checkandset. | ua

local current = redis.call (' CGET', KEYS[1])

if current == ARGV[1]

t hen
redis.call (' SET', KEYS[1], ARGV 2])
return true

end

return fal se

The XML above configures a Def aul t Redi sScri pt pointing to a file called checkandset. | ua,
which is expected to return a boolean value. The script r esul t Type should be one of Long, Boolean,
List, or deserialized value type. It can also be null if the script returns a throw-away status (i.e "OK").
It is ideal to configure a single instance of Def aul t Redi sScri pt in your application context to avoid
re-calcuation of the script's SHAL on every script execution.

The checkAndSet method above then executes the configured Redi sScri pt with the provided key
and arguments and returns the result.

Scripts can be executed within a Sessi onCal | back as part of a transaction or pipeline. See
Section 4.8, “Redis Transactions” and Section 4.9, “Pipelining” for more information.

The scripting support provided by Spring Data Redis also allows you to schedule Redis scripts for
periodic execution using the Spring Task and Scheduler abstractions. See the Spri ng Fr anewor k
documentation for more details.

Spring Data Redis
1.1.0.RELEASE Reference Documentation 19

Spring Data Redis

4.11 Support Classes

Package or g. spri ngf ranewor k. dat a. r edi s. support offers various reusable components that
rely on Redis as a backing store. Curently the package contains various JDK-based interface
implementations on top of Redis such as atomic counters and JDK Col | ecti ons.

The atomic counters make it easy to wrap Redis key incrementation while the collections allow easy
management of Redis keys with minimal storage exposure or AP leakage: in particular the Redi sSet
and Redi sZSet interfaces offer easy access to the set operations supported by Redis such as
i nt ersecti onanduni onwhile Redi sLi st implements the Li st, Queue and Deque contracts (and
their equivalent blocking siblings) on top of Redis, exposing the storage as a FIFO (First-In-First-Out),
LIFO (Last-In-First-Out) or capped collection with minimal configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. spri ngfranework. org/ schema/ p"
xsi : schemaLocat i on="
http://ww. springfranmewor k. or g/ schema/ beans http://ww. springframewor k. or g/ schema/
beans/ spri ng- beans. xsd" >

<bean i d="queue" class="org.springfranmework.data.redis.support.collections.DefaultRedisList">
<constructor-arg ref="redi sTenpl ate"/>
<constructor-arg val ue="queue- key"/ >

</ bean>

</ beans>

public class Anot her Exanpl e {

/'l injected
private Deque<String> queue

public void addTag(String tag) ({
queue. push(tag);
}

}

As shown in the example above, the consuming code is decoupled from the actual storage
implementation - in fact there is no indication that Redis is used underneath. This makes moving
from development to production environments transparent and highly increases testability (the Redis
implementation can just as well be replaced with an in-memory one).

Support for Spring Cache Abstraction
Spring Redis provides an implementation for Spring 3.1 cache abstraction through the

org. spri ngframewor k. dat a. r edi s. cache package. To use Redis as a backing implementation,
simply add Redi sCacheManager to your configuration:

Spring Data Redis
1.1.0.RELEASE Reference Documentation 20

http://download.oracle.com/javase/6/docs/api/java/util/concurrent/atomic/package-summary.html
http://download.oracle.com/javase/6/docs/api/java/util/Collection.html
http://static.springsource.org/spring/docs/3.1.0.M2/spring-framework-reference/html/cache.html

Spring Data Redis

<beans xm ns="http://ww. springframewor k. org/ schena/ beans" xm ns: xsi="http://
www. W3. or g/ 2001/ XM_Schene- i nst ance"

xm ns: cache="http://ww. spri ngf ranmewor k. or g/ schena/ cache"

xm ns: c="http://ww. springfranmework. org/ schema/ c"

xsi : schemaLocati on="htt p://wmv spri ngfranmewor k. or g/ schema/ beans http://
www. spri ngframewor k. or g/ schena/ beans/ spri ng- beans. xsd

http://ww. springframework. org/ schema/ cache http://ww. spri ngfranework. org/ schema/

cache/ spring- cache. xsd" >

<l-- turn on declarative caching -->

<cache: annot ati on-driven />

<l-- declare Redis Cache Manager -->

<bean i d="cacheManager" cl ass="org. springfranework. dat a.redi s.cache. Redi sCacheManager" c:tenpl ate-
ref="redi sTenpl ate"/ >
</ beans>

4.12 Roadmap ahead

Spring Data Redis project is in its early stages. We are interested in feedback, knowing what your use
cases are, what are the common patters you encounter so that the Redis module better serves your
needs. Do contact us using the channels mentioned above, we are interested in hearing from you!

Spring Data Redis
1.1.0.RELEASE Reference Documentation 21

Part lll. Appendixes

Document structure

Various appendixes outside the reference documentation.

Appendix A, Spring Data Redis Schema(s) defines the schemas provided by Spring Data Redis.

Spring Data Redis

Appendix A. Spring Data Redis
Schema(s)

Core schema

Spring Data Redis
1.1.0.RELEASE Reference Documentation

23

Spring Data Redis

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schema xm ns="http://ww. spri ngfranework. org/ schenma/redi s"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: tool =" http://ww. springfranmewor k. org/ schena/t ool "
t ar get Nanespace="htt p://ww. spri ngf ramewor k. or g/ schena/ r edi s"
el ement For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">

<xsd: i nport nanespace="http://ww. spri ngfranmework. org/ schema/
tool" schemalLocation="http://ww. springframework. org/ schema/t ool /spring-tool.xsd"/>

<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Defines the configuration elenments for the Spring Data Redis support.
Allows for configuring Redis |istener containers in XM. 'shortcut' style
]]1></ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: el ement nanme="Ii st ener-contai ner">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Contai ner of Redis listeners. All listeners will be hosted by the sane contai ner
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>

<t ool : exports type="org.springfranmework.data.redis.|istener.Redi sMessageli st ener Cont ai ner"/

</t ool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: sequence>

<xsd: el ement name="Ilistener" type="listenerType" m nCccurs="0" nmaxCccurs="unbounded"/>
</ xsd: sequence>
<xsd: attri bute name="connecti on-
factory" type="xsd:string" defaul t="redi sConnectionFactory">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
A reference to the Redis ConnectionFactory bean
Default is "redi sConnectionFactory"
]]></ xsd: docunent at i on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-
type type="org.springframework. dat a. redi s. connecti on. Connecti onFactory"/>
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
</ xsd:attri bute>
<xsd:attribute nanme="t ask-executor" type="xsd:string">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
A reference to a Spring TaskExecutor (or standard JDK 1.5 Executor) for executing
Redis |istener invokers. Default is a SinpleAsyncTaskExecut or
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annotati on kind="ref">
<t ool : expect ed-type type="java.util.concurrent. Executor"/>
</tool : annot ati on>
</ xsd: appi nf 0> —
</ xsd: annot at i on>
</ xsd:attribute> 4
<xsd:attribute nane="subscription-task-executor" type="xsd:string">

<xsd: annot at i on>
verd Aamriimmrmt a1 Aans~~—1I T COOATAT

	Spring Data Redis Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. Why Spring Data Redis?
	2. Requirements
	3. Getting Started
	3.1 First Steps
	Knowing Spring
	Knowing NoSQL and Key Value stores
	Trying Out The Samples

	3.2 Need Help?
	Community Support
	Professional Support

	3.3 Following Development

	Part II. Reference Documentation
	4. Redis support
	4.1 Redis Requirements
	4.2 Redis Support High Level View
	4.3 Connecting to Redis
	RedisConnection and RedisConnectionFactory
	Configuring Jedis connector
	Configuring JRedis connector
	Configuring SRP connector
	Configuring Lettuce connector

	4.4 Working with Objects through RedisTemplate
	4.5 String-focused convenience classes
	4.6 Serializers
	4.7 Redis Messaging/PubSub
	Sending/Publishing messages
	Receiving/Subscribing for messages
	Message Listener Containers
	The MessageListenerAdapter

	4.8 Redis Transactions
	4.9 Pipelining
	4.10 Redis Scripting
	4.11 Support Classes
	Support for Spring Cache Abstraction

	4.12 Roadmap ahead

	Part III. Appendixes
	Appendix A. Spring Data Redis Schema(s)

