
Spring Data REST Reference Documentation

version;

 ,

Copyright © 2012-2014

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Data REST

version;
Spring Data REST

Reference Documentation ii

Table of Contents

1. Introduction .. 1
2. Getting started ... 2

2.1. Introduction ... 2
2.2. Adding Spring Data REST to a Gradle project ... 2
2.3. Adding Spring Data REST to a Maven project ... 2
2.4. Configuring Spring Data REST ... 2
2.5. Starting the application .. 3

3. Repository resources .. 4
3.1. Fundamentals ... 4

Default status codes ... 4
Resource discoverability ... 4

3.2. The collection resource .. 5
Supported HTTP Methods .. 5

GET ... 5
HEAD ... 6
POST ... 6

3.3. The item resource ... 6
Supported HTTP methods .. 6

GET ... 6
HEAD ... 6
PUT ... 6
PATCH ... 7
DELETE ... 7

3.4. The association resource ... 7
Supported HTTP methods .. 7

GET .. 7
PUT ... 7
POST .. 8
DELETE .. 8

3.5. The search resource ... 8
Supported HTTP methods .. 8

GET ... 8
HEAD ... 8

3.6. The query method resource ... 8
Supported HTTP methods .. 9

GET ... 9
HEAD ... 9

4. Domain Object Representations .. 10
4.1. Object Mapping ... 10

Adding custom (de)serializers to Jackson's ObjectMapper .. 10
Abstract class registration ... 10
Adding custom serializers for domain types ... 11

5. Validation ... 12
5.1. Assigning Validators manually .. 12

6. Events ... 13
6.1. Writing an ApplicationListener ... 13
6.2. Writing an annotated handler ... 13

Spring Data REST

version;
Spring Data REST

Reference Documentation 1

1. Introduction

REST web services have become the number one means for application integration on the web. In its
core, REST defines that a system consists of resources that clients interact with. These resources are
implemented in a hypermedia drive way. Spring MVC offers a solid foundation to build theses kinds of
services but implementic very basic functionality of REST web service can be tedious and result in a
lot of boilderplate code.

Spring Data REST builds on top of Spring Data repositories and automatically exports those as REST
resources. It leverages hypermedia to allow clients to find functionality exposed by the repositories and
allows to integrate the resources into related hypermedia based functionality as easy as possible.

Spring Data REST

version;
Spring Data REST

Reference Documentation 2

2. Getting started

2.1 Introduction

Spring Data REST is itself a Spring MVC application and is designed in such a way that it should
integrate with your existing Spring MVC applications with very little effort. An existing (or future) layer of
services can run alongside Spring Data REST with only minor considerations.

To install Spring Data REST alongside your application, simply add the required dependencies, include
the stock @Configuration class RepositoryRestMvcConfiguration (or subclass it and perform
any required manual configuration), and map some URLs to be managed by Spring Data REST.

2.2 Adding Spring Data REST to a Gradle project

To add Spring Data REST to a Gradle-based project, add the spring-data-rest-webmvc artifact
to your compile-time dependencies:

dependencies {

 … other project dependencies

 compile "org.springframework.data:spring-data-rest-webmvc:${spring-data-rest-version}"

}

2.3 Adding Spring Data REST to a Maven project

To add Spring Data REST to a Maven-based project, add the spring-data-rest-webmvc artifact
to your compile-time dependencies:

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-rest-webmvc</artifactId>

 <version>${spring-data-rest-version}</version>

</dependency>

2.4 Configuring Spring Data REST

To install Spring Data REST alongside your existing Spring MVC application, you need to
include the appropriate MVC configuration. Spring Data REST configuration is defined in a class
called RepositoryRestMvcConfiguration. You can either import this class into your existing
configuration using an @Import annotation or you can subclass it and override any of the
configureXXX methods to add your own configuration to that of Spring Data REST.

In the following example, we'll subclass the standard RepositoryRestMvcConfiguration and add
some ResourceMapping configurations for the Person domain object to alter how the JSON will look
and how the links to related entities will be handled.

@Configuration

@Import(RepositoryRestMvcConfiguration.class)

public class MyWebConfiguration extends RepositoryRestMvcConfiguration {

 // … further configuration

}

Spring Data REST

version;
Spring Data REST

Reference Documentation 3

Make sure you also configure Spring Data repositories for the store you use. For details on that, please
consult the reference documentation for the corresponding Spring Data module.

2.5 Starting the application

As Spring Data REST is build on SpringMVC, you simply stick to the means you use to bootstrap Spring
MVC. In a Servlet 3.0 environment this might look something like this:

public class RestExporterWebInitializer implements WebApplicationInitializer {

 @Override public void onStartup(ServletContext servletContext) throws ServletException {

 // Bootstrap repositories in root application context

 AnnotationConfigWebApplicationContext rootCtx = new

 AnnotationConfigWebApplicationContext();

 rootCtx.register(JpaRepositoryConfig.class); // Include JPA entities, Repositories

 servletContext.addListener(new ContextLoaderListener(rootCtx));

 // Enable Spring Data REST in the DispatcherServlet

 AnnotationConfigWebApplicationContext webCtx = new

 AnnotationConfigWebApplicationContext();

 webCtx.register(MyWebConfiguration.class);

 DispatcherServlet dispatcherServlet = new DispatcherServlet(webCtx);

 ServletRegistration.Dynamic reg = servletContext.addServlet("rest-exporter",

 dispatcherServlet);

 reg.setLoadOnStartup(1);

 reg.addMapping("/*");

 }

}

The equivalent of the above in a standard web.xml will also work identically to this configuration if you
are still in a servlet 2.5 environment. When you deploy this application to your servlet container, you
should be able to see what repositories are exported by accessing the root of the application.

Spring Data REST

version;
Spring Data REST

Reference Documentation 4

3. Repository resources

3.1 Fundamentals

The core functionality of Spring Data REST is to export resources for Spring Data repositories. Thus, the
core artifact to look at and potentially tweak to customize the way the exporting works is the repository
interface. Assume the following repository interface:

public interface OrderRepository extends CrudRepository<Order, Long> { }

For this repository, Spring Data REST exposes a collection resource at /orders. The path is derived
from the uncapitalized, pluralized, simple class name of the domain class being managed. It also
exposes an item resource for each of the items managed by the repository under the URI template /
orders/{id}.

By default the HTTP methods to interact with these resources map to the according methods of
CrudRepository. Read more on that in the sections on collection resources and item resources.

Default status codes

For the resources exposed, we use a set of default status codes:

• 200 OK - for plain GET requests.

• 201 Created - for POST and PUT requests that create new resources.

• 204 No Content - for PUT, PATCH, and DELETE requests if the
configuration is set to not return response bodies for resource updates
(RepositoryRestConfiguration.returnBodyOnUpdate). If the configuration value is set to
include responses for PUT, 200 OK will be returned for updates, 201 Created will be returned for
resource created through PUT.

Resource discoverability

A core principle of HATEOAS is that resources should be discoverable through the publication of links
that point to the available resources. There are a few competing de-facto standards of how to represent
links in JSON. By default, Spring Data REST uses HAL to render responses. HAL defines links to be
contained in a _link property of the returned document.

Resource discovery starts at the top level of the application. By issuing a request to the root URL under
which the Spring Data REST application is deployed, the client can extract a set of links from the returned
JSON object that represent the next level of resources that are available to the client.

For example, to discover what resources are available at the root of the application, issue an HTTP
GET to the root URL:

http://tools.ietf.org/html/draft-kelly-json-hal

Spring Data REST

version;
Spring Data REST

Reference Documentation 5

curl -v http://localhost:8080/

< HTTP/1.1 200 OK

< Content-Type: application/hal+json

{ "_links" : {

 "orders" : {

 "href" : "http://localhost:8080/orders"

 }

 }

}

The _links property of the result document is an object in itself consisting of keys representing the
relation type with nested link objects as specified in HAL.

3.2 The collection resource

Spring Data REST exposes a collection resource named after the uncapitalized, pluralized version of
the domain class the exported repository is handling. Both the name of the resource and the path can
be customized using the @RepositoryRestResource on the repository interface.

Supported HTTP Methods

Collections resources support both GET and POST. All other HTTP methods will cause a 405 Method
Not Allowed.

GET

Returns all entities the repository servers through its findAll(…) method. If the repository is a paging
repository we include the pagination links if necessary and additional page metadata.

Parameters

If the repository has pagination capabilities the resource takes the following parameters:

• page - the page number to access (0 indexed, defaults to 0).

• size - the page size requested (defaults to 20).

• sort - a collection of sort directives in the format ($propertyname,)+[asc|desc]?.

Custom status codes

• 405 Method Not Allowed - if the findAll(…) methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

Supported media types

• application/hal+json

• application/json

Related resources

• search - a search resource if the backing repository exposes query methods.

Spring Data REST

version;
Spring Data REST

Reference Documentation 6

HEAD

Returns whether the collection resource is available.

POST

Creates a new entity from the given request body.

Custom status codes

• 405 Method Not Allowed - if the save(…) methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

Supported media types

• application/hal+json

• application/json

3.3 The item resource

Spring Data REST exposes a resource for individual collection items as sub-resources of the collection
resource.

Supported HTTP methods

Item resources generally support GET, PUT, PATCH and DELETE unless explicit configuration prevents
that (see below for details).

GET

Returns a single entity.

Custom status codes

• 405 Method Not Allowed - if the findOne(…) methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

Supported media types

• application/hal+json

• application/json

Related resources

For every association of the domain type we expose links named after the association property. This can
be customized by using @RestResource on the property. The related resources are of type association
resource.

HEAD

Returns whether the item resource is available.

PUT

Replaces the state of the target resource with the supplied request body.

Spring Data REST

version;
Spring Data REST

Reference Documentation 7

Custom status codes

• 405 Method Not Allowed - if the save(…) methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

Supported media types

• application/hal+json

• application/json

PATCH

Similar to PUT but only applying values sent with the request body.

Custom status codes

• 405 Method Not Allowed - if the save(…) methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

Supported media types

• application/hal+json

• application/json

DELETE

Deletes the resource exposed.

Custom status codes

• 405 Method Not Allowed - if the delete(…) methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

3.4 The association resource

Spring Data REST exposes sub-resources of every item resource for each of the associations the item
resource has. The name and path of the of the resource defaults to the name of the association property
and can be customized using @RestResource on the association property.

Supported HTTP methods

GET

Reutrns the state of the association resource

Supported media types

• application/hal+json

• application/json

PUT

Binds the resource pointed to by the given URI(s) to the resource. This

Spring Data REST

version;
Spring Data REST

Reference Documentation 8

Custom status codes

• 400 Bad Request - if multiple URIs were given for a to-one-association.

Supported media types

• text/uri-list - URIs pointing to the resource to bind to the association.

POST

Only supported for collection associations. Adds a new element to the collection.

Supported media types

• text/uri-list - URIs pointing to the resource to add to the association.

DELETE

Unbinds the association.

Custom status codes

• 405 Method Not Allowed - if the association is non-optional.

3.5 The search resource

The search resource returns links for all query methods exposed by a repository. The path and name
of the query method resources can be modified using @RestResource on the method declaration.

Supported HTTP methods

As the search resource is a read-only resource it supports GET only.

GET

Returns a list of links pointing to the individual query method resources

Supported media types

• application/hal+json

• application/json

Related resources

For every query method declared in the repository we expose a query method resource. If the resource
supports pagination, the URI pointing to it will be a URI template containing the pagination parameters.

HEAD

Returns whether the search resource is available. A 404 return code indicates no query method
resources available at all.

3.6 The query method resource

The query method resource executes the query exposed through an individual query method on the
repository interface.

Spring Data REST

version;
Spring Data REST

Reference Documentation 9

Supported HTTP methods

As the search resource is a read-only resource it supports GET only.

GET

Returns the result of the query execution.

Parameters

If the query method has pagination capabilities (indicated in the URI template pointing to the resource)
the resource takes the following parameters:

• page - the page number to access (0 indexed, defaults to 0).

• size - the page size requested (defaults to 20).

• sort - a collection of sort directives in the format ($propertyname,)+[asc|desc]?.

Supported media types

• application/hal+json

• application/json

HEAD

Returns whether a query method resource is available.

Spring Data REST

version;
Spring Data REST

Reference Documentation 10

4. Domain Object Representations

4.1 Object Mapping

Spring Data REST returns a representation of a domain object that corresponds to the requested
Accept type specified in the HTTP request. 1

Sometimes the behavior of the Spring Data REST's ObjectMapper, which has been specially configured
to use intelligent serializers that can turn domain objects into links and back again, may not handle your
domain model correctly. There are so many ways one can structure your data that you may find your
own domain model isn't being translated to JSON correctly. It's also sometimes not practical in these
cases to try and support a complex domain model in a generic way. Sometimes, depending on the
complexity, it's not even possible to offer a generic solution.

Adding custom (de)serializers to Jackson's ObjectMapper

To accommodate the largest percentage of use cases, Spring Data REST tries very hard to render your
object graph correctly. It will try and serialize unmanaged beans as normal POJOs and it will try and
create links to managed beans where that's necessary. But if your domain model doesn't easily lend
itself to reading or writing plain JSON, you may want to configure Jackson's ObjectMapper with your
own custom type mappings and (de)serializers.

Abstract class registration

One key configuration point you might need to hook into is when you're using an abstract class (or an
interface) in your domain model. Jackson won't know by default what implementation to create for an
interface. Take the following example:

@Entity

public class MyEntity {

 @OneToMany

 private List<MyInterface> interfaces;

}

In a default configuration, Jackson has no idea what class to instantiate when POSTing new data to the
exporter. This is something you'll need to tell Jackson either through an annotation, or, more cleanly,
by registering a type mapping using a Module.

To add your own Jackson configuration to the ObjectMapper used by Spring Data REST, override
the configureJacksonObjectMapper method. That method will be passed an ObjectMapper
instance that has a special module to handle serializing and deserializing PersistentEntitys. You
can register your own modules as well, like in the following example.

1Currently, only JSON representations are supported. Other representation types can be supported in the future by adding an
appropriate converter and updating the controller methods with the appropriate content-type.

Spring Data REST

version;
Spring Data REST

Reference Documentation 11

 @Override protected void configureJacksonObjectMapper(ObjectMapper objectMapper) {

 objectMapper.registerModule(new SimpleModule("MyCustomModule"){

 @Override public void setupModule(SetupContext context) {

 context.addAbstractTypeResolver(

 new SimpleAbstractTypeResolver().addMapping(MyInterface.class,

 MyInterfaceImpl.class)

);

 }

 });

 }

Once you have access to the SetupContext object in your Module, you can do all sorts of cool things
to configure Jacskon's JSON mapping. You can read more about how Modules work on Jackson's wiki:
http://wiki.fasterxml.com/JacksonFeatureModules

Adding custom serializers for domain types

If you want to (de)serialize a domain type in a special way, you can register your own implementations
with Jackson's ObjectMapper and the Spring Data REST exporter will transparently handle those
domain objects correctly. To add serializers, from your setupModule method implementation, do
something like the following:

@Override public void setupModule(SetupContext context) {

 SimpleSerializers serializers = new SimpleSerializers();

 SimpleDeserializers deserializers = new SimpleDeserializers();

 serializers.addSerializer(MyEntity.class, new MyEntitySerializer());

 deserializers.addDeserializer(MyEntity.class, new MyEntityDeserializer());

 context.addSerializers(serializers);

 context.addDeserializers(deserializers);

}

http://wiki.fasterxml.com/JacksonFeatureModules

Spring Data REST

version;
Spring Data REST

Reference Documentation 12

5. Validation

There are two ways to register a Validator instance in Spring Data REST: wire it by bean name
or register the validator manually. For the majority of cases, the simple bean name prefix style will be
sufficient.

In order to tell Spring Data REST you want a particular Validator assigned to a particular
event, you simply prefix the bean name with the event you're interested in. For example, to
validate instances of the Person class before new ones are saved into the repository, you would
declare an instance of a Validator<Person> in your ApplicationContext with the bean name
"beforeCreatePersonValidator". Since the prefix "beforeCreate" matches a known Spring Data REST
event, that validator will be wired to the correct event.

5.1 Assigning Validators manually

If you would rather not use the bean name prefix approach, then you simply need to register an instance
of your validator with the bean who's job it is to invoke validators after the correct event. In your
configuration that subclasses Spring Data REST's RepositoryRestMvcConfiguration, override
the configureValidatingRepositoryEventListener method and call the addValidator
method on the ValidatingRepositoryEventListener, passing the event you want this validator
to be triggered on, and an instance of the validator.

@Override protected void

 configureValidatingRepositoryEventListener(ValidatingRepositoryEventListener v) {

 v.addValidator("beforeSave", new BeforeSaveValidator());

}

Spring Data REST

version;
Spring Data REST

Reference Documentation 13

6. Events

There are six different events that the REST exporter emits throughout the process of working with an
entity. Those are:

• BeforeCreateEvent

• AfterCreateEvent

• BeforeSaveEvent

• AfterSaveEvent

• BeforeLinkSaveEvent

• AfterLinkSaveEvent

• BeforeDeleteEvent

• AfterDeleteEvent

6.1 Writing an ApplicationListener

There is an abstract class you can subclass which listens for these kinds of events and calls the
appropriate method based on the event type. You just override the methods for the events you're
interested in.

public class BeforeSaveEventListener extends AbstractRepositoryEventListener {

 @Override public void onBeforeSave(Object entity) {

 ... logic to handle inspecting the entity before the Repository saves it

 }

 @Override public void onAfterDelete(Object entity) {

 ... send a message that this entity has been deleted

 }

}

One thing to note with this approach, however, is that it makes no distinction based on the type of the
entity. You'll have to inspect that yourself.

6.2 Writing an annotated handler

Another approach is to use an annotated handler, which does filter events based on domain type.

To declare a handler, create a POJO and put the @RepositoryEventHandler annotation on it. This
tells the BeanPostProcessor that this class needs to be inspected for handler methods.

Once it finds a bean with this annotation, it iterates over the exposed methods and looks for annotations
that correspond to the event you're interested in. For example, to handle BeforeSaveEvents in an
annotated POJO for different kinds of domain types, you'd define your class like this:

Spring Data REST

version;
Spring Data REST

Reference Documentation 14

@RepositoryEventHandler

public class PersonEventHandler {

 @HandleBeforeSave(Person.class) public void handlePersonSave(Person p) {

 ... you can now deal with Person in a type-safe way

 }

 @HandleBeforeSave(Profile.class) public void handleProfileSave(Profile p) {

 ... you can now deal with Profile in a type-safe way

 }

}

You can also declare the domain type at the class level:

@RepositoryEventHandler(Person.class)

public class PersonEventHandler {

 @HandleBeforeSave public void handleBeforeSave(Person p) {

 ...

 }

 @HandleAfterDelete public void handleAfterDelete(Person p) {

 ...

 }

}

Just declare an instance of your annotated bean in your ApplicationContext and the
BeanPostProcessor that is by default created in RepositoryRestMvcConfiguration will inspect
the bean for handlers and wire them to the correct events.

@Configuration

public class RepositoryConfiguration {

 @Bean PersonEventHandler personEventHandler() {

 return new PersonEventHandler();

 }

}

	Spring Data REST Reference Documentation
	Table of Contents
	1. Introduction
	2. Getting started
	2.1 Introduction
	2.2 Adding Spring Data REST to a Gradle project
	2.3 Adding Spring Data REST to a Maven project
	2.4 Configuring Spring Data REST
	2.5 Starting the application

	3. Repository resources
	3.1 Fundamentals
	Default status codes
	Resource discoverability

	3.2 The collection resource
	Supported HTTP Methods
	GET
	HEAD
	POST

	3.3 The item resource
	Supported HTTP methods
	GET
	HEAD
	PUT
	PATCH
	DELETE

	3.4 The association resource
	Supported HTTP methods
	GET
	PUT
	POST
	DELETE

	3.5 The search resource
	Supported HTTP methods
	GET
	HEAD

	3.6 The query method resource
	Supported HTTP methods
	GET
	HEAD

	4. Domain Object Representations
	4.1 Object Mapping
	Adding custom (de)serializers to Jackson's ObjectMapper
	Abstract class registration
	Adding custom serializers for domain types

	5. Validation
	5.1 Assigning Validators manually

	6. Events
	6.1 Writing an ApplicationListener
	6.2 Writing an annotated handler

