Spring Data REST Reference
Documentation

Jon Brisbin, Oliver Gierke, Greg Turnquist

Version 2.2.4.RELEASE
2015-10-14

Table of Contents

| = Lol PP PP 1
O o) [=Te 1 L = o - L - R PP 2
Reference DOCUMENTATION «.uvueeinineiiiietiei ettt e ettt e raraeeseneneesasnenensarensesasnenenseronsesnsnss 2
/208 B L0 0 To LT 0o) e 3
3. GOTHINE STATTEA v euetneetenet ettt ettt ettt et e et tan et raetaneaesaeaeaneneensanensnesnsanensnesasesenssnsanenens 4
T 41 o0 0 1T) 4P 4
3.2. Adding Spring Data REST t0 a SPring BOOt PrOJECtuiueuiniiieereieiieiieiieneiieneneereenereenenenens 4
3.3. Adding Spring Data REST t0 @ Gradle ProjeCtc.vveiuiniiiiiiiieieiieiiiiiiniiieenieieenereenenenens 4
3.4. Adding Spring Data REST t0 @ MaVEN PIrOJECT .uueueiuirernereinieteereeteeenereentanenerasaeenenesneanenens 5
3.5. Configuring SPring Data RESTc.cciiiiiiiiiiiiiiiir e iieseieeretreeeeneentetreresesnsnenrersenesesnsnsnnes 5
3.6. Starting the aPPLICATIONveieii ittt s e e e et tee s snenensenennerasnenannes 6

4, RO POSITOTY TRSOUTCES cuvtuenrenententrenereeneasenersensanenssnssnenenssnssensnssseanesssssssosensssessossssssnsessnsnns 7
4.1, FUNAAIMENTALS .ottt ettt e et a e aes 7
4.1.1. Default StAtUS COUES c.vuvnrrtrnineeeeeiiererereeeeeteererneneenrersesesnsnesaransesasnssnsorsesesasnsnsnnes 7
4.1.2. Resource diSCOVETabilityiu i ittt s e e e e e e e s e eeaaas 7

4.2. The COLIECTION TESOUICE ..euiuinieeinineiiitet ittt ettt ettt eea s tneeeetetsasasneneneerorsesnsnen 8
4.2.1. Supported HTTP MethOds ...ceinire et eir e ettt te ettt eeaeeeateneneaeeeeeneananes 8

T TN o L) 1B =] DD o PP 9
4.3.1. Supported HTTP Methodscuiniiiiiiiiiiiiiiiiri et s re e e e s s eeaees 9

4.4. The aSSOCIATION TESOUICE ...euiutnereinenenitetieretneneteteteeretneneteteteesatneneseetetsesssneensesonsesesns 11
4.4.1. Supported HTTP MethOAS. .. cueinietiiiiiet et ie e e et et e et eeeeeneeereeenaneanans 11

4.5. The SEarCh TESOUTCE ...t ettt ettt ettt e e e e neaeas 12
4.5.1. Supported HTTP Methods.....ouvuininiiiiiiiiiieee ettt s s ee e e ene 12

4.6. The qUery Method FESOUTCEuiuininiiiiiiiii ettt er s e e et eaesans 12
4.6.1. Supported HTTP MethOAS. . cuuiuitiireiiiieir e et eete et et e et eeeeeeneeneeeananeanans 13

5. PABING ANA SOTTING .. ettt ettt ettt ettt ettt e et e et e et aaeaeaneeeanaaeenreeanaeennas 14
N R o 10 1 (U PR 14
5.1.1. Previous and NeXt LINKS ...ociuiniiiiiiiiiiiin et 14

IV o) i 11 0¥ PP PPN 16

6. Domain Object RePIreSENTATIONS .. .uinei ittt ettt ittt et e et e et e et aneeeaneeeanreeananeennas 18
T B) o) [=Tut 1Y =1) o) 0 ¥ PP 18
6.1.1. Adding custom (de)serializers to Jackson’s ObjeCtMapPerc.cvveueeiiiirereiinenicinenennnn. 18

7. Projections aNd EXCOIPTES «.vuitiiit ettt etreeetet et e eteneteaetaneeanetaneaeaneaeensaeenaneensonenaseensns 20
A B & o) =Tot 0 (o) S PP PP 20
7.1.1. FINAINg eXiStiNg PrOjJECtIONIS . e ueuenetiirereiietetierereteetereeaeretneneneerenresnsnenenearansesnsns 22
7.1.2. Bringing in hidden datac..coeeiiiiiiiiiin e 23

B 55 (<) i] & T PR 24
7.3. Excerpting commoONly aCCESSEA Aata ...oueueruenerneetinieeiiitiieeiiene ettt eaeaneaeraeaeaneananeaeanes 25

8. VAlIAALION tuiuinininiiiiiiiii et e e e aa 27
8.1. Assigning Validators Mmanuallyccceiiiiiiiiiiiiiiii e 27

1SR V7 (L e 28

9.1. Writing an ApPpPliCationLISteIIETuie ettt ettt et e et e et reeeaeaeaneenes 28

9.2. Writing an annotated handlero e e 29

0L (=] 2 1o =1 31
10.1. Application-Level Profile Semantics (ALPS) ..c.cuiiiiiuiiiiiiiiiiii et e enenes 31
10.1.1. Hypermedia CONIOL TYPES «.vvininiiiiiiieiiiiiiiiiiiie ettt e e e e as 34
10.1.2. ALPS WIth PrOjJECIONS . ueininttie ettt ettt et et e et et e ee e et eneaeaeaeaneeanas 34
10.1.3. Adding custom details to your ALPS deSCriPtiONScoeverrerereineeneereererereneneeraerennnns 36

11. Customizing Spring Data RESTuiuininiiiiiiiiiie ettt s e e e e e e e ns 39
11.1. Configuring the REST URL Path ..c.oueniiiiiiiin ittt e e e 39
0 B B 5 =1 4 Lo 1 D o o o= S TP 40
11.1.2. Hiding certain repositories, query methods, or fieldS........cvcveiieieiiiiirniinininieinenennnn. 42
11.1.3. Hiding repository CRUD MethodSouvuiniiiiiiiiiiiiiiiiiinie e 43
11.2. Adding Spring Data REST to an existing Spring MVC Applicationc.cccevveverneneeneneenennnnes 44
11.2.1. More on required CONfIGUIATIONvuvereininereeerererneneenterrerereeneneneereeresnsnsnsnsersesesnsns 44
11.3. Overriding Spring Data REST Response Handlersc.cceeveveiiiiiiiininerneneneeneenenennenenns 45
11.4. Customizing the JSON OULPUL ...eueniniiieri ettt ettt e st eenearensesasnenenas 46
11.4.1. The ResourceProcessor INtErfacec.coceiiiinieiiiiiiiiiiiii e 47
T1.4.2. AdAING LINKS .t ettt ettt ettt e et et e et e et e e e e eaeaneeanas 47
11.4.3. Customizing the repreSeNtation ...o.vuveve i irerierrreriereirereererereereereerernrneenaeranrernns 47

11.5. Adding custom (de)serializers to Jackson’s ObjectMapPercvoveieeiiiiereienenenieenerernenene. 48
11.5.1. Abstract class regiStrationccveviveieieieiniiiiiiiiiirrrrri s eneeteesaaens 48
11.5.2. Adding custom serializers fOr dOMain tYPeS..c.vuverriererieererereiienenerrrererneneneneereeresnns 49

F2N 0 01<) 4 o - PP 50
Appendix A: Using cURL to talk to Spring Data RESTciuiiiiiiiiiiiiiiiicnn et 51
Appendix B: Spring Data REST eXample ProjeCtS.....ocvevereininiiiiiiiiieiiieiiiiiiieiieieneiieererasnenenes 52
MULLI-STOTE EXAIMPLE ..ttt ettt et et e et e et e et e et e et aneataneaeaneaeaneeanas 52

| o) [=Tot 0 o) o PP 52
Spring Data REST + SPIiNg SECUTIILY .euvurntieieiniiiiiiiitiieereeieie et eeteteere s teneneerensesasnenenss 52

Starbucks eXamPleouoniiii e 52

© 2012-2015 Original authors

Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for such
copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

NOTE

Preface

Chapter 1. Project metadata

* Version control - https://github.com/spring-projects/spring-data-rest

Bugtracker - https://jira.spring.io/browse/DATAREST

* Project page - http://projects.spring.io/spring-data-rest

* Release repository - https://repo.spring.io/libs-release

* Milestone repository - https://repo.spring.io/libs-milestone

* Snapshot repository - https://repo.spring.io/libs-snapshot

Reference Documentation

https://github.com/spring-projects/spring-data-rest
https://jira.spring.io/browse/DATAREST
http://projects.spring.io/spring-data-rest
https://repo.spring.io/libs-release
https://repo.spring.io/libs-milestone
https://repo.spring.io/libs-snapshot

Chapter 2. Introduction

REST web services have become the number one means for application integration on the web. In its
core, REST defines that a system consists of resources that clients interact with. These resources are
implemented in a hypermedia drive way. Spring MVC offers a solid foundation to build theses kinds of
services but implementing very basic functionality of REST web service can be tedious and result in a
lot of boilerplate code.

Spring Data REST builds on top of Spring Data repositories and automatically exports those as REST
resources. It leverages hypermedia to allow clients to find functionality exposed by the repositories
and allows to integrate the resources into related hypermedia based functionality as easy as possible.

Chapter 3. Getting started

3.1. Introduction

Spring Data REST is itself a Spring MVC application and is designed in such a way that it should
integrate with your existing Spring MVC applications with very little effort. An existing (or future)
layer of services can run alongside Spring Data REST with only minor considerations.

To install Spring Data REST alongside your application, simply add the required dependencies, include
the stock @Configuration class RepositoryRestMveConfiguration (or subclass it and perform any required
manual configuration), and map some URLs to be managed by Spring Data REST.

3.2. Adding Spring Data REST to a Spring Boot project

The simplest way to get to started is if you are building a Spring Boot application. That’s because Spring
Data REST has both a starter as well as auto-configuration.

Spring Boot configuration with Gradle
dependencies {

compile("org.springframework.boot:spring-boot-starter-data-rest")

Spring Boot configuration with Maven
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-rest</artifactId>

</dependency>

</dependencies>

You don’t have to supply the version number if you are using the Spring Boot Gradle

NOTE . . .
plugin or the Spring Boot Maven plugin.

3.3. Adding Spring Data REST to a Gradle project

To add Spring Data REST to a Gradle-based project, add the spring-data-rest-webmvc artifact to your
compile-time dependencies:

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#build-tool-plugins-gradle-plugin
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#build-tool-plugins-gradle-plugin
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#build-tool-plugins-maven-plugin

dependencies {
other project dependencies
compile("org.springframework.data:spring-data-rest-webmvc:2.2.4.RELEASE")

}

3.4. Adding Spring Data REST to a Maven project

To add Spring Data REST to a Maven-based project, add the spring-data-rest-webmvc artifact to your
compile-time dependencies:

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-rest-webmve</artifactId>
<version>2.2.4.RELEASE</version>

</dependency>

3.5. Configuring Spring Data REST

To install Spring Data REST alongside your existing Spring MVC application, you need to include the
appropriate MVC configuration. Spring Data REST configuration is defined in a class called
RepositoryRestMvcConfiguration. You can either import this class into your existing configuration using
an @Import annotation or you can subclass it and override any of the configureXXX methods to add your
own configuration to that of Spring Data REST.

This step is unnecessary if you are using Spring Boot’s auto-configuration. Spring
Boot will automatically enable Spring Data REST when you include spring-boot-
starter-data-rest and either in your list of dependencies, and you your app is
flagged with either @SpringBootApplication or @EnableAutoConfiguration.

IMPORTANT

In the following example, we’ll subclass the standard RepositoryRestMvcConfiguration and add some
ResourceMapping configurations for the Person domain object to alter how the JSON will look and how
the links to related entities will be handled.

(RepositoryRestMvcConfiguration.class)
public class MyWebConfiguration extends RepositoryRestMvcConfiguration {

// further configuration

}

Make sure you also configure Spring Data repositories for the store you use. For details on that, please
consult the reference documentation for the corresponding Spring Data module.

3.6. Starting the application

At this point, you must also configure your key data store.
Spring Data REST officially supports:

» Spring Data JPA

* Spring Data MongoDB

* Spring Data Neo4j

» Spring Data GemFire

These linked guides introduce how to add dependencies for the related data store, configure domain
objects, and define repositories.

You can run your application as either a Spring Boot app (with links showns above) or configure it as a
classic Spring MVC app.

From this point, you can are free to customize Spring Data REST with various options.

https://spring.io/guides/gs/accessing-data-rest/
https://spring.io/guides/gs/accessing-mongodb-data-rest/
https://spring.io/guides/gs/accessing-neo4j-data-rest/
https://spring.io/guides/gs/accessing-gemfire-data-rest/

Chapter 4. Repository resources

4.1. Fundamentals

The core functionality of Spring Data REST is to export resources for Spring Data repositories. Thus, the
core artifact to look at and potentially tweak to customize the way the exporting works is the
repository interface. Assume the following repository interface:

public interface OrderRepository extends CrudRepository<Order, Long> { }

For this repository, Spring Data REST exposes a collection resource at /orders. The path is derived from
the uncapitalized, pluralized, simple class name of the domain class being managed. It also exposes an
item resource for each of the items managed by the repository under the URI template /orders/{id}.

By default the HTTP methods to interact with these resources map to the according methods of
CrudRepository. Read more on that in the sections on collection resources and item resources.

4.1.1. Default status codes
For the resources exposed, we use a set of default status codes:
* 200 OK - for plain GET requests.
* 201 Created - for POST and PUT requests that create new resources.

* 204 No Content - for PUT, PATCH, and DELETE requests if the configuration is set to not return response
bodies for resource updates (RepositoryRestConfiguration.returnBodyOnUpdate). If the configuration
value is set to include responses for PUT, 200 OK will be returned for updates, 201 Created will be
returned for resource created through PUT.

4.1.2. Resource discoverability

A core principle of HATEOAS is that resources should be discoverable through the publication of links
that point to the available resources. There are a few competing de-facto standards of how to represent
links in JSON. By default, Spring Data REST uses HAL to render responses. HAL defines links to be
contained in a property of the returned document.

Resource discovery starts at the top level of the application. By issuing a request to the root URL under
which the Spring Data REST application is deployed, the client can extract a set of links from the
returned JSON object that represent the next level of resources that are available to the client.

For example, to discover what resources are available at the root of the application, issue an HTTP GET
to the root URL:

http://tools.ietf.org/html/draft-kelly-json-hal

curl -v http://localhost:8080/

< HTTP/1.1 200 OK
< Content-Type: application/hal+json

{ "_links" : {
"orders" : {
"href" : "http://localhost:8080/orders"
H
"profile" : {
"href" : "http://localhost:8080/api/alps"
}

}
}

The property of the result document is an object in itself consisting of keys representing the relation
type with nested link objects as specified in HAL.

NOTE For more details about the profile link, see Application-Level Profile Semantics (ALPS).

4.2. The collection resource

Spring Data REST exposes a collection resource named after the uncapitalized, pluralized version of
the domain class the exported repository is handling. Both the name of the resource and the path can
be customized using the @RepositoryRestResource on the repository interface.

4.2.1. Supported HTTP Methods

Collections resources support both GET and POST. All other HTTP methods will cause a 405 Method Not
Allowed.

GET

Returns all entities the repository servers through its findA11() method. If the repository is a paging
repository we include the pagination links if necessary and additional page metadata.

Parameters

If the repository has pagination capabilities the resource takes the following parameters:
* page - the page number to access (0 indexed, defaults to 0).
* size - the page size requested (defaults to 20).

* sort - a collection of sort directives in the format ($propertyname,)+[asc|desc]?.

Custom status codes

* 405 Method Not Allowed - if the findAl1l() methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

Supported media types

 application/hal+json
* application/json

Related resources

» search-a search resource if the backing repository exposes query methods.

HEAD

Returns whether the collection resource is available.
POST
Creates a new entity from the given request body.

Custom status codes

o 405 Method Not Allowed - if the save() methods was not exported (through @RestResource(exported
= false)) or is not present in the repository at all.

Supported media types

 application/hal+json

 application/json

4.3. The item resource

Spring Data REST exposes a resource for individual collection items as sub-resources of the collection
resource.

4.3.1. Supported HTTP methods

Item resources generally support GET, PUT, PATCH and DELETE unless explicit configuration prevents that
(see below for details).

GET

Returns a single entity.

Custom status codes

* 405 Method Not Allowed - if the findOne() methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

Supported media types
 application/hal+json
* application/json

Related resources

For every association of the domain type we expose links named after the association property. This
can be customized by using @RestResource on the property. The related resources are of type
association resource.

HEAD

Returns whether the item resource is available.
PUT
Replaces the state of the target resource with the supplied request body.

Custom status codes

* 405 Method Not Allowed - if the save() methods was not exported (through @RestResource(exported
= false)) or is not present in the repository at all.

Supported media types

 application/hal+json
* application/json
PATCH
Similar to PUT but partially updating the resources state.

Custom status codes

* 405 Method Not Allowed - if the save() methods was not exported (through @RestResource(exported
= false)) or is not present in the repository at all.

Supported media types

* application/hal+json

* application/json

* application/patch+json

* application/merge-patch+json
DELETE

Deletes the resource exposed.

Custom status codes

o 405 Method Not Allowed - if the delete() methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

4.4. The association resource

Spring Data REST exposes sub-resources of every item resource for each of the associations the item
resource has. The name and path of the of the resource defaults to the name of the association
property and can be customized using @RestResource on the association property.

4.4.1. Supported HTTP methods
GET
Returns the state of the association resource

Supported media types

 application/hal+json
 application/json
PUT
Binds the resource pointed to by the given URI(s) to the resource. This

Custom status codes

* 400 Bad Request - if multiple URIs were given for a to-one-association.

Supported media types

* text/uri-list - URIS pointing to the resource to bind to the association.

POST

Only supported for collection associations. Adds a new element to the collection.

https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc7386

Supported media types

¢ text/uri-list - URIs pointing to the resource to add to the association.
DELETE
Unbinds the association.

Custom status codes

* 405 Method Not Allowed - if the association is non-optional.

4.5. The search resource

The search resource returns links for all query methods exposed by a repository. The path and name of
the query method resources can be modified using @RestResource on the method declaration.

4.5.1. Supported HTTP methods
As the search resource is a read-only resource it supports GET only.
GET
Returns a list of links pointing to the individual query method resources
Supported media types
 application/hal+json
 application/json
Related resources

For every query method declared in the repository we expose a query method resource. If the resource
supports pagination, the URI pointing to it will be a URI template containing the pagination
parameters.

HEAD

Returns whether the search resource is available. A 404 return code indicates no query method
resources available at all.

4.6. The query method resource

The query method resource executes the query exposed through an individual query method on the
repository interface.

4.6.1. Supported HTTP methods

As the search resource is a read-only resource it supports GET only.
GET

Returns the result of the query execution.

Parameters

If the query method has pagination capabilities (indicated in the URI template pointing to the resource)
the resource takes the following parameters:

* page - the page number to access (0 indexed, defaults to 0).
* size - the page size requested (defaults to 20).
* sort - a collection of sort directives in the format ($propertyname,)+[asc|desc]?.

Supported media types

* application/hal+json
 application/json

HEAD

Returns whether a query method resource is available.

Chapter 5. Paging and Sorting

This documents Spring Data REST’s usage of the Spring Data Repository paging and sorting abstractions.
To familiarize yourself with those features, please see the Spring Data documentation for the Repository
implementation you’re using.

5.1. Paging

Rather than return everything from a large result set, Spring Data REST recognizes some URL
parameters that will influence the page size and starting page number.

If you extend PagingAndSortingRepository<T, ID>and access the list of all entities, you’ll get links to the
first 20 entities. To set the page size to any other number, add a size parameter:

http://localhost:8080/people/?size=5

This will set the page size to 5.

To use paging in your own query methods, you need to change the method signature to accept an
additional Pageable parameter and return a Page rather than a List. For example, the following query
method will be exported to /people/search/nameStartsWith and will support paging:

(path = "nameStartsWith", rel = "nameStartsWith")
public Page findByNameStartsWith(("name") String name, Pageable p);

The Spring Data REST exporter will recognize the returned Page and give you the results in the body of
the response, just as it would with a non-paged response, but additional links will be added to the
resource to represent the previous and next pages of data.

5.1.1. Previous and Next Links

Each paged response will return links to the previous and next pages of results based on the current
page using the IANA defined link relations prev and next. If you are currently at the first page of
results, however, no prev link will be rendered. The same is true for the last page of results: no next
link will be rendered.

Look at the following example, where we set the page size to 5:

curl localhost:8080/people?size=5

http://www.w3.org/TR/html5/links.html#link-type-prev
http://www.w3.org/TR/html5/links.html#link-type-next

"_Tinks" : {
"self" : {
"href" : "http://localhost:8080/persons{&sort,page,size}", <1>
"templated" : true

¥
"next" : {
"href" : "http://localhost:8080/persons?page=1&size=5{&sort}", <2>
"templated" : true
}
b
"_embedded" : {
... data ...
}

age" : { <3»

"sijze" : 5,
"totalElements" : 50,
"totalPages" : 10,
"number" : 0

At the top, we see _links:

@ This self link serves up the whole collection with some options

@ This next link points to the next page, assuming the same page size.

® At the bottom is extra data about the page settings, including the size of a page, total elements, total

pages, and the page number you are currently viewing.

When using tools like curl on the command line, if you have a "&" in your statement,

NOTE
wrap the whole URI with quotes.

It’s also important to notice that the self and next URIs are, in fact, URI templates. They accept not only
size, but also page, sort as optional flags.

As mentioned, at the bottom of the HAL document, is a collection of details about the page. This extra
information makes it very easy for you to configure Ul tools like sliders or indicators to reflect overall
position the user is in viewing the data. For example, the document above shows we are looking at the
first page (with page numbers indexed to 0 being the first).

What happens if we follow the next link?

$ curl "http://localhost:8080/persons?page=1&size=5"

"_Tinks" : {
"self" : {
"href" : "http://localhost:8080/persons{&sort,projection,page,size}"”,
"templated" : true

¥
"next" : {
"href" : "http://localhost:8080/persons?page=2&size=5{&sort,projection}", <1>
"templated" : true
o
"prev" : {
"href" : "http://localhost:8080/persons?page=0&size=5{&sort,projection}", <2>
"templated" : true
}
¥
" embedded" : {
... data ...
H
"page" : {
"size" : 5,

"totalElements" : 50,
"totalPages" : 10,
"number" : 1 <3>

This looks very similar, except for the following differences:

@ The next link now points to yet another page, indicating it’s relative perspective to the self link.

@ A prev link now appears, giving us a path to the previous page.

® The current number is now 1 (indicating the second page).

This feature makes it quite easy to map optional buttons on the screen to these hypermedia controls,
hence allowing easy navigational features for the UI experience without having to hard code the URISs.

In fact, the user can be empowered to pick from a list of page sizes, dynamically changing the content
served, without having to rewrite the next and "prev controls at the top or bottom.

5.2. Sorting

Spring Data REST recognizes sorting parameters that will use the Repository sorting support.

To have your results sorted on a particular property, add a sort URL parameter with the name of the
property you want to sort the results on. You can control the direction of the sort by appending a , to
the the property name plus either asc or desc. The following would use the findByNameStartsWith query
method defined on the PersonRepository for all Person entities with names starting with the letter "K"

and add sort data that orders the results on the name property in descending order:

curl -v "http://localhost:8080/people/search/nameStartsWith?name=K&sort=name,desc"

To sort the results by more than one property, keep adding as many sort=PROPERTY parameters as you
need. They will be added to the Pageable in the order they appear in the query string.

Chapter 6. Domain Object Representations

6.1. Object Mapping

Spring Data REST returns a representation of a domain object that corresponds to the requested Accept
type specified in the HTTP request.

Currently, only JSON representations are supported. Other representation types can be supported in
the future by adding an appropriate converter and updating the controller methods with the
appropriate content-type.

Sometimes the behavior of the Spring Data REST’s ObjectMapper, which has been specially configured
to use intelligent serializers that can turn domain objects into links and back again, may not handle
your domain model correctly. There are so many ways one can structure your data that you may find
your own domain model isn’t being translated to JSON correctly. It’s also sometimes not practical in
these cases to try and support a complex domain model in a generic way. Sometimes, depending on the
complexity, it’s not even possible to offer a generic solution.

6.1.1. Adding custom (de)serializers to Jackson’s ObjectMapper

To accommodate the largest percentage of use cases, Spring Data REST tries very hard to render your
object graph correctly. It will try and serialize unmanaged beans as normal POJOs and it will try and
create links to managed beans where that’s necessary. But if your domain model doesn’t easily lend
itself to reading or writing plain JSON, you may want to configure Jackson’s ObjectMapper with your
own custom type mappings and (de)serializers.

Abstract class registration

One key configuration point you might need to hook into is when you’re using an abstract class (or an
interface) in your domain model. Jackson won’t know by default what implementation to create for an
interface. Take the following example:

public class MyEntity {

private List<MyInterface> interfaces;

}

In a default configuration, Jackson has no idea what class to instantiate when POSTing new data to the
exporter. This is something you’ll need to tell Jackson either through an annotation, or, more cleanly,
by registering a type mapping using a Module.

To add your own Jackson configuration to the ObjectMapper used by Spring Data REST, override the
configureJacksonObjectMapper method. That method will be passed an ObjectMapper instance that has a

special module to handle serializing and deserializing " PersistentEntity 's. You can register your own
modules as well, like in the following example.

protected void confiqgureJacksonObjectMapper(ObjectMapper objectMapper) {
objectMapper.registerModule(new SimpleModule("MyCustomModule") {

public void setupModule(SetupContext context) {
context.addAbstractTypeResolver(
new SimpleAbstractTypeResolver().addMapping(MyInterface.class,
MyInterfaceImpl.class)

1

Once you have access to the SetupContext object in your Module, you can do all sorts of cool things to
configure Jackson’s JSON mapping. You can read more about how Modules work on Jackson’s wiki:
http://wiki.fasterxml.com/JacksonFeatureModules

Adding custom serializers for domain types

If you want to (de)serialize a domain type in a special way, you can register your own implementations
with Jackson’s ObjectMapper and the Spring Data REST exporter will transparently handle those domain
objects correctly. To add serializers, from your setupModule method implementation, do something like
the following:

public void setupModule(SetupContext context) {
SimpleSerializers serializers = new SimpleSerializers();
SimpleDeserializers deserializers = new SimpleDeserializers();

serializers.addSerializer(MyEntity.class, new MyEntitySerializer());
deserializers.addDeserializer(MyEntity.class, new MyEntityDeserializer());

context.addSerializers(serializers);
context.addDeserializers(deserializers);

http://wiki.fasterxml.com/JacksonFeatureModules
http://wiki.fasterxml.com/JacksonFeatureModules

Chapter 7. Projections and Excerpts

Spring Data REST presents a default view of the domain model you are exporting. But sometimes, you
may need to alter the view of that model for various reasons. In this section, you will learn how to
define projections and excerpts to serve up simplified and reduced views of resources.

7.1. Projections

Look at the following domain model:

public class Person {

private Long 1id;
private String firstName, lastName;

private Address address;

This Person has several attributes:
* id is the primary key
» firstName and lastName are data attributes
* address is a link to another domain object

Now assume we create a corresponding repository as follows:
interface PersonRepository extends CrudRepository<Person, Long> {}

By default, Spring Data REST will export this domain object including all of its attributes. firstName and
lastName will be exported as the plain data objects that they are. There are two options regarding the
address attribute. One option is to also define a repository for Address objects like this:

interface AddressRepository extends CrudRepository<Address, Long> {}

In this situation, a Person resource will render the address attribute as a URI to it’s corresponding
Address resource. If we were to look up "Frodo" in the system, we could expect to see a HAL document

like this:

{
“firstName" : "Frodo",
"lastName" : "Baggins",
"_links" : {
"self" : {
"href" : "http://localhost:8080/persons/1"
¥
"address" : {
"href" : "http://localhost:8080/persons/1/address"
}
}
}

There is another route. If the Address domain object does not have it’s own repository definition, Spring
Data REST will inline the data fields right inside the Person resource.

{
"firstName" : "Frodo",
"lastName" : "Baggins",
"address" : {
"street": "Bag End",
"state": "The Shire",
"country": "Middle Earth"
I
" links" : {
"self" : {
"href" : "http://localhost:8080/persons/1"
}
}
}

But what if you don’t want address details at all? Again, by default, Spring Data REST will export all its
attributes (except the id). You can offer the consumer of your REST service an alternative by defining
one or more projections.

@Projection(name = "noAddresses", types = { Person.class }) <1>
interface NoAddresses { <2>

String getFirstName(); <3>

String getlLastName(); <4>
}

This projection has the following details:

@ The @Projection annotation flags this as a projection. The name atrributes provides the name of the
projection, which you’ll see how to use shortly. The types attributes targets this projection to only
apply to Person objects.

@ 1It’s a Java interface making it declarative.

® It exports the firstName.

@ It exports the lastName.

The NoAddresses projection only has getters for firstName and lastName meaning that it won’t serve up

any address information. Assuming you have a separate repository for Address resources, the default
view from Spring Data REST is slightly different as shown below:

{
"firstName" : "Frodo",
"lastName" : "Baggins",
" Tinks" : {
"self" : {
"href" : "http://localhost:8080/persons/1{?projection}", <1>
"templated" : true <2>
b
"address" : {
"href" : "http://localhost:8080/persons/1/address"
}
}
¥

@ There is a new option listed for this resource, {?projection}.
p

@ The self URI is a URI Template.

To view apply the projection to the resource, look up
http://localhost:8080/persons/1/projection=noAddresses.

The value supplied to the projection query parameter is the same as specified in
NOTE @Projection(name = "noAddress"). It has nothing to do with the name of the projection’s
interface.

It’s possible to have multiple projections.

NOTE Visit Projections to see an example project you can experiment with.

7.1.1. Finding existing projections

Spring Data REST provides hypermedia metadata by exposing Application-Level Profile Semantics
(ALPS) documents, a micro metadata format. To view the ALPS metadata, follow the profile link

http://localhost:8080/persons/1/projection=noAddresses

exposed by the root resource. If you navigate down to the ALPS document for Person resources (which
would be /alps/persons), you can find many details about Person resources. Projections will be listed
along with the details about the GET REST transitions, something like this:

"id" : "get-person", <1>
"name" : "person",
"type" : "SAFE",
“rt" : "#person-representation”,
"descriptors" : [{
“name" : "projection", <2>
"doc" : {
"value" : "The projection that shall be applied when rendering the response.
Acceptable values available in nested descriptors.”,
"format" : "TEXT"

}

ype" : "SEMANTIC",
"descriptors" : [{

"name" : "noAddresses", <3>

"type" : "SEMANTIC",

"descriptors" : [{
"name" : "firstName", <4>
"type" : "SEMANTIC"

oA
"name" : "lastName", <4>
"type" : "SEMANTIC"

F

}]
}]

}I

@ This part of the ALPS document shows details about GET and Person resources.
@ Further down are the projection options.
® Further down you can see projection noAddresses listed.

@ The actual attributes served up by this projection include firstName and lastName.

7.1.2. Bringing in hidden data

So far, you have seen how projections can be used to reduce the information that is presented to the
user. Projections can also bring in normally unseen data. For example, Spring Data REST will ignore
fields or getters that are marked up with @JsonIgnore annotations. Look at the following domain object:

public class User {

private Long id;
private String name;

<>
private String password;
private String[] roles;

@ Jackson’s @JsonIgnore is used to prevent the password field from getting serialized into JSON.

This User class can be used to store user information as well as integration with Spring Security. If you
create a UserRepository, the password field would normally have been exported. Not good! In this
example, we prevent that from happening by applying Jackson’s @JsonIgnore on the password field.

Jackson will also not serialize the field into JSON if @JsonIgnore is on the field’s

NOTE . .
corresponding getter function.

However, projections introduce the ability to still serve this field. It’s possible to create a projection like
this:

(name = "passwords", types = { User.class }) <2>
interface PasswordProjection {

String getPassword();
}

If such a projection is created and used, it will side step the @JsonIgnore directive placed on
User.password.

This example may seem a bit contrived, but it’s possible with a richer domain
model and many projections, to accidentally leak such details. Since Spring Data
REST cannot discern the sensitivity of such data, it is up to the developers to
avoid such situations.

IMPORTANT

7.2. EXcerpts

An excerpt is a projection that is applied to a repository automatically. For an example, you can alter
the PersonRepository as follows:

(excerptProjection = NoAddresses.class)
interface PersonRepository extends CrudRepository<Person, Long> {}

This directs Spring Data REST to use the NoAddresses projection when embedding Person resources into
collections or related resources.

NOTE Excerpt projections do NOT apply when rendering a single resource.

In addition to altering the default rendering, excerpts have additional rednering options as shown
below.

7.3. Excerpting commonly accessed data

A common situation with REST services arises when you compose domain objects. For example, a
Person is stored in one table and their related Address is stored in another. By default, Spring Data REST
will serve up the person’s address as a URI the client must navigate. But if it’s common for consumers to
always fetch this extra piece of data, an excerpt projection can go ahead and inline this extra piece of
data, saving you an extra GET. To do so, let’s define another excerpt projection:

(name = "inlineAddress", types = { Person.class }) <1>
interface InlineAddress {

String getFirstName();
String getLastName();

Address getAddress(); <2>
}

@ This projection has been named inlineAddress.

@ This projection adds in getAddress which returns the Address field. When used inside a projection, it
causes the information to be inlined.

We can plug it into the PersonRepository definition as follows:

(excerptProjection = InlineAddress.class)
interface PersonRepository extends CrudRepository<Person, Long> {}

This will cause the HAL document to appear as follows:

"firstName" : "Frodo",
"lastName" : "Baggins",
"address" : { <1>
"street": "Bag End",
"state": "The Shire",
"country": "Middle Earth"

H
"_Tinks" : {
"self" : {
"href" : "http://localhost:8080/persons/1"
I

"address" : { <>
"href" : "http://localhost:8080/persons/1/address"
}
}
¥

This should appear as a mix of what you’ve seen so far.
@ The address data is inlined directly, so you don’t have to navigate to get it.
@ The link to the Address resource is still provided, making it still possible to navigate to its own

resource.

Configuring @RepositoryRestResource(excerptProjection=) for a repository alters
WARNING the default behavior. This can potentially case breaking change to consumers of
your service if you have already made a release. Use with caution.

Chapter 8. Validation

There are two ways to register a Validator instance in Spring Data REST: wire it by bean name or
register the validator manually. For the majority of cases, the simple bean name prefix style will be
sufficient.

In order to tell Spring Data REST you want a particular Validator assigned to a particular event, you
simply prefix the bean name with the event you’re interested in. For example, to validate instances of
the Person class before new ones are saved into the repository, you would declare an instance of a
Validator<Person> in your ApplicationContext with the bean name "beforeCreatePersonValidator".
Since the prefix "beforeCreate" matches a known Spring Data REST event, that validator will be wired
to the correct event.

8.1. Assigning Validators manually

If you would rather not use the bean name prefix approach, then you simply need to register an
instance of your validator with the bean whose job it is to invoke validators after the correct event. In
your configuration that subclasses Spring Data REST’s RepositoryRestMvcConfiguration, override the
configureValidatingRepositoryEventListener method and call the addValidator method on the
ValidatingRepositoryEventListener, passing the event you want this validator to be triggered on, and
an instance of the validator.

protected void configureValidatingRepositoryEventListener
(ValidatingRepositoryEventListener v) {
v.addValidator("beforeSave", new BeforeSaveValidator());

}

Chapter 9. Events

There are eight different events that the REST exporter emits throughout the process of working with
an entity. Those are:

¢ BeforeCreateEvent

AfterCreateEvent

* BeforeSaveEvent

AfterSaveEvent

BeforeLinkSaveEvent

AfterLinkSaveEvent

BeforeDeleteEvent

AfterDeleteEvent

9.1. Writing an ApplicationListener

There is an abstract class you can subclass which listens for these kinds of events and calls the
appropriate method based on the event type. You just override the methods for the events you’re
interested in.

public class BeforeSaveEventListener extends AbstractRepositoryEventListener {

public void onBeforeSave(Object entity) {
... logic to handle inspecting the entity before the Repository saves it

}

public void onAfterDelete(Object entity) {
. send a message that this entity has been deleted
}
}

One thing to note with this approach, however, is that it makes no distinction based on the type of the
entity. You’ll have to inspect that yourself.

9.2. Writing an annotated handler

Another approach is to use an annotated handler, which does filter events based on domain type.

To declare a handler, create a POJO and put the @RepositoryEventHandler annotation on it. This tells the
BeanPostProcessor that this class needs to be inspected for handler methods.

Once it finds a bean with this annotation, it iterates over the exposed methods and looks for
annotations that correspond to the event you’re interested in. For example, to handle
BeforeSaveEvents in an annotated POJO for different kinds of domain types, you’d define your class
like this:

public class PersonEventHandler {

(Person.class) public void handlePersonSave(Person p) {
... you can now deal with Person in a type-safe way

}

(Profile.class) public void handleProfileSave(Profile p) {
... you can now deal with Profile in a type-safe way

}
}

You can also declare the domain type at the class level:

(Person.class)
public class PersonEventHandler {

public void handleBeforeSave(Person p) {

public void handleAfterDelete(Person p) {

Just declare an instance of your annotated bean in your ApplicationContext and the BeanPostProcessor
that is by default created in RepositoryRestMvcConfiguration will inspect the bean for handlers and wire
them to the correct events.

@Configuration
public class RepositoryConfiguration {

@Bean PersonEventHandler personEventHandler() {
return new PersonEventHandler();
}
}

Chapter 10. Metadata

This section details the various forms of metadata provided by a Spring Data REST-based application.

10.1. Application-Level Profile Semantics (ALPS)

ALPS is a data format for defining simple descriptions of application-level
semantics, similar in complexity to HTML microformats. An ALPS document
can be used as a profile to explain the application semantics of a document
with an application-agnostic media type (such as HTML, HAL, Collection+JSON,
Siren, etc.). This increases the reusability of profile documents across media

types.

— M. Admundsen / L. Richardson / M. Foster, http://tools.ietf.org/html/draft-amundsen-richardson-foster-alps-00

Spring Data REST provides an ALPS document for every exported repository. It contains information
about both the RESTful transitions as well as the attributes of each repository.

At the root of a Spring Data REST app is a profile link. Assuming you had an app with both persons
and related address, the root document would look like this:

{
"_links" : {
"persons” : {
"href" : "http://localhost:8080/persons”
}
"addresses" : {
"href" : "http://localhost:8080/addresses"
I
"profile" : {
"href" : "http://localhost:8080/alps”
}
}
}

A profile link, as defined in RFC 6906, is a place to include application level details. The ALPS draft
spec is meant to define a particular profile format which we’ll explore further down in this section.

If you navigate into the profile link at localhost:80806/alps, you would see something like this:

http://alps.io/
https://tools.ietf.org/html/rfc6906
http://tools.ietf.org/html/draft-amundsen-richardson-foster-alps-00
http://tools.ietf.org/html/draft-amundsen-richardson-foster-alps-00

{

"version" : "1.0",

"descriptors" : [{
"href" : "http://localhost:8080/alps/persons”,
“name" : "persons"

5o
"href" : "http://localhost:8080/alps/addresses",
"name" : "addresses"

P

}

At the root level, profile is a single link and hence can’t handle serving up more
IMPORTANT than one application profile. That is why you must navigate to /alps to find a
link for each resource’s ALPS metadata.

This JSON document has a media type of application/alps+json. This is different than
NOTE the previous JSON document, which had a media type of application/hal+json. These
formats are different and governed by different specs.

Let’s navigate to /alps/persons and look at the profile data for a Person resource.

{

"version" : "1.0",
"descriptors" : [{
"id" : "person-representation”,
"descriptors" : [{
"name" : "firstName",
"type" : "SEMANTIC"
|
"name" : "lastName",
"type" : "SEMANTIC"
3o
"name" : "id",
"type" : "SEMANTIC"
fi
"name" : "address",
"type" : "SAFE",
"rt"
P
o
"id" : "create-persons", <2>
"name" : "persons", <3>
"type" : "UNSAFE", <4>
“rt" : "#person-representation”
L
"id" : "get-persons",
"name" : "persons",
"type" : "SAFE",
"rt" : "#person-representation”
Iy 4
"id" : "delete-person",
“name" : "person",
"type" : "IDEMPOTENT",
“rt" : "#person-representation”
oA
"id" : "patch-person",
“name" : "person",
"type" : "UNSAFE",
“rt" : "#person-representation”
oA
"id" : "update-person",
“name" : "person",
"type" : "IDEMPOTENT",
“rt" : "#person-representation”
Fo
"id" : "get-person",
“name" : "person",
"type" : "SAFE",

<1>

"http://localhost:8080/addresses#faddress”

<5>

"rt" : "#person-representation”
P
}

@ At the top is a detailed listing of the attributes of a Person resource, identified as #person-
representation. It lists the names of the attributes.

@ After the resource representation are all the supported operations. This one is how to create a new
Person.

® The name is persons, which indicates that a POST should be applied to the whole collection, not a
single person.

@ The type is UNSAFE because this operation can alter the state of the system. <5>

10.1.1. Hypermedia control types
ALPS displays types for each hypermedia control. They include:
Table 1. ALPS types

Type Description

SEMANTIC A state element (e.g. HTML.SPAN, HTML.INPUT, etc.).

SAFE A hypermedia control that triggers a safe, idempotent state transition (e.g. GET or
HEAD).

IDEMPOTENT A hypermedia control that triggers an unsafe, idempotent state transition (e.g. PUT
or DELETE).

UNSAFE A hypermedia control that triggers an unsafe, non-idempotent state transition (e.g.
POST).

In the representation section up above, bits of data from the application are marked SEMANTIC. The
address field is a link that involves a safe GET to retrive. Hence, it is marked SAFE. Hypermedia
operations themselves map onto the types as shown the table.

10.1.2. ALPS with Projections

If you define any projections, they are also listed in the ALPS metadata. Assuming we also defined
inlineAddress and noAddresses, they would appear inside the relevant operations, i.e. GET for the
whole collection as well GET for a single resource. The following shows the alternate version of the
get-persons subsection:

"id" : "get-persons",
"name" : "persons",
"type" : "SAFE",
“rt" : "#person-representation”,
"descriptors" : [{ <1>
"name" : "projection",
"doc" : {
"value" : "The projection that shall be applied when rendering the response.
Acceptable values available in nested descriptors.”,
"format" : "TEXT"
b
"type" : "SEMANTIC",
"descriptors" : [{
"name" : "inlineAddress", <2>
"type" : "SEMANTIC",
"descriptors" : [{

"name" : "address",
"type" : "SEMANTIC"
}oA
"name" : "firstName",
"type" : "SEMANTIC"
FoA
"name" : "lastName",
"type" : "SEMANTIC"
}
}oAo
"name" : "noAddresses", <3>

"type" : "SEMANTIC",
"descriptors" : [{

"name" : "firstName",
"type" : "SEMANTIC"

oA
"name" : "lastName",
"type" : "SEMANTIC"

}

F
}]

}

@ A new attribute, descriptors, appears containing an array with one entry, projection.

@ Inside the projection.descriptors we can see inLineAddress listed. It will render address,
firstName, and lastName. Relationships rendered inside a projection result in inlining the data
fields.

® Also found is noAddresses, which serves up a subset containing firstName and lastName.

With all this information, a client should be able to deduce not only the RESTful transitions avaiable,
but also, to some degree, the data elements needed to interact.

10.1.3. Adding custom details to your ALPS descriptions

It’s possible to create custom messages that appear in your ALPS metadata. Just create rest-
messages.properties like this:

rest.description.person=A collection of people

rest.description.person.id=primary key used internally to store a person (not for RESTful
usage)

rest.description.person.firstName=Person's first name
rest.description.person.lastName=Person's last name
rest.description.person.address=Person's address

As you can see, this defines details to display for a Person resource. They alter the ALPS format of the
person-representation as follows:

{

"id" : "person-representation”,
"doc" : {
"value" : "A collection of people", <1>
"format" : "TEXT"
I
"descriptors" : [{
"name" : "firstName",
"doc" : {
"value" : "Person's first name", <2>
"format" : "TEXT"
}
"type" : "SEMANTIC"
}oAo
"name" : "lastName",
"doc" : {
"value" : "Person's last name", <3>
"format" : "TEXT"
I
"type" : "SEMANTIC"
FoA
"name" : "id",
"doc" : {
"value" : "primary key used internally to store a person (not for RESTful usage)
", <4>
"format" : "TEXT"
I
"type" : "SEMANTIC"
b
"name" : "address",
"doc" : {
"value" : "Person's address", <5>
"format" : "TEXT"
}
"type" : "SAFE",
"rt" : "http://localhost:8080/addresses#address”
P

}

By supplying these property settings, each field has an extra doc attribute.
@ The value of rest.description.person maps into the whole representation.
@ The value of rest.description.person.firstName maps to the firstName attribute.

® The value of rest.description.person.lastName maps to the lastName attribute.

@ The value of rest.description.person.id maps to the id attribute, a field not normally displayed.
® The value of rest.description.person.address maps to the address attribute.

Spring MVC (which is the essence of a Spring Data REST application) supports locales,

NOTE
meaning you can bundle up multiple properties files with different messages.

Chapter 11. Customizing Spring Data REST

There are many options to tailor Spring Data REST. These subsections show how.

11.1. Configuring the REST URL path

Configuring the segments of the URL path under which the resources of a JPA repository are exported
is simple. You just add an annotation at the class level and/or at the query method level.

By default, the exporter will expose your CrudRepository using the name of the domain class. Spring
Data REST also applies the Evo Inflector to pluralize this word. So a repository defined as follows:

interface PersonRepository extends CrudRepository<Person, Long> {}

Will, by default, be exposed under the URL http://localhost:8080/persons/

To change how the repository is exported, add a @RestResource annotation at the class level:

(path = "people")
interface PersonRepository extends CrudRepository<Person, Long> {}

Now the repository will be accessible under the URL: http://localhost:8080/people/

If you have query methods defined, those also default to be exposed by their name:

interface PersonRepository extends CrudRepository<Person, Long> {

List<Person> findByName(String name);

}

This would be exposed under the URL: http://localhost:8080/persons/search/findByName
NOTE All query method resources are exposed under the resource search.

To change the segment of the URL under which this query method is exposed, use the @RestResource
annotation again:

https://github.com/atteo/evo-inflector
http://localhost:8080/persons/
http://localhost:8080/people/
http://localhost:8080/persons/search/findByName

@RestResource(path = "people")
interface PersonRepository extends CrudRepository<Person, Long> {

@RestResource(path = "names")
List<Person> findByName(String name);

}

Now this query method will be exposed under the URL: http://localhost:8080/people/search/names

11.1.1. Handling rels

Since these resources are all discoverable, you can also affect how the "rel" attribute is displayed in the
links sent out by the exporter.

For instance, in the default -configuration, if you issue a request to
http://localhost:8080/persons/search to find out what query methods are exposed, you’ll get back a
list of links:

{
" _links" : {
"findByName" : {
"href" : "http://localhost:8080/persons/search/findByName"
}
}
¥

To change the rel value, use the rel property on the @RestResource annotation:

@RestResource(path = "people")
interface PersonRepository extends CrudRepository<Person, Long> {

@RestResource(path = "names", rel = "names")
List<Person> findByName(String name);

}

This would result in a link value of:

http://localhost:8080/people/search/names
http://localhost:8080/persons/search

"_Tinks" : {
"names" : {
"href" : "http://localhost:8080/persons/search/names"
}
}
}

These snippets of JSON assume you are using Spring Data REST’s default format of HAL.
NOTE It’s possible to turn off HAL, which would cause the output to look different. But your
ability to override rel names is totally independent of the rendering format.

(path = "people", rel = "people")
interface PersonRepository extends CrudRepository<Person, Long> {

(path = "names", rel = "names")

List<Person> findByName(String name);

}

Altering the rel of a Repository changes the top level name:

{
"_links" : {
"people" : {
"href" : "http://localhost:8080/people”
b
}
¥

In the top level fragment above:
» path = "people" changed the value in href from /persons to /people
* rel = "people"” changed the name of that link from persons to people

When you navigate to the search resource of this repository, the finder-method’s @RestResource
annotation has altered the path as shown below:

http://stateless.co/hal_specification.html

{
"_Tinks" : {
"names" : {
"href" : "http://localhost:8080/people/search/names"
}
}
}

This collection of annotations in your Repository definition has caused the following changes:
* The Repository-level annotation’s path = "people” is reflected in the base URI with /people
* Being a finder method provides you with /people/search
* path = "names" creates a URI of /people/search/names

* rel = "names" changes the name of that link from findByNames to names

11.1.2. Hiding certain repositories, query methods, or fields

You may not want a certain repository, a query method on a repository, or a field of your entity to be
exported at all. Examples include hiding fields like password on a User object or similar sensitive data.
To tell the exporter to not export these items, annotate them with @RestResource and set exported =
false.

For example, to skip exporting a Repository:

(exported = false)
interface PersonRepository extends CrudRepository<Person, Long> {}

To skip exporting a query method:

(path = "people", rel = "people")
interface PersonRepository extends CrudRepository<Person, Long> {

(exported = false)

List<Person> findByName(String name);

}

Or to skip exporting a field:

public class Person {

private Long id;

(exported = false)
private Map<String, Profile> profiles;

}

Projections provide the means to change what is exported and effectively side step
WARNING these settings. If you create any projections against the same domain object, it’s
your responsiblity to NOT export the fields.

11.1.3. Hiding repository CRUD methods

If you don’t want to expose a save or delete method on your CrudRepository, you can use the
@RestResource(exported = false) setting by overriding the method you want to turn off and placing the
annotation on the overriden version. For example, to prevent HTTP users from invoking the delete
methods of CrudRepository, override all of them and add the annotation to the overriden methods.

(path = "people", rel = "people")
interface PersonRepository extends CrudRepository<Person, Long> {

(exported = false)

void delete(Long id);

(exported = false)
void delete(Person entity);

}

It is important that you override both delete methods as the exporter currently
uses a somewhat naive algorithm for determing which CRUD method to use in the
interest of faster runtime performance. It’s not currently possible to turn off the

WARNING version of delete which takes an ID but leave exported the version that takes an
entity instance. For the time being, you can either export the delete methods or
not. If you want turn them off, then just keep in mind you have to annotate both
versions with exported = false.

11.2. Adding Spring Data REST to an existing Spring MVC
Application

If you have an existing Spring MVC application and you’d like to integrate Spring Data REST, it’s
actually very easy.

Somewhere in your Spring MVC configuration (most likely where you configure your MVC resources)
add a bean reference to the JavaConfig class that is responsible for configuring the
RepositoryRestController. The class name is
org.springframework.data.rest.webmvc.RepositoryRestMvcConfiguration.

In Java, this would look like:

import org.springframework.context.annotation.Import;
import org.springframework.data.rest.webmvc.RepositoryRestMvcConfiguration;

(RepositoryRestMvConfiguration.class)
public class MyApplicationConfiguration {

In XML this would look like:

<bean class="org.springframework.data.rest.webmvc.config.RepositoryRestMvcConfiguration
Il/>

When your ApplicationContext comes across this bean definition it will bootstrap the necessary Spring
MVC resources to fully-configure the controller for exporting the repositories it finds in that
ApplicationContext and any parent contexts.

11.2.1. More on required configuration

There are a couple Spring MVC resources that Spring Data REST depends on that must be configured
correctly for it to work inside an existing Spring MVC application. We’ve tried to isolate those resources
from whatever similar resources already exist within your application, but it may be that you want to
customize some of the behavior of Spring Data REST by modifying these MVC components.

The most important things that we configure especially for use by Spring Data REST include:

RepositoryRestHandlerMapping

We register a custom HandlerMapping instance that responds only to the RepositoryRestController and
only if a path is meant to be handled by Spring Data REST. In order to keep paths that are meant to be
handled by your application separate from those handled by Spring Data REST, this custom
HandlerMapping inspects the URL path and checks to see if a Repository has been exported under that
name. If it has, it allows the request to be handled by Spring Data REST. If there is no Repository
exported under that name, it returns null, which just means "let other HandlerMapping instances try to
service this request".

The Spring Data REST HandlerMapping is configured with order=(Ordered.LOWEST_PRECEDENCE - 100)
which means it will usually be first in line when it comes time to map a URL path. Your existing
application will never get a chance to service a request that is meant for a repository. For example, if
you have a repository exported under the name "person”, then all requests to your application that
start with /person will be handled by Spring Data REST and your application will never see that
request. If your repository is exported under a different name, however (like "people"), then requests
to /people will go to Spring Data REST and requests to "/person” will be handled by your application.

11.3. Overriding Spring Data REST Response Handlers

Sometimes you may want to write a custom handler for a specific resource. To take advantage of
Spring Data REST’s settings, message converters, exception handling, and more, use the
@RepositoryRestController annotation instead of a standard Spring MVC @Controller or
@RestController:

public class ScannerController {

private final ScannerRepository repository;

public ScannerController(ScannerRepository repo) { // <1>
repository = repo;

}

(method = GET, value = "/scanners/search/listProducers") // <2>
public List<String> getProducers() {
List<String> producers = repository.listProducers(); // <3>

//
// do some intermediate processing, logging, etc. with the producers
//

return producers; // or some filtered/altered/mapped version

This controller will be served from the same API base path defined in
RepositoryRestConfiguration.setBasePath that is used by all other RESTful endpoints (e.g. /api). It also
has these characteristics:

@ This example uses constructor injection.
@ This handler plugs in a custom handler for a Spring Data finder method.
® This handler is using the underlying repository to fetch data, but will tehn do some form of post

processing before returning the final data set to the client.

In this example, the combined path will be

IMPORTANT
RepositoryRestConfiguration.getBasePath() + /scanners/search/listProducers.

If you're NOT interested in entity-specific operations but still want to build custom operations
underneath basePath, such as Spring MVC views, resources, etc. use @BasePathAwareController.

If you use @Controller or @RestController for anything, that code will be totally
WARNING outside the scope of Spring Data REST. This extends to request handling, message
converters, exception handling, etc.

11.4. Customizing the JSON output

Sometimes in your application you need to provide links to other resources from a particular entity.

For example, a Customer response might be enriched with links to a current shopping cart, or links to
manage resources related to that entity. Spring Data REST provides integration with Spring HATEOAS
and provides an extension hook for users to alter the representation of resources going out to the
client.

11.4.1. The ResourceProcessor interface

Spring HATEOAS defines a ResourceProcessor<> interface for processing entities. All beans of type
ResourceProcessor<Resource<T>> will be automatically picked up by the Spring Data REST exporter and
triggered when serializing an entity of type T.

For example, to define a processor for a Person entity, add a @Bean to your "ApplicationContext like the
following (which is taken from the Spring Data REST tests):

public ResourceProcessor<Resource<Person>> personProcessor() {

return new ResourceProcessor<Resource<Person>>() {

public Resource<Person> process(Resource<Person> resource) {

resource.add(new Link("http://localhost:8080/people", "added-link"));
return resource;

}
+;

This example hard codes a link to http://localhost:8080/people. If you have a
IMPORTANT Spring MVC endpoint inside your app that you wish to link to, consider using
Spring HATEOAS’s 1inkTo() method to avoid managing the URL.

11.4.2. Adding Links

It’s possible to add links to the default representation of an entity by simply calling resource.add(Link)
like the example above. Any links you add to the Resource will be added to the final output.

11.4.3. Customizing the representation

The Spring Data REST exporter executes any discovered ResourceProcessor's before it creates the
output representation. It does this by registering a ‘Converter<Entity, Resource> instance with an
internal ConversionService. This is the component responsible for creating the links to referenced
entities (e.g. those objects under the _links property in the object’s JSON representation). It takes an
@Entity and iterates over its properties, creating links for those properties that are managed by a
Repository and copying across any embedded or simple properties.

https://github.com/SpringSource/spring-hateoas
http://localhost:8080/people
https://github.com/spring-projects/spring-hateoas#building-links-pointing-to-methods

If your project needs to have output in a different format, however, it’s possible to completely replace
the default outgoing JSON representation with your own. If you register your own ConversionService in
the ApplicationContext and register your own Converter<Person, Resource>, then you can return a
Resource implementation of your choosing.

11.5. Adding custom (de)serializers to Jackson’s
ObjectMapper

Sometimes the behavior of the Spring Data REST’s ObjectMapper, which has been specially configured to
use intelligent serializers that can turn domain objects into links and back again, may not handle your
domain model correctly. There are so many ways one can structure your data that you may find your
own domain model isn’t being translated to JSON correctly. It’s also sometimes not practical in these
cases to try and support a complex domain model in a generic way. Sometimes, depending on the
complexity, it’s not even possible to offer a generic solution.

So to accommodate the largest percentage of the use cases, Spring Data REST tries very hard to render
your object graph correctly. It will try and serialize unmanaged beans as normal POJOs and it will try
and create links to managed beans where that’s necessary. But if your domain model doesn’t easily
lend itself to reading or writing plain JSON, you may want to configure Jackson’s ObjectMapper with
your own custom type mappings and (de)serializers.

11.5.1. Abstract class registration

One key configuration point you might need to hook into is when you’re using an abstract class (or an
interface) in your domain model. Jackson won’t know by default what implementation to create for an
interface. Take the following example:

public class MyEntity {

private List<MyInterface> interfaces;

}

In a default configuration, Jackson has no idea what class to instantiate when POSTing new data to the
exporter. This is something you’ll need to tell Jackson either through an annotation, or, more cleanly,
by registering a type mapping using a Module.

Any Module bean declared within the scope of your ApplicationContext will be picked up by the
exporter and registered with its ObjectMapper. To add this special abstract class type mapping, create a
Module bean and in the setupModule method, add an appropriate TypeResolver:

http://wiki.fasterxml.com/JacksonFeatureModules

public class MyCustomModule extends SimpleModule {

private MyCustomModule() {
super ("MyCustomModule", new Version(1, @, @, "SNAPSHOT"));

}

public void setupModule(SetupContext context) {
context.addAbstractTypeResolver(
new SimpleAbstractTypeResolver().addMapping(MyInterface.class,
MyInterfaceImpl.class));

Once you have access to the SetupContext object in your Module, you can do all sorts of cool things to
configure Jackon’s JSON mapping. You can read more about how Module "s work on Jackson’s wiki.

11.5.2. Adding custom serializers for domain types

If you want to (de)serialize a domain type in a special way, you can register your own implementations
with Jackson’s ObjectMapper and the Spring Data REST exporter will transparently handle those domain
objects correctly.

To add serializers, from your setupModule method implementation, do something like the following:

public class MyCustomModule extends SimpleModule {

public void setupModule(SetupContext context) {

SimpleSerializers serializers = new SimpleSerializers();
SimpleDeserializers deserializers = new SimpleDeserializers();

serializers.addSerializer(MyEntity.class, new MyEntitySerializer());
deserializers.addDeserializer (MyEntity.class, new MyEntityDeserializer());

context.addSerializers(serializers);
context.addDeserializers(deserializers);

Now Spring Data REST will correctly handle your domain objects in case they are too complex for the
80% generic use case that Spring Data REST tries to cover.

http://wiki.fasterxml.com/JacksonFeatureModules

Appendix

Appendix A: Using cURL to talk to Spring Data
REST

This appendix contains a list of guides that demonstrate interacting with a Spring Data REST service
via cURL:

* Accessing JPA Data with REST
* Accessing Neo4j Data with REST
* Accessing MongoDB Data with REST

» Accessing GemFire Data with REST

https://spring.io/guides/gs/accessing-data-rest/
https://spring.io/guides/gs/accessing-neo4j-data-rest/
https://spring.io/guides/gs/accessing-mongodb-data-rest/
https://spring.io/guides/gs/accessing-gemfire-data-rest/

Appendix B: Spring Data REST example
projects

This appendix contains a list of Spring Data REST sample applications. The exact version of each
example isn’t guaranteed to match the version of this reference manual.

To get them all, visit https://github.com/spring-projects/spring-data-examples and either
NOTE clone or download a zipball. This will give you example apps for ALL supported Spring
Data projects. Simply avigate to spring-data-examples/rest.

Multi-store example

This example shows how to mix together several underlying Spring Data projects.

Projections

This example contains more detailed code you can use to poke around with projections.

Spring Data REST + Spring Security

This example shows how to secure a Spring Data REST application in multiple ways with Spring
Security.

Starbucks example

This example exposes 10843 Starbucks coffee shops via a RESTful API that allows to access the stores in
a hypermedia based way and exposes a resource to execute geo-location search for coffee shops.

https://github.com/spring-projects/spring-data-examples
https://github.com/spring-projects/spring-data-examples/tree/master/rest/multi-store
https://github.com/spring-projects/spring-data-examples/tree/master/rest/projections
https://github.com/spring-projects/spring-data-examples/tree/master/rest/security
http://projects.spring.io/spring-data-rest
http://projects.spring.io/spring-security
http://projects.spring.io/spring-security
https://github.com/spring-projects/spring-data-examples/tree/master/rest/starbucks

	Spring Data REST Reference Documentation
	Table of Contents
	Preface
	Chapter 1. Project metadata

	Reference Documentation
	Chapter 2. Introduction
	Chapter 3. Getting started
	3.1. Introduction
	3.2. Adding Spring Data REST to a Spring Boot project
	3.3. Adding Spring Data REST to a Gradle project
	3.4. Adding Spring Data REST to a Maven project
	3.5. Configuring Spring Data REST
	3.6. Starting the application

	Chapter 4. Repository resources
	4.1. Fundamentals
	4.1.1. Default status codes
	4.1.2. Resource discoverability

	4.2. The collection resource
	4.2.1. Supported HTTP Methods

	4.3. The item resource
	4.3.1. Supported HTTP methods

	4.4. The association resource
	4.4.1. Supported HTTP methods

	4.5. The search resource
	4.5.1. Supported HTTP methods

	4.6. The query method resource
	4.6.1. Supported HTTP methods

	Chapter 5. Paging and Sorting
	5.1. Paging
	5.1.1. Previous and Next Links

	5.2. Sorting

	Chapter 6. Domain Object Representations
	6.1. Object Mapping
	6.1.1. Adding custom (de)serializers to Jackson’s ObjectMapper

	Chapter 7. Projections and Excerpts
	7.1. Projections
	7.1.1. Finding existing projections
	7.1.2. Bringing in hidden data

	7.2. Excerpts
	7.3. Excerpting commonly accessed data

	Chapter 8. Validation
	8.1. Assigning Validators manually

	Chapter 9. Events
	9.1. Writing an ApplicationListener
	9.2. Writing an annotated handler

	Chapter 10. Metadata
	10.1. Application-Level Profile Semantics (ALPS)
	10.1.1. Hypermedia control types
	10.1.2. ALPS with Projections
	10.1.3. Adding custom details to your ALPS descriptions

	Chapter 11. Customizing Spring Data REST
	11.1. Configuring the REST URL path
	11.1.1. Handling rels
	11.1.2. Hiding certain repositories, query methods, or fields
	11.1.3. Hiding repository CRUD methods

	11.2. Adding Spring Data REST to an existing Spring MVC Application
	11.2.1. More on required configuration

	11.3. Overriding Spring Data REST Response Handlers
	11.4. Customizing the JSON output
	11.4.1. The ResourceProcessor interface
	11.4.2. Adding Links
	11.4.3. Customizing the representation

	11.5. Adding custom (de)serializers to Jackson’s ObjectMapper
	11.5.1. Abstract class registration
	11.5.2. Adding custom serializers for domain types

	Appendix
	Appendix A: Using cURL to talk to Spring Data REST
	Appendix B: Spring Data REST example projects
	Multi-store example
	Projections
	Spring Data REST + Spring Security
	Starbucks example

