Spring Data REST - Reference
Documentation

Jon Brisbin, Oliver Gierke, Greg Turnquist

Version 3.0.0.M3, 2017-05-09

Table of Contents

Preface
1. Project metadata
2. Dependencies
2.1. Dependency management with Spring Boot
2.2. Spring Framework
Reference Documentation
3. Introduction
4. Getting started
4.1. Introduction
4.2. Adding Spring Data REST to a Spring Boot project
4.3. Adding Spring Data REST to a Gradle project
4.4. Adding Spring Data REST to a Maven project
4.5. Configuring Spring Data REST
4.6. Basic settings for Spring Data REST
4.6.1. Which repositories get exposed by defaults?
4.6.2. Changing the base URI
4.6.3. Changing other Spring Data REST properties
4.7. Starting the application
5. Repository resources
5.1. Fundamentals
5.1.1. Default status codes
5.1.2. Resource discoverability
5.2. The collection resource
5.2.1. Supported HTTP Methods
5.3. The item resource
5.3.1. Supported HTTP methods
5.4. The association resource
5.4.1. Supported HTTP methods
5.5. The search resource
5.5.1. Supported HTTP methods
5.6. The query method resource
5.6.1. Supported HTTP methods
6. Paging and Sorting
6.1. Paging
6.1.1. Previous and Next Links
6.2. Sorting
7. Domain Object Representations
7.1. Object Mapping

© © © O 0 W 00 0 N O U1 U1 = W N

T N T N T N T N B N S O e S o S S S G T e T e T S e S S G W G B G WY
BB D O O O 00 00 00 00 1 1 Ul Ul b R W W W W R = O

7.1.1. Adding custom (de)serializers to Jackson’s ObjectMapper

8. Projections and Excerpts
8.1. Projections
8.1.1. Finding existing projections
8.1.2. Bringing in hidden data
8.2. Excerpts
8.3. Excerpting commonly accessed data
9. Conditional Operations with Headers
9.1. ETag, If-Match, and If-None-Match headers
9.2. If-Modified-Since header
9.3. Architecting a more efficient frontend
10. Validation
10.1. Assigning Validators manually
11. Events
11.1. Writing an ApplicationListener
11.2. Writing an annotated handler
12. Integration
12.1. Programmatic Links
13. Metadata
13.1. Application-Level Profile Semantics (ALPS)
13.1.1. Hypermedia control types
13.1.2. ALPS with Projections
13.1.3. Adding custom details to your ALPS descriptions
13.2. JSON Schema
14. Security
14.1. @Pre and @Post security
14.2. @Secured security
14.3. Enabling method level security
15. Tools
15.1. The HAL Browser
16. Customizing Spring Data REST
16.1. Customizing item resource URIs
16.2. Configuring the REST URL path
16.2.1. Handling rels

16.2.2. Hiding certain repositories, query methods, or fields

16.2.3. Hiding repository CRUD methods

16.3. Adding Spring Data REST to an existing Spring MVC Application

16.3.1. More on required configuration
16.4. Overriding Spring Data REST Response Handlers
16.5. Customizing the JSON output

16.5.1. The ResourceProcessor interface

24
26
26
29
30
31
32
34
34
35
36
37
37
38
38
38
40
40
42
42
45
46
48
50
53
53
54
54
56
56
60
60
61
62
64
65
66
66
67
69
69

16.5.2. Adding Links
16.5.3. Customizing the representation
16.6. Adding custom (de)serializers to Jackson’s ObjectMapper
16.6.1. Abstract class registration
16.6.2. Adding custom serializers for domain types
16.7. Configuring CORS
16.7.1. Repository interface CORS configuration
16.7.2. Repository REST Controller method CORS configuration
16.7.3. Global CORS configuration
Appendix
Appendix A: Using cURL to talk to Spring Data REST
Appendix B: Spring Data REST example projects
Multi-store example
Projections
Spring Data REST + Spring Security

Starbucks example

70
70
70
70
71
72
72
73
73
74
75
76
76
76
76
76

© 2012-2015 Original authors

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that
each copy contains this Copyright Notice, whether distributed in print or
electronically.

NOTE

Preface

Chapter 1. Project metadata

 Version control - https://github.com/spring-projects/spring-data-rest
* Bugtracker - https://jira.spring.io/browse/DATAREST

* Project page - http://projects.spring.io/spring-data-rest

* Release repository - https://repo.spring.io/libs-release

* Milestone repository - https://repo.spring.io/libs-milestone

* Snapshot repository - https://repo.spring.io/libs-snapshot

https://github.com/spring-projects/spring-data-rest
https://jira.spring.io/browse/DATAREST
http://projects.spring.io/spring-data-rest
https://repo.spring.io/libs-release
https://repo.spring.io/libs-milestone
https://repo.spring.io/libs-snapshot

Chapter 2. Dependencies

Due to different inception dates of individual Spring Data modules, most of them carry different
major and minor version numbers. The easiest way to find compatible ones is by relying on the
Spring Data Release Train BOM we ship with the compatible versions defined. In a Maven project
youw’d declare this dependency in the <dependencyManagement /> section of your POM:

Example 1. Using the Spring Data release train BOM

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-releasetrain</artifactId>
<version>${release-train}</version>
<scope>import</scope>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>

The current release train version is Kay-M3. The train names are ascending alphabetically and
currently available ones are listed here. The version name follows the following pattern: ${name}-
${release} where release can be one of the following:

BUILD-SNAPSHOT - current snapshots

M1, M2 etc. - milestones

RCT, RC2 etc. - release candidates

RELEASE - GA release

SR1, SR2 etc. - service releases

A working example of using the BOMs can be found in our Spring Data examples repository. If
that’s in place declare the Spring Data modules you’d like to use without a version in the
<dependencies /> block.

Example 2. Declaring a dependency to a Spring Data module

<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-jpa</artifactld>
</dependency>
<dependencies>

https://github.com/spring-projects/spring-data-commons/wiki/Release-planning
https://github.com/spring-projects/spring-data-examples/tree/master/bom

2.1. Dependency management with Spring Boot

Spring Boot already selects a very recent version of Spring Data modules for you. In case you want
to upgrade to a newer version nonetheless, simply configure the property spring-data-
releasetrain.version to the train name and iteration you’d like to use.

2.2. Spring Framework

The current version of Spring Data modules require Spring Framework in version 5.0.0.RC1 or
better. The modules might also work with an older bugfix version of that minor version. However,
using the most recent version within that generation is highly recommended.

Reference Documentation

Chapter 3. Introduction

REST web services have become the number one means for application integration on the web. In
its core, REST defines that a system consists of resources that clients interact with. These resources
are implemented in a hypermedia driven way. Spring MVC offers a solid foundation to build theses
kinds of services. But implementing even the simplest tenet of REST web services for a multi-
domain object system can be quite tedious and result in a lot of boilerplate code.

Spring Data REST builds on top of Spring Data repositories and automatically exports those as REST
resources. It leverages hypermedia to allow clients to find functionality exposed by the repositories
and integrates these resources into related hypermedia based functionality automatically.

Chapter 4. Getting started

4.1. Introduction

Spring Data REST is itself a Spring MVC application and is designed in such a way that it should
integrate with your existing Spring MVC applications with very little effort. An existing (or future)
layer of services can run alongside Spring Data REST with only minor considerations.

4.2. Adding Spring Data REST to a Spring Boot project

The simplest way to get to started is if you are building a Spring Boot application. That’s because
Spring Data REST has both a starter as well as auto-configuration.

Spring Boot configuration with Gradle
dependencies {

compile("org.springframework.boot:spring-boot-starter-data-rest")

Spring Boot configuration with Maven
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-rest</artifactId>
</dependency>
</dependencies>

You don’t have to supply the version number if you are using the Spring Boot

NOTE . : .
Gradle plugin or the Spring Boot Maven plugin.

When using Spring Boot, Spring Data REST gets configured automatically.

4.3. Adding Spring Data REST to a Gradle project

To add Spring Data REST to a Gradle-based project, add the spring-data-rest-webmvc artifact to your
compile-time dependencies:

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#build-tool-plugins-gradle-plugin
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#build-tool-plugins-gradle-plugin
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#build-tool-plugins-maven-plugin

dependencies {
- other project dependencies
compile("org.springframework.data:spring-data-rest-webmvc:3.0.0.M3")

}

4.4. Adding Spring Data REST to a Maven project

To add Spring Data REST to a Maven-based project, add the spring-data-rest-webmvc artifact to your
compile-time dependencies:

<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-rest-webmve</artifactId>
<version>3.0.0.M3</version>

</dependency>

4.5. Configuring Spring Data REST

To install Spring Data REST alongside your existing Spring MVC application, you need to include the
appropriate MVC configuration. Spring Data REST configuration is defined in a class called
RepositoryRestMvcConfiguration and that class can just be imported into your applications
configuration.

This step is unnecessary if you are using Spring Boot’s auto-configuration.
Spring Boot will automatically enable Spring Data REST when you include

IMPORTANT spring-boot-starter-data-rest and either in your list of dependencies, and
you vyour app is flagged with either @SpringBootApplication or
@EnableAutoConfiguration.

To customize the configuration, register a RepositoryRestConfigurer (or extend
RepositoryRestConfigurerAdapter) and implement or override the configure::--methods relevant to
your use case.

Make sure you also configure Spring Data repositories for the store you use. For details on that,
please consult the reference documentation for the corresponding Spring Data module.

4.6. Basic settings for Spring Data REST

4.6.1. Which repositories get exposed by defaults?

Spring Data REST uses a RepositoryDetectionStrategy to determine if a repository will be exported
as REST resource or not. The following strategies (enumeration values of
RepositoryDiscoveryStrategies) are available:

Table 1. Repository detection strategies

http://projects.spring.io/spring-data/

Name Description

DEFAULT Exposes all public repository interfaces but considers @(Repository)RestResource’s
‘exported flag.

ALL Exposes all repositories independently of type visibility and annotations.

ANNOTATION Only repositories annotated with @(Repository)RestResource are exposed, unless

their exported flag is set to false.

VISIBILITY Only public repositories annotated are exposed.

4.6.2. Changing the base URI

By default, Spring Data REST serves up REST resources at the root URL, "/". There are multiple ways
to change the base path.

With Spring Boot 1.2+, all it takes is a single property in application.properties:
spring.data.rest.basePath=/api

With Spring Boot 1.1 or earlier, or if you are not using Spring Boot, simply do this:

class CustomRestMvcConfiguration {

public RepositoryRestConfigurer repositoryRestConfigurer() {

return new RepositoryRestConfigurerAdapter() {

public void configureRepositoryRestConfiguration(RepositoryRestConfiguration
config) {
config.setBasePath("/api");

Alternatively just register a custom implementation of RepositoryRestConfigurer as Spring bean and
make sure it gets picked up by component scanning:

10

public class CustomizedRestMvcConfiguration extends RepositoryRestConfigurerAdapter {

public void configureRepositoryRestConfiguration(RepositoryRestConfiguration config)

{
config.setBasePath("/api");

}
}

Both of these approaches will change the base path to /api.

4.6.3. Changing other Spring Data REST properties
There are many properties you can alter:

Table 2. Spring Boot configurable properties
Name Description
basePath root URI for Spring Data REST

defaultPageSiz change default number of items served in a single page
e

maxPageSize change maximum number of items in a single page

pageParamNa change name of the query parameter for selecting pages
me

limitParamNa change name of the query parameter for number of items to show in a page
me

sortParamNam change name of the query parameter for sorting
e

defaultMediaT change default media type to use when none is specified
ype

returnBodyOn change if a body should be returned on creating a new entity
Create

returnBodyOn change if a body should be returned on updating an entity
Update

4.7. Starting the application
At this point, you must also configure your key data store.
Spring Data REST officially supports:

» Spring Data JPA
* Spring Data MongoDB
* Spring Data Neo4j

11

http://projects.spring.io/spring-data-jpa/
http://projects.spring.io/spring-data-mongodb/
http://projects.spring.io/spring-data-neo4j/

* Spring Data GemFire

» Spring Data Cassandra
Here are some Getting Started guides to help you get up and running quickly:

» Spring Data JPA

* Spring Data MongoDB
» Spring Data Neo4j

* Spring Data GemFire

These linked guides introduce how to add dependencies for the related data store, configure
domain objects, and define repositories.

You can run your application as either a Spring Boot app (with links showns above) or configure it
as a classic Spring MVC app.

In general Spring Data REST doesn’t add functionality to a given data store. This
means that by definition, it should work with any Spring Data project that supports
the Repository programming model. The data stores listed above are simply the
ones we have written integration tests to verify.

NOTE

From this point, you can are free to customize Spring Data REST with various options.

12

http://projects.spring.io/spring-data-gemfire/
http://projects.spring.io/spring-data-cassandra/
https://spring.io/guides/gs/accessing-data-rest/
https://spring.io/guides/gs/accessing-mongodb-data-rest/
https://spring.io/guides/gs/accessing-neo4j-data-rest/
https://spring.io/guides/gs/accessing-gemfire-data-rest/

Chapter 5. Repository resources

5.1. Fundamentals

The core functionality of Spring Data REST is to export resources for Spring Data repositories. Thus,
the core artifact to look at and potentially tweak to customize the way the exporting works is the
repository interface. Assume the following repository interface:

public interface OrderRepository extends CrudRepository<Order, Long> { }

For this repository, Spring Data REST exposes a collection resource at /orders. The path is derived
from the uncapitalized, pluralized, simple class name of the domain class being managed. It also
exposes an item resource for each of the items managed by the repository under the URI template
/orders/{id}.

By default the HTTP methods to interact with these resources map to the according methods of
CrudRepository. Read more on that in the sections on collection resources and item resources.

5.1.1. Default status codes

For the resources exposed, we use a set of default status codes:

* 200 OK - for plain GET requests.
» 207 Created - for POST and PUT requests that create new resources.

* 204 No Content - for PUT, PATCH, and DELETE requests if the configuration is set to not return
response bodies for resource updates (RepositoryRestConfiguration.returnBodyOnUpdate). If the
configuration value is set to include responses for PUT, 200 0K will be returned for updates, 201
Created will be returned for resource created through PUT.

If the configuration values (RepositoryRestConfiguration.returnBodyOnUpdate and
RepositoryRestConfiguration.returnBodyCreate) are explicitly set to null, the presence of the HTTP
Accept header will be used to determine the response code.

5.1.2. Resource discoverability

A core principle of HATEOAS is that resources should be discoverable through the publication of
links that point to the available resources. There are a few competing de-facto standards of how to
represent links in JSON. By default, Spring Data REST uses HAL to render responses. HAL defines
links to be contained in a property of the returned document.

Resource discovery starts at the top level of the application. By issuing a request to the root URL
under which the Spring Data REST application is deployed, the client can extract a set of links from
the returned JSON object that represent the next level of resources that are available to the client.

For example, to discover what resources are available at the root of the application, issue an HTTP
GET to the root URL:

13

https://spring.io/understanding/HATEOAS
http://tools.ietf.org/html/draft-kelly-json-hal

curl -v http://localhost:8080/

< HTTP/1.1 200 OK
< Content-Type: application/hal+json

{ "_links" : {
"orders" : {
"href" : "http://localhost:8080/orders"
H
"profile" : {
"href" : "http://localhost:8080/api/alps"
}

}
}

The property of the result document is an object in itself consisting of keys representing the
relation type with nested link objects as specified in HAL.

For more details about the profile link, see Application-Level Profile Semantics

NOTE
(ALPS).

5.2. The collection resource

Spring Data REST exposes a collection resource named after the uncapitalized, pluralized version of
the domain class the exported repository is handling. Both the name of the resource and the path
can be customized using the @RepositoryRestResource on the repository interface.

5.2.1. Supported HTTP Methods

Collections resources support both GET and POST. All other HTTP methods will cause a 405 Method
Not Allowed.

GET

Returns all entities the repository servers through its findAll(:--) method. If the repository is a
paging repository we include the pagination links if necessary and additional page metadata.

Parameters
If the repository has pagination capabilities the resource takes the following parameters:

* page - the page number to access (0 indexed, defaults to 0).
* size - the page size requested (defaults to 20).

* sort - a collection of sort directives in the format ($propertyname,)+[asc|desc]?.

14

Custom status codes

* 405 Method Not Allowed - if the findAll(:-*) methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

Supported media types

* application/hal+json

* application/json
Related resources

» search-a search resource if the backing repository exposes query methods.

HEAD

Returns whether the collection resource is available.

POST

Creates a new entity from the given request body.

Custom status codes

* 405 Method Not Allowed - if the save(::) methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

Supported media types

 application/hal+json

 application/json

5.3. The item resource

Spring Data REST exposes a resource for individual collection items as sub-resources of the
collection resource.

5.3.1. Supported HTTP methods

Item resources generally support GET, PUT, PATCH and DELETE unless explicit configuration prevents
that (see below for details).

GET

Returns a single entity.

Custom status codes

* 405 Method Not Allowed - if the findOne(:--) methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

15

Supported media types
* application/hal+json
 application/json
Related resources

For every association of the domain type we expose links named after the association property. This
can be customized by using @RestResource on the property. The related resources are of type
association resource.

HEAD

Returns whether the item resource is available.

PUT

Replaces the state of the target resource with the supplied request body.

Custom status codes

* 405 Method Not Allowed - if the save(::) methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

Supported media types
 application/hal+json
 application/json

PATCH

Similar to PUT but partially updating the resources state.

Custom status codes

* 405 Method Not Allowed - if the save(:::) methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

Supported media types
* application/hal+json
 application/json
 application/patch+json
* application/merge-patch+json
DELETE

Deletes the resource exposed.

16

https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc7386

Custom status codes

* 405 Method Not Allowed - if the delete(:-) methods was not exported (through
@RestResource(exported = false)) or is not present in the repository at all.

5.4. The association resource

Spring Data REST exposes sub-resources of every item resource for each of the associations the item
resource has. The name and path of the of the resource defaults to the name of the association
property and can be customized using @RestResource on the association property.

5.4.1. Supported HTTP methods

GET

Returns the state of the association resource

Supported media types

 application/hal+json

 application/json

PUT

Binds the resource pointed to by the given URI(s) to the resource. This

Custom status codes

* 400 Bad Request - if multiple URIs were given for a to-one-association.

Supported media types

* text/uri-list - URIs pointing to the resource to bind to the association.

POST

Only supported for collection associations. Adds a new element to the collection.

Supported media types

* text/uri-list - URIs pointing to the resource to add to the association.

DELETE

Unbinds the association.

Custom status codes

* 405 Method Not Allowed - if the association is non-optional.

17

5.5. The search resource

The search resource returns links for all query methods exposed by a repository. The path and
name of the query method resources can be modified using @RestResource on the method
declaration.

5.5.1. Supported HTTP methods

As the search resource is a read-only resource it supports GET only.

GET

Returns a list of links pointing to the individual query method resources

Supported media types

 application/hal+json

 application/json

Related resources

For every query method declared in the repository we expose a query method resource. If the
resource supports pagination, the URI pointing to it will be a URI template containing the
pagination parameters.

HEAD

Returns whether the search resource is available. A 404 return code indicates no query method
resources available at all.

5.6. The query method resource

The query method resource executes the query exposed through an individual query method on
the repository interface.

5.6.1. Supported HTTP methods

As the search resource is a read-only resource it supports GET only.
GET
Returns the result of the query execution.

Parameters

If the query method has pagination capabilities (indicated in the URI template pointing to the
resource) the resource takes the following parameters:

* page - the page number to access (0 indexed, defaults to 0).

18

* size - the page size requested (defaults to 20).

* sort - a collection of sort directives in the format ($propertyname,)+[asc|desc]?.

Supported media types

 application/hal+json

 application/json

HEAD

Returns whether a query method resource is available.

19

Chapter 6. Paging and Sorting

This documents Spring Data REST’s usage of the Spring Data Repository paging and sorting
abstractions. To familiarize yourself with those features, please see the Spring Data documentation for
the Repository implementation you’re using.

6.1. Paging

Rather than return everything from a large result set, Spring Data REST recognizes some URL
parameters that will influence the page size and starting page number.

If you extend PagingAndSortingRepository<T, ID>and access the list of all entities, you’ll get links to
the first 20 entities. To set the page size to any other number, add a size parameter:

http://localhost:8080/people/?size=5

This will set the page size to 5.

To use paging in your own query methods, you need to change the method signature to accept an
additional Pageable parameter and return a Page rather than a List. For example, the following
query method will be exported to /people/search/nameStartsWith and will support paging:

(path = "nameStartsWith", rel = "nameStartsWith")
public Page findByNameStartsWith(("name") String name, Pageable p);

The Spring Data REST exporter will recognize the returned Page and give you the results in the body
of the response, just as it would with a non-paged response, but additional links will be added to the
resource to represent the previous and next pages of data.

6.1.1. Previous and Next Links

Each paged response will return links to the previous and next pages of results based on the
current page using the IANA defined link relations prev and next. If you are currently at the first
page of results, however, no prev link will be rendered. The same is true for the last page of results:
no next link will be rendered.

Look at the following example, where we set the page size to 5:

curl localhost:8080/people?size=5

20

http://www.w3.org/TR/html5/links.html#link-type-prev
http://www.w3.org/TR/html5/links.html#link-type-next

{
"_Tinks" : {
"self" : {
"href" : "http://localhost:8080/persons{&sort,page,size}", @
"templated" : true

¥

"next" : {
"href" : "http://localhost:8080/persons?page=1&size=5{&sort}", @
"templated" : true

}

+
" embedded" : {

... data ...

i
n agen . { @
"size" : 5,
"totalElements" : 50,
"totalPages" : 10,
"number" : 0

At the top, we see _links:

@ This self link serves up the whole collection with some options
@ This next link points to the next page, assuming the same page size.

® At the bottom is extra data about the page settings, including the size of a page, total elements,
total pages, and the page number you are currently viewing.

When using tools like curl on the command line, if you have a "&" in your

NOTE)
statement, wrap the whole URI with quotes.

It’s also important to notice that the self and next URIs are, in fact, URI templates. They accept not
only size, but also page, sort as optional flags.

As mentioned, at the bottom of the HAL document, is a collection of details about the page. This
extra information makes it very easy for you to configure UI tools like sliders or indicators to reflect
overall position the user is in viewing the data. For example, the document above shows we are
looking at the first page (with page numbers indexed to 0 being the first).

What happens if we follow the next link?

$ curl "http://localhost:8080/persons?page=1&size=5"

21

"_Tinks" : {
"self" : {
"href" : "http://localhost:8080/persons{&sort,projection,page,size}"”,
"templated" : true
}

"next" : {
"href" : "http://localhost:8080/persons?page=2&size=5{&sort,projection}", ®
"templated" : true

o
"prev" : {
"href" : "http://localhost:8080/persons?page=0&size=5{&sort,projection}", @
"templated" : true
}
¥
"_embedded" : {
... data ...

}

"page" : {

"size" : 5,
"totalElements" : 50,
"totalPages" : 10,

"number" : 1 ®

This looks very similar, except for the following differences:

@ The next link now points to yet another page, indicating it’s relative perspective to the self link.
@ A prev link now appears, giving us a path to the previous page.

® The current number is now 1 (indicating the second page).

This feature makes it quite easy to map optional buttons on the screen to these hypermedia
controls, hence allowing easy navigational features for the Ul experience without having to hard
code the URIs. In fact, the user can be empowered to pick from a list of page sizes, dynamically
changing the content served, without having to rewrite the next and "prev controls at the top or
bottom.

6.2. Sorting

Spring Data REST recognizes sorting parameters that will use the Repository sorting support.

To have your results sorted on a particular property, add a sort URL parameter with the name of
the property you want to sort the results on. You can control the direction of the sort by appending
a , to the the property name plus either asc or desc. The following would use the
findByNameStartsWith query method defined on the PersonRepository for all Person entities with
names starting with the letter "K" and add sort data that orders the results on the name property in
descending order:

22

curl -v "http://localhost:8080/people/search/nameStartsWith?name=K&sort=name,desc"

To sort the results by more than one property, keep adding as many sort=PROPERTY parameters as
you need. They will be added to the Pageable in the order they appear in the query string. Results
can be sorted by top-level and nested properties. Use property path notation to express a nested
sort property. Sorting by linkable associations (i.e. resources to top-level resources) is not
supported.

23

Chapter 7. Domain Object Representations

7.1. Object Mapping

Spring Data REST returns a representation of a domain object that corresponds to the requested
Accept type specified in the HTTP request.

Currently, only JSON representations are supported. Other representation types can be supported
in the future by adding an appropriate converter and updating the controller methods with the
appropriate content-type.

Sometimes the behavior of the Spring Data REST’s ObjectMapper, which has been specially
configured to use intelligent serializers that can turn domain objects into links and back again, may
not handle your domain model correctly. There are so many ways one can structure your data that
you may find your own domain model isn’t being translated to JSON correctly. It’s also sometimes
not practical in these cases to try and support a complex domain model in a generic way.
Sometimes, depending on the complexity, it’s not even possible to offer a generic solution.

7.1.1. Adding custom (de)serializers to Jackson’s ObjectMapper

To accommodate the largest percentage of use cases, Spring Data REST tries very hard to render
your object graph correctly. It will try and serialize unmanaged beans as normal POJOs and it will
try and create links to managed beans where that’s necessary. But if your domain model doesn’t
easily lend itself to reading or writing plain JSON, you may want to configure Jackson’s
ObjectMapper with your own custom type mappings and (de)serializers.

Abstract class registration

One key configuration point you might need to hook into is when you’re using an abstract class (or
an interface) in your domain model. Jackson won’t know by default what implementation to create
for an interface. Take the following example:

public class MyEntity {

private List<MyInterface> interfaces;

}

In a default configuration, Jackson has no idea what class to instantiate when POSTing new data to
the exporter. This is something youw’ll need to tell Jackson either through an annotation, or, more
cleanly, by registering a type mapping using a Module.

To add your own Jackson configuration to the ObjectMapper used by Spring Data REST, override the
configureJacksonObjectMapper method. That method will be passed an ObjectMapper instance that has
a special module to handle serializing and deserializing " PersistentEntity 's. You can register your
own modules as well, like in the following example.

24

protected void configurelacksonObjectMapper(ObjectMapper objectMapper) {
objectMapper.registerModule(new SimpleModule("MyCustomModule") {

public void setupModule(SetupContext context) {
context.addAbstractTypeResolver(
new SimpleAbstractTypeResolver().addMapping(MyInterface.class,
MyInterfaceImpl.class)

;i

Once you have access to the SetupContext object in your Module, you can do all sorts of cool things to
configure Jackson’s JSON mapping. You can read more about how Modules work on Jackson’s wiki:
http://wiki.fasterxml.com/JacksonFeatureModules

Adding custom serializers for domain types

If you want to (de)serialize a domain type in a special way, you can register your own
implementations with Jackson’s ObjectMapper and the Spring Data REST exporter will transparently
handle those domain objects correctly. To add serializers, from your setupModule method
implementation, do something like the following:

public void setupModule(SetupContext context) {
SimpleSerializers serializers = new SimpleSerializers();
SimpleDeserializers deserializers = new SimpleDeserializers();

serializers.addSerializer(MyEntity.class, new MyEntitySerializer());
deserializers.addDeserializer(MyEntity.class, new MyEntityDeserializer());

context.addSerializers(serializers);
context.addDeserializers(deserializers);

25

http://wiki.fasterxml.com/JacksonFeatureModules
http://wiki.fasterxml.com/JacksonFeatureModules

Chapter 8. Projections and Excerpts

Spring Data REST presents a default view of the domain model you are exporting. But sometimes,
you may need to alter the view of that model for various reasons. In this section, you will learn how
to define projections and excerpts to serve up simplified and reduced views of resources.

8.1. Projections

Look at the following domain model:

public class Person {

private Long 1id;
private String firstName, lastName;

private Address address;

This Person has several attributes:

* id is the primary key
e firstName and lastName are data attributes

* address is a link to another domain object

Now assume we create a corresponding repository as follows:
interface PersonRepository extends CrudRepository<Person, Long> {}

By default, Spring Data REST will export this domain object including all of its attributes. firstName
and lastName will be exported as the plain data objects that they are. There are two options
regarding the address attribute. One option is to also define a repository for Address objects like this:

interface AddressRepository extends CrudRepository<Address, Long> {}

In this situation, a Person resource will render the address attribute as a URI to it’s corresponding
Address resource. If we were to look up "Frodo" in the system, we could expect to see a HAL
document like this:

26

{

"firstName" : "Frodo",
"lastName" : "Baggins",
" links" : {

"self" : {

"href" : "http://localhost:8080/persons/1"
I

"address" : {
"href" : "http://localhost:8080/persons/1/address"
}
}
}

There is another route. If the Address domain object does not have it’s own repository definition,
Spring Data REST will inline the data fields right inside the Person resource.

{
"firstName" : "Frodo",
"lastName" : "Baggins",
"address" : {
"street": "Bag End",
"state": "The Shire",
"country": "Middle Earth"
Jrs
" links" : {
"self" : {
"href" : "http://localhost:8080/persons/1"
}
}
}

But what if you don’t want address details at all? Again, by default, Spring Data REST will export all
its attributes (except the id). You can offer the consumer of your REST service an alternative by
defining one or more projections.

(name = "noAddresses", types = { Person.class }) @D
interface NoAddresses { @

String getFirstName(); ®

String getlLastName(); @
¥

This projection has the following details:

@ The @Projection annotation flags this as a projection. The name attributes provides the name of
the projection, which you’ll see how to use shortly. The types attributes targets this projection to

27

only apply to Person objects.
@ It’s a Java interface making it declarative.
® It exports the firstName.
@ It exports the lastName.
The NoAddresses projection only has getters for firstName and lastName meaning that it won’t serve

up any address information. Assuming you have a separate repository for Address resources, the
default view from Spring Data REST is slightly different as shown below:

{
"firstName" : "Frodo",
"lastName" : "Baggins",
"_links" : {
"self" : {
"href" : "http://localhost:8080/persons/1{?projection}", @
"templated" : true @
)
"address" : {
"href" : "http://localhost:8080/persons/1/address"
}
}
}

@ There is a new option listed for this resource, {?projection}.

@ The self URI is a URI Template.

To view apply the projection to the resource, look up http://localhost:8080/persons/17
projection=noAddresses.

The value supplied to the projection query parameter is the same as specified in
NOTE @Projection(name = "noAddress"). It has nothing to do with the name of the
projection’s interface.

It’s possible to have multiple projections.
NOTE Visit Projections to see an example project you can experiment with.

How does Spring Data REST finds projection definitions?

* Any @Projection interface found in the same package as your entity definitions (or one of it’s
sub-packages) is registered.

* You can manually register via
RepositoryRestConfiguration.getProjectionConfiguration().addProjection(::).

In either situation, the interface with your projection MUST have the @Projection annotation.

28

http://localhost:8080/persons/1?projection=noAddresses
http://localhost:8080/persons/1?projection=noAddresses
http://localhost:8080/persons/1?projection=noAddresses
http://localhost:8080/persons/1?projection=noAddresses
http://localhost:8080/persons/1?projection=noAddresses
http://localhost:8080/persons/1?projection=noAddresses
http://localhost:8080/persons/1?projection=noAddresses

8.1.1. Finding existing projections

Spring Data REST exposes Application-Level Profile Semantics (ALPS) documents, a micro metadata
format. To view the ALPS metadata, follow the profile link exposed by the root resource. If you
navigate down to the ALPS document for Person resources (which would be /alps/persons), you can
find many details about Person resources. Projections will be listed along with the details about the
GET REST transition, something like this:

"id" : "get-person", @®
"name" : "person",
"type" : "SAFE",
"rt" : "#person-representation”,
"descriptors” : [{

"name" : "projection", @

"doc" : {

"value" : "The projection that shall be applied when rendering the response.

Acceptable values available in nested descriptors.”,
"format" : "TEXT"

I
"type" : "SEMANTIC",
"descriptors" : [{
"name" : "noAddresses", ®
"type" : "SEMANTIC",
"descriptors" : [{
"name" : "firstName", @
"type" : "SEMANTIC"
oA
"name" : "lastName", @
"type" : "SEMANTIC"
]
}]
}]

h

@ This part of the ALPS document shows details about GET and Person resources.
@ Further down are the projection options.
® Further down you can see projection noAddresses listed.

@ The actual attributes served up by this projection include firstName and lastName.

Projection definitions will be picked up and made available for clients if they are:

* Flagged with the @Projection annotation and located in the same package (or
NOTE sub-package) of the domain type, OR

* Manually registered via
RepositoryRestConfiguration.getProjectionConfiguration().addProjection(-:+).

29

8.1.2. Bringing in hidden data

So far, you have seen how projections can be used to reduce the information that is presented to
the user. Projections can also bring in normally unseen data. For example, Spring Data REST will
ignore fields or getters that are marked up with @JsonIgnore annotations. Look at the following
domain object:

public class User {

private Long 1id;
private String name;

private String password; @

private String[] roles;

@ Jackson’s @JsonIgnore is used to prevent the password field from getting serialized into JSON.

This User class can be used to store user information as well as integration with Spring Security. If
you create a UserRepository, the password field would normally have been exported. Not good! In
this example, we prevent that from happening by applying Jackson’s @JsonIgnore on the password
field.

Jackson will also not serialize the field into JSON if @JsonIgnore is on the field’s

NOTE . .
corresponding getter function.

However, projections introduce the ability to still serve this field. It’s possible to create a projection
like this:

(name = "passwords", types = { User.class })
interface PasswordProjection {

String getPassword();
}

If such a projection is created and used, it will side step the @JsonIgnore directive placed on
User.password.

This example may seem a bit contrived, but it’s possible with a richer
domain model and many projections, to accidentally leak such details. Since
Spring Data REST cannot discern the sensitivity of such data, it is up to the
developers to avoid such situations.

IMPORTANT

Projections can also generate virtual data. Imagine you had the following entity definition:

30

public class Person {

private String firstName;
private String lastName;

You can create a projection that combines these two data fields together like this:

(name = "virtual", types = { Person.class })
public interface VirtualProjection {

("#{target.firstName} #{target.lastName}") @
String getFullName();

@ Spring’s @Value annotation let’s you plugin a SpEL expression that takes the target object, and
splices together its firstName and lastName attributes to render a read-only fullName.

8.2. Excerpts

An excerpt is a projection that is applied to a resource collection automatically. For an example, you
can alter the PersonRepository as follows:

(excerptProjection = NoAddresses.class)
interface PersonRepository extends CrudRepository<Person, Long> {}

This directs Spring Data REST to use the NoAddresses projection when embedding Person resources
into collections or related resources.

Excerpt projections are NOT applied to single resources automatically. They have to
be applied deliberately. Excerpt projections are meant to provide a default preview

NOTE of collection data, but not when fetching individual resources. See Why is an
excerpt projection not applied automatically for a Spring Data REST item resource?
for a discussion on the subject.

In addition to altering the default rendering, excerpts have additional rendering options as shown
below.

31

http://stackoverflow.com/questions/30220333/why-is-an-excerpt-projection-not-applied-automatically-for-a-spring-data-rest-it
http://stackoverflow.com/questions/30220333/why-is-an-excerpt-projection-not-applied-automatically-for-a-spring-data-rest-it

8.3. Excerpting commonly accessed data

A common situation with REST services arises when you compose domain objects. For example, a
Person is stored in one table and their related Address is stored in another. By defau