éx

Spring

Reference Documentation

Version 1.1.5
(Work in progress)
Copyright (c) 2004 - Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu,

Darren Davison, Dmitriy Kopylenko, Thomas Risberg, Mark Pollack, Rob Harrop

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

(1=, =0 2SSO PPERPR
O I 1 oo [ot A o PP PPERR
L1, OVEIVIEBIW ..ottt ettt e+ttt e e e ekt e e e e a b bt oo ekttt e e e en bt e e e e e nbb e e e e e nnbe e e e e nnbneeeeann 1
1.2, USAOE SCENMAMOSeeeeeueteiee ettt ee e ettt e e e ettt e e ettt e e e st e e e e s e e e e ek et e e e e se e e e e e s e e e e e e nne e e e s annneeeeaan 2
2. Background infOrMationcccuuiiiiiiii e e s a e e e aa e
2.1. Inversion of Control / Dependency INJECLIONoooiiiiiieiiiiiie e 5
3. Beans, BeanFactory and the ApplicatioNCONTEXTccccviiiiiiie e
G300 R g 1 oo U Tox £ o o PSR P 6
3.2. BeanFactory and BeanDefinitions - the basiCs ..., 6
3.2.1. ThEBEANFACIOIYuvviiiiieeeeiieiiiieiee e e e et e e e e e e e e e e e e s et e e e e e e e s s eanteaneeaaeeas 6
3.2.2. The BEaNDEFINITIONueiiiiieiiiiiiiiiie et r e e e e st e e e e e e e s s snnreaeeeeeeeas 7
3.2.3. ThEDEAN CIESS ...t e et e e e nnees 8
3.2.4. The beanidentifiers (id and
7= 1007 PP 10
3.2.5. TosiNgleton or NOL t0 SINGIEIONeeiiiiiiiiie e 10
3.3. Properties, collaborators, autowiring and dependency checkingcccvveevereeeiiiciiieieeeee e 11
3.3.1. Setting bean properties and CollabOratorsccoeeiiiiiiiiieiiieie e 11
3.3.2. Constructor Argument RESOIULIONccoiuiiiieiiiiiiee et 14
3.3.3. Bean properties and constructor argumentsdetailedcccceeeeeiiiiiiiiiene e, 15
3.3.4. MEthOd INJECTIONeeiiiiiiiee ittt e e e e 17
BTG A S T U L=] o o U= o= 0 S oo PSP 19
3.3.6. AULOWITNG COHBIDOTEIONSeeeieiiiieie et 20
3.3.7. Checking fOr dependenCiesuuiiiiieeiiie e e e e e e e 21
3.4. Customizing the Nature Of @bEANooiiiiiiii e 22
341, LifECYCIEINTEITACES ...ciiuiieieeiiiie ettt e e 22
3.4.2. KNOWING WO YOU @I ...eeiiiieiiiiiiieiee e e ettt e s et te e e e e e e st e e e e e e e s s snnteanneaaeeas 23
343, FACIONYBEAN ..ot a e 24
3.5. Abstract and child bean definitioNSooiiiiiiiiii e 24
3.6. Interacting With the BEanFaCIOryoooieiiiiiiiiie e 25
3.6.1. Obtaining a FactoryBean, NOt itSProdUCEcoeeeiiiiiiiiiiiee e 26
3.7. Customizing beans with BEaNPOSIPIOCESSOISuuuiiiieeeiiiiiiiieeiee e e e s seiiiree e e e e e e e e s ssnrrrereeeeeesananes 26
3.8. Customizing bean factories with BeanFactoryPOSIPIOCESSOIScvvvveeriiiereeniiieeeeasiieee e 27
3.8.1. The PropertyPlaceholderConfigurercuvvveiiie et 27
3.8.2. The PropertyOverrideCoNfigUIEScooiiiiieiiiiei e 28
3.9. Registering additional custom PropertyEditorscccoevvvviviiiiiiiiie e, 28
3.10. Introduction to the AppliCatioNCONIEXLcceiiieiiiiiiiiiier e 29
3.11. Added functionality of the AppliCatioNCONIEXTcccvviieiiiieee e 30
3111 USING the MESSAJESOUICEuuviieieiiee e e e e ittt e e e e e s e st e e e e e e e e et e e e e e e e s s snnrraeeeeaeeas 30
3.12.2. Propagating EVENESeeieiiueieeeiiiiieeeaiteee e e ettt e e e rser e e e e e e e e e e e e e s abn e e e e e e e nnees 30
3.11.3. Using resourceS Within SPringcocecoiiiiiiiiiiiice e 32
3.12. Customized behavior in the AppliCatioNCONTEXTc.vvveeiiiiiiiee e 32
3.12.1. ApplicationContextAware marker interfacecccccccvvvvicccc 33
3.12.2. The BEANPOSIPIOCESSONveiiiiiiiieeiiiiiieessiitee e e sttt e e sttt e e st e e s aabe e e e s snbbe e e e s nnnneee s 33
3.12.3. The BeanFaCtoryPOSIPrOCESSONccciiiiiiiieiiiiiiee et 33
3.12.4. The PropertyPlaceholderConfigurercc.vvveiiie i 33
3.13. Registering additional custom PropertyEditorsceeeeiiiiiiieiiiiiie e 33
3.14. Setting a bean property or constructor arg from a property
L0 £==c o o TP PPPPRPPPPPRP 34

Spring Framework Version 1.1.5

Spring - JavalJ2EE Application Framework

3.15. Setting a bean property or constructor arg from afield valueccccceevvieeiiiiciiiiiiee s 35
3.16. Invoking another method and optionally using thereturn value.cccccoeeeeiiiiiiieneee e, 36
3.17. Importing Bean Definitions from One File Into ANOtheroooiiiiiiiiiiieeece e 37
3.18. Creating an ApplicationContext from aweb applicationcccccccvviviiii, 38
3.19. Gluecode and the evil SINGIEIONcooiiiiiiii e 38
3.19.1. Using SingletonBeanFactoryl ocator and
ContextSingletonBeanFaCtOryLOCAIOrciiieeiiiiiiiiiiiiiee e e e e e e e e 39
4. PropertyEditors, data binding, validation and the BeanWrapperccccccoviiieiiiiiieeeiniieee e
0 I 1 11 o [FTox £ o o [RSP 40
4.2. Binding data using the DataBinaderceeiiiiiiiiieiiiie e 40
4.3. Bean manipulation and the BEaNWIEPPEYccovvviiiiiiiiiiiieieeeee ettt 40
4.3.1. Setting and getting basic and nested Propertiescceeeeiiieeeeniieee e 41
4.3.2. Built-in PropertyEditors, converting
(474 0= T TSP 42
4.3.3. Other features Worth Mentioningccooouereeiiiiiie e 44
5. Spring AOP: Aspect Oriented Programming With SPringcoccovveieeeii i,
ST I O] 4 o= o L= PP O PP P RP PP PPPP 45
oI 0 R N @] oo [0 o 45
5.1.2. Spring AOP capabilitiesS and goalScccuviiiiiiiee e 46
5.1.3. AOP PrOXi€SiN SPIING ..eeeeeiiueieeeiiiteieeeiiiiee e s e e st e e s s e e e s anne e e e s snnreeeeannneeees 47
5.2, POINLCULS TN SPITNG .evvtiiiiiiieeiiiiiiii e e s ettt e e e e e e et e e e e e e e e s et e e e e e e e e s santbbaeeeeeeessannsnrnnees 47
ST B O] 1 = o] £ PO PPPPPPRR 438
5.2.2. Operations 0N POINECULSoccuviiiieeeee e e i s ciiiiie e e e e e e e e se sttt e e e e e e e s s s ntrbeeeeeaeesessanrrreeeeaeeas 48
5.2.3. Convenience pointcut implemMentationsc.eeeiiiiiiieiiiiiie e 49
5.2.4. POINLCUL SUPEICIASSES ...ccoeieie i ettt 50
5.2.5. CUSLOM POINLCULSevveiiieeeiiiiiiiiiieeeee e e s s eititre e e e e e e e s sssttraeereaeeessssnteraeeeaaeessssnntnneeeeaeens 50
5.3, ACQVICETYPES IN SPIING ...eteeeeiiiiiie ettt et e e e e e e e e e e e e sn e e e s abne e e e aannneee s 51
5.3.1. AGQVICEIITECYCIES ... 51
5.3.2. AQVICETYPESIN SPIING .eeveeeiiiiiieeiiieie ettt e e e e e e r e e s anbn e e e s nnnreee s 51
5.4, AQVISOIS TN SPIING ..uviiiiiiiii ettt e e e e e e e e e e e e e e s st b b e e e e e e e e s ssatbbeaeeeaeeesannssenenes 56
5.5. Using the ProxyFactoryBean to create AOP PrOXI€Sccooveveeiiiiiieeeiiiiieeesiieeeessieeeeesnineee s 56
TSI I = T T ot SRR 56
5.5.2. JAVABEAN PIrOPEITIES ..veeiiieeii i ittt e e e e e ettt e e e e e e e e e e e e e e s e et ra e e e e e e e e e e annraaereaaeeas 57
5.5.3. ProXyiNG INTEITACESooiiiiiiiiie e 57
5.5.4. PrOXYING ClaSSESuuiiiiiiie it e e e e s e e e e e e a e e e e 59
5.6. CONVENIENT PIrOXY CIEALTONvveeeeiiiiiiee ettt e e e ettt e e et e e e st e e s st e e e e asbb e e e e et e e e e s anbneeeeannnneee s 59
5.6.1. TransactionProxXyFaCtOryBEaNcccooveiiiii i 60
5.6.2. EJB PrOXIES ..oeeiuitiiee ittt ettt ettt a et e e e e b e e e e b e e e s 61
5.7. ConcCise ProxXy defiNItIONSc..ueeiiiieee e e e e e e e e s e e e e e e e e e e annneneeas 61
5.8. Creating AOP proxies programmatically with the ProxyFactorycccccceivviiiiiieeeeee e, 62
5.9. Manipulating adviSed ODJECEScoouiiiiiiiie s 62
5.10. Using the "autoproXy" faCHITYoeieeiiiiiiiiiice e 64
5.10.1. Autoproxy bean definitioNSoooiiiiiiiiiiiiiee e 64
5.10.2. Using metadata-driven auto-proXyingcccooeveeeieiiiiiii e 66
5.11. USING TAIGEISOUITESeeeeiiuiitieeiiiieieeaittee e e sttt e e s sttt e e e e sbe e e e s anbb et e e e anbb e e e e anbe e e e s anbbeeeesannreees 67
5.11.1. Hot swappable targel SOUMCEScuiieeeiiiceiiiii e e e e e e ee e e e e e e et e e e e e e e e e enneeeeeeeaeens 68
5.11.2. POOIING target SOUICESccceviieieeeee e e s e ettt e e e e e e s et e e e e e e e e s st r e e e e e e e e s s e ssnbeaeeeeaeeas 68
5.11.3. Prototype" targel SOUMCESuvveieiiieeeiiiiiriie e e e e e s r e e e s e e e e s s e e e e e e s 70
5.12. Defining NEW AGVICELYPESuuiiiiiiie ettt e e e e s e e e e e e s et e e e e e e e e e e nnnsenees 70
5.13. Further reading @0 FESOUICESeiiiiiiieiee et ee ettt e et e st e e e e e s et e e e s abeeeeesnnnneee s 70
5.4, ROBAMED ..coeiiiii e —————— 71
N o1 ol B A L a1 C= [LA o o PP PPSPPPI

Spring Framework Version 1.1.5

Spring - JavalJ2EE Application Framework

B.1. OVEIVIBW ..eeiiiieee ittt ettt e e e ettt e e e e e e e ettt e eeeeeeaaanteeeeeeeeaeeesaasnteaeeeeaeeesaantsaneeneaeeeeannsnrnnees 72
6.2. Configuring AspectJ aspectsusing Spring l0Ccoccviiiiiiie e 72
6.2.1. "SINGIEION" GSPECESeveeiieiiiiiie ettt 72
6.2.2. NON-SINGIELON BSPECEScoeeee e 73
I T € o = SRS RS 73
6.3. Using AspectJ pointcuts to target Spring adViCeccevveeiviieeiiiieeee e 73
6.4. Spring asPeCtSfOr ASPECLT ... e e e 74
7. TransaCtion MANAGEMENTcuuiieiiiiie e et e e et e e e st e e e e asaeeeeesstaeeeeaasseeeeaasseeaeeassseeeesssseeeeanssneeens
7.1. The Spring transaction @bSITACLIONcccuiiiiiiee e e e e e e e e e e sanaeees 75
7.2, TranSaCtiON SITALEJIESvveieiiiiiiee et e ettt e ettt e et e e et e e e s ettt e e e s b e e e e et e e e e s anbne e e e s nnnreee s 76
7.3. Programmatic transaction ManagemMeENLcoooveiiiiiii i 79
7.3.1. Using the TransaCtioNTEMPIEIEcooiiiiiiiiiiiiee e 79
7.3.2. Using the PlatformTransaCtionManagercoooeeeiiiiiiiieiiieee e eeiieee e e e e 79
7.4. Declarative transaction ManagEMENTc..uuiiiiieee e e e e s e e e e s s e sarb e e e e e e e s e e sasnrenees 80
7.4.1. BeanNameAutoProxyCreator,
another declarative apPrOACNuviiiiiie i 82
7.5. Choosing between programmatic and declarative transaction
T2 0 < 101 P 83
7.6. Do you need an application server for transaction
MBNAGEIMENT? ... eeeeee et e e e e e r e e e e e s s s e e e e e e e s s s s s e e e e e e e e s s e nn e e eeeeeeessannrnrneeeaeesnannnns 83
7.7. COMMON PIrOBIEIMS ...viiiiiiie i e e e e e e s e e e e e e e s s et b re e e e e aeeeeennnnranees 84
8. SourcelLevel Metadata SUPPOITueiiiiiiiieeiiie ettt e e e e et r e e s e e e e e nnneee s
8.1. SOUrCE-1EVEl MELAOELIAceeiiieeiie it e e e e et e e e e na e e e e nnnaeee s 85
8.2. SPring's MEtadata SUPPOITuveeieiiiiiie ettt ettt e e e et e e e et e e e s annn e e e e s annneee s 86
8.3. Integration with Jakarta Commons Attributesccce e, 87
8.4. Metadata and Spring AOP QULOPIOXYINGuvvviiireeeeiiiiiiieiee e e e e s s e e e e e e s e et e e e e e e e e e eanaaees 88
o3t R 0o = 0= | = SR 88
8.4.2. Declarative transaction ManagemeENtc.uveeeeieeiiiiiiiiiee e ee e s e e e st e e e 89
8.4.3. POOIING ...ttt e et e e n e e e s 89
8.4.4. CUSIOM MELAHGLAeevveeeeeiiiiiee ettt e et e e e e et e e e st e e e e ee e e s ansneeeeennneeeeas 20
8.5. Using attributes to minimize MV C web tier configurationccceeeiiiieeeeniiieee i 91
8.6. Other uses of metadata attribDULESoooeiiiiiii e 93
8.7. Adding support for additional Mmetadata APISccocciiiieiiee e 93
S L @ =T | o] Lo SRR PP PP
S0 I 1 oo [0 o) o PRI 95
9.2. Consistent EXCEPtioN HIEraICHYviiiiiiiee et 95
9.3. Consistent Abstract Classes for DAO SUPPOITcooeeeiiie i 96
10. Data ACCESS USING IDBCuiiiiiiiiiiiie ettt et e et s bbbt e e e et e e s snbe e e e e s nnneee s
0 0 T g 11T [T 1 oo PRSP 97
10.2. Using the JDBC Core classes to control basic JIDBC processing and
L= (0T 7= 0o 1] oo PSP PPPPPPPRPPRP 97
10.2.1. JADCTEMPIALE ..vvveeeeiieeeiiccttee e e et e e e e e e e et e e e e e e e s snnbbaeeeeaeeeeaannes 97
L2 DT - o U] o= TR 98
O IZRC IS @ I S T(e'= o 10 g I I =15 > o] (R 98
10.2.4. EXECULING SEAEEMENTSeveeeieiiiieie ettt et e e e e et e e e e e e e e e e 99
10.2.5. RUNNING QUENTES ...coiieeiiiiiiiitiiee e e ettt e e e e e ettt e e e e e e e sttt eeeaaeeeeenneeneeeaaeeeeaannes 99
10.2.6. Updating the databaseceeiieeiiiiiiiiiiiie et e e e e e e e e e e 100
10.3. Controlling how we connect to the datalaseoooiiiiiiiiiiiie e 101
10.3.1. Dat@SOUrCEULIISeveieiiiiiieie ettt et e et e e st e e e s snbne e e e e 101
10.3.2. SMATDEIASOUICE ... s s s e s s s e e a e e e e s s e e e e e e e e aeas 101
10.3.3. ADSIraCtDEIASOUITEeeeeeeeieeeee e et ee e e e e e e e ettt e e e e e e s e s et eeeaeeeseaannnnaneeeaeeeeaannes 101
10.3.4. SINGIeCONNECLIONDEIASOUITEccciiiiriieeiiiiiieeasiiee e e et e e s s e s e et e e e sbneeeeanes 101

Spring Framework Version 1.1.5

Spring - JavalJ2EE Application Framework

10.3.5. DriverManagerDalaSOUICEcccouiuurreeiiiiieieeaiiieeeeaiieee e s st e e s e e e s s e e e anneeaeanes 101
10.3.6. DataSourceTranSaCtioNMaNaQgESuuveeieeeeeiiiiiiiieeeee e e e e escirrrrreeee e e s s ssnrraeeeeeaeaeaaanes 102
10.4. Modeling JDBC operations as JAVA ODJECEScccuureieiiiiiieeiiiie et 102
10.4. 1. SOIQUENY .eeeeiiieieeeeeiteie e e ettt e e et e e e ettt e e e et e e e e s nae e e e e snsbeeeesansaeeeesassneeeeannbaeeeeansneeeeanns 102
10.4.2. MAPPINGSIQUETY ...eeeeeiiiiiiee ettt ettt e e e e sttt e e s s be e e e s e e e e e st e e e e s anbneeeeane 102
10.4.3. SOIUPELEeveieeiiiiieeeeiiiee ettt e et e e e st e e e et e e e e sntae e e e annsaeeeeennteeeeeansneneeanns 103
10.4.4. SLOrEUPIOCEAUIEeoiiiiiiiiie ittt et e ettt e e e st e e e e nbneeeeann 104
10.4.5. SOIFUNCLION ...ttt e et e e e s e e e et e e e e annneeeeanes 105
11. Data AccesSUSING O/R MAPPELScoii ittt e ettt e e e e e e et e e e e e e e s s st be e e e e e e e s s sesarrreeeeaaeeeaanes
0 T 11T [o1 o T PR EPRS 106
T o 1107 7= (RS 107
11.2.1. ReSOUrCE MaNAGEIMENTuuiiiiiiieiiiitiiee et e e e e et e e e e e s st e e e e e e e e s ssbb b e e eeeeeeeaannes 107
11.2.2. Resource Definitionsin an Application CONEEXTEcooiieeiiiiiiiiiiireie e eeieieeee e 107
11.2.3. Inversion of Control: Template and Callbackcccceeeeiiiiiiiiiieiiie e, 108
11.2.4. Applying an AOP Interceptor Instead of aTemplatecooceveeiiiiiec e 109
11.2.5. Programmatic Transaction DemMarCationccccveeeeeeeiiiiiiiiiieeeee e escciirieeee e e e 110
11.2.6. Declarative Transaction DEMarCationcooecuuiiiiiieeesiiiiiiiiiereeeeesssnieaeeeeeeeeeennnes 111
11.2.7. Transaction Management SIrat@gieSccoeeeeieieieii i 113
11.2.8. Container Resources Versus LOCal RESOUICESccoiiirieeiiiiiieeeiiiieeessiieeeessineee e 114
11,29, SAMPIES oeiieiiiiie ettt e et e e et e e e et e e e e st e e e e sttt e e e anae e e e e nnaeeeeanreeaeearaeeeeanns 115
R N I T PR PRRPOTRRR 115
LA, B AT e ——————— 115
11.4.1. Overview and differences between 1.3.X and 2.0coooueeeeiiiiiire i 115
11.4.2. Setting UP the SOIMEDeeeeieiiiie e 116
RS I WIS o To IS | 11V F=To D=0 55 U o oo g A 117
11.4.4. TransaCtion MANBOEMENTceieeeiiiiiiiieiee e e e e e s s et e e e e e e s e sert e e eaeeesssnsntraeeeeaaessannes 117
12, WED FrAMIBIWOEK ..ottt ettt e e e ettt e e e e e e s ettt e e e e e e e e asanenteaeeeaaeessaannseneeeaaaeeeaanne
12.1. Introduction to the Web framework ..o 118
12.1.1. Pluggability of MV C implementationcooiiieiieeiiiiiee e 118
12.1.2. Features of SPring MV Cooveiiiiiiii e e e e r e e e e e e e e eaaes 119
12.2. The DIiSPAICNEISEIVIEL ...t e e s abaeeeeaae 119
G T 0 o 11 o | = PR SS 121
12.3.1. AbstractController and WebContentGeneratorccueeeeiriieeeeiniieeeeniiieeessieeee e 122
12.3.2. Other SIMPIE CONTOIIENSeiiiiiiii e 123
12.3.3. The MUItIACHONCONLIOIEN ... i 123
12.3.4. CommaNACONIIOIIENSeeiiiiiie e e e e r e e e e e e s e e e eeeeeeeannnes 125
A = o | = =0 T 126
12.4.1. BeanNameUrIHandlerMappingccueeeeeiiireeeiiiiieeesiieee et sinee e 127
12.4.2. SImpleUrTHandIerMappingc..oeoeiioeeieeeeeee et e e e e e eeneeaee e e e e e e e eennes 127
12.4.3. Adding HandlerINtErCEPLOrScoeeeiiiciiieeeeee e e e e e e e e e e e 128
12.5. Viewsand reSolVING thEM ... e e 129
12.5. 1. VIBWRESDIVEIS ..ottt ettt et e e st e e s ettt e e e st e e e e e nnbe e e e e nnbneeeeanns 130
12.5.2. Chaining VIEWRESOIVEN'Scoiuiiiiiiiiiie ettt e e e e 131
A G T U= T o o o= 132
12.6.1. AcceptHeaderLoCalERESOIVESccoiiiiiiiiiiiie et 132
12.6.2. COOKIELOCAERESDIVESeiiiiiieee ettt e e e e e e eeaaeeeaennes 132
12.6.3. SESSIONLOCAERESOIVESeiiieiiiiiiie et ie ettt ettt e e e e e st e e e s sbneeeeane 133
12.6.4. LOCAlEChANGEINEICEPIONoeiiiieie ettt e et e e e e snre e e e e 133
A R L= T oo 1 1= 0 = PRSP 133
12.8. Spring's multipart (fileupload) SUPPOITcoiieiiiiiiiiie e 133
022 30 R 1 g 11 o o [o1 o o O RRERR 133
12.8.2. Using the MUItiPartRESDIVEYccoiiiiiiiiiiiiie et 134

Spring Framework Version 1.1.5 Y

Spring - JavalJ2EE Application Framework

12.8.3. Handling afileupload in @fOrmc.eooiiiiiiiiiiiee e 134
12.9. Handling EXCEPLIONScooiiiiiiiie e ettt e e e e e e s s et e e e e e e e e s s antrae e e e e e e e s eennsnrnnes 136

13. Integrating VIew tECNNOIOGIESceiiiiiiiiieiiiiie ettt e e e e s r e e nnneee s
G50 R g 1o [o1 oo PRSP 137
G B e A 1 N PR 137
13.2.0. VIBW FESOIVENS ..eeeeeieee ettt ettt e e e s ettt e e e e e s e sttt e e e e e e e e e ennteaeeeaaaeeeaannes 137
13.2.2. "Plain-0ld' JISPSVEISUS JSTLuviiiiiiiiiieeeiiiiie et ettt e s e e e anes 137
13.2.3. Additional tags facilitating develOpMENTccciiiiiiiiiiee e 138
T N 11 =SS PRSPPI 138
13.3. 1. DEPENUENCIESeeeiiieieeiiiiiee ettt e e e e ettt e e s s bb et e e e st e e e e e nbe e e e e anbnreeeane 138
13.3.2. HOW L0 INEEGIrale TIIES .. 138
13.4. VEOCILY & FIEEMEIKENeeiiiiiiiiii ettt e et e e et e e e aae 139
T I B 1= o 0 1= o = SO EPERR 139
13.4.2. Context CONFIQUIBLIONuvviiieeeee ittt e e e e e e s et e e e e e e s et e e e e e e e e s sanrraeeeeaeeeeananes 140
13.4.3. Creating tEMPIBLEScoiiiiieieiiiei ettt e e e e e e et e e e s anreeeeane 140
13.4.4. Advanced CONFIQUIAiONcceiiiiiiiiiiiiiee et e e e e e e e re e e e e e e e e eeanes 141
13.4.5. Bind support and form handlingeoooiiiiiiiiiiie e 142
TS T PRSPPSO 147
1351, MY FIFSEWOIAS ooeeeiieeiiiciiiei ettt e e e e e e et r e e e e e e e snntr e e eeaeeeeannnes 147
13.5.2. SUMIMAIY .eieiiiiiiee et e ettt e et e e e ettt e e e et e e e e s ssaeeeeansteeeeeansaeeeeaassneeeeanntaeaeeansneneeanns 150
13.6. Document VIEWS (PDF/EXCE) ...ocviii it 150
G 00 R 1 11 [o1 oo SO RPERR 150
13.6.2. Configuration and SELUPeeeeiieiiiiiiiiiiie et e e e e e ee e e e e e e e s santr e e e e e e e e e aaanes 150
13.7. JASPEIREPOITSeeeeeeiiiee ettt e e e e e e e e s e e e e e e e e s r e e e e e e s e nnrrenes 152
G T T 3 1= o = T o = 152
G 7 @0 o To 0= (o o U PPPPR 153
13.7.3. Populating the MOEANAVIEWooiiiiiiiiee e 154
13.7.4. Working With SUD-REPOIScoiieiiiiiiiiiie et e e 155
13.7.5. Configuring EXPOrter ParamELErSccouiiuiriieiiiiiee et et e e e 156

14. Integrating with other Web frameWOrKSoooiiiiiiiiiiic e
72 0 T 11T [T 1 o o PSR 158
14.2. JAVBSEIVEN FBEES ...ociuiveiee ettt et e et e e e ettt e e e et e e e e stee e e e anseeeeeaanneeeeeanaeeeeeanneeeeeanns 159
14.2.1. DelegatingVariabl €RESOIVESccoiiiiiiiiiiee et e e e 159
14.2.2. FaCeSCONIEXIULIIS ...oeee ettt e e e e e e e e e e e e e e e annnes 159
JA. 3, SHTULS e 160
14.3.1. ContextLoaderPIUGINeiiieiiieie et e e 160
14.3.2. ACtONSUPPOIT CLASSESieieieieieiiiscscses s s s e s s s s s s e e s s e s s s s s s e s e s e s e s e s s n e s e s e n e n e e e e a e e e 162
JA. A, T AESITY e 163
I R N o g1 <ot U = O ERERR 163
I A T o o] =09 1= o U PPPPRR 164
L4.4.3. SUMIMAIY .oeeiiiiiiiee ettt e e ettt e e e et e e e et ee e e etaeeeeassseeeeeassteeeesansaeeeeaassneeeeanseeeeeansneeenanns 169
TA5, WEDWOTK ..ottt ettt e e et e e e et e e e e s e e e e nnbaeeeeann 169

L T 11V S
S0 R g oo [F o1 oo PR 171
15.2. DOM@EIN UNITICAHION ...eviiiiiiiiiieeee ettt e s et r e e e e e e s st e e e e e e e s e nnnennes 171
TG TN 10115 = 07T o = (USRS 171
15.3.1. CONNECLIONFACLONYcciiiiiiiieiee e e e e e et e e e e e et e e e e e e e et e e e e e e e e s sanbbaneeeaaeeeannnes 172
15.3.2. TransaCtion MaNagEMENTcuueiiiiiieieee ittt e et e e e e e e snreeeeaaes 172
15.3.3. Destination ManagemeNtccceeiiiiiiiiiiieeeee e s ccitie e e e e e e e e esiir e e e e e e e s s sanrraereeaaeesaannes 173
15.4. USING the IMSTEMPIGLEoviiiiiiiiie et eeeaae 173
o S o T g To e 1= o [174
15.4.2. SYNCArONOUS RECEIVINGeeeiiiiiiiie ettt ettt e e e e e e e nbne e e e e 175

Spring Framework Version 1.1.5 Vi

Spring - JavalJ2EE Application Framework

15.4.3. USINg MESSAGE CONVEITENScuiiiiieiiiiiiee ettt a ittt e st e e e s e e e e nnnne e e e e 175
15.4.4. SessionCallback and ProducerCallbackoccceveiiiiiiee i 176
16. Accessing and implementing EJBSoiiiiiiiiiie s
16.1. ACCESSING EJBS ...t s s 177
0 0 B O 01 o £ ST PP PP PP PPPPPPPPPP 177
16.1.2. ACCESSING IOCEI SLSBSuiiiiiiiiieiiiiitieiie ettt e e e e e e e e e e e e e anes 177
16.1.3. ACCESSING FEMOLE SLSBSoviiiiiieiiiiiiiiiee et e e e r e e e e e s st ae e e e e e e e e aaanes 179
16.2. Using Spring convenience EJB implementation ClaSSeScocvvveiiiiiieeeiiiiiee e 179
17. Remoting and web ServiCeS USING SPriNg .oeeeiiie oot e e e e e e e e
50 T 11T [o1 o o PSR P 182
17.2. EXposing SerVICES USING RMI ...eee s 183
17.2.1. Exporting the service using the Rmi ServiCEEXPOItercoocvvveeeiiiieeeeniiiieeeniieeeennee 183
17.2.2. Linkingintheserviceal the ClIentooove i 184
17.3. Using Hessian or Burlap to remotely call servicesVIiaHTTPccovveevieeiiiiiieeee e, 184
17.3.1. Wiring up the DispatcherServlet for HESSIanccooiiiiiiiiiiiieeiieeceeee e 184
17.3.2. Exposing your beans by using the HessianServiCeEXPOrtervvveeeviiiiiiieeeeeeeeeiinns 184
17.3.3. Linkingintheservice onthe Clientoooiiiiiiiiiii e 185
G T S U = g To N = T - o 185
17.3.5. Applying HTTP basic authentication to a service exposed through Hessian or Burlap
.. 185
17.4. Exposing servicesUSING HTTPINVOKEN'Scooiiiiiiiiiiiieeee ettt 186
17.4.1. EXPOSING the SEIVICE ODJECTevviiiiiiiiiee it 186
17.4.2. Linkingintheserviceat the Clientoooiiiiiiiiiiiiiie e 186
175, WED SEIVICES ...ttt e e e e e s et e e e e e e e s s et be e e e e e e e e aenrnranees 187
17.5.1. Exposing servicesusing JAX-RPCccoooiiiiiii s 187
17.5.2. ACCESSING WED SENVICESvvviiiiiiii i a e e e 188
17.5.3. Register BEan MaDPINGScceiiureieeiiieieeaiiieeeeasiree e e s e e e s e e e sssne e e s s e e e s anneee e e 189
17.5.4. Registering our OWN HaNAIErccuiiiiiiiiie e 190
17.6. Auto-detection is not implemented for remote iNtErfacescuvveviiirieeiiiiiie e 190
17.7. Considerations when choosing atechnologycccuviiiiiieii e, 191
18. Sending Email with Spring mail abstraction layer ...
IS 50 T 11T Lo 1 o o RS 192
18.2. Spring mail abStraction SLIUCLUIEccuviiiiiiei e e e e e e 192
18.3. Using Spring mMail @DSIraCtionocueiiiiiiiiie et 193
18.3.1. Pluggable MailSender implementationscccviieiiieee i 195
18.4. Using the JavaMail MimeMeSSagEHEIPENooiiiiiiiiiiiiiii e 195
18.4.1. Creating asimple MimeMessage and sending itcccooevveiiiiiiii e, 195
18.4.2. Sending attachments and iNliNE rESOUICESccuviieeiiiiiiee e 196
19. Scheduling jobsuSING QUAITZ OF TIMENcoiiiii et e e e e e e eeeeee e e e e e e e s eneereeeeaeeeeeanes
S0 O 1 oo [0 ot o o PP PPRP PP 197
19.2. Using the OpenSymphony Quartz SCheduleroooiiiiiiiiiiiee e 197
19.2.1. Using the JODDELAIIBEANcuvviiiiiiiiie et saee e 197
19.2.2. Using the MethodInvokingJobDetailFactoryBeancooocvveeeiiiieieiniiieee e 198
19.2.3. Wiring up jobs using triggers and the SchedulerFactoryBeanccoooeeevieeeeeeeen, 198
19.3. USING DK TIMEN SUPPOIT ...veeeeeiiitieeiaiteieeesiitee e st ee e st e e s et e e e s sntee e e s s nan e e e e ennn e e e s annneeeeane 199
19.3.1. Creating CUSLOM TIMEY'Suieiiiieeee ettt e e e e e e ettt r e e e e e e e e ettt eeeaaeeeeenneeaneeeaeeeeaannes 199
19.3.2. Using the MethodinvokingTimerTaskFactoryBeanccccvvvveveeeeeiiiciiiieeeee e e e 200
19.3.3. Wrapping up: setting up the tasks using the TimerFactoryBeancccccvveveeeeiennes 201
P20 1= 1 T USRI
20.1. UNITEESIING ©eeteeiiiiiiieiiiii ettt e et e e ettt e e s st e e e e e sb e e e e e sbe e e e e anbne e e e ennnneee s 202
20.2. INtEGralioN TESHINGcoeeeeee e ————— 202
20.2.1. Context management and CACNINGeeiiiiiiiie e 203

Spring Framework Version 1.1.5 Vii

Spring - JavalJ2EE Application Framework

20.2.2. Dependency Injection of test ClasSiNStANCESccuvveeriiiiieeiiiiee e 203

20.2.3. TransaCtion MANAGEMENTueiiiiieeeiiiiiiiie e e e e e e seerrr e e e e e e s s st re e e e e e e e e s e aanrereeeaaeeas 203

20.2.4. CoNVENIENCEVANTADIES ..ot e e et r e e e e e s nnnreaeeeeaeeas 204

20.2.5. EXAMPIE ..o, 204

20.2.6. RUNNING INTEGralioN TESLSvvviiiiiiiiee ettt s 206
A, SPHNG'SDEANS.AIA ... e e e e e e e

Spring Framework Version 1.1.5 viii

Preface

Developing software applicationsis hard enough even with good tools and technol ogies. Implementing
applications using platforms which promise everything but turn out to be heavy-weight, hard to control and not
very efficient during the development cycle makes it even harder. Spring provides a light-weight solution for
building enterprise-ready applications, while still supporting the possibility of using declarative transaction
management, remote access to your logic using RMI or webservices, mailing facilities and various optionsin
persisting your data to a database. Spring provides an MV C framework, transparent ways of integrating AOP
into your software and awell-structured exception hierarchy including automatic mapping from proprietary
exception hierarchies.

Spring could potentially be a one-stop-shop for al your enterprise applications, however, Spring is modular,
allowing you to use parts of it, without having to bring in the rest. Y ou can use the bean container, with Struts
on top, but you could also choose to just use the Hibernate integration or the JDBC abstraction layer. Spring is
non-intrusive, meaning dependencies on the framework are generally none or absolutely minimal, depending
onthe areaof use..

This document provides areference guide to Spring's features. Since this document is still awork-in-progress,
if you have any requests or comments, please post them on the user mailing list or on the forum at the
SourceForge project page: http://www.sf.net/proj ects/springframework

Before we go on, afew words of gratitude: Chris Bauer (of the Hibernate team) prepared and adapted the
DocBook-X SL softwarein order to be able to create Hibernate's reference guide, also allowing usto create this
one.

Spring Framework Version 1.1.5 iX

http://www.sf.net/projects/springframework

Chapter 1. Introduction

1.1. Overview

Spring contains alot of functionality and features, which are well-organized in seven modules shown in the
diagram below. This section discusses each the of modulesin turn.

Spring ORM Spring Web
Hibernate support WebApplicationContext
iBatis support Multipart resolver
JDO support Web utilities

Spring Web
Spring AOP MvC
Source-level metadata Web MVC Framework
AOP infrastructure Web Views
. JSP / Velocity
Spring Context PDF / Excel
1 Application context
Sprl_ng DAO (e
Transaction infrastructure Validation
JDBC support JNDI, EJB support & Remoting
DAO support Mail

Spring Core
Supporting utilities
Bean container

Overview of the the Spring Framework

The Core package is the most fundamental part of the framework and provides the Dependency Injection
features allowing you to manage bean container functionality. The basic concept here is the BeanFactory,
which provides afactory pattern removing the need for programmatic singletons and allowing you to decouple
the configuration and specification of dependencies from your actual program logic.

On top of the Core package sits the Context package, providing a way to access beans in aframework-style
manner, somewhat resembling a INDI-registry. The context package inherits its features from the beans
package and adds support for text messaging using e.g. resource bundles, event-propagation, resource-loading
and transparent creation of contexts by, for example, a servlet container.

The DAO package provides a JDBC-abstraction layer that removes the need to do tedious JDBC coding and
parsing of database-vendor specific error codes. Also, the IDBC package provides away to do programmatic as
well as declarative transaction management, not only for classes implementing special interfaces, but for all
your POJOs (plain old java objects).

The ORM package provides integration layers for popular object-relational mapping APIs, including JDO,
Hibernate and iBatis. Using the ORM package you can use all those O/R-mappers in combination with all the
other features Spring offers, like simple declarative transaction management mentioned before.

Spring's AOP package provides an AOP Alliance compliant aspect-oriented programming implementation
alowing you to define, for example, method-interceptors and pointcuts to cleanly decouple code implementing
functionality that should logically speaking be separated. Using source-level metadata functionality you can
incorporate all kinds of behavioral information into your code, alittle like .NET attributes.

Spring Framework Version 1.1.5 1

Introduction

Spring's Web package provides basic web-oriented integration features, such as multipart functionality,
initialization of contexts using servlet listeners and a web-oriented application context. When using Spring
together with WebWork or Struts, this is the package to integrate with.

Spring's Web MVC package provides a Model -View-Controller implementation for web-applications. Spring's
MV C implementation is not just any implementation, it provides a clean separation between domain model
code and web forms and allows you to use all the other features of the Spring Framework like validation.

1.2. Usage scenarios

With the building blocks described above you can use Spring in all sorts of scenarios, from applets up to
fully-fledged enterprise applications using Spring's transaction management functionality and Web framework.

Form Controllers . Dynamic binding of Integration with JSP,
" Multipart Resolver X "
hgndllng form to handle file uploads data to the domain Velocity, XSLT, PDF,
interaction model Excel

Spring Web MVC

} WebApplicationContext providing e.g. messaging

Spring Web

—‘ Declarative transaction management for POJOs Ii Remote
Sending access via

Email Hession,
Burlap, SOAP

Spring Context

Custom business logic

Spring AOP Spring ORM

Hibernate mappings
Custom Hibernate DAOs

Spring Core Spring DAO

Servlet Container (Tomcat / Jetty)

Typical full-fledged Spring web application

A typical web application using most of Spring's features. Using Tr ansact i onPr oxyFact or yBeans the web
application is fully transactional, just asit would be when using container managed transaction as provided by
Enterprise JavaBeans. All your custom business logic can be implemented using simple POJOs, managed by
Spring's Dependency Injection container. Additional services such as sending email and validation,
independent of the web layer enable you to choose where to execute validation rules. Spring's ORM support is
integrated with Hibernate, JDO and iBatis. Using for example Hi ber nat eDaoSuppor t , yOU Can re-use your
existing Hibernate mappings. Form controllers seamlessly integrate the web-layer with the domain model,
removing the need for Act i onFor ns or other classesthat transform HTTP parameters to values for your domain
model.

Spring Framework Version 1.1.5 2

Introduction

Web frontend using
Struts or WebWork

Spring WEB

Spring AOP Spring ORM

Transaction management
Using Spring decl. trans.

Hibernate mappings
Custom Hibernate DAOs

Spring Core Spring DAO

Servlet Container (Tomcat / Jetty)

Spring middle-tier using a third-party web framework

Sometimes the current circumstances do not allow you to completely switch to adifferent framework. Spring
does not force you to use everything within it; it's not an all-or-nothing solution. Existing frontends using
WebWork, Struts, Tapestry, or other Ul frameworks can be integrated perfectly well with a Spring-based
middle-tier, allowing you to use the transaction features that Spring offers. The only thing you needtodo is
wire up your business logic using an Appl i cat i onCont ext and integrate your Web Ul layer using a

WebAppl i cati onCont ext .

RMI

JAX RPC client Hessian client Burlap client .
client

Transprarent remote access (using remote package)

Custom logic contained by beans

Spring Core Spring Context

Servlet Container (e.g. Tomcat / Jetty)

Remoting usage scenario

When you need to access existing code via webservices, you can use Spring's Hessi an-, Bur | ap-, Rni - Or
JaxRpcProxyFact or y classes. Enabling remote access to existing application is al of a sudden not that hard
anymore.

Spring Framework Version 1.1.5

Introduction

EJB Access layer using
Slsbinvokers

Spring-managed EJBs (using Spring Context
AbstractEnterpriseBean

Spring Core Spring DAO

Application Server (e.g. JBoss, WebLogic)
EJBs - Wrapping existing POJOs

Spring also provides an access layer and abstraction layer for Enterprise JavaBeans, enabling you to reuse your
existing POJOs and wrap them in Statel ess Session Beans, for use in scalable fail safe web applications, that
might need declarative security.

Spring Framework Version 1.1.5 4

Chapter 2. Background information

2.1. Inversion of Control / Dependency Injection

In early 2004, Martin Fowler asked the readers of his site; when talking about Inversion of Control: "the
question, is what aspect of control are they inverting?". After talking about the term Inversion of Control
Martin suggests renaming the pattern, or at least giving it a more self-explanatory name, and starts to use the
term Dependency Injection. His article continues to explain some of the ideas behind Inversion of Control or
Dependency Injection. If you need a decent insight: http://martinfowler.com/articles/injection.html.

Spring Framework Version 1.1.5

http://martinfowler.com/articles/injection.html

Chapter 3. Beans, BeanFactory and the
ApplicationContext

3.1. Introduction

Two of the most elementary and important packagesin Spring are the or g. spri ngf r amewor k. beans and

org. spri ngframewor k. cont ext packages. Code in these packages provides the basis for Spring's Inversion of
Control (aternately called Dependency Injection) features. The BeanFact ory

[http://wwv springfranmework. org/ docs/ api / or g/ spri ngf ramewor k/ beans/ f act ory/ BeanFactory. htm]
provides an advanced configuration mechanism capable of managing beans (objects) of any nature, using
potentially any kind of storage facility. The ApplicationContext
[http://imww.springframework.org/docs/api/org/springframework/context/A ppli cationContext.html] builds on
top of the BeanFactory and adds other functionality such as easier integration with Springs AOP features,
message resource handling (for use in internationalization), event propagation, declarative mechanismsto
create the ApplicationContext and optional parent contexts, and application-layer specific contexts such asthe
VebAppl i cat i onCont ext , among other enhancements.

In short, the BeanFact or y provides the configuration framework and basic functionality, while the

Appl i cati onCont ext adds enhanced capabilities to it, some of them perhaps more J2EE and enterprise-centric.
In general, an ApplicationContext is a complete superset of a BeanFactory, and any description of BeanFactory
capabilities and behavior should be considered to apply to ApplicationContexts as well.

Users are sometimes unsure whether BeanFactory or ApplicationContext are best suited for use in a particular
situation. Normally when building most applicationsin a J2EE-environment, the best option is to use the
ApplicationContext, since it offers all the features of the BeanFactory and adds on to it in terms of features,
while also allowing a more declarative approach to use of some functionality, which is generally desirable. The
main usage scenario when you might prefer to use the BeanFactory is when memory usage is the greatest
concern (such asin an applet where every last kilobyte counts), and you don't need al the features of the
ApplicationContext.

This chapter is roughly divided into two parts, the first part covering the basic principles that apply to both the
BeanFactory and the ApplicationContext. The second part will cover some of the features that only apply to the
ApplicationContext.

3.2. BeanFactory and BeanDefinitions - the basics

3.2.1. The BeanFactory

The BeanFact ory

[http://ww. springfranmework. org/ docs/ api / or g/ spri ngf ramewor k/ beans/ f act ory/ BeanFact ory. ht m]
isthe actual container which instantiates, configures, and manages a number of beans. These beanstypically
collaborate with one another, and thus have dependencies between themselves. These dependencies are
reflected in the configuration data used by the BeanFactory (although some dependencies may not be visible as
configuration data, but rather be a function of programmatic interactions between beans at runtime).

A BeanFactory is represented by the interface or g. spri ngf r amewor k. beans. f act ory. BeanFact ory, for which
there are multiple implementations. The most commonly used simple BeanFactory implementation is
org. springframewor k. beans. f act ory. xm . Xm BeanFact ory. (This should be qualified with the reminder that

Spring Framework Version 1.1.5 6

http://www.springframework.org/docs/api/org/springframework/beans/factory/BeanFactory.html
http://www.springframework.org/docs/api/org/springframework/context/ApplicationContext.html
http://www.springframework.org/docs/api/org/springframework/beans/factory/BeanFactory.html

Beans, BeanFactory and the A pplicationContext

ApplicationContexts are a subclass of BeanFactory, and most users ultimately prefer to use XML variants of
ApplicationContext).

Although for most scenarios, almost all user code managed by the BeanFactory does not have to be aware of
the BeanFactory, the BeanFactory does have to be instantiated somehow. This can happen via explicit user
code such as:

InputStreamis = new Fil el nput Strean("beans. xm ");
Xm BeanFactory factory = new Xm BeanFactory(is);

or

Cl assPat hResource res = new Cl assPat hResour ce("beans. xm ") ;
Xm BeanFactory factory = new Xm BeanFactory(res);

or

Cl assPat hXm Appl i cati onCont ext appCont ext = new O assPat hXm Appl i cati onCont ext (
new String[] {"applicationContext.xm ", "applicationContext-part2.xm"});

/] of course, an ApplicationContext is just a BeanFactory

BeanFactory factory = (BeanFactory) appContext;

For many usage scenarios, user code will not have to instantiate the BeanFactory, since Spring Framework code
will do it. For example, the web layer provides support code to load a Spring ApplicationContext automatically
as part of the normal startup process of a 2EE web-app. This declarative process is described here:

While programmatic manipulation of BeanFactories will be described |ater, the following sections will
concentrate on describing the configuration of BeanFactories.

A BeanFactory configuration consists of, at its most basic level, definitions of one or more beans that the
BeanFactory must manage. In an XmlBeanFactory, these are configured as one or more bean elementsinside a
top-level beans element.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE beans PUBLI C "-//SPRI NG / DTD BEAN/ / EN' "htt p://ww. spri ngfranmewor k. or g/ dt d/ spri ng- beans. dt d" >

<beans>
<bean id="..." class="...">
</ bean>
<bean id="..." class="...">

</ bean>

</ beans>

3.2.2. The BeanDefinition

Bean definitionsinside a DefaultListableBeanFactory variant (like XmlBeanFactory) are represented as
BeanDefinition objects, which contain (among other information) the following details:

« aclass name: thisis normally the actual implementation class of the bean being described in the bean
definition. However, if the bean isto be constructed by calling a static factory method instead of using a
normal constructor, thiswill actually be the class name of the factory class.

« bean behavioral configuration elements, which state how the bean should behave in the container (i.e.
prototype or singleton, autowiring mode, dependency checking mode, initialization and destruction

Spring Framework Version 1.1.5 7

Beans, BeanFactory and the A pplicationContext

methods)

» constructor arguments and property values to set in the newly created bean. An example would be the
number of connections to use in a bean that manages a connection pool (either specified as a property or as
aconstructor argument), or the pool size limit.

« other beans a bean needs to do its work, i.e. collaborators (also specified as properties or as constructor
arguments). These can also be called dependencies.

The concepts listed above directly translate to a set of elements the bean definition consists of. Some of these
element groups are listed below, along with alink to further documentation about each of them.

Table 3.1. Bean definition explanation

Feature Moreinfo

class Section 3.2.3, “ The bean class’

id and name Section 3.2.4, “The bean identifiers (id and name)”
singleton or prototype Section 3.2.5, “To singleton or not to singleton”
constructor arguments Section 3.3.1, “ Setting bean properties and collaborators’
bean properties Section 3.3.1, “ Setting bean properties and collaborators’
autowiring mode Section 3.3.6, “ Autowiring collaborators”

dependency checking mode Section 3.3.7, “ Checking for dependencies’

initialization method Section 3.4.1, “Lifecycle interfaces’

destruction method Section 3.4.1, “Lifecycle interfaces’

Note that a bean definition is represented by the real interface
org. spri ngf ramewor k. beans. factory. confi g. BeanDef i ni ti on, and its various sub-interfaces and
implementations. However, it isvery unlikely that most user code would ever work with a BeanDefinition.

Besides bean definitions which contain information on how to create a bean, a bean factory can also allow to
register existing bean instances. DefaultListableBeanFactory supports this through ther egi st er Si ngl et on
method, as defined by the or g. spri ngf ramewor k. beans. f act ory. confi g. Confi gur abl eBeanFact ory
interface. Typical applications purely work with bean definitions, though.

3.2.3. The bean class

Thecl ass attribute is normally mandatory (see Section 3.2.3.3, “Bean creation viainstance factory method”
and Section 3.5, “ Abstract and child bean definitions’ for the two exception) and is used for one of two
purposes. In the much more common case where the BeanFactory itself directly creates the bean by calling its
constructor (equivalent to Java code calling new), the class attribute specifies the class of the bean to be
constructed. In the less common case where the BeanFactory calls a static, so-called factory method on a class
to create the bean, the class attribute specifies the actual class containing the static factory method. (the type of
the returned bean from the static factory method may be the same class or ancther class entirely, it doesn't
matter).

3.2.3.1. Bean creation via constructor

When creating a bean using the constructor approach, all normal classes are usable by Spring and compatible

Spring Framework Version 1.1.5

Beans, BeanFactory and the A pplicationContext

with Spring. That is, the class being created does not need to implement any specific interfaces or be coded in a
specific fashion. Just specifying the bean class should be enough. However, depending on what type of 10C you
are going to use for that specific bean, you may need a default (empty) constructor.

Additionally, the BeanFactory isn't limited to just managing true JavaBeans, it is also able to manage virtually
any class you want it to manage. Most people using Spring prefer to have actual JavaBeans (having just a
default (no-argument) constructor and appropriate setters and getters modeled after the properties) in the
BeanFactory, but it it's also possible to have more exotic non-bean-style classesin your BeanFactory. If, for
example, you need to use alegacy connection pool that absolutely does not adhere to the JavaBean
specification, no worries, Spring can manage it as well.

Using the XmiBeanFactory you can specify your bean class as follows:

<bean i d="exanpl eBean"

cl ass="exanpl es. Exanpl eBean"/ >
<bean name="anot her Exanpl e"

cl ass="exanpl es. Exanpl eBeanTwo" / >

The mechanism for supplying (optional) arguments to the constructor, or setting properties of the object
instance after it has been constructed, will be described shortly.

3.2.3.2. Bean creation via static factory method

When defining a bean which is to be created using a static factory method, along with the cl ass attribute which
specifies the class containing the static factory method, another attribute named f act or y- net hod is needed to
specify the name of the factory method itself. Spring expects to be able to call this method (with an optional list
of arguments as described later) and get back alive object, which from that point on istreated asif it had been
created normally via a constructor. One use for such a bean definition isto call static factoriesin legacy code.

Following is an example of abean definition which specifies that the bean isto be created by calling a
factory-method. Note that the definition does not specify the type (class) of the returned object, only the class
containing the factory method. In this example, cr eat el nst ance must be a static method.

<bean i d="exanpl eBean"
cl ass="exanpl es. Exanpl eBean2"
factory- met hod="creat el nst ance"/ >

The mechanism for supplying (optional) arguments to the factory method, or setting properties of the object
instance after it has been returned from the factory, will be described shortly.

3.2.3.3. Bean creation via instance factory method

Quite similar to using a static factory method to create a bean, is the use of an instance (non-static) factory
method, where a factory method of an existing bean from the factory is called to create the new bean.

To use this mechanism, the cl ass attribute must be left empty, and the f act or y- bean attribute must specify the
name of abean in the current or an ancestor bean factory which contains the factory method. The factory
method itself should still be set viathe f act or y- met hod attribute.

Following is an example:

<l-- The factory bean, which contains a nethod call ed
creat el nstance -->

<bean i d="nyFact or yBean"
class="...">

</ bean>

Spring Framework Version 1.1.5 9

Beans, BeanFactory and the A pplicationContext

<l-- The bean to be created via the factory bean -->
<bean i d="exanpl eBean"

fact ory-bean="nyFact or yBean"

factory- met hod="cr eat el nst ance"/ >

Although the mechanisms for setting bean properties are still to be discussed, one implication of this approach
isthat the factory bean itself can be managed and configured via Dependency Injection, by the container.

3.2.4. The bean identifiers (i d and nane)

Every bean has one or more ids (also called identifiers, or names; these terms refer to the same thing). These ids
must be unigue within the BeanFactory or ApplicationContext the bean is hosted in. A bean will almost aways
have only oneid, but if abean has more than one id, the extra ones can essentially be considered aliases.

In an XmlBeanFactory (including ApplicationContext variants), you use thei d or nane attributes to specify the
bean id(s), and at least one id must be specified in one or both of these attributes. Thei d attribute allows you to
specify oneid, and asit is marked in the XML DTD (definition document) asarea XML element ID attribute,
the parser is able to do some extra validation when other elements point back to this one. As such, it isthe
preferred way to specify abean id. However, the XML spec does limit the characters which are legal in XML
IDs. Thisisusually not really a constraint, but if you have a need to use one of these characters, or want to
introduce other aliases to the bean, you may also or instead specify one or more bean ids (separated by a
comma (,) or semicolon (;) viathe nane attribute.

3.2.5. To singleton or not to singleton

Beans are defined to be deployed in one of two modes: singleton or non-singleton. (The latter isalso called a
prototype, although the term is used loosely as it doesn't quite fit). When a bean is a singleton, only one shared
instance of the bean will be managed and all requests for beans with an id or ids matching that bean definition
will result in that one specific bean instance being returned.

The non-singleton, prototype mode of a bean deployment results in the creation of a new bean instance every
time arequest for that specific bean isdone. Thisisideal for situations where for example each user needs an
independent user object or something similar.

Beans are deployed in singleton mode by default, unless you specify otherwise. Keep in mind that by changing
the type to non-singleton (prototype), each request for a bean will result in a newly created bean and this might
not be what you actually want. So only change the mode to prototype when absolutely necessary.

In the example below, two beans are declared of which one is defined as a singleton, and the other oneisa
non-singleton (prototype). exanpl eBean is created each and every time a client asks the BeanFactory for this
bean, while yet Anot her Exanpl e isonly created once; areference to the exact same instance is returned on each
request for this bean.

<bean i d="exanpl eBean"

cl ass="exanpl es. Exanpl eBean" si ngl eton="fal se"/>
<bean name="yet Anot her Exanpl e"

cl ass="exanpl es. Exanpl eBeanTwo" si ngl et on="true"/>

Note: when deploying a bean in the prototype mode, the lifecycle of the bean changes dlightly. By definition,
Spring cannot manage the complete lifecycle of a non-singleton/prototype bean, since after it is created, it is
given to the client and the container does not keep track of it at al any longer. Y ou can think of Spring'srole
when talking about a non-singleton/prototype bean as a replacement for the 'new' operator. Any lifecycle
aspects past that point have to be handled by the client. The lifecycle of abean in the BeanFactory is further

Spring Framework Version 1.1.5 10

Beans, BeanFactory and the A pplicationContext

described in Section 3.4.1, “Lifecycle interfaces’.

3.3. Properties, collaborators, autowiring and dependency
checking

3.3.1. Setting bean properties and collaborators

Inversion of Control has already been referred to as Dependency Injection. The basic principleis that beans
define their dependencies (i.e. the other objects they work with) only through constructor arguments, arguments
to afactory method, or properties which are set on the object instance after it has been constructed or returned
from afactory method. Then, it isthe job of the container to actually inject those dependencies when it creates
the bean. Thisis fundamentally the inverse (hence the name Inversion of Control) of the bean instantiating or
locating its dependencies on its own using direct construction of classes, or something like the Service Locator
pattern. While we will not elaborate too much on the advantages of Dependency Injection, it becomes evident
upon usage that code gets much cleaner and reaching a higher grade of decoupling is much easier when beans
do not look up their dependencies, but are provided with them, and additionally do not even know where the
dependencies are located and of what actual type they are.

Astouched on in the previous paragraph, Inversion of Control/Dependency Injection exists in two major
variants:

« setter-based dependency injection is realized by calling setters on your beans after invoking a no-argument
constructor or no-argument static factory method to instantiate your bean. Beans defined in the BeanFactory
that use setter-based dependency injection are true JavaBeans. Spring generally advocates usage of
setter-based dependency injection, since alarge number of constructor arguments can get unwieldy,
especially when some properties are optional.

e constructor-based dependency injection is realized by invoking a constructor with a number of arguments,
each representing a collaborator or property. Additionaly, calling a static factory method with specific
arguments, to construct the bean, can be considered almost equivalent, and the rest of this text will consider
arguments to a constructor and arguments to a static factory method similarly. Although Spring generally
advocates usage of setter-based dependency injection for most situations, it does fully support the
constructor-based approach as well, since you may wish to use it with pre-existing beans which provide
only multi-argument constructors, and no setters. Additionally, for smpler beans, some people prefer the
constructor approach as a means of ensuring beans cannot be constructed in an invalid state.

The BeanFact or y supports both of these variants for injecting dependencies into beans it manages. (It in fact
also supports injecting setter-based dependencies after some dependencies have already been supplied viathe
constructor approach.) The configuration for the dependencies comes in the form of aBeanDef i ni ti on, which
is used together with JavaBeans Pr oper t yEdi t or s to know how to convert properties from one format to
another. The actual values being passed around are done in the form of Proper t yval ue objects. However, most
users of Spring will not be dealing with these classes directly (i.e. programmatically), but rather with an XML
definition file which will be converted internally into instances of these classes, and used to load an entire
BeanFactory or ApplicationContext.

Bean dependency resolution generaly happens as follows:

1. TheBeanFactory is created and initialized with a configuration which describes al the beans. Most Spring
users use a BeanFactory or ApplicationContext variant which supports XML format configuration files.

2. Each bean has dependencies expressed in the form of properties, constructor arguments, or arguments to
the static-factory method when that is used instead of a normal constructor. These dependencies will be
provided to the bean, when the bean is actually created.

Spring Framework Version 1.1.5 11

Beans, BeanFactory and the A pplicationContext

3. Each property or constructor-arg is either an actual definition of the value to set, or areference to another
bean in the BeanFactory. In the case of the ApplicationContext, the reference can be to abean in a parent
ApplicationContext.

4. Each property or constructor argument which is avalue must be able to be converted from whatever
format it was specified in, to the actual type of that property or constructor argument. By default Spring
can convert avalue supplied in string format to all built-in types, such asi nt , | ong, St ri ng, bool ean, €tC.
Additionally, when talking about the XML based BeanFactory variants (including the ApplicationContext
variants), these have built-in support for defining Lists, Maps, Sets, and Properties collection types.
Additionally, Spring uses JavaBeans Pr oper t yEdi t or definitions to be able to convert string values to
other, arbitrary types. (Y ou can provide the BeanFactory with your own Pr oper t yEdi t or definitionsto be
able to convert your own custom types; more information about PropertyEditors and how to manually add
custom ones, can be found in Section 3.9, “Registering additional custom PropertyEditors’). When a bean
property is a Java Class type, Spring allows you to specify the value for that property as a string value
which isthe name of the class, and the d assEdi t or PropertyEditor, which is built-in, will take care of
converting that class name to an actual Class instance.

5. Itisimportant to realize that Spring validates the configuration of each bean in the BeanFactory when the
BeanFactory is created, including the validation that properties which are bean references are actually
referring to valid beans (i.e. the beans being referred to are also defined in the BeanFactory, or in the case
of ApplicationContext, a parent context). However, the bean properties themselves are not set until the
bean is actually created. For beans which are singleton and set to be pre-instantiated (such as singleton
beans in an ApplicationContext), creation happens at the time that the BeanFactory is created, but
otherwise thisis only when the bean is requested. When a bean actually has to be created, this will
potentially cause a graph of other beansto be created, as its dependencies and its dependencies
dependencies (and so on) are created and assigned.

6. You can generaly trust Spring to do the right thing. It will pick up configuration issues, including
references to non-existent beans and circular dependencies, at BeanFactory load-time. It will actually set
properties and resolve dependencies (i.e. create those dependenciesif needed) as late as possible, which is
when the bean is actually created. This does mean that a BeanFactory which has loaded correctly, can later
generate an exception when you request a bean, if there is a problem creating that bean or one of its
dependencies. This could happen if the bean throws an exception as aresult of amissing or invalid
property, for example. This potentially delayed visibility of some configuration issuesiswhy
ApplicationContext by default pre-instantiates singleton beans. At the cost of some upfront time and
memory to create these beans before they are actually needed, you find out about configuration issues
when the ApplicationContext is created, not later. If you wish, you can still override this default behavior
and set any of these singleton beans to lazy-load (not be pre-instantiated).

Some examples:

First, an example of using the BeanFactory for setter-based dependency injection. Below isasmall part of an
Xm BeanFact or y configuration file specifying some bean definitions. Following isthe code for the actual main
bean itself, showing the appropriate setters declared.

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<property nanme="beanOne"><ref bean="anot her Exanpl eBean"/></ property>
<property name="beanTwo" ><ref bean="yet Anot her Bean"/ ></ pr operty>
<property name="integerProperty"><val ue>1</val ue></ property>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

Spring Framework Version 1.1.5 12

Beans, BeanFactory and the A pplicationContext

public void set BeanOne(Anot her Bean beanOne) {
thi s. beanOne = beanOne
}

public void set BeanTwo(Yet Anot her Bean beanTwo) {
thi s. beanTwo = beanTwo;

}

public void setlntegerProperty(int i) {
this.i =1i;

}

}

Asyou can see, setters have been declared to match against the properties specified in the XML file. (The
properties from the XML file, directly relate to the Pr oper t yVval ues object from the Root BeanDef i ni ti on)

Now, an example of using the BeanFactory for 10C type 3 (constructor-based dependency injection). Below isa
snippet from an XML configuration that specifies constructor arguments and the actual bean code, showing the
constructor:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg><ref bean="anot her Exanpl eBean"/ ></ construct or - ar g>
<constructor-arg><ref bean="yet Anot her Bean"/ ></ construct or - ar g>
<constructor-arg type="int"><val ue>1</val ue></construct or - ar g>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

private Anot her Bean beanOne;
private Yet Anot her Bean beanTwo;
private int i;

publ i c Exanpl eBean(Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
thi s. beanOne = anot her Bean
t hi s. beanTwo = yet Anot her Bean
this.i =1i;

}

Asyou can see, the constructor arguments specified in the bean definition will be used to passin as arguments
to the constructor of the Exanpl eBean.

Now consider avariant of this where instead of using a constructor, Spring istold to call a static factory method
to return an instance of the object.:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"
factory- met hod="cr eat el nst ance" >
<constructor-arg><ref bean="anot her Exanpl eBean"/ ></ construct or - ar g>
<constructor-arg><ref bean="yet Anot her Bean"/ ></ construct or - ar g>
<const ruct or - ar g><val ue>1</ val ue></ const ruct or - ar g>
</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

/1 a private constructor
private ExanpleBean(...) {

}

/Il a static factory nmethod
/1 the arguments to this method can be consi dered the dependenci es of the bean that

Spring Framework Version 1.1.5 13

Beans, BeanFactory and the A pplicationContext

/1 is returned, regardl ess of how those argunents are actually used
public static Exanpl eBean creat el nstance(
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
Exanpl eBean eb = new Exanpl eBean(...);
/'l sone other operations

return eb;

Note that arguments to the static factory method are supplied viaconst r uct or - ar g elements, exactly the same
asif aconstructor had actually been used. These arguments are optional. Also, it isimportant to realize that the
type of the class being returned by the factory method does not have to be of the same type as the class which
contains the static factory method, although in this exampleit is. An instance (hon-static) factory method,
mentioned previously, would be used in an essentialy identical fashion (aside from the use of the

fact ory- bean attribute instead of the cl ass attribute), so will not be detailed here.

3.3.2. Constructor Argument Resolution

Constructor argument resol ution matching occurs using the argument's type. When another bean is referenced,
the type is known, and matching can occur. When a simple type is used, such as <val ue>t r ue<val ue>, Spring
cannot determine the type of the value, and so cannot match by type without help. Consider the following class,
which is used for the following two sections:

package exanpl es
public class Exanpl eBean {

private int years; //No. of years to the calculate the Utinmate Answer
private String ultimteAnswer; //The Answer to Life, the Universe, and Everything

publi ¢ Exanpl eBean(int years, String ultimteAnswer) {
this.years = years
this.ultimteAnswer = ul timateAnswer;

3.3.2.1. Constructor Argument Type Matching

The above scenario can use type matching with simple types by explicitly specifying the type of the constructor
argument using the t ype attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg type="int"><val ue>7500000</ val ue></ construct or - ar g>
<constructor-arg type="java.l ang. String"><val ue>42</val ue></ construct or - ar g>
</ bean>

3.3.2.2. Constructor Argument Index

Constructor arguments can have their index specified explicitly by use of thei ndex attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg i ndex="0"><val ue>7500000</ val ue></ construct or - ar g>
<constructor-arg index="1"><val ue>42</val ue></ construct or - ar g>

</ bean>

Aswell as solving the ambiguity problem of multiple ssimple values, specifying an index also solves the
problem of ambiguity where a constructor may have two arguments of the same type. Note that the index isO
based.

Spring Framework Version 1.1.5 14

Beans, BeanFactory and the A pplicationContext

Specifying a constructor argument index is the preferred way of performing constructor 1oC.

3.3.3. Bean properties and constructor arguments detailed

As mentioned in the previous section, bean properties and constructor arguments can be defined as either
references to other managed beans (collaborators), or values defined inline. The Xni BeanFact ory supports a
number of sub-element types within itspr operty and const r uct or - ar g elements for this purpose.

Theval ue element specifies a property or constructor argument as a human-readabl e string representation. As
mentioned in detail previously, JavaBeans PropertyEditors are used to convert these string values from a
java. | ang. Stri ng to the actual property or argument type.

<beans>
<bean i d="nyDat aSour ce" cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" destroy- nmet hod="cl ose">
<I-- results in a setDriverC assName(String) call -->
<property nanme="driver Cl assNane" >
<val ue>com nysql . j dbc. Dri ver </ val ue>
</ property>
<property name="url">
<val ue>j dbc: mysql : / /1 ocal host : 3306/ nydb</ val ue>
</ property>
<property name="user nanme">
<val ue>r oot </ val ue>
</ property>
</ bean>
</ beans>

Thenul I element is used to handle null values. Spring treats empty arguments for properties and the like as
empty Strings. The following XmlBeanFactory configuration:

<bean cl ass="Exanpl eBean" >
<property name="emai | "><val ue></val ue></ property>
</ bean>

resultsin the email property being set to ", equivalent to the java code: exanpl eBean. set Emai | (") . The
special <nul | > element may be used to indicate a null value, so that:

<bean cl ass="Exanpl eBean" >
<property name="email"><nul | /></property>
</ bean>

is equivalent to the java code: exanpl eBean. set Emai | (nul 1) .

Thelist, set, map, and pr ops elements allow properties and arguments of JavatypeLi st, Set, Map, and
Properti es, respectively, to be defined and set.

<beans>

<bean i d="nor eConpl exCbj ect" cl ass="exanpl e. Conpl exhj ect ">

<l-- results in a setPeople(java.util.Properties) call -->
<property nanme="peopl e">
<pr ops>

<prop key="HarryPotter">The magi c property</prop>
<prop key="JerrySeinfel d'>The funny property</prop>

</ props>
</ property>
<I-- results in a setSoneList(java.util.List) call -->
<property nanme="somneList">

<list>

<value>a list elenent foll owed by a reference</val ue>
<ref bean="nyDat aSource"/>

</list>
</ property>
<l-- results in a setSoneMap(java.util.Mp) call -->
<property nanme="sonmeMap">

<n’ap>

Spring Framework Version 1.1.5 15

Beans, BeanFactory and the A pplicationContext

<entry key="yup an entry">

<val ue>j ust some string</val ue>
</entry>
<entry key="yup a ref">

<ref bean="nyDat aSource"/>

</entry>
</ map>
</ property>
<I-- results in a setSoneSet (java.util.Set) call -->
<property name="soneSet">
<set >

<val ue>j ust sone string</val ue>
<ref bean="nyDat aSource"/>
</set>
</ property>

</ bean>
</ beans>

Note that the value of a Map entry, or a set value, can also again be any of the elements:

(bean | ref | idref | list | set | map | props | value | null)

A bean element inside the pr opert y element is used to define a bean value inline, instead of referring to a bean
defined elsewhere in the BeanFactory. The inline bean definition does not need to have any id defined.

<bean i d="outer" class="...">
<l-- Instead of using a reference to target, just use an inner bean -->
<property name="target">
<bean cl ass="com nyconpany. Personl npl ">
<property nanme="nanme"><val ue>Tony</ val ue></ property>
<property nanme="age"><val ue>51</val ue></ property>
</ bean>
</ property>
</ bean>

Anidref element is simply a shorthand and error-proof way to set a property to the String id or name of another
bean in the container.

<bean id="t heTarget Bean" class="...">
</ bean>
<bean i d="thed i ent Bean" class="...">

<property name="t ar get Nane">
<i dref bean="theTar get Bean"/>
</ property>
</ bean>

Thisis exactly equivalent at runtime to the following fragment:

<bean i d="t heTar get Bean" class="...">
</ bean>
<bean i d="t hed i ent Bean" class="...">

<property name="t ar get Nane" >
<val ue>t heTar get Bean</ val ue>
</ property>
</ bean>

The main reason the first form is preferable to the second is that using thei dref tag will alow Spring to
validate at deployment time that the other bean actually exists. In the second variation, the class who's
targetName property is forced to do its own validation, and that will only happen when that classis actually
instantiated by Spring, possibly long after the container is actually deployed.

Additionaly, if the bean being referred to isin the same actual XML file, and the bean name is the bean id, the
I ocal attribute may be used, which will allow the XML parser itself to validate the bean name even earlier, at
XML document parse time.

Spring Framework Version 1.1.5 16

Beans, BeanFactory and the A pplicationContext

<property name="t ar get Nane">
<idref |ocal ="theTarget Bean"/ >
</ property>

Theref element isthe final element alowed inside aproper ty definition element. It is used to set the value of
the specified property to be areference to another bean managed by the container, a collaborator, so to speak.
As mentioned in aprevious section, the referred-to bean is considered to be a dependency of the bean whao's
property is being set, and will beinitialized on demand as needed (if it is a singleton bean it may have already
been initialized by the container) before the property is set. All references are ultimately just areference to
another object, but there are 3 variations on how the id/name of the other object may be specified, which
determines how scoping and validation is handled.

Specifying the target bean by using the bean attribute of ther ef tag isthe most general form, and will alow
creating areference to any bean in the same BeanFactory/ApplicationContext (whether or not in the same XML
file), or parent BeanFactory/ApplicationContext. The value of the bean attribute may be the same as either the

i d attribute of the target bean, or one of the valuesin the nane attribute of the target bean.

<ref bean="soneBean"/>

Specifying the target bean by using thel ocal attribute leverages the ability of the XML parser to validate XML
id references within the same file. The value of thel ocal attribute must be the same asthei d attribute of the
target bean. The XML parser will issue an error if no matching element is found in the same file. As such, using
the local variant isthe best choice (in order to know about errors are early as possible) if the target beanisin
the same XML file.

<ref |ocal ="soneBean"/ >

Specifying the target bean by using the par ent attribute allows areference to be created to abean whichisin a
parent BeanFactory (or ApplicationContext) of the current BeanFactory (or ApplicationContext). The value of
the par ent attribute may be the same as either thei d attribute of the target bean, or one of the valuesin the
name attribute of the target bean, and the target bean must be in a parent BeanFactory or ApplicationContext to
the current one. The main use of this bean reference variant is when there is a need to wrap an existing bean in
a parent context with some sort of proxy (which may have the same name as the parent), and needs the original
object so it may wrap it.

<ref parent="soneBean"/>

3.3.4. Method Injection

For most users, the majority of the beans in the container will be singletons. When a singleton bean needs to
collaborate with (use) another singleton bean, or a non-singleton bean needs to collaborate with another
non-singleton bean, the typical and common approach of handling this dependency by defining one bean to be a
property of the other, is quite adequate. There is however a problem when the bean lifecycles are different.
Consider asingleton bean A which needs to use a non-singleton (prototype) bean B, perhaps on each method
invocation on A. The container will only create the singleton bean A once, and thus only get the opportunity to
set its properties once. There is no opportunity for the container to provide bean A with a new instance of bean
B every time oneis needed.

One solution to this problem is to forgo some inversion of control. Bean A can be aware of the container (as
described here) by implementing BeanFact or yAwar e, and use programmeatic means (as described here) to ask
the container viaaget Bean(" B*) call for (anew) bean B every timeit needsit. Thisis generally not a desirable

Spring Framework Version 1.1.5 17

Beans, BeanFactory and the A pplicationContext

solution since the bean code is then aware of and coupled to Spring.

Method Injection, an advanced feature of the BeanFactory, allows this use case to be handled in a clean
fashion, along with some other scenarios.

3.3.4.1. Lookup method Injection

L ookup method injection refersto the ability of the container to override abstract or concrete methods on
managed beans in the container, to return the result of looking up another named bean in the container. The
lookup will typically be of a non-singleton bean as per the scenario described above (although it can also be a
singleton). Spring implements this through a dynamically generated subclass overriding the method, using
bytecode generation viathe CGLIB library.

In the client class containing the method to be injected, the method definition must be an abstract (or concrete)
definition in this form:

protected abstract SingleShotHel per createSingl eShot Hel per();

If the method is hot abstract, Spring will simply override the existing implementation. In the XmlBeanFactory
case, you instruct Spring to inject/override this method to return a particular bean from the container, by using
the | ookup- net hod element inside the bean definition. For example:

<!-- a stateful bean deployed as a prototype (non-singleton) -->
<bean i d="si ngl eShot Hel per class="..." singleton="fal se">

</ bean>

<l-- nyBean uses si ngl eShot Hel per -->

<bean i d="nyBean" class="...">

<l ookup- met hod nane="cr eat eSi ngl eShot Hel per"
bean="si ngl eShot Hel per" />
<property>

</ property>
</ bean>

The bean identified as myBean will call its own method cr eat eSi ngl eShot Hel per Whenever it needs a new
instance of the singleShotHelper bean. It isimportant to note that the person deploying the beans must be
careful to deploy singleShotHelper as anon-singleton (if that is actually what is needed). If it isdeployed asa
singleton (either explicitly, or relying on the default true setting for this flag), the same instance of
singleShotHel per will be returned each time!

Note that lookup method injection can be combined with Constructor Injection (supplying optional constructor
arguments to the bean being constructed), and also with Setter Injection (settings properties on the bean being
constructed).

3.3.4.2. Arbitrary method replacement

A less commonly useful form of method injection than Lookup Method Injection is the ability to replace
arbitrary methods in a managed bean with another method implementation. Users may safely skip the rest of
this section (which describes this somewhat advanced feature), until this functionality is actually needed.

In an XmiBeanFactory, ther epl aced- met hod element may be used to replace an existing method
implementation with another, for a deployed bean. Consider the following class, with a method computeValue,
which we want to override:

public class MyVal ueCal cul ator {

Spring Framework Version 1.1.5 18

Beans, BeanFactory and the A pplicationContext

public String conputeValue(String input) {
. some real code
}

. sonme ot her nethods

A classimplementing the or g. spri ngf r amewor k. beans. f act ory. support . Met hodRepl acer interfaceis
needed to provide the new method definition.

/** meant to be used to override the existing conputeVal ue
i npl enent ation in MyVal ueCal cul ator */
public class Repl acement Conput eVal ue i npl ements Met hodRepl acer {

public Object reinplement(Object o, Method m Object[] args) throws Throwabl e {
// get the input value, work with it, and return a conputed result
String input = (String) args[O];

return ...;

The BeanFactory deployment definition to deploy the original class and specify the method override would
look like:

<bean i d="nyVal ueCal cul at or class="x.y.z. MyVal ueCal cul at or ">
<l-- arbitrary nethod repl acenent -->
<repl aced- net hod nanme="conput eVal ue" repl acer ="repl acenent Conput eVal ue" >
<arg-type>String</arg-type>
</ repl aced- net hod>
</ bean>

<bean i d="repl acenent Conput eVal ue" cl ass="a. b. c. Repl aceMent Conput eVal ue" >
</ bean>

One or more contained ar g- t ype elements within ther epl aced- net hod element may be used to indicate the
method signature of the method being overridden. Note that the signature for the argumentsis actually only
needed in the case that the method is actually overloaded and there are multiple variants within the class. For
convenience, the type string for an argument may be a substring of the fully qualified type name. For example,
all the following would match java.lang.String.

java.lang. String
String
Str

Since the number of arguments is often enough to distinguish between each possible choice, this shortcut can
save alot of typing, by just using the shortest string which will match an argument.

3.3.5. Using depends- on

For most situations, the fact that a bean is a dependency of another is expressed simply by the fact that one bean
is set as a property of another. Thisistypically done with theref element in the XmlBeanFactory. In a
variation of this, sometimes a bean which is aware of the container is simply given theid of its dependency
(using astring value or alternately thei dref element, which evaluates the same as a string value). The first
bean then programmatically asks the container for its dependency. In either case, the dependency is properly
initialized before the dependent bean.

For the relatively infrequent situations where dependencies between beans are less direct (for example, when a
static initializer in a class needs to be triggered, such as database driver registration), the depends- on element
may be used to explicitly force one or more beansto be initialized before the bean using this element is
initialized.

Spring Framework Version 1.1.5 19

Beans, BeanFactory and the A pplicationContext

Following is an example configuration:

<bean i d="beanOne" cl ass="Exanpl eBean" depends- on="nmanager" >
<property nanme="manager"><ref |ocal ="manager"/></property>
</ bean>

<bean i d="manager" cl ass="Manager Bean"/ >

3.3.6. Autowiring collaborators

A BeanFactory is able to autowire relationships between collaborating beans. This meansit's possible to
automatically let Spring resolve collaborators (other beans) for your bean by inspecting the contents of the
BeanFactory. The autowiring functionality has five modes. Autowiring is specified per bean and can thus be
enabled for some beans, while other beans won't be autowired. Using autowiring, it is possible to reduce or
eliminate the need to specify properties or constructor arguments, saving a significant amount of typing.‘ln an
XmlBeanFactory, the autowire mode for a bean definition is specified by using the aut owi r e attribute of the
bean element. The following values are allowed.

Table 3.2. Autowiring modes

Mode Explanation

no No autowiring at all. Bean references must be defined viaar ef element. Thisisthe
default, and changing this is discouraged for larger deployments, since explicitly
specifying collaborators gives greater control and clarity. To some extent, it is aform of
documentation about the structure of a system.

byName Autowiring by property name. This option will inspect the BeanFactory and look for a
bean named exactly the same as the property which needs to be autowired. For example, if
you have a bean definition which is set to autowire by name, and it contains a master
property (that is, it has a setMaster(...) method), Spring will look for a bean definition
named master, and use it to set the property.

byType Allows a property to be autowired if there is exactly one bean of the property typein the
BeanFactory. If there is more than one, afatal exception isthrown, and this indicates that
you may not use byType autowiring for that bean. If there are no matching beans, nothing
happens;, the property isnot set. If thisis not desirable, setting the
dependency- check="obj ect s" attribute value specifiesthat an error should be thrownin
this case.

constructor Thisis analogous to byType, but appliesto constructor arguments. If thereisn't exactly one
bean of the constructor argument type in the bean factory, afatal error israised.

autodetect Chooses constructor or byType through introspection of the bean class. If a default
constructor is found, by Type gets applied.

Note that explicit dependenciesin property and const r uct or - ar g elements always override autowiring.
Autowire behavior can be combined with dependency checking, which will be performed after all autowiring
has been completed.

It's important to understand the pros and cons around autowiring. Some advantages of autowiring:

See Section 3.3.1, “ Setting bean properties and collaborators”

Spring Framework Version 1.1.5 20

Beans, BeanFactory and the A pplicationContext

e It can significantly reduce the volume of configuration required. (However, mechanisms such as the use of
aconfiguration "template," discussed elsewherein this chapter, are also valuable here.)

e It can cause configuration to keep itself up to date as your objects evolve. For example, if you need to add
an additional dependency to a class, that dependency can be satisfied automatically without the need to
modify configuration. Thus there may be a strong case for autowiring during devel opment, without ruling
out the option of switching to explicit wiring when the code base becomes more stable.

Some disadvantages of autowiring:

» It'smore magical than explicit wiring. Although, as noted in the above table, Spring is careful to avoid
guessing in case of ambiguity which might have unexpected results, the relationships between your
Spring-managed objects is no longer explicitly documented.

« Wiring information may not be available to tools that may generate documentation from a Spring
application context.

» Autowiring by type will only work when there is a single bean definition of the type specified by the setter
method or constructor argument. Y ou need to use explicit wiring if there is any potential ambiguity.

Thereisno "wrong" or "right" answer in all cases. We recommend a degree of consistency across a project. For
example, if autowiring is not used in general, it might be confusing to developersto useit just to one or two
bean definitions.

3.3.7. Checking for dependencies

Spring has the ability to try to check for the existence of unresolved dependencies of a bean deployed into the
BeanFactory. These are JavaBeans properties of the bean, which do not have actual values set for them in the
bean definition, or alternately provided automatically by the autowiring feature.

Thisfeature is sometimes useful when you want to ensure that all properties (or all properties of a certain type)
are set on abean. Of course, in many cases a bean class will have default values for many properties, or some
properties do not apply to al usage scenarios, so this featureis of limited use. Dependency checking can also
be enabled and disabled per bean, just as with the autowiring functionality. The default isto not check
dependencies. Dependency checking can be handled in several different modes. In an XmlBeanFactory, thisis
specified viathe dependency- check attribute in a bean definition, which may have the following values.

Table 3.3. Dependency checking modes

Mode Explanation

none No dependency checking. Properties of the bean which have no value specified for them
are simply not set.

simple Dependency checking is performed for primitive types and collections (everything except
collaborators, i.e. other beans)

object Dependency checking is performed for collaborators

al Dependency checking is done for collaborators, primitive types and collections

Spring Framework Version 1.1.5 21

Beans, BeanFactory and the A pplicationContext

3.4. Customizing the nature of a bean

3.4.1. Lifecycle interfaces

Spring provides several marker interfaces to change the behavior of your bean in the BeanFactory. They
include I ni ti al i zi ngBean and Di sposabl eBean. Implementing these interfaces will result in the BeanFactory
calling aft er Properti esSet () for theformer and dest r oy() for the latter to allow the bean to perform certain
actions upon initialization and destruction.

Internally, Spring uses BeanPost Processor s t0 process any marker interfaces it can find and call the
appropriate methods. If you need custom features or other lifecycle behavior Spring doesn't offer
out-of-the-box, you can implement aBeanPost Pr ocessor yourself. More information about this can be found
in Section 3.7, “ Customizing beans with BeanPostprocessors’.

All the different lifecycle marker interfaces are described below. In one of the appendices, you can find
diagram that show how Spring manages beans and how those lifecycle features change the nature of your beans
and how they are managed.

3.4.1.1. InitializingBean /i ni t - ret hod

Implementing the or g. spri ngf r anewor k. beans. factory. I niti al i zi ngBean allows a bean to perform
initialization work after all necessary properties on the bean are set by the BeanFactory. The InitializingBean
interface specifies exactly one method:

* I nvoked by a BeanFactory after it has set all bean properties supplied
* (and satisfied BeanFact oryAware and Appli cati onCont ext Aware) .
* <p>This method all ows the bean instance to performinitialization only
* possi bl e when all bean properties have been set and to throw an
* exception in the event of m sconfiguration

* @hrows Exception in the event of msconfiguration (such

* as failure to set an essential property) or if initialization fails.

*/

voi d afterPropertiesSet() throws Exception

Note: generally, the use of the I ni ti al i zi ngBean marker interface can be avoided (and is discouraged since it
unnecessarily couples the code to Spring). A bean definition provides support for a generic initialization
method to be specified. In the case of the XmIBeanFactory, thisis done viathei ni t - et hod attribute. For
example, the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" init-nethod="init"/>
public cl ass Exanpl eBean {
public void init() {
// do some initialization work
}

}
Is exactly the same as:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >
public class Anot her Exanpl eBean i nplements InitializingBean {
public void afterPropertiesSet() {
/1 do some initialization work
}

}

but does not couple the code to Spring.

Spring Framework Version 1.1.5 22

Beans, BeanFactory and the A pplicationContext

3.4.1.2. DisposableBean / dest r oy- net hod

Implementing the or g. spri ngf ramewor k. beans. f act ory. Di sposabl eBean interface allows abean to get a
callback when the BeanFactory containing it is destroyed. The DisposableBean interface specifies one method:

/**

* |Invoked by a BeanFactory on destruction of a singleton
* @hrows Exception in case of shutdown errors.

* Exceptions will get |ogged but not re-thrown to allow
* other beans to release their resources too.

*/

voi d destroy() throws Exception

Note: generally, the use of the Di sposabl eBean marker interface can be avoided (and is discouraged since it
unnecessarily couples the code to Spring). A bean definition provides support for a generic destroy method to
be specified. In the case of the XmIBeanFactory, thisis done via the dest r oy- net hod attribute. For example,
the following definition:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" destroy- met hod="cl eanup"/>

public class Exanpl eBean {
public void cleanup() {
/1 do some destruction work (like closing connection)
}

}
Is exactly the same as:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public cl ass Anot her Exanpl eBean i npl enents Di sposabl eBean {
public void destroy() {
/1 do some destruction work
}

}

but does not couple the code to Spring.

Important note: when deploying a bean in the prototype mode, the lifecycle of the bean changes dightly. By
definition, Soring cannot manage the compl ete lifecycle of a non-singleton/prototype bean, since after it is
created, it is given to the client and the container does not keep track of it at all any longer. You can think of
Soring's role when talking about a non-singleton/prototype bean as a replacement for the 'new' operator. Any
lifecycle aspects past that point have to be handled by the client. The lifecycle of a bean in the BeanFactory is
further described in Section 3.4.1, “ Lifecycle interfaces’ .

3.4.2. Knowing who you are

3.4.2.1. BeanFactoryAware

A classwhich implementsthe or g. spri ngf r anmewor k. beans. f act ory. BeanFact or yAwar e interfaceis provided
with areference to the BeanFactory that created it, when it is created by that BeanFactory.

public interface BeanFactoryAware {
/**
* Cal | back that supplies the owning factory to a bean instance
<p>l nvoked after popul ation of normal bean properties but before an init
cal | back like InitializingBean's afterProperti esSet or a custominit-nethod
@ar am beanFact ory owni ng BeanFactory (nmay not be null).
The bean can imedi ately call methods on the factory.
@hrows BeansException in case of initialization errors
@ee Beanlnitializati onException

E I I R

Spring Framework Version 1.1.5 23

Beans, BeanFactory and the A pplicationContext

voi d set BeanFact ory(BeanFactory beanFactory) throws BeansException

This alows beans to manipulate the BeanFactory that created them programmatically, through the

org. spri ngframewor k. beans. f act ory. BeanFact ory interface, or by casting the reference to a known subclass
of this which exposes additional functionality. Primarily this would consist of programmatic retrieval of other
beans. While there are cases when this capability is useful, it should generaly be avoided, since it couples the
code to Spring, and does not follow the Inversion of Control style, where collaborators are provided to beans as
properties.

3.4.2.2. BeanNameAware

If abean implementsthe or g. spri ngf ramewor k. beans. f act ory. BeanNaneAwar e interface and is deployed in a
BeanFactory, the BeanFactory will call the bean through this interface to inform the bean of theid it was
deployed under. The callback will be Invoked after population of normal bean properties but before an init
callback like 1 ni ti al i zi ngBean's after PropertiesSet or a custom init-method.

3.4.3. FactoryBean

Theor g. spri ngf ramewor k. beans. f act ory. Fact or yBean interface isto be implemented by objectsthat are
themselves factories. The BeanFactory interface provides three method:

e nject getQbject(): hastoreturn an instance of the object this factory creates. The instance can possibly
be shared (depending on whether this factory returns singletons or prototypes).

* bool ean isSingl et on(): hasto return trueif this FactoryBean returns singletons, false otherwise

e dass getObj ect Type() : hasto return either the object type returned by the get vj ect () method or nul |
if the type isn't known in advance

3.5. Abstract and child bean definitions

A bean definition potentially contains alarge amount of configuration information, including container specific
information (i.e. initialization method, static factory method name, etc.) and constructor arguments and
property values. A child bean definition is a bean definition which inherits configuration data from a parent
definition. It isthen able to override some values, or add others, as needed. Using parent and child bean
definitions can potentially save alot of typing. Effectively, thisis aform of templating.

When working with a BeanFactory programmeatically, child bean definitions are represented by the

Chi | dBeanDef i ni ti on class. Most users will never work with them on this level, instead configuring bean
definitions declaratively in something like the XmlBeanFactory. In an XmlBeanFactory bean definition, a child
bean definition isindicated simply by using the par ent attribute, specifying the parent bean as the value of this
attribute.

<bean i d="inheritedTest Bean" abstract="true"
cl ass="org. spri ngf ramewor k. beans. Test Bean" >
<property nanme="nane"><val ue>parent </ val ue></ property>
<property nanme="age"><val ue>1</val ue></ property>

</ bean>

<bean i d="inheritsWthbDifferentC ass" cl ass="org. spri ngframework. beans. Deri vedTest Bean"
parent ="inheritedTest Bean" init-nmethod="initialize">
<property nanme="name"><val ue>overri de</val ue></ property>
<!-- age should inherit value of 1 fromparent -->
</ bean>

Spring Framework Version 1.1.5 24

Beans, BeanFactory and the A pplicationContext

A child bean definition will use the bean class from the parent definition if none is specified, but can also
overrideit. In the latter case, the child bean class must be compatible with the parent, i.e. it must accept the
parent's property values.

A child bean definition will inherit constructor argument values, property values and method overrides from the
parent, with the option to add new values. If init method, destroy method and/or static factory method are
specified, they will override the corresponding parent settings.

The remaining settings will always be taken from the child definition: depends on, autowire mode, dependency
check, singleton, lazy init.

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the
abstract attribute. In the case that the parent definition does not specify a class:

<bean i d="inheritedTest BeanWt hout Cl ass" >
<property name="nanme"><val ue>par ent </ val ue></ property>
<property name="age"><val ue>1</val ue></ property>

</ bean>

<bean i d="inheritsWthd ass" class="org. spri ngfranework. beans. Deri vedTest Bean"
parent ="i nheritedTest BeanWt hout Cl ass" init-method="initialize">
<property nanme="nanme"><val ue>overri de</val ue></ property>
<I-- age should inherit value of 1 fromparent -->
</ bean>

the parent bean cannot get instantiated on its own since it isincomplete, and it's also considered abstract. When
adefinition is considered abstract like this (explicitly or implicitly), it's usable just as a pure template or
abstract bean definition that will serve as parent definition for child definitions. Trying to use such an abstract
parent bean on its own (by referring to it as aref property of another bean, or doing an explicit getBean() call
with the parent bean id, will result in an error. Similarly, the container'sinternal prelnstantiateSngletons
method will completely ignore bean definitions which are considered abstract.

Important Note: Application contexts (but not simple bean factories) will by default pre-instantiate all
singletons. Thereforeit isimportant (at |east for singleton beans) that if you have a (parent) bean definition
which you intend to use only as atemplate, and this definition specifies a class, you must make sure to set the
abstract attribute to true, otherwise the application context will actually pre-instantiate it.

3.6. Interacting with the BeanFactory

A BeanFactory is essentially nothing more than the interface for an advanced factory capable of maintaining a
registry of different beans and their dependencies. The BeanFactory enables you to read bean definitions and
access them using the bean factory. When using just the BeanFactory you would create one and read in some
bean definitions in the XML format as follows:

InputStreamis = new Fil el nput Strean("beans. xm");
Xm BeanFactory factory = new Xm BeanFactory(is);

Basically that's al thereisto it. Using get Bean(St ri ng) you can retrieve instances of your beans. You'll get a
reference to the same bean if you defined it as a singleton (the default) or you'll get a new instance each time if
you set si ngl et on to false. The client-side view of the BeanFactory is surprisingly simple. The BeanFact ory
interface has only five methods for clientsto call:

e bool ean cont ai nsBean(St ri ng) : returnstrue if the BeanFactory contains a bean definition or bean
instance that matches the given name
e (nject getBean(String): returnsan instance of the bean registered under the given name. Depending on

Spring Framework Version 1.1.5 25

Beans, BeanFactory and the A pplicationContext

how the bean was configured by the BeanFactory configuration, either a singleton and thus shared instance
or anewly created bean will be returned. A BeansExcept i on will be thrown when either the bean could not
be found (in which caseit'll be aNoSuchBeanDef i ni ti onExcept i on), Or an exception occurred while
instantiating and preparing the bean

e (nject getBean(String, d ass): returnsabean, registered under the given name. The bean returned will
be cast to the given Class. If the bean could not be cast, corresponding exceptions will be thrown
(BeanNot Of Requi r edTypeExcept i on). Furthermore, all rules of the getBean(String) method apply (see
above)

* bool ean isSingl et on(St ring) : determines whether or not the bean definition or bean instance registered
under the given name is asingleton or a prototype. If no bean corresponding to the given name could not be
found, an exception will be thrown (NoSuchBeanDef i ni ti onExcepti on)

e String[] getAliases(String): Returnthe aliasesfor the given bean name, if any were defined in the
bean definition

3.6.1. Obtaining a FactoryBean, not its product

Sometimes there is a need to ask a BeanFactory for an actual FactoryBean instance itself, not the bean it
produces. This may be done by prepending the bean id with & when calling the get Bean method of BeanFactory
(including ApplicationContext). So for a given FactoryBean with an id nyBean, invoking get Bean(" myBean")
on the BeanFactory will return the product of the FactoryBean, but invoking get Bean(" &myBean") will return
the FactoryBean instance itself.

3.7. Customizing beans with BeanPostprocessors

A bean post-processor is a java class which implements the

org. springframewor k. beans. fact ory. confi g. BeanPost Processor interface, which consists of two callback
methods. When such aclassis registered as a post-processor with the BeanFactory, for each bean instance that
is created by the BeanFactory, the post-processor will get a callback from the BeanFactory before any
initialization methods (after PropertiesSet and any declared init method) are called, and also afterwords. The
post-processor is free to do what it wishes with the bean, including ignoring the callback completely. A bean
post-processor will typically check for marker interfaces, or do something such as wrap a bean with a proxy.
Some Spring helper classes are implemented as bean post-processors.

It isimportant to know that a BeanFactory treats bean post-processors slightly differently than an
ApplicationContext. An ApplicationContext will automatically detect any beans which are deployed into it
which implement the BeanPost Pr ocessor interface, and register them as post-processors, to be then called
appropriately by the factory on bean creation. Nothing else needs to be done other than deploying the
post-processor in asimilar fashion to any other bean. On the other hand, when using plain BeanFactories, bean
post-processors have to manually be explicitly registered, with a code sequence such as the following:

Conf i gur abl eBeanFactory bf = new ; /'l create BeanFactory
/1 now regi ster sonme beans

/'l now regi ster any needed BeanPost Processors

MyBeanPost Processor pp = new MyBeanPost Processor ();

bf . addBeanPost Processor (pp) ;

// now start using the factory

Since this manual registration step is not convenient, and ApplictionContexts are functionally supersets of
BeanFactories, it is generally recommended that ApplicationContext variants are used when bean
post-processors are needed.

Spring Framework Version 1.1.5 26

Beans, BeanFactory and the A pplicationContext

3.8. Customizing bean factories with
BeanFactoryPostprocessors

A bean factory post-processor is ajava class which implements the

org. spri ngframewor k. beans. f act ory. conf i g. BeanFact or yPost Processor interface. It is executed manually
(in the case of the BeanFactory) or automatically (in the case of the ApplicationContext) to apply changes of
some sort to an entire BeanFactory, after it has been constructed. Spring includes a number of pre-existing bean
factory post-processors, such as Pr oper t yResour ceConf i gur er and Proper t yPl aceHol der Conf i gur er, both
described below, and BeanNaneAut oPr oxyCr eat or , very useful for wrapping other beans transactionally or with
any other kind of proxy, as described later in this manual. The BeanFactoryPostProcessor can be used to add
custom editors (as also mentioned in Section 3.9, “Registering additional custom PropertyEditors”).

In a BeanFactory, the process of applying a BeanFactoryPostProcessor is manual, and will be similar to this:

Xm BeanFactory factory = new Xm BeanFact ory(new Fi |l eSyst enResour ce("beans. xm ")) ;
/'l create placehol derconfigurer to bring in some property

// values froma Properties file

Propert yPl acehol der Confi gurer cfg = new PropertyPl acehol der Confi gurer();
cfg.setLocation(new Fil eSyst enResource("j dbc. properties"));

// now actually do the repl acenent

cf g. post ProcessBeanFact ory(factory);

An ApplicationContext will detect any beans which are deployed into it which implement the

BeanFact or yPost Processor interface, and automatically use them as bean factory post-processors, at the
appropriate time. Nothing else needs to be done other than deploying these post-processor in asimilar fashion
to any other bean.

Since thismanual step is not convenient, and ApplictionContexts are functionally supersets of BeanFactories, it
is generally recommended that ApplicationContext variants are used when bean factory post-processors are
needed.

3.8.1. The PropertyPl acehol der Confi gurer

The Propert yPl acehol der Confi gur er, implemented as a bean factory post-processor, is used to externalize
some property values from a BeanFactory definition, into another separate file in Java Properties format. Thisis
useful to allow the person deploying an application to customize some key properties (for example database
URLs, usernames and passwords), without the complexity or risk of modifying the main XML definition file or
filesfor the BeanFactory.

Consider afragment from a BeanFactory definition, where a DataSource with placeholder values is defined:

In the example below, a datasource is defined, and we will configure some properties from an external
Propertiesfile. At runtime, we will apply aPr oper t yPl acehol der Confi gur er to the BeanFactory which will
replace some properties of the datasource:

<bean i d="dat aSource" cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce" destroy- nmet hod="cl ose" >
<property name="driverd assNane" ><val ue>${j dbc. dri ver Cl assNane} </ val ue></ pr operty>
<property name="url"><val ue>${j dbc. url } </ val ue></ property>
<property name="user nane" ><val ue>${j dbc. user nane} </ val ue></ property>
<property name="password"><val ue>${j dbc. passwor d} </ val ue></ pr operty>

</ bean>

The actual values come from another file in Properties format:

Spring Framework Version 1.1.5 27

Beans, BeanFactory and the A pplicationContext

j dbc. dri ver O assNane=or g. hsql db. j dbcDri ver

j dbc. url =j dbc: hsql db: hsql : // producti on: 9002
j dbc. user nane=sa

j dbc. passwor d=r oot

To use this with a BeanFactory, the bean factory post-processor is manually executed on it:

Xm BeanFactory factory = new Xm BeanFactory(new Fi | eSyst enResour ce("beans. xm "));
Propert yPl acehol der Confi gurer cfg = new PropertyPl acehol der Confi gurer();
cfg.setlLocation(new Fi |l eSyst enResource("j dbc. properties"));

cf g. post ProcessBeanFact ory(factory);

Note that ApplicationContexts are able to automatically recognize and apply beans deployed in them which
implement BeanFactoryPostProcessor. This means that as described here, applying
PropertyPlaceholderConfiguer is much more convenient when using an ApplicationContext. For this reason, it
is recommended that users wishing to use this or other bean factory postprocessors use an ApplicationContext
instead of a BeanFactory.

The Propert yPl aceHol der Confi gur er doesn't only look for properties in the Properties file you specify, but
also checks against the Java System propertiesif it cannot find a property you are trying to use. This behavior
can be customized by setting the syst enPr oper t i esMbde property of the configurer. It has three values, one to
tell the configurer to always override, oneto let it never override and oneto let it override only if the property
cannot be found in the properties file specified. Please consult the JavaDoc for the
PropertiesPlaceHolderConfigurer for more information.

3.8.2. The PropertyOverri deConfi gurer

The PropertyOverri deConf i gur er, another bean factory post-processor, is similar to the

PropertyPl acehol der Confi gur er, but in contrast to the latter, the original definitions can have default values
or no values at all for bean properties. If an overriding Properties file does not have an entry for a certain bean
property, the default context definition is used.

Note that the bean factory definition is not aware of being overridden, so it is not immediately obvious when
looking at the XML definition file that the override configurer is being used. In case that there are multiple
PropertyOverrideConfigurers that define different values for the same bean property, the last one will win (due
to the overriding mechanism).

Properties file configuration lines are expected to be in the format:

beanNane. property=val ue

An example propertiesfile could look like:

dat aSour ce. dri ver Cl assName=com nysql . j dbc. Dri ver
dat aSour ce. ur | =j dbc: nmysql : mydb

This example file would be usable against a BeanFactory definition which containsabeaninit called
dataSource, which has driver and url properties.

3.9. Registering additional custom PropertyEditors

When setting bean properties as a string value, a BeanFactory ultimately uses standard JavaBeans

Spring Framework Version 1.1.5 28

Beans, BeanFactory and the A pplicationContext

PropertyEditors to convert these Strings to the complex type of the property. Spring pre-registers a number of
custom PropertyEditors (for example, to convert a classname expressed as a string into areal Class object).
Additionally, Java's standard JavaBeans PropertyEditor lookup mechanism allows a PropertyEditor for a class
to be simply named appropriately and placed in the same package as the class it provides support for, to be
found automatically.

If there is aneed to register other custom PropertyEditors, there are several mechanisms available.

The most manual approach, which is not normally convenient or recommended, isto simply use the
regi st er Cust onedi t or () method of the Conf i gur abl eBeanFact ory interface, assuming you have a
BeanFactory reference.

The more convenient mechanism is to use a special bean factory post-processor called

Cust onEdi t or Conf i gur er . Although bean factory post-processors can be used semi-manually with
BeanFactories, this one has a nested property setup, so it is strongly recommended that, as described here, it is
used with the ApplicationContext, where it may be deployed in similar fashion to any other bean, and
automatically detected and applied.

Note that all bean factories and application contexts automatically use a number of built-in property editors,
through their use of something called aBeanw apper to handle property conversions. The standard property
editors that the BeanWrapper registers are listed in the next chapter. Additionally, ApplicationContexts also
override or add an additional 3 editors to handle resource lookups in a manner appropriate to the specific
application context type. Thee are: | nput St r eanEdi t or , Resour ceEdi t or and URLEdi t or .

3.10. Introduction to the Appl i cati onCont ext

While the beans package provides basic functionality for managing and manipulating beans, oftenin a
programmatic way, the cont ext package adds Appl i cat i onCont ext

[http://wwmv springfranmework. org/ docs/ api / or g/ spri ngfranmewor k/ cont ext/ Appl i cati onContext.htm],
which enhances BeanFactory functionality in amore framework-oriented style. Many users will use
ApplicationContext in a completely declarative fashion, not even having to create it manually, but instead
relying on support classes such as ContextL oader to automatically start an ApplicationContext as part of the
normal startup process of a J2EE web-app. Of course, it is still possible to programmatically create an
ApplicationContext.

The basis for the context package isthe Appl i cati onCont ext interface, located in the

org. springframewor k. cont ext package. Deriving from the BeanFactory interface, it provides al the
functionality of BeanFactory. To allow working in a more framework-oriented fashion, using layering and
hierarchical contexts, the context package also provides the following:

* MessageSource, providing access to messagesin, i18n-style

* Accessto resources, such as URLs and files

» Event propagation to beans implementing the Appl i cat i onLi st ener interface

* Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, for
example the web layer of an application

Asthe ApplicationContext includes all functionality of the BeanFactory, it is generally recommended that it be
used over the BeanFactory, except for afew limited situations such as perhaps in an Applet, where memory
consumption might be critical, and afew extra kilobytes might make a difference. The following sections
described functionality which ApplicationContext adds to basic BeanFactory capabilities.

Spring Framework Version 1.1.5 29

http://www.springframework.org/docs/api/org/springframework/context/ApplicationContext.html

Beans, BeanFactory and the A pplicationContext

3.11. Added functionality of the Appl i cati onCont ext

As aready stated in the previous section, the ApplicationContext has a couple of features that distinguish it
from the BeanFactory. Let us review them one-by-one.

3.11.1. Using the MessageSour ce

The ApplicationContext interface extends an interface called MessageSour ce, and therefore provides messaging
(i18n or internationalization) functionality. Together with the Nest i ngMessageSour ce, capable of resolving
hierarchical messages, these are the basic interfaces Spring provides to do message resolution. Let's quickly
review the methods defined there:

* String getMessage (String code, Object[] args, String default, Local e |oc): the basic method
used to retrieve a message from the MessageSource. When no message is found for the specified locale, the
default message is used. Any arguments passed in are used as replacement values, using the MessageFor mat
functionality provided by the standard library.

e String getMessage (String code, Object[] args, Local e |oc): essentialy the same asthe previous
method, but with one difference: no default message can be specified; if the message cannot be found, a
NoSuchMessageExcept i on isthrown.

e String get Message(MessageSour ceResol vabl e resol vabl e, Local e | ocal e): all properties used in the
methods above are also wrapped in a class named MessageSour ceResol vabl e, which you can use viathis
method.

When an ApplicationContext gets loaded, it automatically searches for a MessageSource bean defined in the
context. The bean has to have the name nmessageSour ce. If such abean isfound, all calls to the methods
described above will be delegated to the message source that was found. I1f no message source was found, the
ApplicationContext attempts to seeif it has a parent containing a bean with the same name. If so, it uses that
bean as the MessageSource. If it can't find any source for messages, an empty St at i cMessageSour ce Will be
instantiated in order to be able to accept calls to the methods defined above.

Spring currently provides two MessageSour ce implementations. These are the Resour ceBundl eMessageSour ce
and the st at i cMessageSour ce. Both implement Nest i ngMessageSour ce in order to do nested messaging. The
StaticMessageSource is hardly ever used but provides programmatic ways to add messages to the source. The

ResourceBundleM essageSource is more interesting and is the one we will provides an example for:

<beans>
<bean i d="nmessageSour ce"
cl ass="org. spri ngf ramewor k. cont ext . support . Resour ceBundl eMessageSour ce" >
<property nanme="basenanes">
<list>
<val ue>f or mat </ val ue>
<val ue>excepti ons</ val ue>
<val ue>w ndows</ val ue>
</list>
</ property>
</ bean>
</ beans>

This assumes you have three resource bundles defined on your classpath called f or mat , except i ons and
wi ndows. Using the JDK standard way of resolving messages through ResourceBundles, any request to resolve
amessage will be handled. TODO: SHOW AN EXAMPLE

3.11.2. Propagating events

Spring Framework Version 1.1.5 30

Beans, BeanFactory and the A pplicationContext

Event handling in the ApplicationContext is provided through the Appl i cat i onEvent class and

Appl i cati onLi st ener interface. If abean which implements the Appl i cati onLi st ener interfaceis deployed
into the context, every time an Appl i cati onEvent gets published to the ApplicationContext, that bean will be
notified. Essentially, thisis the standard Observer design pattern. Spring provides three standard events:

Table 3.4. Built-in Events

Event Explanation

Cont ext Ref r eshedEvent Event published when the ApplicationContext isinitialized or refreshed.
Initialized here means that all beans are loaded, singletons are pre-instantiated
and the ApplicationContext is ready for use

Cont ext O osedEvent Event published when the ApplicationContext is closed, using the cl ose()
method on the ApplicationContext. Closed here means that singletons are
destroyed

Request Handl edEvent A web-specific event telling all beansthat a HTTP request has been serviced

(i.e. thiswill be published after the request has been finished). Note that this
event is only applicable for web applications using Spring's Dispatcher Servlet

Implementing custom events can be done as well. Simply call the publ i shEvent () method on the
ApplicationContext, specifying a parameter which is an instance of your custom event class implementing
ApplicationEvent. Event listeners receive events synchronously. This means the publishEvent() method blocks
until al listeners have finished processing the event. Furthermore, when alistener receives an event it operates
inside the transaction context of the publisher, if atransaction context is available.

Let'slook at an example. First, the ApplicationContext:

<bean i d="email er" cl ass="exanpl e. Emai | Bean" >
<property name="bl ackLi st">
<list>
<val ue>bl ack@i st . or g</ val ue>
<val ue>white@i st. or g</ val ue>
<val ue>j ohn@loe. or g</ val ue>
</list>
</ property>
</ bean>

<bean i d="bl ackLi stListener" class="exanpl e. Bl ackLi st Notifier">
<property nanme="notificati onAddress">
<val ue>spam@i st . or g</ val ue>
</ property>
</ bean>

and then, the actual beans:

public class Email Bean inpl ements Applicati onCont ext Aware {

/** the blacklist */
private List blackList;

public void setBl ackLi st (List blackList) {
thi s. bl ackLi st = bl ackLi st;
}

public void setApplicationContext(ApplicationContext ctx) {
this.ctx = ctx;

}

public void sendEmail (String address, String text) {
i f (blackList.contains(address)) {
Bl ackLi st Event evt = new Bl ackLi st Event (address, text);
ct x. publ i shEvent (evt);

Spring Framework Version 1.1.5 31

Beans, BeanFactory and the A pplicationContext

return;

}

/1 send enui
}
public class Bl ackListNotifier inplement ApplicationListener {

/** notification address */
private String notificationAddress;

public void setNotificati onAddress(String notificati onAddress) {
this.notificationAddress = notificationAddress;
}

public void onApplicationEvent (ApplicationEvent evt) {
if (evt instanceof Bl ackListEvent) {
/1 notify appropriate person
}

}

Of course, this particular example could probably be implemented in better ways (perhaps by using AOP
features), but it should be sufficient to illustrate the basic event mechanism.

3.11.3. Using resources within Spring

Many applications need to access resources. Resources could include files, but also things like web pages or
NNTP newsfeeds. Spring provides a clean and transparent way of accessing resources in a protocol
independent way. The ApplicationContext interface includes a method (get Resour ce(St ri ng)) to take care of
this.

The Resource class defines a couple of methods that are shared across all Resource implementations:

Table 3.5. Resour ce functionality

Method Explanation

get | nput Stream() Opens an InputStream on the resource and returns it

exi sts() Checksif the resource exists, returning false if it doesn't

i sQpen() Will return true is multiple streams cannot be opened for this resource. This

will be false for some resources, but file-based resources for instance, cannot
be read multiple times concurrently

get Descri ption() Returns a description of the resource, often the fully qualified file name or the
actual URL

A couple of Resource implementations are provided by Spring. They all need a String representing the actual
location of the resource. Based upon that String, Spring will automatically choose the right Resource
implementation for you. When asking an ApplicationContext for a resource first of al Spring will inspect the
resource location you're specifying and look for any prefixes. Depending on the implementation of the
ApplicationContext more or less Resource implementations are available. Resources can best be configured by
using the ResourceEditor and for example the XmlBeanFactory.

3.12. Customized behavior in the ApplicationContext

Spring Framework Version 1.1.5 32

Beans, BeanFactory and the A pplicationContext

The BeanFactory already offers a number of mechanismsto control the lifecycle of beans deployed in it (such
as marker interfaceslikel ni ti al i zi ngBean Or Di sposabl eBean, their configuration only equivalents such as
thei ni t - met hod and dest r oy- met hod attributes in an XmlBeanFactory config, and bean post-processors. In an
ApplicationContext, all of these still work, but additional mechanisms are added for customizing behavior of
beans and the container.

3.12.1. Appl i cati onCont ext Awar e marker interface

All marker interfaces available with BeanFactories still work. The ApplicationContext does add one extra
marker interface which beans may implement, or g. spri ngf r amewor k. cont ext . Appl i cati onCont ext Aware. A
bean which implements this interface and is deployed into the context will be called back on creation of the
bean, using the interface's set Appl i cati onCont ext () method, and provided with areference to the context,
which may be stored for later interaction with the context.

3.12.2. The BeanPost Pr ocessor

Bean post-processors, java classes which implement the

org. spri ngframewor k. beans. f act ory. confi g. BeanPost Processor interface, have already been mentioned.
It isworth mentioning again here though, that post-processors are much more convenient to use in
ApplicationContexts than in plain BeanFactories. In an ApplicationContext, any deployed bean which
implements the above marker interface is automatically detected and registered as a bean post-processor, to be
called appropriately at creation time for each bean in the factory.

3.12.3. The BeanFact or yPost Pr ocessor

Bean factory post-processors, java classes which implement the

org. spri ngfranmewor k. beans. fact ory. conf i g. BeanFact or yPost Pr ocessor interface, have already been
mentioned. It isworth mentioning again here though, that bean factory post-processors are much more
convenient to use in ApplicationContexts than in plain BeanFactories. In an ApplicationContext, any deployed
bean which implements the above marker interface is automatically detected as a bean factory post-processor,
to be called at the appropriate time.

3.12.4. The PropertyPl acehol der Confi gur er

The Proper t yPl acehol der Confi gur er has aready been described, as used with a BeanFactory. It isworth
mentioning here though, that it is generally more convenient to use it with an ApplicationContext, since the
context will automatically recognize and apply any bean factory post-processors, such as this one, when they
are simply deployed into it like any other bean. There is no need for a manual step to execute it.

<I-- property placehol der post-processor -->
<bean i d="pl acehol der Confi g"
cl ass="org. spri ngfranmewor k. beans. fact ory. confi g. PropertyPl acehol der Confi gurer">
<property name="| ocati on"><val ue>j dbc. properti es</val ue></ property>
</ bean>

3.13. Registering additional custom PropertyEditors

As previously mentioned, standard JavaBeans PropertyEditors are used to convert property values expressed as
strings to the actual complex type of the property. cust onEdi t or Conf i gur er , a bean factory post-processor,
may be used to conveniently add support for additional PropertyEditors to an ApplicationContext.

Spring Framework Version 1.1.5 33

Beans, BeanFactory and the A pplicationContext

Consider a user class ExoticType, and another class DependsOnExoticType which needs ExoticType set asa
property:

public class ExoticType {
private String nane;
public ExoticType(String name) {
thi s. name = narne;
}
}

public class DependsOnExoticType {
private ExoticType type;
public void set Type(ExoticType type) {
this.type = type;
}

}

When things are properly set up, we want to be able to assign the type property as a string, which a
PropertyEditor will behind the scenes convert into areal ExoticType object.:

<bean i d="sanpl e" cl ass="exanpl e. DependsOnExoti cType" >
<property nanme="type"><val ue>aNanmeFor Exot i cType</ val ue></ property>
</ bean>

The PropertyEditor could look similar to this:

/1 converts string representation to ExoticType object
public class ExoticTypeEditor extends PropertyEditorSupport {

private String format;

public void setFormat(String format) {
this.format = format;

}
public void setAsText(String text) {
if (format != null && format.equal s("upperCase")) {
text = text.toUpperCase();
}
Exoti cType type = new ExoticType(text);
set Val ue(type);
}

}

Finally, we use Cust onEdi t or Conf i gur er to register the new PropertyEditor with the ApplicationContext,
which will then be able to useit as needed.:

<bean i d="cust onEdi t or Confi gurer"”
cl ass="org. spri ngframewor k. beans. fact ory. confi g. Cust onEdi t or Confi gurer">
<property nanme="custonEditors">
<map>
<entry key="exanpl e. Exoti cType">
<bean cl ass="exanpl e. Exoti cTypeEdi t or">
<property name="formt">
<val ue>upper Case</ val ue>
</ property>
</ bean>
</entry>
</ map>
</ property>
</ bean>

3.14. Setting a bean property or constructor arg from a
property expression

Pr oper t yPat hFact or yBean iS aFact or yBean that evaluates a property path on a given target object. The target

Spring Framework Version 1.1.5 34

Beans, BeanFactory and the A pplicationContext

object can be specified directly or via a bean name. This value may then be used in another bean definition asa
property value or constructor argument.

Here's an example where a path is used against another bean, by name:

/'l target bean to be referenced by nane
<bean i d="person" class="org. springframework. beans. Test Bean" si ngl eton="fal se">
<property name="age"><val ue>10</val ue></ property>
<property name="spouse">
<bean cl ass="org. spri ngfranmewor k. beans. Test Bean" >
<property name="age"><val ue>11</val ue></ property>
</ bean>
</ property>
</ bean>

/1 will result in 11, which is the value of property 'spouse.age’ of bean 'person

<bean i d="t heAge" cl ass="org. springfranmework. beans. factory. confi g. PropertyPat hFact or yBean" >
<property nanme="t ar get BeanNane" ><val ue>per son</ val ue></ property>
<property nanme="propertyPat h"><val ue>spouse. age</ val ue></ property>

</ bean>

In this example, apath is evaluated against an inner bean:

/1 will result in 12, which is the value of property 'age' of the inner bean
<bean i d="t heAge" cl ass="org. springframework. beans. factory. confi g. PropertyPat hFact or yBean" >
<property nanme="t ar get Obj ect">
<bean cl ass="org. spri ngframewor k. beans. Test Bean" >
<property name="age"><val ue>12</val ue></ property>
</ bean>
</ property>
<property name="propertyPat h"><val ue>age</ val ue></ property>
</ bean>

Thereis also a shortcut form, where the bean name is the property path.

/Il will result in 10, which is the value of property 'age' of bean 'person
<bean i d="person. age" class="org. springfranework. beans. factory. confi g. PropertyPat hFact oryBean"/ >

This form does mean that there is no choice in the name of the bean, any referenceto it will also have to use the
sameid, which isthe path. Of curse, if used as an inner bean, thereisno need to refer to it at all:

<bean id="..." class="...">
<proprty nane="age">
<bean i d="person. age"
cl ass="org. spri ngf ramewor k. beans. f act ory. confi g. Propert yPat hFact or yBean"/ >
</ property>
</ bean>

The result type may be specifically set in the actual definition. Thisis not necessary for most use cases, but can
be of use for some. Please see the JavaDocs for more info on this feature.

3.15. Setting a bean property or constructor arg from a field
value

FileRetrievingFactoryBean is a FactoryBean which retrieves a static or non-static field value. It istypicaly
used for retrieving public static final constants, which may then be used to set a property value or constructor
arg for another bean.

Here's an example which shows how a static field is exposed, by using the staticField property:

Spring Framework Version 1.1.5 35

Beans, BeanFactory and the A pplicationContext

<bean i d="nyFi el d"
cl ass="org. spri ngf ramewor k. beans. fact ory. confi g. Fi el dRetri evi ngFact or yBean" >
<property name="stati cFi el d"><val ue>j ava. sql . Connecti on. TRANSACTI ON_SERI ALI| ZABLE</ val ue></ property>
</ bean>

There's also a convenience usage form where the static field is specified as a bean name:

<bean i d="j ava. sql . Connecti on. TRANSACTI ON_SERI ALI ZABLE"
cl ass="org. spri ngframewor k. beans. factory. confi g. Fi el dRetri evi ngFact or yBean"/ >

This means there is no longer any choice in what the bean id is (so any other bean that refersto it will also have
to use thislonger name), but this form is very concise to define, and very convenient to use as an inner bean
since the id doesn't have to be specified for the bean reference:

<bean id="..." class="...">
<proprty nanme="isol ati on">
<bean i d="j ava. sql . Connecti on. TRANSACTI ON_SERI ALI ZABLE"
cl ass="org. spri ngf ramewor k. beans. factory. confi g. Fi el dRetri evi ngFact or yBean"/ >
</ property>
</ bean>

It's also possible to access a non-static field of another bean, as described in the JavaDocs.

3.16. Invoking another method and optionally using the return
value.

it is sometimes necessary to call a static or non-static method in one class, just to perform some sort of
initialization, before some other classis used. Additionaly, it is sometimes necessary to set a property on a
bean, as the result of amethod call on another bean in the container, or a static method call on any arbitrary
class. For both of these purposes, a helper class called Met hodl nvoki ngFact or yBean may be used. Thisisa
Fact or yBean Which returns a value which is the result of a static or instance method invocation.

We would however recommend that for the second use case, factory-methods, described previously, are a better
all around choice.

An example (in an XML based BeanFactory definition) of a bean definition which uses this class to force some
sort of static initialization:

<bean id="force-init" class="org.springframework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="stati cMet hod"><val ue>com exanpl e. MyCl ass.initialize</val ue></property>
</ bean>
<bean i d="beanl" class="..." depends-on="force-init">
</ bean>
Note that the definition for bean1 has used the depends- on attribute to refer to thef or ce-i ni t bean, which will
trigger initializing f or ce-i ni t first, and thus calling the static initializer method, when bean1 isfirst initialized.

Here's an example of abean definition which uses this class to call a static factory method:

<bean id="nyC ass" class="org. springfranmework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="stati cMet hod" ><val ue>com what ever. MyCl assFact ory. get | nst ance</ val ue></ property>
</ bean>

Spring Framework Version 1.1.5 36

Beans, BeanFactory and the A pplicationContext

An example of caling a static method then an instance method to get at a Java System property. Somewhat
verbose, but it works.

<bean i d="sysProps" cl ass="org. springframework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="t ar get ass"><val ue>j ava. | ang. Syst enx/ val ue></ pr operty>
<property nanme="t ar get Met hod" ><val ue>get Properti es</val ue></ property>
</ bean>
<bean id="javaVersion" class="org. springfranmework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="t arget Obj ect"><ref | ocal ="sysProps"/></property>
<property nanme="t ar get Met hod" ><val ue>get Pr operty</val ue></ property>
<property name="argunents">
<list>
<val ue>j ava. ver si on</ val ue>
</list>
</ property>
</ bean>

Note that asit is expected to be used mostly for accessing factory methods, M ethodl nvokingFactoryBean by
default operatesin a singleton fashion. The first request by the container for the factory to produce an object
will cause the specified method invocation, whose return value will be cached and returned for the current and
subsequent requests. Aninternal si ngl et on property of the factory may be set to false, to cause it to invoke the
target method each time it is asked for an object.

A static target method may be specified by setting the t ar get Met hod property to a String representing the static
method name, with t ar get d ass specifying the Class that the static method is defined on. Alternatively, a
target instance method may be specified, by setting thet ar get Gbj ect property as the target object, and the

t ar get Met hod property as the name of the method to call on that target object. Arguments for the method
invocation may be specified by setting the ar gs property.

3.17. Importing Bean Definitions from One File Into Another

It's often useful to split up container definitions into multiple XML files. One way to then load an application
context which is configured from all these XML fragments is to use the application context constructor which
takes multiple Resource locations. With a bean factory, a bean definition reader can be used multiple timesto
read definitions from each file in turn.

Generally, the Spring team prefers the above approach, since it keeps container configurations files unaware of
the fact that they are being combined with others. However, an alternate approach is to from one XML bean
definition file, use one or more instances of thei nport element to load definitions from one or more other files.
Any i nport elements must be placed before bean elementsin the file doing the importing. Let'slook at a
sample:

<beans>
<import resource="services.xm"/>
<i nmport resource="resources/ nmessageSource. xm "/ >
<i nmport resource="/resources/themeSource. xm "/ >
<bean id="beanl" class="..."/>

<bean i d="bean2" class="..."/>

In this example, external bean definitions are being loaded from 3 files, servi ces. xm , messageSour ce. xni
and t hemeSour ce. xni . All location paths are considered relative to the definition file doing the importing, so

Spring Framework Version 1.1.5 37

Beans, BeanFactory and the A pplicationContext

servi ces. xni inthis case must be in the same directory or classpath location as the file doing the importing,
while nessageSour ce. xm and t hemeSour ce. xri must bein ar esour ces location below the location of the
importing file. Asyou can see, aleading slash is actually ignored, but given that these are considered relative
paths, it is probably better form not to use the slash at all.

The contents of the files being imported must be fully valid XML bean definition files according to the DTD,
including the top level beans element.

3.18. Creating an ApplicationContext from a web application

As opposed to the BeanFactory, which will often be created programmatically, ApplicationContexts can be
created declaratively using for example a Cont ext Loader . Of course you can also create ApplicationContexts
programmatically using one of the ApplicationContext implementations. First, |et's examine the ContextL oader
and its implementations.

The ContextL oader has two implementations: the Cont ext Loader Li st ener and the Cont ext Loader Ser vl et .
They both have the same functionality but differ in that the listener cannot be used in Servlet 2.2 compatible
containers. Since the Servlet 2.4 specification, listeners are required to initialize after startup of aweb
application. A lot of 2.3 compatible containers already implement this feature. It is up to you asto which one
you use, but all things being equal you should probably prefer Cont ext Loader Li st ener ; for more information
on compatibility, have alook at the JavaDoc for the Cont ext Loader Ser vl et .

Y ou can register an ApplicationContext using the Cont ext Loader Li st ener asfollows:

<cont ext - par an>

<par am nanme>cont ext Conf i gLocat i on</ par am nanme>

<par am val ue>/ \EEB- | NF/ daoCont ext . xm /WEB- | NF/ appl i cati onCont ext . xm </ par am val ue>
</ cont ext - par an

<l'i st ener>
<l i stener-cl ass>org. spri ngfranewor k. web. cont ext . Cont ext Loader Li st ener</1i st ener-cl ass>
</listener>

<l-- OR USE THE CONTEXTLOADERSERVLET | NSTEAD OF THE LI STENER

<servl et >
<servl et - name>cont ext </ servl et - name>
<servl et - cl ass>or g. spri ngf ramewor k. web. cont ext . Cont ext Loader Ser vl et </ servl et - cl ass>
<l oad- on- st artup>1</1| oad-on-start up>

</ servlet>

-->

The listener inspects the cont ext Conf i gLocat i on parameter. If it doesn't exist, it'll use

/ \EB- | NF/ appl i cati onCont ext . xmi asadefault. When it does exist, it'll separate the String using predefined
delimiters (comma, semi-colon and space) and use the values as | ocations where application contexts will be
searched for. The ContextL oaderServlet can - as said - be used instead of the ContextL oaderListener. The
servlet will use the contextConfigL ocation parameter just as the listener does.

3.19. Glue code and the evil singleton

The majority of the code inside an application is best written in a Dependency Injection (Inversion of Control)
style, where that code is served out of a BeanFactory or ApplicationContext container, has its own
dependencies supplied by the container when it is created, and is completely unaware of the container.
However, for the small glue layers of code that are sometimes needed to tie other code together, thereis
sometimes a need for singleton (or quasi-singleton) style accessto a BeanFactory or ApplicationContext. For
example, third party code may try to construct new objects directly (O ass. f or Name() styl€), without the
ability to force it to get these objects out of a BeanFactory. If the object constructed by the third party codeis
just asmall stub or proxy, which then uses a singleton style access to a BeanFactory/ApplicationContext to get

Spring Framework Version 1.1.5 38

Beans, BeanFactory and the A pplicationContext

areal object to delegate to, then inversion of control has still been achieved for the majority of the code (the
object coming out of the BeanFactory); thus most code is still unaware of the container or how it is accessed,
and remains uncoupled from other code, with all ensuing benefits. EJBs may also use this stub/proxy approach
to delegate to a plain java implementation object, coming out of a BeanFactory. While the BeanFactory ideally
does not have to be asingleton, it may be unrealistic in terms of memory usage or initialization times (when
using beans in the BeanFactory such as a Hibernate SessionFactory) for each bean to use its own, non-singleton
BeanFactory.

As another example, in a complex J2EE apps with multiple layers (i.e. various JAR files, EJBs, and WAR files
packaged as an EAR), with each layer having its own ApplicationContext definition (effectively forming a
hierarchy), the preferred approach when there is only one web-app (WAR) in the top hierarchy isto simply
create one composite ApplicationContext from the multiple XML definition files from each layer. All the
ApplicationContext variants may be constructed from multiple definition files in this fashion. However, if there
are multiple sibling web-apps at the top of the hierarchy, it is problematic to create an ApplicationContext for
each web-app which consists of mostly identical bean definitions from lower layers, as there may be issues due
to increased memory usage, issues with creating multiple copies of beans which take along time to initialize
(i.e. aHibernate SessionFactory), and possible issues due to side-effects. As an alternative, classes such as

Cont ext Si ngl et onBeanFact oryLocat or [???] O Si ngl et onBeanFact or yLocat or

[http://ww. springframework. org/ docs/ api / or g/ springframewor k/ beans/ f act ory/ access/ Si ngl et onBeanFact oryL
may be used to demand load multiple hierarchical (i.e. oneisaparent of another) BeanFactories or
ApplicationContexts in an effectively singleton fashion, which may then be used as the parents of the web-app
ApplicationContexts. The result is that bean definitions for lower layers are loaded only as needed, and loaded
only once.

3.19.1. Using SingletonBeanFactoryLocator and
ContextSingletonBeanFactoryLocator

Y ou can see adetailed example of using Si ngl et onBeanFact or yLocat or
[http://ww. springframework. org/ docs/ api / or g/ spri ngframewor k/ beans/ f act ory/ access/ Si ngl et onBeanFact oryL
and Cont ext Si ngl et onBeanFact or yLocat or [???] by viewing their respective JavaDocs.

As mentioned in the chapter on EJBs, the Spring convenience base classes for EJBs normally use a
non-singleton BeanFact or yLocat or implementation, which is easily replaced by the use of
Si ngl et onBeanFact or yLocat or and Cont ext Si ngl et onBeanFact or yLocat or if thereisaneed.

Spring Framework Version 1.1.5 39

???
http://www.springframework.org/docs/api/org/springframework/beans/factory/access/SingletonBeanFactoryLocator.html
http://www.springframework.org/docs/api/org/springframework/beans/factory/access/SingletonBeanFactoryLocator.html
???

Chapter 4. PropertyEditors, data binding, validation
and the BeanWrapper

4.1. Introduction

The big question is whether or not validation should be considered business logic. There are pros and cons for
both answers, and Spring offers adesign for validation (and data binding) that does not exclude either one of
them. Validation should specifically not be tied to the web tier, should be easy to localize and it should be
possible to plug in any validator available. Considering the above, Spring has come up with aval i dat or
interface that's both basic and usable in every layer of an application.

Data binding is useful for allowing user input to be dynamically bound to the domain model of an application
(or whatever objects you use to process user input). Spring provides the so-called Dat aBi nder to do exactly
that. The Validator and the DataBinder make up the val i dat i on package, which is primarily used in but not
limited to the MV C framework.

The Beanw apper isafundamental concept in the Spring Framework and is used in alot of places. However,
you probably will not ever have the need to use the BeanWrapper directly. Because thisis reference
documentation however, we felt that some explanation might be right. We're explaining the BeanWrapper in
this chapter since if you were going to use it at all, you would probably do that when trying to bind data to
objects, which is strongly related to the BeanWrapper.

Spring uses PropertyEditors al over the place. The concept of a PropertyEditor is part of the JavaBeans
specification. Just as the BeanWrapper, it's best to explain the use of PropertyEditors in this chapter aswell,
sinceit's closely related to the BeanWrapper and the DataBinder.

4.2. Binding data using the Dat aBi nder

The DataBinder builds on top of the BeanWrapper®.

4.3. Bean manipulation and the BeanW apper

Theor g. spri ngf ranewor k. beans package adheres to the JavaBeans standard provided by Sun. A JavaBean is
simply a class with a default no-argument constructor, which follows a naming conventions where a property
named pr op has a setter set Prop(...) and agetter get Prop() . For more information about JavaBeans and the
specification, please refer to Sun's website (java.sun.com/products/javabeans
[http://java.sun.com/products/javabeans/]).

One quite important concept of the beans package is the Beanw apper interface and its corresponding
implementation (Beanw apper | npl). As quoted from the JavaDoc, the BeanWrapper offers functionality to set
and get property values (individually or in bulk), get property descriptors, and to query properties to determine
if they are readable or writable. Also, the BeanWrapper offers support for nested properties, enabling the
setting of properties on sub-properties to an unlimited depth. Then, the BeanWrapper support the ability to add
standard JavaBeans Pr oper t yChangelLi st ener s and Vet oabl eChangelLi st ener s, without the need for
supporting code in the target class. Last but not least, the BeanWrapper provides support for the setting of
indexed properties. The BeanWrapper usually isn't used by application code directly, but by the Dat aBi nder

2See the beans chapter for more information

Spring Framework Version 1.1.5 40

http://java.sun.com/products/javabeans/

PropertyEditors, data binding, validation and the

and the BeanFact ory.
The way the BeanWrapper worksis partly indicated by its name: it wraps a bean to perform actions on that

bean, like setting and retrieving properties.

4.3.1. Setting and getting basic and nested properties

Setting and getting propertiesis done using the set Pr oper t yval ue(s) and get Proper t yVal ue(s) methods that
both come with a couple of overloaded variants. They're all described in more detail in the JavaDoc Spring
comes with. What's important to know is that there are a couple of conventions for indicating properties of an
object. A couple of examples:

Table 4.1. Examples of properties

Expression Explanation

nane Indicates the property nane corresponding to the methods get Nane() or i sNane()
and set Nare()

account . nane Indicates the nested property nane of the property account corresponding e.g. to
the methods get Account () . set Name() Or get Account (). get Nane()

account [2] Indicates the third element of the indexed property account . Indexed properties
can be of typearray, | i st or other naturally ordered collection

account [COVPANYNANE] Indicates the value of the map entry indexed by the key COMPANYNAME of the
Map property account

Below you'll find some examples of working with the BeanWrapper to get and set properties.

Note: this part is not important to you if you're not planning to work with the BeanWrapper directly. If you're
just using the Dat aBi nder and the BeanFact or y and their out-of-the-box implementation, you should skip
ahead to the section about Proper t yEdi t or s.

Consider the following two classes:

public class Conpany {
private String nane;
private Enpl oyee nanagi ngDirector;

public String getName() {
return this.nane;
}

public void setNane(String nane) {
thi s. name = nang;

}

publ i ¢ Enpl oyee get Managi ngDirector() {
return this.nmanagi ngDirector;

}

public void set Managi ngDi r ect or (Enpl oyee managi ngDi rector) {

t hi s. managi ngDi rect or = managi ngDirector;

}

public class Enpl oyee {
private float salary;

public float getSalary() {
return sal ary;

public void setSalary(float salary) {

Spring Framework Version 1.1.5 41

PropertyEditors, data binding, validation and the

this.salary = salary;

The following code snippets show some examples of how to retrieve and manipul ate some of the properties of
instantiated: Conpani es and Enpl oyees

Conpany ¢ = new Conpany();

BeanW apper bwConp = BeanW apper | npl (c);

// setting the conpany nane...

bwConp. set PropertyVal ue("nane", "Some Conpany Inc.");

/1 ... can also be done like this:

PropertyVal ue v = new PropertyVal ue("name", "Some Conpany Inc.");
bwConp. set PropertyVal ue(v);

Il ok, let's create the director and tie it to the conpany:
Enpl oyee jim = new Enpl oyee();

BeanW apper bwJdi m = BeanW apper | npl (jin);

bwJdi m set PropertyVal ue("nanme", "Jim Stravinsky");

bwConp. set PropertyVal ue("managi ngbirector”, jim;

/'l retrieving the salary of the nmanagi ngDirector through the conpany
Fl oat salary = (Fl oat)bwConp. get PropertyVal ue("managi ngbhi rector. sal ary");

4.3.2. Built-in propertyEdi tors, converting types

Spring heavily uses the concept of Pr oper t yEdi t or s. Sometimes it might be handy to be able to represent
propertiesin adifferent way than the object itself. For example, a date can be represented in a human readable
way, while we're still able to convert the human readable form back to the original date (or even better: convert
any date entered in a human readable form, back to Date objects). This behavior can be achieved by registering
custom editors, of typej ava. beans. Propert yEdi t or . Registering custom editors on a BeanWrapper or
aternately in a specific Application Context as mentioned in the previous chapter, gives it the knowledge of
how to convert properties to the desired type. Read more about PropertyEditors in the JavaDoc of the

j ava. beans package provided by Sun.

A couple of examples where property editing is used in Spring

e setting properties on beans is done using PropertyEditors. When mentioning j ava. | ang. Stri ng asthe
value of a property of some bean you're declaring in XML file, Spring will (if the setter of the
corresponding property has a Class-parameter) use the d assEdi t or to try to resolve the parameter to a
Class object

e parsing HTTP request parametersin Spring's MV C framework is done using all kinds of PropertyEditors
that you can manually bind in all subclasses of the ConmandControl | er

Spring has a number of built-in PropertyEditors to make life easy. Each of those islisted below and they are all
located inthe or g. spri ngf ramewor k. beans. propert yedi t or s package. Most, but not all (asindicated below),
areregistered by default by BeanWrapperImpl. Where the property editor is configurable in some fashion, you
can of course still register your own variant to override the default one:

Table 4.2. Built-in PropertyEditors

Class Explanation

Byt eAr r ayPr oper t yEdi t or Editor for byte arrays. Strings will simply be converted to their
corresponding byte representations. Registered by default by
BeanWrapperimpl.

C assEdit or Parses Strings representing classes to actual classes and the other

Spring Framework Version 1.1.5 42

BeanWrapper

Class

Cust onBool eanEdi t or

Cust onDat eEdi t or

Cust omNunber Edi t or

Fi | eEditor

Explanation

way around. When aclassis not found, an
I1legal ArgumentException is thrown. Registered by default by
BeanWrapperimpl.

Customizable property editor for Boolean properties. Registered by
default by BeanWrapperlmpl, but, can be overridden by registering
custom instance of it as custom editor.

Customizable property editor for java.util.Date, supporting a
custom DateFormat. NOT registered by default. Must be user
registered as needed with appropriate format.

Customizable property editor for any Number subclass like Integer,
Long, Float, Double. Registered by default by BeanWrapperimpl,
but, can be overridden by registering custom instance of it as
custom editor.

Capable of resolving Strings to Fi | e-objects. Registered by default
by BeanWrapperlmpl.

| nput St reanEdi t or

One-way property editor, capable of taking atext string and
producing (via an intermediate ResourceEditor and Resource) an
InputStream, so InputStream properties may be directly setCapable
of resolving Stringsto Fi | e-objects. Note that the default usage will
not close the InputStream for you!. Registered by default by
BeanWrapperimpl.

Local eEdi t or

Properti esEditor

StringArrayPropertyEditor

StringTrimer Edi t or

Capable of resolving Stringsto Local e-objects and vice versa (the
String format is [language]_[country]_[variant], which is the same
thing the toString() method of Locale provides. Registered by
default by BeanWrapperlmpl.

Capable of converting Strings (formatted using the format as
defined in the Javadoc for the java.lang.Properties class) to
Properti es-objects. Registered by default by BeanWrapperimpl.

Capable of resolving acomma-delimited list of String to a
String-array and vice versa. Registered by default by
BeanWrapperimpl.

Property editor that trims Strings. Optionally allows transforming
an empty string into anull value. NOT registered by default. Must
be user registered as needed.

URLEdi t or

Capable of resolving a String representation of a URL to an actual
URL-object. Registered by default by BeanWrapperimpl.

Spring usesthej ava. beans. Propert yEdi t or Manager t0 Set the search path for property editors that might be
needed. The search path aso includes sun. bean. edi t or s, which includes PropertyEditors for Font, Color and
all the primitive types. Note also that the standard JavaBeans infrastructure will automatically discover
PropertyEditors (without you having to register them) if they are in the same package as the class they handle,
and have the same name as that class, with 'Editor’ appended.

Spring Framework Version 1.1.5

43

BeanWrapper

4.3.3. Other features worth mentioning

Besides the features you've seen in the previous sections there a couple of features that might be interesting to
you, though not worth an entire section.

» determining readability and writability: using thei sReadabl e() andi swi t abl e() methods, you can
determine whether or not a property is readable or writable

e retrieving PropertyDescriptors. using get Pr oper t yDescri pt or (Stri ng) and get PropertyDescri ptors()
you can retrieve objects of typej ava. beans. PropertyDescri pt or, that might come in handy sometimes

Spring Framework Version 1.1.5 44

Chapter 5. Spring AOP: Aspect Oriented
Programming with Spring

5.1. Concepts

Aspect-Oriented Programming (AOP) complements OOP by providing another way of thinking about program
structure. While OO decomposes applications into a hierarchy of objects, AOP decomposes programs into
aspects or concerns. This enables modularization of concerns such as transaction management that would
otherwise cut across multiple objects. (Such concerns are often termed crosscutting concerns.)

One of the key components of Spring is the AOP framework. While the Spring 10C containers (BeanFactory
and ApplicationContext) do not depend on AOP, meaning you don't need to use AOP if you don't want to, AOP
complements Spring 10C to provide a very capable middleware solution.

AOP isused in Spring:

* To provide declarative enterprise services, especialy as areplacement for EJB declarative services. The
most important such service is declarative transaction management, which builds on Spring's transaction
abstraction.

e Toallow usersto implement custom aspects, complementing their use of OOP with AOP.

Thus you can view Spring AOP as either an enabling technology that allows Spring to provide declarative
transaction management without EJB; or use the full power of the Spring AOP framework to implement custom
aspects.

If you are interested only in generic declarative services or other pre-packaged declarative middleware
services such as pooling, you don't need to work directly with Soring AOP, and can skip most of this chapter.

5.1.1. AOP concepts

Let us begin by defining some central AOP concepts. These terms are not Spring-specific. Unfortunately, AOP
terminology is not particularly intuitive. However, it would be even more confusing if Spring used its own
terminology.

» Aspect: A modularization of a concern for which the implementation might otherwise cut across multiple
objects. Transaction management is a good example of a crosscutting concern in J2EE applications. Aspects
are implemented using Spring as Advisors or interceptors.

» Joinpoint: Point during the execution of a program, such as a method invocation or a particular exception
being thrown. In Spring AOP, ajoinpoint is aways method invocation. Spring does not use the term
joinpoint prominently; joinpoint information is accessible through methods on the Met hodl nvocat i on
argument passed to interceptors, and is evaluated by implementations of the
org. spri ngframewor k. aop. Poi nt cut interface.

e Advice: Action taken by the AOP framework at a particular joinpoint. Different types of advice include
"around," "before" and "throws" advice. Advice types are discussed below. Many AOP frameworks,
including Spring, model an advice as an interceptor, maintaining a chain of interceptors "around" the
joinpoint.

Spring Framework Version 1.1.5 45

Spring AOP: Aspect Oriented Programming with Spring

« Pointcut: A set of joinpoints specifying when an advice should fire. An AOP framework must allow
devel opers to specify pointcuts: for example, using regular expressions.

¢ Introduction: Adding methods or fields to an advised class. Spring allows you to introduce new interfaces
to any advised object. For example, you could use an introduction to make any object implement an
I sModi fi ed interface, to simplify caching.

e Target abject: Object containing the joinpoint. Also referred to as advised or proxied object.

« AOP proxy: Object created by the AOP framework, including advice. In Spring, an AOP proxy will be a
JDK dynamic proxy or a CGLIB proxy.

¢ Weaving: Assembling aspects to create an advised object. This can be done at compile time (using the
AspectJ compiler, for example), or at runtime. Spring, like other pure Java AOP frameworks, performs
weaving at runtime.

Different advice types include:

« Around advice: Advice that surrounds a joinpoint such as a method invocation. Thisis the most powerful
kind of advice. Around advices will perform custom behavior before and after the method invocation. They
are responsible for choosing whether to proceed to the joinpoint or to shortcut executing by returning their
own return value or throwing an exception.

« Beforeadvice: Advice that executes before a joinpoint, but which does not have the ability to prevent
execution flow proceeding to the joinpoint (unless it throws an exception).

e Throws advice: Advice to be executed if a method throws an exception. Spring provides strongly typed
throws advice, so you can write code that catches the exception (and subclasses) you're interested in,
without needing to cast from Throwable or Exception.

» After returning advice: Adviceto be executed after a joinpoint completes normally: for example, if a
method returns without throwing an exception.

Around advice is the most genera kind of advice. Most interception-based AOP frameworks, such as Nanning
Aspects, provide only around advice.

As Spring, like AspectJ, provides afull range of advice types, we recommend that you use the |least powerful
advice type that can implement the required behavior. For example, if you need only to update a cache with the
return value of a method, you are better off implementing an after returning advice than an around advice,
although an around advice can accomplish the same thing. Using the most specific advice type provides a
simpler programming model with less potential for errors. For example, you don't need to invoke the
proceed() method on the Methodlnvocation used for around advice, and hence can't fail to invokeit.

The pointcut concept is the key to AOP, distinguishing AOP from older technologies offering interception.
Pointcuts enable advice to be targeted independently of the OO hierarchy. For example, an around advice
providing declarative transaction management can be applied to a set of methods spanning multiple objects.
Thus pointcuts provide the structural el ement of AOP.

5.1.2. Spring AOP capabilities and goals

Spring AOP isimplemented in pure Java. There is no need for a special compilation process. Spring AOP does
not need to control the class loader hierarchy, and is thus suitable for use in a J2EE web container or
application server.

Spring Framework Version 1.1.5 46

Spring AOP: Aspect Oriented Programming with Spring

Spring currently supports interception of method invocations. Field interception is not implemented, although
support for field interception could be added without breaking the core Spring AOP APIs.

Field interception arguably violates OO encapsulation. We don't believe it is wise in application devel opment.
If you requirefield interception, consider using AspectJ.

Spring provides classes to represent pointcuts and different advice types. Spring uses the term advisor for an
object representing an aspect, including both an advice and a pointcut targeting it to specific joinpoints.

Different advice types are Met hodl nt er cept or (from the AOP Alliance interception API); and the advice
interfaces defined in the or g. spri ngf r amewor k. aop package. All advices must implement the

org. aopal | i ance. aop. Advi ce tag interface. Advices supported out the box are Met hodl nt er cept or
Thr owsAdvi ce; Bef or eAdvi ce; and Af t er Ret ur ni ngAdvi ce. We'll discuss advice typesin detail below.

Spring implements the AOP Alliance interception interfaces (http://www.sourceforge.net/projects/aopalliance).
Around advice must implement the AOP Alliance or g. aopal | i ance. i nt er cept . Met hodl nt er cept or

interface. Implementations of this interface can run in Spring or any other AOP Alliance compliant
implementation. Currently JAC implements the AOP Alliance interfaces, and Nanning and Dynaop are likely to
in early 2004.

Spring's approach to AOP differs from that of most other AOP frameworks. The aim is not to provide the most
complete AOP implementation (although Spring AOP is quite capable); it is rather to provide a close
integration between AOP implementation and Spring 10C to help solve common problems in enterprise
applications.

Thus, for example, Spring's AOP functionality is normally used in conjunction with a Spring 10C container.
AOP adviceis specified using normal bean definition syntax (although this allows powerful "autoproxying"
capabilities); advice and pointcuts are themselves managed by Spring 10C: acrucia difference from other AOP
implementations. There are some things you can't do easily or efficiently with Spring AOP, such as advise very
fine-grained abjects. AspectJis probably the best choice in such cases. However, our experience is that Spring
AOP provides an excellent solution to most problems in J2EE applications that are amenable to AOP.

Spring AOP will never strive to compete with AspectJ or AspectWerkz to provide a comprehensive AOP
solution. We believe that both proxy-based frameworks like Spring and full-blown frameworks such as AspectJ
are valuable, and that they are complementary, rather than in competition. Thus amajor priority for Spring 1.1
will be seamlesdly integrating Spring AOP and 10C with AspectJ, to enable al uses of AOP to be catered for
within a consistent Spring-based application architecture. Thisintegration will not affect the Spring AOP API
or the AOP Alliance API; Spring AOP will remain backward-compatible.

5.1.3. AOP Proxies in Spring

Spring defaults to using J2SE dynamic proxies for AOP proxies. This enables any interface or set of interfaces
to be proxied.

Spring can also use CGLIB proxies. Thisis necessary to proxy classes, rather than interfaces. CGLIB is used
by default if abusiness object doesn't implement an interface. Asit's good practice to programto interfaces
rather than classes, business objects normally will implement one or more business interfaces.

It is possible to force the use of CGLIB: we'll discuss this below, and explain why you'd want to do this.
Beyond Spring 1.0, Soring may offer additional types of AOP proxy, including wholly generated classes. This
won't affect the programming model.

5.2. Pointcuts in Spring

Spring Framework Version 1.1.5 47

http://www.sourceforge.net/projects/aopalliance

Spring AOP: Aspect Oriented Programming with Spring

Let'slook at how Spring handles the crucial pointcut concept.

5.2.1. Concepts

Spring's pointcut model enables pointcut reuse independent of advice types. It's possible to target different
advice using the same pointcut.

Theor g. spri ngf ranmewor k. aop. Poi nt cut interface isthe central interface, used to target advices to particular
classes and methods. The complete interface is shown below:
public interface Pointcut {
ClassFilter getCassFilter();

Met hodat cher get Met hodMat cher () ;

Splitting the Poi nt cut interface into two parts allows reuse of class and method matching parts, and
fine-grained composition operations (such as performing a"union” with another method matcher).

Thed assFi | ter interfaceis used to restrict the pointcut to a given set of target classes. If the mat ches()
method always returns true, all target classes will be matched:
public interface ClassFilter {

bool ean mat ches(d ass cl azz);

The Met hodnat cher interface is normally more important. The complete interface is shown below:

public interface MethodMatcher {
bool ean mat ches(Method m C ass targetd ass);
bool ean i sRunti me();

bool ean mat ches(Method m Cl ass targetC ass, Object[] args);

Themat ches(Met hod, d ass) method is used to test whether this pointcut will ever match a given method on
atarget class. This evaluation can be performed when an AOP proxy is created, to avoid the need for atest on
every method invocation. If the 2-argument matches method returns true for a given method, and the

i sRunti me() method for the MethodMatcher returns true, the 3-argument matches method will be invoked on
every method invocation. This enables a pointcut to look at the arguments passed to the method invocation
immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their i srunti me() method returnsfalse. In this case, the
3-argument matches method will never be invoked.

If possible, try to make pointcuts static, allowing the AOP framework to cache the results of pointcut evaluation
when an AOP proxy is created.

5.2.2. Operations on pointcuts

Spring supports operations on pointcuts: notably, union and inter section.

Union means the methods that either pointcut matches.

Spring Framework Version 1.1.5 48

Spring AOP: Aspect Oriented Programming with Spring

I ntersection means the methods that both pointcuts match.
Union is usually more useful.

Pointcuts can be composed using the static methods in the org.springframewor k.aop.support.Pointcuts class, or
using the ComposablePointcut class in the same package.

5.2.3. Convenience pointcut implementations

Spring provides several convenient pointcut implementations. Some can be used out of the box; others are
intended to be subclassed in application-specific pointcuts.

5.2.3.1. Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the method's arguments.
Static pointcuts are sufficient--and best--for most usages. It's possible for Spring to evaluate a static pointcut
only once, when amethod isfirst invoked: after that, there is no need to evaluate the pointcut again with each
method invocation.

Let's consider some static pointcut implementations included with Spring.
5.2.3.1.1. Regular expression pointcuts

One obvious way to specific static pointcuts is regular expressions. Severa AOP frameworks besides Spring
make this possible. or g. spri ngf r amewor k. aop. support . RegexpMet hodPoi nt cut iSageneric regular
expression pointcut, using Perl 5 regular expression syntax.

Using this class, you can provide alist of pattern Strings. If any of these is a match, the pointcut will evaluate to
true. (So the result is effectively the union of these pointcuts.)

The usage is shown below:

<bean i d="sett ersAndAbsquat ul at ePoi nt cut "
cl ass="org. spri ngf ramewor k. aop. support. RegexpMet hodPoi nt cut " >
<property name="patterns">
<list>
<val ue>. *get . *</ val ue>
<val ue>. *absquat ul at e</ val ue>
</list>
</ property>
</ bean>

A convenience subclass of RegexpMet hodPoi nt cut , RegexpMet hodPoi nt cut Advi sor , allows us to reference an
Advice also. (Remember that an Advice can be an interceptor, before advice, throws advice etc.) This
simplifies wiring, as the one bean serves as both pointcut and advisor, as shown below:

<bean i d="settersAndAbsquat ul at eAdvi sor"
cl ass="org. spri ngf ranmewor k. aop. support . RegexpMet hodPoi nt cut Advi sor ">
<property nanme="advi ce">
<ref |ocal ="beanNaneO AopAl | i ancel nterceptor"/>
</ property>
<property nanme="patterns">
<list>
<val ue>. *get . *</ val ue>
<val ue>. *absquat ul at e</ val ue>
</list>
</ property>
</ bean>

Spring Framework Version 1.1.5 49

Spring AOP: Aspect Oriented Programming with Spring

RegexpMethodPointcutAdvisor can be used with any Advice type.
The RegexpMethodPointcut class requires the Jakarta ORO regular expression package.

5.2.3.1.2. Attribute-driven pointcuts

An important type of static pointcut is a metadata-driven pointcut. This uses the values of metadata attributes:
typically, source-level metadata.

5.2.3.2. Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account method arguments, as
well as static information. This means that they must be evaluated with every method invocation; the result
cannot be cached, as arguments will vary.

The main exampleisthecontrol fl ow pointcut.

5.2.3.2.1. Control flow pointcuts

Spring control flow pointcuts are conceptually similar to AspectJ cflow pointcuts, although less powerful.
(Thereis currently no way to specify that a pointcut executes below another pointcut.) A control flow pointcut
matches the current call stack. For example, it might fire if the joinpoint was invoked by a method in the

com nyconpany. web package, or by the sonecal | er class. Control flow pointcuts are specified using the

or g. spri ngf ramewor k. aop. support. Cont r ol Fl owPoi nt cut class.

Note

Control flow pointcuts are significantly more expensive to evaluate at runtime than even other
dynamic pointcuts. In Java 1.4, the cost is about 5 times that of other dynamic pointcuts; in Java
1.3 more than 10.

5.2.4. Pointcut superclasses

Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, you'll probably subclass StaticM ethodM atcherPointcut, as shown
below. This requiresimplemented just one abstract method (although it's possible to override other methods to
customize behavior):

class TestStaticPointcut extends StaticMethodMatcher Poi ntcut {

publi c bool ean nmat ches(Method m C ass targetC ass) {
I/ return true if customcriteria match
}

}

There are also superclasses for dynamic pointcuts.

Y ou can use custom pointcuts with any advice typein Spring 1.0 RC2 and above.

5.2.5. Custom pointcuts

Because pointcutsin Spring are Java classes, rather than language features (as in AspectJ) it's possible to
declare custom pointcuts, whether static or dynamic. However, there is no support out of the box for the
sophisticated pointcut expressions that can be coded in AspectJ syntax. However, custom pointcuts in Spring

Spring Framework Version 1.1.5 50

Spring AOP: Aspect Oriented Programming with Spring

can be arbitrarily complex.
Later versions of Spring may offer support for "semantic pointcuts' as offered by JAC: for example, "all
methods that change instance variables in the target object.”

5.3. Advice types in Spring

Let's now look at how Spring AOP handles advice.

5.3.1. Advice lifecycles

Spring advices can be shared across all advised objects, or unigue to each advised object. This corresponds to
per-class or per-instance advice.

Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors. These do
not depend on the state of the proxied object or add new state; they merely act on the method and arguments.

Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds state to the
proxied object.

It's possible to use amix of shared and per-instance advice in the same AOP proxy.

5.3.2. Advice types in Spring

Spring provides several advice types out of the box, and is extensible to support arbitrary advice types. Let us
look at the basic concepts and standard advice types.

5.3.2.1. Interception around advice
The most fundamental advice typein Spring isinterception around advice.

Spring is compliant with the AOP Alliance interface for around advice using method interception.
M ethodl nterceptors implementing around advice should implement the following interface:

public interface Methodl nterceptor extends |nterceptor {

oj ect i nvoke(Met hodl nvocati on invocation) throws Throwabl e;

The Methodl nvocation argument to the invoke() method exposes the method being invoked; the target
joinpoint; the AOP proxy; and the arguments to the method. The invoke() method should return the invocation's
result: the return value of the joinpoint.

A simple MethodI nterceptor implementation |ooks as follows:

public class Debuglnterceptor inplements Methodlnterceptor {

public oject invoke(Methodl nvocation invocation) throws Throwabl e {
System out. println("Before: invocation=[" + invocation + "]");
oj ect rval = invocation. proceed();
System out. println("lnvocation returned");
return rval;

Spring Framework Version 1.1.5 51

Spring AOP: Aspect Oriented Programming with Spring

Note the call to the MethodInvocation's proceed() method. This proceeds down the interceptor chain towards
the joinpoint. Most interceptors will invoke this method, and return its return value. However, a
Methodlnterceptor, like any around advice, can return a different value or throw an exception rather than
invoke the proceed method. However, you don't want to do this without good reason!

Methodl nter ceptors offer interoperability with other AOP Alliance-compliant AOP implementations. The other
advice types discussed in the remainder of this section implement common AOP concepts, but in a
Soring-specific way. While there is an advantage in using the most specific advice type, stick with

MethodI nterceptor around adviceif you are likely to want to run the aspect in another AOP framework. Note
that pointcuts are not currently interoperable between frameworks, and the AOP Alliance does not currently
define pointcut interfaces.

5.3.2.2. Before advice

A simpler advice typeisabefore advice. This does not need a Met hodl nvocat i on object, since it will only be
called before entering the method.

The main advantage of a before advice isthat there is no need to invoke the proceed() method, and therefore
no possibility of inadvertently failing to proceed down the interceptor chain.

The Met hodBef or eAdvi ce interface is shown below. (Spring's API design would allow for field before advice,
although the usual objects apply to field interception and it's unlikely that Spring will ever implement it).

public interface MethodBef oreAdvi ce extends Bef oreAdvice {

voi d before(Method m Object[] args, Object target) throws Throwabl e;

Note the the return type isvoi d. Before advice can insert custom behavior before the joinpoint executes, but
cannot change the return value. If abefore advice throws an exception, thiswill abort further execution of the
interceptor chain. The exception will propagate back up the interceptor chain. If it is unchecked, or on the
signature of the invoked method, it will be passed directly to the client; otherwise it will be wrapped in an
unchecked exception by the AOP proxy.

An example of abefore advice in Spring, which counts all methods that return normally:

public class Counti ngBeforeAdvice inplenments Met hodBef or eAdvi ce {
private int count;
public void before(Method m Object[] args, Object target) throws Throwabl e {
++count ;
}

public int getCount() {
return count;
}

}

Before advice can be used with any pointcut.

5.3.2.3. Throws advice

Throws advice isinvoked after the return of the joinpoint if the joinpoint threw an exception. Spring offers

typed throws advice. Note that this meansthat the or g. spri ngf r anewor k. aop. Thr owsAdvi ce interface does
not contain any methods: it is atag interface identifying that the given object implements one or more typed

throws advice methods. These should be of form

after Throwi ng([Method], [args], [target], subcl assOf Throwabl e)

Spring Framework Version 1.1.5 52

Spring AOP: Aspect Oriented Programming with Spring

Only the last argument is required. Thus there from one to four arguments, depending on whether the advice
method is interested in the method and arguments. The following are examples of throws advices.

This advice will be invoked if aRenot eExcept i on isthrown (including subclasses):

public class RenoteThrowsAdvice inplenments ThrowsAdvi ce {

public void afterThrow ng(Renpt eException ex) throws Throwabl e {
/1 Do sonething with renpte exception
}

Thefollowing advice isinvoked if a ServietException is thrown. Unlike the above advice, it declares 4
arguments, so that it has access to the invoked method, method arguments and target object:
public static class Servl et ThrowsAdvi ceW t hArgurment s i npl ements Thr owsAdvi ce {

public void afterThrow ng(Method m Object[] args, Object target, ServletException ex) {
/1 Do sonmething will all argunents
}

The final exampleillustrates how these two methods could be used in a single class, which handles both
Renot eExcept i on and Ser vl et Except i on. Any number of throws advice methods can be combined in asingle
class.
public static class Conbi nedThr owsAdvi ce inpl enents ThrowsAdvice {
public void afterThrow ng(Renot eException ex) throws Throwabl e {
// Do something with renpte exception
}
public void afterThrow ng(Method m Cbject[] args, Object target, ServletException ex) {

// Do something will all argunents
}

}

Throws advice can be used with any pointcut.

5.3.2.4. After Returning advice

An after returning advice in Spring must implement the org.springframewor k.aop.After Retur ningAdvice
interface, shown below:
public interface AfterReturni ngAdvi ce extends Advice {

voi d afterReturning(Object returnValue, Method m bject[] args, Object target)
t hrows Throwabl e;

An after returning advice has access to the return value (which it cannot modify), invoked method, methods
arguments and target.

The following after returning advice counts al successful method invocations that have not thrown exceptions:

public class CountingAfterReturni ngAdvi ce inpl ements AfterReturni ngAdvi ce {
private int count;

public void afterReturning(Object returnValue, Method m Object[] args, Object target) throws Throwabl e {

++count ;
}

public int getCount() {
return count;

Spring Framework Version 1.1.5 53

Spring AOP: Aspect Oriented Programming with Spring

This advice doesn't change the execution path. If it throws an exception, this will be thrown up the interceptor
chain instead of the return value.
After returning advice can be used with any pointcut.

5.3.2.5. Introduction advice
Spring treats introduction advice as a special kind of interception advice.

Introduction requires an I nt r oduct i onAdvi sor, and an | nt r oduct i onl nt er cept or , implementing the
following interface:
public interface Introductionlnterceptor extends Mthodlnterceptor {

bool ean i npl enentsinterface(C ass intf);

Thei nvoke() method inherited from the AOP Alliance Met hodl nt er cept or interface must implement the
introduction: that is, if the invoked method is on an introduced interface, the introduction interceptor is
responsible for handling the method call--it cannot invoke pr oceed() .

Introduction advice cannot be used with any pointcut, asit applies only at class, rather than method, level. You
can only use introduction advice with the Interceptionl ntroductionAdvisor, which has the following methods:
public interface InterceptionlntroductionAdvi sor extends |nterceptionAdvisor {
ClassFilter getCassFilter();
I ntroductionlnterceptor getlntroductionlnterceptor();

Class[] getlnterfaces();

Thereis no Met hodmat cher , and hence no Poi nt cut , associated with introduction advice. Only classfiltering is
logical.

Theget I nterfaces() method returns the interfaces introduced by this advisor.

Let'slook at a simple example from the Spring test suite. Let's suppose we want to introduce the following
interface to one or more objects:

public interface Lockable {
void | ock();
voi d unl ock();
bool ean | ocked();

Thisillustrates a mixin. We want to be able to cast advised objects to Lockable, whatever their type, and call
lock and unlock methods. If we call the lock() method, we want all setter methods to throw aLockedExcept i on.
Thus we can add an aspect that provides the ability to make objects immutable, without them having any
knowledge of it: agood example of AOP.

Firstly, we'll need an| ntroducti onl nt er cept or that does the heavy lifting. In this case, we extend the
or g. spri ngf ramewor k. aop. support . Del egat i ngl nt r oduct i onl nt er cept or convenience class. We could

Spring Framework Version 1.1.5 54

Spring AOP: Aspect Oriented Programming with Spring

implement Introductioninterceptor directly, but using Del egat i ngl nt r oduct i onl nt er cept or iSbest for most
Cases.

The Del egat i ngl ntroducti onl nt er cept or iSdesigned to delegate an introduction to an actual implementation
of the introduced interface(s), concealing the use of interception to do so. The delegate can be set to any object
using a constructor argument; the default delegate (when the no-arg constructor is used) isthis. Thusin the
example below, the delegate isthe LockM xi n subclass of Del egati ngl nt roduct i onl nt er cept or . Given a
delegate (by default itself) aDel egat i ngl nt roduct i onl nt er cept or instance looks for all interfaces
implemented by the delegate (other than Introductionlnterceptor), and will support introductions against any of
them. It's possible for subclasses such as LockM xi n to call the suppressinterflace(d ass intf) method to
suppress interfaces that should not be exposed. However, no matter how many interfaces an

I ntroduct i onl nt er cept or iSprepared to support, the | nt roduct i onAdvi sor used will control which
interfaces are actually exposed. An introduced interface will conceal any implementation of the same interface
by the target.

Thus LockMixin subclasses Del egat i ngl nt roduct i onl nt er cept or and implements Lockable itself. The
superclass automatically picks up that Lockable can be supported for introduction, so we don't need to specify
that. We could introduce any number of interfacesin this way.

Note the use of thel ocked instance variable. This effectively adds additional state to that held in the target
object.

public class LockM xi n extends Del egati ngl ntroducti onl nterceptor
i mpl enents Lockabl e {

private bool ean | ocked;

public void lock() {
this.locked = true;
}

public void unlock() {
this.locked = fal se;
}

publ i c bool ean | ocked() {
return this.|ocked;
}

public oject invoke(Methodl nvocation invocation) throws Throwabl e {
if (locked() && invocation.getMethod().getNane().indexOf("set") == 0)
t hrow new LockedException();
return super.invoke(invocation);

Often it isn't necessary to override thei nvoke() method: the Del egat i ngl nt r oduct i onl nt er cept or
implementation--which calls the delegate method if the method is introduced, otherwise proceeds towards the
joinpoint--is usually sufficient. In the present case, we need to add a check: no setter method can be invoked if
in locked mode.

The introduction advisor required issimple. All it needsto do is hold adistinct LockM xi n instance, and specify
the introduced interfaces--in this case, just Lockabl e. A more complex example might take a reference to the
introduction interceptor (which would be defined as a prototype): in this case, there's no configuration relevant
for aLockM xi n, SO we simply create it using new.

public class LockM xi nAdvi sor extends Defaul tlntroductionAdvi sor {

public LockM xi nAdvi sor () {
super (new LockM xi n(), Lockabl e. cl ass);

Spring Framework Version 1.1.5 55

Spring AOP: Aspect Oriented Programming with Spring

We can apply this advisor very simply: it requires no configuration. (However, it is necessary: It'simpossible to
usean | ntroducti onl nt er cept or Without an IntroductionAdvisor.) As usual with introductions, the advisor
must be per-instance, asit is stateful. We need a different instance of LockM xi nAdvi sor , and hence LockM xi n,
for each advised object. The advisor comprises part of the advised object's state.

We can apply this advisor programmatically, using the Advi sed. addAdvi sor () method, or (the recommended
way) in XML configuration, like any other advisor. All proxy creation choices discussed below, including
"auto proxy creators,” correctly handle introductions and stateful mixins.

5.4. Advisors in Spring

In Spring, an Advisor is amodularization of an aspect. Advisors typically incorporate both an advice and a
pointcut.

Apart from the special case of introductions, any advisor can be used with any advice.
org. spri ngframewor k. aop. support . Def aul t Poi nt cut Advi sor iSthe most commonly used advisor class. For
example, it can be used with aMet hodl nt er cept or, Bef or eAdvi ce Of Thr owsAdvi ce.

It is possible to mix advisor and advice typesin Spring in the same AOP proxy. For example, you could use a
interception around advice, throws advice and before advice in one proxy configuration: Spring will
automatically create the necessary create interceptor chain.

5.5. Using the ProxyFactoryBean to create AOP proxies

If you're using the Spring 10C container (an ApplicationContext or BeanFactory) for your business objects--and
you should be!--you will want to use one of Spring's AOP FactoryBeans. (Remember that a factory bean
introduces alayer of indirection, enabling it to create objects of a different type).

The basic way to create an AOP proxy in Spring is to use the

org.springframewor k.aop.framewor k.ProxyFactoryBean. This gives complete control over the pointcuts and
advice that will apply, and their ordering. However, there are simpler options that are preferable if you don't
need such control.

5.5.1. Basics

The Pr oxyFact or yBean, like other Spring Fact or yBean implementations, introduces alevel of indirection. If
you define a Pr oxyFact or yBean with namef oo, what objects referencing f oo see is not the Pr oxyFact or yBean
instance itself, but an object created by the ProxyFact or yBean' s implementation of the get Obj ect () method.
This method will create an AOP proxy wrapping atarget object.

One of the most important benefits of using a Pr oxyFact or yBean or other |oC-aware class to create AOP
proxies, isthat it means that advices and pointcuts can also be managed by 10C. Thisis a powerful feature,
enabling certain approaches that are hard to achieve with other AOP frameworks. For example, an advice may
itself reference application objects (besides the target, which should be available in any AOP framework),
benefiting from all the pluggability provided by Dependency Injection.

Spring Framework Version 1.1.5 56

Spring AOP: Aspect Oriented Programming with Spring

5.5.2. JavaBean properties

Like most FactoryBean implementations provided with Spring, Pr oxyFact or yBean isitself a JavaBean. Its
properties are used to:

e Specify the target you want to proxy

e Specify whether to use CGLIB

Some key properties are inherited from or g. spri ngf r amewor k. aop. f r amewor k. ProxyConf i g: the superclass
for all AOP proxy factories. These include:

e proxyTarget d ass: true if we should proxy the target class, rather than itsinterfaces. If thisistrue we need
to use CGLIB.

» optimze: whether to apply aggressive optimization to created proxies. Don't use this setting unless you
understand how the relevant AOP proxy handles optimization. Thisis currently used only for CGLIB
proxies; it has no effect with JDK dynamic proxies (the default).

e frozen: whether advice changes should be disallowed once the proxy factory has been configured. Default
isfalse.

e exposeProxy: Whether the current proxy should be exposed in a ThreadL ocal so that it can be accessed by
the target. (It's available via the Methodl nvocation without the need for a ThreadLocal.) If atarget needsto
obtain the proxy and exposeProxy is true, the target can use the AopCont ext . cur r ent Proxy() method.

* aopProxyFact ory: theimplementation of AopProxyFactory to use. Offersaway of customizing whether to
use dynamic proxies, CGLIB or any other proxy strategy. The default implementation will choose dynamic
proxies or CGLIB appropriately. There should be no need to use this property; it's intended to allow the
addition of new proxy typesin Spring 1.1.

Other properties specific to Pr oxyFact or yBean include:

e proxyl nterfaces: array of String interface names. If thisisn't supplied, a CGLIB proxy for the target class
will be used

e interceptorNanes: String array of Advisor, interceptor or other advice namesto apply. Ordering is
significant. The names are bean names in the current factory, including bean names from ancestor factories.

« singleton: whether or not the factory should return a single object, no matter how often the get j ect ()
method is called. Several Fact or yBean implementations offer such amethod. Default value istrue. If you
want to use stateful advice--for example, for stateful mixins--use prototype advices along with a singleton
value of false.

5.5.3. Proxying interfaces

Let'slook at a simple example of ProxyFactoryBean in action. This exampleinvolves:

* A target bean that will be proxied. Thisisthe "personTarget" bean definition in the example below.

« AnAdvisor and an Interceptor used to provide advice.

Spring Framework Version 1.1.5 57

Spring AOP: Aspect Oriented Programming with Spring

* AnAOP proxy bean definition specifying the target object (the personTarget bean) and the interfacesto
proxy, along with the advices to apply.

<bean i d="personTarget" class="com nyconpany. Personl npl ">
<property nanme="nane"><val ue>Tony</val ue></ property>
<property name="age"><val ue>51</val ue></ property>

</ bean>

<bean i d="nyAdvi sor" cl ass="com nmyconpany. MyAdvi sor" >
<property name="sonmeProperty"><val ue>Custom string property val ue</val ue></ property>
</ bean>

<bean i d="debugl nterceptor" class="org.springfranework. aop.interceptor.Debugl nterceptor">
</ bean>

<bean i d="person"
cl ass="org. spri ngf ramewor k. aop. f ramewor k. Pr oxyFact or yBean" >
<property nanme="proxyl nterfaces"><val ue>com nyconpany. Per son</ val ue></ property>

<property nanme="target"><ref |ocal ="personTarget"/></property>
<property name="inter cept or Names" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</list>
</ property>
</ bean>

Note that thei nt er cept or Names property takes alist of String: the bean names of the interceptor or advisorsin
the current factory. Advisors, interceptors, before, after returning and throws advice objects can be used. The
ordering of advisorsis significant.

You might be wondering why the list doesn't hold bean references. The reason for thisisthat if the
ProxyFactoryBean's singleton property is set to false, it must be able to return independent proxy instances. If
any of the advisorsisitself a prototype, an independent instance would need to be returned, so it's necessary to
be able to obtain an instance of the prototype from the factory; holding a reference isn't sufficient.

The "person" bean definition above can be used in place of a Person implementation, as follows:

Person person = (Person) factory.getBean("person");

Other beansin the same |0C context can express a strongly typed dependency on it, as with an ordinary Java
object:

<bean i d="personUser" cl ass="com myconpany. PersonUser" >
<property name="person"><ref |ocal ="person" /></property>
</ bean>

The Per sonuser classin this example would expose a property of type Person. Asfar asit's concerned, the
AOP proxy can be used transparently in place of a"real" person implementation. However, its class would be a
dynamic proxy class. It would be possible to cast it to the Advi sed interface (discussed below).

It's possible to conceal the distinction between target and proxy using an anonymous inner bean, as follows.
Only the Pr oxyFact or yBean definition is different; the advice isincluded only for completeness:

<bean i d="nyAdvi sor" cl ass="com myconpany. MyAdvi sor" >
<property name="sonmeProperty"><val ue>Custom string property val ue</val ue></ property>
</ bean>

<bean i d="debugl nterceptor" class="org.springfranework. aop.interceptor.Debuglnterceptor">
</ bean>

Spring Framework Version 1.1.5 58

Spring AOP: Aspect Oriented Programming with Spring

<bean i d="person"
cl ass="org. spri ngf ranmewor k. aop. f ramewor k. Pr oxyFact or yBean" >
<property nanme="proxyl nterfaces"><val ue>com nyconpany. Per son</ val ue></ property>

<l-- Use inner bean, not l|local reference to target -->
<property nanme="target">
<bean cl ass="com nyconpany. Per sonl npl ">
<property name="name"><val ue>Tony</ val ue></ property>
<property name="age"><val ue>51</val ue></ property>
</ bean>
</ property>

<property nanme="inter ceptor Nanes" >
<list>
<val ue>nyAdvi sor </ val ue>
<val ue>debugl nt er cept or </ val ue>
</list>
</ property>
</ bean>

This has the advantage that there's only one abject of type Per son: useful if we want to prevent users of the
application context obtaining a reference to the un-advised object, or need to avoid any ambiguity with Spring
loC autowiring. There's also arguably an advantage in that the ProxyFactoryBean definition is self-contained.
However, there are times when being able to obtain the un-advised target from the factory might actually be an
advantage: for example, in certain test scenarios.

5.5.4. Proxying classes

What if you need to proxy a class, rather than one or more interfaces?

Imagine that in our example above, there was no Per son interface: we needed to advise aclass called Per son
that didn't implement any business interface. In this case, you can configure Spring to use CGLIB proxying,
rather than dynamic proxies. Simply set the pr oxyTar get O ass property on the ProxyFactoryBean above to
true. Whileit's best to program to interfaces, rather than classes, the ability to advise classes that don't
implement interfaces can be useful when working with legacy code. (In general, Spring isn't prescriptive. While
it makesiit easy to apply good practices, it avoids forcing a particular approach.)

If you want to you can force the use of CGLIB in any case, even if you do have interfaces.

CGLIB proxying works by generating a subclass of the target class at runtime. Spring configures this generated
subclass to delegate method calls to the original target: the subclass is used to implement the Decorator pattern,
weaving in the advice.

CGLIB proxying should generally be transparent to users. However, there are some issues to consider:

* Fi nal methods can't be advised, asthey can't be overridden.
¢ You'l need the CGLIB 2 binaries on your classpath; dynamic proxies are available with the JDK

Therée's little performance difference between CGLIB proxying and dynamic proxies. As of Spring 1.0,
dynamic proxies are dightly faster. However, this may change in the future. Performance should not be a
decisive consideration in this case.

5.6. Convenient proxy creation

Spring Framework Version 1.1.5 59

Spring AOP: Aspect Oriented Programming with Spring

Often we don't need the full power of the Pr oxyFact or yBean, because we're only interested in one aspect: For
example, transaction management.

There are anumber of convenience factories we can use to create AOP proxies when we want to focus on a
specific aspect. These are discussed in other chapters, so we'll just provide a quick survey of some of them here.

5.6.1. TransactionProxyFactoryBean

The jPetStor e sampl e application shipped with Spring shows the use of the TransactionProxyFactoryBean.

The Tr ansact i onPr oxyFact or yBean iSasubclass of ProxyConfi g, S0 basic configuration is shared with
Pr oxyFact or yBean. (Seelist of ProxyConfi g properties above.)

The following example from the jPetStore illustrates how this works. Aswith aPr oxyFact or yBean, thereisa
target bean definition. Dependencies should be expressed on the proxied factory bean definition (" petStore™
here), rather than the target POJO ("petStoreTarget").

The Transact i onPr oxyFact or yBean requires atarget, and information about "transaction attributes,"
specifying which methods should be transactional and the required propagation and other settings:

<bean i d="pet StoreTarget" cl ass="org. spri ngfranmework. sanpl es. j pet store. domai n. | ogi c. Pet St or el npl ">
<property nanme="account Dao" ><ref bean="account Dao"/></property>
<l-- O her dependencies omtted -->

</ bean>

<bean i d="pet Store"
cl ass="org. spri ngframewor k. transaction.interceptor. Transacti onProxyFact or yBean" >
<property name="transacti onManager"><ref bean="transacti onManager"/></property>
<property nanme="target"><ref |ocal ="petStoreTarget"/></property>
<property name="transactionAttri butes">
<pr ops>
<prop key="insert*">PROPAGATI ON_REQUI RED</ pr op>
<prop key="updat e*" >PROPAGATI ON_REQUI RED</ pr op>
<prop key="*">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
</ props>
</ property>
</ bean>

Aswith the Pr oxyFact or yBean, we might choose to use an inner bean to set the value of t ar get property,
instead of areference to atop-level target bean.

The Transact i onProxyFact or yBean automatically creates a transaction advisor, including a pointcut based on
the transaction attributes, so only transactional methods are advised.

The Transact i onPr oxyFact or yBean allows the specification of "pre" and "post” advice, using the
prelnterceptors and postinterceptors properties. These take Object arrays of interceptors, other advice or
Advisorsto place in the interception chain before or after the transaction interceptor. These can be populated
using a<list> element in XML bean definitions, as follows:

<property name="prel nterceptors">
<list>
<ref |ocal ="authori zationlnterceptor"/>
<ref local ="notificati onBef oreAdvice"/>
</list>
</ property>
<property name="postlnterceptors">

<list>
<ref |ocal ="nyAdvisor"/>
</list>

</ property>

Spring Framework Version 1.1.5 60

Spring AOP: Aspect Oriented Programming with Spring

These properties could be added to the "petStore" bean definition above. A common usage is to combine
transactionality with declarative security: a similar approach to that offered by EJB.

Because of the use of actual instance references, rather than bean names asin pr oxyFact or yBean, pre and post
interceptors can be used only for shared-instance advice. Thus they are not useful for stateful advice: for
example, in mixins. Thisis consistent with the TransactionProxyFactoryBean's purpose. It provides asimple
way of doing common transaction setup. If you need more complex, customized, AOP, consider using the
generic Pr oxyFact or yBean, O an auto proxy creator (see below).

Especially if we view Spring AOP as, in many cases, a replacement for EJB, we find that most advice isfairly
generic and uses a shared-instance model. Declarative transaction management and security checks are classic
examples.

The Transact i onPr oxyFact or yBean depends on a Pl at f or milr ansact i onManager implementation viaits
transact i onManager JavaBean property. Thisalows for pluggable transaction implementation, based on JTA,
JDBC or other strategies. This relates to the Spring transaction abstraction, rather than AOP. We'll discuss the
transaction infrastructure in the next chapter.

If you're interested only in declarative transaction management, the TransactionProxyFactoryBean is a good
solution, and simpler than using a ProxyFactoryBean.

5.6.2. EJB proxies

Other dedicated proxies create proxies for EJBs, enabling the EJB "business methods" interface to be used
directly by calling code. Calling code does not need to perform JNDI lookups or use EJB create methods: A
significant improvement in readability and architectural flexibility.

See the chapter on Spring EJB servicesin this manual for further information.

5.7. Concise proxy definitions

Especially when defining transactional proxies, you may end up with many similar proxy definitions. The use
of parent and child bean definitions, along with inner bean definitions, can result in much cleaner and more
concise proxy definitions.

First a parent, template, bean definition is created for the proxy:

<bean i d="t xProxyTenpl ate" abstract="true"
cl ass="org. springframework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property name="transacti onManager"><ref | ocal ="transacti onManager"/></ref></property>
<property name="transacti onAttributes">
<pr ops>
<prop key="*">PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

Thiswill never be instantiated itself, so may actually be incomplete. Then each proxy which needs to be created
isjust a child bean definition, which to wraps the target of the proxy as an inner bean definition, since the target
will never be used on its own anyways.

<bean id="nyService" parent="txProxyTenpl ate">
<property name="target">
<bean cl ass="org. spri ngf ramewor k. sanpl es. MySer vi cel npl ">
</ bean>
</ property>
</ bean>

Spring Framework Version 1.1.5 61

Spring AOP: Aspect Oriented Programming with Spring

It isof course possible to override properties from the parent template, such asin this case, the transaction
propagation settings:

<bean i d="nySpeci al Servi ce" parent="txProxyTenpl ate">
<property name="target">
<bean cl ass="org. spri ngframewor k. sanpl es. MySpeci al Servi cel npl ">
</ bean>
</ property>
<property name="transactionAttributes">
<pr ops>
<prop key="get*" >PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="find*">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="I|oad*" >PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
<prop key="st ore*" >PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

Note that in the example above, we have explicitly marked the parent bean definition as abstract by using the
abstract attribute, as described previously, so that it may not actually ever be instantiated. Application contexts
(but not simple bean factories) will by default pre-instantiate all singletons. Therefore it isimportant (at |east
for singleton beans) that if you have a (parent) bean definition which you intend to use only as atemplate, and
this definition specifies a class, you must make sure to set the abstract attribute to true, otherwise the
application context will actually try to pre-instantiate it.

5.8. Creating AOP proxies programmatically with the
ProxyFactory

It's easy to create AOP proxies programmatically using Spring. This enables you to use Spring AOP without
dependency on Spring l1oC.

The following listing shows creation of a proxy for atarget object, with one interceptor and one advisor. The
interfaces implemented by the target object will automatically be proxied:

ProxyFactory factory = new ProxyFact ory(myBusi nesslnterfacel npl);
factory. addl nt er cept or (myMet hodl nterceptor);

factory. addAdvi sor (myAdvi sor) ;

MyBusi nesslnterface tb = (M/Busi nesslnterface) factory. getProxy();

Thefirst step isto construct a object of type or g. spri ngf r amewor k. aop. f r amewor k. ProxyFact ory. You can
create thiswith atarget object, asin the above example, or specify the interfaces to be proxied in an aternate
constructor.

Y ou can add interceptors or advisors, and manipulate them for the life of the ProxyFactory. If you add an
IntroductionlnterceptionAroundAdvisor you can cause the proxy to implement additional interfaces.

There are also convenience methods on ProxyFactory (inherited from AdvisedSupport) allowing you to add
other advice types such as before and throws advice. AdvisedSupport is the superclass of both ProxyFactory
and ProxyFactoryBean.

Integrating AOP proxy creation with the 10C framework is best practice in most applications. We recommend
that you exter nalize configuration from Java code with AOP, asin general.

5.9. Manipulating advised objects

Spring Framework Version 1.1.5 62

Spring AOP: Aspect Oriented Programming with Spring

However you create AOP proxies, you can manipulate them using the
org. spri ngfranmewor k. aop. f ramewor k. Advi sed interface. Any AOP proxy can be cast to this interface,
whatever other interfaces it implements. Thisinterface includes the following methods:

Advi sor[] get Advi sors();
voi d addAdvi ce(Advi ce advi ce) throws AopConfi gExcepti on;

voi d addAdvi ce(int pos, Advice advice)
t hrows AopConfi gExcepti on;

voi d addAdvi sor (Advi sor advi sor) throws AopConfi gExcepti on;

voi d addAdvi sor (i nt pos, Advisor advisor) throws AopConfi gExcepti on;
int indexOf (Advi sor advisor);

bool ean renoveAdvi sor (Advi sor advi sor) throws AopConfi gException;

voi d renmoveAdvi sor (i nt index) throws AopConfi gExcepti on;

bool ean repl aceAdvi sor (Advi sor a, Advisor b) throws AopConfi gException;

bool ean i sFrozen();

The get Advi sor s() method will return an Advisor for every advisor, interceptor or other advice type that has
been added to the factory. If you added an Advisor, the returned advisor at thisindex will be the object that you
added. If you added an interceptor or other advice type, Spring will have wrapped thisin an advisor with a
pointcut that always returns true. Thus if you added a Met hodl nt er cept or , the advisor returned for this index
will be an Def aul t Poi nt cut Advi sor returning your Met hodl nt er cept or and a pointcut that matches all classes
and methods.

The addAdvi sor () methods can be used to add any Advisor. Usually the advisor holding pointcut and advice
will be the generic Def aul t Poi nt cut Advi sor , which can be used with any advice or pointcut (but not for
introduction).

By default, it's possible to add or remove advisors or interceptors even once a proxy has been created. The only
restriction isthat it'simpossible to add or remove an introduction advisor, as existing proxies from the factory
will not show the interface change. (Y ou can obtain a new proxy from the factory to avoid this problem.)

A simple example of casting an AOP proxy to the Advi sed interface and examining and manipulating its
advice:

Advi sed advi sed = (Advi sed) nmyQnj ect;

Advi sor[] advi sors = advi sed. get Advi sors();

i nt ol dAdvi sor Count = advi sors. | ength;

System out. printl n(ol dAdvi sor Count + " advisors");

/1 Add an advice like an interceptor w thout a pointcut

/1 WIIl match all proxied nmethods

/Il Can use for interceptors, before, after returning or throws advice
advi sed. addAdvi ce(new Debugl nterceptor());

// Add sel ective advice using a pointcut
advi sed. addAdvi sor (new Def aul t Poi nt cut Advi sor (mySpeci al Poi nt cut, myAdvice));

assert Equal s(" Added two advi sors",
ol dAdvi sor Count + 2, advi sed. get Advi sors().length);

It's questionable whether it's advisable (no pun intended) to modify advice on a business abject in production,
although there are no doubt legitimate usage cases. However, it can be very useful in development: for
example, in tests. | have sometimes found it very useful to be able to add test code in the form of an interceptor
or other advice, getting inside a method invocation | want to test. (For example, the advice can get inside a

Spring Framework Version 1.1.5 63

Spring AOP: Aspect Oriented Programming with Spring

transaction created for that method: for example, to run SQL to check that a database was correctly updated,
before marking the transaction for roll back.)

Depending on how you created the proxy, you can usually set af r ozen flag, in which case the Advi sed

i sFrozen() method will return true, and any attempts to modify advice through addition or removal will result
in an AopConf i gExcept i on. The ahility to freeze the state of an advised object is useful in some cases. For
example, to prevent calling code removing a security interceptor. It may also be used in Spring 1.1 to allow
aggressive optimization if runtime advice modification is known not to be required.

5.10. Using the "autoproxy" facility

So far we've considered explicit creation of AOP proxies using a Pr oxyFact or yBean Or similar factory bean.

Spring also alows us to use "autoproxy” bean definitions, which can automatically proxy selected bean
definitions. Thisis built on Spring "bean post processor” infrastructure, which enables modification of any bean
definition as the container |oads.

In this model, you set up some special bean definitionsin your XML bean definition file configuring the auto
proxy infrastructure. This allows you just to declare the targets eligible for autoproxying: you don't need to use
Pr oxyFact or yBean.

There are two ways to do this:

« Using an autoproxy creator that refers to specific beansin the current context

« A gpecial case of autoproxy creation that deserves to be considered separately; autoproxy creation driven by
source-level metadata attributes

5.10.1. Autoproxy bean definitions

Theorg. spri ngf ramewor k. aop. f r amewor k. aut opr oxy package provides the following standard autoproxy
creators.

5.10.1.1. BeanNameAutoProxyCreator

The BeanNameA utoProxyCreator automatically creates AOP proxies for beans with names matching literal
values or wildcards.

<bean i d="j dkBeanNamePr oxyCr eat or "
cl ass="org. spri ngfranmewor k. aop. f r amewor k. aut opr oxy. BeanNaneAut oPr oxyCr eat or " >
<property nanme="beanNanes" ><val ue>j dk*, onl yJdk</ val ue></ property>
<property nanme="inter cept or Nanes" >
<list>
<val ue>nyl nt er cept or </ val ue>
</list>
</ property>
</ bean>

Aswith ProxyFact or yBean, there is an interceptorNames property rather than alist of interceptor, to allow
correct behavior for prototype advisors. Named "interceptors' can be advisors or any advice type.

Aswith auto proxying in general, the main point of using BeanNaneAut oPr oxyCr eat or iSto apply the same
configuration consistently to multiple objects, and with minimal volume of configuration. It is a popular choice
for applying declarative transactions to multiple objects.

Spring Framework Version 1.1.5 64

Spring AOP: Aspect Oriented Programming with Spring

Bean definitions whose names match, such as"jdkMyBean" and "onlyJdk" in the above example, are plain old
bean definitions with the target class. An AOP proxy will be created automatically by the

BeanNaneAut oPr oxyCr eat or . The same advice will be applied to all matching beans. Note that if advisors are
used (rather than the interceptor in the above example), the pointcuts may apply differently to different beans.

5.10.1.2. DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is Def aul t Advi sor Aut oPr oxyCr eat or . Thiswill
automagically apply eligible advisors in the current context, without the need to include specific bean namesin
the autoproxy advisor's bean definition. It offers the same merit of consistent configuration and avoidance of
duplication as BeanNaneAut oPr oxyCr eat or .

Using this mechanism involves.

» Specifying aDef aul t Advi sor Aut oPr oxyCr eat or bean definition

« Specifying any number of Advisorsin the same or related contexts. Note that these must be Advisors, not
just interceptors or other advices. Thisis necessary because there must be a pointcut to evaluate, to check
the eligibility of each advice to candidate bean definitions.

The Def aul t Advi sor Aut oPr oxyCr eat or Will automatically evaluate the pointcut contained in each advisor, to
see what (if any) advice it should apply to each business object (such as "businessObject1" and
"businessObject2" in the example).

This means that any number of advisors can be applied automatically to each business object. If no pointcut in
any of the advisors matches any method in a business object, the object will not be proxied. As bean definitions
are added for new business objects, they will automatically be proxied if necessary.

Autoproxying in general has the advantage of making it impossible for callers or dependencies to obtain an
un-advised object. Calling getBean("businessObject1") on this ApplicationContext will return an AOP proxy,
not the target business object. (The "inner bean" idiom shown earlier also offers this benefit.)

<bean i d="aut oProxyCreator"
cl ass="org. spri ngframewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or" >
</ bean>

<bean id="t xAdvi sor"
aut owi re="constructor"
cl ass="org. springframework. transaction.interceptor. Transacti onAttri but eSour ceAdvi sor" >
<property name="order"><val ue>1</val ue></ property>

</ bean>

<bean i d="cust omAdvi sor"
cl ass="com nyconpany. MyAdvi sor " >
</ bean>

<bean i d="busi nessObj ect 1"
cl ass="com nyconpany. Busi nessObj ect 1" >
<l-- Properties omtted -->

</ bean>

<bean i d="busi nessObj ect 2"
cl ass="com nyconpany. Busi nessCbj ect 2" >
</ bean>

The Def aul t Advi sor Aut oPr oxyCr eat or isvery useful if you want to apply the same advice consistently to
many business objects. Once the infrastructure definitions are in place, you can simply add new business
objects without including specific proxy configuration. Y ou can also drop in additional aspects very easily--for
example, tracing or performance monitoring aspects--with minimal change to configuration.

Spring Framework Version 1.1.5 65

Spring AOP: Aspect Oriented Programming with Spring

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention so that only
certain advisors are evaluated, allowing use of multiple, differently configured, AdvisorAutoProxyCreatorsin
the same factory) and ordering. Advisors can implement the or g. spri ngf r amewor k. cor e. Or der ed interface to
ensure correct ordering if thisis an issue. The TransactionAttributeSourceAdvisor used in the above example
has a configurable order value; default is unordered.

5.10.1.3. AbstractAdvisorAutoProxyCreator

Thisisthe superclass of DefaultAdvisorAutoProxyCreator. Y ou can create your own autoproxy creators by
subclassing this class, in the unlikely event that advisor definitions offer insufficient customization to the
behavior of the framework Def aul t Advi sor Aut oPr oxyCr eat or .

5.10.2. Using metadata-driven auto-proxying

A particularly important type of autoproxying is driven by metadata. This produces a similar programming
model to .NET Ser vi cedConponent s. Instead of using XML deployment descriptors asin EJB, configuration
for transaction management and other enterprise servicesis held in source-level attributes.

In this case, you use the Def aul t Advi sor Aut oPr oxyCr eat or , in combination with Advisors that understand
metadata attributes. The metadata specifics are held in the pointcut part of the candidate advisors, rather than in
the autoproxy creation class itself.

Thisisrealy aspecial case of the Def aul t Advi sor Aut oPr oxyCr eat or , but deserves consideration on its own.
(The metadata-aware code is in the pointcuts contained in the advisors, not the AOP framework itself.)

The/attribut es directory of the jPetStore sample application shows the use of attribute-driven autoproxying.
In this case, there's no need to use the Tr ansact i onPr oxyFact or yBean. Simply defining transactional attributes
on business objects is sufficient, because of the use of metadata-aware pointcuts. The bean definitions include
the following code, in/ VEB- | NF/ decl ar at i veSer vi ces. xm . Note that thisis generic, and can be used outside
the jPetStore:

<bean i d="aut oPr oxyCr eat or"
cl ass="org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or ">
</ bean>

<bean i d="transactionAttri buteSource"
cl ass="org. springframework. transaction.interceptor.AttributesTransacti onAttri buteSource"
aut owi re="constructor">

</ bean>

<bean id="transactionl nterceptor"”
cl ass="org. springfranmework. transaction.interceptor.Transacti onl nterceptor"
aut owi r e="byType" >

</ bean>

<bean id="transacti onAdvi sor"
cl ass="org. springframework. transaction.interceptor. Transacti onAttri but eSourceAdvi sor"
autowi re="constructor" >

</ bean>

<bean id="attri butes"
cl ass="org. spri ngframewor k. met adat a. commons. CommonsAttri but es”
/>

The Def aul t Advi sor Aut oPr oxyCr eat or bean definition--called "autoProxyCreator” in this case, but the name
is not significant (it could even be omitted)--will pick up all eligible pointcuts in the current application context.
In this case, the "transactionAdvisor" bean definition, of type Transacti onAtt ri but eSour ceAdvi sor, will
apply to classes or methods carrying a transaction attribute. The TransactionAttributeSourceAdvisor depends

Spring Framework Version 1.1.5 66

Spring AOP: Aspect Oriented Programming with Spring

on a Transactionl nterceptor, via constructor dependency. The example resolves this via autowiring. The
AttributesTransactionAttri but eSour ce depends on an implementation of the

org. springframewor k. net adat a. At t ri but es interface. In this fragment, the "attributes" bean satisfies this,
using the Jakarta Commons Attributes APl to obtain attribute information. (The application code must have
been compiled using the Commons Attributes compilation task.)

The Transacti onl nt er cept or defined here depends on aPl at f or nilr ansact i onManager definition, whichis
not included in this generic file (although it could be) because it will be specific to the application's transaction
requirements (typically JTA, asin this example, or Hibernate, JDO or JDBC):

<bean i d="transacti onManager"
cl ass="org. springframework. transaction.jta.JtaTransacti onManager"/ >

If you require only declarative transaction management, using these generic XML definitionswill result in
Soring automatically proxying all classes or methods with transaction attributes. You won't need to work
directly with AOP, and the programming model is similar to that of .NET ServicedComponents.

This mechanism is extensible. It's possible to do autoproxying based on custom attributes. Y ou heed to:

» Define your custom attribute.

e Specify an Advisor with the necessary advice, including a pointcut that istriggered by the presence of the
custom attribute on a class or method. Y ou may be able to use an existing advice, merely implementing a
static pointcut that picks up the custom attribute.

It's possible for such advisors to be unique to each advised class (for example, mixins): they simply need to be
defined as prototype, rather than singleton, bean definitions. For example, the LockM xi n introduction
interceptor from the Spring test suite, shown above, could be used in conjunction with an attribute-driven
pointcut to target amixin, as shown here. We use the generic Def aul t Poi nt cut Advi sor, configured using
JavaBean properties:

<bean id="I ockM xi n"
cl ass="org. spri ngf ramewor k. aop. LockM xi n"
si ngl eton="f al se"

/>

<bean i d="I| ockabl eAdvi sor"
cl ass="org. spri ngf ranmewor k. aop. support . Def aul t Poi nt cut Advi sor"
singl eton="f al se"

<property nanme="pointcut">
<ref |ocal ="nyAttributeAwarePointcut"/>
</ property>
<property nanme="advi ce">
<ref local ="1 ockM xi n"/>
</ property>
</ bean>

<bean i d="anyBean" cl ass="anycl ass" ...

If the attribute aware pointcut matches any methods in the anyBean or other bean definitions, the mixin will be
applied. Note that both I ockM xi n and | ockabl eAdvi sor definitions are prototypes. The

nyAt t ri but eAwar ePoi nt cut pointcut can be a singleton definition, as it doesn't hold state for individual
advised objects.

5.11. Using TargetSources

Spring offers the concept of a TargetSource, expressed in the or g. spri ngf r amewor k. aop. Tar get Sour ce

Spring Framework Version 1.1.5 67

Spring AOP: Aspect Oriented Programming with Spring

interface. Thisinterface is responsible for returning the "target object”" implementing the joinpoint. The
Tar get Sour ce implementation is asked for a target instance each time the AOP proxy handles a method
invocation.

Developers using Spring AOP don't normally need to work directly with TargetSources, but this provides a
powerful means of supporting pooling, hot swappable and other sophisticated targets. For example, a pooling
TargetSource can return a different target instance for each invocation, using a pool to manage instances.

If you do not specify a TargetSource, a default implementation is used that wraps alocal object. The same
target isreturned for each invocation (as you would expect).

Let'slook at the standard target sources provided with Spring, and how you can use them.
When using a custom target source, your target will usually need to be a prototype rather than a singleton bean
definition. This allows Spring to create a new target instance when required.

5.11.1. Hot swappable target sources

Theor g. spri ngf ramewor k. aop. t ar get . Hot Swappabl eTar get Sour ce existsto allow the target of an AOP
proxy to be switched while allowing callers to keep their referencesto it.

Changing the target source's target takes effect immediately. The Hot Swappabl eTar get Sour ce iSthreadsafe.

Y ou can change the target viathe swap() method on HotSwappableTargetSource as follows:

Hot Swappabl eTar get Sour ce swapper =
(Hot Swappabl eTar get Sour ce) beanFact ory. get Bean(" swapper");
bj ect ol dTarget = swapper. swap(newTar get) ;

The XML definitions required look as follows:

<bean id="initial Target" class="nyconpany. O dTarget">
</ bean>

<bean i d="swapper"
cl ass="org. spri ngf ramewor k. aop. t ar get . Hot Swappabl eTar get Sour ce" >
<constructor-arg><ref |ocal ="initial Target"/></constructor-arg>
</ bean>

<bean i d="swappabl e"
cl ass="org. spri ngframewor k. aop. f ramewor k. Pr oxyFact or yBean"
>
<property name="t ar get Sour ce" >
<ref |ocal ="swapper"/>
</ property>
</ bean>

The above swap() cal changes the target of the swappable bean. Clients who hold a reference to that bean will
be unaware of the change, but will immediately start hitting the new target.

Although this example doesn't add any advice--and it's not necessary to add advice to use a Tar get Sour ce--Of
course any Tar get Sour ce can be used in conjunction with arbitrary advice.

5.11.2. Pooling target sources

Using a pooling target source provides asimilar programming model to statel ess session EJBs, in which a pool
of identical instances is maintained, with method invocations going to free objectsin the pool.

Spring Framework Version 1.1.5 68

Spring AOP: Aspect Oriented Programming with Spring

A crucia difference between Spring pooling and SLSB pooling is that Spring pooling can be applied to any
POJO. Aswith Spring in general, this service can be applied in a non-invasive way.

Spring provides out-of-the-box support for Jakarta Commons Pool 1.1, which provides afairly efficient pooling
implementation. Y ou'll need the commons-pool Jar on your application's classpath to use this feature. It'salso
possibleto subclassor g. spri ngf r amewor k. aop. t ar get . Abst r act Pool i ngTar get Sour ce t0 support any other
pooling API.

Sample configuration is shown below:

<bean i d="busi nessObj ect Target" cl ass="com nyconpany. MyBusi nessObj ect "
singl eton="fal se">
properties omtted
</ bean>

<bean i d="pool Tar get Sour ce"
cl ass="org. spri ngframewor k. aop. t ar get . CormonsPool Tar get Sour ce" >
<property name="t ar get BeanNane" ><val ue>busi nessCbj ect Tar get </ val ue></ property>
<property name="maxSi ze" ><val ue>25</ val ue></ property>

</ bean>

<bean i d="busi nessObj ect "

cl ass="org. spri ngfranmewor k. aop. f ramewor k. Pr oxyFact or yBean"
>

<property name="t ar get Sour ce"><ref | ocal ="pool Tar get Source"/ ></ property>
<property name="interceptor Nanes" ><val ue>nyl nt er cept or </ val ue></ property>
</ bean>

Note that the target object--"businessObjectTarget" in the example--must be a prototype. This alowsthe

Pool i ngTar get Sour ce implementation to create new instances of the target to grow the pool as necessary. See
the Javadoc for Abst r act Pool i ngTar get Sour ce and the concrete subclass you wish to use for information
about it's properties. maxSize is the most basic, and always guaranteed to be present.

In this case, "mylnterceptor” is the name of an interceptor that would need to be defined in the same 10C
context. However, it isn't necessary to specify interceptors to use pooling. If you want only pooling, and no
other advice, don't set the interceptorNames property at all.

It's possible to configure Spring so asto be able to cast any pooled object to the
org. spri ngframewor k. aop. t ar get . Pool i ngConf i g interface, which exposes information about the
configuration and current size of the pool through an introduction. Y ou'll need to define an advisor like this:

<bean i d="pool Confi gAdvi sor"
cl ass="org. spri ngfranmewor k. beans. fact ory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="t ar get Cbj ect"><ref | ocal ="pool Target Source" /></property>
<property nanme="t ar get Met hod" ><val ue>get Pool i ngConfi gM xi n</ val ue></ property>
</ bean>

This advisor is obtained by calling a convenience method on the Abst r act Pool i ngTar get Sour ce class, hence
the use of MethodlnvokingFactoryBean. This advisor's name (" pool ConfigAdvisor” here) must bein the list of
interceptors names in the ProxyFactoryBean exposing the pooled object.

The cast will look asfollows:

Pool i ngConfi g conf = (PoolingConfig) beanFactory. get Bean("busi nessObject");
System out . println("Max pool size is " + conf.get MaxSize());

Pooling stateless service objects is not usually necessary. We don't believe it should be the default choice, as
most stateless objects are naturally thread safe, and instance pooling is problematic if resources are cached.

Spring Framework Version 1.1.5 69

Spring AOP: Aspect Oriented Programming with Spring

Simpler pooling is available using autoproxying. It's possible to set the TargetSources used by any autoproxy
creator.

5.11.3. Prototype" target sources

Setting up a"prototype" target source is similar to a pooling TargetSource. In this case, a new instance of the
target will be created on every method invocation. Although the cost of creating anew object isn't highin a
modern JVM, the cost of wiring up the new object (satisfying its |0C dependencies) may be more expensive.
Thus you shouldn't use this approach without very good reason.

To do this, you could modify the pool Tar get Sour ce definition shown above as follows. (I've aso changed the
name, for clarity.)

<bean i d="pr ot ot ypeTar get Sour ce"

cl ass="org. spri ngf ramewor k. aop. t ar get . Pr ot ot ypeTar get Sour ce" >

<property nanme="t ar get BeanNane" ><val ue>busi nessObj ect Tar get </ val ue></ property>
</ bean>

There's only one property: the name of the target bean. Inheritance is used in the TargetSource implementations
to ensure consistent naming. As with the pooling target source, the target bean must be a prototype bean
definition.

5.12. Defining new Advice types

Spring AOP is designed to be extensible. While the interception implementation strategy is presently used
internally, it is possible to support arbitrary advice typesin addition to interception around advice, before,
throws advice and after returning advice, which are supported out of the box.

Theor g. spri ngf ranmewor k. aop. f r amewor k. adapt er package is an SPI package allowing support for new
custom advice types to be added without changing the core framework. The only constraint on a custom Advice
typeisthat it must implement the or g. aopal | i ance. aop. Advi ce tag interface.

Please refer to the or g. spri ngf r amewor k. aop. f r anewor k. adapt er package's Javadocs for further information

5.13. Further reading and resources

I recommend the excellent AspectJ in Action by Ramnivas Laddad (Manning, 2003) for an introduction to
AOP.

Please refer to the Spring sample applications for further examples of Spring AOP:

* The JPetStore's default configuration illustrates the use of the TransactionProxyFactoryBean for declarative
transaction management

e Therattributes directory of the JPetStore illustrates the use of attribute-driven declarative transaction
management

If you are interested in more advanced capabilities of Spring AOP, take alook at the test suite. The test
coverage is over 90%, and thisillustrates advanced features not discussed in this document.

Spring Framework Version 1.1.5 70

Spring AOP: Aspect Oriented Programming with Spring

5.14. Roadmap

Spring AOP, like the rest of Spring, is actively developed. The core APl is stable. Like the rest of Spring, the
AOP framework is very modular, enabling extension while preserving the fundamental design. Severa
improvements are planned in the Spring 1.1 time frame, which will preserve backward compatibility. These
include:

» Performance improvements. The creation of AOP proxiesis handled by afactory via a Strategy interface.
Thus we can support additional AopProxy types without impacting user code or the core implementation.
Significant performance optimizations for CGLIB proxying are scheduled for the 1.0.3 release, with further
optimizations by Spring 1.1 in cases where advice will not change at runtime. This should produce a
significant reduction in the overhead of the AOP framework. Note, however, that the overhead of the AOP
framework is not an issue in normal usage.

* More expressive pointcuts: Spring presently offers an expressive Pointcut interface, but we can add value
through adding more Pointcut implementations. We are looking at an integration with AspectJ that will
allow AspectJ pointcut expressionsto be used in Spring configuration files. And if you wish to contribute a
useful Pointcut, please do!

The most significant enhancements are likely to concern integration with AspectJ, which will be done in
cooperation with the Aspectd community. We believe that thiswill provide significant benefits for both Spring
and AspectJ users, in the following areas:

¢ Allowing Aspect] aspects to be configured using Spring |0C. This has the potential to integrate AspectJ
aspects into applications where appropriate, in the same way as Spring aspects are integrated into
application 10C contexts.

< Allowing the use of Aspect] pointcut expressions within Spring configuration to target Spring advice. This
has significant benefits over devising our own pointcut expression language; AspectJis both well thought
out and well documented.

Both these integrations should be available in Spring 1.1.

Spring Framework Version 1.1.5 71

Chapter 6. AspectJ Integration

6.1. Overview

Spring's proxy-based AOP framework iswell suited for handling many generic middleware and
application-specific problems. However, there are times when amore powerful AOP solution is required: for
example, if we need to add additional fieldsto aclass, or advise fine-grained objects that aren't created by the
Spring 1oC container.

We recommend the use of AspectJin such cases. Accordingly, as of version 1.1, Spring provides a powerful
integration with AspectJ.

6.2. Configuring AspectJ aspects using Spring loC

The most important part of the Spring/AspectJ integration allows Spring to configure AspectJ aspects using
Dependency Injection. This brings similar benefits to aspects as to objects. For example:

e Thereisno need for aspects to use ad hoc configuration mechanisms; they can be configured in the same,
consistent, approach used for the entire application.

« Aspects can depend on application objects. For example, a security aspect can depend on a security
manager, as we'll seein an example shortly.

« It'spossibleto obtain areference to an aspect through the relevant Spring context. This can allow for
dynamic reconfiguration of the aspect.

AspectJ aspects can expose JavaBean properties for Setter Injection, and even implement Spring lifecycle
interfaces such as BeanFact or yAwar e.

Note that AspectJ aspects cannot use Constructor Injection or Method Injection. This limitation is due to the
fact that aspects do not have constructors that can be invoked like constructors of objects.

6.2.1. "Singleton" aspects

In most cases, AspectJ aspects are singletons, with one instance per classloader. Thissingleinstanceis
responsible for advising multiple object instances.

A Spring 1oC container cannot instantiate an aspect, as aspects don't have callable constructors. But it can
obtain areference to an aspect using the static aspect o () method that Aspect] defines for all aspects, and it
can inject dependencies into that aspect.

6.2.1.1. Example

Consider a security aspect, which depends on a security manager. This aspects appliesto al changesin the
value of the bal ance instance variable in the Account class. (We couldn't do thisin the same way using Spring
AOP.)

The AspectJ code for the aspect (one of the Spring/Aspectd samples), is shown below. Note that the
dependency on the Securi t yManager interfaceis expressed in a JavaBean property:

Spring Framework Version 1.1.5 72

AspectJ Integration

publ i ¢ aspect Bal anceChangeSecurityAspect {
private SecurityManager securityManager;

public void setSecurityManager (SecurityManager securityManager) {
t hi s. securityManager = securityManager;
}

private pointcut bal anceChanged() :
set (i nt Account. bal ance) ;

before() : bal anceChanged() {
t hi s. securityManager. checkAut hori zedToModi fy();
}

}

We configure this aspect in the same way as an ordinary class. Note that the way in which we set the property
referenceisidentical. Note that we must usethef act or y- met hod attribute to specify that we want the aspect
"created" using the aspect O () static method. In fact, thisislocating, rather than, cr eat i ng, the aspect, but the
Spring container doesn't care:

<bean i d="securityAspect"
cl ass="org. spri ngframewor k. sanpl es. aspectj . bank. Bal anceChangeSecurit yAspect"
factory-net hod="aspect O "

>

<property name="securityManager">
<ref |ocal ="securityManager"/>
</ property>
</ bean>

We don't need to do anything in Spring configuration to target this aspect. It contains the pointcut information
in AspectJ code that controls where it applies. Thusit can apply even to objects not managed by the Spring [oC
container.

6.2.1.2. Ordering issues

to be completed

6.2.2. Non-singleton aspects

** Complete material on pertarget etc.

6.2.3. Gotchas

to be completed

- Singleton issue

6.3. Using AspectJ pointcuts to target Spring advice

In afuture release of Spring, we plan to provide the ability for AspectJ pointcut expressions to be used in
Spring XML or other bean definition files, to target Spring advice. Thiswill allow some of the power of the
AspectJ pointcut model to be applied to Spring's proxy-based AOP framework. Thiswill work in pure Java,
and will not require the AspectJ compiler. Only the subset of AspectJ pointcuts relating to method invocation
will be usable.

Spring Framework Version 1.1.5 73

AspectJ Integration

Thisfeature is scheduled for Spring 1.2. It depends on AspectJ enhancements.

This feature replaces our previous plan to create a pointcut expression language for Spring.

6.4. Spring aspects for AspectJ

In afuture release of Spring (probably 1.2), we will package some Spring services, such as the declarative
transaction management service, as AspectJ aspects. This will enable them to be used by AspectJ users without
dependence on the Spring AOP framework--potentially, even without dependence on the Spring 10C container.

Thisfeatureis probably of more interest to AspectJ users than Spring users.

Spring Framework Version 1.1.5 74

Chapter 7. Transaction management

7.1. The Spring transaction abstraction

Spring provides a consistent abstraction for transaction management. This abstraction is one of the most
important of Spring's abstractions, and delivers the following benefits:

« Provides a consistent programming model across different transaction APIs such as JTA, JDBC, Hibernate,
iBATIS Database Layer and JDO.

« Providesasimpler, easier to use, API for programmatic transaction management than most of these
transaction APIs

« Integrates with the Spring data access abstraction
e Supports Spring declarative transaction management

Traditionally, J2EE devel opers have had two choices for transaction management: to use global or local
transactions. Global transactions are managed by the application server, using JTA. Local transactions are
resource-specific: for example, a transaction associated with a JDBC connection. This choice had profound
implications. Global transactions provide the ability to work with multiple transactional resources. (It's worth
noting that most applications use a single transaction resource) With local transactions, the application server is
not involved in transaction management, and cannot help ensure correctness across multiple resources.

Global transactions have a significant downside. Code needs to use JTA: a cumbersome API to use (partly due
to its exception model). Furthermore, a JTA User Tr ansact i on hormally needs to be obtained from JNDI:
meaning that we need to use both INDI and JTA to use JTA. Obvioudly all use of global transactions limits the
reusability of application code, as JTA isnormally only available in an application server environment.

The preferred way to use global transactions was via EJB CMT (Container Managed Transaction): aform of
declarative transaction management (as distinguished from programmatic transaction management). EJB
CMT removes the need for transaction-related INDI lookups--although of course the use of EJB itself
necessitates the use of JNDI. It removes most--not all--need to write Java code to control transactions. The
significant downsideisthat CMT is (obvioudly) tied to JTA and an application server environment; and that it's
only available if we choose to implement business logic in EJBs, or at least behind a transactional EJB facade.
The negatives around EJB in general are so great that thisis not an attractive proposition, when there are
aternatives for declarative transaction management.

Local transactions may be easier to use, but also have significant disadvantages: They cannot work across
multiple transactional resources, and tend to invade the programming model. For example, code that manages
transactions using a JDBC connection cannot run within a global JTA transaction.

Spring resolves these problems. It enables application devel opers to use a consistent programming model in any
environment. Y ou write your code once, and it can benefit from different transaction management strategiesin
different environments. Spring provides both declarative and programmatic transaction management.
Declarative transaction management is preferred by most users, and recommended in most cases.

With programmatic transaction management devel opers work with the Spring transaction abstraction, which
can run over any underlying transaction infrastructure. With the preferred declarative model developers
typically write little or no code related to transaction management, and hence don't depend on Spring's or any
other transaction API.

Spring Framework Version 1.1.5 75

Transaction management

7.2. Transaction strategies

The key to the Spring transaction abstraction is the notion of atransaction strategy.

Thisis captured inthe or g. spri ngf ramewor k. t ransacti on. Pl at f or nilr ansact i onManager interface, shown
below:

public interface Platforniransacti onManager {

TransactionSt atus get Transacti on(Transacti onDefinition definition)
throws Transacti onExcepti on;

voi d comm t (Transacti onStatus status) throws Transacti onExcepti on;

voi d rol | back(Transacti onStatus status) throws Transacti onExcepti on;

Thisis primarily an SPI interface, although it can be used programmatically. Note that in keeping with Spring's
philosophy, thisis an interface. Thusit can easily be mocked or stubbed if necessary. Nor isit tied to alookup
strategy such as INDI: PlatformTransactionManager implementations are defined like any other object ina
Spring 1oC container. This benefit alone makes this a worthwhile abstraction even when working with JTA:
transactional code can be tested much more easily than if it directly used JTA.

In keeping with Spring's philosophy, Transact i onExcept i on isunchecked. Failures of the transaction
infrastructure are almost invariably fatal. In rare cases where application code can recover from them, the
application developer can till choose to catch and handle Tr ansact i onExcept i on.

The get Transacti on() method returnsaTr ansact i onSt at us object, depending on aTr ansact i onDef i ni tion
parameter. The returned Transact i onSt at us might represent a new or existing transaction (if there was a
matching transaction in the current call stack).

Aswith J2EE transaction contexts, a Tr ansact i onSt at us iS associated with athread of execution.

The Transact i onDef i ni ti on interface specifies:

» Transaction isolation: The degree of isolation this transaction has from the work of other transactions. For
example, can this transaction see uncommitted writes from other transactions?

» Transaction propagation: Normally all code executed within a transaction scope will run in that
transaction. However, there are several options specifying behavior if atransactional method is executed
when atransaction context aready exists: For example, simply running in the existing transaction (the most
common case); or suspending the existing transaction and creating a new transaction. Spring offers the
transaction propagation options familiar from EJB CMT.

» Transaction timeout: How long this transaction may run before timing out (automatically being rolled
back by the underlying transaction infrastructure).

» Read-only status: A read-only transaction does not modify any data. Read-only transactions can be a
useful optimization in some cases (such as when using Hibernate).

These settings reflect standard concepts. If necessary, please refer to a resource discussing transaction isolation
levels and other core transaction concepts. Understanding such core conceptsis essential to using Spring or any
other transaction management solution.

The Transacti onSt at us interface provides a simple way for transactional code to control transaction execution

Spring Framework Version 1.1.5 76

Transaction management

and query transaction status. The concepts should be familiar, asthey are common to all transaction APIs:

public interface TransactionStatus {
bool ean i sNewTransaction();
voi d set Rol | backOnl y();

bool ean i sRol | backOnl y();
}

However Spring transaction management is used, defining the Pl at f or nilr ansact i onManager implementation
is essential. In good Spring fashion, thisimportant definition is made using Inversion of Control.

PlatformTransactionManager implementations normally require knowledge of the environment in which they
work: JDBC, JTA, Hibernate etc.

The following examples from dat aAccessCont ext -1 ocal . xni from Spring's jPetStor e sample application
show how aloca PlatformTransactionManager implementation can be defined. This will work with JDBC.

We must define a JDBC DataSource, and then use the Spring DataSourceT ransactionManager, giving it a
reference to the DataSource.

<bean i d="dat aSour ce"
cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce" destroy- net hod="cl ose" >
<property nane="driver Cl assNane" ><val ue>%${j dbc. dri ver Cl assNane} </ val ue></ property>
<property name="url"><val ue>${j dbc. url } </ val ue></ property>
<property name="user nanme"><val ue>${j dbc. user nane} </ val ue></ property>
<property name="password"><val ue>${j dbc. passwor d} </ val ue></ property>
</ bean>

The PlatformTransactionManager definition will look like this:

<bean i d="transacti onManager"
cl ass="org. spri ngfranmework. j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >
<property name="dat aSource"><ref | ocal ="dataSource"/></property>

</ bean>

If weuse JTA, asinthedat aAccessCont ext -j ta. xm file from the same sample application, we need to use a
container DataSource, obtained via JNDI, and a JtaT ransactionManager implementation. The
JaTransactionManager doesn't need to know about the DataSource, or any other specific resources, as it will
use the container's global transaction management.

<bean i d="dat aSource" cl ass="org. springfranework.jndi.Jndi Obj ect Fact or yBean">
<property name="j ndi Nane" ><val ue>j dbc/ j pet st or e</ val ue></ property>
</ bean>

<bean i d="transacti onManager"
cl ass="org. springframework. transaction.jta.JtaTransacti onManager"/ >

We can use Hibernate local transactions easily, as shown in the following examples from the Spring PetClinic
sample application.

In this case, we need to define a Hibernate L ocal SessionFactory, which application code will use to obtain
Hibernate Sessions.

The DataSource bean definition will be similar to one of the above examples, and is not shown. (If it'sa
container DataSource it should be non-transactional as Spring, rather than the container, will manage
transactions.)

Spring Framework Version 1.1.5 77

Transaction management

The "transactionManager” bean in this case is of class HibernateTransactionManager. In the same way as the
DataSourceTransactionM anager needs a reference to the DataSource, the HibernateT ransactionM anager needs
areference to the session factory.

<bean i d="sessi onFactory" class="org. springframework. orm hi bernat e. Local Sessi onFact or yBean" >
<property nanme="dat aSour ce"><ref | ocal ="dataSource"/></property>
<property nanme="nappi ngResources" >
<val ue>or g/ spri ngf r amewor k/ sanpl es/ pet cl i ni ¢/ hi ber nat e/ petcl i ni c. hbom xm </ val ue>
</ property>
<property nanme="hi bernat eProperties">
<pr ops>
<prop key="hi bernate. di al ect">${hi bernat e. di al ect} </ prop>
</ props>
</ property>
</ bean>

<bean i d="transacti onManager"
cl ass="org. spri ngframewor k. orm hi ber nat e. Hi ber nat eTr ansact i onManager " >
<property name="sessionFactory"><ref |ocal ="sessi onFactory"/></property>
</ bean>

With Hibernate and JTA transactions we could simply use the JtaTransactionManager as with JDBC or any
other resource strategy.

<bean id="transacti onManager"
cl ass="org. spri ngframework. transaction.jta.JtaTransacti onManager"/>

Note that thisisidentical to JTA configuration for any resource, as these are global transactions, which can
enlist any transactional resource.

In all these cases, application code won't need to change at all. We can change how transactions are managed
merely by changing configuration, even if that change means moving fromlocal to global transactions or vice
versa.

When not using global transactions, you do need to follow one special coding convention. Fortunately thisis
very ssimple. Y ou need to obtain connection or session resources in a specia way, to allow the relevant
PlatformTransactionManager implementation to track connection usage, and apply transaction management as
necessary.

For example, if using JDBC, you should not call the get Connect i on() method on a DataSource, but must use
the Spring or g. spri ngf ramewor k. j dbc. dat asour ce. Dat aSour ceUti | s classasfollows:

Connection conn = DataSourceltils. get Connecti on(dataSource);

This has the added advantage that any sQ.Except i on will be wrapped in a Spring

Cannot Get JdbcConnect i onExcept i on--one of Spring's hierarchy of unchecked DataA ccessExceptions. This
gives you more information than can easily be obtained from the SQLExcept i on, and ensures portability across
databases: even across different persistence technologies.

Thiswill work fine without Spring transaction management, so you can use it whether or not you are using
Spring for transaction management.

Of course, once you've used Spring's JDBC support or Hibernate support, you won't want to use

Dat aSour celt i | s or the other helper classes, because you'll be much happier working viathe Spring
abstraction than directly with the relevant APIs. For example, if you use the Spring JdbcTemplate or
jdbc.object package to ssimplify your use of JDBC, correct connection retrieval happens behind the scenes and
you won't need to write any special code.

Spring Framework Version 1.1.5 78

Transaction management

7.3. Programmatic transaction management

Spring provides two means of programmeatic transaction management:

e Usingthe TransactionTenpl ate
e Using aPl at f or mlr ansact i onManager implementation directly
We generally recommend the first approach.

The second approach is similar to using the JTA User Transact i on API (although exception handling isless
cumbersome).

7.3.1. Using the Transacti onTenpl at e

The Transact i onTenpl at e adopts the same approach as other Spring templates such as JdbcTenpl at e and
Hi ber nat eTenpl at e. It uses a callback approach, to free application code from the working of acquiring and
releasing resources. (No more try/catch/finally.) Like other templates, a Transact i onTenpl at e is threadsafe.

Application code that must execute in a transaction context looks like this. Note that the Tr ansact i onCal | back
can be used to return avalue:

oj ect result = tt.execute(new TransactionCal | back() {
public nject dolnTransacti on(Transacti onStatus status) {
updat eOper ati onl();
return resul t Of Updat eOper ati on2();

}
55

If there's no return value, use a Tr ansact i onCal | backW t hout Resul t like this:

tt.execute(new Transacti onCal | backWt hout Resul t () {
protected void dol nTransacti onWt hout Resul t (Transacti onStatus status) {
updat eOperati onl();
updat eOper ati on2();
}
1

Code within the callback can roll the transaction back by calling the set Rol | backOnl y() method on the
Transacti onSt at us object.

Application classes wishing to use the Tr ansact i onTenpl at e must have accessto a
PlatformTransactionManager: usually exposed as a JavaBean property or as a constructor argument.

It's easy to unit test such classes with amock or stub PI at f or nilr ansact i onManager . There's no INDI lookup
or static magic here: it'sasimple interface. As usual, you can use Spring to simplify your unit testing.

7.3.2. Using the Pl at f or nilr ansact i onManager

You can also usetheor g. spri ngf ramewor k. t ransacti on. Pl at f or niTr ansact i onManager directly to manage
your transaction. Simply pass the implementation of the PlatformTransactionManager you're using to your bean
viaabean reference. Then, using the Tr ansact i onDef i ni ti on and Transact i onSt at us objectsyou can initiate
transactions, rollback and commit.

Spring Framework Version 1.1.5 79

Transaction management

Def aul t Transacti onDefinition def = new Defaul t Transacti onDefi nition()
def . set Propagat i onBehavi or (Transact i onDefi ni ti on. PROPAGATI ON_REQUI RED) ;

TransactionStatus status = transacti onManager. get Transacti on(def);

try {
/| execute your business |ogic here

} catch (MyException ex) {
transacti onManager . rol | back(status);
t hrow ex;

}

transacti onManager.com t (status);

7.4. Declarative transaction management

Spring also offers declarative transaction management. Thisis enabled by Spring AOP.
Most Soring users choose declar ative transaction management. It is the option with the least impact on
application code, and hence is most consistent with the ideals of a non-invasive lightweight container.

It may be helpful to begin by considering EJB CMT and explaining the similarities and differences with Spring
declarative transaction management. The basic approach is similar: It's possible to specify transaction behavior
(or lack of it) down to individual methods. It's possible to make aset Rol | backonl y() call within atransaction
context if necessary. The differences are:

* UnlikeEJB CMT, whichistied to JTA, Spring declarative transaction management works in any
environment. It can work with JDBC, JDO, Hibernate or other transactions under the covers, with
configuration changes only.

» Spring enables declarative transaction management to be applied to any POJO, not just special classes such
asEJBs.

» Spring offers declarative rollback rules: afeature with no EJB equivalent, which we'll discuss below.
Rollback can be controlled declaratively, not merely programmatically.

e Spring gives you an opportunity to customize transactional behavior, using AOP. For example, if you want
to insert custom behavior in the case of transaction rollback, you can. Y ou can also add arbitrary advice,
along with the transactional advice. With EJB CMT, you have no way to influence the container's
transaction management other than set Rol | backnl y() .

» Spring does not support propagation of transaction contexts across remote calls, as do high-end application
servers. If you need this feature, we recommend that you use EJB. However, don't use this feature lightly.
Normally we don't want transactions to span remote calls.

The concept of rollback rulesisimportant: they enable us to specify which exceptions (and throwables) should
cause automatic roll back. We specify this declaratively, in configuration, not in Java code. So, while we can
till call set Rol | backOnl y() ontheTransacti onSt at us object to roll the current transaction back
programmatically, most often we can specify arule that MyAppl i cati onExcept i on should alwaysresult in roll
back. This has the significant advantage that business objects don't need to depend on the transaction
infrastructure. For example, they typically don't need to import any Spring APIs, transaction or other.

While the EJB default behavior isfor the EJB container to automatically roll back the transaction on a system
exception (usually aruntime exception), EJB CMT does not roll back the transaction automatically on an
application exception (checked exception other than j ava. r i . Renot eExcept i on). While the Spring default
behavior for declarative transaction management follows EJB convention (roll back is automatic only on

Spring Framework Version 1.1.5 80

Transaction management

unchecked exceptions), it's often useful to customize this.
On our benchmarks, the performance of Spring declarative transaction management exceeds that of EJB CMT.

The usual way of setting up transactional proxying in Spring is via the TransactionProxyFactoryBean. We need
atarget object to wrap in atransactional proxy. The target object is nhormally a POJO bean definition. When we
define the TransactionProxyFactoryBean, we must supply areference to the relevant
PlatformTransactionManager, and transaction attributes. Transaction attributes contain the transaction
definitions, discussed above. Consider the following sample:

<l-- this exanple is in verbose form see note |ater about concise
for multiple proxies! -->
<l-- the target bean to wrap transactionally -->

<bean i d="pet St oreTar get ">
</ bean>
<bean i d="pet Store"
cl ass="org. spri ngframework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property name="transacti onManager"><ref bean="transacti onManager"/></property>
<property nanme="t arget"><ref bean="pet StoreTarget"/></property>
<property name="transacti onAttributes">
<pr ops>
<prop key="insert*">PROPAGATI ON_REQUI RED, - MyCheckedExcept i on</ pr op>
<prop key="updat e*" >PROPAGATI ON_REQUI RED</ pr op>
<prop key="*">PROPAGATI ON_REQUI RED, r eadOnl y</ pr op>
</ props>
</ property>
</ bean>

The transactional proxy will implement the interfaces of the target: in this case, the bean with id
petStoreTarget. (Using CGLIB it's possible to transactionally proxy atarget class. Set the "proxyTargetClass'
property to true for this. It will happen automatically if the target doesn't implement any interfaces. In general,
of course, we want to program to interfaces rather than classes.) It's possible (and usually a good idea) to
restrict the transactional proxy to proxying only specific target interfaces, using the proxylnterfaces property.
It's also possible to customize the behavior of a TransactionProxyFactoryBean via several properties inherited
from or g. spri ngf r amewor k. aop. f r amewor k. Pr oxyConf i g, and shared with all AOP proxy factories.

The transactionAttributes here are set using a Properties format defined in the

org. springframewor k. t ransacti on. i nter cept or. NameMat chTransact i onAtt ri but eSour ce class. The
mapping from method name, including wildcards, should be fairly intuitive. Note that the value for the insert*
mapping contains arollback rule. Adding - MyCheckedExcept i on here specifies that if the method throws
MyCheckedExcept i on Or any subclasses, the transaction will automatically be rolled back. Multiple rollback
rules can be specified here, comma-separated. A - prefix forces rollback; a+ prefix specifies commit. (This
allows commit even on unchecked exceptions, if you really know what you're doing!)

The Transact i onProxyFact or yBean allows you to set "pre" and "post” advice, for additional interception
behavior, using the "prel nterceptors” and " postlnterceptors’ properties. Any number of pre and post advices
can be set, and their type may be Advi sor (in which case they can contain a pointcut), Met hodl nt er cept or Or
any advice type supported by the current Spring configuration (such as Thr ows Advi ce,

Af t er Ret ur ni ngt Advi ce Of Bef or eAdvi ce, which are supported by default.) These advices must support a
shared-instance moddl. If you need transactional proxying with advanced AOP features such as stateful mixins,
it's normally best to use the generic or g. spri ngf r amewor k. aop. f r amewor k. Pr oxyFact or yBean, rather than the
Transact i onPr oxyFact or yBean CONvenience proxy creator.

It's also possible to set up autoproxying: that is, to configure the AOP framework so that classes are
automatically proxied without needing individual proxy definitions.

Please see the chapter on AOP for more information and examples.

Spring Framework Version 1.1.5 81

Transaction management

Note: Using TransactionProxyFactoryBean definitions in the form above can seem overly verbose when many
almost identical transaction proxies need to be created. Y ou will almost always want to take advantage of
parent and child bean definitions, along with inner bean definitions, to significantly reduce the verbosity of
your transaction proxy definitions, as described in Section 5.7, “Concise proxy definitions’.

You don't need to be an AOP expert--or indeed, to know much at all about AOP--to use Spring's declarative
transaction management effectively. However, if you do want to become a "power user" of Soring AOP, you
will find it easy to combine declarative transaction management with powerful AOP capabilities.

7.4.1. BeanNameAutoProxyCreator, another declarative approach

Transact i onPr oxyFact or yBean isvery useful, and gives you full control when wrapping objects with a
transactional proxy. Used with parent/child bean definitions and inner beans holding the target, it is generally
the best choice for transactional wrapping. In the case that you need to wrap a number of beansin a completely
identical fashion (for example, a boilerplate, 'make all methods transactional’, using a

BeanFact or yPost Processor called BeanNameAut oPr oxyCr eat or can offer an aternative approach which can
end up being even less verbose for this simplified use case.

To recap, once the ApplicationContext has read itsinitialization information, it instantiates any beans within it
which implement the BeanPost Processor interface, and gives them a chance to post-process all other beansin
the ApplicationContext. So using this mechanism, a properly configured BeanNaneAut oPr oxyCr eat or can be
used to postprocess any other beans in the ApplicationContext (recognizing them by name), and wrap them
with atransactional proxy. The actual transaction proxy produced is essentially identical to that produced by
the use of Transact i onProxyFact or yBean, SO will not be discussed further.

Let us consider a sample configuration:

<l-- Transaction Interceptor set up to do PROPAGATI ON REQUI RED on all nethods -->
<bean i d="nmat chAl | Wt hPropReq"
cl ass="org. springfranmework. transaction.interceptor.Mat chAl waysTransacti onAttri buteSource">
<property name="transacti onAttri bute"><val ue>PROPAGATI ON_REQUI RED</ val ue></ pr operty>
</ bean>
<bean i d="nmat chAl | Txl nterceptor"”
cl ass="org. springfranmework. transaction.interceptor. Transacti onl nterceptor">
<property name="transacti onManager"><ref bean="transacti onManager"/></property>
<property name="transactionAttri buteSource"><ref bean="natchA | WthPropReq"/></property>
</ bean>

<l-- One BeanNaneAut oProxyCreator handles all beans where we want all nethods to use
PROPAGATI ON_REQUI RED - - >
<bean i d="aut oPr oxyCr eat or"
cl ass="org. spri ngframewor k. aop. f ramewor k. aut opr oxy. BeanNaneAut oPr oxyCr eat or " >
<property nanme="inter cept or Nanes" >
<list>
<idref |ocal ="matchAll Txlnterceptor"/>
<i dref bean="hiblnterceptor"/>
</list>
</ property>
<property name="beanNanes" >
<list>
<idref |ocal ="core-services-applicationControllerSevice"/>
<idref |ocal ="core-services-deviceService"/>
<idref |ocal ="core-services-authenticationService"/>
<idref |ocal ="core-services-packagi ngMessageHandl er"/ >
<idref |ocal ="core-services-sendEmil"/>
<idref |ocal ="core-services-userService"/>
</list>
</ property>
</ bean>

Assuming that we already have aTr ansact i onManager instance in our ApplicationContext, the first thing we
need to doiscreate aTransacti onl nt er cept or instanceto use. The Transacti onl nt er cept or decides which

Spring Framework Version 1.1.5 82

Transaction management

methods to intercept based on aTr ansact i onAt t ri but eSour ce implementing object passed to it as a property.
In this case, we want to handle the very simple case of matching all methods. Thisis not necessarily the most
efficient approach, but it's very quick to set up, because we can use the specia pre-defined

Mat chAl waysTr ansact i onAt t ri but eSour ce, which simply matches all methods. If we wanted to be more
specific, we could use other variants such as Met hodMapTr ansact i onAtt ri but eSour ce,

NanmeMat chTransacti onAttri but eSource, OFr Attri butesTransacti onAttri buteSource.

Now that we have the transaction interceptor, we simply feed it to a BeanNameAut oPr oxyCr eat or instance we
define, along with the names of 6 beans in the ApplicationContext that we want to wrap in an identical fashion.
Asyou can see, the net result is significantly less verbose than it would have been to wrap 6 beans identically
with TransactionProxyFactoryBean. Wrapping a 7th bean would add only one more line of config.

Y ou may notice that we are able to apply multiple interceptors. In this case, we are also applying a
Hi ber nat el nt er cept or we have previously defined (bean id=hiblnterceptor), which will manage Hibernate
Sessions for us.

Thereis one thing to keep in mind, with regards to bean naming, when switching back and forth between the
use of Transact i onProxyFact or yBean, and BeanNareAut oPr oxyCr eat or . For the former, if the target bean is
not defined as an inner bean, you normally give the target bean you want to wrap an id similar in form to
myServiceTarget, and then give the proxy object an id of myService; then all users of the wrapped object simply
refer to the proxy, i.e. myService. (These are just sample naming conventions, the point is that the target object
has a different name than the proxy, and both are available from the ApplicationContext). However, when
using BeanNanmeAut oPr oxyCr eat or , you hame the target object something like myService. Then, when
BeanNaneAut oPr oxyCr eat or POStprocesses the target object and create the proxy, it causes the proxy to be
inserted into the Application context under the name of the original bean. From that point on, only the proxy
(the wrapped object) is available from the ApplicationContext. When using TransactionProxyFactoryBean with
the target specified as an inner bean, this naming issue is not a concern, since the inner bean is not normally
given aname.

7.5. Choosing between programmatic and declarative
transaction management

Programmatic transaction management is usually a good idea only if you have a small number of transactional
operations. For example, if you have aweb application that require transactions only for certain update
operations, you may not want to set up transactional proxies using Spring or any other technology. Using the
TransactionTemplate may be a good approach.

On the other hand, if your applications has numerous transactional operations, declarative transaction
management is usually worthwhile. It keeps transaction management out of businesslogic, and is not difficult
to configure in Spring. Using Spring, rather than EJB CMT, the configuration cost of declarative transaction
management is greatly reduced.

7.6. Do you need an application server for transaction
management?

Spring's transaction management capabilities--and especially its declarative transaction
management--significantly changes traditional thinking as to when a J2EE application requires an application
server.

In particular, you don't need an application server just to have declarative transactions via EJB. In fact, even if

Spring Framework Version 1.1.5 83

Transaction management

you have an application server with powerful JTA capabilities, you may well decide that Spring declarative
transactions offer more power and a much more productive programming model than EJB CMT.

Y ou need an application server's JTA capability only if you need to enlist multiple transactional resources.
Many applications don't face this requirement. For example, many high-end applications use asingle, highly
scalable, database such as Oracle 9i RAC.

Of course you may need other application server capabilities such as IMS and JCA. However, if you need only
JTA, you could also consider an open source JTA add-on such as JOTM. (Spring integrates with JOTM out of
the box.) However, as of early 2004, high-end application servers provide more robust support for XA
transactions.

The most important point is that with Spring you can choose when to scale your application up to a full-blown
application server. Gone are the days when the only aternative to using EJB CMT or JTA wasto write coding
using local transactions such as those on JDBC connections, and face a hefty rework if you ever needed that
code to run within global, container-managed transactions. With Spring only configuration needs to change:
your code doesn't.

7.7. Common problems

Developers should take care to use the correct Pl at f or nilr ansact i onManager implementation for their
regquirements.

It'simportant to understand how the Spring transaction abstraction works with JTA global transactions. Used
properly, there is no conflict here: Spring merely provides a simplifying, portable abstraction.

If you are using global transactions, you must use the Spring

org. springframework. transaction.ta.JtaTransacti onManager for al your for al your transactional
operations. Otherwise Spring will attempt to perform local transactions on resources such as container
DataSources. Such local transactions don't make sense, and a good application server will treat them as errors.

Spring Framework Version 1.1.5 84

Chapter 8. Source Level Metadata Support

8.1. Source-level metadata

Source-level metadata is the addition of attributes or annotations to program elements. usually, classes and/or
methods.

For example, we might add metadata to a class as follows:

[**

* Normal conments
* @rg. springframework. transaction.interceptor. DefaultTransacti onAttribute()
*/

public class PetStorelnpl inplements PetStoreFacade, OrderService {

We could add metadata to a method as follows:

/**
* Normal comments
* @@rg. springframework. transaction.interceptor. Rul eBasedTransacti onAttribute ()
* @@rg.springframework. transaction.interceptor. Roll backRul eAttribute (Exception.class)
* @rg.springframework. transaction.interceptor. NoRol | backRul eAttribute ("Servl et Exception")
*/
public void echoException(Exception ex) throws Exception {

}

Both these examples use Jakarta Commons Attributes syntax.

Source-level metadata was introduced to the mainstream with the release of Microsoft's .NET platform, which
uses source-level attributes to control transactions, pooling and other behaviour.

The value in this approach has been recognized in the 2EE community. For example, it's much less verbose
than the traditional XML deployment descriptors exclusively used by EJB. Whileit is desirable to externalize
some things from program source code, some important enterprise settings--notably transaction
characteristics--belong in program source. Contrary to the assumptions of the EJB spec, it seldom makes sense
to modify the transactional characteristics of a method.

Although metadata attributes are typically used mainly by framework infrastructure to describe the services
application classes require, it should also be possible for metadata attributes to be queried at runtime. Thisisa
key distinction from solutions such as X Doclet, which primarily view metadata as away of generating code
such as EJB artefacts.

There are a number of solutionsin this space, including:

e JSR-175: the standard Java metadata implementation, available in Java 1.5. But we need a solution now
and may always want afacade

» XDoclet: well-established solution, primarily intended for code generation

« Various open sour ce attribute implementations, pending the release of JSR-175, of which Commons
Attributes appears to be the most promising. All these require a specia pre- or post-compilation step.

Spring Framework Version 1.1.5 85

Source Level Metadata Support

8.2. Spring's metadata support

In keeping with its provision of abstractions over important concepts, Spring provides afacade to metadata
implementations, in the form of the or g. spri ngf r anewor k. net adat a. At t ri but es interface.

Such afacade adds value for several reasons:

e Thereiscurrently no standard metadata solution. Java 1.5 will provide one, but it is still in beta as of Spring
1.0. Furthermore, there will be aneed for metadata support in 1.3 and 1.4 applications for at least two years.
Spring aims to provide working solutions now; waiting for 1.5 is not an option in such an important area.

e Current metadata APIs, such as Commons Attributes (used by Spring 1.0) are hard to test. Spring provides a
simple metadata interface that is much easier to mock.

« Evenwhen Java 1.5 provides metadata support at language level, there will still be value in providing such
an abstraction:

e JSR-175 metadatais static. It is associated with a class at compile time, and cannot be changed in a
deployed environment. There is a need for hierarchical metadata, providing the ability to override
certain attribute values in deployment--for example, in an XML file.

» JSR-175 metadatais returned through the Javareflection API. This makes it impossible to mock during
test time. Spring provides a simple interface to allow this.

Thus Spring will support JSR-175 before Java 1.5 reaches GA, but will continue to offer an attribute
abstraction API.

The Spring At t ri but es interface looks like this:

public interface Attributes {
Col l ection getAttributes(Cl ass targetd ass);
Col l ection getAttributes(Cl ass targetC ass, Cass filter);
Col l ection getAttri butes(Method target Met hod) ;
Col l ection getAttributes(Method target Method, Class filter);
Col l ection getAttributes(Field targetField);

Col l ection getAttributes(Field targetField, Cass filter);

Thisis alowest common denominator interface. JSSR-175 offers more capabilities than this, such as attributes
on method arguments. As of Spring 1.0, Spring aims to provide the subset of metadata required to provide
effective declarative enterprise servicesala EJB or .NET. Beyond Spring 1.0, it is likely that Spring will
provide further metadata methods.

Note that thisinterface offers j ect attributes, like .NET. This distinguishesit from attribute systems such as
that of Nanning Aspects and JBoss 4 (as of DR2), which offer only st ri ng attributes. There isasignificant
advantage in supporting oj ect attributes. It enables attributes to participate in class hierarchies and enables
attributes to react intelligently to their configuration parameters.

In most attribute providers, attribute classes will be configured via constructor arguments or JavaBean

Spring Framework Version 1.1.5 86

Source Level Metadata Support

properties. Commons Attributes supports both.

Aswith all Spring abstraction APIs, Attri but es isan interface. This makesit easy to mock attribute
implementations for unit tests.

8.3. Integration with Jakarta Commons Attributes

Presently Spring supports only Jakarta Commons Attributes out of the box, although it is easy to provide
implementations of the or g. spri ngf ramewor k. net adat a. At t ri but es interface for other metadata providers.

Commons Attributes 2.1 (http://jakarta.apache.org/commong/attributes/) is a capabl e attributes solution. It
supports attribute configuration via constructor arguments and JavaBean properties, which offers better
self-documentation in attribute definitions. (Support for JavaBean properties was added at the request of the
Spring team.)

Weve already seen two examples of Commons Attributes attributes definitions. In general, we will need to

express:

e The name of the attribute class. This can be an FQN, as shown above. If the relevant attribute class has
aready been imported, the FQN isn't required. It's also possible to specify "attribute packages' in attribute
compiler configuration.

e Any necessary parameterization, via constructor arguments or JavaBean properties

Bean properties ook as follows:

/**
* @WAttribute(nmyBool eanJavaBeanProperty=true)
*/

It's possible to combine constructor arguments and JavaBean properties (asin Spring 10C).

Because, unlike Java 1.5 attributes, Commons Attributes is not integrated with the Javalanguage, it is
necessary to run a special attribute compilation step as part of the build process.

To run Commons Attributes as part of the build process, you will need to do the following.

1. Copy the necessary library Jarsto $ANT_HOVE/ | i b. Four Jars are required, and all are distributed with Spring:

¢ The Commons Attributes compiler Jar and APl Jar
» Xxjavadoc.jar, from XDoclet
e commons-collections,jar, from Jakarta Commons

2. Import the Commons Attributes ant tasks into your project build script, as follows:

<t askdef resource="org/ apache/ commons/attri butes/anttasks. properties"/>

3. Next, define an attribute compilation task, which will use the Commons Attributes attribute-compiler task to
"compile" the attributes in the source. This process results in the generation of additional sources, to alocation
specified by the destdir attribute. Here we show the use of atemporary directory:

Spring Framework Version 1.1.5 87

http://jakarta.apache.org/commons/attributes/

Source Level Metadata Support

<target name="conpil eAttributes" >
<attribute-conpiler
destdir="${commons. attri butes.tenpdir}"
>
<fileset dir="${src.dir}" includes="**/*_java"/>
</attribute-conpiler>
</target>

The compile target that runs Javac over the sources should depend on this attribute compilation task, and must
also compile the generated sources, which we output to our destination temporary directory. If there are syntax
errorsin your attribute definitions, they will normally be caught by the attribute compiler. However, if the
attribute definitions are syntactically plausible, but specify invalid types or class names, the compilation of the
generated attribute classes may fail. In this case, you can look at the generated classes to establish the cause of
the problem.

Commons Attributes also provides Maven support. Please refer to Commons Attributes documentation for
further information.

While this attribute compilation process may look complex, in fact it's a one-off cost. Once set up, attribute
compilation isincremental, so it doesn't usually noticeably slow the build process. And once the compilation
processis set up, you may find that use of attributes as described in this chapter can save you alot of timein
other aress.

If you require attribute indexing support (only currently required by Spring for attribute-targeted web
controllers, discussed below), you will need an additional step, which must be performed on a Jar file of your
compiled classes. In this, optional, step, Commons Attributes will create an index of all the attributes defined
on your sources, for efficient lookup at runtime. This step looks as follows:

<attribute-indexer jarFile="nmyConpil edSources.jar">
<cl asspath refi d="master-cl asspath"/>
</ attribute-indexer>

See the /attributes directory of the Spring jPetStore sample application for an example of this build process.
You can take the build script it contains and modify it for your own projects.

If your unit tests depend on attributes, try to express the dependency on the Spring Attributes abstraction, rather
than Commons Attributes. Not only is this more portable--for example, your tests will still work if you switch
to Java 1.5 attributes in future--it simplifies testing. Commons Attributes is a static API, while Spring provides
ametadata interface that you can easily mock.

8.4. Metadata and Spring AOP autoproxying

The most important uses of metadata attributes are in conjunction with Spring AOP. This provides a .NET-like
programming model, where declarative services are automatically provided to application objects that declare
metadata attributes. Such metadata attributes can be supported out of the box by the framework, asin the case
of declarative transaction management, or can be custom.

There iswidely held to be a synergy between AOP and metadata attributes.

8.4.1. Fundamentals

Spring Framework Version 1.1.5 88

Source Level Metadata Support

This builds on the Spring AOP autoproxy functionality. Configuration might look like this:

<bean i d="aut opr oxy"
cl ass="org. spri ngfranmewor k. aop. f r amewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or ">
</ bean>

<bean i d="transactionAttri buteSource"
cl ass="org. springframework. transaction.interceptor.AttributesTransacti onAttri buteSource"
aut owi re="constructor">

</ bean>

<bean i d="transactionlnterceptor"
cl ass="org. springframework. transaction.interceptor. Transacti onl nterceptor"
aut owi r e="byType" >

</ bean>

<bean i d="transacti onAdvi sor"
cl ass="org. springframework. transaction.interceptor. Transacti onAttri but eSour ceAdvi sor"
aut owi re="constructor" >

</ bean>

<bean id="attri butes"
cl ass="org. spri ngframewor k. met adat a. commons. CommonsAttri but es”
/>

The basic concepts here should be familiar from the discussion of autoproxying in the AOP chapter.

The most important bean definitions are those named autoproxy and transactionAdvisor. Note that the actual
bean names are not important; what mattersistheir class.

The autoproxy bean definition of class

org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or Will automatically
advise ("autoproxy") al bean instances in the current factory based on matching Advisor implementations. This
class knows nothing about attributes, but relies on Advisors' pointcuts matching. The pointcuts do know about
attributes.

Thus we simply need an AOP advisor that will provide declarative transaction management based on attributes.

It's possible to add arbitrary custom Advisor implementations as well, and they will also be evaluated and
applied automatically. (Y ou can use Advisors whose pointcuts match on criteria besides attributes in the same
autoproxy configuration, if necessary.)

Finaly, theatt ri but es bean isthe Commons Attributes Attributes implementation. Replace with another

implementation of or g. spri ngf ramewor k. net adat a. At t ri but es to source attributes from a different source.

8.4.2. Declarative transaction management

The commonest use of source-level attributes it to provide declarative transaction management ala .NET. Once
the bean definitions shown above are in place, you can define any number of application objects requiring
declarative transactions. Only those classes or methods with transaction attributes will be given transaction
advice. Y ou need to do nothing except define the required transaction attributes.

Unlikein .NET, you can specify transaction attributes at either class or method level. Class-leve attributes, if
specified, will be "inherited” by all methods. Method attributes will wholly override any class-level attributes.

8.4.3. Pooling

Again, aswith .NET, you can enable pooling behavior viaclass-level attributes. Spring can apply this behavior

Spring Framework Version 1.1.5 89

Source Level Metadata Support

to any POJO. Y ou simply need to specify a pooling attribute, as follows, in the business object to be pooled:

/**

* @rg. springframewor k. aop. f ramewor k. aut opr oxy. t arget. Pool i ngAttri bute (10)

*

* @ut hor Rod Johnson
&/
public class MyCQ ass {

You'll need the usual autoproxy infrastructure configuration. Y ou then need to specify a pooling

Tar get Sour ceCr eat or , as follows. Because pooling affects the creation of the target, we can't use aregular
advice. Note that pooling will apply even if there are no advisors applicable to the class, if that classhas a
pooling attribute.

<bean i d="pool i ngTar get Sour ceCr eat or"
cl ass="org. spri ngframewor k. aop. f ramewor k. aut opr oxy. net adat a. At t ri but esPool i ngTar get Sour ceCr eat or !
aut owi re="constructor" >

</ bean>

The relevant autoproxy bean definition needs to specify alist of "custom target source creators', including the
Pooling target source creator. We could modify the example shown above to include this property as follows:

<bean i d="aut opr oxy"
cl ass="org. spri ngfranmewor k. aop. f ramewor k. aut opr oxy. Def aul t Advi sor Aut oPr oxyCr eat or " >
>

<property name="cust onirar get Sour ceCr eat ors" >
<list>
<ref |ocal ="poolingTarget SourceCreator" />
</list>
</ property>
</ bean>

Aswith the use of metadatain Spring in general, thisis a one-off cost: once setup is out of the way, it's very
easy to use pooling for additional business objects.

It's arguable that the need for pooling israre, so there's seldom a need to apply pooling to a large number of
business objects. Hence this feature does not appear to be used often.

Please see the Javadoc for the or g. spri ngf r amewor k. aop. f r amewor k. aut opr oxy package for more details. It's

possible to use a different pooling implementation than Commons Pool with minimal custom coding.

8.4.4. Custom metadata

We can even go beyond the capabilities of .NET metadata attributes, because of the flexibility of the underlying
autoproxying infrastructure.

We can define custom attributes, to provide any kind of declarative behavior. To do this, you need to:

» Define your custom attribute class
» Define a Spring AOP Advisor with a pointcut that fires on the presence of this custom attribute.

e Addthat Advisor as abean definition to an application context with the generic autoproxy infrastructure in
place.

e Add attributes to your POJOs.

Spring Framework Version 1.1.5 90

Source Level Metadata Support

There are several potential areas you might want to do this, such as custom declarative security, or possibly
caching.

Thisis a powerful mechanism which can significantly reduce configuration effort in some projects. However,
remember that it does rely on AOP under the covers. The more Advisors you have in play, the more complex
your runtime configuration will be.

(If you want to see what advice appliesto any object, try casting a reference to
org.springframework.aop.framework.Advised. Thiswill enable you to examine the Advisors.)

8.5. Using attributes to minimize MVC web tier configuration

The other main use of Spring metadata as of 1.0 isto provide an option to simplify Spring MV C web
configuration.

Spring MV C offers flexible handler mappings: mappings from incoming request to controller (or other handler)
instance. Normally handler mappings are configured in the xxxx- ser vl et . xm file for the relevant Spring
DispatcherServlet.

Holding these mappings in the DispatcherServlet configuration fileis normally A Good Thing. It provides
maximum flexibility. In particular:

» The controller instance is explicitly managed by Spring |oC, through an XML bean definition

e Themapping is external to the controller, so the same controller instance could be given multiple mappings
in the same DispatcherServlet context or reused in a different configuration.

e Spring MV C is able to support mappings based on any criteria, rather than merely the request
URL -to-controller mappings available in most other frameworks.

However, this does mean that for each controller we typically need both a handler mapping (normally in a
handler mapping XML bean definition) and an XML mapping for the controller itself.

Spring offers a simpler approach based on source-level attributes, which is an attractive option in smpler
scenarios.

The approach described in this section is best suited to relatively smple MVC scenarios. It sacrifices some of
the power of Soring MVC, such as the ability to use the same controller with different mappings, and the ability
to base mappings on something other than request URL.

In this approach, controllers are marked with one or more class-level metadata attributes, each specifying one
URL they should be mapped to.

The following examples show the approach. In each case, we have a controller that depends on a business
object of type Cruncher. As usual, this dependency will be resolved by Dependency Injection. The Cruncher
must be available through a bean definition in the relevant DispatcherServiet XML file, or a parent context.

We attach an attribute to the controller class specifying the URL that should map to it. We can express the
dependency through a JavaBean property or a constructor argument. This dependency must be resolvable by
autowiring: that is, there must be exactly one business object of type Cruncher available in the context.

/**
* Normal comments here
* @ut hor Rod Johnson
* @@rg. springframewor k. web. servl et. handl er. net adat a. Pat hMap("/bar.cgi ")
*/
public class BarController extends AbstractController {

Spring Framework Version 1.1.5 91

Source Level Metadata Support

private Cruncher cruncher;

public void setCruncher(Cruncher cruncher) {
this.cruncher = cruncher;

}

prot ect ed Model AndVi ew handl eRequest | nt er nal (
Ht t pSer vl et Request arg0, HttpServl et Response argl)
throws Exception {
System out. println("Bar Crunching ¢ and d =" +
cruncher. concatenate("c", "d"));
return new Model AndView "test");

For this auto-mapping to work, we need to add the following to the relevant xxxx- ser vl et . xm file, specifying
the attributes handler mapping. This special handler mapping can handle any number of controllers with
attributes as shown above. The bean id ("commonsAttributesHandlerMapping”) is not important. The typeis
what matters:

<bean i d="commmonsAttri but esHandl er Mappi ng"
cl ass="org. spri ngframewor k. web. servl et. handl er. net adat a. CormonsPat hMapHandl er Mappi ng"
/>

We do not currently need an Attributes bean definition, asin the above example, because this class works
directly with the Commons Attributes API, not via the Spring metadata abstraction.

We now need no XML configuration for each controller. Controllers are automatically mapped to the specified
URL(s). Controllers benefit from 10C, using Spring's autowiring capability. For example, the dependency
expressed in the "cruncher” bean property of the simple controller shown above is automatically resolved in the
current web application context. Both Setter and Constructor Dependency Injection are available, each with
zero configuration.

An example of Constructor Injection, also showing multiple URL paths:

/**

* Normal comments here
* @ut hor Rod Johnson
*

* @@rg. springframewor k. web. servl et. handl er. net adat a. Pat hMap("/f o0o. cgi ")
* @mrg. springframewor k. web. servl et. handl er. met adat a. Pat hMap("/ baz. cgi ")
*/

public class FooController extends AbstractController {

private Cruncher cruncher;

public FooController(Cruncher cruncher) {
this.cruncher = cruncher;

}

prot ect ed Model AndVi ew handl eRequest | nt er nal (
Ht t pSer vl et Request arg0, HttpServl et Response argl)
throws Exception {
return new Model AndView "test");

This approach has the following benefits:

Spring Framework Version 1.1.5 92

Source Level Metadata Support

e Significantly reduced volume of configuration. Each time we add a controller we need add no XML
configuration. As with attribute-driven transaction management, once the basic infrastructure isin place, it
isvery easy to add more application classes.

* Weretain much of the power of Spring 1oC to configure controllers.

This approach has the following limitations:

« One-off cost in more complex build process. We need an attribute compilation step and an attribute
indexing step. However, oncein place, this should not be an issue.

e Currently Commons Attributes only, although support for other attribute providers may be added in future.

« Only "autowiring by type" dependency injection is supported for such controllers. However, this still leaves
them far in advance of Struts Actions (with no 1oC support from the framework) and, arguably, WebWork
Actions (with only rudimentary 10C support) where 10C is concerned.

« Reliance on automagical 10C resolution may be confusing.

Because autowiring by type means there must be exactly one dependency of the specified type, we need to be
careful if we use AOP. In the common case using TransactionProxyFactoryBean, for example, we end up with
two implementations of a business interface such as Cruncher: the original POJO definition, and the
transactional AOP proxy. Thiswon't work, as the owning application context can't resolve the type dependency
unambiguously. The solution is to use AOP autoproxying, setting up the autoproxy infrastructure so that there
is only one implementation of Cruncher defined, and that implementation is automatically advised. Thusthis
approach works well with attribute-targeted declarative services as described above. As the attributes
compilation process must be in place to handle the web controller targeting, thisis easy to set up.

Unlike other metadata functionality, there is currently only a Commons Attributes implementation available;
org.springframework.web.servlet.handl er.metadata. CommonsPathM apHandlerM apping. This limitation is due
to the fact that not only do we need attribute compilation, we need attribute indexing: the ability to ask the
attributes API for all classes with the PathMap attribute. Indexing is not currently offered on the

org. spri ngf ramewor k. net adat a. At t ri but es abstraction interface, although it may bein future. (If you want
to add support for another attributes implementation--which must support indexing--you can easily extend the
Abst r act Pat hMapHandl er Mappi ng superclass of CommonsPat hMapHandl er Mappi ng, implementing the two
protected abstract methods to use your preferred attributes API.)

Thus we need two additional stepsin the build process: attribute compilation and attribute indexing. Use of the
attribute indexer task was shown above. Note that Commons Attributes presently requires a Jar file asinput to
indexing.

If you begin with a handler metadata mapping approach, it is possible to switch at any point to a classic Spring
XML mapping approach. So you don't close off this option. For thisreason, | find that | often start a web
application using metadata mapping.

8.6. Other uses of metadata attributes

Other uses of metadata attributes appear to be growing in popularity. As of March 2004, an attribute-based
validation package for Spring isin development. The one-off setup cost of attribute parsing looks more
attractive, when the potential for multiple usesis considered.

8.7. Adding support for additional metadata APIs

Spring Framework Version 1.1.5 93

Source Level Metadata Support

Should you wish to provide support for another metadata API it is easy to do so.

Simply implement the or g. spri ngf r amewor k. et adat a. At t ri but es interface as afacade for your metadata
API. You can then include this object in your bean definitions as shown above.

All framework services that use metadata, such as AOP metadata-driven autoproxying, will then automatically

be able to use your new metadata provider.
We expect to add support for Java 1.5 attributes--probably as an add-on to the Spring core--in Q2 2004.

Spring Framework Version 1.1.5

94

Chapter 9. DAO support

9.1. Introduction

The DAO (Data Access Object) support in Spring is primarily aimed at making it easy to work with data access
technologies like JDBC, Hibernate or JDO in a standardized way. This allows you to switch between them
fairly easily and it also allows you to code without worrying about catching exceptions that are specific to each
technology.

9.2. Consistent Exception Hierarchy

Spring provides a convenient translation from technology specific exceptions like SQLExcept i on to itsown
exception hierarchy with the Dat aAccessExcept i on asthe root exception. These exceptions wrap the original
exception so there is never any risk that you would lose any information as to what might have gone wrong.

In addition to JDBC exceptions, Spring can also wrap Hibernate exceptions, converting them from proprietary,
checked exceptions, to a set of abstracted runtime exceptions. The sameistrue for JDO exceptions. This allows
you to handle most persistence exceptions, which are non-recoverable, only in the appropriate layers, without
annoying boilerplate catches/throws, and exception declarations. Y ou can still trap and handle exceptions
anywhere you need to. As we mentioned above, JDBC exceptions (including DB specific dialects) are also
converted to the same hierarchy, meaning that you can perform some operations with JIDBC within a consistent
programming model.

The above is true for the Template versions of the ORM access framework. If you use the Interceptor based
classes then the application must care about handling HibernateExceptions and JDOEXxceptions itself,
preferably via delegating to Sessi onFact oryUti | s’ convert Hi ber nat eAccessExcept i on Of

convert JdoAccessExcept i on methods respectively. These methods converts the exceptions to ones that are
compatible with the org.springframework.dao exception hierarchy. As JDOEXxceptions are unchecked, they can
simply get thrown too, sacrificing generic DAO abstraction in terms of exceptions though.

The exception hierarchy that Spring usesis outlined in the following graph:

|D ataficeeszResourceF ailureExceptio n| |l’.,\"?categorfzedDataAccessExcepﬁonl

|CIeanupFaiIureDataAccessExceptionl |DataIntegrihr\fiolationExceptionl

|I nvaIidDataAccessApiUsageExceptionl |Dead|ookLoserD ataAccessExceptionl

|In\ra|idDataAccessResourceUsageExceptionl |DataRetrieualFaiIureExceptionI |ElptimisticLod(ingFaiIuleExceptionl

I i I

l?rco.'rectqbo'ate S‘emanﬁcsDataAccessExce,aﬁonI |Dbjec{R etrie\taIFaiIureExceptionl |Dbject0 ptimisticLackingF ailureExece ptionl

|T3rpeMismatchDataAccessExceptionl

Spring Framework Version 1.1.5 95

DAO support

9.3. Consistent Abstract Classes for DAO Support

To make it easier to work with a variety of data access technologieslike JDBC, JDO and Hibernate in a
consistent way, Spring provides a set of abstract DAO classes that you can extend. These abstract classes has
methods for setting the data source and any other configuration settings that are specific to the technology you
currently are using.

Dao Support classes:

e JdbcDaoSupport - super classfor JIDBC data access objects. Requires a DataSource to be set, providing a
JdbcTemplate based on it to subclasses.

e Hibernat eDaoSupport - super classfor Hibernate data access objects. Requires a SessionFactory to be set,
providing a HibernateTemplate based on it to subclasses. Can alternatively be initialized directly viaa
HibernateTemplate, to reuse the latter's settings like SessionFactory, flush mode, exception trandator, etc.

» JdoDaoSupport - super classfor JDO data access objects. Requires a PersistenceM anagerFactory to be set,
providing a JdoTemplate based on it to subclasses.

Spring Framework Version 1.1.5 96

Chapter 10. Data Access using JDBC

10.1. Introduction

The JDBC abstraction framework provided by Spring consists of four different packages cor e, dat asour ce,
obj ect, and support .

Theorg. spri ngf ramewor k. j dbc. cor e package contains the JdbcTemplate class and its various callback
interfaces, plus avariety of related classes.

Theorg. spri ngf ramewor k. j dbc. dat asour ce package contains a utility class for easy DataSource access, and
various simple DataSource implementations that can be used for testing and running unmodified JDBC code
outside of a J2EE container. The utility class provides static methods to obtain connections from JNDI and to
close connections if necessary. It has support for thread-bound connections, e.g. for use with
DataSourceTransactionM anager.

Next, the or g. spri ngf ramewor k. j dbc. obj ect package contains classes that represent RDBM S queries,
updates, and stored procedures as thread safe, reusable objects. This approach is modeled by JDO, although of
course abjects returned by queries are “disconnected” from the database. This higher level of JDBC abstraction
depends on the lower-level abstraction in the or g. spri ngf r amewor k. j dbc. cor e package.

Finally the or g. spri ngf ramewor k. j dbc. support package is where you find the SQLExcept i on trandation
functionality and some utility classes.

Exceptions thrown during JDBC processing are translated to exceptions defined in the

org. spri ngframewor k. dao package. This meansthat code using the Spring JDBC abstraction layer does not
need to implement JDBC or RDBM S-specific error handling. All translated exceptions are unchecked giving
you the option of catching the exceptions that you can recover from while allowing other exceptions to be
propagated to the caller.

10.2. Using the JDBC Core classes to control basic JDBC
processing and error handling

10.2.1. JdbcTemplate

Thisisthe central classin the JIDBC core package. It simplifies the use of JDBC since it handles the creation
and release of resources. This helps to avoid common errors like forgetting to always close the connection. It
executes the core JIDBC workflow like statement creation and execution, leaving application code to provide
SQL and extract results. This class executes SQL queries, update statements or stored procedure calls, imitating
iteration over ResultSets and extraction of returned parameter values. It also catches JDBC exceptions and
translates them to the generic, more informative, exception hierarchy defined in the or g. spri ngf r amewor k. dao
package.

Code using this class only need to implement callback interfaces, giving them a clearly defined contract. The

Pr epar edSt at enent Cr eat or callback interface creates a prepared statement given a Connection provided by
this class, providing SQL and any necessary parameters. The sameistrue for the Cal | abl eSt at enent Cr eat eor
interface which creates callable statement. The RowCal | backHandl er interface extracts values from each row of
aResultSet.

Spring Framework Version 1.1.5 97

Data Accessusing JDBC

This class can be used within a service implementation via direct instantiation with a DataSource reference, or
get prepared in an application context and given to services as bean reference. Note: The DataSource should
always be configured as a bean in the application context, in the first case given to the service directly, in the
second case to the prepared template. Because this class is parameterizable by the callback interfaces and the
SQL ExceptionTrangator interface, it isn't necessary to subclassit. All SQL issued by this classislogged.

10.2.2. DataSource

In order to work with data from a database, we need to obtain a connection to the database. The way Spring
does thisisthrough a bat aSour ce. A Dat aSour ce is part of the JDBC specification and can be seen asa
generalized connection factory. It allows a container or aframework to hide connection pooling and transaction
management issues from the application code. As a developer, you don't need to know any details about how to
connect to the database, that is the responsibility for the administrator that sets up the datasource. Y ou will most
likely have to fulfill both roles while you are developing and testing you code though, but you will not
necessarily have to know how the production data source is configured.

When using Spring's JDBC layer, you can either obtain a data source from JNDI or you can configure your
own, using an implementation that is provided in the Spring distribution. The latter comes in handy for unit
testing outside of aweb container. We will usethe Dri ver Manager Dat aSour ce implementation for this section
but there are several additional implementations that will be covered later on. The Dri ver Manager Dat aSour ce
works the same way that you probably are used to work when you obtain a JDBC connection. Y ou have to
specify the fully qualified class name of the JDBC driver that you are using so that the Dr i ver Manager can load
the driver class. Then you have to provide a url that varies between JDBC drivers. Y ou have to consult the
documentation for your driver for the correct value to use here. Finally you must provide a username and a
password that will be used to connect to the database. Here is an example of how to configure a

Dri ver Manager Dat aSour ce:

Dri ver Manager Dat aSour ce dat aSource = new Dri ver Manager Dat aSour ce() ;
dat aSour ce. set Dri ver Cl assNanme("org. hsqgl db. j dbcDriver");

dat aSour ce. set Url ("j dbc: hsqgl db: hsqgl : //1 ocal host: ") ;

dat aSour ce. set User nane("sa");

dat aSour ce. set Password("");

10.2.3. SQLExceptionTranslator

SQLExcepti onTransl at or isaninterface to be implemented by classes that can translate between
SQL Exceptions and our data access strategy-agnostic or g. spri ngf r amewor k. dao. Dat aAccessExcept i on.

Implementations can be generic (for example, using SQL State codes for JDBC) or proprietary (for example,
using Oracle error codes) for greater precision.

SQLEr r or CodeSQLExcept i onTransl at or iSthe implementation of SQL ExceptionTrandator that is used by
default. Thisimplementation uses specific vendor codes. More precise than sQLst at e implementation, but
vendor specific. The error code tranglations are based on codes held in a JavaBean type class named

SQLError Codes. Thisclassis created and populated by an SQLEr r or CodesFact or y which as the name suggests
isafactory for creating SQLEr r or Codes based on the contents of a configuration file named
"sgl-error-codes.xml”. Thisfile is popul ated with vendor codes and based on the DatabaseProductName taken
from the DatabaseM etaData, the codes for the current database are used.

The SQLEr r or CodeSQLExcept i onTr ansl at or applies the following matching rules:

e Try custom trangation implemented by any subclass. Note that this classis concrete and is typically used
itself, in which case this rule doesn't apply.

Spring Framework Version 1.1.5 98

Data Accessusing JDBC

* Apply error code matching. Error codes are obtained from the SQL ErrorCodesFactory by default. This
looks up error codes from the classpath and keys into them from the database name from the database
metadata.

e Usethefallback translator. SQL StateSQL ExceptionTranslator is the default fallback translator.

SQLEr r or CodeSQLExcept i onTr ansl at or can be extended the following way:

public class MySQLError CodesTransl at or extends SQLError CodeSQLExcepti onTransl ator {
prot ect ed Dat aAccessExcepti on customiranslate(String task, String sql, SQ.Exception sqglex) {

if (sql ex.getErrorCode() == -12345)
return new Deadl ockLoser Dat aAccessExcepti on(task, sqgl ex);
return null;

}

In this example the specific error code -12345' is translated and any other errors are simply left to be trandlated

by the default trandator implementation. To use this custom trangdator, it is necessary to passit to the
JdbcTenpl at e using the method set Except i onTransl at or and to use this JdbcTenpl at e for al of the data

access processing where this tranglator is needed. Here is an example of how this custom translator can be used:

/'l create a JdbcTenpl ate and set data source

JdbcTenpl ate jt = new JdbcTenpl ate();

j t.set Dat aSour ce(dat aSour ce) ;

Il create a customtranslator and set the datasource for the default translation | ookup
MySQLEr r or CodesTransal ator tr = new MySQLError CodesTr ansal ator () ;

tr. set Dat aSour ce(dat aSour ce) ;

jt.set ExceptionTransl ator(tr);

/1 use the JdbcTenpl ate for this Sgl Update

Sql Updat e su = new Sqgl Updat e() ;

su. set JdbcTenpl ate(jt);

su. set Sql ("update orders set shipping_charge = shipping_charge * 1.05");
su. conpil e();

su. update();

The custom trand ator is passed a data source because we still want the default translation to look up the error

codesinsgql - error-codes. xni .

10.2.4. Executing Statements

To execute an SQL statement, thereis very little code needed. All you need is aDat aSour ce and a

JdbcTenpl at e. Once you have that, you can use a number of convenience methods that are provided with the

JdbcTenpl at e. Hereis a short example showing what you need to include for aminimal but fully functional
classthat creates a new table.

i mport javax. sql . Dat aSource;
i nport org. springfranework. jdbc. core. JdbcTenpl at e;

public class ExecuteAStatenment {
private JdbcTenpl ate jt;
private DataSource dataSource;

public void doExecute() {
jt = new JdbcTenpl at e(dat aSour ce) ;
jt.execute("create table nytable (id integer, name varchar(100))");

}

public void set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. dat aSour ce = dat aSour ce;

}

10.2.5. Running Queries

In addition to the execute methods, there is alarge number of query methods. Some of these methods are

Spring Framework Version 1.1.5

99

Data Accessusing JDBC

intended to be used for queries that return a single value. Maybe you want to retrieve a count or a specific value
from one row. If that is the case then you can use quer yFor | nt ,quer yFor Long OF quer yFor Obj ect . The latter
will convert the returned JDBC Type to the Java class that is passed in as an argument. If the type conversionis
invalid, then an | nval i dDat aAccessApi UsageExcept i on Will be thrown. Here is an example that contains two
query methods, onefor ani nt and onethat queriesfor astri ng.

i nport javax. sql . Dat aSour ce;
i mport org.springframework.jdbc. core.JdbcTenpl at e;

public class RunAQuery ({
private JdbcTenpl ate jt;
private DataSource dataSource;

public int getCount() {
jt = new JdbcTenpl at e(dat aSour ce) ;
int count = jt.queryForlnt("select count(*) from nytable");
return count;

}

public String getName() {
jt = new JdbcTenpl at e(dat aSour ce) ;
String name = (String) jt.queryForObject("select name from nytable", java.lang. String.class);
return nane;

}

public void set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. dat aSour ce = dat aSour ce;
}

In addition to the singe results query methods there are several methods that return a List with an entry for each
row that the query returned. The most generic oneisquer yFor Li st which returnsaLi st where each entry isa
Map With each entry in the map representing the column value for that row. If we add a method to the above
exampleto retrieve alist of all the rows, it would look like this:

public List getList() {
jt = new JdbcTenpl at e(dat aSour ce) ;
List rows = jt.queryForlList("select * fromnytable");
return rows;

The list returned would look something like this: [{ name=Bob, id=1}, {name=Mary, id=2}].

10.2.6. Updating the database

There are also a number of update methods that you can use. | will show an example where we update a column
for acertain primary key. In thisexample | am using an SQL statement that has place holders for row
parameters. Most of the query and update methods have this functionality. The parameter values are passed in
as an array of objects.

i mport j avax. sql . Dat aSour ce;
i nport org.springfranework. jdbc. core.JdbcTenpl at e;

public class ExecuteAnUpdate {
private JdbcTenpl ate jt;
privat e Dat aSource dat aSour ce;

public void setNane(int id, String nane) {
jt = new JdbcTenpl at e(dat aSour ce) ;
jt.update("update nytable set name = ? where id = ?", new Object[] {name, new Integer(id)});

}

public void set Dat aSour ce(Dat aSour ce dat aSource) {
t hi s. dat aSource = dat aSource;

Spring Framework Version 1.1.5 100

Data Accessusing JDBC

10.3. Controlling how we connect to the database

10.3.1. DataSourceUtils

Helper class that provides static methods to obtain connections from JNDI and close connections if necessary.
Has support for thread-bound connections, e.g. for use with DataSourceT ransactionM anager.

Note: The getDataSourceFromJndi methods are targeted at applications that do not use a BeanFactory resp. an
ApplicationContext. With the latter, it is preferable to preconfigure your beans or even sdbcTenpl at e iNstancesin
the factory: Jndi Qbj ect Fact or yBean can be used to fetch a pat asour ce from JNDI and give the pat asour ce bean
reference to other beans. Switching to another pat asour ce IS just a matter of configuration then: Y ou can even
replace the definition of the Fact or yBean with a non-JNDI pat asour ce!

10.3.2. SmartDataSource

Interface to be implemented by classes that can provide a connection to arelational database. Extends the

j avax. sql . Dat aSour ce interface to allow classes using it to query whether or not the connection should be
closed after agiven operation. This can sometimes be useful for efficiency, if we know that we want to reuse a
connection.

10.3.3. AbstractDataSource

Abstract base class for Spring's Dat aSour ce implementations, taking care of the "uninteresting” glue. Thisis
the class you would extend if you are writing your own Dat aSour ce implementation.

10.3.4. SingleConnectionDataSource

Implementation of Smar t Dat aSour ce that wraps a single connection which is not closed after use. Obviously,
thisis not multi-threading capable.

If client code will call close in the assumption of a pooled connection, like when using persistence tools, set
suppr essd ose to true. Thiswill return a close-suppressing proxy instead of the physical connection. Be aware
that you will not be able to cast thisto a native Oracle Connection or the like anymore.

Thisisprimarily atest class. For example, it enables easy testing of code outside an application server, in
conjunction with asimple JNDI environment. In contrast to Dr i ver Manager Dat aSour ce, it reuses the same
connection all the time, avoiding excessive creation of physical connections.

10.3.5. DriverManagerDataSource

Implementation of snar t Dat aSour ce that configures a plain old JDBC Driver via bean properties, and returns a
new connection every time.

Useful for test or standal one environments outside of a J2EE container, either as a bat aSour ce beanin a
respective ApplicationContext, or in conjunction with asimple JNDI environment. Pool-assuming

Spring Framework Version 1.1.5 101

Data Accessusing JDBC

Connection. cl ose() calswill simply close the connection, so any DataSource-aware persistence code should
work.

10.3.6. DataSourceTransactionManager

PlatformTransactionManager implementation for single JDBC data sources. Binds a JDBC connection from the
specified data source to the thread, potentially allowing for one thread connection per data source.

Application code is required to retrieve the JDBC connection via

Dat aSour celti | s. get Connect i on(Dat aSour ce) instead of J2EE's standard Dat aSour ce. get Connect i on. This
is recommended anyway, as it throws unchecked or g. spri ngf r amewor k. dao exceptionsinstead of checked
SQLExcept i on. All framework classes like JdbcTenpl at e use this strategy implicitly. If not used with this
transaction manager, the lookup strategy behaves exactly like the common one - it can thus be used in any case.

Supports custom isolation levels, and timeouts that get applied as appropriate JDBC statement query timeouts.
To support the latter, application code must either use JdbcTenpl at e or call
Dat aSour celti | s. appl yTransact i onTi meout method for each created statement.

Thisimplementation can be used instead of Jt aTr ansact i onManager in the single resource case, asit does not
require the container to support JTA. Switching between both isjust a matter of configuration, if you stick to
the required connection lookup pattern. Note that JTA does not support custom isolation levels!

10.4. Modeling JDBC operations as Java objects

Theorg. spri ngf ramewor k. j dbc. obj ect package contains the classes that allow you to access the database in
amore object oriented manner. Y ou can execute queries and get the results back as alist containing business
objects with the relational column data mapped to the properties of the business object. Y ou can also execute
stored procedures and run update, delete and insert statements.

10.4.1. SqlQuery

Reusabl e thread safe object to represent an SQL query. Subclasses must implement the newResultReader()
method to provide an object that can save the results while iterating over the ResultSet. This classisrarely used
directly since the Mappi ngSgl Query, that extends this class, provides a much more convenient implementation
for mapping rows to Java classes. Other implementations that extend Sql Query are

Mappi ngSql Quer yW t hPar anet er s and Updat abl eSql Query.

10.4.2. MappingSqlQuery

Mappi ngSql Query isareusable query in which concrete subclasses must implement the abstract
mapRow(Resul t Set, int) method to convert each row of the JDBC Resul t Set into an object.

Of all the sql Query implementations, this is the one used most often and it is also the one that is the easiest to
use.

Hereisabrief example of a custom query that maps the data from the customer table to a Java object called
Customer.

private class Customer Mappi ngQuery extends Mappi ngSgl Query {
publ i ¢ Cust omer Mappi ngQuer y(Dat aSource ds) {
super (ds, "SELECT id, name FROM customer WHERE id = ?");
super. decl ar ePar anet er (new Sql Paraneter ("id", Types.|NTECER));

conpi l e();

Spring Framework Version 1.1.5 102

Data Accessusing JDBC

public Onject mapRow ResultSet rs, int rowNunber) throws SQ.Exception {
Cust omer cust = new Custoner();
cust.setld((Integer) rs.getject("id"));
cust.set Nane(rs. getString("nane"));
return cust;

}
}

We provide a constructor for this customer query that takes the Dat aSour ce asthe only parameter. In this
constructor we call the constructor on the superclass with the Dat aSour ce and the SQL that should be executed
to retrieve the rows for this query. This SQL will be used to create a Pr epar edSt at ement SO it may contain
place holders for any parameters to be passed in during execution. Each parameter must be declared using the
decl ar ePar amet er method passing in an Sgl Par anet er . The Sgl Par anet er takes a name and the JDBC type as
defined inj ava. sql . Types. After al parameters have been defined we call the conpi | e method so the
statement can be prepared and later be executed.

Let'stake alook at the code where this custom query isinstantiated and executed:

public Customer getCustoner(lnteger id) {
Cust omer Mappi ngQuery cust Qy = new Cust oner Mappi ngQuer y(dat aSour ce) ;
oj ect[] parnms = new Cbject[1];
parns[0] = id;
Li st customers = custQy. execute(parmns);
if (custoners.size() > 0)
return (Custoner) custoners. get(0);
el se
return null;

The method in this example retrieves the customer with the id that is passed in as the only parameter. After
creating an instance of the cust omer Mappi ngQuer y class we create an array of objects that will contain all
parameters that are passed in. In this case there is only one parameter and it is passed in asan | nt eger . Now we
are ready to execute the query using this array of parameters and we get aLi st that contains a cust omer object
for each row that was returned for our query. In thiscase it will only be one entry if there was a match.

10.4.3. SglUpdate

RdbmsOperation subclass representing a SQL update. Like a query, an update object is reusable. Like al
RdbmsOperation objects, an update can have parameters and is defined in SQL.

This class provides a number of update() methods anal ogous to the execute() methods of query objects.

Thisclassis concrete. Although it can be subclassed (for example to add a custom update method) it can easily
be parameterized by setting SQL and declaring parameters.

i mport java.sql. Types;
i nport javax. sql . Dat aSour ce;

i mport org.springframework. jdbc. core. Sgl Par anet er;
i mport org.springframework. jdbc. obj ect. Sql Updat e;

public class UpdateCreditRating extends Sgl Update {
publ i ¢ Updat eCredit Rati ng(Dat aSource ds) {
set Dat aSour ce(ds);
set Sgl ("update custoner set credit_rating = ? where id = ?");
decl ar ePar anet er (new Sql Par anet er (Types. NUVERI Q)) ;
decl ar ePar anet er (new Sgl Par anet er (Types. NUVERI)) ;
conpil e();

[**

Spring Framework Version 1.1.5 103

Data Accessusing JDBC

*

*

*

*/

@aramid for the Custoner to be updated
@aramrating the new value for credit rating
@eturn nunmber of rows updated

public int run(int id, int rating) {

oj ect[] paranms =
new Cbject[] {
new | nteger(rating),
new | nteger(id)};
return update(parans);

10.4.4. StoredProcedure

Superclass for object abstractions of RDBMS stored procedures. This classis abstract and its execute methods

are protected, preventing use other than through a subclass that offers tighter typing.

Theinherited sgl property is the name of the stored procedure in the RDBMS. Note that JDBC 3.0 introduces

named parameters, although the other features provided by this class are still necessary in JIDBC 3.0.

Hereis an example of a program that calls a function sysdate() that comes with any Oracle database. To use the

stored procedure functionality you have to create a class that extends St or edPr ocedur e. There are no input
parameters, but there is an output parameter that is declared as a date using the class Sql Qut Par amet er . The

execut e() method returns a map with an entry for each declared output parameter using the parameter name as

the key.

i mport
i mport
i mport
i mport

i mport
i mport
i nport
i mport

public

java. sql . Types;
java.util.HashMap;
java.util.lterator;
java.util. Map;

j avax. sql . Dat aSour ce;
org. springframework. jdbc. core. Sgl Qut Par anet er ;
org. springfranmewor k. j dbc. dat asour ce. *;

org. springframework. j dbc. obj ect. St or edPr ocedur e;

cl ass Test StoredProcedure {

public static void main(String[] args) {

}

Test St oredProcedure t = new Test St or edProcedure();
t.test();
System out . println("Done!");

void test() {

}

Dri ver Manager Dat aSource ds = new Driver Manager Dat aSour ce() ;

ds. set Driver Cl assNane("oracl e.jdbc.driver. O acleDriver");
ds.set Url ("jdbc: oracl e:thin: @ocal host: 1521: nydb") ;

ds. set User nane("scott");

ds. set Password("tiger");

My St or edPr ocedure sproc = new MySt or edProcedure(ds);
Map res = sproc. execute();
print Map(res);

private class MyStoredProcedure extends StoredProcedure {

public static final String SQL = "sysdate";

public MySt oredProcedur e(Dat aSource ds) {
set Dat aSour ce(ds);
set Function(true);
set Sgl (SQL) ;

decl ar ePar anet er (new Sgl Qut Par anet er ("date", Types. DATE));

conpil e();
}

public Map execute() {

Spring Framework Version 1.1.5

104

Data Accessusing JDBC

Map out = execute(new HashMap());
return out;

}

private static void printMap(Map r) {
Iterator i =r.entrySet().iterator();
while (i.hasNext()) {
Systemout.printIn((String) i.next().toString());

}

10.4.5. SqglFunction

SQL "function" wrapper for a query that returns a single row of results. The default behavior isto return anint,
but that can be overridden by using the methods with an extrareturn type parameter. Thisis similar to using the
quer yFor Xxx methods of the JdbcTenpl at e. The advantage with Sqgl Funct i on isthat you don't have to create
the JdbcTenpl at e, it is done behind the scenes.

This classisintended to use to call SQL functions that return asingle result using a query like "select user()" or
"select sysdate from dual”. It is not intended for calling more complex stored functions or for using a

Cal | abl eSt at enent to invoke a stored procedure or stored function. Use St or edPr ocedur e Or Sql Cal | for this
type of processing.

Thisisaconcrete class, which thereis normally no need to subclass. Code using this package can create an
object of thistype, declaring SQL and parameters, and then invoke the appropriate run method repeatedly to
execute the function. Here is an example of retrieving the count of rows from atable:

public int countRows() {
Sql Function sf = new Sqgl Functi on(dat aSource, "select count(*) from nytable");
sf.conpile();
return sf.run();

Spring Framework Version 1.1.5 105

Chapter 11. Data Access using O/R Mappers

11.1. Introduction

Spring provides integration with Hibernate, JDO, and iBATIS SQL Maps in terms of resource management,
DAO implementation support, and transaction strategies. For Hibernate there is first-class support with lots of
IoC convenience features, addressing many typical Hibernate integration issues. All of these comply with
Spring's generic transaction and DAO exception hierarchies.

Spring's adds significant support when using the O/R mapping layer of your choice to create data-access
applications. First of al you should know that once you started using Spring's support for O/R mapping, you
don't have to go all the way. No matter to what extent, you're invited to review and leverage the Spring
approach, before deciding to take the effort and risk of building asimilar infrastructure in-house. Much of the
O/R mapping support, no matter what technology you're using may be used in alibrary style, as everything is
designed as a set of reusable JavaBeans. Usage inside an ApplicationContext or BeanFactory does provide
additional benefitsin terms of ease of configuration and deployment; as such, most examplesin this section
show configuration inside an ApplicationContext.

Some of the the benefits of using Spring to create your O/R mapping applications include:

e Toavoid vendor lock-in, and allow mix-and-match implementation strategies. While Hibernate is powerful,
flexible, open source and free, it till uses a proprietary API. Furthermore one could argue that iBatisis a bit
lightweight, although it's excellent for use in application that don't require complex O/R mapping strategies.
Given the choice, it's usually desirable to implement major application functionality using standard or
abstracted APIs, in case you need to switch to another implementation for reasons of functionality,
performance, or any other concerns. For example, Spring's abstraction of Hibernate Transactions and
Exceptions, along with its |oC approach which alows you to easily swap in mapper/DAO objects
implementing data-access functionality, makes it easy to isolate all Hibernate-specific code in one area of
your application, without sacrificing any of the power of Hibernate. Higher level service code dealing with
the DAOs has no need to know anything about their implementation. This approach has the additional
benefit of making it easy to intentionally implement data-access with a mix-and-match approach (i.e. some
data-access performed using Hibernate, and some using JDBC, others using iBatis) in anon-intrusive
fashion, potentially providing great benefits in terms of continuing to use legacy code or leveraging the
strength of each technology.

» Easeof testing. Spring'sinversion of control approach makesit easy to swap the implementations and
locations of Hibernate session factories, datasources, transaction managers, and mapper object
implementations (if needed). This makes it much easier to isolate and test each piece of persistence-related
codeinisolation.

« General resource management. Spring application contexts can handle the location and configuration of
Hibernate SessionFactories, JDBC datasources, iBatis SQL M aps configuration objects, and other related
resources. This makes these values easy to manage and change. Spring offers efficient, easy and safe
handling of Hibernate Sessions. Related code using Hibernate generally needs to use the same Hibernate
Session object for efficiency and proper transaction handling. Spring makes it easy to transparently create
and bind a session to the current thread, using either a declarative, AOP method interceptor approach, or by
using an explicit, template wrapper class at the Java code level. Thus Spring solves many of the usage
issues that repeatedly arise on the Hibernate forums.

* Exception wrapping. Spring can wrap exceptions from you O/R mapping tool of choice, converting them

Spring Framework Version 1.1.5 106

Data Access using O/R Mappers

from proprietary, checked exceptions, to aset of abstracted runtime exceptions. This allows you to handle
most persistence exceptions, which are non-recoverable, only in the appropriate layers, without annoying
boilerplate catches/throws, and exception declarations. Y ou can still trap and handle exceptions anywhere
you need to. Remember that JIDBC exceptions (including DB specific dialects) are also converted to the
same hierarchy, meaning that you can perform some operations with JIDBC within a consistent
programming model.

« Integrated transaction management. Spring allows you to wrap your O/R mapping code with either a
declarative, AOP style method interceptor, or an explicit ‘template’ wrapper class at the Java code level. In
either case, transaction semantics are handled for you, and proper transaction handling (rollback, etc.) in
case of exceptionsistaken care of. As discussed below, you also get the benefit of being able to use and
swap various transaction managers, without your Hibernate related code being affected. As an added
benefit, JDBC-related code can fully integrate transactionally with the code you use to do O/R mapping.
Thisis useful for handling functionality not implemented in, for example, Hibernate or iBatis.

11.2. Hibernate

11.2.1. Resource Management

Typical business applications are often cluttered with repetitive resource management code. Many projects try
to invent their own solutions for this issue, sometimes sacrificing proper handling of failures for programming
convenience. Spring advocates strikingly simple solutions for proper resource handling: Inversion of control via
templating, i.e. infrastructure classes with callback interfaces, or applying AOP interceptors. The infrastructure
cares for proper resource handling, and for appropriate conversion of specific APl exceptions to an unchecked
infrastructure exception hierarchy. Spring introduces a DAO exception hierarchy, applicable to any data access
strategy. For direct JDBC, the JdbcTenpl at e class mentioned in a previous section cares for connection
handling, and for proper conversion of SQLExcept i on t0 the Dat aAccessExcept i on hierarchy, including
trandlation of database-specific SQL error codes to meaningful exception classes. It supports both JTA and
JDBC transactions, via respective Spring transaction managers. Spring also offers Hibernate and JDO support,
consisting of aHi ber nat eTenpl at e / JdoTenpl at e @analogous to JdbcTenpl at e, aHi ber nat el nt er cept or /
Jdol nt er cept or , and a Hibernate / JIDO transaction manager. The major goal isto allow for clear application
layering, with any data access and transaction technology, and for loose coupling of application abjects. No
more business object dependencies on the data access or transaction strategy, no more hard-coded resource
lookups, no more hard-to-replace singletons, no more custom service registries. One simple and consistent
approach to wiring up application objects, keeping them as reusable and free from container dependencies as
possible. All the individual data access features are usable on their own but integrate nicely with Spring's
application context concept, providing XML-based configuration and cross-referencing of plain JavaBean
instances that don't need to be Spring-aware. In atypical Spring app, many important objects are JavaBeans.
data access templates, data access objects (that use the templates), transaction managers, business objects (that
use the data access objects and transaction managers), web view resolvers, web controllers (that use the
business objects), etc.

11.2.2. Resource Definitions in an Application Context

To avoid tying application objects to hard-coded resource lookups, Spring allows you to define resources like a
JDBC DataSource or a Hibernate SessionFactory as beans in an application context. Application objects that
need to access resources just receive references to such pre-defined instances via bean references (the DAO
definition in the next section illustrates this). The following excerpt from an XML application context
definition shows how to set up a JDBC Dat aSour ce and a Hibernate Sessi onFact ory on top of it:

Spring Framework Version 1.1.5 107

Data Access using O/R Mappers

<beans>

<bean i d="nyDat aSour ce" cl ass="org. spri ngframework.jndi.Jndi Cbj ect Fact or yBean" >
<property nanme="j ndi Nange" >
<val ue>j ava: conp/ env/j dbc/ myds</ val ue>
</ property>
</ bean>

<bean i d="nySessi onFactory" class="org.springfranmework.orm hi bernat e. Local Sessi onFact or yBean" >
<property name="nappi ngResour ces" >

<list>
<val ue>pr oduct . hbm xml </ val ue>
</list>

</ property>
<property name="hi bernat eProperties">
<pr ops>
<prop key="hi bernate. di al ect">net. sf. hi bernate.dial ect. \ySQLDi al ect </ prop>
</ props>
</ property>
<property name="dat aSource">
<ref bean="nyDat aSource"/>
</ property>
</ bean>

</ beans>

Note that switching from a INDI-located Dat aSour ce to alocally defined one like a Jakarta Commons DBCP
Basi cDat aSour ce iSjust a matter of configuration:

<bean i d="nyDat aSour ce" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy-net hod="cl ose">
<property name="driverd assNange" >
<val ue>or g. hsql db. j dbcDri ver </ val ue>
</ property>
<property name="url">
<val ue>j dbc: hsql db: hsql : / /| ocal host: 9001</ val ue>
</ property>
<property name="user nane">
<val ue>sa</ val ue>
</ property>
<property nanme="password">
<val ue></val ue>
</ property>
</ bean>

Y ou can also use a INDI-located Sessi onFact ory, but that's typically not necessary outside an EJB context
(see the "container resources vs local resources’ section for a discussion).

11.2.3. Inversion of Control: Template and Callback

The basic programming model for templating looks as follows, for methods that can be part of any custom data
access object or business object. There are no restrictions on the implementation of the surrounding object at
all, it just needs to provide a Hibernate Sessi onFact or y. It can get the latter from anywhere, but preferably as
bean reference from a Spring application context - viaasimple set Sessi onFact or y bean property setter. The
following snippets show a DAO definition in a Spring application context, referencing the above defined

Sessi onFact ory, and an example for a DAO method implementation.

<beans>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property name="sessi onFactory">
<ref bean="nySessi onFactory"/>
</ property>
</ bean>

Spring Framework Version 1.1.5 108

Data Access using O/R Mappers

</ beans>

public class Product Daol npl inpl ements ProductDao {
private SessionFactory sessi onFactory;

public void set Sessi onFact ory(Sessi onFactory sessionFactory) ({
thi s. sessi onFactory = sessionFactory;
}

public List |oadProductsByCategory(final String category) {
Hi ber nat eTenpl at e hi bernat eTenpl ate =
new Hi ber nat eTenpl at e(thi s. sessi onFactory);

return (List) hibernateTenpl ate. execut e(
new Hi ber nat eCal | back() {
public oject dol nHi bernat e(Sessi on session) throws Hi bernateException {

Li st result = session.find(
"fromtest.Product product where product.category=?",
category, Hi bernate. STRING ;

/! do sone further stuff with the result Iist

return result;

A callback implementation can effectively be used for any Hibernate data access. Hi ber nat eTenpl at e Will
ensure that sessi ons are properly opened and closed, and automatically participate in transactions. The
template instances are thread-safe and reusabl e, they can thus be kept as instance variables of the surrounding
class. For simple single step actions like asingle find, load, saveOrUpdate, or delete call, Hi ber nat eTenpl at e
offers alternative convenience methods that can replace such one line callback implementations. Furthermore,
Spring provides a convenient Hi ber nat eDaoSuppor t base class that provides aset Sessi onFact ory method for
receiving a SessionFactory, and get Sessi onFact ory and get Hi ber nat eTenpl at e for use by subclasses. In
combination, this allows for very simple DAO implementations for typical requirements:

public class Product Daol npl extends Hi bernateDaoSupport inplenments ProductDao {

public List |oadProductsByCategory(String category) {
return get H bernat eTenpl ate(). fi nd(
"fromtest.Product product where product.category=?", category,
Hi ber nat e. STRI NG) ;

11.2.4. Applying an AOP Interceptor Instead of a Template

An aternativeto using aHi ber nat eTenpl at e iS Spring's AOP Hi ber nat el nt er cept or, replacing the callback
implementation with straight Hibernate code within a delegating try/catch block, and a respective interceptor
configuration in the application context. The following snippets show respective DAO, interceptor, and proxy
definitions in a Spring application context, and an example for a DAO method implementation.

<beans>

<bean i d="nyHi bernatel nterceptor"
cl ass="org. spri ngfranmewor k. orm hi ber nat e. Hi ber nat el nt ercept or" >
<property name="sessi onFactory">
<ref bean="nySessi onFactory"/>
</ property>
</ bean>

<bean i d="nyProduct DaoTarget" cl ass="product. Product Daol npl ">

Spring Framework Version 1.1.5 109

Data Access using O/R Mappers

<property nane="sessi onFactory">
<ref bean="nySessi onFactory"/>
</ property>
</ bean>

<bean i d="nyProduct Dao" cl ass="org. spri ngframework. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="proxylnterfaces">
<val ue>product . Product Dao</ val ue>
</ property>
<property name="inter ceptor Nanes" >
<list>
<val ue>nyHi ber nat el nt er cept or </ val ue>
<val ue>nyPr oduct DaoTar get </ val ue>
</list>
</ property>
</ bean>

</ beans>

public class Product Daol npl extends Hi bernat eDaoSupport inplenents ProductDao {

public List |oadProductsByCategory(final String category) throws M/Exception {
Sessi on session = SessionFactoryUtils. get Sessi on(get Sessi onFactory(), false);
try {
Li st result = session.find(
"fromtest.Product product where product.category=?",
category, Hi bernate. STRING ;
if (result == null) {
t hrow new MyException("invalid search result");
}

return result;

catch (H bernat eException ex) {
throw Sessi onFactoryUtils. convert Hi ber nat eAccessExcepti on(ex);
}

This method will only work with aHi ber nat el nt er cept or for it, caring for opening a thread-bound Session
before and closing it after the method call. The "false” flag on getSession makes sure that the Session must
already exist; otherwise Sessi onFactoryUt i | s would create anew oneif none was found. If thereis already a
Sessi onHol der bound to the thread, e.g. by aHi ber nat eTr ansact i onManager transaction,

Sessi onFact oryUti | s automatically takes part in it in any case. Hi ber nat eTenpl at e USES

Sessi onFactoryUti | s internaly - it's all the same infrastructure. The major advantage of

Hi ber nat el nt er cept or iSthat it allows any checked application exception to be thrown within the data access
code, while HibernateTemplate is restricted to unchecked exceptions within the callback. Note that one can
often defer the respective checks and throwing of application exceptions to after the callback, though. The
interceptor's major drawback isthat it requires special setup in the context. Hi ber nat eTenpl at e's convenience
methods offers simpler means for many scenarios.

11.2.5. Programmatic Transaction Demarcation

On top of such lower-level data access services, transactions can be demarcated in ahigher level of the
application, spanning any number of operations. There are no restrictions on the implementation of the
surrounding business object here too, it just needs a Spring Pl at f or nilr ansact i onManager . Again, the latter
can come from anywhere, but preferably as bean reference viaaset Transact i onManager method - just like the
pr oduct DAO should be set viaaset Pr oduct Dao method. The following snippets show a transaction manager
and a business object definition in a Spring application context, and an example for a business method
implementation.

<beans>

Spring Framework Version 1.1.5 110

Data Access using O/R Mappers

<bean i d="nyTransacti onManager"
cl ass="org. spri ngfranmewor k. orm hi ber nat e. Hi ber nat eTr ansact i onManager " >
<property name="sessi onFactory">
<ref bean="nySessi onFactory"/>
</ property>
</ bean>

<bean i d="nyProduct Servi ce" class="product. Product Servicel npl ">
<property name="transacti onManager" >
<ref bean="nyTransacti onManager"/>
</ property>
<property nanme="product Dao" >
<ref bean="nyProduct Dao"/ >
</ property>
</ bean>

</ beans>

public class Product Servicel npl inplenments Product Service {

private Pl atfornmlransacti onManager transacti onManager;
private ProductDao product Dao;

public void setTransacti onManager (Pl at f or nilr ansact i onManager transacti onManager) {
thi s. transacti onManager = transacti onManager;

}

public void setProduct Dao(Product Dao product Dao) {
t hi s. product Dao = product Dao;

}

public void increasePriceO Al |l ProductslnCategory(final String category) {
TransactionTenpl ate transacti onTenpl ate = new Transacti onTenpl at e(t hi s. transacti onManager) ;
transacti onTenpl at e. set Propagat i onBehavi or (Transact i onDef i ni ti on. PROPAGATI ON_REQUI RED) ;
transacti onTenpl at e. execut e(
new Tr ansact i onCal | backW t hout Resul t () {
public void dol nTransacti onWt hout Resul t (Transacti onStatus status) {
Li st product sToChange = product DAO. | oadPr oduct sByCat egor y(cat egory)

11.2.6. Declarative Transaction Demarcation

Alternatively, one can use Spring's AOP Transactionlnterceptor, replacing the transaction demarcation code
with an interceptor configuration in the application context. This allows you to keep business objects free of
repetitive transaction demarcation code in each business method. Furthermore, transaction semantics like
propagation behavior and isolation level can be changed in a configuration file and do not affect the business
object implementations.

<beans>

<bean i d="nyTransacti onManager"
cl ass="org. spri ngfranmewor k. orm hi ber nat e. Hi ber nat eTr ansact i onManager " >
<property name="sessi onFactory">
<ref bean="nySessi onFactory"/>
</ property>
</ bean>

<bean i d="nyTransactionl nterceptor"”
cl ass="org. springframework. transaction.interceptor. Transacti onl nterceptor">
<property nanme="transacti onManager" >

Spring Framework Version 1.1.5 111

Data Access using O/R Mappers

<ref bean="nyTransacti onManager"/>
</ property>
<property name="transactionAttri buteSource">
<val ue>
product . Product Ser vi ce. i ncreasePri ce* =PROPAGATI ON_REQUI RED
product . Product Servi ce. someQ her Busi nessMet hod=PROPAGATI ON_MANDATORY
</val ue>
</ property>
</ bean>

<bean i d="nyProduct Servi ceTarget" cl ass="product. Product Servicel npl ">
<property nanme="product Dao" >
<ref bean="nyProduct Dao"/ >
</ property>
</ bean>

<bean id="nmnyProduct Servi ce" class="org. springfranmework. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="proxylnterfaces">
<val ue>product . Product Servi ce</ val ue>
</ property>
<property name="inter ceptor Nanes" >
<list>
<val ue>nyTransacti onl nt er cept or </ val ue>
<val ue>nyProduct Servi ceTar get </ val ue>
</list>
</ property>
</ bean>

</ beans>

public class Product Servicel npl inplenents ProductService {
private ProductDao product Dao;

public void setProduct Dao(Product Dao product Dao) {
this. product Dao = product Dao;
}

public void increasePriceX Al | ProductslnCategory(final String category) {
Li st product sToChange = this. product DAQ. | oadPr oduct sByCat egor y(cat egory)

Aswith H ber nat el nt er cept or, Transact i onl nt er cept or allows any checked application exception to be
thrown with the callback code, while Tr ansact i onTenpl at e is restricted to unchecked exceptions within the
callback. Transact i onTenpl at e Will trigger arollback in case of an unchecked application exception, or if the
transaction has been marked rollback-only by the application (via Tr ansact i onSt at us).

Transacti onl nt er cept or behaves the same way by default but allows configurable rollback policies per
method. A convenient alternative way of setting up declarative transactionsis Tr ansact i onPr oxyFact or yBean,
particularly if there are no other AOP interceptorsinvolved. Tr ansact i onPr oxyFact or yBean combines the
proxy definition itself with transaction configuration for a particular target bean. This reduces the configuration
effort to one target bean plus one proxy bean. Furthermore, you do not need to specify which interfaces or
classes the transactional methods are defined in.

<beans>

<bean i d="nyTransacti onManager"
cl ass="org. spri ngframewor k. orm hi ber nat e. Hi ber nat eTr ansact i onManager " >
<property nanme="sessi onFactory">
<ref bean="nySessi onFactory"/>
</ property>
</ bean>

<bean i d="nyProduct Servi ceTarget" class="product. Product Servicel npl ">

Spring Framework Version 1.1.5 112

Data Access using O/R Mappers

<property nanme="product Dao" >
<ref bean="nyProduct Dao"/ >
</ property>
</ bean>

<bean i d="nyProduct Servi ce"
cl ass="org. spri ngframework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property name="transacti onManager" >
<ref bean="nyTransacti onManager"/>
</ property>
<property name="target">
<ref bean="nyProduct Servi ceTarget"/>
</ property>
<property name="transacti onAttributes">
<pr ops>
<prop key="increasePrice*">PROPAGATI ON_REQUI RED</ pr op>
<prop key="someQ her Busi nessMet hod" >PROPAGATI ON_MANDATORY</ pr op>
</ props>
</ property>
</ bean>

</ beans>

11.2.7. Transaction Management Strategies

Both Transact i onTenpl at e and Tr ansact i onl nt er cept or delegate the actual transaction handling to a

Pl at f or niTr ansact i onManager instance, which can be aHi ber nat eTr ansact i onvanager (for asingle
Hibernate SessionFactory, using a ThreadLocal Session under the hood) or aJt aTr ansact i onManager
(delegating to the JTA subsystem of the container) for Hibernate applications. Y ou could even use a custom

Pl at f or niTr ansact i onManager implementation. So switching from native Hibernate transaction management to
JTA, i.e. when facing distributed transaction requirements for certain deployments of your application, isjust a
matter of configuration. Simply replace the Hibernate transaction manager with Spring's JTA transaction
implementation. Both transaction demarcation and data access code will work without changes, as they just use
the generic transaction management APIs. For distributed transactions across multiple Hibernate session
factories, simply combine Jt aTr ansact i onManager as atransaction strategy with multiple

Local Sessi onFact or yBean definitions. Each of your DA Qs then gets one specific SessionFactory reference
passed into its respective bean property. If all underlying JDBC data sources are transactional container ones, a
business object can demarcate transactions across any number of DAOs and any number of session factories
without special regard, aslong asit isusing Jt aTr ansact i onManager asthe strategy.

<beans>

<bean i d="nyDat aSour cel" cl ass="org. springframework.jndi.Jndi Object Fact or yBean">
<property nanme="j ndi Nane" >
<val ue>j ava: conp/ env/j dbc/ nyds1</ val ue>
</ property>
</ bean>

<bean i d="nyDat aSour ce2" cl ass="org. springfranmework. jndi.Jndi Obj ect Fact or yBean">
<property nanme="j ndi Nane" >
<val ue>j ava: conp/ env/j dbc/ nyds2</ val ue>
</ property>
</ bean>

<bean i d="nySessi onFactoryl" cl ass="org. springfranework. orm hi bernate. Local Sessi onFact or yBean" >
<property name="nappi ngResour ces" >

<list>
<val ue>product . hbm xm </ val ue>
</list>

</ property>
<property nane="hi bernat eProperties">
<pr ops>
<prop key="hi bernate. di al ect">net. sf. hi bernate. dial ect. My\SQLDi al ect </ pr op>
</ props>
</ property>
<property nanme="dat aSource">
<ref bean="nyDat aSourcel"/>

Spring Framework Version 1.1.5 113

Data Access using O/R Mappers

</ property>
</ bean>

<bean i d="nySessi onFactory2" cl ass="org. spri ngfranework. orm hi bernate. Local Sessi onFact or yBean" >
<property name="nmappi ngResour ces" >

<list>
<val ue>i nvent ory. hbm xm </ val ue>
</list>

</ property>
<property nanme="hi bernat eProperties">
<pr ops>
<prop key="hi bernate. di al ect">net.sf. hibernate. dial ect. O acl eDi al ect </ prop>
</ props>
</ property>
<property nanme="dat aSource">
<ref bean="nyDat aSour ce2"/ >
</ property>
</ bean>

<bean i d="nyTransacti onManager"
class="org. springframework.transaction.jta.JtaTransacti onManager"/>

<bean i d="nyProduct Dao" cl ass="product. Product Daol npl ">
<property name="sessi onFactory">
<ref bean="nySessi onFactoryl"/>
</ property>
</ bean>

<bean i d="nyl nvent oryDao" cl ass="product. | nvent oryDaol npl ">
<property nanme="sessi onFactory">
<ref bean="nySessi onFactory2"/>
</ property>
</ bean>

<bean i d="nyProduct Servi ceTarget" class="product. Product Servicel npl ">
<property nanme="product Dao" >
<ref bean="nyProduct Dao"/ >
</ property>
<property nanme="inventoryDao" >
<ref bean="nyl nvent oryDao"/ >
</ property>
</ bean>

<bean i d="nyProduct Servi ce"
class="org. springframework.transaction.interceptor. Transacti onProxyFact oryBean">
<property nanme="transacti onManager" >
<ref bean="nyTransacti onManager"/>
</ property>
<property name="target">
<ref bean="nyProduct Servi ceTarget"/>
</ property>
<property nanme="transactionAttri butes">
<pr ops>
<prop key="increasePrice*">PROPAGATI ON_REQUI RED</ pr op>
<prop key="sonmeQt her Busi nessMet hod" >PROPAGATI ON_MANDATCORY</ pr op>
</ props>
</ property>
</ bean>

</ beans>

Both Hi ber nat eTr ansact i onManager and Jt aTr ansact i onManager alow for proper JVM-level cache handling
with Hibernate - without container-specific transaction manager lookup or JCA connector (aslong as not using
EJB to initiate transactions). Additionally, Hi ber nat eTr ansact i onManager can export the JDBC Connection
used by Hibernate to plain JDBC access code. This allows for high level transaction demarcation with mixed
Hibernate/JIDBC data access completely without JTA, as long as just accessing one database!

Note, for an aternative approach to using Tr ansact i onPr oxyFact or yBean t0 declaratively demarcate
transactions, please see Section 7.4.1, “BeanNameAutoProxyCreator, another declarative approach”.

11.2.8. Container Resources versus Local Resources

Spring Framework Version 1.1.5 114

Data Access using O/R Mappers

Spring's resource management allows for simple switching between a JINDI SessionFactory and alocal one,
same for a INDI DataSource, without having to change a single line of application code. Whether to keep the
resource definitions in the container or locally within the application, is mainly amatter of the transaction
strategy being used. Compared to a Spring-defined local SessionFactory, amanually registered JNDI
SessionFactory does not provide any benefits. If registered via Hibernate's JCA connector, there is the added
value of transparently taking part in JTA transactions, especially within EJBs. An important benefit of Spring's
transaction support isthat it isn't bound to a container at al. Configured to any other strategy than JTA, it will
work in a standalone or test environment too. Especially for the typical case of single-database transactions, this
isavery lightweight and powerful alternative to JTA. When using local EJB Statel ess Session Beans to drive
transactions, you depend both on an EJB container and JTA - even if you just access a single database anyway,
and just use SLSBs for declarative transactions via CMT. The alternative of using JTA programmatically
requires a J2EE environment too. JTA does not just involve container dependenciesin terms of JTA itself and
of JNDI DataSources. For non-Spring JTA-driven Hibernate transactions, you have to use the Hibernate JCA
connector, or extra Hibernate transaction code with JTATransaction being configured, for proper JVM-level
caching. Spring-driven transactions can work with alocally defined Hibernate SessionFactory nicely, just like
with alocal JDBC DataSource - if accessing a single database, of course. Therefore you just have to fall back to
Spring's JTA transaction strategy when actually facing distributed transaction requirements. Note that a JCA
connector needs container-specific deployment steps, and obviously JCA support in thefirst place. Thisisfar
more hassle than deploying a simple web app with local resource definitions and Spring-driven transactions.
And you often need the Enterprise Edition of your container, as e.g. WebL ogic Express does not provide JCA.
A Spring app with local resources and transactions spanning one single database will work in any J2EE web
container (without JTA, JCA, or EJB) - like Tomcat, Resin, or even plain Jetty. Additionally, such amiddle tier
can be reused in desktop applications or test suites easily. All things considered: If you do not use EJB, stick
with local SessionFactory setup and Spring's Hi ber nat eTr ansact i onManager Or Jt aTr ansact i onManager . YOU
will get all benefits including proper transactional JVM-level caching and distributed transactions, without any
container deployment hassle. INDI registration of a Hibernate SessionFactory viathe JCA connector only adds
value for use within EJBs.

11.2.9. Samples

The Petclinic samplein the Spring distribution offers alternative DA O implementations and application context
configurations for Hibernate, JDBC, and Apache OJB. Petclinic can therefore serve as working sample app that
illustrates the use of Hibernate in a Spring web app. It also leverages declarative transaction demarcation with
different transaction strategies.

11.3. JDO
ToDo
11.4. iIBATIS

Through the or g. spri ngf ramewor k. orm i bat i s package, Spring supportsiBATIS SgiMaps 1.3.x and 2.0. The
iBATIS support much resembles Hibernate support in that it supports the same template style programming and
just as with Hibernate, iBatis support works with Spring's exception hierarchy and let's you enjoy the all 10C
features Spring has.

11.4.1. Overview and differences between 1.3.x and 2.0

Spring Framework Version 1.1.5 115

Data Access using O/R Mappers

Spring supports both iBATIS SglMaps 1.3 and 2.0. First let's have alook at the differences between the two.

Table11.1. iBATIS SglM aps supporting classesfor 1.3 and 2.0

Feature 1.3.x 2.0

Creation of SglMap Sql MapFact or yBean Sql Mapd i ent Fact or yBean
Template-style helper class Sql MapTenpl at e Sql Mapd i ent Tenpl ate
Callback to use MappedStatement Sql MapCal | back Sql Mapd i ent Cal | back
Super classfor DAOs Sql MapDaoSuppor t Sql MapCl i ent DaoSuppor t

11.4.2. Setting up the SqglMap

Using iBATIS SglMaps involves creating SqlMap configuration files containing statements and result maps.
Spring takes care of loading those using the Sql MapFact or yBean or Sql Mapd i ent Fact or yBean Where the latter
isto be used in combination with SgiMaps 2.0.

public class Account {
private String nane;
private String email;

public String getName() {

return this.nane;
}

public void setNane(String nane) {
thi s. nane = nane;
}

public String getEmail () {
return this.email;

}

public void setEmail (String email) {
this.email = email;

}

}

Suppose we would want to map this class. We'd have to create the following SglMap. Using the query, we can
later on retrieve users through their email addresses. Account . xm :

<sql - map nanme="Account ">
<result-map name="result" cl ass="exanpl es. Account ">
<property name="nanme" col umm="NAME" col uml ndex="1"/>
<property name="email" col um="EMAI L" col uml ndex="2"/>
</result-mp>

<mapped- st at enent nane="get Account ByEmai | " resul t- map="resul t">
sel ect
ACCOUNT. NAME,
ACCOUNT. EMAI L
from ACCOUNT
wher e ACCOUNT. EMAI L = #val ue#
</ mapped- st at enent >

<mapped- st at ement name="i nsert Account ">
insert into ACCOUNT (NAME, EMAIL) val ues (#nane#, #email#)
</ mapped- st at ement >
</ sql - map>

Spring Framework Version 1.1.5 116

Data Access using O/R Mappers

After having defined the Sgl Map, we have to create a configuration file for iBATIS (sql map- confi g. xn):

<sql - map- confi g>
<sql - map resource="exanpl e/ Account.xm "/ >

</ sql - map-confi g>
iBATIS loads resources from the classpath so be sure to add the Account.xml file to the classpath somewhere.

Using Spring, we can now very easily set up the SgiMap, using the Sql MapFact or yBean:

<bean i d="sqgl Map" cl ass="org. spri ngframework.orm i batis. Sql MapFact or yBean" >
<property name="configlLocati on"><val ue>WEB- | NF/ sgl map- confi g. xm </ val ue></ property>
</ bean>

11.4.3. Using Sql MapDaoSuppor t

The sql MapDaoSupport class offers a supporting class similar to the Hi ber nat eDaoSuppor t and the
JdbcDaoSupport types. Let'simplement a DAO:

public class Sgl MapAccount Dao ext ends Sqgl MapDaoSupport inplenments Account Dao {

public Account getAccount(String email) throws DataAccessException {
return (Account) get Sgl MapTenpl at e() . execut eQuer yFor Obj ect (" get Account ByEmai | ", email);

}

public void insertAccount (Account account) throws DataAccessException {
get Sql MapTenpl at e() . execut eUpdat e("i nsert Account”, account);

}
}

Asyou can see, we're using the SglMapTemplate to execute the query. Spring has initialized the SqiMap for us
using the SglMapFactoryBean and when setting up the SglMapAccountDao as follows, you're al set to go:

<l-- for nore information about using datasource, have a | ook at the JDBC chapter -->

<bean i d="dat aSource" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy- met hod="cl ose" >
<property name="driver Cl assNane" ><val ue>${j dbc. dri ver Cl assNane} </ val ue></ property>
<property name="url " ><val ue>${j dbc. url } </ val ue></ property>
<property name="user nane" ><val ue>${j dbc. user nane} </ val ue></ pr operty>
<property nanme="password"><val ue>${j dbc. passwor d} </ val ue></ property>

</ bean>

<bean i d="account Dao" cl ass="exanpl e. Sgl MapAccount Dao" >
<property nanme="dat aSour ce"><ref | ocal ="dataSource"/></property>
<property name="sql Map"><ref |ocal ="sql Map"/></property>

</ bean>

11.4.4. Transaction management

It's pretty easy to add declarative transaction management to applications using iBATIS. Basically the only
thing you need to do is adding a transaction manager to you application context and declaratively set your
transaction boundaries using for example the Tr ansact i onPr oxyFact or yBean. More on this can be found in
Chapter 7, Transaction management

TODO elaborate!

Spring Framework Version 1.1.5 117

Chapter 12. Web framework

12.1. Introduction to the web framework

Spring's web framework is designed around a DispatcherServlet that dispatches requests to handlers, with
configurable handler mappings, view resolution, locale and theme resolution as well support for upload files.
The default handler is avery simple Controller interface, just offering a Model AndVi ew

handl eRequest (r equest, response) method. This can already be used for application controllers, but you will
prefer the included implementation hierarchy, consisting of for example Abst ract Control | er,

Abst ract CommandCont rol | er and Si npl eFor nCont r ol | er . Application controllers will typically be subclasses
of those. Note that you can choose an appropriate base class: If you don't have aform, you don't need a
FormController. Thisisamajor difference to Struts.

Y ou can take any object as command or form object: There's no need to implement an interface or derive from
abase class. Spring's data binding is highly flexible, e.g. it treats type mismatches as validation errors that can
be evaluated by the application, not as system errors. So you don't need to duplicate your business objects
properties as Strings in your form objects, just to be able to handle invalid submissions, or to convert the
Strings properly. Instead, it's often preferable to bind directly to your business objects. This is another major
difference to Struts which is built around required base classes like Act i on and Act i onFor m- for every type of
action.

Compared to WebWork, Spring has more differentiated object roles: It supports the notion of a Controller, an
optional command or form abject, and amodel that gets passed to the view. The model will normally include
the command or form object but also arbitrary reference data. Instead, a WebWork Action combines all those
roles into one single object. WebWork does allow you to use existing business objects as part of your form, but
just by making them bean properties of the respective Action class. Finaly, the same Action instance that
handles the request gets used for evaluation and form population in the view. Thus, reference data needs to be
modeled as bean properties of the Action too. These are arguably too many rolesin one object.

Regarding views: Spring's view resolution is extremely flexible. A Controller implementation can even write a
view directly to the response, returning null as Model AndView. In the normal case, aModelAndView instance
consists of aview name and amodel Map, containing bean names and corresponding objects (like acommand
or form, reference data, etc). View name resolution is highly configurable, either via bean names, viaa
propertiesfile, or viayour own ViewResolver implementation. The abstract model Map allows for complete
abstraction of the view technology, without any hassle: Be it JSP, Velocity, or anything else - every renderer
can beintegrated directly. The model Map simply gets transformed into an appropriate format, like JSP request
attributes or a Velocity template model.

12.1.1. Pluggability of MVC implementation

Many teams will try to leverage their investmentsin terms of know-how and tools, both for existing projects
and for new ones. Concretely, there are not only alarge number of books and tools for Struts but also alot of
developers that have experience with it. Thus, if you can live with Struts's architectural flaws, it can till be a
viable choice for the web layer. The same applies to WebWork and other web frameworks.

If you don't want to use Spring's web MV C but intend to leverage other solutions that Spring offers, you can
integrate the web framework of your choice with Spring easily. Simply start up a Spring root application
context viaits ContextL oaderListener, and access it viaits ServletContext attribute (or Spring's respective
helper method) from within a Struts or WebWork action. Note that there aren't any "plugins” involved,
therefore no dedicated integration: From the view of the web layer, you'll ssmply use Spring as alibrary, with

Spring Framework Version 1.1.5 118

Web framework

the root application context instance as entry point.

All your registered beans and all of Spring's services can be at your fingertips even without Spring's web MV C.
Spring doesn't compete with Struts or WebWork in this usage, it just addresses the many areas that the pure
web frameworks don't, from bean configuration to data access and transaction handling. So you are able to
enrich your application with a Spring middle tier and/or data accesstier, even if you just want to use e.g. the
transaction abstraction with JDBC or Hibernate.

12.1.2. Features of Spring MVC

If just focusing on the web support, some of the Spring's unigque features are:

e Clear separation of roles: controller vs validator vs command object vs form object vs model object,
DispatcherServlet vs handler mapping vs view resolver, etc.

» Powerful and straightforward configuration of both framework and application classes as JavaBeans,
including easy in-between referencing via an application context, e.g. from web controllers to business
objects and validators.

* Adaptability, non-intrusiveness. Use whatever Controller subclass you need (plain, command, form, wizard,
multi action, or a custom one) for a given scenario instead of deriving from Action/ActionForm for
everything.

» Reusable business code, no need for duplication: Y ou can use existing business objects as command or
form objects instead of mirroring them in specia ActionForm subclasses.

e Customizable binding and validation: type mismatches as application-level validation errors that keep the
offending value, localized date and number binding, etc instead of String-only form objects with manual
parsing and conversion to business abjects.

» Customizable handler mapping, customizable view resolution: flexible model transfer via name/value Map,
handler mapping and view resolution strategies from simple to sophisticated instead of one single way.

» Customizable locale and theme resol ution, support for JSPs with and without Spring tag library, support for
JSTL, support for Velocity without the need for extra bridges, etc.

e Simple but powerful tag library that avoids HTML generation at any cost, allowing for maximum flexibility
in terms of markup code.

12.2. The Di spat cher Ser vl et

Spring's web framework is - like many other web frameworks - a request driven web framework, designed
around a servlet that dispatches requests to controllers and offers other functionality facilitating the

devel opment of web applications. Spring's Di spat cher Ser vl et however, does more than just that. Itis
completely integrated with the Spring ApplicationContext and allows you to use every other feature Spring has.

Servlets are declared in theweb. xm of your web application, so isthe DispatcherServlet. Requests that you
want the DispatcherServlet to handle, will have to be mapped, using a URL mapping in the same web. xm file.

<web- app>
<servl et >
<servl et - nane>exanpl e</ servl et - name>
<servl et - cl ass>org. spri ngf ranmewor k. web. servl et . Di spat cher Servl et </ servl et - cl ass>
<l oad- on- st artup>1</1| oad-on-start up>
</ servl et>
<servl et - mappi ng>
<ser vl et - nane>exanpl e</ servl et - nane>
<url-pattern>*.forn</url-pattern>
</ servl et - mappi ng>
</ web- app>

Spring Framework Version 1.1.5 119

Web framework

In the example above, al requests ending with . f or mwill be handled by the DispatcherServlet. Then, the
DispatcherServlet needs to be configured. Asillustrated in Section 3.10, “Introduction to the
ApplicationContext”, ApplicationContexts in Spring can be scoped. In the web framework, each
DispatcherServlet has its own WebAppl i cat i onCont ext , which contains the DispatcherServlet configuration
beans. The default BeanFactory used by the DispatcherServlet isthe Xxm BeanFact ory and the
DispatcherServiet will on initialization look for a file named [ser vl et - nane] - servl et. xnl in the WEB- | NF
directory of your web application. The default values used by the DispatcherServlet can be modified by using
the servlet initialization parameters (see below for more information).

The webAppl i cati onCont ext iSjust an ordinary ApplicationContext that has some extra features necessary for
web applications. It differs from anormal ApplicationContext in that it is capable of resolving themes (see
Section 12.7, “Using themes”), and that is knows to which servlet it is associated (by having alink to the

Ser vl et Cont ext). The WebA pplicationContext is bound in the ServletContext, and using

Request Cont ext Ut i | s you can always |ookup the WebA pplicationContext in case you need it.

The Spring DispatcherServlet has a couple of special beansit uses, in order to be able to process requests and
render the appropriate views. Those beans are included in the Spring framework and (optionally) have to be
configured in the WebA pplicationContext, just as any other bean would have to be configured. Each of those
beans, is described in more detail below. Right now, well just mention them, just to let you know they exist
and to enable us to go on talking about the DispatcherServlet. For most of the beans, defaults are provided so
you don't have to worry about those.

Table 12.1. Special beansin the WebApplicationContext

Expression Explanation

handler mapping(s) | (Section 12.4, “Handler mappings’) alist of pre- and postprocessors and controllers
that will be executed if they match certain criteria (for instance a matching URL
specified with the controller)

controller(s) (Section 12.3, “Controllers™) the beans providing the actual functionality (or at least,
access to the functionality) as part of the MV C triad

view resolver (Section 12.5, “Views and resolving them”) capable of resolving view names and
needed by the DispatcherServlet to resolves those views with

locale resolver (Section 12.6, “Using locales’) capable of resolvesthe locale aclient isusing, in order
to be able to offer internationalized views

theme resolver (Section 12.7, “Using themes’) capable of resolving themes your web application can
use e.g. to offer personalized layouts

multipart resolver (Section 12.8, “ Spring's multipart (fileupload) support™) offers functionality to process
file uploads from HTML forms

handlerexception (Section 12.9, “Handling exceptions”) offers functionality to map exceptions to views
resolver or implement other more complex exception handling code

When a DispatcherServlet is setup for use and arequest comesin for that specific DispatcherServlet it starts
processing it. Thelist below describes the complete process arequest goes through if a DispatcherServiet is
supposed to handle it:

1. TheWebApplicationContext is searched for and bound in the request as an attribute in order for controller
and other elementsin the chain of processto useit. It isbound by default under the key

Spring Framework Version 1.1.5 120

Web framework

Di spat cher Ser vl et . WEB_APPLI CATI ON_CONTEXT_ATTRI BUTE

2. Thelocaleresolver is bound to the request to let elements in the chain resolve the locale to use when
processing the request (rendering the view, preparing data, etcetera). If you don't use the resolver, it won't
affect anything, so if you don't need locale resolving, just don't bother

3. Thetheme resolver is bound to the request to let e.g. views determine which theme to use (if you don't
needs themes, don't bother, the resolver isjust bound and does not affect anything if you don't use it)

4. If amultipart resolver is specified, the request isinspected for multiparts and if so, it iswrapped in a
Mul ti part Ht t pSer vl et Request for further processing by other elementsin the chain (more information
about multipart handling is provided below)

5. Anappropriate handler is searched for. If a handler isfound, it execution chain associated to the handler
(preprocessors, postprocessors, controllers) will be executed in order to prepare a model

6. If amodel isreturned, the view isrendered, using the view resolver that has been configured with the
WebA pplicationContext. If no model was returned (which could be the result of a pre- or postprocessor
intercepting the request because of for instance security reasons), no view is rendered as well, since the
reguest could already have been fulfilled

Exceptions that might be thrown during processing of the request get picked up by any of the handlerexception
resolvers that are declared in the WebA pplicationContext. Using those exception resolvers you can define
custom behavior in case such exceptions get thrown.

The Spring DispatcherServlet also has support for returning the last-modification-date, as specified by the
Servlet API. The process of determining the last modification date for a specific request, issimple. The
DispatcherServlet will first of al lookup an appropriate handler mapping and test if the handler that matched
implements the interface Last Modi i ed and if so, the value the of 1 ong get Last Modi fi ed(request) IS
returned to the client.

Y ou can customize Spring's DispatcherServlet by adding context parametersin theweb. xni file or servlet init
parameters. The possibilities are listed below.
Table 12.2. Dispatcher Servlet initialization parameters

Parameter Explanation

cont ext O ass Class that implements webAppl i cat i onCont ext , which will be used to instantiate the
context used by this servlet. If this parameter isn't specified, the
Xm WebAppl i cati onCont ext Will be used

cont ext Conf i gLocat i Biring which is passed to the context instance (specified by cont ext d ass) to indicate
where context(s) can be found. The String is potentially split up into multiple strings
(using acomma as a delimiter) to support multiple contexts (in case of multiple context
locations, of beans that are defined twice, the latest takes precedence)

namespace the namespace of the WebAppl i cati onCont ext . Defaultsto [ser ver - nane] - ser vl et

12.3. Controllers

The notion of controller is part of the MV C design pattern. Controllers define application behavior, or at least
provide users with access to the application behavior. Controllers interpret user input and transform the user
input into a sensible model which will be represented to the user by the view. Spring has implemented the
notion of acontroller in avery abstract way enabling awide variety of different kinds of controllersto be
created. Spring contains formcontroller, commandcontroller, controllers that execute wizard-style logic and
more.

Spring Framework Version 1.1.5 121

Web framework

Spring's basis for the controller architectureisthe or g. spri ngf r anmewor k. mvc. Control | er interface, which is
listed below.

public interface Controller {

[**

* Process the request and return a Mddel AndVi ew obj ect whi ch the Di spatcher Servl et
* will render.
*/
Model AndVi ew handl eRequest (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
t hrows Excepti on;

}

Asyou can see, the Controller interface just states one single method that should be capable of handling a
regquest and return an appropriate model and view. Those three concepts are the basis for the Spring MVC
implementation; Model AndView and Controller. While the Controller interface is quite abstract, Spring offersa
lot of controllersthat already contain alot of functionality you might need. The controller interface just define
the most commons functionality offered by every controller: the functionality of handling a request and
returning amodel and aview.

12.3.1. AbstractController and WebContentGenerator

Of course, just acontroller interface isn't enough. To provide abasic infrastructure, al of Spring's Controllers
inherit from AbstractController, a class offering caching support and for instance the setting of the mimetype.

Table 12.3. Features offered by the Abst ract Control | er

Feature Explanation

suppor t edMet hods indicates what methods this controller should accept. Usually thisis set to both
GET and PosT, but you can modify this to reflect the method you want to support.
If arequest is received with a method that is not supported by the controller, the
client will be informed of this (using a Ser vl et Excepti on))

requi r esSessi on indicates whether or not this controller requires a session to do itswork. This
feature is offered to al controllers. If asession is not present when such a
controller receives arequest, the user isinformed using a Ser vl et Except i on

synchr oni zeSessi on use thisif you want handling by this controller to be synchronized on the user's
session. To be more specific, extending controller will override the
handl eRequest | nt er nal method, which will be synchronized if you specify this
variable

cacheSeconds when you want a controller to generate caching directive in the HTTP response,
specify a positive integer here. By default it is set to -1 so no caching directives
will be included

useExpi r esHeader tweaking of your controllers specifying the HTTP 1.0 compatible "Expires"
header. By default it's set to true, so you won't have to touch it

useCacheHeader tweaking of your controllers specifying the HTTP 1.1 compatible
"Cache-Control" header. By default thisis set to true so you won't really haveto
touch it

Spring Framework Version 1.1.5 122

Web framework

Abst ract Control | er but to keepsthingsclear...

When using the AbstractController as a baseclass for your controllers (which is not recommended since there
are alot of other controller that might already do the job for your) you only have to override the

handl eRequest | nt er nal (Htt pSer vl et Request, Htt pSer vl et Response) -method and implement your logic
code and return a Mbdel AndVi ew object there. A short example consisting of a class and a declaration in the web
application context.

package sanpl es;
public class Sanpl eController extends AbstractController {

publ i ¢ Model AndVi ew handl eRequest | nt er nal (

Ht t pSer vl et Request request,

Ht t pSer vl et Response response)
throws Exception {

Mbdel AndVi ew mav = new Model AndVi ew(" f 00", new HashMap());
}

<bean i d="sanpl eControl | er" class="sanpl es. Sanpl eControl | er">
<property name="cacheSeconds" ><val ue>120</ val ue</ property>
</ bean>

The class above and the declaration in the web application context is all you need to do besides setting up a
handler mapping (see Section 12.4, “Handler mappings’) to get this very simple controller working. This
controller will generates caching directives telling the client to cache things for 2 minutes before rechecking.
This controller furthermore returns an hard-coded view (hmm, not so nice), named index (see Section 12.5,
“Views and resolving them” for more information about views).

12.3.2. Other simple controllers

Besides the AbstractController - which you could of course extend, although a more concrete controller might
offer you more functionality - there are a couple of other simple controllers that might ease the pain of
developing smple MV C applications. The Par anet eri zabl eVi enCont r ol | er basically isthe same as the one
in the example above, except for the fact that you can specify its view name that it'll be returning in the web
application context (ahhh, no need to hard-code the viewname).

TheFi | eNarmeVi ewCont rol | er inspects the URL and retrieves the filename of the file request (the filename of
htt p: / / www. spri ngf ramewor k. or g/ i ndex. ht i iSi ndex) and uses that as a viewname. Nothing more to it.

12.3.3. The mul ti Acti onControl | er

Spring offers a multi-action controller with which you aggregate multiple actions into one controller, grouping
functionality together. The multi-action controller livesin a separate package -

org. spri ngfranmewor k. web. nvc. mul ti acti on - and is capable of mapping requests to method names and then
invoking the right method name. Using the multi-action controller is especialy handy when you're having alot
of commons functionality in one controller, but want to have multiple entry points to the controller to tweak
behavior for instance.

Table 12.4. Features offered by themul ti Acti onControl | er

Feature Explanation

del egat e there's two usage-scenarios for the MultiActionController. Either you subclass the
MultiActionController and specify the methods that will be resolved by the

Spring Framework Version 1.1.5 123

Web framework

Feature Explanation

MethodNameResolver on the subclass (in case you don't need this configuration
parameter), or you define a delegate object, on which methods resolved by the
Resolver will be invoked. If you choose to enter this scenario, you will haveto
define the delegate using this configuration parameter as a collaborator

met hodNanmeResol ver somehow, the MultiActionController will need to resolve the method it has to
invoke, based on the request that camein. Y ou can define aresolver that is
capable of doing that using this configuration parameter

Methods defined for amulti-action controller will need to conform to the following signature:

// actionNanme can be replaced by any nethodnane
Mbdel AndVi ew acti onNane(Htt pServl et Request, HttpServl et Response);

Method overloading is not allowed sinceit'll confuse the MultiActionController. Furthermore, you can define
exception handlers capable of handling exception that will be thrown form a method you specify. Exception
handler methods need to return a Model AndView object, just as any other action method and will need to
conform to the following signature:

/1 anyMeani ngf ul Name can be repl aced by any net hodnane
Model AndVi ew anyMeani ngf ul Name(Ht t pSer vl et Request, HttpServl et Response, ExceptionC ass);

The Excepti ond ass can be any exception, aslong asit'sasubclass of j ava. | ang. Excepti on Or
java.l ang. Runti meExcepti on.

The Met hodNarmeResol ver is supposed to resolve method names based on the request coming in. There are three
resolver to your disposal, but of course you can implement more of them yourself if you want.

e Paranet er Met hodNameResol ver - capable of resolving arequest parameter and using that as the method
name (htt p: / / ww. sf. net/i ndex. vi ew?t est Par anrt est | t Will result in a method
testlt(H tpServl et Request, HttpServletResponse) being called). Usethe par amName configuration
parameter to tweak the parameter that's inspected)

* Internal Pat hMet hodNaneResol ver - retrieves the filename from the path and uses that as the method name
(http://vww. sf.net/testing.viewwill resultinamethodt esti ng(Htt pSer vl et Request,
Ht t pSer vl et Response) being called)

e PropertiesMet hodNaneResol ver - Uses auser-defined properties object with request URLSs mapped to
methodnames. When the properties contain /i ndex/ wel cone. ht m =dol t and arequest to
/i ndex/ wel come. ht M comesin, thedol t (H t pSer vl et Request, HttpServl et Response) method is
called. This method name resolver works with the Pat hvat cher (see ???) so if the properties contained
/**/wel con?. ht m it would also have worked!

A couple of examples. First of all one showing the Par anet er Met hodNamreResol ver and the delegate property,
which will accept requests to urls with the parameter method included and settoret ri evel ndex:

<bean i d="par anResol ver" class="org....nmvc.nultiaction. Paranet er Met hodNaneResol ver" >
<property nanme="paranmNane" ><val ue>met hod</ val ue></ property>

</ bean>

<bean id="paramMulti Controller" class="org....m/c.multiaction. MiltiActionController">

<property name="mnet hodNanmeResol ver " ><ref bean="paranResol ver"/></property>
<property nanme="del egat e" ><ref bean="sanpl eDel egate"/>

</ bean>

<bean i d="sanpl eDel egat e" cl ass="sanpl es. Sanpl eDel egate"/ >

together with

public class Sanpl eDel egate {

Spring Framework Version 1.1.5 124

Web framework

public Moddel AndVi ew retri evel ndex(
Ht t pSer vl et Request req
Ht t pSer vl et Response resp) {

return new Mdel AndVi ewm "i ndex", "date", new Long(SystemcurrentTimeMIlis()));

}

When using the delegates shown above, we could also use the Pr oper t i esMet hodNaneResol ver to match a
couple of URLs to the method we defined:

<bean i d="propsResol ver" class="org....mc.nultiaction.PropertiesMthodNaneResol ver">
<property nanme="nmappi ngs" >
<pr ops>
<prop key="/index/wel come. html ">retrievel ndex</ prop>
<prop key="/**/notwel cone. ht ml ">retrievel ndex</ prop>
<prop key="/*/user?.htm ">retrievel ndex</ prop>
</ props>
</ property>
</ bean>

<bean id="paramMulti Controller" class="org....mc.nmultiaction. MiultiActionController">
<property name="net hodNaneResol ver"><ref bean="propsResol ver"/></property>
<property nanme="del egate"><ref bean="sanpl eDel egate"/>

</ bean>

12.3.4. CommandControllers

Spring's CommandControllers are afundamental part of the Spring MV C package. Command controllers
provide away to interact with data objects and dynamically bind parameters from the Ht t pSer vl et Request to
the data object you're specifying. This compares to Struts's actionforms, where in Spring, you don't have to
implement any interface of superclasses to do data binding. First, let's examine what command controllers
available, just to get clear picture of what you can do with them:

e Abstract CommandControl | er - acommand controller you can useto create your own command controller,
capable of binding request parameters to a data object you're specifying. This class does not offer form
functionality, it does however, offer validation features and lets you specify in the controller itself what to
do with the data object that has been filled with the parameters from the request.

* AbstractFornControl |l er - anabstract controller offering form submission support. Using this controller
you can model forms and populate them using a data object you're retrieving in the controller. After a user
has filled the form, the AbstractFormController binds the fields, validates and hands the object back to you
- the controller - to take appropriate action. Supported features are invalid form submission (resubmission),
validation, and the right workflow aform always has. What views you tie to your AbstractFormController
you decide yourself. Use this controller if you need forms, but don't want to specify what views you're
going to show the user in the applicationcontext

* Sinpl eFornControl | er - an even more concrete FormController that helps you creating aform with
corresponding data object even more. The SimpleFormController let's you specify acommand object, a
viewname for the form, a viewname for page you want to show the user when formsubmission has
succeeded, and more

e Abstract W zardFornControl | er - asthe class name suggests, thisis an abstract class--your
WizardController should extend it. This means you have to implement both the val i dat ePage(),
processFi ni sh aswell asprocessCancel methods.

Probably you also want to write a contractor, which should at the very least call set Pages() and

set CommandNane() . The former takes as its argument an array of type String. This array isthelist of views
which comprise your wizard. The latter takes as its argument a String, which will be used to refer to your
Command object from within your views.

Spring Framework Version 1.1.5 125

Web framework

Aswith any instance of AbstractFormController, you are required to use a Command object - a JavaBean
which will be populated with the data from your forms. Y ou can do this in one of two ways: either call
set Commandd ass() from the constructor with the class of your command object, or implement the

f or nBacki ngObj ect () method.

AbstractWizardFormController has a number of concrete methods that you may wish to override. Of these,
the ones you are likely to find most useful are: r ef er enceDat a Which you can use to pass model datato
your view in the form of aMap; get Tar get Page if your wizard needs to change page order or omit pages
dynamically; and onBi ndAndVal i dat e if you want to override the built-in binding and validation workflow.

Finaly, it isworth pointing out the set Al | owDi r t yBack and set Al | owDi r t yFor war d, which you can call
from get Tar get Page to alow users to move backwards and forwards in the wizard even if validation fails
for the current page.

For afull list of methods, see the JavaDoc for AbstractWizardFormController. There is an implemented
example of thiswizard in the jPetStore included in the Spring distribution:
org.springframework.sampl es.j petstore.web.spring.OrderFormController.java

12.4. Handler mappings

Using a handler mapping you can map incoming web requests to appropriate handlers. There are some handler
mapping you can use, for example the Si npl eUr | Handl er Mappi ng OF the BeanNameUr | Handl er Mappi ng, but
let's first examine the general concept of aHandl er Mappi ng.

The functionality abasic Handl er Mappi ng providesisthe delivering of aHand! er Execut i onChai n, first of all
containing one handler that matched the incoming request. The second (but optional) element a handler
execution chain will containisalist of handler interceptor that should be applied to the request. When a request
comesin, the Di spat cher Ser vl et will hand it over to the handler mapping to let it inspect the request and
come up with an appropriate HandlerExecutionChain. When done, the DispatcherServlet will execute the
handler and interceptorsin the chain (if any).

The concept of configurable handler mappings that can optionally contain interceptors (executed before or after
the actual handler was executed, or both) is extremely powerful. A lot of supporting functionality can be
built-in in custom Handl er Mappi ngs. Think of a custom handler mapping that chooses a handler not only based
on the URL of the request coming in, but also on a specific state of the session associated with the request.

This section describes two of Spring's most often used handler mapping. They both extend the
Abst r act Handl er Mappi ng and share the following properties

e interceptors:thelist of interceptorsto use. Handl er I nt er cept or S are discussed further ahead

* defaul t Handl er : the default handler to use, when this handler mapping does not result in amatching
handler

e order: based on the value of the order property (seetheor g. spri ngf r anmewor k. cor e. Or der ed interface),
Spring will sort all handler mapping available in the context and apply them in them one after the other.

e al waysUseFul | Pat h: based on this setting, Spring will either use the full path within the current servlet
context (if set to t r ue) or the path within the current servliet mapping (f al se, the default value). If for
example aservlet ismapped using / t est i ng/ * and you've set the al waysUseFul | Pat h property to true,
I testing/ vi ewPage. ht i will match, whereas/ vi ewPage. ht M will only match if you leave the default
value (false) in place (Note: this property is only available for the
org. spri ngframewor k. web. servl et . handl er. Abstract Ur | Handl er Mappi ng and its subclasses)

e url Pat hHel per : using this property, you can tweak the UrlPathHel per used when inspecting URLS.
Normally, you shouldn't have to change the default value. (Note: this property is only available for the

Spring Framework Version 1.1.5 126

Web framework

org. springframewor k. web. servl et. handl er. Abst ract Ur | Handl er Mappi ng and its subclasses)

* url Decode: the default value for this property isf al se. The HttpServletRequest returns request URLs and
URIsthat are not decoded. If you do want them to be decoded before a HandlerM apping will use them to
find an appropriate handler, you have to set this to true (this requires JDK 1.4 however). Uses either the
encoding specified by the request or the default 1SO-8859-1 encoding scheme. (Note: this property is only
available for the or g. spri ngf ramewor k. web. servl et . handl er. Abst ract Ur| Handl er Mappi ng and its
subclasses)

* lazylnitHandl ers: alowsfor lazy initialization of singleton handlers (prototype handlers are always lazily
initialized). Default value isf al se (Note: this property is only available for the
org. spri ngframewor k. web. servl et . handl er. Abstract Ur | Handl er Mappi ng and its subclasses)

12.4.1. BeanNaneUr | Handl er Mappi ng

A very simple, but very powerful handler mapping is the BeanNaneUr | Handl er Mappi ng, which maps incoming
HTTP requests to names of beans, defined in the web application context. Let's say we want to enable a user to
insert an account and we've aready provided an appropriate FormController (see Section 12.3.4,
“CommandControllers’ for more information on Command- and FormControllers) and a JSP view (or Velocity
template) that renders the form. When using the BeanNameUrlHandlerM apping, we could map the HTTP
request with URL htt p: / / sanpl es. cont edi t account . f or mto the appropriate FormController as follows:

<beans>
<bean i d="handl er Mappi ng"
cl ass="org. spri ngf ramewor k. web. servl et . handl er. BeanNaneUr | Handl er Mappi ng"/ >

<bean nane="/editaccount. fornf
cl ass="org. spri ngf ramewor k. web. servl et. nvc. Si npl eFornControl | er">

<property name="fornVi ew'><val ue>account </ val ue></ property>
<property name="successVi ew'><val ue>account - cr eat ed</ val ue></ property>
<property nanme="conmmandNane" ><val ue>Account </ val ue></ property>
<property name="conmmandC ass" ><val ue>sanpl es. Account </ val ue></ property>

</ bean>

<beans>

All incoming requests for the URL / edi t account . f or mwill now be handled by the FormController in the
source listing above. Of course we have to define a servlet-mapping in web.xml as well, to let through all the
reguests ending with .form.

<web- app>
<servl et >
<servl et - nane>sanpl e</ servl et - nane>
<servl et - cl ass>org. spri ngf ranmewor k. web. servl et. Di spat cher Servl et </ servl et - cl ass>

<l oad- on- st artup>1</1| oad- on-start up>
</ servl et>

<l-- Maps the sanple dispatcher to /*.form-->
<servl et - mappi ng>
<ser vl et - nane>sanpl e</ servl et - nane>
<url-pattern>*.forn</url-pattern>
</ servl et - mappi ng>

</web:épp>
NOTE: if you want to use the BeanNameUr | Handl er Mappi ng, You don't necessarily have to define it in the web

application context (as indicated above). By default, if no handler mapping can be found in the context, the
Dispatcher Serviet creates a BeanNarreUr | Handl er Mappi ng for you!

12.4.2. Si npl eUr | Handl er Mappi ng

A further - and much more powerful handler mapping - isthe Si npl eUr | Handl er Mappi ng. Thismapping is

Spring Framework Version 1.1.5 127

Web framework

configurable in the application context and has Ant-style path matching capabilities (see ???). A couple of
example will probably makes thing clear enough:

<web- app>
<servl et >
<ser vl et - nane>sanpl e</ servl et - nane>
<servl et - cl ass>or g. spri ngf ranewor k. web. servl et . Di spat cher Servl et </ servl et - cl ass>

<l oad- on- st artup>1</1 oad-on-start up>
</servl et >

<l-- Maps the sanple dispatcher to /*.form-->
<servl et - mappi ng>
<servl et - name>sanpl e</ servl et - nanme>
<url-pattern>*.fornx/url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - nane>sanpl e</ servl et - nane>
<url-pattern>*.htm </url -pattern>
</ servl et - mappi ng>

</meb:épp>
Allows all requests ending with .html and .form to be handled by the sample dispatcher serviet.

<beans>
<bean i d="handl er Mappi ng"
cl ass="org. spri ngframewor k. web. servl et. handl er. Si npl eUr | Handl er Mappi ng" >
<property nanme="nmappi ngs">
<pr ops>
<prop key="/*/account. forni>editAccount For nControl | er </ prop>
<prop key="/*/editaccount.fornl>editAccount FornControl | er</prop>
<prop key="/ex/view.htm ">soneViewControll er</prop>
<prop key="/**/hel p. ht Ml ">hel pControl | er </ prop>
</ props>
</ property>
</ bean>

<bean id="sonmeVi ewControl | er"
cl ass="org. spri ngframewor k. web. servl et. mvc. Ul Fi | enameVi ewControl |l er"/>

<bean i d="edi t Account For nControl | er"
cl ass="org. spri ngfranmewor k. web. servl et. nvc. Si npl eFornControl | er">

<property name="fornVi ew' ><val ue>account </ val ue></ property>
<property name="successVi ew'><val ue>account - cr eat ed</ val ue></ property>
<property name="conmmandNanme" ><val ue>Account </ val ue></ pr operty>
<property nanme="commandC ass" ><val ue>sanpl es. Account </ val ue></ property>

</ bean>

<beans>

This handler mapping first of al reroutes al requestsin all directoriesfor afile named hel p. ht m to the
someVi ewCont r ol | er , which isa UrlFilenameViewController (more about that can be found in Section 12.3,
“Controllers”). Also, all requests for a resource beginning with vi ew, ending with . ht mi , in the directory ex,
will be rerouted to that specific controller. Furthermore, two mappings have been defined that will match with
the edi t Account For nControl | er.

12.4.3. Adding Handl er I nterceptors

The handler mapping also has a notion of handler interceptors, that can be extremely useful when you want to
apply specific functionality to all requests, for example the checking for a principa or something alike.

Interceptors located in the handler mapping must implement Hand! er I nt er cept or from the

org. spri ngframewor k. web. ser vl et -package. This interface defines three methods, one that will be called
before the actual handler will be executed, one that will be called after the handler is executed, and onethat is
called after the complete request has finished. Those three methods should provide you with enough flexibility
to do all kinds of pre- and post-processing.

Spring Framework Version 1.1.5 128

Web framework

The pr eHandl e method has a boolean return value. Using this value, you can tweak the behavior of the
execution chain. When returning t r ue, the handler execution chain will continue, when returning false, the
DispatcherServlet assumes the interceptor itself has taken care of requests (and for instance rendered an
appropriate view) and does not continue with executing the other interceptors and the actual handler in the
execution chain.

The following example provides an interceptor that intercepts all requests and reroutes the user to a specific
pageif the timeis not between 9 am. and 6 p.m.

<beans>
<bean i d="handl er Mappi ng"
cl ass="org. spri ngfranmewor k. web. servl et. handl er. Si npl eUr | Handl er Mappi ng" >
<property nanme="interceptors">

<list>
<ref bean="officeHourslnterceptor"/>
</list>

</ property>
<property nanme="mappi ngs">
<pr ops>
<prop key="/*.fornl>editAccount For nControl | er </ prop>
<prop key="/*.view' >editAccount FormControl | er </ prop>
</ props>
</ property>
</ bean>

<bean i d="of fi ceHour sl nterceptor"
cl ass="sanpl es. Ti nreBasedAccessl nt er cept or" >
<property nanme="openi ngTi me" ><val ue>9</ val ue></ property>
<property nanme="cl osi ngTi me" ><val ue>18</ val ue></ pr operty>
</ bean>
<beans>

package sanpl es;
public class Ti mreBasedAccessl nterceptor extends Handl erl nterceptorAdapter {

private int openingTi ne;

private int closingTine;

public void set Openi ngTi me(i nt openi ngTi me) {
t hi s. openi ngTi me = openi ngTi ne;

}

public void setC osingTine(int closingTinme) {
this.cl osingTime = cl osi ngTi ne;

publ i ¢ bool ean preHandl e(
Ht t pSer vl et Request request,
Ht t pSer vl et Response response
bj ect handl er)
throws Exception {
Cal endar cal = Cal endar. getl nstance();
int hour = cal.get(HOUR_COF_DAY);
i f (openingTime <= hour < closingTinme) {
return true;
} else {
response. sendRedi rect ("http://host.conf out si deCf fi ceHours. htm ") ;
return fal se;

}

Any reguest coming in, will be intercepted by the Ti reBasedAccessl nt er cept or, and if the current timeis
outside office hours, the user will be redirect to a static html file, saying for instance he can only access the
website during office hours.

Asyou can see, Spring has an adapter to make it easy for you to extend the Handl er | nt er cept or .

12.5. Views and resolving them

Spring Framework Version 1.1.5 129

Web framework

No MV C framework for web applications is without a way to address views. Spring provides view resolvers,
which enable you to render models in a browser without tying yourself to a specific view technology.
Out-of-the-box, Spring enables you to use Java Server Pages, Velocity templates and XSLT views, for
example. Chapter 13, Integrating view technologies has details of integrating various view technologies.

The two classes which are important to the way Spring handles views are the Vi ewResol ver and the vi ew. The
Vi ew interface addresses the preparation of the request and hands the request over to one of the view
technologies. The Vi ewResol ver provides a mapping between view names and actual views.

12.5.1. ViewResolvers

As discussed before, al controllersin the Spring web framework, return aModel AndVvi ewinstance. Viewsin
Spring are addressed by aview name and are resolved by aviewresolver. Spring comes with quite afew view
resolvers. Well list most of them and then provide a couple of examples.

Table12.5. View resolvers

ViewResolver Description

AbstractCachingViewResol ver Abstract view resolver taking care of caching views. Lots of views need
preparation before they can be used, extending from this viewresolver
enables caching of views

XmlViewResolver Implementation of ViewResolver that accepts a config file written in
XML to the same DTD as Spring's bean factories

ResourceBundleViewResolver Implementation of ViewResolver that uses bean definitionsin a
ResourceBundle, specified by the bundle basename. The bundleis
typically defined in a propertiesfile, located in the classpath

UrlBasedViewResolver Simple implementation of ViewResolver that allows for direct
resolution of symbolic view names to URLSs, without an explicit
mapping definition. Thisis appropriate if your symbolic names match
the names of your view resources in a straightforward manner, without
the need for arbitrary mappings

Internal ResourceViewResolver Convenience subclass of UrlBasedViewResolver that supports
InternalResourceView (i.e. Servlets and JSPs), and subclasses like
JstlView and TilesView. The view classfor all views generated by this
resolver can be specified via setViewClass. See
UrlBasedViewResolver's javadocs for details

VeocityViewResolver / Convenience subclass of UrlBasedViewResolver that supports
FreeMarkerViewResolver VelocityView (i.e. Velocity templates) or FreeMarkerView respectively
and custom subclasses of them

As an example, when using JSP for a view technology you can use the the Ur | BasedVi ewResol ver . Thisview
resolver translates view names to a URL and hands the request over the RequestDispatcher to render the view.

<bean i d="vi ewResol ver"
cl ass="org. spri ngframewor k. web. servl et. vi ew. Ur| BasedVi ewResol ver" >
<property name="prefix"><val ue>/ EB- | NF/ j sp/ </ val ue></ pr operty>
<property name="suffix"><val ue>.j sp</val ue></ property>
</ bean>

Spring Framework Version 1.1.5 130

Web framework

When returning t est as aviewname, this view resolver will hand the request over to the RequestDispatcher
that'll send the request to/ WEB- | NF/ j sp/ test . j sp.

When mixing different view technologies in aweb application, you can use the ResourceBundleViewResolver:

<bean id="vi ewResol ver"
cl ass="org. spri ngframewor k. web. servl et. vi ew. Resour ceBundl eVi ewResol ver" >
<property name="basenane"><val ue>vi ews</ val ue></ property>
<property name="def aul t Parent Vi ew' ><val ue>par ent Vi ew</ val ue></ pr operty>
</ bean>

The ResourceBundleViewResolver inspects the ResourceBundle identified by the basename and for each view
it is supposed to resolve, it uses the value of the property [vi ewnane] . cl ass asthe view class and the value of
the property [vi ewnane] . url asthe view url. Asyou can see, you can identify a parent view, from which al
view in the properties file sort of extend. Thisway you can specify adefault view class for instance.

A note on caching: subclasses of Abst r act Cachi ngVi ewResol ver cache view instances they've resolved. This
greatly improves performance when using certain view technology. It's possible to turn off the cache, by setting
the cache property to false. Furthermore, if you have the requirement to be able to refresh a certain view at
runtime (for example when aVelocity template has been modified), you can use the r enoveFr onCache(St ri ng
vi ewNare, Local e | oc) method.

12.5.2. Chaining ViewResolvers

Spring supports more than just one view resolver. This allows you to chain resolvers and for example override
specific views in certain circumstances. Chaining is view resolversis pretty straightforward: just add more than
one resolver to your application context and if necessary, set the or der property to specify an order.
Remember: the higher the order property, the later the view resolver will be positioned in the chain.

A chain of view resolvers for example could consist of two, one | nt er nal Resour ceVi ewResol ver (positioned
asthelast resolver) and an xm Vi ewResol ver specifying Excel views (those are not supported by the
Internal ResourceViewResolver):

<bean i d="j spVi ewResol ver"
cl ass="org. spri ngframewor k. web. servl et. vi ew. | nt er nal Resour ceVi ewResol ver ">
<property nanme="order"><val ue>2</val ue></ property>
<property name="vi ewCl ass" >
<val ue>or g. spri ngf ramewor k. web. servl et. vi ew. Jst| Vi ew</ val ue>
</ property>
<property name="prefix"><val ue>/ VEB- | NF/ j sp/ </ val ue></ pr operty>
<property name="suffi x"><val ue>. j sp</val ue></ property>
</ bean>

<bean i d="excel Vi ewResol ver">
cl ass="org. spri ngfranmewor k. web. servl et. vi ew. Xm Vi ewResol ver ">
<property name="order"><val ue>1</val ue></ property>
<property nanme="| ocati on"><val ue>/ \EB- | NF/ vi ews. xml </ val ue></ property>
</ bean>

vi ews. xm
<beans>

<bean name="report" cl ass="org.springframework. exanpl e. Report Excel Vi ew'/ >
</ beans>

If a specific view resolver does not result in aview, Spring will inspect the context to seeif other view
resolvers are configured. If not, it'll throw an Exception. If there are additional view resolvers, it'll continue to
inspect those.

Y ou have to keep something else in mind: the contract of aview resolver mentions that a view resolver can

Spring Framework Version 1.1.5 131

Web framework

return null to indicate the view could not be found. Not al view resolvers do this however! Thisis because the
Internal ResourceViewResolver for example simply cannot detect whether or not the view exists (it uses the
RequestDispatcher internally, and dispatching is the only way to figure out if for example a JSP exists--this can
only be done once). The same holds for the VelocityViewResolver and some others. Check the JavaDoc for the
view resolver to see if you're dealing with aview resolver that does not report non-existing views. As aresult of
this, putting an | nt er nal Resour ceVi ewResol ver inthe chain on a place other than the last, will result in the
chain not being fully inspected, sincethe I nt er nal Resour ceVi ewResol ver will always return aview!

12.6. Using locales

Most parts of Spring's architecture support internationalization, just as the Spring web framework does.
SpringWEB enables you to automatically resolve messages using the client's locale. Thisis done with
Local eResol ver Objects.

When arequest comesin, the DispatcherServlet looks for alocale resolver and if it finds oneiit tries to use it
and set the locale. Using the Request Cont ext . get Local e() method, you can always retrieve the local e that
was resolved by the locale resolver.

Besides the automatic local e resolution, you can a so attach an interceptor to the handler mapping (see
Section 12.4.3, “ Adding HandlerInterceptors’ for more info on that), to change the locale under specific
circumstances, based on a parameter occurring in the request for example.

Localeresolvers and interceptors are all defined inthe or g. spri ngf ramewor k. web. servl et . i 18n package, and
are configured in your application context in the normal way. Here is a selection of the locale resolvers
included in Spring.

12.6.1. Accept Header Local eResol ver

Thislocale resolver inspects the accept - | anguage header in the request that was sent by the browser of the
client. Usualy this header field contains the locale of the client's operating system.

12.6.2. Cooki eLocal eResol ver

Thislocale resolver inspects a Cookie that might exist on the client, to seeif there's alocale specified. If so, it
uses that specific locale. Using the properties of thislocale resolver, you can specify the name of the cookie, as
well as the maximum age.

<bean i d="I| ocal eResol ver" >
<property nanme="cooki eNane"><val ue>cl i ent| anguage</ val ue></ pr operty>

<l-- in seconds. If set to -1, the cookie is not persisted (del eted when browser shuts down) -->
<property nanme="cooki eMaxAge" ><val ue>100000</ val ue></ property>
</ bean>

Thisis an example of defining a Cookiel ocaleResolver.

Table 12.6. Special beansin the WebApplicationContext

Property Default Description
cookieName classname + The name of the cookie
LOCALE
cookieMaxAge Integer. MAX_INT | The maximum time a cookie will stay persistent on the client. If

-1 is specified, the cookie will not be persisted, at least, only

Spring Framework Version 1.1.5 132

Web framework

Property Default Description
until the client shuts down his or her browser

cookiePath / Using this parameter, you can limit the visibility of the cookie to
acertain part of your site. When cookiePath is specified, the
cookie will only be visible to that path, and the paths below

12.6.3. Sessi onLocal eResol ver

The Sessi onLocal eResol ver alowsyou to retrieve locales from the session that might be associated to the
user's request.

12.6.4. Local eChangel nt er cept or

Y ou can build in changing of locales using the Local eChangel nt er cept or . Thisinterceptor needs to be added
to one of the handler mappings (see Section 12.4, “Handler mappings’) and it will detect a parameter in the
request and change the locale (it calls set Local e() on the LocaleResolver that also exists in the context).

<bean i d="I| ocal eChangel nt er cept or"
cl ass="org. spri ngframewor k. web. servl et.i 18n. Local eChangel nt er cept or ">
<property name="paranNanme"><val ue>si t eLanguage</ val ue></ property>
</ bean>

<bean i d="I| ocal eResol ver"
cl ass="org. spri ngfranmewor k. web. servl et.i 18n. Cooki eLocal eResol ver"/ >

<bean i d="ur| Mappi ng"
cl ass="org. spri ngframewor k. web. servl et . handl er. Si npl eUr | Handl er Mappi ng" >
<property nanme="interceptors">

<list>
<ref |ocal ="| ocal eChangel nterceptor"/>
</list>

</ property>
<property nanme="nmappi ngs" >
<pr ops>
<prop key="/**/*_view'>someControll er</prop>
</ props>
</ property>
</ bean>

All callsto all *.view resources containing a parameter named si t eLanguage Will now change the locale. So a
call tonttp://ww. sf.net/hone. vi ew?si t eLanguage=nl Will change the site language to Dutch.

12.7. Using themes

Dummy paragraph

12.8. Spring's multipart (fileupload) support

12.8.1. Introduction

Spring has built-in multipart support to handle fileuploads in web applications. The design for the multipart
support is done with pluggable Mul ti part Resovl er objects, defined in the
org. spri ngfranmewor k. web. mul ti part package. Out of the box, Spring provides MultipartResolver for use

Spring Framework Version 1.1.5 133

Web framework

with Commons FileUpload (http://jakarta.apache.org/commons/fileupload) and COS FileUpload
(http://www.servlets.com/cos). How uploading filesis supported will be described in the rest of this chapter.

By default, no multipart handling will be done by Spring, as some developers will want to handle multiparts
themselves. You'll have to enable it yourself by adding a multipart resolver to the web application's context.
After you've done that, each request will be inspected for a multipart that it might contain. If no such multipart
isfound, the request will continue as expected. However, if amultipart is found in the request, the
MultipartResolver that has been declared in your context will resolve. After that, the multipart attribute in your
request will be treated as any other attributes.

12.8.2. Using the Ml ti part Resol ver

The following example shows how to use the CommonsMul ti part Resol ver :

<bean id="mul ti part Resol ver"
cl ass="org. spri ngframewor k. web. mul ti part. commons. ConmonsMil ti part Resol ver ">

<I-- one of the properties available; the maximumfile size in bytes -->
<property name="nmaxUpl oadSi ze" >
<val ue>100000</ val ue>
</ property>
</ bean>

Thisis an example using the CosMul t i part Resol ver :

<bean i d="nul ti part Resol ver"
cl ass="org. springfranmewor k. web. mul ti part. cos. CosMul ti part Resol ver">

<!-- one of the properties available; the maximumfile size in bytes -->
<property nanme="naxUpl oadSi ze" >
<val ue>100000</ val ue>
</ property>
</ bean>

Of course you need to stick the appropriate jarsin your classpath for the multipart resolver to work. In the case
of the CommonsM ultipartResolver, you need to use comons- f i | eupl oad. j ar, whilein the case of the
CosMultipartResolver, usecos. j ar.

Now that you have seen how to set Spring up to handle multipart requests, let's talk about how to actually use
it. When the Spring DispatcherServlet detects a Multipart request, it activates the resolver that has been
declared in your context and hands over the request. What it basically doesis wrap the current

Ht t pSer vl et Request iNto aMul ti part Ht t pSer vl et Request that has support for multiparts. Using the
MultipartHttpServletRequest you can get information about the multiparts contained by this request and
actually get the multiparts themselves in your controllers.

12.8.3. Handling a fileupload in a form

After the MultipartResolver has finished doing its job, the request will be processed like any other. To useit,
you create aform with an upload field, then let Spring bind the file on your form. Just as with any other
property that's not automagically convertible to a String or primitive type, to be able to put binary datain your
beans you have to register a custom editor with the Ser vl et Request Dat abi nder . There are a couple of editors
available for handling files and setting the results on abean. Theresast ri ngMil ti part Edi t or capable of
converting files to Strings (using a user-defined character set) and there's aByt eArrayMil ti part Edi t or which
convertsfilesto byte arrays. They function just as the cust onDat eEdi t or does.

o, to be able to upload files using aform in awebsite, declare the resolver, a url mapping to a controller that
will process the bean, and the controller itself.

Spring Framework Version 1.1.5 134

http://jakarta.apache.org/commons/fileupload
http://www.servlets.com/cos

Web framework

<beans>

<bean i d="nul ti part Resol ver"

cl ass="org. springfranmewor k. web. mul ti part. conmons. ConmonsMul ti part Resol ver"/ >

<bean i d="url Mappi ng" cl ass="org. spri ngfranewor k. web. servl et. handl er. Si npl eUr | Handl er Mappi ng" >

<property nanme="nmappi ngs">
<pr ops>
<prop key="/upl oad. forni>fil eUpl oadControl | er </ prop>
</ props>
</ property>
</ bean>

<bean id="fil eUpl oadControl |l er" class="exanpl es. Fil eUpl oadControl |l er">

<property name="commandCl ass" ><val ue>exanpl es. Fi | eUpl oadBean</ val ue></ property>

<property name="fornVvi ew' ><val ue>fi | eupl oadf or nx/ val ue></ property>
<property name="successVi ew'><val ue>confirmati on</val ue></ property>
</ bean>

</ beans>

After that, create the controller and the actual bean holding the file property

/1 snippet from Fil eUpl oadControl | er
public class FileUpl oadController extends SinpleFornController {

protected Mddel AndVi ew onSubmi t (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response
bj ect command,
Bi ndException errors)
throws Servl et Exception, | CException {

/] cast the bean
Fi | eUpl oadBean bean = (Fil eUpl oadBean) conmand

/] let's see if there's content there
byte[] file = bean.getFile();
if (file == null) {
/1 hmm that's strange, the user did not upload anything
}

/1 well, let's do nothing with the bean for now and return
return super.onSubnit(request, response, command, errors);

}

protected voi d initBinder(
Ht t pSer vl et Request request,
Ser vl et Request Dat aBi nder bi nder)
throws Servl et Exception {
// to actually be able to convert Miltipart instance to byte[]
/1 we have to register a customeditor (in this case the
/1 ByteArrayMul tipartEditor

bi nder. regi st er Cust onEdi tor (byte[].cl ass, new ByteArrayMiltipartFileEditor());

/1 now Spring knows how to handl e mul tipart object and convert them

}

/1 snippet from Fil eUpl oadBean
public class FileUpl oadBean {
private byte[] file;

public void setFile(byte[] file) {
this.file = file;

}

public byte[] getFile() {
return file;
}
}

Asyou can see, the FileUploadBean has a property typed byte[] that holds the file. The controller registersa

Spring Framework Version 1.1.5

135

Web framework

custom editor to let Spring know how to actually convert the multipart objects the resolver has found to
properties specified by the bean. In these examples, nothing is done with the byte[] property of the bean itself,
but in practice you can do whatever you want (save it in a database, mail it to somebody, etcetera).

But we're still not finished. To actually let the user upload something, we have to create aform:

<htm >
<head>
<title>Upload a file please</title>
</ head>
<body>
<h1>Pl ease upload a file</hl>
<f orm nmet hod="post" action="upl oad. forni' enctype="nultipart/formdata">
<input type="file" name="file"/>
<i nput type="submt"/>
</form
</ body>
</htm >

Asyou can see, we've created afield named after the property of the bean that holds the byte[]. Furthermore
we've added the encoding attribute which is necessary to let the browser know how to encode the multipart
fields (do not forget this!). Right now everything should work.

12.9. Handling exceptions

Spring provides Handl er Except i onResol ver s t0 ease the pain of unexpected exceptions occurring while your
request is being handled by a controller which matched the request. Handl er Except i onResol ver s somewhat
resembl e the exception mappings you can define in the web application descriptor web. xn . However, they
provide amore flexible way to handle exceptions. They provide information about what handler was executing
when the exception was thrown. Furthermore, a programmatic way of handling exception gives you many more
options for how to respond appropriately before the request is forwarded to another URL (the same end result
as when using the servlet specific exception mappings).

Besides implementing the Hand! er Except i onResol ver , which is only a matter of implementing the

resol veExcept i on(Excepti on, Handl er) method and returning aMdel AndVi ew, you may also use the

Si npl eMappi ngExcept i onResol ver . Thisresolver enables you to take the class name of any exception that
might be thrown and map it to aview name. Thisis functionally equivalent to the exception mapping feature
from the Servlet API, but it's also possible to implement more fine grained mappings of exceptions from
different handlers.

Spring Framework Version 1.1.5 136

Chapter 13. Integrating view technologies

13.1. Introduction

One of the areasin which Spring excelsisin the separation of view technologies from the rest of the MVC
framework. For example, deciding to use Velocity or XSLT in place of an existing JSP is primarily a matter of
configuration. This chapter covers the major view technologies that work with Spring and touches briefly on
how to add new ones. This chapter assumes you are already familiar with Section 12.5, “Views and resolving
them” which covers the basics of how views in general are coupled to the MV C framework.

13.2. JSP & JSTL

Spring provides a couple of out-of-the-box solutions for JSP and JSTL views. Using JSP or JSTL isdone using
anormal viewresolver defined in the WebA pplicationContext. Furthermore, of course you need to write some
JSPsthat will actually render the view. This part describes some of the additional features Spring providesto
facilitate JSP devel opment.

13.2.1. View resolvers

Just as with any other view technology you're integrating with Spring, for JSPs you'll need aview resolver that
will resolve your views. The most commonly used view resolvers when developing with JSPs are the

I nt er nal Resour ceVi ewResol ver and the Resour ceBundl eVi ewResol ver . Both are declared in the

WebA pplicationContext:

The Resour ceBundl eVi ewResol ver:

<bean i d="vi ewResol ver" cl ass="org. spri ngframework. web. servl et. vi ew. Resour ceBundl eVi ewResol ver" >
<property name="basenane"><val ue>vi ews</ val ue></ property>

</ bean>

And a sanple properties file is uses (views.properties in WEB-INF/cl asses):
wel cone. cl ass=or g. spri ngf ramewor k. web. servl et. vi ew. Jst| Vi ew
wel cone. url =/ VEB- | NF/ j sp/ wel cone. j sp

product Li st. cl ass=or g. spri ngf ramewor k. web. servl et. vi ew. Jst| Vi ew
product Li st. url =/ VEB- | NF/ j sp/ productlist.jsp

Asyou can see, the ResourceBundleViewResolver needs a properties file defining the view names mapped to
1) aclassand 2) a URL. With a ResourceBundleViewResolver you can mix different types of views using only
one resolver.

<bean i d="vi ewResol ver" cl ass="org. spri ngframework. web. servl et. vi ew. | nt er nal Resour ceVi ewResol ver" >
<property name="vi ewCl ass" ><val ue>or g. spri ngf ramewor k. web. servl et . vi ew. Jst| Vi ew</ val ue></ property>
<property nanme="prefix"><val ue>/ WEB- | NF/ j sp/ </ val ue></ property>
<property nanme="suffix"><val ue>.j sp</val ue></ property>

</ bean>

The InternalResourceBundleViewResolver can be configured for using JSPs as described above. As a best
practice, we strongly encourage placing your JSP files in aadirectory under the WEB-INF directory, so there
can be no direct access by clients.

13.2.2. 'Plain-old' JSPs versus JSTL

Spring Framework Version 1.1.5 137

Integrating view technologies

When using Java Standard Tag Library you must use a special view class, the Jst | vi ew, as JSTL needs some
preparation before things such as the i18N features will work.

13.2.3. Additional tags facilitating development

Spring provides data binding of request parameters to command objects as described in earlier chapters. To
facilitate the development of JSP pages in combination with those data binding features, Spring provides afew
tags that make things even easier. All Spring tags have html escaping features to enable or disable escaping of
characters.

Thetag library descriptor (TLD) isincluded inthespri ng. j ar aswell in the distribution itself. More
information about the individual tags can be found online:
http://www.springframework.org/docs/taglib/index.html.

13.3. Tiles

Itis possible to integrate Tiles - just as any other view technology - in web applications using Spring. The
following describesin a broad way how to do this.

13.3.1. Dependencies

To be able to use Tiles you have to have a couple of additional dependenciesincluded in your project. The
following isthelist of dependencies you need.

® struts version 1.1
® commons-beanutils
* commons-di gester

* comons-| oggi ng

e commons-| ang

The dependencies are all available in the Spring distribution.

13.3.2. How to integrate Tiles

To be ableto use Tiles, you have to configure it using files containing definitions (for basic information on
definitions and other Tiles concepts, please have alook at http://jakarta.apache.org/struts). In Spring thisis
done using the Ti | esConfi gur er . Have alook at the following piece of example ApplicationContext
configuration:

<bean id="tilesConfigurer" class="org.springframework.web.servlet.viewtiles.TilesConfigurer">
<property nanme="factoryC ass">
<val ue>org. apache. struts.tiles.xm Definition.|18nFactorySet</val ue>
</ property>
<property name="definitions">
<list>
<val ue>/ VEB- | NF/ def s/ gener al . xm </ val ue>
<val ue>/ VEB- | NF/ def s/ wi dget s. xm </ val ue>
<val ue>/ \EEB- | NF/ def s/ admi ni strat or. xm </ val ue>
<val ue>/ VEB- | NF/ def s/ cust ormer . xm </ val ue>
<val ue>/ WEB- | NF/ def s/ t enpl at es. xm </ val ue>
</list>
</ property>
</ bean>

Spring Framework Version 1.1.5 138

http://www.springframework.org/docs/taglib/index.html
http://jakarta.apache.org/struts

Integrating view technologies

Asyou can seg, there are five files containing definitions, which are all located in the WEB-INF/defs directory.
At initialization of the WebA pplicationContext, the fileswill be loaded and the definitionsfactory defined by
thef act oryd ass-property isinitialized. After that has been done, the tilesincludesin the definition files can
be used as views within your Spring web application. To be able to use the views you have to have a

Vi ewResol ver just aswith any other view technology used with Spring. Below you can find two possibilities,
the | nt er nal Resour ceVi ewResol ver and the Resour ceBundl eVi ewResol ver.

13.3.2.1. I nter nal Resour ceVi ewResol ver

The InternalResourceViewResolver instantiates the given vi ewc ass for each view it hasto resolve.

<bean i d="vi ewResol ver" cl ass="org. spri ngframework. web. servl et. vi ew. | nt er nal Resour ceVi ewResol ver" >
<property name="request Cont ext Attri bute"><val ue>r equest Cont ext </ val ue></ pr operty>
<property name="vi ewCl ass" >
<val ue>org. spri ngfranmewor k. web. servlet.view tiles. Til esVi en</val ue>
</ property>
</ bean>

13.3.2.2. Resour ceBundl eVi ewResol ver

The ResourceBundleViewResolver has to be provided with a property file containing viewnames and
viewclasses the resolver can use:

<bean id="vi ewResol ver" cl ass="org. springframework. web. servl et.vi ew. Resour ceBundl eVi ewResol ver" >
<property name="basenane"><val ue>vi ews</val ue></ property>
</ bean>

wel comeVi ew. cl ass=or g. spri ngf ramewor k. web. servlet.view. tiles. Til esVi ew
wel coneVi ew. url =wel cone (this is the nane of a definition)

vet sVi ew. cl ass=or g. spri ngf ramewor k. web. servl et.view tiles. TilesView
vetsVi ew. url =vet sVi ew (again, this is the name of a definition)

fi ndOaner sForm cl ass=or g. spri ngf ramewor k. web. servl et. vi ew. Jst| Vi ew
fi ndOmer sForm ur | =/ WEB- | NF/ j sp/ fi ndOmners. j sp

Asyou can see, when using the ResourceBundleViewResolver, you can mix view using different view
technologies.

13.4. Velocity & FreeMarker

Vel ocity [http://jakarta.apache.org/velocity] and FreeMarker [http://www.freemarker.org] are two templating
languages that can both be used as view technol ogies within Spring MV C applications. The languages are quite
similar and serve similar needs and so are considered together in this section. For semantic and syntactic
differences between the two languages, see the FreeMarker [http://www.freemarker.org] web site.

13.4.1. Dependencies

Y our web application will need to includevel oci ty- 1. x. x. j ar Of freenar ker-2. x. j ar in order to work with
Velocity or FreeMarker respectively and conmrons- col | ecti ons. j ar heeds also to be available for Velocity.
Typically they areincluded in the veB- | NF/ | i b folder where they are guaranteed to be found by a J2EE server
and added to the classpath for your application. It is of course assumed that you already havethespring.jar in
your VEB- | NF/ | i b folder too! The latest stable velocity, freemarker and commons collections jars are supplied

Spring Framework Version 1.1.5 139

http://jakarta.apache.org/velocity
http://www.freemarker.org
http://www.freemarker.org

Integrating view technologies

with the Spring framework and can be copied from therelevant /1 i b/ sub-directories. If you make use of
Spring's dateT ool Attribute or numberTool Attribute in your Velocity views, you will also need to include the
vel oci ty-tool s-generic-1.x.jar

13.4.2. Context configuration

A suitable configuration isinitialized by adding the relevant configurer bean definition to your *-servlet.xml as
shown below:

<l--
This bean sets up the Velocity environment for us based on a root path for tenplates
Optionally, a properties file can be specified for nore control over the Velocity
environment, but the defaults are pretty sane for file based tenplate | oading

-->

<bean
i d="vel oci t yConfi g"
cl ass="org. spri ngframewor k. web. servl et.vi ew. vel ocity. Vel oci tyConfi gurer">
<property name="resour ceLoader Pat h" ><val ue>/ VEB- | NF/ vel oci ty/ </ val ue></ pr operty>

</ bean>

<l--
Vi ew resol vers can al so be configured with ResourceBundles or XM_ files. |If you need
di fferent view resolving based on Local e, you have to use the resource bundl e resol ver.
-->
<bean
i d="vi ewResol ver"
cl ass="org. spri ngframewor k. web. servl et. vi ew. vel ocity. Vel oci t yVi ewResol ver" >
<property nanme="cache"><val ue>true</val ue></ property>
<property name="prefix"><val ue></val ue></ property>
<property name="suffix"><val ue>. v/ val ue></ property>
</ bean>
<!-- freemarker config -->
<bean

i d="freenar ker Confi g"

cl ass="org. spri ngframewor k. web. servl et. vi ew. freenar ker. Fr eeMar ker Conf i gurer">

<property name="tenpl at eLoader Pat h" ><val ue>/ V\EEB- | NF/ f r eemar ker / </ val ue></ pr operty>
</ bean>

<I--
Vi ew resol vers can al so be configured with ResourceBundles or XM_ files. |If you need
di fferent view resolving based on Locale, you have to use the resource bundle resol ver.
-->
<bean
i d="vi ewResol ver"
cl ass="org. spri ngfranmewor k. web. servl et. vi ew. freemar ker . Fr eeMar ker Vi enResol ver " >
<property nanme="cache"><val ue>true</val ue></property>
<property name="prefix"><val ue></val ue></ property>
<property name="suffix"><val ue>. ftl </val ue></property>
</ bean>

NB: For non web-apps add a Vel oci t yConfi gur ati onFact or yBean Of a
FreeMar ker Conf i gur at i onFact or yBean to your application context definition file.

13.4.3. Creating templates

Y our templates need to be stored in the directory specified by the * Conf i gur er bean shown abovein

Section 13.4.2, “ Context configuration” This document does not cover details of creating templates for the two
languages - please see their relevant websites for information. 1f you use the view resolvers highlighted, then
the logical view names relate to the template file namesin similar fashion to I nt er nal Resour ceVi ewResol ver
for JSP's. So if your controller returns a Model AndView abject containing a view name of "welcome" then the
resolvers will ook for the/ WEB- | NF/ f r eemar ker / wel come. ft1 OF / V\EB- | NF/ vel oci t y/ wel cone. vmtemplate
as appropriate.

Spring Framework Version 1.1.5 140

Integrating view technologies

13.4.4. Advanced configuration

The basic configurations highlighted above will be suitable for most application requirements, however
additional configuration options are available for when unusual or advanced requirements dictate.

13.4.4.1. velocity.properties

Thisfileis completely optional, but if specified, contains the values that are passed to the Velocity runtimein
order to configure velocity itself. Only required for advanced configurations, if you need thisfile, specify its
location on the Vel oci t yConfi gur er bean definition above.

<bean
i d="vel oci t yConfi g"
cl ass="org. spri ngframewor k. web. servl et.vi ew. vel ocity. Vel oci tyConfi gurer">
<property nanme="configLocati on">
<val ue>/ VEB- | NF/ vel oci ty. properties</val ue>
</ property>
</ bean>

Alternatively, you can specify velocity properties directly in the bean definition for the Vel ocity config bean by
replacing the "configLocation" property with the following inline properties.

<bean
i d="vel oci tyConfi g"
cl ass="org. spri ngframewor k. web. servl et. vi ew vel ocity. Vel oci tyConfi gurer">
<property name="vel oci tyProperties">
<pr ops>
<prop key="resource.| oader">fil e</prop>
<prop key="file.resource. | oader.cl ass">
org. apache. vel ocity. runtinme.resource. | oader. Fi | eResour ceLoader
</ pr op>
<prop key="file.resource.| oader. path">${webapp. root}/WEB-| NF/ vel oci t y</ pr op>
<prop key="file.resource. | oader.cache">fal se</ prop>
</ props>
</ property>
</ bean>

Refer to the APl documentation

[http:/imww.springframework.org/docs/api/org/springframework/ui/vel ocity/V el acityEngineFactory.html] for
Spring configuration of Velocity, or the Velocity documentation for examples and definitions of the

vel oci ty. properti es fileitself.

13.4.4.2. FreeMarker

FreeMarker 'Settings and 'SharedV ariables can be passed directly to the FreeMarker Conf i gur at i on object
managed by Spring by setting the appropriate bean properties on the Fr eeMar ker Conf i gur er bean. The
freemar ker Set t i ngs property requiresaj ava. util. Properti es object and thefreenar ker Vari abl es
property requiresaj ava. util . Map.

<bean
i d="freemarker Config"
cl ass="org. spri ngfranmewor k. web. servl et. vi ew. f reenmar ker. Fr eeMar ker Conf i gurer" >
<property name="tenpl at eLoader Pat h" ><val ue>/ \iEB- | NF/ f r eemar ker / </ val ue></ pr operty>
<property name="freemarker Vari abl es" >
<n’ap>
<entry key="xm _escape"><ref |ocal ="fnXm Escape"/></entry>
</ map>
</ property>
</ bean>

<bean id="fmXm Escape" class="freemarker.tenplate.utility.Xm Escape"/>

Spring Framework Version 1.1.5 141

http://www.springframework.org/docs/api/org/springframework/ui/velocity/VelocityEngineFactory.html

Integrating view technologies

See the FreeMarker documentation for details of settings and variables as they apply to the Confi gurati on
object.

13.4.5. Bind support and form handling

Spring provides atag library for use in JSP's that contains (amongst other things) a<spri ng: bi nd> tag. Thistag
primarily enables forms to display values from form backing objects and to show the results of failed
validations from aval i dat or inthe web or business tier. From version 1.1, Spring now has support for the
same functionality in both Velocity and FreeMarker, with additional convenience macros for generating form
input elements themselves.

13.4.5.1. the bind macros

A standard set of macros are maintained within the spri ng. j ar file for both languages, so they are always
available to a suitably configured application. However they can only be used if your view sets the bean
property exposeSpri ngMacr oHel pers tO t rue . The same property can be set on Vel oci t yVi ewResol ver Or
FreeMar ker Vi ewResol ver too if you happen to be using it, in which case al of your views will inherit the value
from it. Note that this property isnot required for any aspect of HTML form handling except where you wish
to take advantage of the Spring macros. Below is an example of aview.properties file showing correct
configuration of such aview for either language;

per sonFor nV. cl ass=or g. spri ngf ramewor k. web. servl et. vi ew. vel oci ty. Vel oci tyVi ew
per sonFor nV. ur | =per sonFor m vm
per sonFor nV. exposeSpri ngMacr oHel per s=true

per sonFor nF. cl ass=or g. spri ngf ramewor k. web. servl et . vi ew. f r eemar ker . Fr eeMar ker Vi ew
per sonFor nF. ur | =per sonForm ft|
per sonFor nF. exposeSpri ngMacr oHel per s=true

Some of the macros defined in the Spring libraries are considered internal (private) but no such scoping exists
in the macro definitions making all macros visible to calling code and user templates. The following sections
concentrate only on the macros you need to be directly calling from within your templates. If you wish to view
the macro code directly, the files are called spring.vm / spring.ftl and are in the packages

org. springframewor k. web. servl et. vi ew. vel oci ty Or

org. springframewor k. web. servl et. view. freemar ker respectively.

13.4.5.2. simple binding

In your html forms (vm / ftl templates) that act as the ‘formView' for a Spring form controller, you can use code
similar to the following to bind to field values and display error messages for each input field in similar fashion
to the JSP equivalent. Note that the name of the command abject is"command" by default, but can be
overridden in your MV C configuration by setting the ‘commandName' bean property on your form controller.
Example code is shown below for the per sonFor mv and per sonFor nF views configured earlier;

<I-- velocity macros are automatically available -->
<ht ni >
<form action="" nethod="POST" >

Nane:

#springBi nd("conmmand. nane")
<i nput type="text"
name="${ st at us. expr essi on}"
val ue="$! st at us. val ue" />

#f oreach($error in $status.error Messages) $error
 #end

<input type="submt" val ue="submt"/>

Spring Framework Version 1.1.5 142

Integrating view technologies

</form
</htm >
<I-- freenmarker nacros have to be inported into a nanmespace. W strongly
recommend sticking to 'spring’ -->
<#import "spring.ftl" as spring />
<ht ni >
<form action="" nethod="POST" >
Nane:

<@pring. bi nd "command. nanme" />
<i nput type="text"
name="${spring. st at us. expressi on}"
val ue="${spring. st atus. val ue?defaul t ("")}" />

<#list spring.status.errorMessages as error> ${error}
 </ #list>

<input type="submt" val ue="submt"/>
</formp

</htm >

#springBi nd / <@pri ng. bi nd> requires a ‘path’ argument which consists of the name of your command object
(it will be ‘command' unless you changed it in your FormController properties) followed by a period and the
name of the field on the command object you wish to bind to. Nested fields can be used too such as
"command.address.street”. The bi nd macro assumes the default HTML escaping behavior specified by the
ServletContext parameter def aul t Ht nl Escape in web.xml

The optional form of the macro called #spri ngBi ndEscaped / <@pri ng. bi ndEscaped> takes a second
argument and explicitly specifies whether HTML escaping should be used in the status error messages or
values. Set to true or false asrequired. Additional form handling macros simplify the use of HTML escaping
and these macros should be used wherever possible. They are explained in the next section.

13.4.5.3. form input generation macros

Additional convenience macros for both languages simplify both binding and form generation (including
validation error display). It is never necessary to use these macros to generate form input fields, and they can be
mixed and matched with smple HTML or calls direct to the spring bind macros highlighted previoudly.

The following table of available macros show the VTL and FTL definitions and the parameter list that each
takes.

Table 13.1. table of macro definitions

macro VTL definition FTL definition
message (output a string from a #spri ngMessage($code) <@pring. nessage code/ >
resource bundle based on the code
parameter)
messageT ext (output astring from #spri ngMessageText ($code <@pring. messageText code,
aresource bundle based on the $defaul t) defaul t/ >

code parameter, falling back to the
value of the default parameter)

url (prefix arelative URL with the | #springUrl ($rel ativeUrl) <@pring.url relativeUrl/>
application's context root)

formlnput (standard input field #springFor m nput ($pat h <@pring. form nput path,

Spring Framework Version 1.1.5 143

Integrating view technologies

macr o
for gathering user input)

formHiddenlnput * (hidden input
field for submitting non-user input)

formPasswor dlnput * (standard
input field for gathering
passwords. Note that no value will
ever be populated in fields of this

type)

VTL definition
$attributes)

#spri ngFor nHi ddenl nput ($pat h
$attri butes)

#spri ngFor mPasswor dI nput ($pat h
$attributes)

FTL definition

attributes, fieldTypel/>

<@pring. f ornHi ddenl nput

path, attributes/>

<@pring. f or mMPasswor dl nput

path, attributes/>

formTextarea (large text field for
gathering long, freeform text input)

formSingleSelect (drop down box
of options allowing asingle
required value to be selected)

formMultiSelect (alist box of
options allowing the user to select
0 or more values)

#spri ngFor nirext ar ea($pat h
$attributes)

#spri ngFor nSi ngl eSel ect (
$path $options $attributes)

#springFor mvul ti Sel ect ($path
$options Sattributes)

<@pring. fornText area path,
attributes/>

<@pring. fornsi ngl eSel ect

path, options, attributes/>

<@pring.formvul ti Sel ect

path, options, attributes/>

formRadioButtons (a set of radio
buttons allowing a single selection
to be made from the available
choices)

formCheckboxes (a set of
checkboxes allowing O or more
values to be selected)

showErrors (simplify display of
validation errors for the bound
field)

#spri ngFor nRadi oBut t ons($pat h
$options $separat or
$attri butes)

#spri ngFor nCheckboxes($pat h
$opti ons $separ at or
$attributes)

#spri ngShowEr r or s($separ at or
$cl assOr Styl e)

<@pring. f or nRadi oBut t ons
pat h, options separator,

attributes/>

<@pring. f or nmCheckboxes pat h,
options, separator,

attributes/>

<@pring. showErrors

separator, classOStylel>

* In FTL (FreeMarker), these two macros are not actually required as you can use the normal f or nl nput
macro, specifying 'hi dden' or 'passwor d' asthe value for thefi el dType parameter.

The parameters to any of the above macros have consistent meanings:

» path: the name of thefield to bind to (ie "command.name™)

» options: aMap of all the available values that can be selected from in the input field. The keysto the map
represent the values that will be POSTed back from the form and bound to the command object. Map
objects stored against the keys are the labels displayed on the form to the user and may be different from the
corresponding values posted back by the form. Usually such amap is supplied as reference data by the
controller. Any Map implementation can be used depending on required behavior. For strictly sorted maps,
asSor t edvap such asaTr eevap with a suitable Comparator may be used and for arbitrary Maps that should
return values in insertion order, use aLi nkedHashMap or aLi nkedMap from commons-collections.

* separator: where multiple options are available as discreet elements (radio buttons or checkboxes), the

sequence of characters used to separate each onein thelist (ie "
").

attributes: an additional string of arbitrary tags or text to be included within the HTML tag itself. This string

Spring Framework Version 1.1.5

144

Integrating view technologies

is echoed literally by the macro. For example, in atextareafield you may supply attributes as ‘rows="5"

cols="60"" or you could pass style information such as 'style="border:1px solid silver"'.

e classOrStyle: for the showErrors macro, the name of the CSS class that the span tag wrapping each error
will use. If no information is supplied (or the value is empty) then the errors will be wrapped in

tags.

Examples of the macros are outlined below somein FTL and somein VTL. Where usage differences exist
between the two languages, they are explained in the notes.

13.4.5.3.1. Input Fields

<!-- the Nanme field exanple from above using formmacros in VIL -->
Nane:
#spri ngFor m nput (" conmand. name" "")

#spri ngShowkrror s("
" "")

The formInput macro takes the path parameter (command.name) and an additional attributes parameter which
is empty in the example above. The macro, along with all other form generation macraos, performs an implicit
spring bind on the path parameter. The binding remains valid until a new bind occurs so the showErrors macro
doesn't need to pass the path parameter again - it smply operates on whichever field abind was last created for.

The showErrors macro takes a separator parameter (the characters that will be used to separate multiple errors
on agiven field) and also accepts a second parameter, thistime a class name or style attribute. Note that
FreeMarker is able to specify default values for the attributes parameter, unlike Ve ocity, and the two macro
calls above could be expressed asfollowsin FTL:

<@pring. form nput "command. nane"/ >
<@pring. showErrors "
"/>

Output is shown below of the form fragment generating the name field, and displaying a validation error after
the form was submitted with no value in the field. Validation occurs through Spring's Validation framework.

The generated HTML looks like this:

Nane:
<i nput type="text" name="nane" val ue=""
>

r equi r ed</ b>

The formTextarea macro works the same way as the formlnput macro and accepts the same parameter list.
Commonly, the second parameter (attributes) will be used to pass style information or rows and cols attributes
for the textarea.

13.4.5.3.2. Selection Fields

Four selection field macros can be used to generate common Ul value selection inputsin your HTML forms.

« formSingleSelect

 formMultiSelect

Spring Framework Version 1.1.5 145

Integrating view technologies

+ formRadioButtons

* formCheckboxes

Each of the four macros accepts a Map of options containing the value for the form field, and the |abel
corresponding to that value. The value and the label can be the same.

An example of radio buttonsin FTL is below. The form backing object specifies a default value of 'London’ for
thisfield and so no validation is necessary. When the form is rendered, the entire list of citiesto choose from is
supplied as reference data in the model under the name 'cityMap'.

Town:
<@pring. f orrRadi oButt ons "conmmand. addr ess. town", cityMap, "" />

Thisrenders aline of radio buttons, one for each valuein ci t yMap using the separator "". No additional
attributes are supplied (the last parameter to the macro is missing). The cityMap uses the same String for each
key-vaue pair in the map. The map's keys are what the form actually submits as POSTed request parameters,
map values are the label s that the user sees. In the example above, given alist of three well known citiesand a
default value in the form backing object, the HTML would be

Town:
<input type="radi 0" name="address.town" val ue="London"

>

London

<i nput type="radi 0" nane="address.town" val ue="Paris"
checked="checked"

>

Pari s

<input type="radi 0" nanme="address.town" val ue="New Yor k"

>
New Yor k

If your application expects to handle cities by internal codes for example, the map of codes would be created
with suitable keys like the example below.

protected Map referenceData(Htt pServl et Request request) throws Exception {
Map cityMap = new Li nkedHashMap();
ci tyMap. put ("LDN', "London");
ci tyMap. put ("PRS", "Paris");
ci tyMap. put ("NYC', "New York");

Map m = new HashMap();
m put ("ci tyMap", cityMap)
return m

The code would now produce output where the radio values are the relevant codes but the user still seesthe
more user friendly city names.

Town:
<i nput type="radi 0" nane="address.town" val ue="LDN'

>

London

<i nput type="radi 0" nane="address.town" val ue="PRS"
checked="checked"

>

Pari s

<i nput type="radi 0" nane="address.town" val ue="NYC'

>

Spring Framework Version 1.1.5 146

Integrating view technologies

New Yor k

13.4.5.4. overriding HTML escaping and making tags XHTML compliant

Default usage of the form macros above will result in HTML tags that are HTML 4.01 compliant and that use
the default value for HTML escaping defined in your web.xml as used by Spring's bind support. In order to
make the tags XHTML compliant or to override the default HTML escaping value, you can specify two
variablesin your template (or in your model where they will be visible to your templates). The advantage of
specifying them in the templates is that they can be changed to different values later in the template processing
to provide different behavior for different fields in your form.

To switch to XHTML compliance for your tags, specify avalue of ‘true’ for a model/context variable named
xhtml Compliant:

for Velocity..
#set ($spri ngxht ml Conpl i ant = true)

<#-- for FreeMarker -->
<#tassign xhtm Conpliant = true in spring>

Any tags generated by the Spring macros will now be XHTML compliant after processing this directive.
In similar fashion, HTML escaping can be specified per field:

<#-- until this point, default HTM. escaping is used -->

<#assign htm Escape = true in spring>
<#-- next field will use HTM. escaping -->
<@pring.form nput "conmmand. nane" />

<#assign htm Escape = false in spring>
<#-- all future fields will be bound with HTM. escaping off -->

13.5. XSLT

XSLT isatransformation language for XML and is popular as a view technology within web applications.
XSLT can be agood choice as aview technology if your application naturally deals with XML, or if your
model can easily be converted to XML. The following section shows how to produce an XML document as
model data and have it transformed with XSLT in a Spring application.

13.5.1. My First Words

Thisexampleisatrivia Spring application that creates alist of words in the Controller and adds them to the
model map. The map is returned along with the view name of our XSLT view. See Section 12.3, “Controllers’
for details of Spring Control | ers. The XSLT view will turn the list of words into asimple XML document
ready for transformation.

13.5.1.1. Bean definitions

Configuration is standard for a simple Spring application. The dispatcher servlet config file contains areference
to aVvi ewRresol ver , URL mappings and asingle controller bean..

<bean i d="honmeControl | er"cl ass="xslt. HoneControl ler"/>

Spring Framework Version 1.1.5 147

Integrating view technologies

..that implements our word generation 'logic'.

13.5.1.2. Standard MVC controller code

The controller logic is encapsulated in a subclass of AbstractController, with the handler method being defined
like s0..

prot ect ed Mbdel AndVi ew handl eRequest | nt er nal (
Ht t pSer vl et Request req,
Ht t pSer vl et Response resp)
throws Exception {

Map map = new HashMap();
Li st wordLi st = new ArrayList();

wor dLi st . add("hel | 0");
wor dLi st. add("worl d");

map. put (“wordLi st", wordList);

return new Mbdel AndVi ew(" hone", nap);

So far we've done nothing that's XSLT specific. The model data has been created in the same way as you would
for any other Spring MV C application. Depending on the configuration of the application now, that list of
words could be rendered by JSP/JSTL by having them added as request attributes, or they could be handled by
Velocity by adding the object to the VelocityContext. In order to have XSLT render them, they of course have
to be converted into an XML document somehow. There are software packages available that will
automatically 'domify' an object graph, but within Spring, you have complete flexibility to create the DOM
from your model in any way you choose. This prevents the transformation of XML playing too great a part in
the structure of your model data which is a danger when using tools to manage the domification process.

13.5.1.3. Convert the model data to XML

In order to create a DOM document from our list of words or any other model data, we subclass

org. springframewor k. web. servl et. vi ew. xsl t. Abst ract Xsl t Vi ew. In doing so, we must implement the
abstract method cr eat eDonNode() . The first parameter passed to this method is our model Map. Here's the
complete listing of the HomePage classin our trivial word application - it uses JDOM to build the XML
document before converting it to the required W3C Node, but thisis simply because | find JIDOM (and Dom4J)
easier API'sto handle than the W3C API.

package xslt;
// inmports omtted for brevity
public class HonePage extends Abstract XsltView {

prot ect ed Node creat eDonNode(
Map nodel, String rootNane, H tpServl et Request req, HttpServletResponse res
) throws Exception {

org.jdom Docunent doc = new org.jdom Docunent ();
El ement root = new El ement (r oot Nane) ;
doc. set Root El enent (root) ;

Li st words = (List) nodel.get("wordList");
for (lterator it = words.iterator(); it.hasNext();) {
String nextWord = (String) it.next();
El ement e = new El enent ("word");
e. set Text (next Word) ;
root . addContent (e);

}

/] convert JDOM doc to a WBC Node and return
return new DOMOut putter (). output(doc);

Spring Framework Version 1.1.5 148

Integrating view technologies

13.5.1.3.1. Adding stylesheet parameters

A series of parameter name/value pairs can optionally be defined by your subclass which will be added to the
transformation object. The parameter names must match those defined in your XSLT template declared with
<xsl : par am name="nyPar amt' >def aul t Val ue</ xsl : par an®> T0 specify the parameters, override the method
get Par amet er s() from AbstractXsltView and return a vap of the name/value pairs. If your parameters need to
derive information from the current request, you can (from version 1.1) override the

get Par armet er s(Ht t pSer vl et Request request) method instead.

13.5.1.3.2. Formatting dates and currency

Unlike JSTL and Velocity, XSLT hasrelatively poor support for locale based currency and date formatting. In
recognition of the fact, Spring provides a helper class that you can use from within your cr eat eDomNode()
methods to get such support. See the javadocs for

org. springframewor k. web. servl et. vi ew. xsl t. For mat Hel per

13.5.1.4. Defining the view properties

The views.propertiesfile (or equivalent xml definition if you're using an XML based view resolver aswedid in
the Velocity examples above) looks like this for the one-view application that is'My First Words..

hone. cl ass=xsl t. HonePage
home. st yl esheet Locat i on=/ V\EEB- | NF/ xsl / home. xsl t
hore. r oot =wor ds

Here, you can see how the view istied in with the HomePage class just written which handles the model
domification in the first property '.class. The stylesheetlL ocation property obviously pointsto the XSLT file
which will handle the XML transformation into HTML for us and the final property ".root' is the name that will
be used as the root of the XML document. This gets passed to the HomePage class above in the second
parameter to the cr eat eDomNode method.

13.5.1.5. Document transformation

Finally, we have the XSLT code used for transforming the above document. As highlighted in the
views.propertiesfile, itiscalled hore. xsl t and it livesin the war file under VEB- | NF/ xs| .

<?xm version="1.0"?>

<xsl:styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni' >
<xsl :output method="text/htm " omt-xm -decl aration="yes"/>

<xsl:tenplate match="/">
<htm >
<head><title>Hel | o! </titl e></head>
<body>

<hl>My First Words</hil>

<xsl:for-each sel ect ="wordLi st/word">
<xsl : val ue-of select="."/>

</ xsl : f or - each>

</ body>
</htm >
</ xsl : t enpl at e>

</ xsl : styl esheet >

Spring Framework Version 1.1.5 149

Integrating view technologies

13.5.2. Summary

A summary of the files discussed and their location in the WAR file is shown in the ssimplified WAR structure
below.

Pr oj ect Root

|
+- WebCont ent

I
+ VEB- | NF

+- cl asses

+-

|

| +- HomePageControl |l er.cl ass
| +- HonePage. cl ass
I

+-

|

|

|

|

|

| . .
| Vi ews. properties
|

+ lib

| |

| +- spring.jar

|

+- xsl

| |

|

|

+-

+- hone. xsl t

frontcontroll er-servlet.xn

Y ou will also need to ensure that an XML parser and an XSLT engine are available on the classpath. JDK 1.4
provides them by default, and most J2EE containers will aso make them available by default, but it's a possible
source of errorsto be aware of.

13.6. Document views (PDF/Excel)

13.6.1. Introduction

Returning an HTML page isn't always the best way for the user to view the model output, and Spring makes it
simple to generate a PDF document or an Excel spreadsheet dynamically from the model data. The document is
the view and will be streamed from the server with the correct content type to (hopefully) enable the client PC
to run their spreadsheet or PDF viewer application in response.

In order to use Excel views, you need to add the 'poi’ library to your classpath, and for PDF generation, the
iText.jar. Both areincluded in the main Spring distribution.

13.6.2. Configuration and setup

Document based views are handled in an ailmost identical fashionto XSLT views, and the following sections
build upon the previous one by demonstrating how the same controller used in the XSLT exampleisinvoked to
render the same model as both a PDF document and an Excel spreadsheet (which can also be viewed or
manipulated in Open Office).

13.6.2.1. Document view definitions

Firstly, let's amend the views.properties file (or xml equivaent) and add a simple view definition for both
document types. The entire file now looks like this with the XSLT view shown from earlier..

hone. cl ass=xsl t . HonePage

Spring Framework Version 1.1.5 150

Integrating view technologies

hone. st yl esheet Locat i on=/ EB- | NF/ xs| / hone. xsl t
hore. r oot =wor ds

x| . cl ass=excel . HomePage

pdf . cl ass=pdf . HonePage

If you want to start with a template spreadsheet to add your model data to, specify the location as the 'url’
property in the view definition

13.6.2.2. Controller code

The controller code we'll use remains exactly the same from the XSLT example earlier other than to change the
name of the view to use. Of course, you could be clever and have this selected based on a URL parameter or
some other logic - proof that Spring really is very good at decoupling the views from the controllers!

13.6.2.3. Subclassing for Excel views

Exactly aswe did for the XSLT example, we'll subclass suitable abstract classesin order to implement custom
behavior in generating our output documents. For Excel, thisinvolves writing a subclass of

org. spri ngfranmewor k. web. servl et. vi ew. docunent . Abst r act Excel Vi ew and implementing the

bui | dExcel Docunent

Here's the complete listing for our Excel view which displays the word list from the model map in consecutive
rows of the first column of a new spreadsheet..

package excel;
// inports omtted for brevity
public class HonePage extends Abstract Excel View {

prot ected voi d buil dExcel Docunent (
Map nodel ,
HSSFWor kbook wb,
Ht t pSer vl et Request req,
Ht t pSer vl et Response resp)
throws Exception {

HSSFSheet sheet;
HSSFRow sheet Row;
HSSFCel | cel | ;

// Go to the first sheet

/1 getSheetAt: only if wb is created from an existing docunent
// sheet = wb. get SheetAt(0);

sheet = wb. creat eSheet ("Spring");

sheet . set Def aul t Col uimW dt h((short)12);

/Il wite a text at Al
cell = getCell(sheet, 0, 0);
set Text (cel |, " Spri ng- Excel test");

Li st words = (List) nodel.get("wordList");
for (int i=0; i < words.size(); i++) {
cell = getCell(sheet, 2+i, 0);
set Text(cell, (String) words.get(i));

If you now amend the controller such that it returnsx! as the name of the view (return new
Mbdel AndVi ew(" x| ", map) ;) and run your application again, you should find that the Excel spreadsheet is
created and downloaded automagically when you request the same page as before.

Spring Framework Version 1.1.5 151

Integrating view technologies

13.6.2.4. Subclassing for PDF views

The PDF version of the word list is even simpler. Thistime, the class extends
org. springframewor k. web. servl et . vi ew. docunent . Abst r act Pdf Vi ew and implements the
bui | dPdf Docunent () method as follows..
package pdf;
/'l inmports onmitted for brevity
public cl ass PDFPage extends AbstractPdfView {
protected voi d buil dPdf Docunent (
Map nodel ,
Docunent doc,
Pdf Witer witer,
Ht t pSer vl et Request req,
Ht t pSer vl et Response resp)
throws Exception {
Li st words = (List) nodel.get("wordList");
for (int i=0; i<words.size(); i++)

doc. add(new Paragraph((String) words.get(i)));

}

Once again, amend the controller to return the pdf view with aret urn new Mdel AndVi ew(" pdf ", map); and
reload the URL in your application. Thistime a PDF document should appear listing each of the wordsin the
model map.

13.7. JasperReports

JasperReports (http://jasperreports.sourceforge.net) is a powerful, open-source reporting engine that supports
the creation of report designs using an easily understood XML file formats. JasperReportsis capable of
rendering reports output into four different formats. CSV, Excel, HTML and PDF.

13.7.1. Dependencies

Y our application will need to include the latest release of JasperReports, which at the time of writing was 0.6.1.
JasperReportsitself depends on the following projects:

¢ BeanShell

» Commons BeanUtils
» Commons Collections
e Commons Digester

e Commons Logging

e iText

* POI

JasperReports also requires a JAXP compliant XML parser.

Spring Framework Version 1.1.5 152

http://jasperreports.sourceforge.net

Integrating view technologies

13.7.2. Configuration

To configure JasperReports views in your Appl i cat i onCont ext you have to define avi ewResol ver to map
view names to the appropriate view class depending on which format you want your report rendered in.

13.7.2.1. Configuring the Vi ewResol ver

Typically, you will use the Resour ceBundl eVi ewResol ver t0 map view namesto view classes and filesin a
propertiesfile
<bean id="vi ewResol ver" class="org. springframework. web. servl et.vi ew. Resour ceBundl eVi ewResol ver ">
<property nanme="basenane">
<val ue>vi ews</ val ue>

</ property>
</ bean>

Here we've configured an instance of Resour ceBundl eVi ewResol ver Which will look for view mappings in the
resource bundle with base name vi ews. The exact contents of thisfileis described in the next section.

13.7.2.2. Configuring the vi ens

Spring contains five different View implementations for JasperReports four of which corresponds to one of the
four output formats supported by JasperReports and one that allows for the format to be determined at runtime:

Table 13.2. Jasper Reports Vi ew Classes

Class Name Render Format

Jasper Repor t sCsvVi ew csv

Jasper Report sHt m Vi ew HTML

Jasper Report sPdf Vi ew PDF

Jasper Report sX| sVi ew Microsoft Excel

Jasper Report sMul ti For mat Vi ew Decided at runtime (see Section 13.7.2.4, “Using

JasperReportsMultiFormatView™)

Mapping one of these classesto aview name and areport fileis simply a matter of adding the appropriate
entries into the resource bundle configured in the previous section as shown here:

si nmpl eReport. cl ass=org. spri ngframewor k. web. servl et. vi ew. j asperreports. Jasper Repor t sPdf Vi ew
si npl eReport. url =/ WEB- | NF/ r eport s/ Dat aSour ceReport . j asper

Here you can see that the view with name, si npl eRepor t , iS mapped to the Jasper Repor t sPdf Vi ew class. This
will cause the output of this report to be rendered in PDF format. Theur| property of the view is set to the
location of the underlying report file.

13.7.2.3. About Report Files

JasperReports has two distinct types of report file: the design file, which hasa. j rxm extension, and the
compiled report file, which hasa. j asper extension. Typicaly, you use the JasperReports Ant task to compile

Spring Framework Version 1.1.5 153

Integrating view technologies

your . jrxni designfileintoa. | asper file before deploying it into your application. With Spring you can map
either of these files to your report file and Spring will take care of compiling the . j rxm file on the fly for you.
Y ou should note that after a. j rxni fileis compiled by Spring, the compiled report is cached for the life of the
application. To make changes to the file you will need to restart your application.

13.7.2.4. Using Jasper Repor t sMul ti For mat Vi ew

The Jasper Report sMul ti For mat Vi ew allows for report format to be specified at runtime. The actual rendering
of the report is delegated to one of the other JasperReports view classes - the Jasper Repor t sMul ti For mat Vi ew
class simply adds awrapper layer that allows for the exact implementation to be specified at runtime.

The Jasper Repor t sMul ti For mat Vi ew class introduces two concepts: the format key and the discriminator key.
The Jasper Report sMul ti For mat Vi ew class uses the mapping key to lookup the actual view implementation
class and uses the format key to lookup up the mapping key. From a coding perspective you add an entry to
your model with the formay key as the key and the mapping key as the value, for example:

publ i c Model AndVi ew handl eSi npl eReport Mul ti (Ht t pSer vl et Request request,
Ht t pSer vl et Response response) throws Exception {

String uri = request.get Request URI ();
String format = uri.substring(uri.lastlndexOf(".") + 1);

Map nodel = get Mbdel ();
nodel . put ("format", fornat);

return new Model AndVi ew"si npl eReportMulti", nodel);

In this example, the mapping key is determined from the extension of the request URI and is added to the
model under the default format key: f or mat . If you wish to use a different format key then you can configure
thisusing the f or mat Key property of the Jasper Repor t sMul ti For mat Vi ew Class.

By default the following mapping key mappings are configured in Jasper Repor t sMil ti For mat Vi ew.

Table 13.3. Jasper ReportsM ultiFor matView Default Mapping Key Mappings

Mapping Key View Class

csv Jasper Report sCsvVi ew
html Jasper Report sHt ml Vi ew
pdf Jasper Repor t sPdf Vi ew
xls Jasper Report sXl sVi ew

So in the example above arequest to URI /foo/myReport.pdf would be mapped to the Jasper Repor t sPdf Vi ew
class. Y ou can override the mapping key to view class mappings using the f or mat Mappi ngs property of
Jasper Report sMul ti For mat Vi ew.

13.7.3. Populating the Mdel AndVi ew

In order to render your report correctly in the format you have chosen, you must supply Spring with all of the
data needed to populate your report. For JasperReports this means you must passin all report parameters along
with the report datasource. Report parameters are simple name/value pairs and can be added be to the map for
your model as you would add any name/value pair.

Spring Framework Version 1.1.5 154

Integrating view technologies

When adding the datasource to the model you have two approaches to choose from. The first approach is to add
an instance of JRDat aSour ce Of Col | ect i on t0 the model Map under any arbitrary key. Spring will then locate
this object in the model and treat it as the report datasource. For example, you may populate your model like
this:

private Map get Model () {
Map nodel = new HashMap();
Col | ecti on beanData = get BeanData();
nodel . put (" nyBeanDat a", beanDat a) ;
return nodel ;

The second approach is to add the instance of JRDat aSour ce Or Col | ect i on under a specific key and then
configure this key using the r epor t Dat akey property of the view class. In both cases Spring will instances of
Col | ecti on in@JRBeanCol | ecti onDat aSour ce instance. For example:

private Map get Model () {
Map nodel = new HashMap();
Col | ecti on beanData = get BeanData();
Col | ection soneData = get SoneDat a();
nodel . put (" nyBeanDat a", beanDat a) ;
nodel . put ("soneDat a", soneData);
return nodel;

}

Here you can see that two Col | ect i on instances are being added to the model. To ensure that the correct oneis
used, we simply modify our view configuration as appropriate:

si npl eReport. cl ass=org. spri ngframewor k. web. servl et. vi ew. j asperreports. Jasper Report sPdf Vi ew
si npl eReport. url =/ WEB- | NF/ report s/ Dat aSour ceReport.j asper
si npl eReport . report Dat akey=nmyBeanDat a

Be aware that when using the first approach, Spring will use the first instance of JRDat aSour ce Of Col | ecti on
that it encounters. If you need to place multiple instances of JRDat aSour ce Or Col | ect i on into the model then
you need to use the second approach.

13.7.4. Working with Sub-Reports

JasperReports provides support for embedded sub-reports within your master report files. There are awide
variety of mechanisms for including sub-reports in your report files. The easiest way isto hard code the report
path and the SQL query for the sub report into your design files. The drawback of this approach is obvious - the
values are hard-coded into your report files reducing reusability and making it harder to modify and update
report designs. To overcome this you can configure sub-reports declaratively and you can include additional
data for these sub-reports directly from your controllers.

13.7.4.1. Configuring Sub-Report Files

To control which sub-report files are included in a master report using Spring, your report file must be
configured to accept sub-reports from an external source. To do this you declare a parameter in your report file
likethis:

<par anet er nanme="Product sSubReport" cl ass="net. sf.jasperreports. engi ne.Jasper Report"/>
Then, you define your sub-report to use this sub-report parameter:

<subr eport >
<reportEl enent isPrintRepeatedVal ues="fal se" x="5" y="25" w dt h="325"
hei ght =" 20" i sRenpvelLi neWhenBl ank="true" backcol or="#ffcc99"/>

Spring Framework Version 1.1.5 155

Integrating view technologies

<subreport Paraneter name="City">
<subr eport Par anet er Expr essi on><! [CDATA[$F{ ci t y}]] ></ subr epor t Par anet er Expr essi on>
</ subr eport Par anet er >
<dat aSour ceExpr essi on><! [CDATA[$P{ SubReport Dat a}]] ></ dat aSour ceExpr essi on>
<subr eport Expression class="net. sf.jasperreports. engi ne. Jasper Report">
<! [CDATA[$P{ Pr oduct sSubReport}]] ></ subreport Expressi on>
</ subreport>

This defines a master report file that expects the sub-report to be passed in as an instance of
net.sf.jasperreports. engi ne. Jasper Report s under the parameter Pr oduct sSubRepor t . When configuring
your Jasper view class, you can instruct Spring to load areport file and pass into the JasperReports engine as a
sub-report using the subRepor t Ur | s property:

<property nanme="subReportUrls">
<n’ap>
<entry key="Product sSubReport">
<val ue>/ WEB- | NF/ r epor t s/ subReport Chi |l d. j rxm </ val ue>
</entry>
</ map>
</ property>

Here, the key of the vap corresponds to the name of the sub-report parameter in th report design file, and the
entry isthe URL of the report file. Spring will load this report file, compiling it if necessary, and will passinto
the JasperReports engine under the given key.

13.7.4.2. Configuring Sub-Report Data Sources

This step is entirely optiona when using Spring configure your sub-reports. If you wish, you can still configure
the data source for your sub-reports using static queries. However, if you want Spring to convert data returned
in your Model AndVi ew into instances of JRDat aSour ce then you need to specify which of the parametersin your
Model AndVi ew Spring should convert. To do this configure the list of parameter names using the

subRepor t Dat aKeys property of the your chosen view class.

<property nanme="subReport Dat aKeys" >
<val ue>SubReport Dat a</ val ue>
</ property>

Here, the key you supply MUST correspond to both the key used in your Mbdel AndVi ew and the key used in
your report design file.

13.7.5. Configuring Exporter Parameters

If you have special requirements for exporter configuration - perhaps you want a specific page size for your
PDF report, then you can configure these exporter parameters declaratively in your Spring configuration file
using the expor t er Par anet er s property of the view class. The expor t er Par anet er s property istyped as Map
and in your configuration the key of an entry should be the fully-qualified name of a static field that contains
the exporter parameter definition and the value of an entry should be the value you want to assign to the
parameter. An example of thisis shown below:

<bean i d="ht m Report"
cl ass="org. springframewor k. web. servl et.vi ew. j asperreports. Jasper ReportsH m Vi ew'>
<property name="url">
<val ue>/ WEB- | NF/ r epor t s/ si npl eReport.jrxm </ val ue>
</ property>
<property name="exporterParaneters">
<n’ap>
<entry key="net.sf.jasperreports.engine. export.JRHt m Exporter Paranet er. HTM._FOOTER" >
<val ue>Foot er by Spri ng!
& t;/td> & t;td w dt h="50% > ; &np; nbsp; & t;/td> & t;/tré>
</table> & t;/body> & t;/htm >
</val ue>
</entry>
</ map>

Spring Framework Version 1.1.5 156

Integrating view technologies

</ property>
</ bean>

Here you can see that the Jasper Repor t sHt m Vi ew is being configured with an exporter parameter for
net.sf.jasperreports. engi ne. export. JRH mi Export er Par amet er . HTM__FOOTER Which will output afooter
in the resulting HTML.

Spring Framework Version 1.1.5 157

Chapter 14. Integrating with other web frameworks

14.1. Introduction

Spring can be easily integrated into any Java-based web framework. All you need to do isto declare the

Cont ext Loader Li st ener
[http://www.springframework.org/docs/api/org/springframework/web/context/ContextL oaderListener.html] in
your web. xni and use a contextConfigLocation <context-param> to set which context filesto load.

The <context-param>:

<cont ext - par an>

<par am nane>cont ext Conf i gLocat i on</ par am nane>

<par am val ue>/ WEB- | NF/ appl i cat i onCont ext *. xm </ par am val ue>
</ cont ext - par an>

The <listener>:

<li stener>
<l i stener-cl ass>org. spri ngfranewor k. web. cont ext . Cont ext Loader Li st ener</1i st ener-cl ass>
</listener>

NOTE: Listeners were added to the Servlet API in version 2.3. If you have a Servlet 2.2 container, you can use
the Cont ext Loader Ser vl et
[http://www.springframework.org/docs/api/org/springframework/web/context/ ContextL oader Servlet.html] to
achieve this same functionality.

If you don't specify the contextConfigLocation context parameter, the Cont ext Loader Li st ener will look for a
/WEB-1NF/applicationContext.xml file to load. Once the context files are loaded, Spring creates a

WebAppl i cat i onCont ext

[http://www.springframework.org/docs/api/org/springframework/web/context/\WebA pplicationContext.html]
object based on the bean definitions and puts it into the Ser v et Cont ext .

All Javaweb frameworks are built on top of the Servlet API, so you can use the following code to get the
Appl i cat i onCont ext that Spring created.

WebAppl i cati onCont ext ctx = WebApplicati onContextUils.get WbApplicati onCont ext (servl et Context);

ThewebAppl i cati onContext Utils
[http:/imwww.springframework.org/docs/api/org/springframework/web/context/support/WebA pplicationContextUtil s.ntml]
classisfor convenience, so you don't have to remember the name of the Ser vl et Cont ext attribute. Its
getWebApplicationContext() method will return null if an object doesn't exist under the

VebAppl i cat i onCont ext . ROOT_WEB_APPLI| CATI ON_CONTEXT_ATTRI BUTE key. Rather than risk getting

Null PointerExceptions in your application, it's better to use the getRequiredWebApplicationContext() method.

This method throws an Exception when the ApplicationContext is missing.

Once you have areference to the webAppl i cat i onCont ext , you can retrieve beans by their name or type. Most
devel opers retrieve beans by name, then cast them to one of their implemented interfaces.

Fortunately, most of the frameworks in this section have simpler ways of looking up beans. Not only do they
make it easy to get beans from the BeanFact or y, but they also alow you to use dependency injection on their
controllers. Each framework section has more detail on its specific integration strategies.

Spring Framework Version 1.1.5 158

http://www.springframework.org/docs/api/org/springframework/web/context/ContextLoaderListener.html
http://www.springframework.org/docs/api/org/springframework/web/context/ContextLoaderServlet.html
http://www.springframework.org/docs/api/org/springframework/web/context/WebApplicationContext.html
http://www.springframework.org/docs/api/org/springframework/web/context/support/WebApplicationContextUtils.html

Integrating with other web frameworks

14.2. JavaServer Faces

JavaServer Faces (JSF) is a component-based, event-driven web framework. According to Sun Microsystem's
JSF Overview [http://java.sun.com/j2eeljavaserverfaces/overview.html], JSF technology includes:

« A set of APIsfor representing Ul components and managing their state, handling events and input
validation, defining page navigation, and supporting internationalization and accessibility.

* A JavaServer Pages (JSP) custom tag library for expressing a JavaServer Faces interface within a JSP page.

14.2.1. DelegatingVariableResolver

The easiest way to integrate your Spring middle-tier with your JSF web layer is to use the

Del egati ngVari abl eResol ver

[http:/imww.springframework.org/docs/api/org/springframework/web/jsf/Del egatingV ariableResol ver.html]
class. To configure this variable resolver in your application, you'll need to edit your faces-context.xml. After
the opening <f aces- conf i g> element, add an <appl i cat i on> element and a<vari abl e-r esol ver > element
within it. The value of the variable resolver should reference Spring's Del egat i ngVari abl eResol ver :

<faces-config>
<appl i cati on>
<vari abl e-resol ver >or g. spri ngf ramewor k. web. j sf. Del egati ngVari abl eResol ver </ vari abl e-r esol ver >
<l ocal e-confi g>
<defaul t -1 ocal e>en</ def aul t -1 ocal e>
<support ed-| ocal e>en</ support ed-1| ocal e>
<support ed- | ocal e>es</ supported- | ocal e>
</l ocal e-confi g>
<message- bundl e>nmessages</ nessage- bundl e>
</ appl i cation>

By specifying Spring's variable resolver, you can configure Spring beans as managed properties of your
managed beans. The Del egat i ngVari abl eResol ver Will first delegate value lookups to the default resolver of
the underlying JSF implementation, and then to Spring's root WebAppl i cat i onCont ext . Thisallowsyou to
easily inject dependencies into your JSF-managed beans.

Managed beans are defined in your f aces- confi g. xn file. Below is an example where #{userManager} isa
bean that's retrieved from Spring's BeanFact ory.

<managed- bean>
<managed- bean- nane>user Li st </ neanaged- bean- nane>
<managed- bean- cl ass>com what ever . j sf. User Li st </ managed- bean- cl ass>
<managed- bean- scope>r equest </ managed- bean- scope>
<managed- pr operty>
<property- name>user Manager </ pr opert y- nane>
<val ue>#{ user Manager } </ val ue>
</ managed- pr operty>
</ managed- bean>

The Del egat i ngVvari abl eResol ver isthe recommended strategy for integrating JSF and Spring. If you're
looking for more robust integration features, you might take a look at the JSF-Spring
[http://jsf-spring.sourceforge.net/] project.

14.2.2. FacesContextULtils

A custom VariableResolver works well when mapping your properties to beans in faces-config.xml, but at
times you may need to grab a bean explicitly. The FacesCont ext Uti | s

Spring Framework Version 1.1.5 159

http://java.sun.com/j2ee/javaserverfaces/overview.html
http://www.springframework.org/docs/api/org/springframework/web/jsf/DelegatingVariableResolver.html
http://jsf-spring.sourceforge.net/
http://www.springframework.org/docs/api/org/springframework/web/jsf/FacesContextUtils.html

Integrating with other web frameworks

[http://www.springframework.org/docs/api/org/springframework/webl/jsf/FacesContextUtils.html] class makes
thiseasy. It'ssimilar to webAppl i cati onCont ext Ut i | s, except that it takes aFacesCont ext parameter rather
than aSer vl et Cont ext parameter.

Appl i cationContext ctx = FacesContext Uil s. get WbApplicati onCont ext (FacesCont ext. get Currentl|nstance());

14.3. Struts

Struts [http://struts.apache.org] is the de facto web framework for Java applications, mainly because it was one
of the first to be released (June 2001). Invented by Craig McClanahan, Strutsis an open source project hosted
by the Apache Software Foundation. At the time, it greatly simplified the JSP/Servlet programming paradigm
and won over many devel opers who were using proprietary frameworks. It simplified the programming model,
it was open source, and it had alarge community, which alowed the project to grow and become popular
among Java web developers.

To integrate your Struts application with Spring, you have two options:

e Configure Spring to manage your Actions as beans, using the Cont ext Loader Pl ugi n, and set their
dependenciesin a Spring context file.

e Subclass Spring's ActionSupport classes and grab your Spring-managed beans explicitly using a
getWebApplicationContext() method.

14.3.1. ContextLoaderPlugin

The Cont ext Loader Pl ugi n
[http:/imvww.springframework.org/docs/api/org/springframework/web/struts/ContextL oaderPlugln.html] isa
Struts 1.1+ plug-in that loads a Spring context file for the Struts Act i onSer vl et . This context refers to the root
WebAppl i cati onCont ext (loaded by the Cont ext Loader Li st ener) asits parent. The default name of the
context file is the name of the mapped servlet, plus -serviet.xml. If Acti onSer vl et isdefined in web.xml as
<servl et - name>act i on</ ser vl et - name>, the default is /WEB-INF/action-serviet.xml.

To configure this plug-in, add the following XML to the plug-ins section near the bottom of your
struts-config.xml file:

<pl ug-in cl assNane="or g. spri ngf ramewor k. web. st ruts. Cont ext Loader Pl ugl n"/ >

The location of the context configuration files can be customized using the "contextConfigL ocation" property.

<pl ug-in cl assNane="org. spri ngf ramewor k. web. st rut s. Cont ext Loader Pl ugl n" >
<set-property property="contextConfigLocation"
val ue="/WEB- | NF/ acti on-servl et.xnl . xnl,
/ VEEB- | NF/ appl i cati onCont ext . xm "/ >
</ plug-in>

It is possible to use this plugin to load all your context files, which can be useful when using testing tools like
StrutsTestCase. StrutsTestCase's MockSt r ut sTest Case Won't initialize Listeners on startup so putting all your
context filesin the plugin is aworkaround. A bug has been filed
[http://sourceforge.net/tracker/index.php?func=detail & aid=1088866& group id=391908& atid=424562] for this
issue.

After configuring this plug-in in struts-config.xml, you can configure your Action to be managed by Spring.

Spring Framework Version 1.1.5 160

http://struts.apache.org
http://www.springframework.org/docs/api/org/springframework/web/struts/ContextLoaderPlugIn.html
http://sourceforge.net/tracker/index.php?func=detail&aid=1088866&group_id=39190&atid=424562

Integrating with other web frameworks

Spring 1.1.3 provides two ways to do this:

e Override Struts default Request Processor With Spring's Del egat i ngRequest Pr ocessor .
» Usethe DelegatingActionProxy class in the type attribute of your <act i on- mappi ng>.

Both of these methods allow you to manage your Actions and their dependencies in the action-context.xml file.
The bridge between the Action in struts-config.xml and action-serviet.xml is built with the action-mapping's
"path" and the bean's "name". If you have the following in your struts-config.xml file:

<action path="/users" .../>

Y ou must define that Action's bean with the "/users' name in action-serviet.xml:

<bean nanme="/users" .../>

14.3.1.1. DelegatingRequestProcessor

To configure the Del egat i ngRequest Pr ocessor
[http:/iwww.springframework.org/docs/api/org/springframework/web/struts/Del egatingRequestProcessor.html]
in your struts-config.xml file, override the "processorClass' property in the <controller> element. These lines
follow the <action-mapping> element.

<control |l er>
<set-property property="processorC ass"
val ue="org. spri ngf ramewor k. web. st rut s. Del egati ngRequest Processor"/ >
</controller>

After adding this setting, your Action will automatically be looked up in Spring's context file, no matter what
the type. In fact, you don't even need to specify atype. Both of the following snippets will work:

<action path="/user" type="com whatever.struts. UserAction"/>
<action path="/user" type="com whatever. struts. UserAction"/>

If you're using Struts' modules feature, your bean names must contain the module prefix. For example, an
action defined as <acti on pat h="/user"/> with module prefix "admin" regquires a bean name with <bean
nanme="/adm n/ user"/>.

NOTE: If you're using Tilesin your Struts application, you must configure your <controller> with the
Del egati ngTi | esRequest Processor
[http://www.springframework.org/docs/api/org/springframework/web/struts/Del egating TilesRequestProcessor.html].

14.3.1.2. DelegatingActionProxy

If you have a custom Request Processor and can't use the Del egat i ngTi | esRequest Processor , YOU Can use
the Del egat i ngAct i onProxy
[http:/imww.springframework.org/docs/api/org/springframework/web/struts/Del egatingA ctionProxy.html] as
the type in your action-mapping.

<action path="/user" type="org.springframework.web. struts. Del egati ngActi onProxy"
name="user Forni' scope="request" validate="fal se" paraneter="net hod">

<forward name="list" path="/userlList.jsp"/>
<forward name="edit" path="/userFormjsp"/>
</ action>

Spring Framework Version 1.1.5 161

http://www.springframework.org/docs/api/org/springframework/web/struts/DelegatingRequestProcessor.html
http://www.springframework.org/docs/api/org/springframework/web/struts/DelegatingTilesRequestProcessor.html
http://www.springframework.org/docs/api/org/springframework/web/struts/DelegatingActionProxy.html

Integrating with other web frameworks

The bean definition in action-servliet.xml remains the same, whether you use a custom Request Pr ocessor Of
the Del egat i ngAct i onPr oxy.

Defining your Action in a context file enables you to use Spring's 10C features, as well as instantiate new
Actions for ach request. To use this feature, add singleton="false" to your action's bean definition.

<bean nane="/user" singleton="fal se" autow re="byNanme"
cl ass="org. appf use. web. User Acti on"/ >

14.3.2. ActionSupport Classes

As previously mentioned, you can retrieve the WebAppl i cat i onCont ext from the Ser vl et Cont ext using the
WebA pplicationContextUtils class. An easier way is to extend Spring's Action classes for Struts. For example,
instead of subclassing Struts' Action class, you can subclass Spring's Act i onSuppor t
[http:/iwww.springframework.org/docs/api/org/springframework/web/struts/ActionSupport.html] class.

The Act i onSupport class provides additional convenience methods, like getWebApplicationContext(). Below is
an example of how you might use thisin an Action:

public class UserAction extends Di spatchActionSupport {

public ActionForward execute(Acti onMappi ng mappi ng,
ActionForm form
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
throws Exception {
if (log.isDebugEnabled()) {
| og. debug("entering 'delete' method...");
}

WebAppl i cati onCont ext ctx = get WebAppl i cati onCont ext () ;
User Manager ngr = (User Manager) ctx. get Bean("user Manager");

/1 talk to manager for business |ogic

return mappi ng. fi ndForward("success");

Spring includes subclasses for all of the standard Struts Actions - the Spring versions merely have Support
appended to the name:

* ActionSupport
[http://www.springframework.org/docs/api/org/springframework/web/struts/A ctionSupport.html],
e DispatchActi onSupport
[http:/imvww.springframework.org/docs/api/org/springframework/web/struts/DispatchA ctionSupport.html],
* LookupDi spat chActi onSupport
[http:/imww.springframework.org/docs/api/org/springframework/web/struts/L ookupDispatchA ctionSupport.htmi]
and
* Mappi ngDi spat chAct i onSupport
[http:/imvww.springframework.org/docs/api/org/springframework/web/struts/M appi ngDi spatchA ctionSupport.html].

The recommended strategy is to use the approach that best suits your project. Subclassing makes your code
more readable, and you know exactly how your dependencies are resolved. However, using the

Cont ext Loader Pl ugi n allow you to easily add new dependenciesin your context XML file. Either way, Spring
provides some nice options for integrating the two frameworks.

Spring Framework Version 1.1.5 162

http://www.springframework.org/docs/api/org/springframework/web/struts/ActionSupport.html
http://www.springframework.org/docs/api/org/springframework/web/struts/ActionSupport.html
http://www.springframework.org/docs/api/org/springframework/web/struts/DispatchActionSupport.html
http://www.springframework.org/docs/api/org/springframework/web/struts/LookupDispatchActionSupport.html
http://www.springframework.org/docs/api/org/springframework/web/struts/MappingDispatchActionSupport.html

Integrating with other web frameworks

14.4. Tapestry

Tapestry is a powerful, component-oriented web application framework from Apache's Jakarta project
(http://jakarta.apache.org/tapestry). While Spring has its own powerful web ui layer, there are a number of
unique advantages to building a J2EE application using a combination of Tapestry for the web ui, and the
Spring container for the lower layers. This document attempts to detail afew best practices for combining these
two frameworks. It is expected that you are relatively familiar with both Tapestry and Spring Framework
basics, so they will not be explained here. General introductory documentation for both Tapestry and Spring
Framework are available on their respective web sites.

14.4.1. Architecture

A typical layered J2EE application built with Tapestry and Spring will consist of atop Ul layer built with
Tapestry, and a number of lower layers, hosted out of one or more Spring Application Contexts.

* User Interface Layer:
- concerned with the user interface
- contains some application logic
- provided by Tapestry

- aside from providing Ul via Tapestry, code in this layer does its work via objects which implement
interfaces from the Service Layer. The actual objects which implement these service layer interfaces are
obtained from a Spring Application Context.

* ServiceLayer:
- application specific 'service' code

- works with domain objects, and uses the Mapper API to get those domain objects into and out of some
sort of repository (database)

- hosted in one or more Spring contexts

- codein this layer manipulates objects in the domain model, in an application specific fashion. It does its
work via other code in this layer, and viathe Mapper API. An object in thislayer is given the specific
mapper implementations it needs to work with, viathe Spring context.

- since code in this layer is hosted in the Spring context, it may be transactionally wrapped by the Spring
context, as opposed to managing its own transactions

» Domain Model:
- domain specific object hierarchy, which deals with data and logic specific to this domain

- although the domain object hierarchy is built with the idea that it is persisted somehow and makes some
general concessionsto this (for example, bidirectional relationships), it generally has no knowledge of other
layers. Assuch, it may betested in isolation, and used with different mapping implementations for
production vs. testing.

- these objects may be standalone, or used in conjunction with a Spring application context to take

Spring Framework Version 1.1.5 163

http://jakarta.apache.org/tapestry

Integrating with other web frameworks

advantage of some of the benefits of the context, e.g., isolation, inversion of control, different strategy
implementations, etc.

e Data Source Layer:

- Mapper API (also called Data Access Objects): an APl used to persist the domain model to arepository of
some sort (generally a DB, but could be the filesystem, memory, etc.)

- Mapper APl implementations: one or more specific implementations of the Mapper API, for example, a
Hibernate-specific mapper, a JDO-specific mapper, JDBC-specific mapper, or amemory mapper.

- mapper implementations live in one or more Spring Application Contexts. A service layer object is given
the mapper objectsit needs to work with via the context.

» Database, filesystem, or other repositories:

- objectsin the domain model are stored into one or more repositories via one or more mapper
implementations

- arepository may be very simple (e.g. filesystem), or may have its own representation of the datafrom the

domain model (i.e. aschemain adb). It does not know about other layers howerver.

14.4.2. Implementation

The only real question (which needs to be addressed by this document), is how Tapestry pages get access to
service implementations, which are simply beans defined in an instance of the Spring Application Context.

14.4.2.1. Sample application context

Assume we have the following simple Application Context definition, in xml form:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<I DOCTYPE beans PUBLI C "-// SPRI NG / DTD BEAN / EN'
"http://ww. springfranmework. org/ dtd/ spring-beans. dtd">

<beans>
<I-i- GENERAL DEFI NI TI ONS -->
<l-- PERSI STENCE DEFI NI TI ONS -->
<!-- the DataSource -->

<bean i d="dat aSource" class="org. springfranmework.jndi.Jndi Obj ectFact oryBean">
<property nanme="j ndi Nane" ><val ue>j ava: Def aul t DS</ val ue></ pr operty>
<property name="resour ceRef"><val ue>f al se</val ue></ property>

</ bean>

<I-- define a H bernate Session factory via a Spring Local Sessi onFact oryBean -->
<bean i d="hi bSessi onFact ory"

cl ass="org. spri ngframewor k. orm hi ber nat e. Local Sessi onFact or yBean" >

<property nanme="dat aSour ce"><ref bean="dat aSource"/></property>
</ bean>

<I--
- Defines a transacti on manager for usage in business or data access objects.
- No special treatnment by the context, just a bean instance avail able as reference
- for business objects that want to handl e transactions, e.g. via TransactionTenpl ate
-->
<bean i d="transacti onManager"
cl ass="org. springfranmework. transaction.jta.JtaTransacti onManager" >
</ bean>

<bean i d="nmapper"

Spring Framework Version 1.1.5 164

Integrating with other web frameworks

cl ass="com what ever. dat aaccess. mapper . hi ber nat e. Mapper | npl " >
<property name="sessi onFact ory"><ref bean="hi bSessi onFactory"/></property>

</ bean>
<l-- BUSI NESS DEFI NI TI ONS -->
<I-- AuthenticationService, including tx interceptor -->

<bean i d="aut henti cati onServi ceTarget"
cl ass="com what ever. servi ces. servi ce. user. Aut henti cati onServi cel npl ">
<property name="mapper"><ref bean="napper"/></property>

</ bean>

<bean id="aut henti cati onService"
cl ass="org. spri ngframework. transaction.interceptor. Transacti onProxyFact or yBean" >
<property nanme="transacti onManager"><ref bean="transacti onManager"/></property>
<property name="target"><ref bean="authenticationServiceTarget"/></property>
<property nanme="proxyl nterfacesOnly"><val ue>true</val ue></ property>
<property nanme="transactionAttri butes">

<pr ops>
<prop key="*">PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>
<I-- UserService, including tx interceptor -->

<bean i d="user Servi ceTar get"
cl ass="com what ever. servi ces. servi ce. user. User Servi cel npl ">
<property name="mapper"><ref bean="mapper"/></property>
</ bean>
<bean i d="user Service"
class="org. springframework.transaction.interceptor. Transacti onProxyFact oryBean">
<property nanme="transacti onManager"><ref bean="transacti onManager"/></property>
<property name="target"><ref bean="user ServiceTarget"/></property>
<property name="proxyl nterfacesOnl y"><val ue>true</val ue></ property>
<property name="transactionAttributes">
<pr ops>
<prop key="*">PROPAGATI ON_REQUI RED</ pr op>
</ props>
</ property>
</ bean>

</ beans>

Inside the Tapestry application, we need to load this application context, and allow Tapestry pages to get the
authenticationService and userService beans, which implement the AuthenticationService and UserService
interfaces, respectively.

14.4.2.2. Obtaining beans in Tapestry pages

At this point, the application context is available to aweb application by calling Spring's static utility function
VebAppl i cationCont ext Uti|s. get Appl i cati onCont ext (ser vl et Cont ext), where servletContext isthe
standard Ser vl et Cont ext from the J2EE Servlet specification. As such, one simple mechanism for a page to
get an instance of the UserService, for example, would be with code such as:

WebAppl i cati onCont ext appCont ext = WebApplicati onContext Uil s. get Applicati onCont ext (
get Request Cycl e() . get Request Cont ext (). get Servl et (). get Servl et Context());

User Servi ce user Service = (UserService) appContext.getBean("userService");
sonme code which uses User Service

This mechanism does work. It can be made alot less verbose by encapsulating most of the functionality in a
method in the base class for the page or component. However, in some respects it goes against the Inversion of
Control approach which Spring encourages, which is being used in other layers of this app, in that ideally you
would like the page to not have to ask the context for a specific bean by name, and in fact, the page would
ideally not know about the context at all.

Luckily, there is amechanism to allow this. We rely upon the fact that Tapestry already has a mechanism to
declaratively add propertiesto a page, and it isin fact the preferred approach to manage all properties on a page
in this declarative fashion, so that Tapestry can properly manage their lifecycle as part of the page and

Spring Framework Version 1.1.5 165

Integrating with other web frameworks

component lifecycle.

14.4.2.3. Exposing the application context to Tapestry

First we need to make the Appl i cat i onCont ext available to the Tapestry page or Component without having to
have the ser v et Cont ext ; thisis because at the stage in the page's’component’s lifecycle when we need to
access the Appl i cati onCont ext , the Ser vl et Cont ext won't be easily available to the page, so we can't use
WebAppl i cati onCont ext Utils. get Appl i cati onCont ext (ser vl et Cont ext) directly. Oneway is by defining a
custom version of the Tapestry | Engine which exposes this for us:

package com what ever.web. xportal ;
i mport
public class M/Engi ne extends org. apache.tapestry. engi ne. BaseEngi ne {

public static final String APPLI CATI ON_CONTEXT_KEY = "appContext";
/**
* @ee org.apache. tapestry. engi ne. Abstract Engi ne#set upFor Request (or g. apache. t apestry. r equest . Request Cont ext
*/
protected voi d setupFor Request (Request Cont ext context) {
super . set upFor Request (cont ext) ;

/'l insert ApplicationContext in global, if not there
Map gl obal = (Map) getd obal ();
Appl i cationContext ac = (ApplicationContext) gl obal.get(APPLI CATI ON_CONTEXT_KEY) ;
if (ac == null) {
ac = WebApplicationContext Uil s. get WebAppl i cati onCont ext (
cont ext. get Servl et (). get Servl et Cont ext ()
)

gl obal . put (APPLI CATI ON_CONTEXT_KEY, ac);

}

This engine class places the Spring Application Context as an attribute called "appContext” in this Tapestry
app's 'Global' object. Make sure to register the fact that this special |Engine instance should be used for this
Tapestry application, with an entry in the Tapestry application definition file. For example:

file: xportal.application:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE appl i cation PUBLIC
"-// Apache Software Foundation// Tapestry Specification 3.0//EN
"http://jakarta.apache. org/tapestry/dtd/ Tapestry_3_0.dtd">
<application
name="\\at ever xPortal"
engi ne- cl ass="com what ever. web. xport al . M\yEngi ne" >
</ appl i cation>

14.4.2.4. Component definition files

Now in our page or component definition file (*.page or *.jwc), we simply add property-specification elements
to grab the beans we need out of the ApplicationContext, and create page or component properties for them.
For example:

<property-specificati on nane="user Servi ce"
type="com what ever. servi ces. servi ce. user. User Servi ce" >
gl obal . appCont ext . get Bean(" user Servi ce")
</ property-specification>
<property-specification nane="aut henti cati onService"
type="com what ever. servi ces. servi ce. user. Aut henti cati onServi ce">
gl obal . appCont ext . get Bean("aut henti cati onServi ce")
</ property-specification>

Spring Framework Version 1.1.5 166

Integrating with other web frameworks

The OGNL expression inside the property-specification specifies the initial value for the property, as a bean
obtained from the context. The entire page definition might look like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE page- speci ficati on PUBLI C
"-// Apache Software Foundation//Tapestry Specification 3.0//EN
"http://jakarta.apache. org/tapestry/dtd/ Tapestry_3 0.dtd">

<page- speci fi cation cl ass="com what ever.web. xport al . pages. Logi n">

<property-specificati on nanme="usernane" type="java.lang. String"/>
<property-specification name="password" type="java.lang.String"/>
<property-specification name="error" type="java.lang. String"/>
<property-specification name="cal | back" type="org.apache.tapestry. call back.|Call back" persistent="yes"/>
<property-specificati on name="user Servi ce"
t ype="com what ever. servi ces. servi ce. user. User Servi ce">
gl obal . appCont ext . get Bean(" user Servi ce")
</ property-specification>
<property-specification name="aut henti cati onService"
t ype="com what ever. servi ces. servi ce. user. Aut henti cati onServi ce">
gl obal . appCont ext . get Bean(" aut henti cati onServi ce")
</ property-specificati on>

<bean nane="del egate" cl ass="com what ever.web. xportal . Portal Val i dati onDel egate"/ >

<bean nane="val idator" class="org. apache.tapestry.valid. StringValidator" |ifecycl e="page">
<set-property nane="required" expression="true"/>
<set-property nanme="clientScriptingEnabl ed" expression="true"/>

</ bean>

<conponent id="i nputUsernane" type="ValidField">
<stati c-bi ndi ng name="di spl ayNane" val ue="User nane"/ >
<bi ndi ng nanme="val ue" expressi on="usernanme"/ >
<bi ndi ng nanme="val i dator" expressi on="beans. val i dator"/>
</ conponent >

<conponent id="inputPassword" type="ValidField">
<bi ndi ng nane="val ue" expressi on="password"/>
<bi ndi ng nane="val i dator" expressi on="beans. val i dator"/>
<stati c-bi ndi ng name="di spl ayNanme" val ue="Password"/>
<bi ndi ng nanme="hi dden" expression="true"/>

</ conponent >

</ page- speci fi cati on>

14.4.2.5. Adding abstract accessors

Now in the Java class definition for the page or component itself, all we need to do is add an abstract getter
method for the properties we have defined, to access them. When the page or component is actually loaded by
Tapestry, it performs runtime code instrumentation on the classfile to add the properties which have been
defined, and hook up the abstract getter methods to the newly created fields. For example:

/'l our UserService inplementation; will come from page definition

public abstract UserService getUserService();

/1 our AuthenticationService inplenmentation; will conme from page definition
public abstract AuthenticationService getAuthenticationService();

For compl eteness, the entire Java class, for alogin page in this example, might look like this:

package com what ever. web. xport al . pages

/**

* Allows the user to login, by providing usernane and password.

* After successfully logging in, a cookie is placed on the client browser

* that provides the default username for future |ogins (the cookie

* persists for a week).

*/

public abstract class Login extends BasePage i nplenents ErrorProperty, PageRenderlListener {

/** the key under which the authenticated user object is stored in the visit as */
public static final String USER KEY = "user";

Spring Framework Version 1.1.5 167

Integrating with other web frameworks

[**

* The nane of a cookie to store on the user's nachine that will
* them next tine they log in.

**/

private static final
private final

I --

publ i
publ i

publ i
publ i

publ i
publ i

publ i
publ i

I --

c
c

Cc
C

c
c

c

c

attributes

abstract String getUsernane();

abstract void setUsernane(String usernane);

abstract String getPassword();

abstract void setPassword(String password);

abstract | Callback get Call back();

abstract void setCall back(l Call back val ue);

abstract User Service getUserService();

abstract AuthenticationService getAuthenticationService();
net hods

protected |ValidationDel egate getValidati onDel egate() {
return (1ValidationDel egate) getBeans().getBean("del egate");

}

protected void setErrorField(String conponentld, String nmessage) {
| For nConponent field = (I FornConponent) get Conponent (conponent|d);

| Val i dat i onDel egat e del egate = get Val i dati onDel egate();
del egat e. set For nConponent (fi el d);
del egat e. recor d(new Val i dat or Except i on(message)) ;

EE I

* % [

Attempts to | ogin.

<p>lf the user nane is not known, or the password is invalid,
nessage i s displ ayed.

public void attenptLogin(lRequestCycle cycle) {

String password = getPassword();

// Do alittle extra work to clear out the password.

set Password(nul |');
I Val i dati onDel egat e del egate = getVal i dati onDel egate();

del egat e. set For mConponent ((| For mConponent) get Conponent ("i nput Password"));

del egat e. recor dFi el dl nput Val ue(nul) ;

// An error,

froma validation field, may already have occurred.

i f (del egate.getHasErrors())

return;

try {

User user = getAuthenticationService().|ogin(getUsernane(),

| ogi nUser (user, cycle);

}
catch (Fail edLogi nException ex) {
this.setError("Login failed: " + ex.getMessage());

E I

*% [

return;

Sets up the {@ink User} as the |ogged in user, creates
a cookie for their usernanme (for subsequent |ogins),
and redirects to the appropri ate page, or

a specified page).

public void | oginUser(User user, |RequestCycle cycle) {

String COOKI E_NAME = Login. cl ass. get Name() + ".usernane";

static int ONEVEEK = 7 * 24 * 60 * 60;

then an error

get Password());

Spring Framework Version 1.1.5

168

Integrating with other web frameworks

String usernanme = user.getUsernane();

/Il Get the visit object; this will likely force the
/'l creation of the visit object and an HttpSession.

Map visit = (Map) getVisit();
vi sit. put (USER_KEY, user);

/Il After logging in, go to the M/Library page, unless otherw se
/'l specified.

| Cal | back cal | back = get Cal | back();

if (callback == null)
cycle. activate("Honme");
el se
cal | back. perfornCal | back(cycl e);

// 1"ve found that failing to set a maxi num age and a path neans t hat
/'l the browser (IE 5.0 anyway) quietly drops the cookie.

| Engi ne engi ne = get Engi ne();

Cooki e cooki e = new Cooki e(COOKI E_NAME, usernane) ;
cooki e. set Pat h(engi ne. get Servl et Pat h()) ;

cooki e. set MaxAge(ONE_WEEK) ;

/'l Record the user's usernanme in a cookie
cycl e. get Request Cont ext () . addCooki e(cooki e) ;

engi ne. f or get Page(get PageNane()) ;
}

public void pageBegi nRender (PageEvent event) {
if (getUsernane() == null)
set User nane(get Request Cycl e() . get Request Cont ext () . get Cooki eVal ue(COOKI E_NAME)) ;

14.4.3. Summary

In this example, we've managed to alow service beans defined in the Spring Appl i cat i onCont ext to be
provided to the page in a declarative fashion. The page class does not know where the service implementations
are coming from, and in fact it is easy to slip in another implementation, for example, during testing. This
inversion of contral is one of the prime goals and benefits of the Spring Framework, and we have managed to
extend it all the way up the J2EE stack in this Tapestry application.

14.5. WebWork

WebWork [http://www.opensymphony.com/webwork] is aweb framework designed with simplicity in mind.
It's built on top of XWork [http://www.opensymphony.com/xwork], which is a generic command framework.
XWork aso has an 1oC container, but it isn't as full-featured as Spring and won't be covered in this section.
WebWork controllers are called Actions, mainly because they must implement the Acti on

[http:/imww.opensymphony.com/xwork/api/com/opensymphony/xwork/Action.html] interface. The

Acti onSupport [http://www.opensymphony.com/xwork/api/com/opensymphony/xwork/ActionSupport.html]
class implements this interface, and it is most common parent class for WebWork actions.

WebWork maintains its own Spring integration project, located on java.net in the xwork-optional
[https.//xwork-optional .dev.java.net/] project. Currently, three options are available for integrating WebWork
with Spring:

e SpringObjectFactory: override XWork's default oj ect Fact ory

Spring Framework Version 1.1.5 169

http://www.opensymphony.com/webwork
http://www.opensymphony.com/xwork
http://www.opensymphony.com/xwork/api/com/opensymphony/xwork/Action.html
http://www.opensymphony.com/xwork/api/com/opensymphony/xwork/ActionSupport.html
https://xwork-optional.dev.java.net/
http://www.opensymphony.com/xwork/api/com/opensymphony/xwork/ObjectFactory.html

Integrating with other web frameworks

[http://www.opensymphony.com/xwork/api/com/opensymphony/xwork/ObjectFactory.html] so XWork
will look for Spring beans in the root WebAppl i cat i onCont ext .

< ActionAutowiringlnterceptor: use an interceptor to automatically wire an Action's dependencies as
they're created.

e SpringExter nalReferenceResolver: ook up Spring beans based on the name defined in an <external-ref>
element of an <action> element.

All of these strategies are explained in further detail in WebWork's Documentation
[http://wiki.opensymphony.com/display/WW/WebWork+2+Spring+I ntegration).

Spring Framework Version 1.1.5 170

http://wiki.opensymphony.com/display/WW/WebWork+2+Spring+Integration

Chapter 15. IMS

15.1. Introduction

Spring provides a JM S abstraction framework that simplifies the use of the IMS API and shields the user from
differences between the IMS 1.0.2 and 1.1 APIs.

JMS can be roughly divided into two areas of functionality, production and consumption of messages. In a
J2EE environment, the ability to consume messages asynchronously is provided for by message-driven beans
while in a standalone application thisis provided for by the creation of Messagel isteners or
ConnectionConsumers. The functionality in JnsTemplate is focused on producing messages. Future releases of
Spring will address asynchronous message consumption in a standal one environment.

The package or g. spri ngf ramewor k. j ms. cor e provides the core functionality for using JMS. It contains IMS
template classes that simplifies the use of the IMS by handling the creation and release of resources, much like
the JdbcTenpl at e does for IDBC. The design principal common to Spring template classesis to provide helper
methods to perform common operations and for more sophisticated usage, delegate the essence of the
processing task to user implemented callback interfaces. The JIM S templ ate follows the same design. The
classes offer various convenience methods for the sending of messages, consuming a message synchronously,
and exposing the JM S session and message producer to the user.

The package or g. spri ngf ramewor k. j ms. support provides JM SException trandation functionality. The
tranglation converts the checked JM SException hierarchy to amirrored hierarchy of unchecked exceptions. If
there are any provider specific subclasses of the checked javax.jms.JM SException, this exception is wrapped in
the unchecked UncategorizedJmsException. The package or g. spri ngf r amewor k. j ms. support. convert er
provides a MessageConverter abstraction to convert between Java objects and JM S messages. The package
org. springframework. j ms. support . desti nati on provides various strategies for managing JM S destinations,
such as providing a service locator for destinations stored in JNDI.

Finally, the package or g. spri ngf ranewor k. j ms. connect i on provides an implementation of the
ConnectionFactory suitable for use in standalone applications. It also contains an implementation of Spring's
Pl at f or niTr ansact i onManager for IMS. This allows for integration of IMS as atransactional resource into
Spring's transaction management mechanisms.

15.2. Domain unification

There are two major releases of the IMS specification, 1.0.2 and 1.1. IMS 1.0.2 defined two types of messaging
domains, point-to-point (Queues) and publish/subscribe (Topics). The 1.0.2 API reflected these two messaging
domains by providing aparallel class hierarchy for each domain. Consequentialy, a client application was
domain specific in the use of the IMS API. IMS 1.1 introduced the concept of domain unification that
minimized both the functional differences and client API differences between the two domains. As an example
of afunctional difference that was removed, if you useaJMS 1.1 provider you can transactionally consume a
message from one domain and produce a message on the other using the same Sessi on.

The IMS 1.1 specification was released in April 2002 and incorporated as part of J2EE 1.4 in November 2003.
As aresult, most application serversthat are currently in use are only required to support IS 1.0.2.

15.3. ImsTemplate

Spring Framework Version 1.1.5 171

IMS

Two implementations of the JnsTemplate are provided. The class JnsTenpl at e usesthe IMS 1.1 API and the
subclass Jns Tenpl at e102 usesthe IMS 1.0.2 API.

Code that uses the JmsTemplate only needs to implement callback interfaces giving them a clearly defined
contract. The MessageCr eat or callback interface creates a message given a Session provided by the calling
code in JnsTemplate. In order to allow for more complex usage of the IMS API, the callback

Sessi onCal | back providesthe user with the IMS session and the callback Pr oducer Cal | back exposes a
Session and MessageProducer pair.

The IMS API exposes two types of send methods, one that takes delivery mode, priority, and time-to-live as
quality of service (QOS) parameters and one that takes no QOS parameters which uses default values. Since
there are many send methods in JnsTemplate, the setting of the QOS parameters have been exposed as bean
properties to avoid duplication in the number of send methods. Similarly, the timeout value for synchronous
receive callsis set using the property set Recei veTi meout .

Some JM S providers allow the setting of default QOS values administratively through the configuration of the
ConnectionFactory. This has the effect that a call to MessageProducer's send method send(Dest i nat i on
destination, Message nessage) Will use QOS different default values than those specified in the IMS
specification. Therefore, in order to provide consistent management of QOS values, the JnsTemplate must be
specifically enabled to use its own QOS values by setting the boolean property i sExpl i ci t QosEnabl ed to true.

15.3.1. ConnectionFactory

The JmsTemplate requires areference to aConnect i onFact ory. The Connect i onFact ory is part of the IMS
specification and serves as the entry point for working with JIMS. It is used by the client application as a factory
to create connections with the JIMS provider and encapsulates various configuration parameters, many of which
are vendor specific such as SSL configuration options.

When using IMS inside an EJB the vendor provides implementations the IM S interfaces so that they can
participate in declarative transaction management and perform pooling of connections and session. In order to
use this implementation, J2EE containers typically require that you declare a JM S connection factory as a
resour ce-ref inside the EJB or servlet deployment descriptors. To ensure the use of these features with the
JmsTemplate inside an EJB, the client application should ensure that it references the managed implementation
of the ConnectionFactory.

Spring provides an implementation of the ConnectionFactory interface, Si ngl eConnect i onFact ory, that will
return the same Connection on all cr eat eConnect i on calls and ignore callsto cl ose. Thisisuseful for testing
and standal one environments so that the same connection can be used for multiple JnsTemplate calls that may
span any number of transactions. SingleConnectionFactory takes a reference to a standard ConnectionFactory
that would typically comes from JNDI.

15.3.2. Transaction Management

Spring providesaJmsTr ansact i onManager that manages transactions for asingle JIMS ConnectionFactory.
This allows JM S applications to leverage the managed transaction features of Spring as described in Chapt er

7. The JmsTr ansact i onManager binds a Connection/Session pair from the specified ConnectionFactory to the
thread. However, in a 2EE environment the ConnectionFactory will pool connections and sessions, so the
instances that are bound to the thread depend on the pooling behavior. In a standal one environment, using
Spring's Si ngl eConnect i onFact ory Will result in ausing asingle IMS Connection and each transaction having
itsown Session. The JnsTenpl at e can also be used with the Jt aTr ansact i onManager and an XA-capable IMS
ConnectionFactory for performing distributed transactions.

Reusing code across a managed and unmanaged transactional environment can be confusing when using IMS

Spring Framework Version 1.1.5 172

IMS

API to create a Sessi on from a Connection. Thisis because the IMS API only has only one factory method to
create a Session and it requires values for the transaction and acknowledgement modes. In a managed
environment, setting these valuesin the responsibility of the environments transactional infrastructure, so these
values are ignored by the vendor's wrapper to the IM S Connection. When using the JnsTenpl at e in an
unmanaged environment you can specify these values though the use of the properties Sessi onTr ansact ed and
Sessi onAcknow edgeMode. When using a Pl at f or nilr ansact i onManager With JnsTenpl at e, the template will
always be given atransactional IMS Session.

15.3.3. Destination Management

Destinations, like ConnectionFactories, are IMS administered objects that can be stored and retrieved in INDI.
When configuring a Spring application context one can use the INDI factory class Jndi Obj ect Fact or yBean t0O
perform dependency injection on your object's references to JM S destinations. However, often this strategy is
cumbersome if there are alarge number of destinationsin the application or if there are advanced destination
management features unique to the IM S provider. Examples of such advanced destination management would
be the creation of dynamic destinations or support for a hierarchical namespace of destinations. The
JmsTemplate del egates the resolution of a destination name to a JM S destination object to an implementation of
the interface Dest i nat i onResol ver . Dynami cDest i nat i onResol ver isthe default implementation used by
JmsTenpl at e and accommodates resolving dynamic destinations. A Jndi Dest i nat i onResol ver isaso
provided that acts as a service locator for destinations contained in JINDI and optionally falls back to the
behavior contained in Dynani cDest i nati onResol ver .

Quite often the destinations used in a JIM S application are only known at runtime and therefore can not be
administratively created when the application is deployed. Thisis often because there is shared application
logic between interacting system components that create destinations at runtime according to awell known
naming convention. Even though the creation of dynamic destinations are not part of the JIM S specification,
most vendors have provided this functionality. Dynamic destinations are created with a name defined by the
user which differentiates them from temporary destinations and are often not registered in INDI. The APl used
to create dynamic destinations varies from provider to provider since the properties associated with the
destination are vendor specific. However, a simple implementation choice that is sometimes made by vendors
isto disregard the warnings in the IM S specification and to use the Topi cSessi on method

createTopi c(String topicNane) or the QueueSessi on method cr eat eQueue(String queueNare) to create a
new destination with default destination properties. Depending on the vendor implementation,

Dynani cDest i nati onResol ver may then also create a physical destination instead of only resolving one.

The boolean property PubSubDormi n is used to configure the Jns Tenpl at e with knowledge of what IMS

domain is being used. By default the value of this property isfalse, indicating that the point-to-point domain,
Queues, will be used. In the 1.0.2 implementation the value of this property determinesif the JnsTemplate's
send operations will send a message to a Queue or to a Topic. This flag has no effect on send operations for the
1.1 implementation. However, in both implementations, this property determines the behavior of resolving
dynamic destination viaimplementations of Dest i nati onResol ver.

Y ou can also configure the JmsTemplate with a default destination viathe property Def aul t Dest i nati on. The
default destination will be used with send and receive operations that do not refer to a specific destination.

15.4. Using the JmsTemplate

To get started using the JnsTemplate you need to select either the IMS 1.0.2 implementation Jns Tenpl at e102
or the IMS 1.1 implementation Jns Tenpl at e. Check your JM S provider to determine what version is supported.

Spring Framework Version 1.1.5 173

IMS

15.4.1. Sending a message

The JmsTemplate contains many convenience methods to send a message. There are send methods that specify
the destination using aj avax. j ms. Dest i nat i on object and those that specify the destination using a string for
usein aJNDI lookup. The send method that takes no destination argument uses the default destination. Hereis
an example that sends a message to a queue using the 1.0.2 implementation.

i mport javax.jmns. ConnectionFactory;
i mport javax. | nms. JMSExcepti on;

i mport javax. | ms. Message;

i nport javax.jns. Queue;

i mport javax. | ms. Sessi on;

i mport org.springframework.jns. core.JnsTenpl at e;
i nport org.springfranework.jns.core.JnsTenpl at e102;
i mport org.springframework. jnms. core. MessageCreat or;

public class JmsQueueSender {
private JnsTenplate jt;
private ConnectionFactory connFactory;
private Queue queue;
public void sinpleSend() {
jt = new JnsTenpl at e102(connFactory, false);
jt.send(queue, new MessageCreator () {

public Message creat eMessage(Sessi on session) throws JMSException {
return session. createText Message("hell o queue world");
}

53
}

public void setConnectionFactory(ConnectionFactory cf) {
connFactory = cf;

}

public void set Queue(Queue q) {
queue = (Q;

}

This example uses the MessageCr eat or callback to create atext message from the supplied Session object and
the JnsTemplate is constructed by passing a reference to a ConnectionFactory and a boolean specifying the
messaging domain. A zero argument constructor and a setConnectionFactory/Queue method are a so provided
and can be used for constructing the instance using a BeanFactory. The method simpleSend modified to send to
atopic instead of a queue is shown below

public void sinpleSend() {
jt = new JnsTenpl at e102(connFactory, true);
jt.send(topic, new MessageCreator () {
public Message creat eMessage(Sessi on session) throws JMSException {
return session. createText Message("hello topic world");
}

});
}

When configuring the 1.0.2 in an application context it isimportant to remember setting the value of the
boolean property PubSubDommai n property in order to indicate if you want to send to Queues or Topics.

The method send(String destinati onName, MessageCreator c) letsyou send to a message using the string
name of the destination. If these names are registered in INDI, you should set the Dest i nat i onResol ver

Spring Framework Version 1.1.5 174

IMS

property of the template to an instance of Jndi Dest i nati onResol ver .

If you created the JmsTemplate and specified a default destination, the send(MessageCreat or c) sendsa
message to that destination.

15.4.2. Synchronous Receiving

While IMSistypically associated with asynchronous processing, it is possible to consume messages
synchronously. The overloaded r ecei ve methods provide this functionality. During a synchronous receive the
calling thread blocks until a message becomes available. This can be a dangerous operation since the calling
thread can potentially be blocked indefinitely. The property r ecei veTi neout Specifies how long the receiver
should wait before giving up waiting for a message.

15.4.3. Using Message Converters

In order to facilitate the sending of domain model objects the Jns Tenpl at e has various send methods that take a
Java object as an argument for a message's data content. The overloaded methods conver t AndSend and

recei veAndConvert inJnsTenpl at e delegate the conversion process to an instance of the MessageConver t er
interface. This interface defines a simple contract to convert between Java objects and IM S messages. The
default implementation, Si mpl eMessageConvert er SUPPOItS conversion between St ri ng and Text Message,

byt e[] and Byt esMesssage, and j ava. uti | . Map and MapMessage. By using the converter, you your application
code can focus on the business object that is being sent or received via IMS and not bother with the details of
how it is represented as a JM S message.

The sandbox currently includes a MapMessageConver t er Which uses reflection to convert between a JavaBean
and aMapMessage. Other popular implementations choices you might implement yourself are Converters that
bust an existing XML marshalling packages, such as JAXB, Castor, XMLBeans, or X Stream, to create a
TextMessage representing the object.

To accommaodate the setting of a message's properties, headers, and body that can not be generically
encapsulated inside a converter class, the interface MessagePost Processor gives you access to the message
after it has been converted, but beforeit is sent. The example below shows how to modify a message header
and a property after aj ava. uti | . Map isconverted to a message.

public void sendWthConversion() {
Map m = new HashMap();
m put (" Nane", "Mark");
m put (" Age", new | nteger(35));
jt.convert AndSend("t est Queue", m new MessagePost Processor () {

public Message post ProcessMessage(Message nessage)
throws JMSException {
nessage. set | nt Property("Account| D', 1234);
nessage. set JMSCorr el ati onl D(" 123- 00001");

return nessage;

});

This results in a message of the form

MapMessage={
Header ={
... standard headers ...
Correl ati onl D={123- 00001}

}

Spring Framework Version 1.1.5 175

IMS

Properties={
Account | D={ | nt eger: 1234}

}

Fi el ds={
Name={ St ri ng: Mar k}
Age={ | nt eger: 35}

}

}

15.4.4. SessionCallback and ProducerCallback

While the send operations cover many common usage scenarios, there are cases when you want to perform
multiple operations on a JIMS Session or MessageProducer. The Sessi onCal | back and Pr oducer Cal | back
expose the IMS Session and Session/M essageProducer pair respectfully. The execut e() methods on
JmsTemplate execute these callback methods.

Spring Framework Version 1.1.5 176

Chapter 16. Accessing and implementing EJBsS

Asalightweight container, Spring is often considered an EJB replacement. We do believe that for many if not
most applications and use cases, Spring as a container, combined with its rich supporting functionality in the
area of transactions, ORM and JDBC access, is a better choice than implementing equivalent functionality via
an EJB container and EJBs.

However, it isimportant to note that using Spring does not prevent you from using EJBs. In fact, Spring makes
it much easier to access EJBs and implement EJBs and functionality within them. Additionally, using Spring to
access services provided by EJBs allows the implementation of those servicesto later transparently be switched
between local EJB, remote EJB, or POJO (plain java object) variants, without the client code client code having
to be changed.

In this chapter, we look at how Spring can help you access and implement EJBs. Spring provides particular
value when accessing statel ess session beans (SLSBS), so welll begin by discussing this.

16.1. Accessing EJBs

16.1.1. Concepts

To invoke amethod on alocal or remote stateless session bean, client code must normally perform a JNDI
lookup to obtain the (local or remote) EJB Home object, then use a ‘create’ method call on that object to obtain
the actual (local or remote) EJB object. One or more methods are then invoked on the EJB.

To avoid repeated low-level code, many EJB applications use the Service Locator and Business Delegate
patterns. These are better than spraying JNDI lookups throughout client code, but their usual implementations
have significant disadvantages. For example:

» Typicaly code using EJBs depends on Service Locator or Business Delegate singletons, making it hard to
test

« Inthe case of the Service Locator pattern used without a Business Delegate, application code still ends up
having to invoke the create() method on an EJB home, and deal with the resulting exceptions. Thus it
remainstied to the EJB API and the complexity of the EJB programming model.

* Implementing the Business Delegate pattern typically resultsin significant code duplication, where we have
to write numerous methods that simply call the same method on the EJB.

The Spring approach is to allow the creation and use of proxy objects, normally configured inside a Spring
ApplicationContext or BeanFactory, which act as code-less business delegates. Y ou do not need to write
another Service Locator, another INDI lookup, or duplicate methods in a hand-coded Business Delegate unless
you're adding real value.

16.1.2. Accessing local SLSBs

Assume that we have aweb controller that needs to use alocal EJB. We'll follow best practice and use the EJB
Business Methods I nterface pattern, so that the EJB’slocal interface extends a non EJB-specific business
methods interface. Let’s call this business methods interface MyComponent.

public interface MyConmponent {

Spring Framework Version 1.1.5 177

Accessing and implementing EJBs

(One of the main reasons to the Business Methods Interface pattern is to ensure that synchronization between
method signatures in local interface and bean implementation class is automatic. Another reason isthat it later
makes it much easier for usto switch to a POJO (plain java object) implementation of the serviceif it makes
sense to do so) Of course we'll aso need to implement the local home interface and provide a bean
implementation class that implements SessionBean and the MyComponent business methods interface. Now
the only Java coding we'll need to do to hook up our web tier controller to the EJB implementation is to expose
a setter method of type MyComponent on the controller. This will save the reference as an instance variable in
the controller:

private MyConponent myConponent;

public void set MyConponent (MyConponent nyConponent) {
t hi s. myConponent = myConponent ;
}

We can subsequently use thisinstance variable in any business method in the controller. Now assuming we are
obtaining our controller object out of a Spring ApplicationContext or BeanFactory, we can in the same context
configure aLocal St at el essSessi onPr oxyFact or yBean instance, which will be EJB proxy object. The
configuration of the proxy, and setting of the myConponent property of the controller is done with a
configuration entry such as:

<bean i d="nyConponent"
cl ass="org. spri ngfranmework. ej b. access. Local St at el essSessi onPr oxyFact or yBean" >
<property nanme="j ndi Nane" ><val ue>myConponent </ val ue></ pr operty>
<property name="busi nessl nt erface"><val ue>com mycom MyConponent </ val ue></ pr operty>
</ bean>

<bean i d="nyController" class = "com nycom nyController">
<property nanme="nyConponent"><ref bean="nyConponent"/></property>
</ bean>

There’ salot of magic happening behind the scenes, courtesy of the Spring AOP framework, although you
aren’t forced to work with AOP concepts to enjoy the results. The myConponent bean definition creates a proxy
for the EJB, which implements the business method interface. The EJB local home is cached on startup, so
there' s only asingle JINDI lookup. Each time the EJB isinvoked, the proxy invokes the create() method on the
local EJB and invokes the corresponding business method on the EJB.

ThenyControl | er bean definition setsthe nyControl | er property of the controller classto this proxy.

This EJB access mechanism delivers huge simplification of application code: The web tier code (or other EJB
client code) has no dependence on the use of EJB. If we want to replace this EJB reference with a POJO or a
mock object or other test stub, we could simply change the myComponent bean definition without changing a
line of Java code. Additionally, we haven't had to write asingle line of JNDI lookup or other EJB plumbing
code as part of our application.

Benchmarks and experiencein real applications indicate that the performance overhead of this approach (which
involves reflective invocation of the target EJB) is minimal, and undetectable in typical use. Remember that we
don’t want to make fine-grained calls to EJBs anyway, as there’ s a cost associated with the EJB infrastructure
in the application server.

There is one caveat with regardsto the INDI lookup. In a bean container, this classis normally best used as a
singleton (there smply is no reason to make it a prototype). However, if that bean container pre-instantiates
singletons (as do the XML ApplicationContext variants) you may have a problem if the bean container is
loaded before the EJB container 10ads the target EJB. That is because the INDI lookup will be performed in the

Spring Framework Version 1.1.5 178

Accessing and implementing EJBs

init method of this class and cached, but the EJB will not have been bound at the target location yet. The
solution isto not pre-instantiate this factory object, but allow it to be created on first use. In the XML
containers, thisis controlled viathel azy-i ni t attribute.

Although thiswill not be of interest to the majority of Spring users, those doing programmatic AOP work with
EJBs may want to ook at Local SI sbl nvoker I nt er cept or .

16.1.3. Accessing remote SLSBs

Accessing remote EJBs is essentialy identical to accessing local EJBs, except that the

Si npl eRenpt eSt at el essSessi onPr oxyFact or yBean is used. Of course, with or without Spring, remote
invocation semantics apply; a call to amethod on an object in another VM in another computer does sometimes
have to be treated differently in terms of usage scenarios and failure handling.

Spring's EJB client support adds one more advantage over the non-Spring approach. Normally it is problematic
for EJB client code to be easily switched back and forth between calling EJBslocally or remotely. Thisis
because the remote interface methods must declare that they throw Renot eExcept i on, and client code must deal
with this, while the local interface methods don't. Client code written for local EJBs which needs to be moved
to remote EJBs typically has to be modified to add handling for the remote exceptions, and client code written
for remote EJBs which needs to be moved to local EJBs, can either stay the same but do alot of unnecessary
handling of remote exceptions, or needs to be modified to remove that code. With the Spring remote EJB
proxy, you can instead not declare any thrown Rerot eExcept i on in your Business Method Interface and
implementing EJB code, have aremote interface which isidentical except that it does throw Rerot eExcept i on,
and rely on the proxy to dynamically treat the two interfaces asif they were the same. That is, client code does
not have to deal with the checked Renot eExcept i on class. Any actual Renot eExcept i on that isthrown during
the EJB invocation will be re-thrown as the non-checked Renot eAccessExcept i on class, which is a subclass of
Runt i meExcept i on. The target service can then be switched at will between alocal EJB or remote EJB (or even
plain Java object) implementation, without the client code knowing or caring. Of course, thisis optional; there
is nothing stopping you from declaring Renot eExcept i ons in your business interface.

16.2. Using Spring convenience EJB implementation classes

Spring also provides convenience classes to help you implement EJBs. These are designed to encourage the
good practice of putting business logic behind EJBsin POJOs, leaving EJBs responsible for transaction
demarcation and (optionally) remoting.

To implement a Stateless or Stateful session bean, or Message Driven bean, you derive your implementation
class from Abst r act St at el essSessi onBean, Abst r act St at ef ul Sessi onBean, and
Abst ract MessageDr i venBean/Abst r act JnsMessageDr i venBean, respectively.

Consider an example Statel ess Session bean which actually delegates the implementation to a plain java service
object. We have the business interface:

public interface MyConponent {
public void nmyMethod(...);

We have the plain javaimplementation object:

public class MyConponent | npl inplenments MyConponent {
public String nmyMethod(...) {

}

Spring Framework Version 1.1.5 179

Accessing and implementing EJBs

And finally the Statel ess Session Bean itself:

public class MyConponent EJB ext ends Abstract St at el essSessi onBean
i mpl enents MyConponent {

My Conponent _nyConp;
/**

* Oobtain our PQJO service object fromthe BeanFactory/ Appli cati onCont ext
* @ee org.springfranmework. ej b. support. Abstract St at el essSessi onBean#onEj bCr eat e()
*/
protected void onEj bCreate() throws CreateException {
_nmyConp = (MyConponent) get BeanFact ory(). get Bean(
Ser vi cesConst ant s. CONTEXT_MYCOWVP_I D) ;
}

/1 for business nethod, delegate to PQIO service inpl.
public String nmyMethod(...) {

return _nmyConp. nyMet hod(...);
}

The Spring EJB support base classes will by default create and load a BeanFactory (or in this case, its
ApplicationContext subclass) as part of their lifecycle, which isthen available to the EJB (for example, as used
in the code above to obtain the POJO service object). The loading is done via a strategy object which isa
subclass of BeanFact or yLocat or . The actual implementation of BeanFact oryLocat or used by default is

Cont ext Jndi BeanFact or yLocat or , which creates the ApplicationContext from a resource locations specified as
aJNDI environment variable (in the case of the EJB classes, at j ava: conp/ env/ ej b/ BeanFact or yPat h). If
there is aneed to change the BeanFactory/A pplicationContext loading strategy, the default

BeanFact or yLocat or implementation used may be overridden by calling the set BeanFact or yLocat or ()
method, either in set Sessi onCont ext (), or in the actual constructor of the EJB. Please see the JavaDocs for
more details.

Asdescribed in the JavaDocs, Stateful Session beans expecting to be passivated and reactivated as part of their
lifecycle, and which use a non-serializable BeanFactory/ApplicationContext instance (which is the normal
case) will have to manually call unl oadBeanFact ory() and| oadBeanFact ory from ej bPassi vat e and

ej bAct i vat e, respectively, to unload and reload the BeanFactory on passivation and activation, since it can not
be saved by the EJB container.

The default usage of Cont ext Jndi BeanFact or yLocat or to load an ApplicationContext for the use of the EJB is
adequate for some situations. However, it is problematic when the ApplicationContext is loading a number of
beans, or the initialization of those beans is time consuming or memory intensive (such as a Hibernate
SessionFactory initialization, for example), since every EJB will have their own copy. In this case, the user may
want to override the default Cont ext IJndi BeanFact or yLocat or usage and use another BeanFact or yLocat or
variant, such as Cont ext Si ngl et ongeanFact or yLocat or &, Which can load and use a shared BeanFactory or
ApplicationContext to be used by multiple EJBs or other clients. Doing thisisrelatively simple, by adding code
similar to this to the EJB:

/**

* Override default BeanFactorylLocator inplenmentation

*

* @ee javax.ejb. Sessi onBean#set Sessi onCont ext (j avax. ej b. Sessi onCont ext)

*/

public voi d set Sessi onCont ext (Sessi onCont ext sessi onContext) {

super . set Sessi onCont ext (sessi onCont ext) ;
set BeanFact or yLocat or (Cont ext Si ngl et onBeanFact oryLocat or. get I nstance());
set BeanFact or yLocat or Key(Ser vi cesConst ant s. PRI MARY_CONTEXT_I D) ;

Spring Framework Version 1.1.5 180

Accessing and implementing EJBs

Please see the respective JavaDocs for BeanFact or yLocat or and Cont ext Si ngl et onBeanFact oryLocat or e for
more information on their usage.

Spring Framework Version 1.1.5 181

Chapter 17. Remoting and web services using
Spring

17.1. Introduction

Spring features integration classes for remoting support using various technologies. The remoting support eases
the development of remote-enabled services, implemented by your usual (Spring) POJOs. Currently, Spring
supports four remoting technologies:

* Remote Method Invocation (RMI). Through the use of the Rri Pr oxyFact or yBean and the
Rmi Ser vi ceExpor t er Spring supports both traditional RMI (with java.rmi.Remote interfaces and
java.rmi.RemoteException) and transparent remoting via RMI invokers (with any Javainterface).

e Soring'sHTTP invoker. Spring provides a specia remoting strategy which allows for Java serialization via
HTTP, supporting any Javainterface (just like the RMI invoker). The corresponding support classes are
Ht t pl nvoker ProxyFact or yBean and Ht t pl nvoker Ser vi ceExporter .

* Hessian. By using the Hessi anPr oxyFact or yBean and the Hessi anSer vi ceExpor t er you can transparently
expose your services using the lightweight binary HT TP-based protocol provided by Caucho.

e Burlap. Burlap is Caucho's XML -based alternative for Hessian. Spring provides support classes such as
Bur | apPr oxyFact or yBean and Bur | apSer vi ceExporter.

* JAXRPC. Spring provides remoting support for Web Services via JAX-RPC.

* JMS(TODO).

While discussing the remoting capabilities of Spring, we'll use the following domain model and corresponding
services:

/1 Account domai n obj ect
public class Account inplenents Serializabl e{
private String nane;

public String get Nanme();
public void setName(String name) {
thi s. name = nang;

}
}

/'l Account service
public interface AccountService {

public void insertAccount (Account acc);

public List getAccounts(String nane);

}

/'l Renote Account service
public interface RenoteAccount Servi ce extends Renpte {

public void insertAccount (Account acc) throws RenpteException;

public List getAccounts(String nane) throws RenoteException;

}

Spring Framework Version 1.1.5 182

Remoting and web services using Spring

/1 ... and correspondi ng inpl enent doing nothing at the nonent
public class Account Servicel npl inplenents Account Service {

public void insertAccount (Account acc) {
/1 do somet hi ng

}

public List getAccounts(String nane) {
/1 do sonet hi ng
}
}

We will start exposing the service to aremote client by using RMI and talk a bit about the drawbacks of using
RMI. WEell then continue to show an example for Hessian.

17.2. Exposing services using RMI

Using Spring's support for RMI, you can transparently expose your services through the RMI infrastructure.
After having this set up, you basically have a configuration similar to remote EJBs, except for the fact that there
is no standard support for security context propagation or remote transaction propagation. Spring does provide
hooks for such additional invocation context when using the RMI invoker, so you can for example plug in
security frameworks or custom security credentials here.

17.2.1. Exporting the service using the Rmi Servi ceExport er

Using the R Ser vi ceExpor t er , we can expose the interface of our AccountService object as RMI object. The
interface can be accessed by using Rni Pr oxyFact or yBean, or viaplain RMI in case of atraditional RMI
service. The Rni Ser vi ceExport er explicitly supports the exposing of any non-RMI services via RMI invokers.

Of course, wefirst have to set up our service in the Spring BeanFactory:

<bean i d="account Servi ce" cl ass="exanpl e. Account Servi cel npl ">
<l-- any additional properties, maybe a DAO? -->
</ bean>

Next we'll have to expose our service using the Rmi Ser vi ceExporter :

<bean cl ass="org. springfranmework. renmpting.rm . Rm Servi ceExporter">
<!-- does not necessarily have to be the same name as the bean to be exported -->
<property name="servi ceNanme" ><val ue>Account Ser vi ce</ val ue></ property>
<property name="service"><ref bean="account Servi ce"/></property>
<property name="servicel nterface"><val ue>exanpl e. Account Servi ce</ val ue></ property>
<!-- defaults to 1099 -->
<property name="regi stryPort"><val ue>1199</ val ue></ property>

</ bean>

Asyou can see, we're overriding the port for the RMI registry. Often, your application server also maintains an
RMI registry and it is wise to not interfere with that one. Furthermore, the service nameis used to bind the
service under. So right now, the service will be bound at r i : / / HOST: 1199/ Account Ser vi ce. W€l use the
URL later on to link in the service at the client side.

Note: We've left out one property, i.e. the ser vi cePor t property, which is 0 by default. This means an
anonymous port will be used to communicate with the service. You can specify a different port if you like.

Spring Framework Version 1.1.5 183

Remoting and web services using Spring

17.2.2. Linking in the service at the client

Our client is asimple object using the AccountService to manage accounts:

public class SinpleObject {
private Account Servi ce account Servi ce
public void set Account Servi ce(Account Servi ce account Service) {
thi s. account Servi ce = account Servi ce

}
}

Tolink in the service on the client, welll create a separate bean factory, containing the simple object and the
service linking configuration bits:

<bean cl ass="exanpl e. Si npl eMvj ect " >
<property nanme="account Servi ce"><ref bean="account Servi ce"/></bean>
</ bean>

<bean i d="account Servi ce" cl ass="org. springframework.renoting.rm .Rm ProxyFact oryBean">
<property name="servi ceUr|"><val ue>rm ://HOST: 1199/ Account Ser vi ce</ val ue></ pr operty>
<property name="servicel nterface"><val ue>exanpl e. Account Servi ce</ val ue></ property>
</ bean>

That's all we need to do to support the remote account service on the client. Spring will transparently create an
invoker and remotely enable the account service through the Rmi ServiceExporter. At the client we're linking it
in using the RmiProxyFactoryBean.

17.3. Using Hessian or Burlap to remotely call services via
HTTP

Hessian offers abinary HTTP-based remoting protocol. It's created by Caucho and more information about
Hessian itself can be found at http://www.caucho.com.

17.3.1. Wiring up the DispatcherServlet for Hessian

Hessian communicates via HT TP and does so using a custom servlet. Using Spring's DispatcherServlet
principles, you can easily wire up such a servlet exposing your services. First well have to create a new servlet
in your application (this an excerpt from web. xm):

<servl et >
<servl et - name>r enot e</ ser vl et - nane>
<servl et - cl ass>or g. spri ngf ranewor k. web. servl et . Di spat cher Ser vl et </ servl et - cl ass>
<| oad- on- st art up>1</1| oad-on-start up>

</ servl et >

Y ou're probably familiar with Spring's DispatcherServlet principles and if so, you know that know you'll have
to create an application context named r enot e- ser vl et . xm (after the name of your servlet) in the WeB- | NF
directory. The application context will be used in the next section.

17.3.2. Exposing your beans by using the HessianServiceExporter

Spring Framework Version 1.1.5 184

http://www.caucho.com

Remoting and web services using Spring

In the newly created application context called r enot e- servl et . xmi we'll create a HessianServiceExporter
exporting your services:

<bean i d="account Servi ce" cl ass="exanpl e. Account Servi cel npl ">
<I-- any additional properties, maybe a DAO? -->
</ bean>

<bean nane="/ Account Servi ce" cl ass="org. spri ngfranework. renoting. caucho. Hessi anSer vi ceExporter">
<property name="service"><ref bean="account Service"/></property>
<property name="servicelnterface">
<val ue>exanpl e. Account Ser vi ce</ val ue>
</ property>
</ bean>

Now we're ready to link in the service at the client. No handler mapping is specified mapping requests (urls)
onto services and that's why the BeanNameUrlHandlerMapping will be used, hence the service will be exported
at the URL ht t p: / / HOST: 8080/ Account Ser vi ce.

17.3.3. Linking in the service on the client

Using the Hessi anPr oxyFact or yBean We can link in the service at the client. The same principles apply as with
the RMI example. We'll create a separate bean factory or application context and mention the following beans
where the SimpleObject is using the AccountService to manage accounts:

<bean cl ass="exanpl e. Si npl eMoj ect " >
<property nanme="account Servi ce"><ref bean="account Servi ce"/></property>
</ bean>

<bean i d="account Servi ce" cl ass="org. springfranmework.renoting. caucho. Hessi anPr oxyFact or yBean" >
<property name="serviceUr|"><val ue>http://renot ehost: 8080/ Account Servi ce</ val ue></ property>
<property name="Servicel nterface"><val ue>exanpl e. Account Ser vi ce</ val ue></ property>

</ bean>

That's all thereisto it.

17.3.4. Using Burlap

We won't discuss Burlap, the XML-based equivalent of Hessian, in detail here, sinceit is configured and set up
in exactly the same way as the Hessian variant explained above. Just replace the word Hessi an with Bur | ap and
you're al set to go.

17.3.5. Applying HTTP basic authentication to a service exposed through
Hessian or Burlap

One of the advantages of Hessian and Burlap is that we can easily apply HT TP basic authentication, because
both protocols are HTTP-based. Y our normal HT TP server security mechanism can easily be applied through
using theweb. xm security features, for example. Usually, you don't use per-user security credentials here, but
rather shared credentials defined at the Hessian/BurlapProxyFactoryBean level (similar to aJDBC
DataSource).

<bean cl ass="org. spri ngframewor k. web. servl et . handl er. BeanNaneUr | Handl er Mappi ng" >
<property nanme="interceptors">
<list>
<ref bean="authorizationlnterceptor"/>
</list>

Spring Framework Version 1.1.5 185

Remoting and web services using Spring

</ property>
</ bean>

<bean id="aut hori zationl nterceptor"
cl ass="org. spri ngframewor k. web. servl et. handl er. User Rol eAut hori zati onl nt er cept or ">
<property nanme="aut hori zedRol es" >

<list>
<val ue>adm ni strat or </ val ue>
<val ue>oper at or </ val ue>
</list>
</ property>

</ bean>

This an example where we explicitly mention the BeanNameUrlHandlerM apping and set an interceptor
allowing only administrators and operators to call the beans mentioned in this application context.

Note: Of course, this example doesn't show a flexible kind of security infrastructure. For more options as far as
security is concerned, have a look at the Acegi Security System for Spring, to be found at
http: //acegisecurity.sourceforge.net.

17.4. Exposing services using HTTP invokers

As opposed to Burlap and Hessian, which are both lightweight protocols using their own slim serialization
mechanisms, Spring Http invokers use the standard Java serialization mechanism to expose services through
HTTP. This has a huge advantage if your arguments and return types are complex types that cannot be
serialized using the serialization mechanisms Hessian and Burlap use (refer to the next section for more
considerations when choosing a remoting technology).

Under the hood, Spring uses either the standard facilities provided by J2SE to perform HTTP calls or Commons
HttpClient. Use the latter if you need more advanced and easy-to-use functionality. Refer to
jakarta.apache.org/commons/httpclient [http://jakarta.apache.org/commons/httpclient] for more info.

17.4.1. Exposing the service object

Setting up the HTTP invoker infrastructure for a service objects much resembles the way you would do using
Hessian or Burlap. Just as Hessian support provides the Hessi anSer vi ceExport er , Spring Http invoker support
provides the so-called or g. spri ngf r amewor k. r enot i ng. ht t pi nvoker . Ht t pl nvoker Ser vi ceExporter. TO
expose the Account Ser vi ce (mentioned above), the following configuration needsto be in place:

<bean nane="/Account Servi ce" class="org.sprfr.renoting. httpi nvoker. H t pl nvoker Servi ceExporter">
<property name="service"><ref bean="account Servi ce"/></property>
<property nanme="servicel nterface">
<val ue>exanpl e. Account Ser vi ce</ val ue>
</ property>
</ bean>

17.4.2. Linking in the service at the client
Again, linking in the service from the client much resembles the way you would do it when using Hessian or

Burlap. Using a proxy, Spring will be able to trandate your callsto HTTP POST requests to the URL pointing
to the exported service.

<bean id="httpl nvoker Proxy" class="org.sprfr.renoting. httpinvoker. Ht pl nvoker ProxyFact or yBean" >
<property name="serviceUrl">

Spring Framework Version 1.1.5 186

http://acegisecurity.sourceforge.net
http://jakarta.apache.org/commons/httpclient

Remoting and web services using Spring

<val ue>htt p: // renot ehost : 8080/ Account Ser vi ce</ val ue>
</ property>
<property name="servicelnterface">
<val ue>exanpl e. Account Servi ce</ val ue>
</ property>
</ bean>

As mentioned before, you can choose what HTTP client you want to use. By default, the Httpl nvokerProxy

uses the J2SE HTTP functionality, but you can also use the Commons HttpClient by setting the
ht t pl nvoker Request Execut or property:

<property name="htt pl nvoker Request Execut or ">

<bean cl ass="org. spri ngfranmework. renpoti ng. httpi nvoker. CoomonsHt t pl nvoker Request Execut or"/ >

</ property>

17.5. Web Services

Spring has support for:

17.5.1. Exposing services using JAX-RPC

Spring has a convenience base class for JAX-RPC servlet endpoint implementations -

Ser vl et Endpoi nt Suppor t . TO expose our AccountService we extend Spring's ServletEndpointSupport class

and implement our business logic here, usually delegating the call to the business layer.

/**
* JAX- RPC conpliant Renpt eAccount Service inplenentation that sinply del egates
* to the AccountService inplenmentation in the root web application context.

Thi s wrapper class is necessary because JAX-RPC requires working with

RM interfaces. If an existing service needs to be exported, a w apper that
ext ends Servl et Endpoi nt Support for sinple application context access is
the sinplest JAX-RPC conpliant way.

This is the class registered with the server-side JAX-RPC i npl enentati on.
In the case of Axis, this happens in "server-config.wsdd" respectively via
depl oynment calls. The Wb Service tool nanages the |life-cycle of instances
of this class: A Spring application context can just be accessed here.

E I I R

*/

public class Account Servi ceEndpoi nt extends Servl et Endpoi nt Support i npl enments RenoteAccount Service {

private Account Service biz;
protected void onlnit() {

this.biz = (Account Servi ce) getWebAppli cati onContext (). getBean("account Service");
}

public void insertAccount (Account acc) throws RenpteException {
bi z. i nsert Account (acc);

}

public Account[] getAccounts(String nane) throws RenpteException {
return biz.get Account s(nane);
}

}

Our AccountServletEndpoint needs to run in the same web application as the Spring context to allow for access

to Spring's facilities. In case of Axis, copy the AxisServlet definition into your web.xml, and set up the

endpoint in "server-config.wsdd" (or use the deploy tool). See the sample application JPetStore where the

Spring Framework Version 1.1.5

187

Remoting and web services using Spring

OrderService is exposed as a Web Service using Axis.

17.5.2. Accessing Web Services

Spring has two factory beans to create web service proxies Local JaxRpcSer vi ceFact or yBean and

JaxRpcPor t Pr oxyFact or yBean. The former can only return a JAX-RPC Service class for us to work with. The
latter isthe full fledged version that can return a proxy that implements our business service interface. In this
example we use the later to create a proxy for the AccountService Endpoint we exposed in the previous
paragraph. Y ou will see that Spring has great support for Web Services requiring little coding efforts - most of
the magic is done in the spring configuration file as usual:

<bean i d="account WebServi ce" cl ass="org. spri ngfranework. renoting.jaxrpc.JaxRpcPort ProxyFact or yBean" >
<property name="servicelnterface">
<val ue>exanpl e. Renot eAccount Ser vi ce</ val ue>
</ property>
<property nanme="wsdl Docunent Ur| ">
<val ue>http:/ /1 ocal host: 8080/ account/servi ces/ account Servi ce?WSDL</ val ue>
</ property>
<property name="nanespaceUri">
<val ue>http:/ /1 ocal host: 8080/ account/servi ces/ account Servi ce</ val ue>
</ property>
<property nanme="servi ceNanme" >
<val ue>Account Ser vi ce</ val ue>
</ property>
<property name="port Nane">
<val ue>Account Por t </ val ue>
</ property>
</ bean>

Whereser vi cel nt er f ace is our remote business interface the clients will use. wsdl Docunent Ur | isthe URL
for the WSDL file. Spring needs this a startup time to create the JAX-RPC Service. nanespaceUri corresponds
to the targetNamespace in the .wsdl file. ser vi ceName corresponds to the serivce namein the .wsdl file.

por t Nane corresponds to the port name in the .wsdl file.

Accessing the Web Service is now very easy as we have a bean factory for it that will exposeit as
Renot eAccount Ser vi ce interface. We can wire thisup in Spring:

<bean id="client" class="exanple.AccountCientlnpl">
<property nanme="service">
<ref bean="account WebServi ce"/>

</ property>
</ bean>

And from the client code we can access the Web Service just asif it was anormal class, except that it throws
RemoteException.

public class AccountCientlnpl {
private RenpteAccount Service service

public void set Servi ce(Renmbt eAccount Servi ce service) {
this.service = service

}
public void foo() {
try {
service.insertAccount(...);
} catch (RenoteException e) {
/1 ouch
}
}

Spring Framework Version 1.1.5 188

Remoting and web services using Spring

We can get rid of the checked RemoteException since Spring supports automatic conversion to its
corresponding unchecked Renot eAccessExcept i on. This requires that we provide a non RMI interface also.
Our configuration is now:

<bean i d="account WebServi ce" cl ass="org. springfranmework. renoting.jaxrpc.JaxRpcPort ProxyFact or yBean" >
<property name="servicel nterface">
<val ue>exanpl e. Account Servi ce</ val ue>
</ property>
<property name="portlnterface">
<val ue>exanpl e. Renot eAccount Ser vi ce</ val ue>
</ property>

</ bean>

Whereser vi cel nt er f ace is changed to our non RMI interface. Our RMI interface is now defined using the
property port | nt er f ace. Our client code can now avoid handling j ava. r mi . Renot eExcept i on:

public class AccountClientlnpl {
private Account Servi ce servi ce;

public void setService(Account Servi ce service) {
this.service = service;

}

public void foo() {
service.insertAccount(...);

}

17.5.3. Register Bean Mappings

To transfer complex objects over the wire such as Account we must register bean mappings on the client side.
Note

On the server side using Axis registering bean mappingsis usually done in server-config.wsdd.
We will use Axisto register bean mappings on the client side. To do this we need to subclass Spring Bean
factory and register the bean mappings programmatic:

public class Axi sPortProxyFactoryBean extends JaxRpcPort ProxyFact oryBean {

protected voi d post ProcessJaxRpcServi ce(Service service) {
TypeMappi ngRegi stry registry = service. get TypeMappi ngRegi stry();
TypeMappi ng mappi ng = registry. createTypeMappi ng();
r egi st er BeanMappi ng(mappi ng, Account.cl ass, "Account");
registry.register("http://schenmas. xm soap. or g/ soap/ encodi ng/ ", nappi ng);

}

prot ected voi d registerBeanMappi ng(TypeMappi ng mappi ng, C ass type, String nane) {
Mane gNane = new QNanme("http://1 ocal host: 8080/ account/ servi ces/ account Servi ce", nane);
mappi ng. regi ster (type, gNane,
new BeanSeri al i zer Factory(type, gNane),
new BeanDeseri al i zer Factory(type, gNane));

Spring Framework Version 1.1.5 189

Remoting and web services using Spring

17.5.4. Registering our own Handler

In this section we will register our ownj avax. r pc. xm . handl er . Handl er to the Web Service Proxy where we
can do custom code before the SOAP message is sent over the wire. Thej avax. rpc. xm . handl er. Handl er isa

callback interface. Thereis a convenience base class provided in jaxrpc.jar -
j avax. rpc. xm . handl er. Generi cHandl er that we will extend:

public class Account Handl er extends GenericHandl er {
public QNane[] get Headers() {

return null;

publ i c bool ean handl eRequest (MessageCont ext context) {
SOAPMessageCont ext snt = (SOAPMessageCont ext) context;
SOAPMessage nsg = snt. get Message();

try {
SQAPEnvel ope envel ope = nsg. get SOAPPart (). get Envel ope();
SCAPHeader header = envel ope. get Header () ;

} catch (SOAPException e) {
t hr ow new JAXRPCException(e);
}

return true;

}

What we need to do now isto register our AccountHandler to JAX-RPC Service so it would invoke
handl eRequest before the message is sent over the wire. Spring has at thistime of writing no declarative

support for registering handlers. So we must use the programmiatic approach. However Spring has made it very

easy for usto do this as we can extend its bean factory and override its post ProcessJaxRpcSer vi ce method

that is designed for this:

public class Account Handl er JaxRpcPor t ProxyFact or yBean ext ends JaxRpcPort ProxyFact oryBean {

protected voi d post ProcessJaxRpcServi ce(Service service) {
Mane port = new QNane(thi s. get NamespaceUri (), this.getPortName());
List list = service.getHandl er Regi stry(). get Handl er Chai n(port);
|'i st.add(new Handl er | nf o(Account Handl er. class, null, null));

| ogger.info("Registered JAX-RPC Handler [" + AccountHandl er.cl ass. getNane() + "] on port "

}

And the last thing we must remember to do is to change the Spring configuration to use our factory bean:

<bean i d="account WebServi ce" cl ass="exanpl e. Account Handl er JaxRpcPor t Pr oxyFact or yBean" >

</ bean>

17.6. Auto-detection is not implemented for remote interfaces

+ port);

The main reason why auto-detection of implemented interfaces does not occur for remote interfacesis to avoid

opening too many doors to remote callers. The target object might implement internal callback interfaceslike

InitializingBean or DisposableBean which one would not want to expose to callers.

Spring Framework Version 1.1.5

190

Remoting and web services using Spring

Offering a proxy with all interfaces implemented by the target usually does not matter in the local case. But
when exporting a remote service, you should expose a specific service interface, with specific operations
intended for remote usage. Besides internal callback interfaces, the target might implement multiple business
interfaces, with just one of them intended for remote exposure. For these reasons, we require such a service
interface to be specified.

Thisis atrade-off between configuration convenience and the risk of accidental exposure of internal methods.
Always specifying a service interface is not too much effort, and puts you on the safe side regarding controlled
exposure of specific methods.

17.7. Considerations when choosing a technology

Each and every technology presented here has its drawbacks. Y ou should carefully consider you needs, the
services your exposing and the objects you'll be sending over the wire when choosing a technology.

When using RMI, it's not possible to access the objects through the HTTP protocol, unless you're tunneling the
RMI traffic. RMI is afairly heavy-weight protocol in that it support full-object serialization which isimportant
when using a complex data model that needs serialization over the wire. However, RMI-JRMP istied to Java
clients: It is a Java-to-Java remoting solution.

Spring's HTTP invoker isagood choice if you need HTTP-based remoting but also rely on Java serialization. It
shares the basic infrastructure with RMI invokers, just using HTTP as transport. Note that HTTP invokers are
not only limited to Java-to-Java remating but also to Spring on both the client and server side. (The latter aso
appliesto Spring's RMI invoker for non-RMI interfaces.)

Hessian and/or Burlap might provide significant value when operating in a heterogeneous environment,
because they explicitly allow for non-Java clients. However, non-Java support is still limited. Known problems
include the serialization of Hibernate objectsin combination with lazily initializing collections. If you have
such adata model, consider using RMI or HTTP invokersinstead of Hessian.

JMS can be useful for providing clusters of services and allowing the IM S broker to take care of load
balancing, discovery and auto-failover. By default Java serialization is used when using JM S remoting but the
JMS provider could use a different mechanism for the wire formatting, such as XStream to allow serversto be
implemented in other technologies.

Last but not least, EJB has an advantage over RMI in that it supports standard role-based authentication and
authorization and remote transaction propagation. It is possible to get RMI invokers or HTTP invokers to
support security context propagation as well, although thisis not provided by core Spring: There are just
appropriate hooks for plugging in third-party or custom solutions here.

Spring Framework Version 1.1.5 191

Chapter 18. Sending Email with Spring mail
abstraction layer

18.1. Introduction

Spring provides a higher level of abstraction for sending electronic mail which shields the user from the
specifics of underlying mailing system and is responsible for alow level resource handling on behalf of the
client.

18.2. Spring mail abstraction structure

The main package of Spring mail abstraction layer isor g. spri ngf ramewor k. mai | package. It contains central
interface for sending emails called mai | Sender and the value object which encapsul ates properties of asimple
mail such as from, to, cc, subject, text called Si npl eMai | Message. This package also contains a hierarchy of
checked exceptions which provide a higher level of abstraction over the lower level mail system exceptions
with the root exception being Mai | Except i on. Please refer to JavaDocs for more information on mail exception
hierarchy.

Spring also provides a sub-interface of Mai | Sender for specialized JavaMail features such as MIME messages,
namely or g. spri ngf ramewor k. mai | . j avamai | . JavaMai | Sender It also provides a callback interface for
preparation of JavaMail MIME messages, namely

org. springframework. mail.javanmai |l . M neMessagePr epar at or

MailSender:

public interface Mil Sender {

/**

* Send the given sinple mail nessage.

* @aram si npl eMessage nessage to send

* @hrows Mail Exception in case of nmessage, authentication, or send errors
*/

public void send(Sinpl eMai | Message si npl eMessage) throws Mil Excepti on;

/**
* Send the given array of sinple nail nessages in batch.
* @ar am si npl eMessages nessages to send
* @hrows Mil Exception in case of nessage, authentication, or send errors
Sl
public void send(Si npl eMai | Message[] sinpl eMessages) throws Mil Exception;

}
JavaM ail Sender:

public interface JavaMail Sender extends Mail Sender {

/**

* Create a new JavaMail M neMessage for the underlying JavaMail Session
* of this sender. Needs to be called to create M meMessage i nstances

* that can be prepared by the client and passed to send(M neMessage) .

* @eturn the new M neMessage i nstance

* @ee #send(M neMessage)

* @ee #send(M neMessage[])

*/

public M neMessage createM neMessage();

/**

* Send the given JavaMail M ME nessage.
* The message needs to have been created with createM neMessage.

Spring Framework Version 1.1.5 192

Sending Email with Spring mail abstraction layer

* @aram m neMessage nessage to send

* @hrows Mail Exception in case of nmessage, authentication, or send errors
* @ee #createM neMessage

*/

public void send(M neMessage mi neMessage) throws Mil Excepti on;

/**

* Send the given array of JavaMail M ME nessages in batch.

* The messages need to have been created with createM neMessage.

* @aram m neMessages nessages to send

* @hrows Mail Exception in case of nmessage, authentication, or send errors
* @ee #createM neMessage

*/

public void send(M neMessage[] m neMessages) throws Mil Exception;

/**

* Send the JavaMail M ME nessage prepared by the given M neMessagePreparator.

* Alternative way to prepare M nmeMessage instances, instead of createM neMessage
* and send(M neMessage) calls. Takes care of proper exception conversion.

* @aram m neMessagePreparator the preparator to use

* @hrows Mail Exception in case of nmessage, authentication, or send errors

*/

public void send(M nmeMessagePreparat or m neMessagePreparator) throws Mil Excepti on;
/**

* Send the JavaMail M ME nessages prepared by the given M neMessagePreparators.

* Alternative way to prepare M neMessage instances, instead of createM neMessage
* and send(M neMessage[]) calls. Takes care of proper exception conversion.

* @aram m meMessagePreparators the preparator to use

* @hrows Mail Exception in case of nmessage, authentication, or send errors

*/

public void send(M neMessagePreparator[] m neMessagePreparators) throws Mil Exception;

MimeM essagePreparator:

public interface M neMessagePreparator {

/**
* Prepare the given new M neMessage i nstance.
* @aram m neMessage the nessage to prepare
* @hrows Messagi ngException passing any exceptions thrown by M neMessage
* methods through for automatic conversion to the Mail Exception hierarchy
*/

voi d prepare(M neMessage m neMessage) throws Messagi ngExcepti on;

18.3. Using Spring mail abstraction

Let's assumethereis abusinessinterface called O der Manager

public interface O derManager {

voi d pl aceOrder (Order order);
}

and there is a use case that says that an email message with order number would need to be generated and sent
to a customer placing that order. So for this purpose we want to use Mai | Sender and Si npl eMai | Message

Please note that as usual, we work with interfaces in the business code and let Soring 10C container take care
of wiring of all the collaborators for us.

Here is the implementation of o der Manager

i nport org.springfranework. mail . Mai | Excepti on;
i mport org.springframework. mail . Mai | Sender ;
i nport org.springfranework. mail . Si npl eMai | Message;

Spring Framework Version 1.1.5 193

Sending Email with Spring mail abstraction layer

public class O derManager| npl inplenents O der Manager {

private Mail Sender mail Sender;
private SinpleMil Message nessage;

public void setMil Sender (Mai | Sender mai | Sender) {

this. mai | Sender = mai |l Sender;
}

public void set Message(Si npl eMai | Message nessage) {
thi s. message = nessage;

}
public void placeOrder(Order order) {
//... * Do the business calculations....
//... * Call the collaborators to persist the order

//Create a thread safe "sandbox" of the nessage
Si npl eMai | Message nsg = new Si npl eMai | Message(t hi s. message) ;
nsg. set To(order. get Cust oner (). get Emai | Address());
nsg. set Text (
"Dear "
+ order. get Cust oner (). get Fi rst Name()
+ order. get Cust oner (). getLast Nanme()
+ ", thank you for placing order. Your order nunber is "
+ order. get Order Nunber());

try{
mai | Sender . send(nmsg) ;

}
cat ch(Mai | Exception ex) {
//1og it and go on
System err.println(ex.get Message());

}
Here is what the bean definitions for the code above would look like:

<bean i d="mai | Sender"
cl ass="org. springfranmework. mail . javamai |l . JavaMai | Sender | npl " >
<property nanme="host"><val ue>nmi | . myconpany. conx/ val ue></ property>
</ bean>

<bean i d="rmai | Message"
cl ass="org. spri ngframework. mai |l . Si npl eMai | Message" >

<property nanme="fronl' ><val ue>cust oner servi ce@ryconpany. conx/ val ue></ property>

<property nanme="subj ect"><val ue>Your order</val ue></property>
</ bean>

<bean i d="order Manager"
cl ass="com nyconpany. busi nessapp. support. Or der Manager | npl " >
<property name="nmai | Sender " ><ref bean="nmmil Sender"/></property>
<property name="nessage"><ref bean="nuai | Message"/></property>
</ bean>

Hereisthe implementation of O der Manager Using M neMessagePr epar at or callback interface. Please note that

the mailSender property is of type JavaMai | Sender inthiscasein order to be able to use JavaMail

MimeM essage:

i mport javax.mail.Message;
i nport javax.nail . Messagi ngExcepti on;

i mport javax.mail.internet.|nternetAddress;
i nport javax.nmil.internet.M neMessage;
i nport javax.nmil.internet.M neMessage;

i mport org.springframework. mail . Mai | Excepti on;
i mport org.springframework. mail.javanail.JavaMai | Sender;
i mport org.springframework. mail.javanmail.M neMessagePr epar at or;

public class O derManager| npl inplenents O der Manager {
private JavaMai |l Sender mail Sender;

Spring Framework Version 1.1.5

194

Sending Email with Spring mail abstraction layer

public void set Mail Sender (JavaMai | Sender nmi |l Sender) {
this. mai | Sender = mmi |l Sender;

}
public void placeOrder(final Oder order) {
//... * Do the business calculations....
//... * Call the collaborators to persist the order

M meMessagePr epar at or preparator = new M nmeMessagePreparator () {
public void prepare(M nmeMessage m neMessage) throws Messagi ngException {
m meMessage. set Reci pi ent (Message. Reci pi ent Type. TO,
new | nt er net Addr ess(or der. get Cust oner (). get Enai | Address()));
m neMessage. set Fron{ new | nt er net Addr ess(" mai | @yconpany. coni'));
m neMessage. set Text (
"Dear "
+ order. get Custoner (). get Fi rst Name()
+ order. get Cust oner (). getLast Nanme()
+ ", thank you for placing order. Your order number is "
+ order. get O der Nunber ());
}
b
try{
mai | Sender . send(pr eparator);

}
catch(Mai | Exception ex) {
//log it and go on
Systemerr. println(ex. get Message());

If you want to use JavaMail MimeM essage to the full power, the M neMessagePr epar at or isavailable at your
fingertips.

Please note that the mail code is a crosscutting concern and is a perfect candidate for refactoring into a custom
Soring AOP advice, which then could easily be applied to OrderManager target. Please see the AOP chapter.

18.3.1. Pluggable MailSender implementations

Spring comes with two Mail Sender implementations out of the box - the JavaMail implementation and the
implementation on top of Jason Hunter's MailMessage class that's included in http://servlets.com/cos
(com.oreilly.servlet). Please refer to JavaDocs for more information.

18.4. Using the JavaMail MimeMessageHelper

One of the components that comes in pretty handy when dealing with JavaMail messagesis the
org. springfranework. mai | . j avamai | . M neMessageHel per . It prevents you from having to use the nasty APIs
thethej avax. mai |l .internet classes. A couple of possible scenarios:

18.4.1. Creating a simple MimeMessage and sending it

Using the MimeM essageHel per it's pretty easy to setup and send a MimeM essage:

/1 of course you would setup the nail sender using
// D in any real-world cases

JavaMai | Sender | npl sender = new JavaMai | Sender | npl () ;
sender. set Host ("mai | . host. conl') ;

M meMessage nessage = sender.createM neMesage();
M nmeMessageHel per hel per = new M neMessageHel per (nessage) ;

Spring Framework Version 1.1.5 195

http://servlets.com/cos

Sending Email with Spring mail abstraction layer

hel per. set To("t est @ost.cont');
hel per. set Text (" Thank you for ordering!");

sender . send(nessage) ;

18.4.2. Sending attachments and inline resources

Email alow for attachments, but also for inline resources in multipart messages. Inline resources could for
example be images or stylesheet you want to use in your message, but don't want displayed as attachment. The
following shows you how to use the MimeM essageHel per to send an email along with an inline image.

JavaMai | Sender | npl sender = new JavaMai | Sender | npl ();
sender. set Host ("mai | . host. conl') ;

M neMessage nessage = sender.creat eM neMesage();

/'l use the true flag to indicate you need a nultipart nmessage
M neMessageHel per hel per = new M neMessageHel per (nmessage, true);
hel per. set To("t est @ost.cont);

/'l use the true flag to indicate the text included is HTM
hel per. set Text (
"<ht M ><body><i ng src='cid:identifierl234'></body></htm >"
true);

/1 let's include the infanpus wi ndows Sanple file (this tine copied to c:/)
Fi | eSyst enResource res = new Fil eSyst enResource(new File("c:/Sanple.jpg"));
hel per. addl nl i ne("identifier1234", res);

/1 if you would need to include the file as an attachnent, use
/1 addAttachment () nmethods on the M nmeMessageHel per

sender . send(nessage) ;

Inline resources are added to the mime message using the Content-1D specified as you've seen just now
(i denti fier 1234 inthiscase). The order in which you're adding the text and the resource are VERY
important. First add the text and after that the resources. If you're doing it the other way around, it won't work!

Spring Framework Version 1.1.5 196

Chapter 19. Scheduling jobs using Quartz or Timer

19.1. Introduction

Spring features integration classes for scheduling support. Currently, Spring supports the Timer, part of the
JDK since 1.3, and the Quartz Scheduler (http://www.quartzscheduler.org). Both schedulers are set up using a
FactoryBean with optional references to Timers or Triggers, respectively. Furthermore, a convenience class for
both the Quartz Scheduler and the Timer is available that allows you to invoke a method of an existing target
object (analogous to normal Met hodl nvoki ngFact or yBeans).

19.2. Using the OpenSymphony Quartz Scheduler

Quartz uses Tri gger s, Jobs and JobDet ai | ro realize scheduling of all kinds of jobs. For the basic concepts
behind Quartz, have alook at http://www.opensymphony.com/quartz. For convenience purposes, Spring offers
acouple of classes that simplify usage of Quartz within Spring-based applications.

19.2.1. Using the JobDetailBean

JobDet ai | objects contain all information needed to run ajob. Spring provides a so-called JobDet ai | Bean that
makes the JobDetail more of an actual JavaBean with sensible defaults. Let's have alook at an example:

<bean name="exanpl eJob" cl ass="org. spri ngframework. schedul i ng. quart z. JobDet ai | Bean" >
<property nanme="j obCl ass">
<val ue>exanpl e. Exanpl eJob</ val ue>
</ property>
<property nanme="j obDat aAsMap" >
<|’T‘Bp>
<entry key="timeout"><val ue>5</val ue></entry>
</ map>
</ property>
</ bean>

The job detail bean has all information it needs to run the job (ExampleJob). The timeout is specified as the job
data map. The job data map is available through the JobExecutionContext (passed to you at execution time),
but the JobDet ai | Bean also maps the properties from the job data map to properties of the actual job. Soin this
case, if the ExampleJob contains a property named t i neout , the JobDetailBean will automatically apply it:

package exanpl e;
public class Exanpl eJob extends QuartzJobBean {

private int tineout;

/**
* Setter called after the Exanpl eJob is instantiated
* with the value fromthe JobDetail Bean (5)
*/
public void setTimeout(int timeout) {
this.tinmeout = tineout;

}

protected voi d execut el nternal (JobExecuti onCont ext ctx)
throws JobExecuti onException {

/1 do the actual work
}

}

Spring Framework Version 1.1.5 197

http://www.quartzscheduler.org
http://www.opensymphony.com/quartz

Scheduling jobs using Quartz or Timer

All additional settings from the job detail bean are of course available to you as well.

Note: Using the nane and gr oup properties, you can modify the name and the group of the job, respectively. By
default the name of the job equals the bean name of the job detail bean (in the example above, thisis
exanpl eJob).

19.2.2. Using the MethodInvokingJobDetailFactoryBean

Often you just need to invoke a method on a specific object. Using the Met hodl nvoki ngJobDet ai | Fact or yBean
you can do exactly this:

<bean i d="nmet hodl nvoki ngJobDet ai | "
cl ass="org. spri ngframewor k. schedul i ng. quart z. Met hodl nvoki ngJobDet ai | Fact or yBean" >
<property nanme="t ar get Obj ect " ><ref bean="exanpl eBusi nessObj ect "/ ></ property>
<property name="tar get Met hod" ><val ue>dol t </ val ue></ pr operty>
</ bean>

The above example will result in the dol t being called on the exampleBusinessObject (see below):

public class Busi nessbj ect {
/'l properties and col |l aborators

public void dolt() {
// do the actual work

}
}

<bean i d="exanpl eBusi nessObj ect" cl ass="exanpl es. Exanpl eBusi nessObj ect "/ >

Using the Met hodl nvoki ngJobDet ai | Fact or yBean you don't need to create one-line jobs that just invoke a
method, and you only need to create the actual business object and wire up the detail object.

By default, Quartz Jobs are stateless, resulting in the possibility of jobs interfering with each other. If you
specify two triggers for the same JobDetail, it might be possible that before the first job has finished, the second
onewill start. If JobDetail objects implement the Stateful interface, this won't happen. The second job will not
start before the first one has finished. To make jobs resulting from the Methodl nvokingJobDetail FactoryBean
non-concurrent, set the concurrent flagtofal se.

<bean i d="net hodl nvoki ngJobDet ai | "
cl ass="org. spri ngframewor k. schedul i ng. quart z. Met hodl nvoki ngJobDet ai | Fact or yBean" >
<property name="t ar get Obj ect " ><ref bean="exanpl eBusi nessObj ect "/ ></ property>
<property name="tar get Met hod" ><val ue>dol t </ val ue></ property>
<property nanme="concurrent"><val ue>f al se</val ue></ property>
</ bean>

Note: By default, jobswill run in a concurrent fashion.

19.2.3. Wiring up jobs using triggers and the SchedulerFactoryBean

We've created job details, jobs and we've reviewed the convenience bean that allows to you invoke a method on
a specific object. Of course, we till need to schedule the jobs themselves. Thisis done using triggersand a
Schedul er Fact or yBean. Several triggers are available within Quartz. Spring offers two subclassed triggers
with convenient defaults; ¢ onTri gger Bean and Si npl eTri gger Bean.

Spring Framework Version 1.1.5 198

Scheduling jobs using Quartz or Timer

Triggers need to be scheduled. Spring offers a Schedul erFactoryBean exposing properties to set the triggers.
SchedulerFactoryBean schedules the actual jobs with those triggers.

A couple of examples:

<bean id="sinpl eTrigger" class="org. springfranmework. schedul i ng. quartz. Si npl eTri gger Bean" >
<property nanme="j obDetail ">
<l-- see the exanple of nethod invoking job above -->
<ref bean="net hodl nvoki ngJobDetail"/>
</ property>
<property nanme="start Del ay">
<l-- 10 seconds -->
<val ue>10000</ val ue>
</ property>
<property name="repeat|nterval ">
<l-- repeat every 50 seconds -->
<val ue>50000</ val ue>
</ property>
</ bean>

<bean id="cronTrigger" class="org.springfranmework. schedul ing. quartz.CronTri gger Bean">
<property name="j obDetail ">
<ref bean="exanpl eJob"/>
</ property>
<property name="cronExpressi on">
<!-- run every norning at 6 AM -->
<value>0 0 6 * * ?</val ue>
</ property>
</ bean>

OK, now we've set up two triggers, one running every 50 seconds with a starting delay of 10 seconds and one
every morning at 6 AM. To finalize everything, we need to set up the SchedulerFactoryBean:

<bean cl ass="org. spri ngframewor k. schedul i ng. quart z. Schedul er Fact or yBean" >
<property name="triggers">
<list>
<ref local ="cronTrigger"/>
<ref | ocal ="sinpleTrigger"/>
</list>
</ property>
</ bean>

More properties are available for the SchedulerFactoryBean for you to set, such as the calendars used by the job
details, properties to customize Quartz with, etc. Have alook at the JavaDoc
(http://vww.springframework.org/docs/api/org/springframework/scheduling/quartz/Schedul er FactoryBean.html)
for more information.

19.3. Using JDK Timer support
The other way to schedule jobsin Spring is using JDK Timer objects. More information about Timers
themselves can be found at http://java.sun.com/docs/books/tutorial/essential/threads/timer.html. The concepts

discussed above also apply to the Timer support. Y ou can create custom timers or use the timer that invokes
methods. Wiring timers has to be done using the TimerFactoryBean.

19.3.1. Creating custom timers

Using the Ti mer Task you can create customer timer tasks, similar to Quartz jobs:

public class CheckEmai |l Addresses extends TinerTask {

Spring Framework Version 1.1.5 199

http://www.springframework.org/docs/api/org/springframework/scheduling/quartz/SchedulerFactoryBean.html
http://java.sun.com/docs/books/tutorial/essential/threads/timer.html

Scheduling jobs using Quartz or Timer

private List email Addresses;

public void setEnmil Addresses(List enmil Addresses) {
this. emai | Addresses = enai | Addr esses;

}

public void run() {
/'l iterate over all email addresses and archive them

}
}

Wiring it up issimple:

<bean i d="checkEnmai | " cl ass="exanpl es. CheckEmai | Addr ess" >
<property nanme="enai | Addresses" >
<list>

<val ue>t est @pri ngf ramewor k. or g</ val ue>
<val ue>f oo@ar . conx/ val ue>
<val ue>j ohn@loe. net </ val ue>
</list>
</ property>
</ bean>

<bean i d="schedul edTask" cl ass="org. springfranmework. schedul i ng.ti nmer. Schedul edTi ner Task" >
<I-- wait 10 seconds before starting repeated execution -->
<property name="del ay">
<val ue>10000</ val ue>
</ property>
<l-- run every 50 seconds -->
<property nanme="period">
<val ue>50000</ val ue>
</ property>
<property name="ti mer Task">
<ref |ocal ="checkEmil"/>
</ property>
</ bean>

Letting the task only run once can be done by changing the per i od property to -1 (or some other negative
value)

19.3.2. Using the MethodInvokingTimerTaskFactoryBean

Similar to the Quartz support, the Timer support also features a component that allows you to periodically
invoke a method:

<bean i d="net hodl nvoki ngTask"
cl ass="org. spri ngfranmewor k. schedul i ng. ti mer. Met hodl nvoki ngTi mer TaskFact or yBean" >
<property nanme="t ar get Obj ect " ><ref bean="exanpl eBusi nessObj ect"/></property>
<property nanme="t ar get Met hod" ><val ue>dol t </ val ue></ property>
</ bean>

The above example will result in the dol t being called on the exampleBusinessObject (see below):

public class BusinessObject {
/| properties and col | aborators

public void dolt() {
/1 do the actual work
}
}

Spring Framework Version 1.1.5

200

Scheduling jobs using Quartz or Timer

Changing the reference of the above example in which the ScheduledTimerTask is mentioned to the
et hodl nvoki ngTask Will result in this task being executed.

19.3.3. Wrapping up: setting up the tasks using the TimerFactoryBean

The TimerFactoryBean is similar to the Quartz SchedulerFactoryBean in that it serves the same purpose:
setting up the actual scheduling. The TimerFactoryBean sets up an actual Timer and schedules the tasks it has
referencesto. Y ou can specify whether or not daemon threads should be used.

<bean i d="ti merFactory" class="org.springframework.scheduling.tiner.Ti nmerFact or yBean">
<property nanme="schedul edTi mer Tasks" >

<list>
<l-- see the exanpl e above -->
<ref | ocal ="schedul edTask"/>
</list>
</ property>
</ bean>
That's all!

Spring Framework Version 1.1.5 201

Chapter 20. Testing

20.1. Unit testing

Y ou don't need this manual to help you write effective unit tests for Spring-based applications.

One of the main benefits of Dependency Injection is that your code should depend far less on the container than
in traditional J2EE development.

The POJOs that comprise your application should be testable in JUnit tests, with objects simply instantiated
using the new operator, without Soring or any other container. Y ou can use mock objects or many other
valuabl e testing techniques, to test your code in isolation. If you follow the architecture recommendations
around Spring--for example, those in J2EE without EJB--you will find that the resulting clean layering will also
greatly facilitate testing. For example, you will be able to test service layer objects by stubbing or mocking
DAO interfaces, without any need to access persistent data while running unit tests.

True unit tests will run extremely quickly, asthereis no runtime infrastructure to set up, whether application
server, database, ORM tool etc. Thus emphasizing true unit tests will boost your productivity.

20.2. Integration testing

However, it's also important to be able to perform some integration testing without deployment to your
application server. Thiswill test things such as:

« Correct wiring of your Spring contexts.

e Dataaccess using JDBC or ORM tool--correctness of SQL statements. For example, you can test your
DAO implementation classes.

Thus Spring provides valuable support for integration testing, in the spri ng- mock. j ar. This can be thought of
as asignificantly superior alternative to in-container testing using tools such as Cactus.

Theor g. spri ngf ramewor k. t est package provides valuable superclasses for integration tests using a Spring
container, but not dependent on an application server or other deployed environment. Such tests can runin
JUnit--even in an IDE--without any specia deployment step. They will be slower to run than unit tests, but
much faster to run than Cactus tests or remote tests relying on deployment to an application server.

The superclasses in this package provide the following functionality:

» Context caching.

* Dependency Injection for test classes.

« Transaction management appropriate to tests.
¢ Inherited instance variables useful for testing.

Numerous Interface?21 and other projects since late 2004 have demonstrated the power and utility of this
approach. Let'slook at some of the important areas of functionality in detail.

Spring Framework Version 1.1.5 202

Testing

20.2.1. Context management and caching

Theor g. spri ngf ramewor k. t est package provides support for consistent loading of Spring contexts, and
caching of loaded contexts. The latter isimportant, because if you are working on alarge project startup time
may become an issue--not because of the overhead of Spring itself, but because the objects instantiated by the
Spring container will themselves take time to instantiate. For example, a project with 50-100 Hibernate
mapping files might take 10-20 seconds to load them, and incurring that cost before running every test case will
greatly reduce productivity.

Thus, Abst r act Dependencyl nj ect i onSpri ngCont ext Test s has an abstract protected method that subclasses
must implement, to provide the location of contexts:

protected abstract String[] getConfiglLocations();

This should provide alist of the context locations--typically on the classpath--used to configure the application.
Thiswill be the same, or nearly the same, as the list of config locations specified in web.xml or other
deployment configuration.

By default, once loaded, the set of configs will be reused for each test case. Thus the setup cost will be incurred
only once, and subsequent test execution will be much faster.

In the unlikely case that atest may "dirty" the config location, requiring rel oading--for example, by changing a
bean definition or the state of an application object--you can call theset bi rty() method on

Abst r act Dependencyl nj ecti onSpri ngCont ext Test s to cause it to reload the configurations and rebuild the
application context before executing the next test case.

20.2.2. Dependency Injection of test class instances

When Abst r act Dependencyl nj ect i onSpri ngCont ext Test s (and subclasses) load your application context,
they can optionally configure instances of yourr test classes by Setter Injection. All you need to do isto define
instance variables and the corresponding setters. Abst r act Dependencyl nj ect i onSpri ngCont ext Test s Will
automatically locate the corresponding object in the set of configuration files specified in the

get Confi gLocati ons() method.

The superclasses use autowire by type. Thus if you have multiple bean definitions of the same type, you cannot
rely on this approach for those particular beans. In that case, you can use the inherited appl i cat i onCont ext
instance variable, and explicit lookup using get Bean() .

If you don't want Setter Injection applied to your test cases, don't declare any setters. Or extend
Abst r act Spri ngCont ext Test s--the root of the class hierarchy inthe or g. spri ngf ramewor k. t est package. It
merely contains convenience methods to load Spring contexts, and performs no Dependency Injection.

20.2.3. Transaction management

One common problem in tests that access areal database istheir effect on the state of the persistence store.
Even when you're using a development database, changes to the state may affect future tests.

Also, many operations--such as inserting to or modifying persistence data--can't be done (or verified) outside a
transaction.

Theorg. spri ngf ramewor k. t est . Abst ract Transact i onal Dat aSour ceSpr i ngCont ext Test s superclass (and

Spring Framework Version 1.1.5 203

Testing

subclasses) exist to meet this need. By default, they create and roll back atransaction for each test case. You
simply write code that can assume the existence of atransaction. If you call transactionally proxied objectsin
your tests, they will behave correctly, according to their transactional semantics.

Abstract Transact i onal Spri ngCont ext Test s dependson apl at f or nilr ansact i onManager bean being defined
in the application context. The name doesn't matter, due to the use of autowire by type.

Typically you will extend the subclass, Abst r act Tr ansact i onal Dat aSour ceSpr i ngCont ext Tests. Thisalso
requires a bat aSour ce bean definition--again, with any name--is present in the configurations. It creates a
JdbcTenpl at e instance variable that is useful for convenient querying, and provides handy methods to delete
the contents of selected tables. (Remember that the transaction will roll back by default, so thisis safe.)

If you want a transaction to commit--unusual, but useful if you want a particular test to populate the database,
for example--you can call the set Conpl et e() method inherited from
Abstract Transact i onal Spri ngCont ext Tests. Thiswill cause the transaction to commit instead of roll back.

Thereis also convenient ability to end a transaction before the test case ends, through calling the
endTransacti on() method. Thiswill roll back the transaction by default, and commit it only if

set Conpl et e() had previously been called. This functionality is useful if you want to test the behaviour of
"disconnected" data objects, such as Hibernate-mapped objects that will be used in aweb or remoting tier
outside a transaction. Often, lazy loading errors are discovered only through Ul testing; if you call
endTransacti on() YOu can ensure correct operation of the Ul through your JUnit test suite.

Note that these test support classes are designed to work with a single database.

20.2.4. Convenience variables

When you extend org.springframework.test package you will have access to the following protected instance
variables:

e applicationContext (Configurabl eApplicationCont ext): inherited from
AbstractDependency| njectionSpringContextTests. Use this to perfom explicit bean lookup, or test the state
of the context asawhole.

* jdbcTenpl at e: inherited from Abst r act Tr ansact i onal Dat aSour ceSpr i ngCont ext Test s. Useful for
querying to confirm state. For example, you might query before and after testing application code that
creates an object and persistsit using an ORM tool, to verify that the data appears in the database. (Spring
will ensure that the query runsin the scope of the same transaction.) Y ou will need to tell your ORM tool to
"flush™ its changes for thisto work correctly, for example using thef 1 ush() method on Hibernate's
Sessi on interface.

Often you will provide an application-wide superclass for integration tests that provides further useful instance
variables used in many tests.

20.2.5. Example

The PetClinic sample application included with the Spring distribution illustrates the use of these test
superclasses (Spring 1.1.5 and above).

Most test functionality isincluded in Abst ract O i ni cTest s, for which a partia listing is shown belong:

public abstract class AbstractC inicTests extends Abstract Transacti onal Dat aSour ceSpri ngCont ext Tests {

Spring Framework Version 1.1.5 204

Testing

protected Cinic clinic;

public void setCinic(Cinic clinic) {
this.clinic = clinic;

}

public void testGetVets() {
Col l ection vets = this.clinic.getVets();
assert Equal s("JDBC query must show the same nunber of vets",
j dbcTenpl at e. quer yFor | nt (" SELECT COUNT(0) FROM VETS"),
vets.size());
Vet vl = (Vet) EntityUtils.getByld(vets, Vet.class, 2);
assert Equal s("Leary", vl.getLastName());
assert Equal s(1, v1.getNrOf Specialties());
assert Equal s("radi ol ogy", ((Specialty) vl.getSpecialties().get(0)).getName());
Vet v2 = (Vet) EntityUtils.getByld(vets, Vet.class, 3);
assert Equal s("Dougl as", v2.getLastNane());
assert Equal s(2, v2.getNrOF Specialties());
assert Equal s("dentistry", ((Specialty) v2.getSpecialties().get(0)).getName());
assert Equal s("surgery", ((Specialty) v2. getSpecialties().get(1)).getNanme());

Notes:

* Thistest case extendsor g. spri ngf ramewor k. Abst r act Transact i onal Dat aSour ceSpri ngCont ext Test s,
from which it inherits Dependency Injection and transactional behaviour.

e Theclini ¢ instance variable--the application object being tested--is set by Dependency Injection through
the setClinic() method.

¢ ThetestGetVets() method illustrates how the inherited JdbcTenpl at e variable can be used to verify correct
behaviour of the application code being tested. This allows for stronger tests, and lessens dependency on the
exact test data. For example, you can add additional rowsin the database without breaking tests.

» Like many integration tests using a database, most of the testsin Abst ract d i ni cTest s depend on a
minimum amount of data already in the database before the test cases run. Y ou might, however, choose to
populate the database in your test cases al so--again, within the one transaction.

The PetClinic application supports three data access technologies--JDBC, Hibernate and Apache OJB. Thus
Abstract d i ni cTests does not specify the context locations--this is deferred to subclasses, that implement the
necessary protected abstract method from Abst r act Dependencyl nj ect i onSpri ngCont ext Test s.

For example, the JIDBC implementation of the PetClinic tests contains the following method:

public class H bernatedinicTests extends AbstractC inicTests {

protected String[] getConfiglLocations() {
return new String[] {
"/ org/ springfranmewor k/ sanpl es/ pet cl i ni ¢/ hi ber nat e/ appl i cati onCont ext - hi bernate. xm "
b

}
}

Asthe PetClinic isavery simple application, there is only one Spring configuration file. Of course, more
complex applications will typically break their Spring configuration across multiple files.

Instead of being defined in aleaf class, config locations will often be specified in a common base class for all
application-specific integration tests. This may also add useful instance variables--popul ated by Dependency
Injection, naturally--such as a Hi ber nat eTenpl at e, in the case of an application using Hibernate.

Asfar as possible, you should have exactly the same Spring configuration filesin your integration testsasin

Spring Framework Version 1.1.5 205

Testing

the deployed environment. One likely point of difference concerns database connection pooling and transaction
infrastructure. If you are deploying to afull-blown application server, you will probably use its connection pool
(available through JNDI) and JTA implementation. Thusin production you will use aJndi Obj ect Fact or yBean
for the Dat aSour ce, and Jt aTr ansact i onManager . JNDI and JTA will not be available in out-of-container
integration tests, so you should use a combination like the Commons DBCP Basi cDat aSour ce and

Dat aSour ceTr ansact i onManager Of Hi ber nat eTr ansact i onManager for them. Y ou can factor out this variant
behaviour into asingle XML file, having the choice between application server and "local" configuration
separated from all other configuration, which will not vary between the test and production environments.

20.2.6. Running integration tests

Integration tests naturally have more environmental dependencies than plain unit tests. Such integration testing
isan additional form of testing, not a substitute for unit testing.

The main dependency will typically be on a devel opment database containing a complete schema used by the
application. This may also contain test data, set up by aatool such asa DBUnit, or an import using your
database's tool set.

Spring Framework Version 1.1.5 206

Appendix A. Spring's beans. dtd

<?xm version="1.0" encodi ng="UTF-8"?>

<l--
Spring XML Beans DTD
Aut hors: Rod Johnson, Juergen Hoeller, Al ef Arendsen, Colin Sanpal eanu
This defines a sinple and consi stent way of creating a nanmespace
of JavaBeans objects, configured by a Spring BeanFactory, read by
a Def aul t Xml BeanDefi ni ti onReader .
Thi s docunent type is used by nost Spring functionality, including
web application contexts, which are based on bean factories
Each "bean" elenent in this docunent defines a JavaBean.
Typically the bean class is specified, along with JavaBean properties
and/ or constructor argunents
Bean instances can be "singletons" (shared instances) or "prototypes"
(i ndependent instances). Further scopes are supposed to be built on top
of the core BeanFactory infrastructure and are therefore not part of it.
Ref erences anong beans are supported, i.e. setting a JavaBean property
or a constructor argunment to refer to another bean in the same factory
(or an ancestor factory).
As alternative to bean references, "inner bean definitions" can be used
Singl eton flags of such inner bean definitions are effectively ignored
I nner beans are typically anonynous prototypes.
There is al so support for lists, sets, naps, and java.util.Properties
as bean property types respectively constructor argunent types
As the format is sinple, a DIDis sufficient, and there's no need
for a schema at this point.
XML docunents that conformto this DID shoul d declare the follow ng doctype:
<! DOCTYPE beans PUBLI C "-//SPRI NG / DTD BEAN / EN'

"http://ww. springframework. org/ dtd/spring-beans. dtd">

$ld: dtd.xm,v 1.9 2005/01/01 20:04:48 colins Exp $

-->

<l--
The docunent root. A document can contain bean definitions only,
inports only, or a mxture of both (typically with inports first).

-->

<! ELEMENT beans (
descri ption?

i mport*,
bean*
)>
<l--
Default values for all bean definitions. Can be overridden at
the "bean" level. See those attribute definitions for details.
=D

<! ATTLI ST beans default-lazy-init (true | false) "false">
<I ATTLI ST beans defaul t - dependency-check (none | objects | sinple | all) "none">
<! ATTLI ST beans default-autowire (no | byName | byType | constructor | autodetect)

<l--
El enent containing informative text describing the purpose of the enclosing
el enent. Al ways opti onal
Used primarily for user docunentation of XM. bean definition docunents.

-->

<! ELEMENT descri ption (#PCDATA) >

<l--

Specifies an XML bean definition resource to inport.
-->

Spring Framework Version 1.1.5

207

Spring's beans.dtd

<! ELEMENT i nport EMPTY>

<l--
The rel ative resource location of the XM. bean definition file to inport,
for exanple "nylnmport.xm " or "includes/nylnport.xm" or "../nylnport.xn".
-->
<! ATTLI ST i nport resource CDATA #l MPLI ED>

& ==
Defines a single naned bean.
-->
<! ELEMENT bean (
descri ption?
(constructor-arg | property)*,
(1 ookup- et hod) *,
(repl aced- net hod) *

)>
<l--

Beans can be identified by an id, to enable reference checking.

There are constraints on a valid XML id: if you want to reference your bean

in Java code using a nanme that's illegal as an XM. id, use the optiona

"nane" attribute. If neither is given, the bean class nane is used as id

(with an appended counter like "#2" if there is already a bean with that nane).
-->

<! ATTLI ST bean id | D #l MPLI ED>

<l--
Optional. Can be used to create one or nore aliases illegal in an id.
Mil tiple aliases can be separated by any nunber of spaces or conmas.

co®

<! ATTLI ST bean nane CDATA #| MPLI ED>

<l--
Each bean definition nust specify the fully qualified nane of the class,
except if it pure serves as parent for child bean definitions

-->

<! ATTLI ST bean cl ass CDATA #l MPLI ED>

<l--
Optionally specify a parent bean definition

W Il use the bean class of the parent if none specified, but can
also override it. In the latter case, the child bean class nust be
conpatible with the parent, i.e. accept the parent's property val ues
and constructor argunment values, if any.

A child bean definition will inherit constructor argunent val ues,

property val ues and nethod overrides fromthe parent, with the option

to add new values. If init nethod, destroy nethod, factory bean and/or factory
net hod are specified, they will override the correspondi ng parent settings.

The remaining settings will <i>always</i> be taken fromthe child definition
depends on, autowi re node, dependency check, singleton, lazy init.

-->

<I ATTLI ST bean parent CDATA #l MPLI ED>

<l--
Is this bean "abstract", i.e. not nmeant to be instantiated itself but
rather just serving as parent for concrete child bean definitions.
Default is false. Specify true to tell the bean factory to not try to
instantiate that particul ar bean in any case

-->

<I ATTLI ST bean abstract (true | false) "false">

<l--
Is this bean a "singleton" (one shared instance, which wll
be returned by all calls to getBean() with the id),
or a "prototype" (independent instance resulting fromeach call to
getBean(). Default is singleton

Si ngl etons are nost commonly used, and are ideal for multi-threaded
servi ce obj ects.

==

<I ATTLI ST bean singleton (true | false) "true">

Spring Framework Version 1.1.5 208

Spring's beans.dtd

<l--
If this bean should be lazily initialized
If false, it will get instantiated on startup by bean factories
that perform eager initialization of singletons.

-->

<! ATTLI ST bean lazy-init (true | false | default) "default">

<l--
Optional attribute controlling whether to "autow re" bean properties.
This is an automagi cal process in which bean references don't need to be coded
explicitly in the XM. bean definition file, but Spring works out dependenci es.

There are 5 nodes:

1. "no"

The traditional Spring default. No autommgical wiring. Bean references
must be defined in the XM_ file via the <ref> element. W recomend this
in nbst cases as it nakes docunentation nore explicit.

2. "byNane"

Autowi ring by property name. If a bean of class Cat exposes a dog property,

Spring will try to set this to the value of the bean "dog" in the current factory.
If there is no matchi ng bean by nanme, nothi ng special happens - use

dependency-check="obj ects" to raise an error in that case

3. "byType"

Autowiring if there is exactly one bean of the property type in the bean factory.
If there is nore than one, a fatal error is raised, and you can't use byType
autowiring for that bean. If there is none, nothing special happens - use
dependency-check="obj ects" to raise an error in that case

4. "constructor"”
Anal ogous to "byType" for constructor argunments. If there isn't exactly one bean
of the constructor argunent type in the bean factory, a fatal error is raised

5. "autodetect"
Chooses "constructor" or "byType" through introspection of the bean class
If a default constructor is found, "byType" gets applied

The latter two are simlar to PicoContainer and nake bean factories sinple to
configure for small nanespaces, but doesn't work as well as standard Spring
behavi or for bigger applications.

Note that explicit dependencies, i.e. "property" and "constructor-arg" el enents,
al ways override autow ring. Autow re behavior can be conbined with dependency
checking, which will be perforned after all autow ring has been conpl et ed

s

<! ATTLI ST bean autowire (no | byName | byType | constructor | autodetect | default) "default">

<l--
Optional attribute controlling whether to check whether all this
beans dependencies, expressed in its properties, are satisfied
Default is no dependency checki ng.
"sinple" type dependency checking includes primtives and String
"object" includes collaborators (other beans in the factory)
"all" includes both types of dependency checking
-->
<! ATTLI ST bean dependency-check (none | objects | sinple | all | default) "default">
<l--
The names of the beans that this bean depends on being initialized
The bean factory will guarantee that these beans get initialized before
Not e t hat dependencies are nornal |y expressed through bean properties or
constructor argunents. This property should just be necessary for other kinds
of dependencies |ike statics (*ugh*) or database preparation on startup
-->

<l ATTLI ST bean depends-on CDATA #l MPLI ED>

<l--
Optional attribute for the nane of the custominitialization nethod
to invoke after setting bean properties. The method nust have no argunents,
but may throw any exception

==

<! ATTLI ST bean init-nmethod CDATA #l MPLI ED>

Spring Framework Version 1.1.5 209

Spring's beans.dtd

<l--
Optional attribute for the nane of the custom destroy nmethod to invoke
on bean factory shutdown. The nethod nust have no argunents,
but may throw any exception. Note: Only invoked on singleton beans!
-->
<! ATTLI ST bean destroy- met hod CDATA #l MPLI ED>

<l--
Optional attribute specifying the nane of a factory nmethod to use to
create this object. Use constructor-arg elements to specify argunents
to the factory nethod, if it takes arguments. Autow ring does not apply
to factory nethods.

If the "class" attribute is present, the factory nmethod will be a static
nmet hod on the class specified by the "class" attribute on this bean
definition. Often this will be the sane class as that of the constructed
object - for exanple, when the factory nmethod is used as an alternative
to a constructor. However, it may be on a different class. In that case,
the created object will *not* be of the class specified in the "class"
attribute. This is anal ogous to FactoryBean behavi or.

If the "factory-bean" attribute is present, the "class" attribute is not
used, and the factory nethod will be an instance nethod on the object
returned froma getBean call with the specified bean name. The factory
bean may be defined as a singleton or a prototype.

The factory nmethod can have any nunber of argunments. Autowiring is not
supported. Use indexed constructor-arg elenments in conjunction with the
factory-nethod attribute.

Setter Injection can be used in conjunction with a factory nethod.
Met hod | njection cannot, as the factory nmethod returns an instance,
which will be used when the container creates the bean.

-->

<I ATTLI ST bean factory-nmet hod CDATA #l MPLI ED>

<l--
Alternative to class attribute for factory-nmethod usage.
If this is specified, no class attribute should be used.
This should be set to the name of a bean in the current or
ancestor factories that contains the relevant factory nethod.
This allows the factory itself to be configured usi ng Dependency
Injection, and an instance (rather than static) nmethod to be used.
-->
<I ATTLI ST bean factory-bean CDATA #| MPLI ED>

<l--
Bean definitions can specify zero or nobre constructor argunents.
This is an alternative to "autowire constructor"”.
Argunments correspond to either a specific index of the constructor argunent
list or are supposed to be matched generically by type.
Note: A single generic argunent value will just be used once, rather than
potentially matched nmultiple times (as of Spring 1.1).
constructor-arg elenments are al so used in conjunction with the factory-nmethod
el ement to construct beans using static or instance factory nethods.

-->

<! ELEMENT constructor-arg (
descri ption?,

(bean | ref | idref | list | set | map | props | value | null)

)>

<l--
The constructor-arg tag can have an optional index attribute,
to specify the exact index in the constructor argunment list. Only needed
to avoid anbiguities, e.g. in case of 2 argunents of the sane type.
NOTE: it is highly reconmended to use the index attribute, in Spring up
to and including 1.1. The constructor matcher is extrenely greedy in
mat ching args w thout an index, to the point of duplicating supplied args
to fill in unspecified constructor args, if they are conpatible (i.e. one
single String arg will match a constructor with two String args, etc.).
The matcher should be | ess aggressive in a future version.

-->

<I ATTLI ST constructor-arg i ndex CDATA #l MPLI ED>

<l--
The constructor-arg tag can have an optional type attribute,

Spring Framework Version 1.1.5 210

Spring's beans.dtd

to specify the exact type of the constructor argunment. Only needed
to avoid anmbiguities, e.g. in case of 2 single argument constructors
that can both be converted froma String.

-->

<l ATTLI ST constructor-arg type CDATA #l MPLI ED>

<l--
Bean definitions can have zero or nore properties.
Property el enents correspond to JavaBean setter nethods exposed
by the bean classes. Spring supports primtives, references to other
beans in the sanme or related factories, lists, maps and properties.
-->
<! ELEMENT property (
descri ption?,

(bean | ref | idref | list | set | map | props | value | null)

)>

<l--
The property nane attribute is the name of the JavaBean property.
This foll ows JavaBean conventions: a nanme of "age" would correspond
to set Age()/optional getAge() nethods.

-->

<I ATTLI ST property name CDATA #REQUI RED>

<I--
A | ookup nethod causes the |0oC container to override the given nmethod and return
the bean with the name given in the bean attribute. This is a formof Method Injection.
It's particularly useful as an alternative to inplenenting the BeanFactoryAware
interface, in order to be able to nmake getBean() calls for non-singleton instances
at runtime. In this case, Method Injection is a |l ess invasive alternative.

-->

<! ELEMENT | ookup- nmet hod EMPTY>

<l--

Nane of a | ookup nethod. This nethod shoul d take no argunents.
S
<! ATTLI ST | ookup- met hod nanme CDATA #| MPLI ED>

<l--
Simlar to the | ookup nmethod mechani sm the replaced-nethod el ement is used to control
1 0oC contai ner nmethod overriding: Method |njection. This mechanismallows the overriding
of a method with arbitrary code.

-->

<! ELEMENT r epl aced- net hod (
(arg-type)*

)>

<l--
Name of the nethod whose inplenentati on should be replaced by the |oC container.
If this nethod is not overloaded, there's no need to use arg-type sub-el enents.
If this method is overl oaded, arg-type sub-el ements nmust be used for all
override definitions for the nethod.

-->

<I ATTLI ST repl aced- met hod nanme CDATA #| MPLI ED>

<l--
Bean nane of an inplenentation of the MethodRepl acer interface
in the current or ancestor factories. This may be a singleton or prototype
bean. If it's a prototype, a new instance will be used for each nmethod repl acenent.
Si ngl et on usage is the norm
-->

<I ATTLI ST repl aced- net hod repl acer CDATA #| MPLI ED>

<l--
Sub- el ement of repl aced-nethod identifying an argunent for a replaced nethod
in the event of nethod overl oadi ng.

S

<I ELEMENT arg-type (#PCDATA)>

<I--
Speci fication of the type of an overl oaded nethod argument as a String.
For conveni ence, this nay be a substring of the FQN. E.g. all the
follow ng would match "java.lang. String":
- java.lang. String
- String
- Str

Spring Framework Version 1.1.5 211

Spring's beans.dtd

As the nunber of argunents will be checked also, this convenience can often
be used to save typing

SR

<I ATTLI ST arg-type match CDATA #| MPLI ED>

<l--
Nane of the bean in the current or ancestor factories that the |ookup nethod
shoul d resolve to. Often this bean will be a prototype, in which case the
| ookup method will return a distinct instance on every invocation. This
is useful for single-threaded objects.
-->

<! ATTLI ST | ookup- met hod bean CDATA #l MPLI ED>

<l--
Defines a reference to another bean in this factory or an externa
factory (parent or included factory).

s

<! ELEMENT ref EMPTY>

<l--
Ref erences nust specify a nanme of the target bean
The "bean" attribute can reference any name fromany bean in the context,
to be checked at runtime.
Local references, using the "local" attribute, have to use bean ids;
they can be checked by this DTD, thus should be preferred for references
within the sane bean factory XM file.

-->

<! ATTLI ST ref bean CDATA #l MPLI ED>
<! ATTLI ST ref |ocal |DREF #l MPLI ED>
<I ATTLI ST ref parent CDATA #l MPLI ED>

<l--
Defines a string property value, which nust also be the id of another
bean in this factory or an external factory (parent or included factory).
While a regular 'value' elenment could instead be used for the sane effect,
using idref in this case allows validation of |ocal bean ids by the xnm
parser, and nane conpl etion by hel per tools.

-->

<! ELEMENT i dref EMPTY>

<l--
IDrefs nmust specify a nane of the target bean
The "bean" attribute can reference any nane from any bean in the context,
potentially to be checked at runtinme by bean factory inplenentations.
Local references, using the "local" attribute, have to use bean ids;
they can be checked by this DID, thus should be preferred for references
within the sanme bean factory XM file.

-->

<! ATTLI ST i dref bean CDATA #l MPLI ED>
<! ATTLI ST idref |ocal |DREF #l MPLI ED>

<l--
A list can contain multiple inner bean, ref, collection, or value el enents.
Java lists are untyped, pending generics support in Java 1.5,
al t hough references will be strongly typed
A list can also map to an array type. The necessary conversion
is autonmatically perforned by the BeanFactory.
-->
<! ELEMENT |ist (
(bean | ref | idref | list | set | map | props | value | null)*
)>
<l--
A set can contain rmultiple inner bean, ref, collection, or value el enents.
Java sets are untyped, pending generics support in Java 1.5,
al t hough references will be strongly typed
-->
<! ELEMENT set (
(bean | ref | idref | list | set | map | props | value | null)*
)>
<l--
A Spring map is a mapping froma string key to object.
Maps may be enpty.
==
<! ELEMENT map (

(entry)*

Spring Framework Version 1.1.5 212

Spring's beans.dtd

)>
<l--
A map entry can be an inner bean, ref, collection, or val ue.
The name of the property is given by the "key" attribute.
-->
<! ELEMENT entry (
(bean | ref | idref | list | set | map | props | value | null)
)>
<l--
Each map el enent nust specify its key.
-->

<! ATTLI ST entry key CDATA #REQUI RED>

<l--
Props elenments differ frommap elenments in that values nust be strings.
Props may be enpty.

aa S

<! ELEMENT props (
(prop)*

) >

<l--
El enent content is the string value of the property.
Not e that whitespace is trimred off to avoid unwanted whitespace
caused by typical XM. formatting.

-->

<! ELEMENT prop (#PCDATA) >

<l--

Each property el ement nust specify its key.
-->
<! ATTLI ST prop key CDATA #REQUI RED>

<l--
Contains a string representation of a property val ue.
The property may be a string, or may be converted to the
requi red type using the JavaBeans PropertyEditor
machi nery. This makes it possible for application devel opers
to wite custom PropertyEditor inplenmentations that can
convert strings to objects.

Note that this is recommended for sinple objects only.
Configure nore conpl ex objects by popul ati ng JavaBean
properties with references to other beans.

s

<! ELEMENT val ue (#PCDATA) >

==
Denotes a Java null value. Necessary because an enpty "val ue" tag
will resolve to an enpty String, which will not be resolved to a
nul | val ue unl ess a special PropertyEditor does so.

-->

<! ELEMENT nul | (#PCDATA) >

Spring Framework Version 1.1.5 213

	Spring - Java/J2EE Application Framework
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Overview
	1.2. Usage scenarios

	Chapter 2. Background information
	2.1. Inversion of Control / Dependency Injection

	Chapter 3. Beans, BeanFactory and the ApplicationContext
	3.1. Introduction
	3.2. BeanFactory and BeanDefinitions - the basics
	3.2.1. The BeanFactory
	3.2.2. The BeanDefinition
	3.2.3. The bean class
	3.2.3.1. Bean creation via constructor
	3.2.3.2. Bean creation via static factory method
	3.2.3.3. Bean creation via instance factory method

	3.2.4. The bean identifiers (id and name)
	3.2.5. To singleton or not to singleton

	3.3. Properties, collaborators, autowiring and dependency checking
	3.3.1. Setting bean properties and collaborators
	3.3.2. Constructor Argument Resolution
	3.3.2.1. Constructor Argument Type Matching
	3.3.2.2. Constructor Argument Index

	3.3.3. Bean properties and constructor arguments detailed
	3.3.4. Method Injection
	3.3.4.1. Lookup method Injection
	3.3.4.2. Arbitrary method replacement

	3.3.5. Using depends-on
	3.3.6. Autowiring collaborators
	3.3.7. Checking for dependencies

	3.4. Customizing the nature of a bean
	3.4.1. Lifecycle interfaces
	3.4.1.1. InitializingBean / init-method
	3.4.1.2. DisposableBean / destroy-method

	3.4.2. Knowing who you are
	3.4.2.1. BeanFactoryAware
	3.4.2.2. BeanNameAware

	3.4.3. FactoryBean

	3.5. Abstract and child bean definitions
	3.6. Interacting with the BeanFactory
	3.6.1. Obtaining a FactoryBean, not its product

	3.7. Customizing beans with BeanPostprocessors
	3.8. Customizing bean factories with BeanFactoryPostprocessors
	3.8.1. The PropertyPlaceholderConfigurer
	3.8.2. The PropertyOverrideConfigurer

	3.9. Registering additional custom PropertyEditors
	3.10. Introduction to the ApplicationContext
	3.11. Added functionality of the ApplicationContext
	3.11.1. Using the MessageSource
	3.11.2. Propagating events
	3.11.3. Using resources within Spring

	3.12. Customized behavior in the ApplicationContext
	3.12.1. ApplicationContextAware marker interface
	3.12.2. The BeanPostProcessor
	3.12.3. The BeanFactoryPostProcessor
	3.12.4. The PropertyPlaceholderConfigurer

	3.13. Registering additional custom PropertyEditors
	3.14. Setting a bean property or constructor arg from a property expression
	3.15. Setting a bean property or constructor arg from a field value
	3.16. Invoking another method and optionally using the return value.
	3.17. Importing Bean Definitions from One File Into Another
	3.18. Creating an ApplicationContext from a web application
	3.19. Glue code and the evil singleton
	3.19.1. Using SingletonBeanFactoryLocator and ContextSingletonBeanFactoryLocator

	Chapter 4. PropertyEditors, data binding, validation and the BeanWrapper
	4.1. Introduction
	4.2. Binding data using the DataBinder
	4.3. Bean manipulation and the BeanWrapper
	4.3.1. Setting and getting basic and nested properties
	4.3.2. Built-in PropertyEditors, converting types
	4.3.3. Other features worth mentioning

	Chapter 5. Spring AOP: Aspect Oriented Programming with Spring
	5.1. Concepts
	5.1.1. AOP concepts
	5.1.2. Spring AOP capabilities and goals
	5.1.3. AOP Proxies in Spring

	5.2. Pointcuts in Spring
	5.2.1. Concepts
	5.2.2. Operations on pointcuts
	5.2.3. Convenience pointcut implementations
	5.2.3.1. Static pointcuts
	5.2.3.1.1. Regular expression pointcuts
	5.2.3.1.2. Attribute-driven pointcuts

	5.2.3.2. Dynamic pointcuts
	5.2.3.2.1. Control flow pointcuts

	5.2.4. Pointcut superclasses
	5.2.5. Custom pointcuts

	5.3. Advice types in Spring
	5.3.1. Advice lifecycles
	5.3.2. Advice types in Spring
	5.3.2.1. Interception around advice
	5.3.2.2. Before advice
	5.3.2.3. Throws advice
	5.3.2.4. After Returning advice
	5.3.2.5. Introduction advice

	5.4. Advisors in Spring
	5.5. Using the ProxyFactoryBean to create AOP proxies
	5.5.1. Basics
	5.5.2. JavaBean properties
	5.5.3. Proxying interfaces
	5.5.4. Proxying classes

	5.6. Convenient proxy creation
	5.6.1. TransactionProxyFactoryBean
	5.6.2. EJB proxies

	5.7. Concise proxy definitions
	5.8. Creating AOP proxies programmatically with the ProxyFactory
	5.9. Manipulating advised objects
	5.10. Using the "autoproxy" facility
	5.10.1. Autoproxy bean definitions
	5.10.1.1. BeanNameAutoProxyCreator
	5.10.1.2. DefaultAdvisorAutoProxyCreator
	5.10.1.3. AbstractAdvisorAutoProxyCreator

	5.10.2. Using metadata-driven auto-proxying

	5.11. Using TargetSources
	5.11.1. Hot swappable target sources
	5.11.2. Pooling target sources
	5.11.3. Prototype" target sources

	5.12. Defining new Advice types
	5.13. Further reading and resources
	5.14. Roadmap

	Chapter 6. AspectJ Integration
	6.1. Overview
	6.2. Configuring AspectJ aspects using Spring IoC
	6.2.1. "Singleton" aspects
	6.2.1.1. Example
	6.2.1.2. Ordering issues

	6.2.2. Non-singleton aspects
	6.2.3. Gotchas

	6.3. Using AspectJ pointcuts to target Spring advice
	6.4. Spring aspects for AspectJ

	Chapter 7. Transaction management
	7.1. The Spring transaction abstraction
	7.2. Transaction strategies
	7.3. Programmatic transaction management
	7.3.1. Using the TransactionTemplate
	7.3.2. Using the PlatformTransactionManager

	7.4. Declarative transaction management
	7.4.1. BeanNameAutoProxyCreator, another declarative approach

	7.5. Choosing between programmatic and declarative transaction management
	7.6. Do you need an application server for transaction management?
	7.7. Common problems

	Chapter 8. Source Level Metadata Support
	8.1. Source-level metadata
	8.2. Spring's metadata support
	8.3. Integration with Jakarta Commons Attributes
	8.4. Metadata and Spring AOP autoproxying
	8.4.1. Fundamentals
	8.4.2. Declarative transaction management
	8.4.3. Pooling
	8.4.4. Custom metadata

	8.5. Using attributes to minimize MVC web tier configuration
	8.6. Other uses of metadata attributes
	8.7. Adding support for additional metadata APIs

	Chapter 9. DAO support
	9.1. Introduction
	9.2. Consistent Exception Hierarchy
	9.3. Consistent Abstract Classes for DAO Support

	Chapter 10. Data Access using JDBC
	10.1. Introduction
	10.2. Using the JDBC Core classes to control basic JDBC processing and error handling
	10.2.1. JdbcTemplate
	10.2.2. DataSource
	10.2.3. SQLExceptionTranslator
	10.2.4. Executing Statements
	10.2.5. Running Queries
	10.2.6. Updating the database

	10.3. Controlling how we connect to the database
	10.3.1. DataSourceUtils
	10.3.2. SmartDataSource
	10.3.3. AbstractDataSource
	10.3.4. SingleConnectionDataSource
	10.3.5. DriverManagerDataSource
	10.3.6. DataSourceTransactionManager

	10.4. Modeling JDBC operations as Java objects
	10.4.1. SqlQuery
	10.4.2. MappingSqlQuery
	10.4.3. SqlUpdate
	10.4.4. StoredProcedure
	10.4.5. SqlFunction

	Chapter 11. Data Access using O/R Mappers
	11.1. Introduction
	11.2. Hibernate
	11.2.1. Resource Management
	11.2.2. Resource Definitions in an Application Context
	11.2.3. Inversion of Control: Template and Callback
	11.2.4. Applying an AOP Interceptor Instead of a Template
	11.2.5. Programmatic Transaction Demarcation
	11.2.6. Declarative Transaction Demarcation
	11.2.7. Transaction Management Strategies
	11.2.8. Container Resources versus Local Resources
	11.2.9. Samples

	11.3. JDO
	11.4. iBATIS
	11.4.1. Overview and differences between 1.3.x and 2.0
	11.4.2. Setting up the SqlMap
	11.4.3. Using SqlMapDaoSupport
	11.4.4. Transaction management

	Chapter 12. Web framework
	12.1. Introduction to the web framework
	12.1.1. Pluggability of MVC implementation
	12.1.2. Features of Spring MVC

	12.2. The DispatcherServlet
	12.3. Controllers
	12.3.1. AbstractController and WebContentGenerator
	12.3.2. Other simple controllers
	12.3.3. The MultiActionController
	12.3.4. CommandControllers

	12.4. Handler mappings
	12.4.1. BeanNameUrlHandlerMapping
	12.4.2. SimpleUrlHandlerMapping
	12.4.3. Adding HandlerInterceptors

	12.5. Views and resolving them
	12.5.1. ViewResolvers
	12.5.2. Chaining ViewResolvers

	12.6. Using locales
	12.6.1. AcceptHeaderLocaleResolver
	12.6.2. CookieLocaleResolver
	12.6.3. SessionLocaleResolver
	12.6.4. LocaleChangeInterceptor

	12.7. Using themes
	12.8. Spring's multipart (fileupload) support
	12.8.1. Introduction
	12.8.2. Using the MultipartResolver
	12.8.3. Handling a fileupload in a form

	12.9. Handling exceptions

	Chapter 13. Integrating view technologies
	13.1. Introduction
	13.2. JSP & JSTL
	13.2.1. View resolvers
	13.2.2. 'Plain-old' JSPs versus JSTL
	13.2.3. Additional tags facilitating development

	13.3. Tiles
	13.3.1. Dependencies
	13.3.2. How to integrate Tiles
	13.3.2.1. InternalResourceViewResolver
	13.3.2.2. ResourceBundleViewResolver

	13.4. Velocity & FreeMarker
	13.4.1. Dependencies
	13.4.2. Context configuration
	13.4.3. Creating templates
	13.4.4. Advanced configuration
	13.4.4.1. velocity.properties
	13.4.4.2. FreeMarker

	13.4.5. Bind support and form handling
	13.4.5.1. the bind macros
	13.4.5.2. simple binding
	13.4.5.3. form input generation macros
	13.4.5.3.1. Input Fields
	13.4.5.3.2. Selection Fields

	13.4.5.4. overriding HTML escaping and making tags XHTML compliant

	13.5. XSLT
	13.5.1. My First Words
	13.5.1.1. Bean definitions
	13.5.1.2. Standard MVC controller code
	13.5.1.3. Convert the model data to XML
	13.5.1.3.1. Adding stylesheet parameters
	13.5.1.3.2. Formatting dates and currency

	13.5.1.4. Defining the view properties
	13.5.1.5. Document transformation

	13.5.2. Summary

	13.6. Document views (PDF/Excel)
	13.6.1. Introduction
	13.6.2. Configuration and setup
	13.6.2.1. Document view definitions
	13.6.2.2. Controller code
	13.6.2.3. Subclassing for Excel views
	13.6.2.4. Subclassing for PDF views

	13.7. JasperReports
	13.7.1. Dependencies
	13.7.2. Configuration
	13.7.2.1. Configuring the ViewResolver
	13.7.2.2. Configuring the Views
	13.7.2.3. About Report Files
	13.7.2.4. Using JasperReportsMultiFormatView

	13.7.3. Populating the ModelAndView
	13.7.4. Working with Sub-Reports
	13.7.4.1. Configuring Sub-Report Files
	13.7.4.2. Configuring Sub-Report Data Sources

	13.7.5. Configuring Exporter Parameters

	Chapter 14. Integrating with other web frameworks
	14.1. Introduction
	14.2. JavaServer Faces
	14.2.1. DelegatingVariableResolver
	14.2.2. FacesContextUtils

	14.3. Struts
	14.3.1. ContextLoaderPlugin
	14.3.1.1. DelegatingRequestProcessor
	14.3.1.2. DelegatingActionProxy

	14.3.2. ActionSupport Classes

	14.4. Tapestry
	14.4.1. Architecture
	14.4.2. Implementation
	14.4.2.1. Sample application context
	14.4.2.2. Obtaining beans in Tapestry pages
	14.4.2.3. Exposing the application context to Tapestry
	14.4.2.4. Component definition files
	14.4.2.5. Adding abstract accessors

	14.4.3. Summary

	14.5. WebWork

	Chapter 15. JMS
	15.1. Introduction
	15.2. Domain unification
	15.3. JmsTemplate
	15.3.1. ConnectionFactory
	15.3.2. Transaction Management
	15.3.3. Destination Management

	15.4. Using the JmsTemplate
	15.4.1. Sending a message
	15.4.2. Synchronous Receiving
	15.4.3. Using Message Converters
	15.4.4. SessionCallback and ProducerCallback

	Chapter 16. Accessing and implementing EJBs
	16.1. Accessing EJBs
	16.1.1. Concepts
	16.1.2. Accessing local SLSBs
	16.1.3. Accessing remote SLSBs

	16.2. Using Spring convenience EJB implementation classes

	Chapter 17. Remoting and web services using Spring
	17.1. Introduction
	17.2. Exposing services using RMI
	17.2.1. Exporting the service using the RmiServiceExporter
	17.2.2. Linking in the service at the client

	17.3. Using Hessian or Burlap to remotely call services via HTTP
	17.3.1. Wiring up the DispatcherServlet for Hessian
	17.3.2. Exposing your beans by using the HessianServiceExporter
	17.3.3. Linking in the service on the client
	17.3.4. Using Burlap
	17.3.5. Applying HTTP basic authentication to a service exposed through Hessian or Burlap

	17.4. Exposing services using HTTP invokers
	17.4.1. Exposing the service object
	17.4.2. Linking in the service at the client

	17.5. Web Services
	17.5.1. Exposing services using JAX-RPC
	17.5.2. Accessing Web Services
	17.5.3. Register Bean Mappings
	17.5.4. Registering our own Handler

	17.6. Auto-detection is not implemented for remote interfaces
	17.7. Considerations when choosing a technology

	Chapter 18. Sending Email with Spring mail abstraction layer
	18.1. Introduction
	18.2. Spring mail abstraction structure
	18.3. Using Spring mail abstraction
	18.3.1. Pluggable MailSender implementations

	18.4. Using the JavaMail MimeMessageHelper
	18.4.1. Creating a simple MimeMessage and sending it
	18.4.2. Sending attachments and inline resources

	Chapter 19. Scheduling jobs using Quartz or Timer
	19.1. Introduction
	19.2. Using the OpenSymphony Quartz Scheduler
	19.2.1. Using the JobDetailBean
	19.2.2. Using the MethodInvokingJobDetailFactoryBean
	19.2.3. Wiring up jobs using triggers and the SchedulerFactoryBean

	19.3. Using JDK Timer support
	19.3.1. Creating custom timers
	19.3.2. Using the MethodInvokingTimerTaskFactoryBean
	19.3.3. Wrapping up: setting up the tasks using the TimerFactoryBean

	Chapter 20. Testing
	20.1. Unit testing
	20.2. Integration testing
	20.2.1. Context management and caching
	20.2.2. Dependency Injection of test class instances
	20.2.3. Transaction management
	20.2.4. Convenience variables
	20.2.5. Example
	20.2.6. Running integration tests

	Appendix A. Spring's beans.dtd

