14. Object Relational Mapping (ORM) data access

14.1 Introduction

The Spring Framework provides integration with Hibernate, JDO, Oracle TopLink, iBATIS SQL Maps and JPA: in terms of resource management, DAO implementation support, and transaction strategies. For example for Hibernate, there is first-class support with lots of IoC convenience features, addressing many typical Hibernate integration issues. All of these support packages for O/R (Object Relational) mappers comply with Spring's generic transaction and DAO exception hierarchies. There are usually two integration styles: either using Spring's DAO 'templates' or coding DAOs against plain Hibernate/JDO/TopLink/etc APIs. In both cases, DAOs can be configured through Dependency Injection and participate in Spring's resource and transaction management.

Spring adds significant support when using the O/R mapping layer of your choice to create data access applications. First of all, you should know that once you started using Spring's support for O/R mapping, you don't have to go all the way. No matter to what extent, you're invited to review and leverage the Spring approach, before deciding to take the effort and risk of building a similar infrastructure in-house. Much of the O/R mapping support, no matter what technology you're using may be used in a library style, as everything is designed as a set of reusable JavaBeans. Usage inside a Spring IoC container does provide additional benefits in terms of ease of configuration and deployment; as such, most examples in this section show configuration inside a Spring container.

Some of the benefits of using the Spring Framework to create your ORM DAOs include:

  • Ease of testing. Spring's IoC approach makes it easy to swap the implementations and config locations of Hibernate SessionFactory instances, JDBC DataSource instances, transaction managers, and mappes object implementations (if needed). This makes it much easier to isolate and test each piece of persistence-related code in isolation.

  • Common data access exceptions. Spring can wrap exceptions from your O/R mapping tool of choice, converting them from proprietary (potentially checked) exceptions to a common runtime DataAccessException hierarchy. This allows you to handle most persistence exceptions, which are non-recoverable, only in the appropriate layers, without annoying boilerplate catches/throws, and exception declarations. You can still trap and handle exceptions anywhere you need to. Remember that JDBC exceptions (including DB specific dialects) are also converted to the same hierarchy, meaning that you can perform some operations with JDBC within a consistent programming model.

  • General resource management. Spring application contexts can handle the location and configuration of Hibernate SessionFactory instances, JDBC DataSource instances, iBATIS SQL Maps configuration objects, and other related resources. This makes these values easy to manage and change. Spring offers efficient, easy and safe handling of persistence resources. For example: related code using Hibernate generally needs to use the same Hibernate Session for efficiency and proper transaction handling. Spring makes it easy to transparently create and bind a Session to the current thread, either by using an explicit 'template' wrapper class at the Java code level or by exposing a current Session through the Hibernate SessionFactory (for DAOs based on plain Hibernate API). Thus Spring solves many of the issues that repeatedly arise from typical Hibernate usage, for any transaction environment (local or JTA).

  • Integrated transaction management. Spring allows you to wrap your O/R mapping code with either a declarative, AOP style method interceptor, or an explicit 'template' wrapper class at the Java code level. In either case, transaction semantics are handled for you, and proper transaction handling (rollback, etc) in case of exceptions is taken care of. As discussed below, you also get the benefit of being able to use and swap various transaction managers, without your Hibernate/JDO related code being affected: for example, between local transactions and JTA, with the same full services (such as declarative transactions) available in both scenarios. As an additional benefit, JDBC-related code can fully integrate transactionally with the code you use to do O/R mapping. This is useful for data access that's not suitable for O/R mapping, such as batch processing or streaming of BLOBs, which still needs to share common transactions with ORM operations.

The PetClinic sample in the Spring distribution offers alternative DAO implementations and application context configurations for JDBC, Hibernate, Oracle TopLink, and JPA. PetClinic can therefore serve as working sample app that illustrates the use of Hibernate, TopLink and JPA in a Spring web application. It also leverages declarative transaction demarcation with different transaction strategies.

The JPetStore sample illustrates the use of iBATIS SQL Maps in a Spring environment. It also features two web tier versions: one based on Spring Web MVC, one based on Struts.

Beyond the samples shipped with Spring, there are a variety of Spring-based O/R mapping samples provided by specific vendors: for example, the JDO implementations JPOX (http://www.jpox.org/) and Kodo (http://www.bea.com/kodo/).