14.2 Hibernate

We will start with a coverage of Hibernate 3 in a Spring environment, using it to demonstrate the approach that Spring takes towards integrating O/R mappers. This section will cover many issues in detail and show different variations of DAO implementations and transaction demarcation. Most of these patterns can be directly translated to all other supported ORM tools. The following sections in this chapter will then cover the other ORM technologies, showing briefer examples there.

Note: As of Spring 2.5, Spring requires Hibernate 3.1 or higher. Neither Hibernate 2.1 nor Hibernate 3.0 are supported anymore.

14.2.1 Resource management

Typical business applications are often cluttered with repetitive resource management code. Many projects try to invent their own solutions for this issue, sometimes sacrificing proper handling of failures for programming convenience. Spring advocates strikingly simple solutions for proper resource handling, namely IoC via templating; for example infrastructure classes with callback interfaces, or applying AOP interceptors. The infrastructure cares for proper resource handling, and for appropriate conversion of specific API exceptions to an unchecked infrastructure exception hierarchy. Spring introduces a DAO exception hierarchy, applicable to any data access strategy. For direct JDBC, the JdbcTemplate class mentioned in a previous section cares for connection handling, and for proper conversion of SQLException to the DataAccessException hierarchy, including translation of database-specific SQL error codes to meaningful exception classes. It supports both JTA and JDBC transactions, via respective Spring transaction managers.

Spring also offers Hibernate and JDO support, consisting of a HibernateTemplate / JdoTemplate analogous to JdbcTemplate, a HibernateInterceptor / JdoInterceptor, and a Hibernate / JDO transaction manager. The major goal is to allow for clear application layering, with any data access and transaction technology, and for loose coupling of application objects. No more business service dependencies on the data access or transaction strategy, no more hard-coded resource lookups, no more hard-to-replace singletons, no more custom service registries. One simple and consistent approach to wiring up application objects, keeping them as reusable and free from container dependencies as possible. All the individual data access features are usable on their own but integrate nicely with Spring's application context concept, providing XML-based configuration and cross-referencing of plain JavaBean instances that don't need to be Spring-aware. In a typical Spring application, many important objects are JavaBeans: data access templates, data access objects (that use the templates), transaction managers, business services (that use the data access objects and transaction managers), web view resolvers, web controllers (that use the business services),and so on.

14.2.2 SessionFactory setup in a Spring container

To avoid tying application objects to hard-coded resource lookups, Spring allows you to define resources such as a JDBC DataSource or a Hibernate SessionFactory as beans in the Spring container. Application objects that need to access resources just receive references to such pre-defined instances via bean references (the DAO definition in the next section illustrates this). The following excerpt from an XML application context definition shows how to set up a JDBC DataSource and a Hibernate SessionFactory on top of it:

<beans>

  <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
    <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
    <property name="url" value="jdbc:hsqldb:hsql://localhost:9001"/>
    <property name="username" value="sa"/>
    <property name="password" value=""/>
  </bean>

  <bean id="mySessionFactory" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
    <property name="dataSource" ref="myDataSource"/>
    <property name="mappingResources">
      <list>
        <value>product.hbm.xml</value>
      </list>
    </property>
    <property name="hibernateProperties">
      <value>
        hibernate.dialect=org.hibernate.dialect.HSQLDialect
      </value>
    </property>
  </bean>

</beans>

Note that switching from a local Jakarta Commons DBCP BasicDataSource to a JNDI-located DataSource (usually managed by an application server) is just a matter of configuration:

<beans>

  <bean id="myDataSource" class="org.springframework.jndi.JndiObjectFactoryBean">
    <property name="jndiName" value="java:comp/env/jdbc/myds"/>
  </bean>

</beans>

You can also access a JNDI-located SessionFactory, using Spring's JndiObjectFactoryBean to retrieve and expose it. However, that is typically not common outside of an EJB context.

14.2.3 The HibernateTemplate

The basic programming model for templating looks as follows, for methods that can be part of any custom data access object or business service. There are no restrictions on the implementation of the surrounding object at all, it just needs to provide a Hibernate SessionFactory. It can get the latter from anywhere, but preferably as bean reference from a Spring IoC container - via a simple setSessionFactory(..) bean property setter. The following snippets show a DAO definition in a Spring container, referencing the above defined SessionFactory, and an example for a DAO method implementation.

<beans>

  <bean id="myProductDao" class="product.ProductDaoImpl">
    <property name="sessionFactory" ref="mySessionFactory"/>
  </bean>

</beans>
public class ProductDaoImpl implements ProductDao {

    private HibernateTemplate hibernateTemplate;

    public void setSessionFactory(SessionFactory sessionFactory) {
        this.hibernateTemplate = new HibernateTemplate(sessionFactory);
    }

    public Collection loadProductsByCategory(String category) throws DataAccessException {
    	return this.hibernateTemplate.find("from test.Product product where product.category=?", category);
    }
}

The HibernateTemplate class provides many methods that mirror the methods exposed on the Hibernate Session interface, in addition to a number of convenience methods such as the one shown above. If you need access to the Session to invoke methods that are not exposed on the HibernateTemplate, you can always drop down to a callback-based approach like so.

public class ProductDaoImpl implements ProductDao {

    private HibernateTemplate hibernateTemplate;

    public void setSessionFactory(SessionFactory sessionFactory) {
        this.hibernateTemplate = new HibernateTemplate(sessionFactory);
    }

    public Collection loadProductsByCategory(final String category) throws DataAccessException {
        return this.hibernateTemplate.execute(new HibernateCallback() {

            public Object doInHibernate(Session session) {
                Criteria criteria = session.createCriteria(Product.class);
                criteria.add(Expression.eq("category", category));
                criteria.setMaxResults(6);
                return criteria.list();
            }
        };
    }
}

A callback implementation effectively can be used for any Hibernate data access. HibernateTemplate will ensure that Session instances are properly opened and closed, and automatically participate in transactions. The template instances are thread-safe and reusable, they can thus be kept as instance variables of the surrounding class. For simple single step actions like a single find, load, saveOrUpdate, or delete call, HibernateTemplate offers alternative convenience methods that can replace such one line callback implementations. Furthermore, Spring provides a convenient HibernateDaoSupport base class that provides a setSessionFactory(..) method for receiving a SessionFactory, and getSessionFactory() and getHibernateTemplate()for use by subclasses. In combination, this allows for very simple DAO implementations for typical requirements:

public class ProductDaoImpl extends HibernateDaoSupport implements ProductDao {

    public Collection loadProductsByCategory(String category) throws DataAccessException {
        return this.getHibernateTemplate().find(
            "from test.Product product where product.category=?", category);
    }
}

14.2.4 Implementing Spring-based DAOs without callbacks

As alternative to using Spring's HibernateTemplate to implement DAOs, data access code can also be written in a more traditional fashion, without wrapping the Hibernate access code in a callback, while still respecting and participating in Spring's generic DataAccessException hierarchy. The HibernateDaoSupport base class offers methods to access the current transactional Session and to convert exceptions in such a scenario; similar methods are also available as static helpers on the SessionFactoryUtils class. Note that such code will usually pass 'false' as the value of the getSession(..) methods 'allowCreate' argument, to enforce running within a transaction (which avoids the need to close the returned Session, as its lifecycle is managed by the transaction).

public class HibernateProductDao extends HibernateDaoSupport implements ProductDao {

    public Collection loadProductsByCategory(String category) throws DataAccessException, MyException {
        Session session = getSession(false);
        try {
            Query query = session.createQuery("from test.Product product where product.category=?");
            query.setString(0, category);
            List result = query.list();
            if (result == null) {
                throw new MyException("No search results.");
            }
            return result;
        }
        catch (HibernateException ex) {
            throw convertHibernateAccessException(ex);
        }
    }
}

The advantage of such direct Hibernate access code is that it allows any checked application exception to be thrown within the data access code; contrast this to the HibernateTemplate class which is restricted to throwing only unchecked exceptions within the callback. Note that you can often defer the corresponding checks and the throwing of application exceptions to after the callback, which still allows working with HibernateTemplate. In general, the HibernateTemplate class' convenience methods are simpler and more convenient for many scenarios.

14.2.5 Implementing DAOs based on plain Hibernate 3 API

Hibernate 3 provides a feature called "contextual Sessions", where Hibernate itself manages one current Session per transaction. This is roughly equivalent to Spring's synchronization of one Hibernate Session per transaction. A corresponding DAO implementation looks like as follows, based on the plain Hibernate API:

public class ProductDaoImpl implements ProductDao {

    private SessionFactory sessionFactory;

    public void setSessionFactory(SessionFactory sessionFactory) {
        this.sessionFactory = sessionFactory;
    }

    public Collection loadProductsByCategory(String category) {
        return this.sessionFactory.getCurrentSession()
                .createQuery("from test.Product product where product.category=?")
                .setParameter(0, category)
                .list();
    }
}

This style is very similar to what you will find in the Hibernate reference documentation and examples, except for holding the SessionFactory in an instance variable. We strongly recommend such an instance-based setup over the old-school static HibernateUtil class from Hibernate's CaveatEmptor sample application. (In general, do not keep any resources in static variables unless absolutely necessary.)

The above DAO follows the Dependency Injection pattern: it fits nicely into a Spring IoC container, just like it would if coded against Spring's HibernateTemplate. Of course, such a DAO can also be set up in plain Java (for example, in unit tests): simply instantiate it and call setSessionFactory(..) with the desired factory reference. As a Spring bean definition, it would look as follows:

<beans>

  <bean id="myProductDao" class="product.ProductDaoImpl">
    <property name="sessionFactory" ref="mySessionFactory"/>
  </bean>

</beans>

The main advantage of this DAO style is that it depends on Hibernate API only; no import of any Spring class is required. This is of course appealing from a non-invasiveness perspective, and will no doubt feel more natural to Hibernate developers.

However, the DAO throws plain HibernateException (which is unchecked, so does not have to be declared or caught), which means that callers can only treat exceptions as generally fatal - unless they want to depend on Hibernate's own exception hierarchy. Catching specific causes such as an optimistic locking failure is not possible without tieing the caller to the implementation strategy. This tradeoff might be acceptable to applications that are strongly Hibernate-based and/or do not need any special exception treatment.

Fortunately, Spring's LocalSessionFactoryBean supports Hibernate's SessionFactory.getCurrentSession() method for any Spring transaction strategy, returning the current Spring-managed transactional Session even with HibernateTransactionManager. Of course, the standard behavior of that method remains: returning the current Session associated with the ongoing JTA transaction, if any (no matter whether driven by Spring's JtaTransactionManager, by EJB CMT, or by JTA).

In summary: DAOs can be implemented based on the plain Hibernate 3 API, while still being able to participate in Spring-managed transactions.

14.2.6 Programmatic transaction demarcation

Transactions can be demarcated in a higher level of the application, on top of such lower-level data access services spanning any number of operations. There are no restrictions on the implementation of the surrounding business service here as well, it just needs a Spring PlatformTransactionManager. Again, the latter can come from anywhere, but preferably as bean reference via a setTransactionManager(..) method - just like the productDAO should be set via a setProductDao(..) method. The following snippets show a transaction manager and a business service definition in a Spring application context, and an example for a business method implementation.

<beans>

  <bean id="myTxManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager">
    <property name="sessionFactory" ref="mySessionFactory"/>
  </bean>

  <bean id="myProductService" class="product.ProductServiceImpl">
    <property name="transactionManager" ref="myTxManager"/>
    <property name="productDao" ref="myProductDao"/>
  </bean>

</beans>
public class ProductServiceImpl implements ProductService {

    private TransactionTemplate transactionTemplate;
    private ProductDao productDao;

    public void setTransactionManager(PlatformTransactionManager transactionManager) {
        this.transactionTemplate = new TransactionTemplate(transactionManager);
    }

    public void setProductDao(ProductDao productDao) {
        this.productDao = productDao;
    }

    public void increasePriceOfAllProductsInCategory(final String category) {
        this.transactionTemplate.execute(new TransactionCallbackWithoutResult() {

                public void doInTransactionWithoutResult(TransactionStatus status) {
                    List productsToChange = this.productDao.loadProductsByCategory(category);
                    // do the price increase...
                }
            }
        );
    }
}

14.2.7 Declarative transaction demarcation

Alternatively, one can use Spring's declarative transaction support, which essentially enables you to replace explicit transaction demarcation API calls in your Java code with an AOP transaction interceptor configured in a Spring container. This allows you to keep business services free of repetitive transaction demarcation code, and allows you to focus on adding business logic which is where the real value of your application lies. Furthermore, transaction semantics like propagation behavior and isolation level can be changed in a configuration file and do not affect the business service implementations.

<beans>

  <bean id="myTxManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager">
    <property name="sessionFactory" ref="mySessionFactory"/>
  </bean>

  <bean id="myProductService" class="org.springframework.aop.framework.ProxyFactoryBean">
    <property name="proxyInterfaces" value="product.ProductService"/>
    <property name="target">
        <bean class="product.DefaultProductService">
            <property name="productDao" ref="myProductDao"/>
        </bean>
    </property>
    <property name="interceptorNames">
      <list>
        <value>myTxInterceptor</value> <!-- the transaction interceptor (configured elsewhere) -->
      </list>
    </property>
  </bean>

</beans>
public class ProductServiceImpl implements ProductService {

    private ProductDao productDao;

    public void setProductDao(ProductDao productDao) {
        this.productDao = productDao;
    }

    // notice the absence of transaction demarcation code in this method
    // Spring's declarative transaction infrastructure will be demarcating transactions on your behalf 
    public void increasePriceOfAllProductsInCategory(final String category) {
        List productsToChange = this.productDao.loadProductsByCategory(category);
        // ...
    }
}

Spring's TransactionInterceptor allows any checked application exception to be thrown with the callback code, while TransactionTemplate is restricted to unchecked exceptions within the callback. TransactionTemplate will trigger a rollback in case of an unchecked application exception, or if the transaction has been marked rollback-only by the application (via TransactionStatus). TransactionInterceptor behaves the same way by default but allows configurable rollback policies per method.

The following higher level approach to declarative transactions doesn't use the ProxyFactoryBean, and as such may be easier to use if you have a large number of service objects that you wish to make transactional.

[Note]Note

You are strongly encouraged to read the section entitled Section 11.5, “Declarative transaction management” if you have not done so already prior to continuing.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:aop="http://www.springframework.org/schema/aop"
       xmlns:tx="http://www.springframework.org/schema/tx"
       xsi:schemaLocation="
       http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
       http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
       http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

  <!-- SessionFactory, DataSource, etc. omitted -->

  <bean id="myTxManager" class="org.springframework.orm.hibernate3.HibernateTransactionManager">
    <property name="sessionFactory" ref="mySessionFactory"/>
  </bean>
  
  <aop:config>
    <aop:pointcut id="productServiceMethods" expression="execution(* product.ProductService.*(..))"/>
    <aop:advisor advice-ref="txAdvice" pointcut-ref="productServiceMethods"/>
  </aop:config>

  <tx:advice id="txAdvice" transaction-manager="myTxManager">
    <tx:attributes>
      <tx:method name="increasePrice*" propagation="REQUIRED"/>
      <tx:method name="someOtherBusinessMethod" propagation="REQUIRES_NEW"/>
      <tx:method name="*" propagation="SUPPORTS" read-only="true"/>
    </tx:attributes>
  </tx:advice>

  <bean id="myProductService" class="product.SimpleProductService">
    <property name="productDao" ref="myProductDao"/>
  </bean>

</beans>

14.2.8 Transaction management strategies

Both TransactionTemplate and TransactionInterceptor delegate the actual transaction handling to a PlatformTransactionManager instance, which can be a HibernateTransactionManager (for a single Hibernate SessionFactory, using a ThreadLocal Session under the hood) or a JtaTransactionManager (delegating to the JTA subsystem of the container) for Hibernate applications. You could even use a custom PlatformTransactionManager implementation. So switching from native Hibernate transaction management to JTA, such as when facing distributed transaction requirements for certain deployments of your application, is just a matter of configuration. Simply replace the Hibernate transaction manager with Spring's JTA transaction implementation. Both transaction demarcation and data access code will work without changes, as they just use the generic transaction management APIs.

For distributed transactions across multiple Hibernate session factories, simply combine JtaTransactionManager as a transaction strategy with multiple LocalSessionFactoryBean definitions. Each of your DAOs then gets one specific SessionFactory reference passed into its corresponding bean property. If all underlying JDBC data sources are transactional container ones, a business service can demarcate transactions across any number of DAOs and any number of session factories without special regard, as long as it is using JtaTransactionManager as the strategy.

<beans>

  <bean id="myDataSource1" class="org.springframework.jndi.JndiObjectFactoryBean">
    <property name="jndiName value="java:comp/env/jdbc/myds1"/>
  </bean>

  <bean id="myDataSource2" class="org.springframework.jndi.JndiObjectFactoryBean">
    <property name="jndiName" value="java:comp/env/jdbc/myds2"/>
  </bean>

  <bean id="mySessionFactory1" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
    <property name="dataSource" ref="myDataSource1"/>
    <property name="mappingResources">
      <list>
        <value>product.hbm.xml</value>
      </list>
    </property>
    <property name="hibernateProperties">
      <value>
        hibernate.dialect=org.hibernate.dialect.MySQLDialect
        hibernate.show_sql=true
      </value>
    </property>
  </bean>

  <bean id="mySessionFactory2" class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
    <property name="dataSource" ref="myDataSource2"/>
    <property name="mappingResources">
      <list>
        <value>inventory.hbm.xml</value>
      </list>
    </property>
    <property name="hibernateProperties">
      <value>
        hibernate.dialect=org.hibernate.dialect.OracleDialect
      </value>
    </property>
  </bean>

  <bean id="myTxManager" class="org.springframework.transaction.jta.JtaTransactionManager"/>

  <bean id="myProductDao" class="product.ProductDaoImpl">
    <property name="sessionFactory" ref="mySessionFactory1"/>
  </bean>

  <bean id="myInventoryDao" class="product.InventoryDaoImpl">
    <property name="sessionFactory" ref="mySessionFactory2"/>
  </bean>

  <!-- this shows the Spring 1.x style of declarative transaction configuration -->
  <!-- it is totally supported, 100% legal in Spring 2.x, but see also above for the sleeker, Spring 2.0 style -->
  <bean id="myProductService"
      class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
    <property name="transactionManager" ref="myTxManager"/>
    <property name="target">
      <bean class="product.ProductServiceImpl">
        <property name="productDao" ref="myProductDao"/>
        <property name="inventoryDao" ref="myInventoryDao"/>
      </bean>
    </property>
    <property name="transactionAttributes">
      <props>
        <prop key="increasePrice*">PROPAGATION_REQUIRED</prop>
        <prop key="someOtherBusinessMethod">PROPAGATION_REQUIRES_NEW</prop>
        <prop key="*">PROPAGATION_SUPPORTS,readOnly</prop>
      </props>
    </property>
  </bean>

</beans>

Both HibernateTransactionManager and JtaTransactionManager allow for proper JVM-level cache handling with Hibernate - without container-specific transaction manager lookup or JCA connector (as long as not using EJB to initiate transactions).

HibernateTransactionManager can export the JDBC Connection used by Hibernate to plain JDBC access code, for a specific DataSource. This allows for high-level transaction demarcation with mixed Hibernate/JDBC data access completely without JTA, as long as you are just accessing one database! HibernateTransactionManager will automatically expose the Hibernate transaction as JDBC transaction if the passed-in SessionFactory has been set up with a DataSource (through the "dataSource" property of the LocalSessionFactoryBean class). Alternatively, the DataSource that the transactions are supposed to be exposed for can also be specified explicitly, through the "dataSource" property of the HibernateTransactionManager class.

14.2.9 Container resources versus local resources

Spring's resource management allows for simple switching between a JNDI SessionFactory and a local one, without having to change a single line of application code. The decision as to whether to keep the resource definitions in the container or locally within the application, is mainly a matter of the transaction strategy being used. Compared to a Spring-defined local SessionFactory, a manually registered JNDI SessionFactory does not provide any benefits. Deploying a SessionFactory through Hibernate's JCA connector provides the added value of participating in the J2EE server's management infrastructure, but does not add actual value beyond that.

An important benefit of Spring's transaction support is that it isn't bound to a container at all. Configured to any other strategy than JTA, it will work in a standalone or test environment too. Especially for the typical case of single-database transactions, this is a very lightweight and powerful alternative to JTA. When using local EJB Stateless Session Beans to drive transactions, you depend both on an EJB container and JTA - even if you just access a single database anyway, and just use SLSBs for declarative transactions via CMT. The alternative of using JTA programmatically requires a J2EE environment as well. JTA does not just involve container dependencies in terms of JTA itself and of JNDI DataSource instances. For non-Spring JTA-driven Hibernate transactions, you have to use the Hibernate JCA connector, or extra Hibernate transaction code with the TransactionManagerLookup being configured for proper JVM-level caching.

Spring-driven transactions can work with a locally defined Hibernate SessionFactory nicely, just like with a local JDBC DataSource - if accessing a single database, of course. Therefore you just have to fall back to Spring's JTA transaction strategy when actually facing distributed transaction requirements. Note that a JCA connector needs container-specific deployment steps, and obviously JCA support in the first place. This is far more hassle than deploying a simple web app with local resource definitions and Spring-driven transactions. And you often need the Enterprise Edition of your container, as for example WebLogic Express does not provide JCA. A Spring application with local resources and transactions spanning one single database will work in any J2EE web container (without JTA, JCA, or EJB) - like Tomcat, Resin, or even plain Jetty. Additionally, such a middle tier can be reused in desktop applications or test suites easily.

All things considered: if you do not use EJB, stick with local SessionFactory setup and Spring's HibernateTransactionManager or JtaTransactionManager. You will get all of the benefits including proper transactional JVM-level caching and distributed transactions, without any container deployment hassle. JNDI registration of a Hibernate SessionFactory via the JCA connector really only adds value when used in conjunction with EJBs.

14.2.10 Spurious application server warnings when using Hibernate

In some JTA environments with very strict XADataSource implementations -- currently only some WebLogic and WebSphere versions -- when using Hibernate configured without any awareness of the JTA PlatformTransactionManager object for that environment, it is possible for spurious warning or exceptions to show up in the application server log. These warnings or exceptions will say something to the effect that the connection being accessed is no longer valid, or JDBC access is no longer valid, possibly because the transaction is no longer active. As an example, here is an actual exception from WebLogic:

java.sql.SQLException: The transaction is no longer active - status: 'Committed'.
   No further JDBC access is allowed within this transaction.

This warning is easy to resolve by simply making Hibernate aware of the JTA PlatformTransactionManager instance, to which it will also synchronize (along with Spring). This may be done in two ways:

  • If in your application context you are already directly obtaining the JTA PlatformTransactionManager object (presumably from JNDI via JndiObjectFactoryBean) and feeding it for example to Spring's JtaTransactionManager, then the easiest way is to simply specify a reference to this as the value of LocalSessionFactoryBean's jtaTransactionManager property. Spring will then make the object available to Hibernate.

  • More likely you do not already have the JTA PlatformTransactionManager instance (since Spring's JtaTransactionManager can find it itself) so you need to instead configure Hibernate to also look it up directly. This is done by configuring an AppServer specific TransactionManagerLookup class in the Hibernate configuration, as described in the Hibernate manual.

It is not necessary to read any more for proper usage, but the full sequence of events with and without Hibernate being aware of the JTA PlatformTransactionManager will now be described.

When Hibernate is not configured with any awareness of the JTA PlatformTransactionManager, the sequence of events when a JTA transaction commits is as follows:

  • JTA transaction commits

  • Spring's JtaTransactionManager is synchronized to the JTA transaction, so it is called back via an afterCompletion callback by the JTA transaction manager.

  • Among other activities, this can trigger a callback by Spring to Hibernate, via Hibernate's afterTransactionCompletion callback (used to clear the Hibernate cache), followed by an explicit close() call on the Hibernate Session, which results in Hibernate trying to close() the JDBC Connection.

  • In some environments, this Connection.close() call then triggers the warning or error, as the application server no longer considers the Connection usable at all, since the transaction has already been committed.

When Hibernate is configured with awareness of the JTA PlatformTransactionManager, the sequence of events when a JTA transaction commits is instead as follows:

  • JTA transaction is ready to commit

  • Spring's JtaTransactionManager is synchronized to the JTA transaction, so it is called back via a beforeCompletion callback by the JTA transaction manager.

  • Spring is aware that Hibernate itself is synchronized to the JTA transaction, and behaves differently than in the previous scenario. Assuming the Hibernate Session needs to be closed at all, Spring will close it now.

  • JTA Transaction commits

  • Hibernate is synchronized to the JTA transaction, so it is called back via an afterCompletion callback by the JTA transaction manager, and can properly clear its cache.