If you have been using the Spring Framework for some time, you will be aware that Spring has undergone two major revisions: Spring 2.0, released in October 2006, and Spring 2.5, released in November 2007. It is now time for a third overhaul resulting in Spring 3.0.
The entire framework code has been revised to take advantage of Java 5 features like generics, varargs and other language improvements. We have done our best to still keep the code backwards compatible. We now have consistent use of generic Collections and Maps, consistent use of generic FactoryBeans, and also consistent resolution of bridge methods in the Spring AOP API. Generic ApplicationListeners automatically receive specific event types only. All callback interfaces such as TransactionCallback and HibernateCallback declare a generic result value now. Overall, the Spring core codebase is now freshly revised and optimized for Java 5.
Spring's TaskExecutor abstraction has been updated for close integration with Java 5's java.util.concurrent facilities. We provide first-class support for Callables and Futures now, as well as ExecutorService adapters, ThreadFactory integration, etc. This has been aligned with JSR-236 (Concurrency Utilities for Java EE 6) as far as possible. Furthermore, we provide support for asynchronous method invocations through the use of the new @Async annotation (or EJB 3.1's @Asynchronous annotation).
The Spring reference documentation has also substantially been updated to reflect all of the changes and new features for Spring 3.0. While every effort has been made to ensure that there are no errors in this documentation, some errors may nevertheless have crept in. If you do spot any typos or even more serious errors, and you can spare a few cycles during lunch, please do bring the error to the attention of the Spring team by raising an issue.
There are many excellent articles and tutorials that show how to get started with Spring 3 features. Read them at the Spring Documentation page.
The samples have been improved and updated to take advantage of the new features in Spring 3. Additionally, the samples have been moved out of the source tree into a dedicated SVN repository available at:
https://anonsvn.springframework.org/svn/spring-samples/
As such, the samples are no longer distributed alongside Spring 3 and need to be downloaded separately from the repository mentioned above. However, this documentation will continue to refer to some samples (in particular Petclinic) to illustrate various features.
Note | |
---|---|
For more information on Subversion (or in short SVN), see the project homepage at:
http://subversion.apache.org/ |
The framework modules have been revised and are now managed separately with one source-tree per module jar:
org.springframework.aop
org.springframework.beans
org.springframework.context
org.springframework.context.support
org.springframework.expression
org.springframework.instrument
org.springframework.jdbc
org.springframework.jms
org.springframework.orm
org.springframework.oxm
org.springframework.test
org.springframework.transaction
org.springframework.web
org.springframework.web.portlet
org.springframework.web.servlet
org.springframework.web.struts
We are now using a new Spring build system as known from Spring Web Flow 2.0. This gives us:
Ivy-based "Spring Build" system
consistent deployment procedure
consistent dependency management
consistent generation of OSGi manifests
This is a list of new features for Spring 3.0. We will cover these features in more detail later in this section.
Spring Expression Language
IoC enhancements/Java based bean metadata
General-purpose type conversion system and field formatting system
Object to XML mapping functionality (OXM) moved from Spring Web Services project
Comprehensive REST support
@MVC additions
Declarative model validation
Early support for Java EE 6
Embedded database support
BeanFactory interface returns typed bean instances as far as possible:
T getBean(Class<T> requiredType)
T getBean(String name, Class<T> requiredType)
Map<String, T> getBeansOfType(Class<T> type)
Spring's TaskExecutor interface now extends
java.util.concurrent.Executor
:
extended AsyncTaskExecutor supports standard Callables with Futures
New Java 5 based converter API and SPI:
stateless ConversionService and Converters
superseding standard JDK PropertyEditors
Typed ApplicationListener<E>
Spring introduces an expression language which is similar to Unified EL in its syntax but offers significantly more features. The expression language can be used when defining XML and Annotation based bean definitions and also serves as the foundation for expression language support across the Spring portfolio. Details of this new functionality can be found in the chapter Spring Expression Language (SpEL).
The Spring Expression Language was created to provide the Spring community a single, well supported expression language that can be used across all the products in the Spring portfolio. Its language features are driven by the requirements of the projects in the Spring portfolio, including tooling requirements for code completion support within the Eclipse based SpringSource Tool Suite.
The following is an example of how the Expression Language can be used to configure some properties of a database setup
<bean class="mycompany.RewardsTestDatabase"> <property name="databaseName" value="#{systemProperties.databaseName}"/> <property name="keyGenerator" value="#{strategyBean.databaseKeyGenerator}"/> </bean>
This functionality is also available if you prefer to configure your components using annotations:
@Repository public class RewardsTestDatabase { @Value("#{systemProperties.databaseName}") public void setDatabaseName(String dbName) { … } @Value("#{strategyBean.databaseKeyGenerator}") public void setKeyGenerator(KeyGenerator kg) { … } }
Some core features from the JavaConfig project have been added to the Spring Framework now. This means that the following annotations are now directly supported:
@Configuration
@Bean
@DependsOn
@Primary
@Lazy
@Import
@ImportResource
@Value
Here is an example of a Java class providing basic configuration using the new JavaConfig features:
package org.example.config; @Configuration public class AppConfig { private @Value("#{jdbcProperties.url}") String jdbcUrl; private @Value("#{jdbcProperties.username}") String username; private @Value("#{jdbcProperties.password}") String password; @Bean public FooService fooService() { return new FooServiceImpl(fooRepository()); } @Bean public FooRepository fooRepository() { return new HibernateFooRepository(sessionFactory()); } @Bean public SessionFactory sessionFactory() { // wire up a session factory AnnotationSessionFactoryBean asFactoryBean = new AnnotationSessionFactoryBean(); asFactoryBean.setDataSource(dataSource()); // additional config return asFactoryBean.getObject(); } @Bean public DataSource dataSource() { return new DriverManagerDataSource(jdbcUrl, username, password); } }
To get this to work you need to add the following component scanning entry in your minimal application context XML file.
<context:component-scan base-package="org.example.config"/> <util:properties id="jdbcProperties" location="classpath:org/example/config/jdbc.properties"/>
Or you can bootstrap a @Configuration
class directly using
AnnotationConfigApplicationContext
:
public static void main(String[] args) { ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class); FooService fooService = ctx.getBean(FooService.class); fooService.doStuff(); }
See Section 4.12.2, “Instantiating the Spring container using
AnnotationConfigApplicationContext” for full information on
AnnotationConfigApplicationContext
.
@Bean
annotated methods are also supported
inside Spring components. They contribute a factory bean definition to
the container. See Defining bean metadata within
components for more information
A general purpose type conversion system has been introduced. The system is currently used by SpEL for type conversion, and may also be used by a Spring Container and DataBinder when binding bean property values.
In addition, a formatter SPI has been introduced for formatting field values. This SPI provides a simpler and more robust alternative to JavaBean PropertyEditors for use in client environments such as Spring MVC.
Object to XML mapping functionality (OXM) from the Spring Web
Services project has been moved to the core Spring Framework now. The
functionality is found in the org.springframework.oxm
package. More information on the use of the OXM
module can be found in the Marshalling XML using O/X
Mappers chapter.
The most exciting new feature for the Web Tier is the support for building RESTful web services and web applications. There are also some new annotations that can be used in any web application.
Server-side support for building RESTful applications has been
provided as an extension of the existing annotation driven MVC web
framework. Client-side support is provided by the
RestTemplate
class in the spirit of other
template classes such as JdbcTemplate
and
JmsTemplate
. Both server and client side REST
functionality make use of
HttpConverter
s to facilitate the
conversion between objects and their representation in HTTP requests
and responses.
The MarshallingHttpMessageConverter
uses
the Object to XML mapping functionality mentioned
earlier.
Refer to the sections on MVC and the RestTemplate for more information.
A mvc
namespace has been introduced that greatly simplifies Spring MVC configuration.
Additional annotations such as
@CookieValue
and
@RequestHeaders
have been added. See Mapping cookie values with the
@CookieValue annotation and Mapping request header attributes with
the @RequestHeader annotation for more information.
Several validation enhancements, including JSR 303 support that uses Hibernate Validator as the default provider.
We provide support for asynchronous method invocations through the use of the new @Async annotation (or EJB 3.1's @Asynchronous annotation).
JSR 303, JSF 2.0, JPA 2.0, etc
Convenient support for embedded Java database engines, including HSQL, H2, and Derby, is now provided.