Spring Framework Reference Documentation

4.3.19.RELEASE

Rod Johnson , Juergen Hoeller , Keith Donald , Colin Sampaleanu , Rob Harrop , Thomas Risberg , Alef
Arendsen , Darren Davison , Dmitriy Kopylenko , Mark Pollack , Thierry Templier , Erwin Vervaet , Portia
Tung , Ben Hale , Adrian Colyer , John Lewis , Costin Leau , Mark Fisher , Sam Brannen , Ramnivas
Laddad , Arjen Poutsma , Chris Beams , Tareq Abedrabbo , Andy Clement , Dave Syer , Oliver Gierke ,
Rossen Stoyanchev , Phillip Webb , Rob Winch , Brian Clozel , Stephane Nicoll , Sebastien Deleuze

Copyright © 2004-2016

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Framework Reference Documentation

Table of Contents

[. Overview Of SPring FrameEWOTKiiiiiiiiii e et e e 1
1. Getting Started With SPriNg ..o e e 2
2. Introduction to the Spring Framework ... 3

2.1. Dependency Injection and Inversion of CONrolcociiieiiiiiiiiii e 3
2.2. Framework MOAUIESuuuiiiiieiiiiii et e e 3
(0] (=R Ofo] o] =11 =7 S PP 4
AOP and INSIrUMENTALIONciiiitiiiiii e et ees 5

T LTSTST= o[o PPN 5
Data ACCESS/INTEGIAtiONoeeeiiieee et e e e e e eens 5

KT o S 5
IS S PP 6

2.3, USAQE SCENAIIOSietueit it et et et e ettt et e e et e et e e et e e et e e et e e ebn s e eaaaeenaeeen 6
Dependency Management and Naming CONVENLioNScc.ovveeievinneeeiiinneeeennnnnn. 9
Spring Dependencies and Depending 0N SPringccoevvveeiieeeinieiiieeeineen, 11

Maven Dependency Managementoooeuuiiiuiieeiiiaiii e eei e 11

Maven "Bill Of Materials" Dependencyccccviieiiiiiniiiiiiinieeein e 12

Gradle Dependency Managementceevvuieiiiieeiiieeiiiee e e e e eanes 12

vy Dependency Managementc..viiuueiinaiiieei e e 13
Distribution Zip FilESiiiiiii e 13

[0 To 1T R P 13
USING LOGA] 1.2 OF 2.X totuieeuiieiie ettt e e e e e e et e e e eeenns 14

Avoiding ComMmMONS LOGGING «..vuiiiiiiiiiiiiiee it 15

Using SLF4J with Log4j or Logbackccoviiiiiiiiiiiciiiicie e 15

Using JUL (java.utillogging)c..ooeeiiiiiii e 16
Commons Logging on WebSphere ..., 17

[I. What's New in SPring FramMeEWOIK 4.Xiiiiieiiieiie et e e e e e e e e e e st e e e e eeas 18

3. New Features and Enhancements in Spring Framework 4.0coooiiiiiiiiiiiiiiiiiieeies 19
3.1. Improved Getting Started EXPErENCEccouuiiiiiiiiiiiiiiii e 19
3.2. Removed Deprecated Packages and Methodscccoveviiiiiiiiccinc e, 19
3.3.Java 8 (S Well @S 6 @Nd 7) .eeuniiiiiiiiii e 19
3.4.JaVA EE 6 ANA 7 .oooiiiiiiiii e e 20
3.5. Groovy Bean Definition DSLooiiiiiiiiicii e 20
3.6. Core Container IMProVEMENTSiiutiiiiii et e e e e eeens 21
3.7. General Web IMProvVEMENTSiiiiiiiiiiieiii e e 21
3.8. WebSocket, SockJS, and STOMP MESSAQINGcvvvuevineiiieeiiieeiiiieeieeeiieeaieeaenaas 21
3.9. Testing IMPrOVEMENTS it et e e e e e et e et e e ea e aeanaas 22
4. New Features and Enhancements in Spring Framework 4.1cccoooeviiiiiiiiiiinineiiinneeens 23
4.1, IMS IMPIOVEMENTS ..uiiiiiiiie ittt e e e e e e et e e e e et e e e anaanns 23
4.2. Caching IMPrOVEMENTSccuiiii et e e et e e ea e ean s 23
4.3. WED IMPIOVEMENTS ...iiiiiiiiiii ettt e et e e et eeeaaa s 24
4.4. WebSocket Messaging IMProvVEMENESocviuiiiiiiiiii e e 25
4.5, Testing IMPrOVEMENTS ...t e e e e e et e et eeanaaees 25
5. New Features and Enhancements in Spring Framework 4.2ccoooviiiiinniiiiiinneecinnnn, 27
5.1. Core Container IMProVEMENLSiiiiiiiii i e e e e e e e eaans 27
5.2. Data ACCESS IMPIOVEIMENTSiiiiiiitie ittt et et e et e e e e e enns 29
5.3. IMS IMPIOVEMENTSoeiiiiiiiieeie ettt et e e e e e e en e eenes 29
5.4, WeD IMPrOVEMENESciiiiiiiiii et e e e e e e e e e eaaaeees 29

4.3.19.RELEASE Spring Framework iii

Spring Framework Reference Documentation

5.5. WebSocket Messaging IMProvVEMENESc..cveiuuieiinierineeen e e eeeie e e e e e eaeeeens 30
5.6. TeStiNg IMPrOVEMENLSiieiiiiiieiie ettt et e e et e e e e eaaaaas 31
6. New Features and Enhancements in Spring Framework 4.3ccooiiiiiiiiiiiiiiinneecie, 33
6.1. Core Container IMProVEMENLSiiiieiie e e e e e e e eeens 33
6.2. Data ACCESS IMPIOVEIMENTS ...ttt ettt e et ea e en e eenns 33
6.3. Caching IMPrOVEMENTSciiiiii i e 34
Lo N 11 S 10 0] 0] €017 1=] £ 34
6.5. WeD IMProVEMENLS ... et eaa e 34
6.6. WebSocket Messaging IMProVEMENLScc.uuiviiiiiiiieiiiiie e 35
6.7. TeStiNg IMPrOVEMENLSuiiiiiiii e e e e e e e et e e e e e r e e et e e e e eeenaaes 35
6.8. Support for new library and server generationscccooeieiiiiiiniiii i 36
[II. COre TECNNOIOGIESceiiiieeiii e et e et e e et e e et eeeeban s 37
7. THE 10C CONTAINET ...ttt e et e e e e e e e e e e e e ennneeas 38
7.1. Introduction to the Spring 10C container and beanscccooviiiiiiiinii e, 38
A ©a] c= 11 o 1T o 01V = T V= S 38
Configuration Metadatalcoevuiiiiiiiei e 39
INStantiating @ CONTAINETuiiii e e e e e e 40
Composing XML-based configuration metadatac...cccoveviieiiiiiiineennnnn. 41

The Groovy Bean Definition DSLcocvvieiiiiiii e 42

USING the CONTAINET ...cueiiii e e e e e ees 43

7.3, BEAN OVEIVIEW ...eeniiiiieeii et et e et e e et e ettt e et e et e e et s e e e e et e e et e e et e e e tn e eeenneeeenaees 43
[N F= T] o T 0T U 44
Aliasing a bean outside the bean definitioncccooiiiiiiiin, 45
INStantiating DEANSociiiii i 46
Instantiation With @ CONSIIUCIONuiiieiiiiiiiii e 47
Instantiation with a static factory method ..o a7
Instantiation using an instance factory methodcccoooiiiiiiis 47

A I 1= o T= T o [o =T o] TS 49
Dependency INJECLIONiiuii e e ea e 49
Constructor-based dependency iNJECIONc..uvvieiiiiiiiiiiiiieeeei e 49
Setter-based dependency INJECIONcoceviiiiiiiiiiii e 51
Dependency resSolUtiON PrOCESSc.uiiitiiiiiiiei e 52

Examples of dependency iNjeCtioncoiviiiiiiiiiiiiii e 53
Dependencies and configuration in detailc..cooveiiiiiiii 55
Straight values (primitives, Strings, and SO ON)cc.ovvieiiiiiiiiiiiieeieeeies 55
References to other beans (collaborators)cccoovviiiiiiiiiiiiin e, 57

INNEE DEANS ..o e 58
1070]| L=t 1o o 1< PP PPTPPPPT 58

Null and empty String VAIUESoooiiiiiiiiiiii e 60

XML shortcut with the p-namespacecccoveveiiiiiiiiiii e, 61

XML shortcut with the C-NameSPaceocevuiiiiiiiiiii e 62
Compound ProPerty NAIMESuiieiiin et e et e et eeeti e eer e eeriaeaees 63

L0 LS T o 0 1=7 o =T Vo £ o o 63
Lazy-initialized DEANScoouni i 63
AUOWINNG COIADOIALONSieiiiiieeeii e 64
Limitations and disadvantages of autowiringccoevvviiieiiineeiiieeeieeeieees 65

Excluding a bean from autOWIrINgoeeuiiiiiiiiee e 66

MEthod INJECTION ...coeveeiiii e et e et e e eees 66
Lookup mMethod INJECLIONciiviiiie e e 67

Arbitrary method replacement 69

4.3.19.RELEASE Spring Framework iv

Spring Framework Reference Documentation

T = T g T 0] o =2 70
The SINGIEION SCOPE ...ceuiiiiee e 71
THE ProtOtYPE SCOPE ...euiiiiii ettt e e s 72
Singleton beans with prototype-bean dependenciesccccoovviveiiiieiiiieviineeennn, 73
Request, session, global session, application, and WebSocket scopes 73
Initial web configurationcoooiii i 74
REQUEST SCOPE ..t 74
SESSION SCOPE ..ttt ee ettt ettt et e et et e e tt e e et e et e e e e e e 75
GlObal SESSION SCOPE ...ovvtiieiiiii ettt e 75
PY o] o] o= U1 T g =Yoo = 75
Scoped beans as dependencCiesc..ooiuuiiiiiiiiiiiie e 76
CUSEOM SCOPES ..iviieei ittt ettt ettt e et ettt e e et e e e e et et e eneeenas 78
Creating @ CUSIOM SCOPEvvvuiiiiieiiiieeeiee e e e e e e e e e e e e e e e e aaeeeanas 78
USING @ CUSEOM SCOPE ...nieeiiiitn ettt e ettt ettt e e e e e e e e e ean s 79
7.6. Customizing the nature of @ DeaNccooiiiiiiiiii i 80
LifeCyCle CallDACKSuuiiieiei e 80
Initialization CallDaCKSooiiiiiii 81
Destruction Callbackscooeuiiiiiiii 81
Default initialization and destroy methodscccccceveiiiiiii i, 82
Combining lifecycle mechaniSms ..o 83
Startup and shutdown callDackscoooveuiiiiiiiiiiii e 84

Shutting down the Spring 1oC container gracefully in non-web applications
... 86
ApplicationContextAware and BeanNameAWarecovevivinieiiiiinneeeiee e 86
Other AWAre INLEITACEScoouuiiiiiii e 87
7.7. Bean definition INNEIILANCEcouuiiii i e 88
7.8. Container EXtENSION POINESuiiiiiiiii e e e e e 90
Customizing beans using a BeanPOStPrOCESSOrccuuveiviiiiiiiieiiieeeiiievineeaineens 90
Example: Hello World, BeanPostProcessor-styleccoooviiiiiiiiiiiniiinn. 91
Example: The RequiredAnnotationBeanPostProcessorcccvevvvveeeenenennn. 93
Customizing configuration metadata with a BeanFactoryPostProcessor 93
Example: the Class name substitution PropertyPlaceholderConfigurer 94
Example: the PropertyOverrideConfigurerccoovviiiiiieiiiineecii e 95
Customizing instantiation logic with a FactoryBeanc.cccoevveviveiiieviineennnnn, 96
7.9. Annotation-based container configurationcooiiiii i 96
L@V =T [T =T o P 98
@AULOWITEA ...ttt e e e et e e e et e e eaan s 98
Fine-tuning annotation-based autowiring with @Primaryccccooiviiiiiiins 102
Fine-tuning annotation-based autowiring with qualifierscccccoooiiniiiinnnnn. 102
Using generics as autowiring qualifiersccoceiieiiiiiin e 108
CUuStoMAULOWIFECONTIQUIET ...c.ueiii et e e 108
(@ RS0 U] (o7 =T 109
@PostConstruct and @PreDESIIOY ...cvuuuivieiieii e e e e e e 110
7.10. Classpath scanning and managed COMPONENEScccuuiiiiiiiiiiiieiiieieieeeieeeeaaes 110
@Component and further stereotype annotationsc.ooeevviieiiiiinneeeiiinneeenn, 111
MEta-annOtAtIONSccoeuiiiiiii e 111
Automatically detecting classes and registering bean definitions 112
Using filters to customize SCANNINGviiiriiieiiii e 114
Defining bean metadata within COMpPoONENtsccoviviiiiiiii i 115
Naming autodetected COMPONENTSoiiuuiiiiiieiiieii e 117
4.3.19.RELEASE Spring Framework v

Spring Framework Reference Documentation

7.11.

7.12.

7.13.

7.14.
7.15.

Providing a scope for autodetected cOmpoNentsccecveviiieiiiieeiiieeiiieeee e, 118
Providing qualifier metadata with annotationscccooviiiiiiiniii e, 119
Using JSR 330 Standard ANNOLALIONScooiiviiiieiiiiieeieii e 120
Dependency Injection with @Inject and @Namedccoovviiiiiieviineiieeeenn, 120
@Named and @ManagedBean: standard equivalents to the @Component
=Yg T] = 1o} o P 121
Limitations of JSR-330 standard annotationsccceevvviiiiiniiiii i 122
Java-based container configurationccoceuiiiiiiiiiiiii e 124
Basic concepts: @Bean and @Configurationc.cccoeeviiiiiiiiieii e, 124
Instantiating the Spring container using AnnotationConfigApplicationContext 125
SIMPIE CONSIIUCTION ..eeiiiiiiiii e e e 125
Building the container programmatically using register(Class<?>...) 125
Enabling component scanning with scan(String...)cccooeveviviiiiiineieeeen, 126
Support for web applications with AnnotationConfigWebApplicationContext
... 126
Using the @Bean annotationcoeuiiiiiiiiiiiieii e ee e e e e e 127
Declaring @ Dean ... 127
Bean dependencCiesocoouuiiiiiiiiii e 128
Receiving lifecycle callbackscooovviiiiiiiiii 129
SPEeCifying DEAN SCOPEuiiiiiii e 130
Customizing bean NAaMINGccoeeuiiiiiii e eeens 131
Bean ali@Singcccuuiiiiiiiiii i 131
Bean deSCrPLIONieui e 131
Using the @Configuration annotationcccoeveiiiiiiieiiiiine e 132
Injecting inter-bean dependenciesovevviiiviiiiii e 132
Lookup method INJECHIONieeiie e 132
Further information about how Java-based configuration works internally.... 133
Composing Java-based configurationscccoevuiiiiiiiiiiii e 134
Using the @Import annotationccouviiiiiiiiiii e 134
Conditionally include @Configuration classes or @Bean methods 138
Combining Java and XML configurationcccoeeeiiiiiiieiiineiii e 139
Environment abStracCtionc..oiiuiiiiiii e 141
Bean definition profiles ... 142
@PTOFIE .o e 142
XML bean definition profiles ... 144
Activating @ Profile ... 145
Default Profilecceeeiii e 145
PropertySource abStraCtionooouuiiiiiiiiiii e 146
@ PTOPEITYSOUITE ...ttt ettt ettt ettt e e e et e e e b s 147
Placeholder resolution in StateMENtSoveeiiiiiiiiiiiii e 148
Registering a LoadTiMEWEAVETcoouuiiiiiiiiiieiii e 148
Additional capabilities of the ApplicationCoNtextocevvviieeiiiiinieiiiieeeeienn, 149
Internationalization USiNg MESSAJESOUICEuvvvrnieiiiieeiieeeiieeeeeeieeeaaeeaneens 149
Standard and CUSIOM EVENTSiiiuiiiiiii e 152
Annotation-based event lIStENErsSovvviiiiiiiii e 155
ASYNCHIroNOUS LISTENEISiiiiiiii i e 157
Ordering lISTENEISii e 157
LCT=] o= Ty ToR YT o (P 157
Convenient access to low-level reSOUICESooevvuiiiiiiiiiiieiii e 158
Convenient ApplicationContext instantiation for web applications 158

4.3.19.RELEASE

Spring Framework Vi

Spring Framework Reference Documentation

Deploying a Spring ApplicationContext as a Java EE RARfilecc.oceunnis 159
7.16. ThE BEANFACIONYccuiiiiiii ettt e e e e e e e eaa e ees 159
BeanFactory or ApplicatioNCONIEXE?iiiiiiiiieiiiii e 160

Glue code and the evil SINGIETONccouiiiiiiii e 161

8. RESOUICES ...ttt ettt et et e e e e e e e e enns 163
S 0 I [1o o 11 o3 1T o I PP 163
8.2. The ReSOUICe INLEITACEociiiii e 163
8.3. Built-in Resource implementationso..oviiiiiiiiieii e 164
| =TT 11] o= 164
ClasSPatNRESOUICEoiiiiiiiiieiii et e 164
FIleSYSIEMRESOUITE ...t e e e e 165
ServVIEtCONEXIRESOUICEiivuiiiiieii et e et e e e e e eeens 165
INPUESTIEAMRESOUITE ...ivniieee e e e e e e e e e e e e e e e e eaneanaeannes 165
BYIEAITAYRESOUITE ... e e eens 165

8.4. The ReESOUICELOAUET .. oevuiiiiiii et e e s 165
8.5. The ResourceLoaderAware iNtErfacecoovvveuiiiieiiiiiiieiie e 166
8.6. Resources as dependenCiescouuiiiuiiiiieii e 167
8.7. Application contexts and Resource pathscccooviiiiiiiiiiiiin e 167
Constructing application CONEXLS ...vuvuiiiinieii i e e e e 167
Constructing ClassPathXmlApplicationContext instances - shortcuts 168

Wildcards in application context constructor resource pathsccccoeveveiiinees 168
ANE-SEYIE PAtterNS ...ovvniiei e e 169

The classpath*: PrefiX ... 169

Other notes relating to WldCardscovviiiiiiiiiiiii e 170
FileSYyStEMRESOUICE CAVEALSuuiviieiiiieieii e e e e e e e e e e et e e e ann s 170

9. Validation, Data Binding, and Type CONVEISIONcc.oiiiuiiiiiiiiiieiei e 172
LS 0 I [o o [o3 1T o I PP 172
9.2. Validation using Spring’s Validator interfacec..cccoeveviiiiiiiiii e 172
9.3. ResoIving COUES t0 EIrOr MESSAUES ...cuuierneiiieitiieiei et e et e et e e a e e e e eaaaas 174
9.4. Bean manipulation and the BeanWrapperc..oveiiiiiiieiiiiiiieeeei e 175
Setting and getting basic and nested propertiescccoevveiiiiiin i, 175
Built-in PropertyEditor implementationsccooviiiiiiniiii e 177
Registering additional custom PropertyEditorscccovvvveviniiiiiiineeiininnnn. 180

9.5. SPriNg TYPE CONVEISION ...ccvuiiiiiieeiieee et e e e e e e e e e e e e e et e e e e et s e e e eanas 182
CONVEIEE SPI .o et e e e e 182
CONVEIEIFACIONY ...ttt 183

1= gLt ol Oo] V=T o =T ST OPPRTPN 183
ConditionalGeNEriCCONVEITETccuiiiiiieiii et 184
CONVEISIONSEIVICE AP ..o 184
Configuring @ CONVEISIONSEIVICEcvuuiiiiiieeieeei e et e e e e e e e e e e e e eens 185
Using a ConversionService programmaticallyccooooiiiiiiiiiiniiiniieiee, 186

9.6. Spring Field FOrmMattingc..uiiiiiiiiieiiii e 186
FOrMALIEr SPI ..o et et 187
Annotation-driven FOrMattingooeuiiiiiiiii e 188
Format ANNOLAtioN AP ... 189
FOrmatterREQISIIY SPI ...uuiiiiii e 189
FOormatterRegISIrar SPIo.. i 190
Configuring Formatting in Spring MVC ... 190

9.7. Configuring a global date & time formatc.cocovevii i, 190
9.8. SPring Validationcoouiiii i 192

4.3.19.RELEASE Spring Framework Vii

Spring Framework Reference Documentation

Overview of the JSR-303 Bean Validation APlccooviiiiiiiiiiiiiieeeci, 192
Configuring a Bean Validation Providerccooooiiiiiiiiiie e 192
Injecting @ Validator 193
Configuring Custom CONSLraiNtSoevvviiiiiieeii e 193
Spring-driven Method Validationccooiiiiiiiiii e 194
Additional Configuration OPLiONSuiiiiiiiiiieiiiiiee e 194
Configuring @ DataBiNGerccuuiiiiieii e e 194
Spring MVC 3 Validationooiiiiiii e 195

10. Spring Expression Language (SPEL) ...oouuuiiiiiiiiiiii et 196
I T O [1o To [o 1T o I PP 196
10.2. BVAIUALION ..ottt e 197
Eval uati 0NCONT @XT ..o 198
LI/ L o0 1Y/= T 67T I 199

Parser CONFIQUIALIONiiiiiii e et e e e e 199
SPEL COMPIIALION ..uiiiiii e 200
Compiler configUrationoeiiiiiii e 200

Compiler IMItAtIoNScounii e 201

10.3. Expressions in bean definitionscoooiiiiiiiii 201
XML CONFIQUIALION ..ovniiie i e e e e e e e e e e an s 201
ANNOLALION CONFIG .evniii e e e e eaa s 202
10.4. Language REFEIENCEuiiiiiiii et 203
Literal EXPrESSIONS ...vvuniiii i e e e 203
Properties, Arrays, Lists, Maps, INAEXErScc.ooiiiiiiiiiiii e 203
] T T 1] P 204

T T T, = o £ 204
AFTAY CONSIIUCTION ...ttt ettt e et e et e e e e e e et e ean e enes 205
1] 1 T Lo £ PP 205

L0 01T = 1o] Y 205
Relational OPeratorsoocu i 205

LOGICAl OPEIALOIS ...iiiiiei ittt e 206
Mathematical OPEratorscoevuiiiiiiiiie e 207
LTS (o[0] 41 o | PP PTPPPR 207

Y P ittt 207

1070] 0 53 1 11 ox (o] £ TP PTUPTN 208
VaANBDIES ..o e 208

The #this and #root variables ..o 208

FUNCHIONS .ottt e e et e et e e e et e e e eata e e eannns 208
BAN FEIEIENCES ...t 209
Ternary Operator (If-Then-ElIS€) ... 209

The EIVIS OPEIatOrcccveiiiiici e e e e e anas 210
Safe NavIgation OPEIatOrco.u i e e e 210

(070]|[=Tox 1o BEST =1 [=Tod 7] o 211

100]{[=Tox 1To] o T = o] =T 1o) o 1NN 211
EXPression temMplatingooeeoii e 212
10.5. Classes used in the examples ..o e 212
11. Aspect Oriented Programming With SPringccoceviiiiiiiiiiiiii e e 216
5 R [10T [DT i To] o I PP 216
F Y@] oo] (o1 =T o] £ PP 216
Spring AOP capabilities and goalscoocvuviiiiiiiii e 218
AOP PIOXIES ..ottt ettt ettt et e aa e 219

4.3.19.RELEASE Spring Framework viii

Spring Framework Reference Documentation

2 (01 AN o 1T A0 = U] o1 AP 219
Enabling @ASPECEI SUPPOIT ...ceuniiiieii et 219
Enabling @AspectJ Support with Java configurationcc.ccceeveennnns 219

Enabling @AspectJ Support with XML configurationccc.cceveeinene. 220

DeClaring @n @SPECLc.uuiiiiiiii e 220
Declarng @ POINTCULoiiiiiei ittt e e e eeeees 221
Supported Pointcut DeSIGNAtOrScvvveieiiieeiii e e e 221
Combining POINtCUt EXPreSSIONSciuuniiii it eaa e eees 223

Sharing common pointcut definitionNs ... 223

EXAMPIES ..o 225

WIItiNg gOOd POINTCULS ...evuiiiiieii e e 227

DeClarnng @aVICEuiiiiiiiiiiiii e 228
BefOre @dVICEvuiiii e 228

After returning AdVICEo.u i 228

After throwing @0VICEuuiiiiiiiii e 229

After (finally) @dVICEcooviii i 230

ATOUNT AAVICE ...ttt 230

ACVICE PATAMELEIS ...ttt et e e e e e era e aees 231

7o AV o7 T] (o [=1 1o Vo T 234
INEFOUCTIONS ..ottt e e e e e e e e ene e e e 235
Aspect instantiation MOElSccoouiiiiiiiiii 235
0= 1 1] o 1= 236
11.3. Schema-based AOP SUPPOITcoouiiiiii e e 238
DeClarng AN @SPECL ...couuuiiiiiii ettt 238
(D= Yo F= T TaTo =T o111 (o1 U | N 239
DeClaring @0VICEcoeuuiiiiieii e 240
BefOre @0VICEoiieeieii e 240

AFter returning adViCecouviiiii i 241

After throwing @0VICEccuuiiiiiiii e e 241

After (finally) AdVICEiiiiii i 242

AFOUNG BAVICEciiiieiiiiie et 242

AdVICE PArAMELEISiiiiiii et e e ees 243

ACVICE OFAEIING .eevvnieieiii et e e e eees 244
1ol ¥ ox o] o - TP PPTTT 245
Aspect instantiation MOAEISo..iiiiiiiii 245

0 A= P 245
3= 1 1] o = 246
11.4. Choosing which AOP declaration Style t0 USEocoeuiiiiiiiiiiiiiiiiieiieeeeeeene 248
Spring AOP O fUll ASPECTII? ...t 248
@Aspectd or XML for Spring AOP? ... 249
11.5. MiXiNG ASPECE TYPES ..ernieiieiit ettt ettt ettt e e e e et e e e e 249
11.6. Proxying MeChaNiSMSc.uuiiiiiiiiiiii et 250
Understanding AOP PrOXIES ...cuuuiiiiniiiiieei et e e et e e e e e e e e e e aeans 250
11.7. Programmatic creation of @ASPECtI Proxi€sccoceuiiiiiiiiiiiiniiiiieiiiieeeeeeenn, 253
11.8. Using Aspectd with Spring appliCationsocoeuuiiiiiiiiiieiiiiieeeee e 253
Using AspectJ to dependency inject domain objects with Spring 254

Unit testing @Configurable ObJECtSc..oiiiiiiiii e 256

Working with multiple application CONEXISccuviiiviiiiiiiiiiiiei e, 256

Other Spring aspects for ASPECLIcouuiiiiii i e 257
Configuring AspectJ aspects using Spring 10Ccoooiiiiiiiiiiiiei e, 257
4.3.19.RELEASE Spring Framework ix

Spring Framework Reference Documentation

Load-time weaving with AspectJ in the Spring Frameworkcccooevvivennnnns 258

A FIrSt @XamMPIE ... e 259

AASPECES .ttt 261
"META-INF/QOP. XML L. a e e 262

Required libraries (JARS) ... 262

Spring CoNfiQUIAtIoNiiiiiii e e 262
Environment-specific configurationccccooviiiiiii i, 265

11.9. FUINEI RESOUICEScuuiiiieiiti ettt et et e e et e e e e eaneas 266
12. SPIING AOP APIS ..ottt 267
20t O [1o To [o 1T o I PP 267
12.2. POINICUL AP IN SPIING .ot e e e e e 267
1070] g [o1=T o] 1< PP PP 267
Operations 0N POINTCULSiiiieei e e et e e e e e e e e e e e et e e eeanaeeaen 268
Aspect exXpresSion POINICULSc.uiietiiii e e ea e 268
Convenience pointcut implementationsccooviiiiiiiniiiii e 268

) = L[l o T 111 (o1 1| 268

DYNamicC POINTCULSuiii it e e e eaa s 269

POINICUL SUPEICIASSES ..covvniiiiii e 270
L1015 (o] o T o T 11 (011 | N 270
12.3. AdVICE API N SPIING .eniiiiiiie e et a e e e 270
AVICE NFECYCIES .oovii e 270
Yo AV ot Y o =T IS o 1 o 270
Interception around AdVICEc..ioiiuiiiiiii e 270

BefOre @0VICEoiieeieii e 271

TRFOWS @UVICE ...t e e 272

After REtUrNINg A0VICEcouuiiiiiiiii e 273
INtrOUCEION @AVICEuiiieiiii e e e e 274

2 Yo AV o T o T IS o 1 o 276
12.5. Using the ProxyFactoryBean to create AOP ProXi€scccovvveuieeuieeinneeennaennn. 276
[T [276
JavaBeaNn PrOPEITIESiiiieieii i e e e e e 277
JDK- and CGLIB-based ProXi€scioiuuiiieiiiiiiieeieee et 278
Proxying INtEITACESccoiuiiiiiii e 278
PrOXYING ClaSSES ..ovuiiiiiiii et e e e e e e e 280
UsiNg 'global’ @0VISOIScouiiiiiiii e 281
12.6. Concise proxy definitioNScooouiiiiiiiiii e 281
12.7. Creating AOP proxies programmatically with the ProxyFactoryc.c........ 282
12.8. Manipulating advised ODJECLScoouiiiiii 283
12.9. Using the "auto-proxy"” facCilitycoveiiuiiiiiiiii e 284
Autoproxy bean definitioNScooviiiiii 284
BeanNameAUtOPIOXYCIEaALOrc.ieuiii e eees 284
DefaultAdViSOrAUtOPIOXYCIEALONceeeuinieeiiiiiee et e e e e e e e e 285
AbstractAdViSOrAUtOPTOXYCIEALONccvvueveiiiiieeeieee e e e e e eaie e 286

Using metadata-driven auto-proXyingc.eceeueeuaeiuaeeieeie e e eeneeeennns 286
12.10. USING TArgEISOUITESuiiiiiiiieeiiii ettt e et e et e et e e et e e e bt eeeebaaeaees 288
Hot swappable target SOUIMCESoiiviiiiii i 288
P00ING tArget SOUICESiiiiieii et e e e e eaaeees 288
Prototype target SOUICESccuuiiiiiii e 290
ThreadLocal target SOUICESiveuiiiii e e e e e e e eaens 290
12.11. Defining NEW AQVICE tYPESiuuiiiii ettt e e e e e 290

4.3.19.RELEASE Spring Framework X

Spring Framework Reference Documentation

12.12. FUMNEE FTESOUICES ...iiiiiieeiii ettt ettt e ettt e et e e et e e e e et e e e eebn e eeenes 291
Y =T] o T R TP UPPTUPPN 292
13. Introduction t0 SPriNG TESHINGceeeuuuieiiii ettt e e e e e eaaans 293
0 U T o 1 A =) 1] Vo N 294
T14.1. MOCK ODJECES ..vuiieiiiii ettt et e e e et et e et e e e e aa e 294
1V o] o 01T o TP 294

B | PSP 294
SEIVIEE AP o e 294
POIEt AP e e 294
14.2. Unit Testing SUPPOIt CIASSESuicvuuiiiiiiiii e e e e 295
General testing ULIILIEScoeuiiiii e 295
SPING MVC oo e e 295

ST [a1 0=Te = o] T I~ 11 T 296
L5, OVEIVIEW ittt ettt et e et e et e et et e et e e et e et b e e et e e aaeeaneaees 296
15.2. Goals of Integration TeSHNGuuiiiiiiiiieiiii e 296
Context management and CaChINGcoovviiiiiiiiiii e 296
Dependency Injection of test fIXIUIEScc.uiiiiiiiiiii e 297
Transaction MaNAGEMENTcouuuuiiiiii et et e e 297
Support classes for integration teStNGvvvvviiiiiii e 298
15.3. IDBC TESHNG SUPPOIT ...ttt ettt ettt et et e e e e et eean e eeees 298
T Y o T = 11T L PP 298
Spring Testing ANNOLALIONSiiiiiii e e e e e e e 298
@BOOLSITAPWILN ... 299
@CoNteXtCONfIGUIAtIONoieeieii e e e e e 299
@WebAPPCONTIGUIALIONc.eiii e e e e 299
@CONEXIHIEIAICNYeiieie e 300

(@ A A VA= d 0] 1 [P 300

@ TEStPIOPEIYSOUICE ...uiiiiieeiieeeie ettt e e et e e e e e e e e e e e et e e e eeaneees 301

(@] DT [T 0] | (<) 301
@TESTEXECULIONLISIENEISvniiiiiiee e 303

L@V o] 101 0 11 S PP 303
@ROIDACK ..t e 303
@BEfOreTranSACLONcvuiiiieiiiee e 304
@AFEITIANSACLION ...ieiii e e e et e e eanens 304

@7 | PP 304
@SICONTIG .t 304
(@20 | (10T o T 305

Standard ANNOatioN SUPPOITeeeniitieie e eees 305
Spring JUNit 4 Testing ANNOTAIONScoouuiiiiiiiiie e 306
@IPIOfIEVAIUE ... 306
@ProfileValueSourceConfigurationcc.iieiiiiiiiieiiee e 306

(@I 4T R 306

(@Y= 0= 307
Meta-Annotation SuppOort FOr TESHNGc..vieuniiiiiiiii e 307
15.5. Spring TestContext FrameWOrKc.uuiiiiiiiieiiiiiee e 308
KEY @DSIIAaCIONS ...ooviiiii i e 309
TESICONTEXE ..ottt e 309
TEeStCONIEXIMANAGET ...ceeniieieiei et ettt eees 309
TESIEXECULIONLISIENET ..uuiiiiiii e e 309

CONEXE LOAAERTS ...ttt et et e e 309

4.3.19.RELEASE Spring Framework Xi

Spring Framework Reference Documentation

Bootstrapping the TestContext frameworkccoovviiiiiiiin e, 310
TestExecutionListener configurationccocoeiiieiniiiiii e 311
Registering custom TesStEXecutionLISteNerscccoveveiivviiiiiiinieeineeieeen 311
Automatic discovery of default TestExecutionListenersccccoceveeennnn. 311
Ordering TeStEXeCULIONLISIENErSoiiuiiiiiiiiii e 311
Merging TeStEXECULIONLISIENEISoiiiiiiieiiiii e 312
(070 1 (=T (R 4 F=TaT=To = 0 1= o | 313
Context configuration with XML reSOUICESoeveuiiiiiiiiiiiieiieeeiieeeieeeen 314
Context configuration with Groovy SCHPLScceuuiiiiiiiiiieiiiiieee e 314
Context configuration with annotated cClassescocceeveviiieiiiiiiieeiiees 315
Mixing XML, Groovy scripts, and annotated classescccoccoevevineennnnen. 316
Context configuration with context initializersccoooeviiiviiiiiiieieeeenn, 317
Context configuration INNErtaNCEecceviiiiiiiiiiec e 318
Context configuration with environment profilescccooviiiiiiiincennn. 319
Context configuration with test property SOUICeSoecevvvveereiiineeeeninnnnn. 324
Loading a WebApplicatioNCoONEXEovveiiiiiiiii e e 326
CONEXE CACNING .. eetnieit e e aens 329
Context IErarChiesoi i e 330
Dependency injection of test fiXtUreSccceviviiiiiiiii e 332
Testing request and session scoped beans ... 334
Transaction MaNAGEMENTccuuuuiiiiii ettt e e e 336
Test-managed tranSaCiONScocvuviiiiii e e 336
Enabling and disabling transactionscooveiiiiii i 337
Transaction rollback and commit behaviorccccoooeviiiiii e 338
Programmatic transaction managementcccovevuiveriiieeeineeeneeeeee e 338
Executing code outside of a transactioncoccoiiiiiiiiiiiniiieee 338
Configuring a transaction MAaNAGE!ocveeuiieiiiiiiiereii e 339
Demonstration of all transaction-related annotationscccoeeveevevnnnnn. 339
EXE@CULING SQL SCIPLS ..niiitiiiieiit ettt e e e e e e e e ean e 340
Executing SQL scripts programmaticallycccoooeviiiiiiiiiniiiecennnn, 341
Executing SQL scripts declaratively with @Sqlc.ccovvvviviiiiiiiiiieeenn, 341
TestContext Framework SUPPOIT ClASSESc.uiiviiiiiiiiiiieec e 345
SPriNg JUNIE 4 RUNNET ..uuiiiii et et e e e 345
Spring JUNIt 4 RUIESciiiieii e e e e 345
JUNIE 4 SUPPOIT CIASSES ..euiieeieiieee ettt 346
JUNIE 5 SUPPOIT ettt et 346
TESING SUPPOIt CIASSES ...cvviiiiiiieie e e e e 347
15.6. Spring MVC Test FrameWOrkKccuuiiiuiiiiiiii e e 347
Y =T A= oY o [I =TS PN 348
S = L[[9] 0T i 349
SEtUP CROICES ... 349
Performing REQUESTESuuiiiiiii e 350
Defining EXPECLationSccvvviiiiieii e 351
Filter RegISIrAtiONSiieiiiiii e 352
Differences between Out-of-Container and End-to-End Integration Tests.... 352
Further Server-Side Test EXamPIESvviiiiiiiiiiiie e 353
HIMIUNIE INEEGIAtiON ...t e e e e e 353
Why HtmIUNIt INtegration?oooiuiiiiiii e 354
MockMve and HIMIUNIL ... 356
MOCKMVC and WEDDIIVETc..iiiiiiiiiiei e 358

4.3.19.RELEASE Spring Framework Xii

Spring Framework Reference Documentation

MOCKMVC @Nd GEDcoiiiiiiiiiiie et 363
Client-Side REST TESIS ...civviiiiiiiiieiieii ettt 364
SEAIC IMPOITS .ttt eaaans 365
Further Examples of Client-side REST TeStScc.covviiiiiiiiiiiiieii v 365
15.7. PetCliniC EXaMPIE ... 366
16. FUMNEE RESOUICESuiiiiiiieii ettt ettt e e e e et e e et e e et e e e e e e e eet e eeaneeeens 368
V. DAA ACCESS ...veiiiiiii ettt ettt et ettt e 369
17. Transaction MaNAQEIMENTc.uuiiii it e e e et e et e e e e e e aeens 370
17.1. Introduction to Spring Framework transaction managementcccceeveveennnn. 370
17.2. Advantages of the Spring Framework’s transaction support model 370
Global traNSACHONScceieiiiieiii e 370
LOCAl traNSACONS ...ovuiiiii e e e 371
Spring Framework’s consistent programming modelc.cccoeeviiiieiiiieineennn, 371
17.3. Understanding the Spring Framework transaction abstractionc......... 372
17.4. Synchronizing resources with tranSactionscooceeuiviiiiiiinieiii e 375
High-level synchronization approachc.cooviiiiiiii e 375
Low-level synchronization approachcoceuiiiiiiiiiiiii e 376
TransactionAWAareDataSOUICEPTOXYccuuuuiiiiiiiieeiiiii e 376
17.5. Declarative transaction Managementcc..eevuuieiiiieeiieei e e e e e e 376
Understanding the Spring Framework’s declarative transaction implementation... 378
Example of declarative transaction implementationocooviiieiiiiinieeiinnnnn. 378
Rolling back a declarative transactionc.ccovviiiiiiiiieii e 382
Configuring different transactional semantics for different beans 383
SEXAAVICE/> SELHNGS .eevtniiiiii ettt e e e e enaes 385
USING @TranSACIONEAIcvvenieiiieii e e e e e e e e e e e ea e eaes 387
@Transactional SEtliNGSccuuiiiiiiii e 392
Multiple Transaction Managers with @Transactionalccccoeeevvunnnen. 393
Custom ShortCut aNNOLALIONSuuiieeeiiiiiiie e 393
TranSaction ProPagALIONc..ieuuiiii it e e et e e e e b e e e e e 394
REQUITE ..o 394
L= To [T (=] N =2 S 395
NESTEA ..ot 395
Advising transactional OPErationNsc.uuieiiriiiieieiiee e 395
Using @Transactional With ASPECLJiiiiiiiiii e 398
17.6. Programmatic transaction managementc..veiuunieiuniieineiiieeeiie et eaeeeennes 399
Using the TransactionTemMPpPlateo 399
Specifying transaction SEttNgSc.vviiii i 401
Using the PlatformTransactionManagercc.vvieuieiiiiiiiiieeee e 401
17.7. Choosing between programmatic and declarative transaction management 402
17.8. Transaction boUNd @VENTouuiiiiiieiiiieii e 402
17.9. Application server-specific INtEgrationccoooeuiiiiiiiiiiii e 402
IBM WEDSPRNEIE ..o e 403
Oracle WEDLOGIC SEIVELuiiiiiiii ettt e e e e e e e e aanas 403
17.10. Solutions to comMmON ProbIEMSoiiuiiiii e 403
Use of the wrong transaction manager for a specific DataSource 403
17.11. FUINET FESOUICES ...vvreiiiieeeiieeitti s e ettt et e ettt e n e e e e e e e e n e e e e eeennnees 403
RS T B)N @ (U o] o [0] ¢ PP PTPPPN 405
S0 O 0T [T o) o P 405
18.2. Consistent exception hierarChycooviiiiiiii e 405
18.3. Annotations used for configuring DAO or Repository classesccooeeevneeennnn. 406

4.3.19.RELEASE Spring Framework Xiii

Spring Framework Reference Documentation

19. Data access With JDBCuiiiiiiiiii e e 408
19.1. Introduction to Spring Framework JDBCco.uiiiiiiiiiiieiiiece e 408
Choosing an approach for JDBC database acCessccooveveiiiiiiiiiinieiiiiinneees 408
Package hierarChycooiiiiiiii e 409
19.2. Using the JDBC core classes to control basic JDBC processing and error
NANAING e e 410
N [| o Yol I =110 o] F= L (= 410
Examples of JdbcTemplate class usageccoovveviiiiiiiiiiiiiiieee 410
JdbcTemplate Dest PractiCesvveiiiiiiiiiiiiii e 412
NamedParameterJdbcTemplatecoeveiiiiiiiii e 414
SQLEXCEPLIONTIANSIALOr ...ttt 416
EXECULING STATEMENTSiiiiii et 417
[0] T o o 18 1= = 418
Updating the database ... 419
Retrieving auto-generated KeYSoooiiiiiiiiiiiiii e 419
19.3. Controlling database CONNECLIONScc.uiiiiiiiiiieii e e e 419
DAtABSOUICE ...ttt et e et e e e e et e e e e e e 419
(D= U= o 10] £ ot 10 1] PP 421
SMANDAASOUICEiiiii ittt e e s 421
ADSITACIDAIASOUITEiiiiiieei ettt e et e et e e ea e 421
SingleConNectioNDAataASOUICEiiiiiiiiiiiiii e 421
DriverManagerDataSOUICEcceuueeunieriiieeei e e e e ete e e e et e e e e e et aeeaeeeaneeeens 421
TransactionAwareDataSOUrCEPTOXYviiuuiiiiieiiiiee et 422
DataSourceTranSactioNMaNAGETcccuuuieiiiiiieeiiii et eeens 422
NAtVEIADCEXIFACION ...iuviiiiiii e e e eeeans 422
19.4. JDBC DatCh OPEratiONScoeuuiiiiiiii et e e eens 423
Basic batch operations with the JdbcTemplateccoiiiiiiiiiii 423
Batch operations with a List of 0bJECtScocvviiiiiiiii e, 423
Batch operations with multiple batches ..., 424
19.5. Simplifying JDBC operations with the SimpleJdbc classesccoovvvviieennnnnee. 425
Inserting data using SimpleJdbCINSErtooveiiiiiii e 425
Retrieving auto-generated keys using SimpleJdbclnsertc.occoiviiiiiiiniennnn. 426
Specifying columns for a SimpleJdbcInsert ..o, 427
Using SqlParameterSource to provide parameter valuescccoeevevieennnennnnn. 427
Calling a stored procedure with SimpleJddbcCallccooooiiiiiiiiiii, 428
Explicitly declaring parameters to use for a SimpleJddbcCallcccviieiennnn. 430
How to define SOIParametersco.voiiiiiiiii i e e 430
Calling a stored function using SimpleJdbcCallccoooiiiiiiiiien, 431
Returning ResultSet/REF Cursor from a SimpleJdbcCallc.ocooiiiiiiinnnnnn. 432
19.6. Modeling JDBC operations as Java 0bJecCtSccovivviiiiiiiiiii e 433
SOIQUETY e ettt et eaa 433
MapPINGSGIQUETYuniiiii et et e e e e 433
SIUPAALE ..oeniiii e e e e 434
SEOrEAPTOCEUUIE ...ttt e e et e e e ae s 435
19.7. Common problems with parameter and data value handlingc.....ccc.eneee. 438
Providing SQL type information for parameterscccceveviiiiiiieeie e 438
Handling BLOB and CLOB ODJECLSoiiiiiiiiiiiiiicc e 438
Passing in lists of values for IN Clausecccoooeiiiiiiiii e, 440
Handling complex types for stored procedure callscoovvvviveiiiiiiieeineeenn, 440
19.8. Embedded database SUPPOIT ... cc.uuiiiiiieieeie e 442

4.3.19.RELEASE Spring Framework Xiv

Spring Framework Reference Documentation

Why use an embedded database?ccoooeiiiiiiiii 442
Creating an embedded database using Spring XMLcccooviiiiiiiiiniiiiiieiieee, 442
Creating an embedded database programmaticallyocooeviiiiiiiiiinneiininnnnn. 442
Selecting the embedded database typecoovvviiiiiiiiiii i 443
USING HSQL ottt e e e e s 443

USING H2 <ot 443

LU LS o 0= 1 443

Testing data access logic with an embedded databaseccccoeeiiiiiiiis 443
Generating unique names for embedded databasescccooeeivviiiiiiiiieiinn 444
Extending the embedded database SUPPOItcc.ovvviiiiiii i 444
19.9. Initializing @ DAtASOUICEiietiiiiiee et e e aeens 445
Initializing a database using SPring XMLcoiiiiiiiiiii e 445
Initialization of other components that depend on the database 446

20. Object Relational Mapping (ORM) Data ACCESSc.uueieuniietiaiiiaeeiiaeeiie et eeaeaeannes 448
20.1. Introduction to ORM WIth SPIiNGoeeeiiiiiiiiiiiee e 448
20.2. General ORM integration coNSIAErationsccccvuviiiiiiriiiieeie e eee e 449
Resource and transaction Managementco.uvieuiieiiieiiieeieeei e 449
EXCePLioN tranSIatioNnooieieiiiiiii e 450
20.3. HIDEINALE ...t 450
SessionFactory setup in a Spring CONAINEroviiuiiiiiiiiiiiei e 450
Implementing DAOs based on plain Hibernate APlccooooiiiiiiiiiis 451
Declarative transaction demarCationcooeeeuuiieieiiiiiereeiine e 452
Programmatic transaction demarCationco.ivieuiiiiiiiiiiee e 453
Transaction management Strategiesvvevieriiieiiiiiiieeie e 454
Comparing container-managed and locally defined resourcesccoccuueeennnn. 455
Spurious application server warnings with Hibernateccoocoiiiiiiiinannn. 456
20.4. IDO it e e e e e et e a e e e e e e earraas 457
PersistenceManagerFactory SEIUPvevveiveeiriiiieei e e e e e e e e 457
Implementing DAOs based on the plain JIDO AP ... 458
Transaction MaNAGEMENTcouuuuiiiiii et e e 460

o (o] T =T ot P PTSPP 461
20,5, JP A e 461
Three options for JPA setup in a Spring environNMentccooevevineeeeiineeeennnn. 461
LocalEntityManagerFactoryBeancc.vevuviiiiiiieiiieeii e e e e 461

Obtaining an EntityManagerFactory from IJNDIcccooviiiiiiiiiiiiees 462
LocalContainerEntityManagerFactoryBeancccooovviiiiiniiiiiiinnccninnnn, 462

Dealing with multiple persistence Unitscccoovviviiiiiiiiice e, 464
Implementing DAOs based on JPA: EntityManagerFactory and EntityManager.... 465
Spring-driven JPA tranSaCHONSc.uuieiiiiiiieiiiiie e 467
JpaDialect and JpaVendorAdapterco.uiivei i 467
Setting up JPA with JTA transaction managementcccovevevineeinieiineeinneennn 467

21. Marshalling XML uSiNg O/X MAPPEISceieiiiieeiiiii et 469
P22 I I 1 oo o [T 1 o] o PRSP 469
Ease Of CONFIQUIAtIONoouniii e e 469
COoNSIStENE INTEITACES ...viei it e e 469
Consistent exception hierarChyccoooiiiiiiiii i 469
21.2. Marshaller and Unmarshaller ... 469
= V] = = P 469
UNMArSNAIIEE ... e 470
XMIMAPPINGEXCEPLION ...t e e e 471

4.3.19.RELEASE Spring Framework XV

Spring Framework Reference Documentation

21.3. Using Marshaller and Unmarshallercccooeiiiiiiiiiiii e 471
21.4. XML configuration NAMESPACEueeeuuiieriaeiieeii et e et e et e et e e e eia e eaneeanns 473
205, JAXB ittt e ettt e e e eeaaaaaa s 473
JAXD2MArSNAIIEYeviiiii e 473
XML configuration NAMESPACEueiuuriiiinieiiaeeii e e et e et e et e e e eaaeees 474
A T O 11 {0 S PSPPI 474
CaStorMarshallerooooiiiii e 474
(1Y F=To] o] 1T PP PTRPPP 475
XML configuration NAMESPACEccuuuiiiiiiiieiiiiiie e 475
21.7. XMLBEANS ..ottt 476
XMIBaNSMArSNAlIErouiiiiii e 476
XML configuration NAMESPACEccuuuiiiiiiiieiiiiiie e 476
21,8, JIBX it e eeenn 476
JIDXMAISNAIET ... 477
XML configuration NAMESPACEccuuuiiiiiiiieiiiiiie e 477
P2 R T =T 1 PP 477
XStreamMarshallerooiiii e 477
VI THE WD e e et e e e e ettt e e e e e e e e e ettt e e e e e e aeeennne 479
22. WebD MVC framMEWOIKcooiiriiiiiiiiiee ittt e e e e e e e ennees 480
22.1. Introduction to Spring Web MVC frameworkcccooeeiiiiiiiiiiiii e 480
Features of Spring Web MVC ... 480
Pluggability of other MVC implementationscc.ccoieviiieiiiiiii e 482
22.2. The DIiSPatCherServlet ... 482
Special Bean Types In the WebApplicationContextccccevveiiiiiniiiiiiinneeennn, 486
Default DispatcherServiet Configurationcccovvviiiiiiieii e, 487
DispatcherServlet Processing SEQUENCEoieuuiiiiiiiiiaiei e e e 487
22.3. Implementing CONtrOlIEIScouuiiiiiiii e 489
Defining a controller with @CoONtrollercoovviiiiii e 489
Mapping Requests With @RequestMappinNgcc..oveeuiiiiiiiiiiiieeiieeeeeeieeeeeen 490
Composed @RequestMapping Variantsccccoeeveiieinieieiiinneeeiineeenen 491
@Controller and AOP ProXyinNgoieeuueeuieriiieeieeeiieeineeaineeainesnneeennes 492

New Support Classes for @RequestMapping methods in Spring MVC 3.1. 492
URI Template Patternsoioiiiiiieiiii e e 493
URI Template Patterns with Regular EXPressionscccooceeveviiveviinennnnnnns 494
Path PAtternscooouiiiiiiii e 494
Path Pattern COMPAIiSONc.uuiiiiiiiiiieiiiii et 495
Path Patterns with Placeholderscccovvimiiiiniii e, 495
Suffix Pattern MatChing ..o e 495
Suffix Pattern Matching and RFEDcoooiiiiiiiiiii e 495
Matrix Variablesouveiiiiiiiii e 496
Consumable Media TYPES ...ceuuiieiei et 498
Producible Media TYPESuuiiiiiiii e 498
Request Parameters and Header Valuesccooevviiiiiiiiiiiic i 499
HTTP HEAD and HTTP OPTIONSoouiiiiiiiiiiiiiiiii e 499
Defining @RequestMapping handler methodscccooveviiiiiiiiiii e, 500
Supported method argument tyPeSovvvviiiii i 500
Supported method return tYPeSooeuniiiiiie e 502

Binding request parameters to method parameters with @RequestParam.. 503
Mapping the request body with the @RequestBody annotation 504
Mapping the response body with the @ResponseBody annotation 505
4.3.19.RELEASE Spring Framework XVi

Spring Framework Reference Documentation

Creating REST Controllers with the @RestController annotation 506
USING HEPENTILY ..o e 506
Using @ModelAttribute on a methodccoooeiiiiiiiii e, 506
Using @ModelAttribute on a method argumentcccceeiiviiievineennens 507
Using @SessionAttributes to store model attributes in the HTTP session
DEtWEEN TEQUESTS ..ot 509
Using @SessionAttribute to access pre-existing global session attributes... 510
Using @RequestAttribute to access request attributescooeen 510
Working with "application/x-www-form-urlencoded" datac........ 510
Mapping cookie values with the @CookieValue annotation 511
Mapping request header attributes with the @RequestHeader annotation.. 511
Method Parameters And Type CONVEISIONcoevuuiiiiiiiieeiiiiineeeeiineeeenenn 512
Customizing WebDataBinder initializationcccoveviiiiiiiiiiiicciceees 512
Advising controllers with @ControllerAdvice and @RestControllerAdvice.... 513
Jackson Serialization VIEW SUPPOIToviiiiiiiiiiiiiieeeii e 514
Jackson JSONP SUPPOITuuiii e e e e aaaees 515
Asynchronous ReqUEeSt PrOCESSINGeiuuiiiiniiiiiiei e eeans 516
Exception Handling for ASYNnC REQUESLScoeevuiiiiiiiiiieiiiiiieeeii e 517
Intercepting ASYNC REQUESESc.uiiiiiiiiii et e e 518
HTTP SIrEAIMING .euiiin ittt e e e e eean s 518
HTTP Streaming With Server-Sent EVENtSccoooviiiiiniiiiiiiieci e, 518
HTTP Streaming Directly To The OutputStreamcccoevvveviiiiiiinennnnnns 519
Configuring Asynchronous Request Processingcoccvveevniiiniiiiineennnnn. 519
TeStiNG CONIOIIEIS ..o 520
2 T o = L o 1T gl g T o] o1 Vo £ 520
Intercepting requests with a HandlerInterceptorccoocoiviiiniiiiniiiiineieees 521
22.5. RESOIVING VIEWS ...ttt ettt ettt e et e e et eeena s 523
Resolving views with the ViewResolver interfacecccooveeiviiiviin e, 523
Chaining VIEWRESOIVEISo 525
RedIreCting t0 VIBWS .. .oiiiiiiiiii ettt eeai e 525
REAINECIVIEW ..viiie e 526
The redireCt: PrefiX ... e 527
The forward: PrefiX ... 527
ContentNegotiatingVIEWRESOIVEToiviiiiiiiici e 527
22.6. Using flash attribULes ... 529
22.7. BUIIAING URIS ..oeiiiiiii et 530
Building URIs to Controllers and methodscccoeviviiiiiiii i 531
Working with "Forwarded" and "X-Forwarded-*" Headersccocoeeiieiinnaennn. 532
Building URIs to Controllers and methods from VIEWSccovvveiiiviiiiiiineninnnnns 532
P < T U 11 g o o Tor 1 1= 533
Obtaining Time Zone INfOrmMationooeuiiiiiiii e 534
AcceptHeaderLoCaleRESOIVEccouuiiiiiiii e 534
COOKIELOCAIERESOIVETiiiiiiiii e e 534
SEeSSIONLOCAIERESOIVEL ... 534
LocaleChangelNterCePLOru i e e 535
22.9. USING thEMES ..oeuiiiiiii e e e e e e e e e 535
OVEINVIEW Of tNEIMES ... e 535
DefiniNg theMES ... e e 535
TREME FESOIVEIS ..ot e e e 536
22.10. Spring’s multipart (file upload) SUPPOItccouuiiiiiiiieee e 536

4.3.19.RELEASE Spring Framework XVii

Spring Framework Reference Documentation

INIFOAUCTION .. e e 536
Using a MultipartResolver with Commons FileUploadcocoiviiiiiiiiiiinnen, 537
Using a MultipartResolver with Servlet 3.0 ..o 537
Handling a file upload in @ formcooiviiiiiii e 537
Handling a file upload request from programmatic clientscc.cccoeveeineennn. 538
22.11. HandliNg @XCEPLIONScveuuiieiiiii ettt et e e e e e e 539
HandIErEXCEPLIONRESOIVETiiieiiii e e e e 539
@EXCePtONHANAIETiii e 540
Handling Standard Spring MVC EXCEPLONScoivuiiiiiiiiiieiiiiiieceii e 541
Annotating Business Exceptions With @ResponseStatusccccceevvvivevnnnnnne. 542
Customizing the Default Servlet Container Error Pagecoooveviiviiiiiiineennns 542
22.12. WED SECUIMLY .eitiieiiiii et e e et e e e e e eees 543
22.13. Convention over configuration SUPPOITccuuieveiiiieiieiii e e e e e e e eaaeees 543
The Controller ControllerClassNameHandlerMappingccoooveieiiiiieiiineennne, 543
The Model ModelMap (ModelANAVIEW)oooiiiiiiiiiiiii e 544
Default VIEBW NAMEcooiiiiii e 545
22.14. HTTP €aChing SUPPOITieeiiiieii ettt e e 547
Cache-Control HTTP h@aderovviuiiiiiiieee e 547
HTTP caching support for StatiC r€SOUICESoevvuiiiiieiiieeeiii e e e e eaeeens 547
Support for the Cache-Control, ETag and Last-Modified response headers in
LO70] 011 0] | [T 6P 548
S5 0 F= 11 01V A = 1=V YU o] o L] o 549
22.15. Code-based Servlet container initializationocoeeviiiiiiiiiieei e 550
22.16. Configuring SPring MVC ... oo 552
Enabling the MVC Java Config or the MVC XML Namespaceccceeevvnnnnne. 552
Customizing the Provided Configurationcocoiiiiiiiiiiiii e, 554
Conversion and FOrMATINGccuuuiiiiiiiiii e 554
BV 2= Ul Te F=Y 1o o ISP PPPPPTTIN 555
[l (S oT=] o] (o] = T TP 556
Content NEGOLATIONiiiiii e 557
VIEW CONIOIIEIS ...t e eeeeeens 558
VIBW RESOIVEIS ...t e s 558
Serving Of RESOUICESciiiiiiiiiiii ettt et e e 559
Default SEIVIEL ... 562
Path MatChingoouiii e 563
MESSAGE CONVEITEISiiitiieiie ettt et e e e e e eeneees 563
Advanced Customizations with MVC Java Configcccovvviiiiiiiiiiiinniiiecieeens 564
Advanced Customizations with the MVC Namespacecccoeveevieiiiiiiiiineeinnnens 565
23. VIEW TECNNOIOGIES .. .cevuieiiii ettt e e 566
P2 T B [o T [0 Tox o] o ISP 566
23.2. TRYMEICAT ... e 566
23.3. GrOOVY MATKUD ...ttt et e et 566
(0] 01T 81 r=\ 1o o [566
EXAMPIE oo e 567
23.4. VeloCity & Fre@MAarkerociiiui ettt 567
[1= T 01T o[- g o] 1 567
Context CoNfIQUIALIONcouuiiiiie e 567
Creating tEMPIALEScooii e 568
Advanced configUIationcocouuiiiiiiir e 568
VEIOCILY.PIrOPEITIES ...t e eens 568

4.3.19.RELEASE Spring Framework Xviii

Spring Framework Reference Documentation

FrEEMAIKET ... 569

Bind support and form handling ... 569

The DiNd MACIOS ...ceuiiiii e e 569

SIMPIE DINAING ovnniie 570

Form input generation MAaCIOSociuuiiiiiiiii e 570

HTML escaping and XHTML complianCeocoouuiieiiiinieiiiiiinecciineeeees 574

23,5, ISP & JSTL ittt eae 574
VIBW TESOIVEIS ...ttt ettt et e e e et e et e e e e ean s 575
'Plain-old" JSPS VEISUS JSTL ..iuuuiiiiiiiiii it e e e e 575
Spring’s JSP tag lBraryccoouiiii i 575
Spring’s form tag lIDrary ... 575
CONFIGUIALION .ottt 576

LI L0 2 0 = Vo 576

TRE INPUL TAG . eeeieii e et ea e eees 577

The ChEeCKDOX TG .. cievviiieiii e e 577

The CheCKDOXES TaQ . .ivvuieiiieii e e e e 579

The radiobULION TAGuiieeiiei e 580

The radioDUONS TAQG ...covvveiiiiii e e e 580

LI L= 0= 115 1Yo o = o P 580

THE SEIECT TAG .. ieviiiii e 580

THE OPLION TAG tevteniiiiii e 581

LI L3 o] 1 0] g 0 = Vo 581

THE TEXIAIEA TAQ .vv o eieenieii ettt e eaas 582

The hiddeN TAG .ccveneiiii e e 582

LI LI 0] £ = T [582

HTTP method CONVEISIONc.uuiiiiiiiii e 584

L YT 7 Vo 1 P 585

B2 I TS Y]] QY= 585
REQUITEIMENLES ...t e ettt et e e e e ea e ees 586
SCHPL LEMPIALES ..o e e 586
23.7. XML MaArshallingceeuniiiiiei i et e e e e e e e e e e e e e e eanaees 588
P22 TR TR 1= P 588
DEPENUEINCIES ...ttt 588

(O] 01T 81 r=\1 1o o 1 588
UrIBasedVIiEeWRESOIVET ... 589
ResourceBundleVIeWRESOIVEToiiuiiiiiiiiiie e 589
SimpleSpringPreparerFactory and SpringBeanPreparerFactory 590

P22 T T] PP 590
B aAINS et 591

100] 11701 1=1 PPPR 591
TranSTOMMALIONcouuiii ettt e e e e eens 592
23.10. Document VIEWS: PDF, EXCEIcouiiviiiiii e 592
T o 11 Te1 1o o RSP PPPRTRN 592

(7] 01 To 01 7= 11 o] o IS PP 593
VIeW defiNitiON ..o 593

100] 11701 1=1 PPPR 593
EXCEI VIBWS ...ttt e 593

PDF VIBWS .eiiiiiiiee ettt e ean s 595

P2 Tt I N P T 1= L= o o £ P 595
DEPENUENCIES ...ttt ettt et e et e e eaa s 595

4.3.19.RELEASE Spring Framework XiX

Spring Framework Reference Documentation

(@] 01T 8T r=\1 1o o I 595
Configuring the VIEWRESOIVETo.uiiiiiiiiie e 596
Configuring the VIEWScoiiiiiiiiii e 596
ADOUL REPOIM FlES ..eeeiiiiei e 596
Using JasperReportsSMUItiFOrMatViewccocoeiiiiiiiiiiiiiiiiccieceieeeiee 596

Populating the MOAelANAVIEWoouuiiiiii e 597

Working With SUD-TEPOITS ... ccvuiiii e e 598
Configuring SUb-report fileS ... 598
Configuring sub-report data SOUICEScooevuiiiiiiiiiieiiiii e 599

Configuring eXpOorter PAramMEeterScvueieveiieeee e e e e e e e e e e e e aaeaee 599

23.12. Feed VIEWS: RSS, ALOM ...t et e eeaas 600
23.13. JSON MapPPING VIEWceeueiieiiiiiietiii ettt ettt e e et eeeaaes 600
23.14. XML MaPPING VIEBW ..ouiiiiiieii et e e e e e e e e et e e e e e 601

24. Integrating with other web frameworks ... 602
2 T [o1 (o o (U] 1T o I PP 602
24.2. Common CONfIQUIALIONiiiiiii e e e r e 603
24.3. JAVASEIVEN FACES 1.2 ..ottt 604
SpringBeanFacesELRESOIVEr (JSF 1.24) ..o 604
FaceSCONEXIULIIScieiii e 604

244, APACNE STIIULS 2.X ..iiiiiiiii ettt et e e e e e e e e eaas 604
245, TAPESIIY 5.X ittt 605
24.6. FUIMNEIr RESOUICESuiieiiiiiiee ettt e e 605

25. Portlet MVC FrameWOTKiiiiiiiiiii ettt e e e e e e eaaeees 606
b0 T [o1 o o (U] 1T o I PP 606

Controllers - The C in MVC ... e e e 607

ViIEWS - The V iN MVC ... 607

WED-SCOPEU DEANS ... 607

25.2. The DispatCherPortletccouuiiiiiiii e e e 607
25.3. The VIeWRENAEIErSEIVIEToouiiiiiii e 609
A T O 17 0] 1= PR 610

AbstractController and PortletContentGeneratorccoovvveeiiieiiiiinieeiiineeeennn. 611

Other simple CONLIOIEIS e 612

CommaNnd CONLIOIIEISveiii e e e e e e eees 612

PortletWrappingCoNtrOllEriiii e 613

25.5. Handler Mappings ... ccuuoeeuiiiieeiee ettt e e e aans 613

PortletModeHandIerMappingcccuuieieiiiiieiiii e 614

ParameterHandlerMappiNgoovvenieiiieii e e e 614

PortletModeParameterHandlerMappingc.coceeuieeiiiiiiiieiee e 615

Adding HandlerInterCePLOrSooiiiriieiiii e 615

HandlerinterceptorAdapLerivii i e e e e 616

ParameterMappingINterCePIOrc.u it e 616

25.6. Views and resolving them ... e 616
25.7. Multipart (file upload) SUPPOITuuieiiee e 616
Using the PortletMultipartReSOIVEroiiiiiiiiii e 617
Handling a file upload in a form ..o 617
25.8. HandliNg €XCEPLIONScuuiiiiiiieii e e e e e e e e aeas 621
25.9. Annotation-based controller configurationcoiviiiiiiiii 621

Setting up the dispatcher for annotation SUPPOItcvevviiiiiiiiiiiiieii e, 621

Defining a controller with @CoONtrollercocvviiiiii e 622

Mapping requests with @RequesStMapPINgcc.uvvieiiiiiiiii e 622

4.3.19.RELEASE Spring Framework XX

Spring Framework Reference Documentation

Supported handler method argumentsccoovviiiiiiiieii e 624
Binding request parameters to method parameters with @RequestParam 626
Providing a link to data from the model with @ModelAttributecccoeeeeinis 626
Specifying attributes to store in a Session with @SessionAttributes 627
Customizing WebDataBinder initializationccooviiiiiiiin e, 627
Customizing data binding with @INitBiNdercccoovviiiiiiiniiiiieci, 627
Configuring a custom WebBindingInitializercc..cccoiviiiiiiiiiiie 628

25.10. Portlet application deployment ... 628
26. WEDSOCKET SUPPOIT «..eveeiiii ettt e e e 629
P2 T I 1 o o U Tox 1 o o PRSP 629
WebSocket Fallback OptioNSc..oiiiiiiiiii e 629

A MesSaging ArChitECIUIEoiiiiiii i 630
Sub-Protocol Support in WebSOCKELocvviiiici e 630
Should | Use WeBSOCKEL? ... 630
26.2. WEDSOCKEL AP ...oiiiiiiiii et e 631
WebSOCKETHANAIE!ccoieiiiie e 631
WebSocket Handshake ... 632
WebSocketHandler DECOIrationovveuieiiieiiiee e e e ees 633
(01T 0] 0) V40 1 1= 0| P 633
Configuring the WebSocket ENQINEviiiiiiiiiiii e 634
Configuring allowed OFigiNSiiiiii e 636
26.3. SOCKJIS FallDACKunieiiiiiie e 637
OVBIVIBW ..ttt e e et e et et e e et e e et e e et e eean s 637
ENADIE SOCKIS oo 638

LE B, 0 ettt e e e e e et aaee 639
HEAIMDEALS ... e 640

(O [1=T o | o [1=Tolo] T =T ot P 640
SOCKJIS ANd CORS ...t e et 641
SOCKISCIENE ..t e e 641
26.4. STOMP oo 643
OVEIVIEW ...ttt ettt e e ettt e e e e ettt e e ettt e e e e e atreeeett e e e eentnaaaaes 643
BENETITS ..t e 644
ENADIE STOMP ..oeiiiiii e e e 644
FIOW Of MESSAQGES ..oevuiiiiieii it e e e e e e e e e e eeeen 646
Annotated CONLIOIEISieiiee e e 649
@VESSAGENAPPI MU weiiiiiii e 649
@BUDSCIi BENMAPPI N coviieiie e 650
@kessageExcepti onHandl er ... 650

SENA MESSATES ...eevineiiiiii ettt ettt e e ettt ettt e et e e eat e 651

Y 1141 0] (ST 2 (o]] P 651
EXIEINAL BIOKEI ...ttt et e e 652
(070] gl o= To B (o T = o) (=] PP 653

[L0 = TR T =T o = = 1 (0] 654
AUTNENTICALION ...t et e et e et e e 655
Token AUthentiCatiONc.iiiiiiii e 656
USEr DESHNALIONS ..oovuiiiiiiiiiieeei e e e e 657
Events and INErCeplioNo.uiiii i 659

S @ 1Y = 1 1= | RPN 660
WEDSOCKEE SCOPE ..uuiiiiiii e 661
PerfOrMAaNCE ... i 662
4.3.19.RELEASE Spring Framework XXi

Spring Framework Reference Documentation

11710 1 o T 665
I=ES] o TR PP 666
27. CORS SUPPOIT ..ottt ettt et ettt et et e et e e e e e e et e e e e enas 667
P2 0 [o T [0 Tox o] o I TSP UPPPTTR 667
27.2. Controller method CORS configurationcccooouuiiiiiiiiiiiiiiie e 667
27.3. Global CORS CONfIQUIALIONiiiiiiiiiiiii e 668
JAVACONTIG i 668
XML NABMESPACE ...eeieeteeiee et ettt ettt e et e et e et e et e et e e e eaaeenaeens 669
27.4. Advanced CUSIOMIZALIONcuuiiiiiieiiiei e e e e e e 669
27.5. Filter based CORS SUPPOIT ...ovvuiiiiieei i e e e e e e e e e e e e e e eanas 669
AV I a1 (= Te 2=V io] o E S PP 671
28. Remoting and web Services USING SPriNQGveieriiiiiiiee e 672
28.1. INTFOAUCTION ...ttt e e e e e e e e e e nnneee s 672
28.2. Exposing services USiNg RMI ..o 673
Exporting the service using the RmiServiceEXporterccccvvviiiiiiiiiiininnnns 673
Linking in the service at the Clientcoooei i 674
28.3. Using Hessian or Burlap to remotely call services via HTTPcccooeviiiiiinnnnenn. 674
Wiring up the DispatcherServlet for Hessian and CO.c.ccooeviiiiiiiiiiinneeinnnnnn. 674
Exposing your beans by using the HessianServiceEXporterccooveviiievnnnns 675
Linking in the service on the client ... 675
USING BUITAP ... e 676
Applying HTTP basic authentication to a service exposed through Hessian or
BUITAD et 676
28.4. Exposing services using HTTP INVOKEISccoouiiiiiiiiiiiiiiiec e 676
EXposing the Service ObJECtiivii i 677
Linking in the service at the Client ..o 678
28.5. WED SEIVICES ...eiiiiii ittt e 678
Exposing servlet-based web services using JAX-WSc.cocoiviiiiiiiiiiivinenis 678
Exporting standalone web services using JAX-WS ... 679
Exporting web services using the JAX-WS RI's Spring supportcccceeeevevnnnnn. 680
Accessing web services Using JAX-WS ... 680
28.6. JMIS ettt e et e e e aeeeanraa 681
Server-side CONfIQUIAtIoNooiiiiiiiiiii e e 682
Client-side configurationcciiiiiiiiiiiic e e e 682
28.7. AMOQP e 683
28.8. Auto-detection is not implemented for remote interfacescccooevvvviiinieinnnnn. 683
28.9. Considerations when choosing a technologyc.ccoeviviiiiiiiii e, 683
28.10. Accessing RESTful services on the clientcooooiiiiiiiiiiiii e, 684
RESITEMPIALE ... e e e 684
Working With the URIuiii e 687
Dealing with request and response headersccoooveiveiiiiiiiiieiiineeiies 688
Jackson JSON ViIiEWS SUPPOIT ...cceeuuneeiiiiieeeiiiaeeeeii e e eeti e e eeii e eeni e eens 688
HTTP MESSAgE CONVEISION ..ovuuiiiiiiiiiieeiieeeiee et e e e e et e e et e e et eeanaesaneeannaeeanaees 688
StringHIPMESSAgECONVEITETiieiiiiii e 689
FOrmHttpMessSageCONVEITErccvuiiiiieii e 689
ByteArrayHttpMessageCONVEITErvvuiiieiie e e 689
MarshallingHttpMesSSageCONVEITETceeuiiiiiieiee e 689
MappingJackson2HttpMesSageCONVErErccovvvviiiiiiiiieeeiiee e 689
MappingJackson2XmlIHttpMessageCOoNVEMErcoevvvvevieeviiieeiiieeaieeens 690
SourceHttpMesSSageCONVEITELcieiiiee e 690
4.3.19.RELEASE Spring Framework XXii

Spring Framework Reference Documentation

BufferedimageHttpMessageCoNVErtErc.vvvviiieeiiieci e eee e eaees 690

ASYNC RESITEMPIALE ..o e 690

29. Enterprise JavaBeans (EJB) INtegrationcooceeuuiiiiiiiiiieiiii e 692
P22 I 1o o [T 1 o o PP 692
29.2. ACCESSING EJIBS ...uiiiiiiii e 692
1070] g [o1=T o] 1< PP PP 692
ACCESSING 10CaAl SLSBS ...uiiiiiiiiiiii e 692
ACCESSING FEMOLE SLSBS ...iiiiiiiiiiiii ettt e e e et e e eaa e 694
Accessing EJB 2.X SLSBS versus EJB 3 SLSBSc..covviiiiiiiiiiiiieecci e 694
29.3. Using Spring’s EJB implementation support Classescccovvvvveviiiveiiveeineennnn, 695
EJB 3 INJECLION INTEICEPLONietieee et e e 695

30. JMS (JAVA MESSAQJE SEIVICE) ..eevuiiiiitieeiiii ettt e et e e et e e e et e e e et e e e et e e eentnaaaees 696
110 0 I 1o o o U T 1 o] o PP 696
30.2. USING SPriNg JMS ..ottt 696
JMSTEMPIALE .ottt e s 696

1070]] o= 1 o] o - PSP 697
Caching Messaging RESOUICESccuuiiiiiniiiiiiiei e 697
SingleConNNECHIONFACIONYcocuvuiiiiiiii e 698
CachingConNeCtiONFACIONYiveiiiiii e e e 698
Destination ManagemMENt 698
Message Listener CONTAINETSviiiiiiieiiiie et e e 699
SimpleMessageListenerCOoNtaiNerco.viviiiiiiii e e 699
DefaultMessageListenerCONtaINerc.uuviiuiiiiiiieiiieii e 700
Transaction MaNAGEMENTccuuuu it e e e 701
30.3. SENAING @ MESSATE .. cevuieieiieiiiieeei et e et e e e et e e e e et e e e e e et e e e eanns 701
USING MESSAJE CONVEITEIS . ..uuiiiiiiii ettt ettt et e e e et e e ea e eanas 702
SessionCallback and ProducerCallbackccocoiviiiiiiiiiiiiiici e 703
30.4. RECEIVING @ MESSAQE ..vuuiivueiinieiiieeei e e e e e e et et e e et e e et e et e e e e et e e eeannes 703
SYNCAIONOUS FECEPLION ..cvuiiii et 703
Asynchronous reception: Message-Driven POJOSc.ccovviiiiiiiiiiiiiiieeeiiineeees 703
SessionAwareMessagelistener interfacecccovvvviiiiii i 704
MeSSageLISIENEIATAPIETceei i 705
Processing messages within transactionscccovviviiiiieiiiiineeei e 707
30.5. Support for JCA Message ENdPOiNtSc...ovvieiiiiiieiiiieii e e 707
30.6. Annotation-driven listener endpointSocoeuiiiiiiiiiii e 709
Enable listener endpoint annotationscoocveeiiiiiiiinieii e 709
Programmatic endpoints registrationccovvviiiiiiii i 710
Annotated endpoint method SIgNAtUre ..o 710
RESPONSE MANAGEMENT .. ceeiiieiiiete et 711
30.7. IMS NAMESPACE SUPPOIT .uerneereeereneee et eeeaeenteeneeanreae et eetaeetaeenarenaeaneeanaenaees 712
N 1Y) OO PP PP PP TP 717
30 T [o o [Td 1T o PP 717
31.2. Exporting your beans t0 JMXcoeiiiiiiiiii i 717
Creating an MBEANSEIVETcc.uiiii ittt e e e e e eans 719
Reusing an existing MBEANSEIVETc.uuii i 719
Lazy-initialized MBEEANSccouuiiiiiieii e 720
Automatic registration of MBEANSccouiiiiiiiiiiii e 720
Controlling the registration Denavior ... 720
31.3. Controlling the management interface of your beanscccocceiiiiiieienennnn, 721
MBeanInfoAssembler INterface ... 722

4.3.19.RELEASE Spring Framework XXiii

Spring Framework Reference Documentation

Using source-level metadata: Java annotationscccceevviviieieeiiieeiineeieeenn 722
Source-level metadata tYPESoieuuiiiiie e 724
AutodetectCapableMBeanInfoAssembler interfacecccccoeveviieiiiiiiiieenee, 725
Defining management interfaces using Java interfacescccooceeviviiievinennnnn. 726
Using MethodNameBasedMBeanInfoAssemblerc.coooviiiiiiiiiiiiiiieees 727
31.4. Controlling the ObjectNames for your beanscccooiiiiiiiii e, 728
Reading ObjectNames from Properti€scccovevuieiiiiieiiiieiii i eee e e 728
Using the MetadataNamingStrategyc..ooieuieeiiiiiieiiee e 729
Configuring annotation based MBean exportcccooiviriiiniiiiiinee e, 729
31.5. JSR-160 CONNECIOIScituieiiieiite ettt ettt e e et et et e e e e e e e e r e eeneees 730
SEerver-Side CONNECIOISuiii ittt e e e eanas 730
Client-Side CONNECIOISiiii it e e e e e e ean e 731
JMX over Burlap/HeSSIan/SOAPccou it 731
31.6. Accessing MBEANS Via PrOXIEScieuuiiiiniiiiieiiiie et e e ettt e e et a e e een s 731
3 I o] 1= 11T 1 £ P 732
Registering listeners for NOtificationsccoviiiiiiiii i 732
Publishing NOEfICAtIONScouiiiiii e 735
31.8. FUIMNEI TESOUICES ...ietiieiiiieii ettt e e e e e e e e e et e e e e en e eeeen 736
2N [@ N O O PRSP 738
2% I [o1 (o o [FTod 1 o] o PP UUPTRUPTRN 738
32.2. CoNfIGUIING CCl ooviiiiiiii e ettt e e e eeees 738
1070] gl g =Tox (o] @ oTo] 110 [0 - 1o o [N PPN 738
ConnectionFactory configuration in SPriNgcc.uovieiiiiiiiieee e 739
Configuring CCl CONNECLIONSuiiiiiiieeiii e 739
Using a single CCl CONNECTIONuiiiiiiiiii e e e e e e e 740
32.3. Using Spring’s CCl @CCESS SUPPOITeuuniiitieiiieii e e e e e e e e e ean e 741
[T ot] o [o0 01V T] T] o I 741

LT ot =T 131 o] = (- P 741
(D)Y@ =] U] o] o o] § AP UPTPPRPPR 743
Automatic output record generationooceeueieeieiiiieeii e 744

IS0 0 0= T Y 744
Using a CCI Connection and Interaction directlyccoooiiiiiiiiiiiiniiiis 745
Example for CCiTemplate USAgEcccouuiiiiiiiieiiiii et 745
32.4. Modeling CCI access as operation ObJECEScceuviviiiieiiiieiiieee e 747
MappingRECOrdOPEIatioNcccuuiiiii it ea e ees 747
MappingComMmMAIreaOPEIAtIONciieieiieiiiii e 748
Automatic output record generationccce.eeviiiieiiie e 749
SUMIMIBITY ettt et et ettt et et e et e e et e e e e e e et e et e et eenaaennas 749
Example for MappingRecordOperation USAgEc.uvieeieiiieeiiiinneeieiinaeeeeiennns 749
Example for MappingCommAreaOperation USAQEceevvvveerneeeinierinneeanneennnns 751
32.5. TrANSACLIONS ...ctiiiiieitt ettt ettt e et e e et e et e et e e e ea s 753
3 T 1 4= T PSSP 754
13 0 I 1o o U Tox 1 o] o PSP 754
I J i U L T [PP UP RPN 754
Basic MailSender and SimpleMailMeSSage USAgecccuuurieririiieriniinaeneiinnnnn 755
Using the JavaMailSender and the MimeMessagePreparatorccccoevvvneenn. 755
33.3. Using the JavaMail MimeMessageHelper ..o 756
Sending attachments and inline reSOUICEScc.uoviiiiiiiiiiiiiin e 757
ALBCNMENTS ... 757

INHINE FESOUICES ..ottt e e e 757
4.3.19.RELEASE Spring Framework XXiv

Spring Framework Reference Documentation

Creating email content using a templating libraryccoccooviiiiiiiiien e, 758
A Velocity-based example ... 758
34. Task Execution and SChedulingoveiiiiiiiiii e 761
7 I 1 o o U T 1 o] o PRSP 761
34.2. The Spring TaskExecutor abStractioncooeeuiiiiiiiiiiiiiee e 761
TASKEXECULOT TYPES ..ttt e ettt e e et e e e et e e eena e eeens 761
USING @ TASKEXECULOL . ..uuiiiiiii e e e e e e e e e e e e et e et e ea e eees 762
34.3. The Spring TaskScheduler abstractionccooooiiiiiiiiiiiiii e, 763
THQYOEr INTEITACEo e 763
Trigger implementationsccouuiiiii e e 764
TaskScheduler Implementationscooouiiiiiiiiii e 764
34.4. Annotation Support for Scheduling and Asynchronous Execution 764
Enable scheduling annotationscoovuiiiiiiiiiii i 764
The @Scheduled annNOtALIONco.ieiiiieiii e 765
The @ASYNC @NNOLALIONuiiei i e e e e e e 766
Executor qualification With @ASYNCviiiiiiiiiicie e 767
Exception management With @ASYNCcouuiiiiiiiiiii e 767
34.5. The task NAMESPACEcouuniiiiiii e 768
The 'scheduler’ €lEMENTcooiiiiii e 768
The 'eXeCULOr' ElEMENT e 768
The 'scheduled-tasks' €lementoouiiiiiiiiiiii e 769
34.6. Using the Quartz SCheAUIETc.uiiiiiei e 770
Using the JobDetailFactoryBeanco.uiiiiiiiiiiiiiieei e 770
Using the MethodInvokingJobDetailFactoryBeancccoevviiiiiniiiiiiinneeenn, 771
Wiring up jobs using triggers and the SchedulerFactoryBeanc.cccuveeen. 772
35. Dynamic 1angUAQgE SUPPOIT «.....ieun ittt e ettt e et et e e e et e e e e e et e e aa e eaneeeen 773
o0 T [o1 o o (1] 1T o I PP 773
35.2. A fIrSt @XAMPIE e 773
35.3. Defining beans that are backed by dynamic languagesccoocooiviiiiniinnn. 775
107e] 1011 4[] [oTe] g [o1=T o] £ PPN 775
The <lang:language/> elementcoooeuiiiiiiiiin e 776
Refreshable beans ... 776
Inline dynamic language source files ... 778
Understanding Constructor Injection in the context of dynamic-language-
backed DEANS ... 779
JRUDY DEANS ..o 780
LT {07014V 4T - 1 781
Customizing Groovy objects via a callbackccc.ooiiiiiii 782
BeanShell DEANSoiiiii e 784
I S S {od =T o = 1o 1 PP 785
Scripted Spring MVC Controllerscooouioiiiii e 785
Scripted ValIdAtOrSuuiiiiiiiiei e e e 786
35.5. Bits @nd DODS ..o 786
AOP - advising scripted DEANSoiiiiiiiiii e 786
S Telo] o] [o H PSPPI PUPPTTRN 787
35.6. FUIMNEI FTESOUICES ...uuiiiiiiii ettt e e et e e et e e e eataeaees 787
36. CaChe ADSIIACTION ...t ettt et et e eaans 788
1T G0 T [o1 o o (U] 1T o IR 788
36.2. Understanding the cache abstractionc.cccoiviiii i, 788
36.3. Declarative annotation-based cachingcocoiiiiiiiiiiii e 789

4.3.19.RELEASE Spring Framework XXV

Spring Framework Reference Documentation

@Cacheable anNOtatioNooiiiiiiiiii e 789

Default Key GeNEerationooiiuiiiiiiiiiieiii e e 790

Custom Key Generation Declarationcccoiieeiiiiineeiiiiineeeeeeeiine, 790

Default Cache ReSOIULIONiiiiiiiiiii e 791

Custom €ache reSOIULIONc.uiiiiieii e 791

Synchronized CaChINGui i 792

Conditional Cachingoviiiiiiii e 792

Available caching SpEL evaluation contextcooveveiiiiiiiiiiiieiiineeieees 793

@CaChePut anNOtAtIONouniiiiiie e eaas 794
@CaCheEVICt aNNOLAtIONcccuuniiiiiiie e 794
@Caching aNNOLALIONiiuiiiiiii e e e e e e 795
@CacheConfig annotationooeuiiiiiiiiii e 795

Enable caching annotationsc..oioviiiiiiiiiiii e e e e e e e 795

UsiNg CUSTOM @NNOTALIONSieviiiiiieiii et e eeees 798

36.4. JCache (JSR-107) ANNOLALIONSccuuuiieiiiiieeeiiii et 799
FEAUI® SUMIMAIY ..ttt et e e e e e e e e e e e e e aneeen 799

ENnabling JSR-107 SUPPOITuuieiiiieeie et e e e 800

36.5. Declarative XML-based Cachingcoooiiiiiiiiiiiiiii e 801
36.6. Configuring the cache Storagec.covvvuiiiiiii i 801

JDK ConcurrentMap-based Cache ..o 802
Ehcache-based Cache ... 802

CaffeiNne CACNEuiiiii e e 802

GUAVA CACKNE ...t e 803
GemFire-based CaChe ..o 803

JSR-107 CACNE .t e 803

Dealing with caches without a backing Storeoooooiiiiiiiiiii e, 804

36.7. Plugging-in different back-end cachesccccooiiiiiiiiiiiii e, 804
36.8. How can | set the TTL/TTI/Eviction policy/XXX feature?cccooeveivevviiievnnnennnn. 804

VA 1LY o] o 1= o [o [ot ST PT PP PPTPIN 805
37. Migrating to Spring FrameWorK 4.Xcoouuiiiiiiii e 806
38. Spring Annotation Programming Modelccooeuiiiiiiiiii e 807
39. ClasSIC SPriNG USAGE .. .cuuuiiiniiiiiiii ettt e et e e et e et e e et e e an e eanaaes 808
39.1. ClasSIC ORM USAQE ...ccuuuiiiiiiieiiiii ettt ettt e e e e e et e e eeae e eeee 808
HIDEINALE .ot e e e 808

The HibernateTemplatecooiiiiiiiiii e 808

Implementing Spring-based DAOs without callbackscooeiieiiinnnnn. 809

1S TN 11 S T U= Vo [810
JMSTEMPIALE ... e e e e e e eeaa e ees 811
Asynchronous Message RECEPLIONvviiiiiiiiiiiiiiieiiei e 811

1070] o =T 1 o] o - PSP 811
Transaction ManageMENT i e e eees 811

40. ClassiC SPring AOP USAJEccoouuuiiiiiiiiee ettt 812
o B o1 (o | AN o T TS o] o 812
1000] g [o7=T o] (= T PP UPTPPTN 812
Operations 0N POINTCULSuiiiieiee et e et e e e eaaes 813

ASpect] eXpression POINICULScvveiiee i e e ee e e e e e e e e e eeees 813
Convenience pointcut implementationscooviiiiiiiniii e 813

StAtiC POINICULS ...oeitiiei it 813

DYNaMIC POINTCULS .ivvniiii i e e e e e e e e e e e e e e e e eanaees 814

POINTCUL SUPEICIASSES ...t et 815

4.3.19.RELEASE Spring Framework XXVi

Spring Framework Reference Documentation

L1015 (o] o T o T 11 (011 | N 815
40.2. AQVICE APL IN SPIING .. et 815
AVICE NFECYCIES .ooviie e 815
Yo AV ot I Y o =T IS o 1 o 816
Interception around AdVICEc..iiiiiiiiiiiii e 816

BefOre @0VICEiieeiiii e 816

TRFOWS @UVICE ...t e e e 817

After REtUrNINg A0VICEcouuiiiiiiii e 818

TalgoTo [0Texi o] Jr=To 1Y/ Tt PP 819

o T T Ao V71T o] Y o I T ST o [o 821
40.4. Using the ProxyFactoryBean to create AOP ProXi€scccovveviieiiniiiiniiiineeennnn. 822
[T [822
JavaBean PrOPEITIESiiiie e ei e et e e 822
JDK- and CGLIB-based ProXi€scociuuiiiiiioiiiiieieee et 823
Proxying INtEITACESccoouuiiiiiii e 824
PrOXYING ClaSSES ..ovniiiiiiiii et e e e e e 826
UsiNg 'global’ @aVISOIScouiiiiiiee e 827
40.5. Concise proxy defiNitioNSoveiiiiiiiiii e 827
40.6. Creating AOP proxies programmatically with the ProxyFactory 828
40.7. Manipulating advised ODJECESuiiiuiiiie e 828
40.8. Using the "autoproxy" facCilityccooeiiiiiiiiiiiii e 830
Autoproxy bean definitioNscoivii i 830
BeanNameAUtOPIOXYCIEaALOrc..iiuiiiieii e eaes 830
DefaultAdViSOrAUtOPIOXYCIEALONcieeitiieeieiiiieeeeii et e e e e e e e 831
AbstractAdViSOrAUtOPTOXYCIEALON .. ccvvueviiieiieeei e e e e e e e e e 832

Using metadata-driven auto-proXyingc..oceeueeeueeeueaei e eeieeeieeeennns 832
40.9. USING TAIgEESOUITES ...covuuiiiitiieiiiii e et e et et e e et e et e eeeate e e eeba e eees 834
Hot swappable target SOUIMCESoviiiiiii e 834
P00IING tArget SOUICESuiiiei ittt e e e e e ea e 835
Prototype target SOUICEScccuuiiiiiie e 836
ThreadLocal target SOUICESivuurieiii et r e e e e eaens 836
40.10. Defining NEW AQVICE LYPES . .cvuiiiiiiiiii i eanns 837
40.11. FUMNEI FTESOUICESuuiiiiiieeieee et e ettt e e e e e et e e et e e e e e e e et e eennaeee 837
41. XML Schema-based configurationcccouiiiiiiiiiiin e e 838
g 0t O 1 oV o To 18 ox 1 o o PPN 838
41.2. XML Schema-based configurationc.ooooeiiiiiiiiiiii e 838
Referencing the SChEMAScooviiiiii i 838

the ULl SChEMA ... e 839
SULICONSEANT/> .. e e 840

<ULl Property-path/> ... 841
SULLPIOPEITIES/> .ot e e 843

ST 1 B 1S 7 PP 843

ST 1] 1T o 844

SULILSEL/> e e e et e e 844

the JEE SCREMIA ..uui i e 845
<jee:indi-lookup/> (SIMPIE) ...cvveiii e 845
<jee:jndi-lookup/> (with single JNDI environment setting)ccceeeeunnees 846
<jee:jndi-lookup/> (with multiple JNDI environment settings) 846
<jee:jndi-lookup/> (COMPIEX) ..uivenieii i 846
<jee:local-sIsh/> (SIMPIE) ...cceni 847

4.3.19.RELEASE Spring Framework XXVii

Spring Framework Reference Documentation

<jee:local-sIsh/> (COMPIEX) ...ovevniiie e 847
<jeerremOote-SISD/> ..o 847

the [ang SChEMA ... 848

the JMS SCHEMA ...eiii i e e 848

the tx (transaction) SCheM@coouuiiiii e 849

the Q0P SCHEMA ... e 849

the context SChEMAoiiii e 850
<property-placeholder/> ... 850
<aNNOtatioN-CoONfIQ/> ...oovuiiii e e 850
<COMPONENT-SCAN/S .ouiiiiii i e e e e e e e e e e et e eeenas 850
<l0AA-TIME-WEAVEIT> ...t 851
<SPriNG-CONfIGUIEA/> ... 851

S 1] 0= T Tt 0T T 7 851

the 00l SCREMAeee e 851

the JADC SCREM@i e 851

the cache SChema ... 851

the Deans SChemM@ oo e 852

42, Extensible XML QUNOMNGuiiiiiiei ettt 853
0 I [] (o To [1T o] H OO STP 853
42.2. Authoring the SChema ... e 853
42.3. Coding a NamespaceHaNdIEruiiiiiiiiiii e 854
42.4, BeanDefiNItIONPAISEriiiiiiii e 855
42.5. Registering the handler and the schema ... 856
'META-INF/SPring.nandlers’ ... 856
'META-INF/SPring.SChemMaAs’ciiiie e 857
42.6. Using a custom extension in your Spring XML configurationcccoeeeeun.e. 857
42.7. Meatier EXAMPIES ... ittt 857
Nesting custom tags within CUSIOM tagSovvviiiiiiiiie e 857
Custom attributes on 'normal’ elements ..o 861
42.8. FUIMNEI RESOUICES ...uuiiiiiiiii ettt e et e e e et e et e e e e an e eeeen 863
43, Spring JSP Tag LIBIaryccouiiiiiiii e e e e 864
G 700 I 1oV o To L8 ox 1 o] o K PSPPI 864
43.2. THEe ArgUMENT TAG ... oeeeetiieiiii ettt ettt e e et e e e ea e e e entn e eeees 864
G T T I TN o1 T I - Vo 864
43.4. The €SCaPEBOAY TAg ...oievuiiiiiii e 865
43.5. THE @VAI TAG oiiitiiiiii e 865
43.6. The hasBINAEITOrS tagccuuiiieiiiiiiie e e e e e e e e e e e e e eens 866
43.7. The htMIESCAPE TAQ ..uieeniiiiieiii ettt et et e et e e e ean e aees 866
43.8. THE MESSAGE TAY . .ievvuneiiiti ettt ettt e e e e e e s 866
43.9. The nestedPath tagccouiiiiiiiiii e e e 867
T O T I o T o F= = T g T = Vo [P PTRPPT 868
43.11. THE thEME TAG ...ueiiiitii e et e et e e e e e enaens 868
L Tt 7 I 1= 0 1 = 1 150 1 . = Vo P 869
43.13. THE UM T8O ceeniiiiiei et e e e e ees 869
44, spring-form JSP Tag LiDrary ... 871
2 I [] (o To [1T o] o H OO SPP 871
44.2. THE DULEON TG evtniiiiiiiiie ettt e e e e et e e e e e e eeens 871
44.3. The ChECKDOX TG ... iiiitiieiiiiie ettt eeai e eees 872
N S N T R ol 1= o 10> (= = Lo [873
A4.5. TRE EITOIS TAY oetuietnititi ettt ettt e ettt e et et e e et e e e e eeans 874

4.3.19.RELEASE Spring Framework XXViii

Spring Framework Reference Documentation

o T I TN {0 4 1 T - T [P 875
44.7. The NIAAEN T80 ...uieeiiiiie et eaes 876
A4.8. TRE INPUL TG +.eneiiiiiiee et e et e e et e e e 877
e T I g T - o1 - Vo 878
44.10. THE OPLON TAY 1eruneeneiitee ettt ettt e e e e e et e e eaa e ean e eeees 879
A4.11. THE OPLONS LAY eeertnieiiitii ettt ettt ettt ettt e e eeeaa s 880
ot I 1= B o F= T1 5310 (o I - Vo [P 881
44.13. The radiobUtoN tagcoeuiiiii e 882
44.14. The radiobUIIONS Gooieiriiieiiii e 884
T I T TS U=t - Vo N 885
44.16. THE tEXIArEA TAQ «.ueerueetn ettt e ettt et e et e et e e e e e et e e ea e aeanaes 886

4.3.19.RELEASE Spring Framework XXiX

Part |I. Overview of Spring Framework

The Spring Framework is a lightweight solution and a potential one-stop-shop for building your
enterprise-ready applications. However, Spring is modular, allowing you to use only those parts that you
need, without having to bring in the rest. You can use the loC container, with any web framework on
top, but you can also use only the Hibernate integration code or the JDBC abstraction layer. The Spring
Framework supports declarative transaction management, remote access to your logic through RMI or
web services, and various options for persisting your data. It offers a full-featured MVC framework, and
enables you to integrate AOP transparently into your software.

Spring is designed to be non-intrusive, meaning that your domain logic code generally has no
dependencies on the framework itself. In your integration layer (such as the data access layer), some
dependencies on the data access technology and the Spring libraries will exist. However, it should be
easy to isolate these dependencies from the rest of your code base.

This document is a reference guide to Spring Framework features. If you have any requests, comments,
or questions on this document, please post them on the user mailing list. Questions on the Framework
itself should be asked on StackOverflow (see https://spring.io/questions).

https://groups.google.com/forum/#!forum/spring-framework-contrib
https://spring.io/questions

Spring Framework Reference Documentation

1. Getting Started with Spring

This reference guide provides detailed information about the Spring Framework. It provides
comprehensive documentation for all features, as well as some background about the underlying
concepts (such as "Dependency Injection™) that Spring has embraced.

If you are just getting started with Spring, you may want to begin using the Spring Framework by
creating a Spring Boot based application. Spring Boot provides a quick (and opinionated) way to create
a production-ready Spring based application. It is based on the Spring Framework, favors convention
over configuration, and is designed to get you up and running as quickly as possible.

You can use start.spring.io to generate a basic project or follow one of the "Getting Started" guides like
the Getting Started Building a RESTful Web Service one. As well as being easier to digest, these guides
are very task focused, and most of them are based on Spring Boot. They also cover other projects from
the Spring portfolio that you might want to consider when solving a particular problem.

4.3.19.RELEASE Spring Framework 2

http://projects.spring.io/spring-boot/
http://start.spring.io
https://spring.io/guides
https://spring.io/guides/gs/rest-service/

Spring Framework Reference Documentation

2. Introduction to the Spring Framework

The Spring Framework is a Java platform that provides comprehensive infrastructure support for
developing Java applications. Spring handles the infrastructure so you can focus on your application.

Spring enables you to build applications from "plain old Java objects" (POJOs) and to apply enterprise
services non-invasively to POJOs. This capability applies to the Java SE programming model and to
full and partial Java EE.

Examples of how you, as an application developer, can benefit from the Spring platform:

» Make a Java method execute in a database transaction without having to deal with transaction APIs.
* Make a local Java method an HTTP endpoint without having to deal with the Servlet API.

* Make a local Java method a message handler without having to deal with the JIMS API.

* Make a local Java method a management operation without having to deal with the IMX API.

2.1 Dependency Injection and Inversion of Control

A Java application — a loose term that runs the gamut from constrained, embedded applications to n-tier,
server-side enterprise applications — typically consists of objects that collaborate to form the application
proper. Thus the objects in an application have dependencies on each other.

Although the Java platform provides a wealth of application development functionality, it lacks the
means to organize the basic building blocks into a coherent whole, leaving that task to architects and
developers. Although you can use design patterns such as Factory, Abstract Factory, Builder, Decorator,
and Service Locator to compose the various classes and object instances that make up an application,
these patterns are simply that: best practices given a name, with a description of what the pattern does,
where to apply it, the problems it addresses, and so forth. Patterns are formalized best practices that
you must implement yourself in your application.

The Spring Framework Inversion of Control (IloC) component addresses this concern by providing a
formalized means of composing disparate components into a fully working application ready for use.
The Spring Framework codifies formalized design patterns as first-class objects that you can integrate
into your own application(s). Numerous organizations and institutions use the Spring Framework in this
manner to engineer robust, maintainable applications.

Background

"The question is, what aspect of control are [they] inverting?" Martin Fowler posed this question
about Inversion of Control (IoC) on his site in 2004. Fowler suggested renaming the principle to
make it more self-explanatory and came up with Dependency Injection.

2.2 Framework Modules

The Spring Framework consists of features organized into about 20 modules. These modules are
grouped into Core Container, Data Access/Integration, Web, AOP (Aspect Oriented Programming),
Instrumentation, Messaging, and Test, as shown in the following diagram.

4.3.19.RELEASE Spring Framework 3

http://martinfowler.com/articles/injection.html

Spring Framework Reference Documentation

;{I Spring Framework Runtime

Data Access/Integration Web

JDBEC ORM WebSocket Serviet

OXM JMS

Transactions

Core Container

Core Context

Figure 2.1. Overview of the Spring Framework

The following sections list the available modules for each feature along with their artifact names and the
topics they cover. Artifact names correlate to artifact IDs used in Dependency Management tools.

Core Container

The Core Container consists of the spring-core, spring-beans, spri ng-context, spring-
cont ext - support, and spri ng- expr essi on (Spring Expression Language) modules.

The spring-core and spring- beans modules provide the fundamental parts of the framework,
including the loC and Dependency Injection features. The BeanFactory is a sophisticated
implementation of the factory pattern. It removes the need for programmatic singletons and allows you
to decouple the configuration and specification of dependencies from your actual program logic.

The Context (spri ng- cont ext) module builds on the solid base provided by the Core and Beans
modules: it is a means to access objects in a framework-style manner that is similar to a JNDI
registry. The Context module inherits its features from the Beans module and adds support for
internationalization (using, for example, resource bundles), event propagation, resource loading, and the
transparent creation of contexts by, for example, a Servlet container. The Context module also supports
Java EE features such as EJB, JMX, and basic remoting. The Appl i cat i onCont ext interface is
the focal point of the Context module. spri ng- cont ext - support provides support for integrating
common third-party libraries into a Spring application context for caching (EhCache, Guava, JCache),
mailing (JavaMail), scheduling (CommonJ, Quartz) and template engines (FreeMarker, JasperReports,
Velocity).

The spring-expressi on module provides a powerful Expression Language for querying and
manipulating an object graph at runtime. It is an extension of the unified expression language (unified
EL) as specified in the JSP 2.1 specification. The language supports setting and getting property values,
property assignment, method invocation, accessing the content of arrays, collections and indexers,

4.3.19.RELEASE Spring Framework 4

Spring Framework Reference Documentation

logical and arithmetic operators, named variables, and retrieval of objects by name from Spring’s l1oC
container. It also supports list projection and selection as well as common list aggregations.

AOP and Instrumentation

The spring-aop module provides an AOP Alliance-compliant aspect-oriented programming
implementation allowing you to define, for example, method interceptors and pointcuts to cleanly
decouple code that implements functionality that should be separated. Using source-level metadata
functionality, you can also incorporate behavioral information into your code, in a manner similar to that
of .NET attributes.

The separate spri ng- aspect s module provides integration with AspectJ.

The spring-instrunment module provides class instrumentation support and classloader
implementations to be used in certain application servers. The spri ng-i nst runent - t oncat module
contains Spring’s instrumentation agent for Tomcat.

Messaging

Spring Framework 4 includes a spri ng- nessagi ng module with key abstractions from the Spring
Integration project such as Message, MessageChannel , MessageHandl er, and others to serve as a
foundation for messaging-based applications. The module also includes a set of annotations for mapping
messages to methods, similar to the Spring MVC annotation based programming model.

Data Access/Integration

The Data Access/Integration layer consists of the JDBC, ORM, OXM, JMS, and Transaction modules.

The spri ng-j dbc module provides a JDBC-abstraction layer that removes the need to do tedious
JDBC coding and parsing of database-vendor specific error codes.

The spri ng-t x module supports programmatic and declarative transaction management for classes
that implement special interfaces and for all your POJOs (Plain Old Java Objects).

The spri ng- or m module provides integration layers for popular object-relational mapping APIs,
including JPA, JDO, and Hibernate. Using the spri ng- or mmodule you can use all of these O/R-
mapping frameworks in combination with all of the other features Spring offers, such as the simple
declarative transaction management feature mentioned previously.

The spring-oxm module provides an abstraction layer that supports Object/XML mapping
implementations such as JAXB, Castor, XMLBeans, JiBX and XStream.

The spri ng-j ms module (Java Messaging Service) contains features for producing and consuming
messages. Since Spring Framework 4.1, it provides integration with the spri ng- messagi ng module.

Web

The Web layer consists of the spri ng- web, spri ng-webmvc, spri ng- websocket, and spri ng-
webnvc- portl et modules.

The spri ng- web module provides basic web-oriented integration features such as multipart file upload
functionality and the initialization of the IoC container using Servlet listeners and a web-oriented
application context. It also contains an HTTP client and the web-related parts of Spring’s remoting
support.

4.3.19.RELEASE Spring Framework 5

Spring Framework Reference Documentation

The spri ng-webnmvc module (also known as the Web-Servlet module) contains Spring’s model-
view-controller (MVC) and REST Web Services implementation for web applications. Spring’s MVC
framework provides a clean separation between domain model code and web forms and integrates with
all of the other features of the Spring Framework.

The spri ng- webmvc- portl et module (also known as the Web-Portlet module) provides the MVC
implementation to be used in a Portlet environment and mirrors the functionality of the Servlet-based
spri ng- webmvc module.

Test

The spri ng-t est module supports the unit testing and integration testing of Spring components with
JUnit or TestNG. It provides consistent loading of Spring Appl i cat i onCont ext s and caching of those
contexts. It also provides mock objects that you can use to test your code in isolation.

2.3 Usage scenarios

The building blocks described previously make Spring a logical choice in many scenarios, from
embedded applications that run on resource-constrained devices to full-fledged enterprise applications
that use Spring’s transaction management functionality and web framework integration.

L i L4 | | Integration
Form Multipart Dynamic with JSP
Binding to
Controllers Resolver Domain Model Velocity, SLT.
N | | | | PDF Excel
WebApplication Context
Sending Remote
Email Accees
Custom domain logic
Declarative Transactions
for POJOs
ORM Mappings
Tomcat Serviet Container | Custom DAO/Repositories

Figure 2.2. Typical full-fledged Spring web application

Spring’s declarative transaction management features make the web application fully transactional,
just as it would be if you used EJB container-managed transactions. All your custom business logic
can be implemented with simple POJOs and managed by Spring’s 10C container. Additional services
include support for sending email and validation that is independent of the web layer, which lets you
choose where to execute validation rules. Spring’s ORM support is integrated with JPA, Hibernate and
JDO; for example, when using Hibernate, you can continue to use your existing mapping files and
standard Hibernate Sessi onFact ory configuration. Form controllers seamlessly integrate the web-

4.3.19.RELEASE Spring Framework 6

Spring Framework Reference Documentation

layer with the domain model, removing the need for Act i onFor ns or other classes that transform HTTP
parameters to values for your domain model.

Web frontend using
Struts or Tapestry

WebApplication Context

Custom domain logic

Declarative Transactions
for POJOs

ORM Mappings
Tomcat Servlet Container Custom DAO/Repositories

Figure 2.3. Spring middle-tier using a third-party web framework

Sometimes circumstances do not allow you to completely switch to a different framework. The Spring
Framework does not force you to use everything within it; it is not an all-or-nothing solution. Existing
front-ends built with Struts, Tapestry, JSF or other Ul frameworks can be integrated with a Spring-
based middle-tier, which allows you to use Spring transaction features. You simply need to wire up your
business logic using an Appl i cati onCont ext and use a WebAppl i cati onCont ext to integrate
your web layer.

4.3.19.RELEASE Spring Framework 7

Spring Framework Reference Documentation

JAX RPC Client Hessian Client Burlap Client RMI Client

Transparent Remote Access

Custom domain logic

Tomcat Serviet Container

Figure 2.4. Remoting usage scenario

When you need to access existing code through web services, you can use Spring’s Hessi an-,
Bur | ap-, Rm - or JaxRpcPr oxyFact ory classes. Enabling remote access to existing applications
is not difficult.

EJB Access Layer
(using Sisbinvokers)

Spring-managed EJBs
(using AbstractEnterpriseBean)

Application Server (e.g. WebSphere, WeblLogic, JBoss)

Figure 2.5. EJBs - Wrapping existing POJOs

The Spring Framework also provides an access and abstraction layer for Enterprise JavaBeans,
enabling you to reuse your existing POJOs and wrap them in stateless session beans for use in scalable,
fail-safe web applications that might need declarative security.

4.3.19.RELEASE Spring Framework 8

Spring Framework Reference Documentation

Dependency Management and Naming Conventions

Dependency management and dependency injection are different things. To get those nice features of
Spring into your application (like dependency injection) you need to assemble all the libraries needed (jar
files) and get them onto your classpath at runtime, and possibly at compile time. These dependencies
are not virtual components that are injected, but physical resources in a file system (typically). The
process of dependency management involves locating those resources, storing them and adding them
to classpaths. Dependencies can be direct (e.g. my application depends on Spring at runtime), or indirect
(e.g. my application depends on conmons- dbcp which depends on conmons- pool). The indirect
dependencies are also known as "transitive" and it is those dependencies that are hardest to identify
and manage.

If you are going to use Spring you need to get a copy of the jar libraries that comprise the pieces of
Spring that you need. To make this easier Spring is packaged as a set of modules that separate the
dependencies as much as possible, so for example if you don’t want to write a web application you don't
need the spring-web modules. To refer to Spring library modules in this guide we use a shorthand naming
convention spring-* or spring-*.jar, where * represents the short name for the module (e.g.
spring-core,spring-webnvc, spring-j s, etc.). The actual jar file name that you use is normally
the module name concatenated with the version number (e.g. spring-core-4.3.19.RELEASE .jar).

Each release of the Spring Framework will publish artifacts to the following places:

» Maven Central, which is the default repository that Maven queries, and does not require any special
configuration to use. Many of the common libraries that Spring depends on also are available
from Maven Central and a large section of the Spring community uses Maven for dependency
management, so this is convenient for them. The names of the jars here are in the form spri ng- *-
<versi on>. j ar and the Maven groupld is or g. spri ngf r amewor k.

 In a public Maven repository hosted specifically for Spring. In addition to the final GA releases, this
repository also hosts development snapshots and milestones. The jar file names are in the same form
as Maven Central, so this is a useful place to get development versions of Spring to use with other
libraries deployed in Maven Central. This repository also contains a bundle distribution zip file that
contains all Spring jars bundled together for easy download.

So the first thing you need to decide is how to manage your dependencies: we generally recommend the
use of an automated system like Maven, Gradle or Ivy, but you can also do it manually by downloading
all the jars yourself.

Below you will find the list of Spring artifacts. For a more complete description of each module, see
Section 2.2, “Framework Modules”.

Table 2.1. Spring Framework Artifacts

Groupld Artifactld Description
org.springframework spring-aop Proxy-based AOP support
org.springframework spring-aspects AspectJ based aspects
org.springframework spring-beans Beans support, including
Groovy
org.springframework spring-context Application context runtime,
including scheduling and
remoting abstractions

4.3.19.RELEASE Spring Framework 9

Spring Framework Reference Documentation

Groupld

Artifactld

Description

org.springframework

spring-context-support

Support classes for integrating
common third-party libraries
into a Spring application context

org.springframework

org.springframework

org.springframework

spring-core

spring-expression

spring-instrument

Core utilities, used by many
other Spring modules

Spring Expression Language
(SpEL)

Instrumentation agent for JVM
bootstrapping

org.springframework

org.springframework

org.springframework

spring-instrument-tomcat

spring-jdbc

spring-jms

Instrumentation agent for
Tomcat

JDBC support package,
including DataSource setup and
JDBC access support

JMS support package, including
helper classes to send/receive
JMS messages

org.springframework

spring-messaging

Support for messaging
architectures and protocols

org.springframework spring-orm Object/Relational Mapping,
including JPA and Hibernate
support
org.springframework spring-oxm Object/XML Mapping
org.springframework spring-test Support for unit testing and
integration testing Spring
components
org.springframework spring-tx Transaction infrastructure,
including DAO support and JCA
integration
org.springframework spring-web Foundational web support,

org.springframework

org.springframework

spring-webmvc

spring-webmvc-portlet

including web client and web-
based remoting

HTTP-based Model-View-
Controller and REST endpoints
for Servlet stacks

MVC implementation to be used
in a Portlet environment

4.3.19.RELEASE

Spring Framework

10

Spring Framework Reference Documentation

Groupld Artifactld Description

org.springframework spring-websocket WebSocket and SockJS
infrastructure, including STOMP
messaging support

Spring Dependencies and Depending on Spring

Although Spring provides integration and support for a huge range of enterprise and other external tools,
it intentionally keeps its mandatory dependencies to an absolute minimum: you shouldn’t have to locate
and download (even automatically) a large number of jar libraries in order to use Spring for simple use
cases. For basic dependency injection there is only one mandatory external dependency, and that is
for logging (see below for a more detailed description of logging options).

Next we outline the basic steps needed to configure an application that depends on Spring, first with
Maven and then with Gradle and finally using Ivy. In all cases, if anything is unclear, refer to the
documentation of your dependency management system, or look at some sample code - Spring itself
uses Gradle to manage dependencies when it is building, and our samples mostly use Gradle or Maven.

Maven Dependency Management

If you are using Maven for dependency management you don’'t even need to supply the logging
dependency explicitly. For example, to create an application context and use dependency injection to
configure an application, your Maven dependencies will look like this:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
<version>4. 3. 19. RELEASE</ ver si on>
<scope>runti nme</ scope>
</ dependency>
</ dependenci es>

That's it. Note the scope can be declared as runtime if you don’t need to compile against Spring APls,
which is typically the case for basic dependency injection use cases.

The example above works with the Maven Central repository. To use the Spring Maven repository
(e.g. for milestones or developer snapshots), you need to specify the repository location in your Maven
configuration. For full releases:

<repositories>
<repository>
<i d>i 0. spring. repo. maven. rel ease</i d>
<url >http://repo.spring.iolrel ease/ </ url >
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>
</repository>
</repositories>

For milestones:

<repositories>
<repository>
<i d>i 0. spring.repo. maven. m | estone</i d>
<url >http://repo.spring.io/mlestone/</url>
<snapshot s><enabl ed>f al se</ enabl ed></ snapshot s>
</repository>
</repositories>

4.3.19.RELEASE Spring Framework 11

http://maven.apache.org/

Spring Framework Reference Documentation

And for snapshots:

<repositories>
<repository>
<i d>i 0. spring. repo. maven. snapshot </ i d>
<url >http://repo.spring.iol/snapshot/</url>
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
</repositories>

Maven "Bill Of Materials" Dependency

It is possible to accidentally mix different versions of Spring JARs when using Maven. For example,
you may find that a third-party library, or another Spring project, pulls in a transitive dependency to an
older release. If you forget to explicitly declare a direct dependency yourself, all sorts of unexpected
issues can arise.

To overcome such problems Maven supports the concept of a "bill of materials" (BOM) dependency.
You can import the spri ng- f ranewor k- bomin your dependencyManagenent section to ensure
that all spring dependencies (both direct and transitive) are at the same version.

<dependencyManagenent >
<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-framework-bom</ artifactld>
<version>4. 3. 19. RELEASE</ ver si on>
<t ype>ponk/type>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

An added benefit of using the BOM is that you no longer need to specify the <ver si on> attribute when
depending on Spring Framework artifacts:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-context</artifactld>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-web</artifactld>
</ dependency>
<dependenci es>

Gradle Dependency Management

To use the Spring repository with the Gradle build system, include the appropriate URL in the
repositories section:

repositories {
mavenCentral ()
/1 and optionally...
maven { url "http://repo.spring.iolrel ease" }

You can change the repositories URL from /rel ease to /m | estone or /snapshot as
appropriate. Once a repository has been configured, you can declare dependencies in the usual Gradle
way:

4.3.19.RELEASE Spring Framework 12

http://www.gradle.org/

Spring Framework Reference Documentation

dependenci es {
conpi | e("org. springframework: spring-context:4.3.19. RELEASE")
test Conpi | e("org. springframework: spring-test:4.3.19. RELEASE")

}

Ivy Dependency Management
If you prefer to use lvy to manage dependencies then there are similar configuration options.
To configure Ivy to point to the Spring repository add the following resolver to youri vysetti ngs. xm :

<resol vers>
<i bi blio name="i 0. spring.repo. maven. rel ease"
n2conpat i bl e="true"
root="http://repo.spring.iol/rel ease/"/>
</resol ver s>

You can change the r oot URL from/r el ease/ to/ ni |l est one/ or/snapshot/ as appropriate.

Once configured, you can add dependencies in the usual way. For example (ini vy. xmi):

<dependency or g="org. springfranmewor k"
nane="spring-core" rev="4.3.19. RELEASE" conf="conpile->runtime"/>

Distribution Zip Files

Although using a build system that supports dependency management is the recommended way to
obtain the Spring Framework, it is still possible to download a distribution zip file.

Distribution zips are published to the Spring Maven Repository (this is just for our convenience, you
don’t need Maven or any other build system in order to download them).

To download a distribution zip open a web browser to http://repo.spring.io/release/org/springframework/
spring and select the appropriate subfolder for the version that you want. Distribution files end -
di st. zi p, for example spring-framework-{spring-version}-RELEASE-dist.zip. Distributions are also
published for milestones and shapshots.

Logging

Logging is a very important dependency for Spring because a) it is the only mandatory external
dependency, b) everyone likes to see some output from the tools they are using, and c) Spring integrates
with lots of other tools all of which have also made a choice of logging dependency. One of the goals
of an application developer is often to have unified logging configured in a central place for the whole
application, including all external components. This is more difficult than it might have been since there
are so many choices of logging framework.

The mandatory logging dependency in Spring is the Jakarta Commons Logging API (JCL). We compile
against JCL and we also make JCL Log objects visible for classes that extend the Spring Framework.
It's important to users that all versions of Spring use the same logging library: migration is easy because
backwards compatibility is preserved even with applications that extend Spring. The way we do this
is to make one of the modules in Spring depend explicitly on comons- | oggi ng (the canonical
implementation of JCL), and then make all the other modules depend on that at compile time. If you are
using Maven for example, and wondering where you picked up the dependency on conmons- | oggi ng,
then it is from Spring and specifically from the central module called spri ng- cor e.

The nice thing about conmons- | oggi ng is that you don’t need anything else to make your application
work. It has a runtime discovery algorithm that looks for other logging framewaorks in well known places

4.3.19.RELEASE Spring Framework 13

http://ant.apache.org/ivy
http://repo.spring.io/release/org/springframework/spring
http://repo.spring.io/release/org/springframework/spring
http://repo.spring.io/milestone/org/springframework/spring
http://repo.spring.io/snapshot/org/springframework/spring

Spring Framework Reference Documentation

on the classpath and uses one that it thinks is appropriate (or you can tell it which one if you need to).
If nothing else is available you get pretty nice looking logs just from the JDK (java.util.logging or JUL
for short). You should find that your Spring application works and logs happily to the console out of the
box in most situations, and that's important.

Using Log4j 1.2 or 2.x

Note

Log4j 1.2 is EOL in the meantime. Also, Log4j 2.3 is the last Java 6 compatible release, with
newer Log4j 2.x releases requiring Java 7+.

Many people use Log4j as a logging framework for configuration and management purposes. It is
efficient and well-established, and in fact it is what we use at runtime when we build Spring. Spring
also provides some utilities for configuring and initializing Log4j, so it has an optional compile-time
dependency on Log4j in some modules.

To make Log4j 1.2 work with the default JCL dependency (comrmons- | oggi ng) all you need to do is
put Log4j on the classpath, and provide it with a configuration file (I og4j . properti es orl og4j . xm
in the root of the classpath). So for Maven users this is your dependency declaration:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-core</artifactld>
<version>4. 3. 19. RELEASE</ ver si on>
</ dependency>
<dependency>
<gr oupl d>I og4j </ gr oupl d>
<artifactld>l og4j </artifactld>
<versi on>1. 2. 17</ ver si on>
</ dependency>
</ dependenci es>

And here’s a sample log4j.properties for logging to the console:

| 0g4j . r oot Cat egory=I NFO, st dout

| og4j . appender . st dout =or g. apache. | og4j . Consol eAppender

| og4j . appender. st dout . | ayout =or g. apache. | og4j . Pat t er nLayout

| 0og4j . appender . st dout . | ayout . Conver si onPat t er n=%{ ABSOLUTE} %p % %{2}: % - %?n

| 0og4j . cat egory. or g. spri ngf ramewor k. beans. f act or y=DEBUG

To use Log4j 2.x with JCL, all you need to do is put Log4j on the classpath and provide it with a
configuration file (I og4j 2. xm , | og4j 2. pr operti es, or other supported configuration formats). For
Maven users, the minimal dependencies needed are:

<dependenci es>
<dependency>
<groupl d>or g. apache. | oggi ng. | og4j </ gr oupl d>
<artifactld>l og4j-core</artifactld>
<ver si on>2. 6. 2</ ver si on>
</ dependency>
<dependency>
<groupl d>or g. apache. | oggi ng. | og4j </ gr oupl d>
<artifactld>l og4j-jcl</artifactld>
<versi on>2. 6. 2</ ver si on>
</ dependency>
</ dependenci es>

4.3.19.RELEASE Spring Framework 14

http://logging.apache.org/log4j
http://logging.apache.org/log4j/2.x/manual/configuration.html

Spring Framework Reference Documentation

If you also wish to enable SLF4J to delegate to Log4j, e.qg. for other libraries which use SLF4J by default,
the following dependency is also needed:

<dependenci es>
<dependency>
<groupl d>or g. apache. | oggi ng. | og4j </ gr oupl d>
<artifactld>log4j-slf4j-inpl</artifactld>
<versi on>2. 6. 2</ ver si on>
</ dependency>
</ dependenci es>

Here is an example | og4j 2. xm for logging to the console:

<?xm version="1.0" encodi ng="UTF-8"?>
<Confi guration status="WARN">
<Appender s>
<Consol e name="Consol e" target="SYSTEM OQUT" >
<Pat t ernLayout pattern="%l{HH nm ss. SSS} [%] % 5l evel % ogger{36} - %rsg%"/>
</ Consol e>
</ Appender s>
<Logger s>
<Logger name="org. spri ngfranmework. beans. factory" |evel ="DEBUG'/ >
<Root |evel ="error">
<Appender Ref ref="Consol e"/>
</ Root >
</ Logger s>
</ Confi gurati on>

Avoiding Commons Logging

Unfortunately, the runtime discovery algorithm in the standard commons-| oggi ng API, while
convenient for the end-user, can be problematic. If you'd like to avoid JCL’s standard lookup, there are
basically two ways to switch it off:

1. Exclude the dependency from the spri ng- core module (as it is the only module that explicitly
depends on conmons- | oggi ng)

2. Depend on a special conmons- | oggi ng dependency that replaces the library with an empty jar
(more details can be found in the SLF4J FAQ)

To exclude commons-logging, add the following to your dependencyManagenent section:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-core</artifactld>
<versi on>4. 3. 19. RELEASE</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>comons- | oggi ng</ gr oupl d>
<artifactl|d>comons-| oggi ng</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>

Now this application is currently broken because there is no implementation of the JCL API on the
classpath, so to fix it a new one has to be provided. In the next section we show you how to provide
an alternative implementation of JCL using SLF4J.

Using SLF4J with Log4j or Logback

The Simple Logging Facade for Java (SLF4J) is a popular API used by other libraries commonly used
with Spring. It is typically used with Logback which is a native implementation of the SLF4J API.

4.3.19.RELEASE Spring Framework 15

http://slf4j.org/faq.html#excludingJCL
http://www.slf4j.org
https://logback.qos.ch/

Spring Framework Reference Documentation

SLF4J provides bindings to many common logging frameworks, including Log4j, and it also does the
reverse: bridges between other logging frameworks and itself. So to use SLF4J with Spring you need
to replace the cormons- | oggi ng dependency with the SLF4J-JCL bridge. Once you have done that
then logging calls from within Spring will be translated into logging calls to the SLF4J API, so if other
libraries in your application use that API, then you have a single place to configure and manage logging.

A common choice might be to bridge Spring to SLF4J, and then provide explicit binding from SLF4J to
Log4j. You need to supply several dependencies (and exclude the existing conmons- | oggi ng): the
JCL bridge, the SLF4j binding to Log4j, and the Log4j provider itself. In Maven you would do that like this

<dependenci es>

<dependency>
<groupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-core</artifactld>
<ver si on>4. 3. 19. RELEASE</ ver si on>
<excl usi ons>

<excl usi on>
<gr oupl d>comons- | oggi ng</ gr oupl d>
<artifact|d>commons-|oggi ng</artifact!d>
</ excl usi on>

</ excl usi ons>

</ dependency>

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>jcl-over-slfdj</artifactld>
<versi on>1. 7. 21</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1og4jl12</artifactld>
<versi on>1. 7. 21</ ver si on>

</ dependency>

<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<version>1. 2. 17</versi on>

</ dependency>

</ dependenci es>

A more common choice amongst SLF4J users, which uses fewer steps and generates fewer
dependencies, is to bind directly to Logback. This removes the extra binding step because Logback
implements SLF4J directly, so you only need to depend on just two libraries, namely j cl - over - sl f 4j
and | ogback):

<dependenci es>
<dependency>
<groupl d>org. sl f4j </ groupl d>
<artifactld>jcl-over-slfd4j</artifactld>
<versi on>1. 7. 21</ ver si on>
</ dependency>
<dependency>
<groupl d>ch. gos. | ogback</ groupl d>
<artifactld>l ogback-classic</artifactld>
<versi on>1. 1. 7</ ver si on>
</ dependency>
</ dependenci es>

Using JUL (java.util.logging)

Commons Logging will delegate toj ava. uti | . | oggi ng by default, provided that no Log4j is detected
on the classpath. So there is no special dependency to set up: just use Spring with no external
dependency for log output to j ava. uti | . | oggi ng, either in a standalone application (with a custom

4.3.19.RELEASE Spring Framework 16

http://logback.qos.ch

Spring Framework Reference Documentation

or default JUL setup at the JDK level) or with an application server’s log system (and its system-wide
JUL setup).

Commons Logging on WebSphere

Spring applications may run on a container that itself provides an implementation of JCL, e.g. IBM’s
WebSphere Application Server (WAS). This does not cause issues per se but leads to two different
scenarios that need to be understood:

In a "parent first" ClassLoader delegation model (the default on WAS), applications will always pick up
the server-provided version of Commons Logging, delegating to the WAS logging subsystem (which is
actually based on JUL). An application-provided variant of JCL, whether standard Commons Logging
or the JCL-over-SLF4J bridge, will effectively be ignored, along with any locally included log provider.

With a "parent last" delegation model (the default in a regular Servlet container but an explicit
configuration option on WAS), an application-provided Commons Logging variant will be picked up,
enabling you to set up a locally included log provider, e.g. Log4j or Logback, within your application.
In case of no local log provider, regular Commons Logging will delegate to JUL by default, effectively
logging to WebSphere’s logging subsystem like in the "parent first" scenario.

All'in all, we recommend deploying Spring applications in the "parent last" model since it naturally allows
for local providers as well as the server’s log subsystem.

4.3.19.RELEASE Spring Framework 17

Part Il. What’s New In
Spring Framework 4.x

This chapter provides an overview of the new features and improvements that have been introduced
with Spring Framework 4.3. If you are interested in more details, please see the link: Issue Tracker
tickets that were resolved as part of the 4.3 development process.

https://jira.spring.io/issues/?jql=project%20%3D%20SPR%20AND%20fixVersion%20in%20(%224.3%20RC1%22%2C%20%224.3%20RC2%22%2C%20%224.3%20GA%22)%20ORDER%20BY%20issuetype%20DESC&startIndex=50
https://jira.spring.io/issues/?jql=project%20%3D%20SPR%20AND%20fixVersion%20in%20(%224.3%20RC1%22%2C%20%224.3%20RC2%22%2C%20%224.3%20GA%22)%20ORDER%20BY%20issuetype%20DESC&startIndex=50

Spring Framework Reference Documentation

3. New Features and Enhancements in Spring
Framework 4.0

The Spring Framework was first released in 2004; since then there have been significant major revisions:
Spring 2.0 provided XML namespaces and AspectJ support; Spring 2.5 embraced annotation-driven
configuration; Spring 3.0 introduced a strong Java 5+ foundation across the framework codebase, and
features such as the Java-based @onf i gur ati on model.

Version 4.0 is the latest major release of the Spring Framework and the first to fully support Java 8
features. You can still use Spring with older versions of Java, however, the minimum requirement has
now been raised to Java SE 6. We have also taken the opportunity of a major release to remove many
deprecated classes and methods.

A migration guide for upgrading to Spring 4.0 is available on the Spring Framework GitHub Wiki.

3.1 Improved Getting Started Experience

The new spring.io website provides a whole series of "Getting Started" guides to help you learn Spring.
You can read more about the guides in the Chapter 1, Getting Started with Spring section in this
document. The new website also provides a comprehensive overview of the many additional projects
that are released under the Spring umbrella.

If you are a Maven user you may also be interested in the helpful bill of materials POM file that is now
published with each Spring Framework release.

3.2 Removed Deprecated Packages and Methods

All deprecated packages, and many deprecated classes and methods have been removed with version
4.0. If you are upgrading from a previous release of Spring, you should ensure that you have fixed any
deprecated calls that you were making to outdated APIs.

For a complete set of changes, check out the API Differences Report.

Note that optional third-party dependencies have been raised to a 2010/2011 minimum (i.e. Spring 4
generally only supports versions released in late 2010 or later now): notably, Hibernate 3.6+, EhCache
2.1+, Quartz 1.8+, Groovy 1.8+, and Joda-Time 2.0+. As an exception to the rule, Spring 4 requires the
recent Hibernate Validator 4.3+, and support for Jackson has been focused on 2.0+ now (with Jackson
1.8/1.9 support retained for the time being where Spring 3.2 had it; now just in deprecated form).

3.3 Java 8 (as well as 6 and 7)

Spring Framework 4.0 provides support for several Java 8 features. You can make use of lambda
expressions and method references with Spring’s callback interfaces. There is first-class support for
j ava. ti me (JSR-310), and several existing annotations have been retrofitted as @Repeat abl e. You
can also use Java 8's parameter name discovery (based on the - par anet er s compiler flag) as an
alternative to compiling your code with debug information enabled.

Spring remains compatible with older versions of Java and the JDK: concretely, Java SE 6 (specifically,
a minimum level equivalent to JDK 6 update 18, as released in January 2010) and above are still fully
supported. However, for newly started development projects based on Spring 4, we recommend the
use of Java 7 or 8.

4.3.19.RELEASE Spring Framework 19

https://github.com/spring-projects/spring-framework/wiki/Migrating-from-earlier-versions-of-the-spring-framework
https://github.com/spring-projects/spring-framework/wiki
https://spring.io
https://spring.io/guides
http://docs.spring.io/spring-framework/docs/3.2.4.RELEASE_to_4.0.0.RELEASE/
http://jcp.org/en/jsr/detail?id=310

Spring Framework Reference Documentation

Note

As of late 2017, JDK 6 is being phased out and therefore also Spring’s JDK 6 support. Oracle
as well as IBM will terminate all commercial support efforts for JDK 6 in 2018. While Spring will
retain its JDK 6 runtime compatibility for the entire 4.3.x line, we require an upgrade to JDK 7 or
higher for any further support beyond this point: in particular for JDK 6 specific bug fixes or other
issues where an upgrade to JDK 7 addresses the problem.

3.4JavaEE6 and 7

Java EE version 6 or above is now considered the baseline for Spring Framework 4, with the JPA 2.0
and Servlet 3.0 specifications being of particular relevance. In order to remain compatible with Google
App Engine and older application servers, it is possible to deploy a Spring 4 application into a Servlet
2.5 environment. However, Servlet 3.0+ is strongly recommended and a prerequisite in Spring’s test
and mock packages for test setups in development environments.

Note

If you are a WebSphere 7 user, be sure to install the JPA 2.0 feature pack. On WebLogic 10.3.4
or higher, install the JPA 2.0 patch that comes with it. This turns both of those server generations
into Spring 4 compatible deployment environments.

On a more forward-looking note, Spring Framework 4.0 supports the Java EE 7 level of applicable
specifications now: in particular, JMS 2.0, JTA 1.2, JPA 2.1, Bean Validation 1.1, and JSR-236
Concurrency Utilities. As usual, this support focuses on individual use of those specifications, e.g. on
Tomcat or in standalone environments. However, it works equally well when a Spring application is
deployed to a Java EE 7 server.

Note that Hibernate 4.3 is a JPA 2.1 provider and therefore only supported as of Spring Framework 4.0.
The same applies to Hibernate Validator 5.0 as a Bean Validation 1.1 provider. Neither of the two are
officially supported with Spring Framework 3.2.

3.5 Groovy Bean Definition DSL

Beginning with Spring Framework 4.0, it is possible to define external bean configuration using a Groovy
DSL. This is similar in concept to using XML bean definitions but allows for a more concise syntax. Using
Groovy also allows you to easily embed bean definitions directly in your bootstrap code. For example:

def reader = new G oovyBeanDefi niti onReader (nyAppl i cati onContext)
reader. beans {
dat aSour ce(Basi cDat aSour ce) {
driverC assName = "org. hsql db. j dbcDriver"

url = "jdbc: hsqgl db: mem grai | sDB"
usernane = "sa"

password = ""

settings = [nynew "setting"]

}
sessi onFact ory(Sessi onFactory) {
dat aSour ce = dat aSour ce
}
nyServi ce(MyService) {
nest edBean = { Anot her Bean bean ->
dat aSour ce = dat aSour ce

}

4.3.19.RELEASE Spring Framework 20

Spring Framework Reference Documentation

For more information consult the Gr oovyBeanDef i ni ti onReader javadocs.

3.6 Core Container Improvements

There have been several general improvements to the core container:

* Spring now treats generic types as a form of qualifier when injecting Beans. For example, if you are
using a Spring Data Reposi t or y you can now easily inject a specific implementation: @\ut owi r ed
Reposi t or y<Cust onmer > cust oner Repository.

« If you use Spring’s meta-annotation support, you can now develop custom annotations that expose
specific attributes from the source annotation.

» Beans can now be ordered when they are autowired into lists and arrays. Both the @ der annotation
and Or der ed interface are supported.

e The @azy annotation can now be used on injection points, as well as on @ean definitions.

* The @escri pti on annotation has been introduced for developers using Java-based configuration.

» A generalized model for conditionally filtering beans has been added via the @Conditi onal
annotation. This is similar to @r of i | e support but allows for user-defined strategies to be developed
programmatically.

* CGLIB-based proxy classes no longer require a default constructor. Support is provided via the
objenesis library which is repackaged inline and distributed as part of the Spring Framework. With
this strategy, no constructor at all is being invoked for proxy instances anymore.

e There is managed time zone support across the framework now, e.g. on Local eCont ext .

3.7 General Web Improvements

Deployment to Servlet 2.5 servers remains an option, but Spring Framework 4.0 is now focused primarily
on Servlet 3.0+ environments. If you are using the Spring MVC Test Framework you will need to ensure
that a Servlet 3.0 compatible JAR is in your test classpath.

In addition to the WebSocket support mentioned later, the following general improvements have been
made to Spring’s Web modules:

* You can use the new @Rest Contr ol | er annotation with Spring MVC applications, removing the
need to add @esponseBody to each of your @Request Mappi ng methods.

e The AsyncRest Tenpl at e class has been added, allowing non-blocking asynchronous support
when developing REST clients.

» Spring now offers comprehensive timezone support when developing Spring MVC applications.

3.8 WebSocket, SockJS, and STOMP Messaging

A new spri ng- websocket module provides comprehensive support for WebSocket-based, two-way
communication between client and server in web applications. It is compatible with JSR-356, the Java
WebSocket API, and in addition provides SockJS-based fallback options (i.e. WebSocket emulation)
for use in browsers that don't yet support the WebSocket protocol (e.g. Internet Explorer < 10).

4.3.19.RELEASE Spring Framework 21

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/beans/factory/groovy/GroovyBeanDefinitionReader.html
http://code.google.com/p/objenesis/
http://jcp.org/en/jsr/detail?id=356

Spring Framework Reference Documentation

A new spri ng- nessagi hg module adds support for STOMP as the WebSocket sub-protocol to use in
applications along with an annotation programming model for routing and processing STOMP messages
from WebSocket clients. As a result an @ont r ol | er can now contain both @equest Mappi ng and
@vkssageMappi ng methods for handling HTTP requests and messages from WebSocket-connected
clients. The new spri ng- messagi ng module also contains key abstractions formerly from the Spring
Integration project such as Message, MessageChannel , MessageHandl| er, and others to serve as
a foundation for messaging-based applications.

For further details, including a more thorough introduction, see the Chapter 26, WebSocket Support
section.

3.9 Testing Improvements

In addition to pruning of deprecated code within the spri ng-test module, Spring Framework 4.0
introduces several new features for use in unit and integration testing.

 Almost all annotations in the spring-test module (e.g., @ontextConfiguration,
@\ebAppConfi guration, @ont ext H erarchy, @ctiveProfiles, etc.) can now be used
as meta-annotations to create custom composed annotations and reduce configuration duplication
across a test suite.

» Active bean definition profiles can now be resolved programmatically, simply by implementing
a custom ActiveProfil esResolver and registering it via the resol ver attribute of
@\ctiveProfiles.

* Anew Socket Ut i | s class has been introduced in the spri ng- cor e module which enables you to
scan for free TCP and UDP server ports on localhost. This functionality is not specific to testing but
can prove very useful when writing integration tests that require the use of sockets, for example tests
that start an in-memory SMTP server, FTP server, Servlet container, etc.

* As of Spring 4.0, the set of mocks in the org. springfranmework. nock. web package is
now based on the Servlet 3.0 API. Furthermore, several of the Servlet APl mocks (e.g.,
MockHt t pSer vl et Request, MockSer vl et Cont ext, etc.) have been updated with minor
enhancements and improved configurability.

4.3.19.RELEASE Spring Framework 22

http://projects.spring.io/spring-integration/
http://projects.spring.io/spring-integration/

Spring Framework Reference Documentation

4. New Features and Enhancements in Spring
Framework 4.1

Version 4.1 included a number of improvements, as described in the following sections:

» Section 4.1, “JMS Improvements”

Section 4.2, “Caching Improvements”

Section 4.3, “Web Improvements”

Section 4.4, “WebSocket Messaging Improvements”

Section 4.5, “Testing Improvements”

4.1 IMS Improvements

Spring 4.1 introduces a much simpler infrastructure to register JMS listener endpoints by annotating
bean methods with @nsLi st ener. The XML namespace has been enhanced to support this new
style (j ms: annot ati on-dri ven), and it is also possible to fully configure the infrastructure using
Java config (@nabl eJns, JnsLi st ener Cont ai ner Fact ory). It is also possible to register listener
endpoints programmatically using JnsLi st ener Confi gurer.

Spring 4.1 also aligns its JMS support to allow you to benefit from the spri ng- messagi ng abstraction
introduced in 4.0, that is:

» Message listener endpoints can have a more flexible signature and benefit from standard messaging
annotations such as @&ayl oad, @leader, @Header s, and @endTo. It is also possible to use a
standard Message in lieu of j avax. j ns. Message as method argument.

* A new JnsMessageQper at i ons interface is available and permits JnsTenpl at e like operations
using the Message abstraction.

Finally, Spring 4.1 provides additional miscellaneous improvements:
» Synchronous request-reply operations support in Jns Tenpl at e
* Listener priority can be specified per <j ns: | i st ener/ > element

» Recovery options for the message listener container are configurable using a BackOf f
implementation

» JMS 2.0 shared consumers are supported
4.2 Caching Improvements

Spring 4.1 supports JCache (JSR-107) annotations using Spring’s existing cache configuration and
infrastructure abstraction; no changes are required to use the standard annotations.

Spring 4.1 also improves its own caching abstraction significantly:

» Caches can be resolved at runtime using a CacheResol ver. As a result the val ue argument
defining the cache name(s) to use is no longer mandatory.

4.3.19.RELEASE Spring Framework 23

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/jms/annotation/JmsListener.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/jms/annotation/EnableJms.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/jms/annotation/JmsListenerConfigurer.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/jms/core/JmsMessageOperations.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/util/backoff/BackOff.html

Spring Framework Reference Documentation

» More operation-level customizations: cache resolver, cache manager, key generator

* Anew @acheConf i g class-level annotation allows common settings to be shared at the class level
without enabling any cache operation.

 Better exception handling of cached methods using CacheEr r or Handl er

Spring 4.1 also has a breaking change in the Cache interface as a new put | f Absent method has
been added.

4.3 Web Improvements

* The existing support for resource handling based on the ResourceHttpRequest Handl er
has been expanded with new abstractions Resour ceResol ver, Resour ceTr ansf or mer, and
Resour ceUr | Provi der. A number of built-in implementations provide support for versioned
resource URLs (for effective HTTP caching), locating gzipped resources, generating an HTML 5
AppCache manifests, and more. See the section called “Serving of Resources”.

« JDK 1.8'sjava. util. Optional is now supported for @Request Par am @Request Header, and
@t ri xVari abl e controller method arguments.

e Listenabl eFuture is supported as a return value alternative to DeferredResult
where an underlying service (or perhaps a call to AsyncRest Tenpl at e) already returns
Li st enabl eFut ure.

e @bdel Attri but e methods are now invoked in an order that respects inter-dependencies. See
SPR-6299.

» Jackson's @sonVi ew is supported directly on @esponseBody and ResponseEnti ty controller
methods for serializing different amounts of detail for the same POJO (e.g. summary vs. detail page).
This is also supported with View-based rendering by adding the serialization view type as a model
attribute under a special key. See the section called “Jackson Serialization View Support” for details.

« JSONP is now supported with Jackson. See the section called “Jackson JSONP Support”.

* A new lifecycle option is available for intercepting @ResponseBody and ResponseEnt i t y methods
just after the controller method returns and before the response is written. To take advantage declare
an @ontrol | er Advi ce bean that implements ResponseBodyAdvi ce. The built-in support for
@sonVi ew and JSONP take advantage of this. See the section called “Intercepting requests with
a HandlerInterceptor”.

» There are three new Ht t pMessageConvert er options:
» Gson — lighter footprint than Jackson; has already been in use in Spring Android.

« Google Protocol Buffers — efficient and effective as an inter-service communication data protocol
within an enterprise but can also be exposed as JSON and XML for browsers.

e Jackson based XML serialization is now supported through the jackson-dataformat-xml extension.
When using @nabl eWebM/c or <mvc: annot ati on-dri ven/ >, this is used by default instead
of JAXB2 if j ackson- dat af or mat - xm is in the classpath.

» Views such as JSPs can now build links to controllers by referring to controller mappings by name. A
default name is assigned to every @Request Mappi ng. For example FooCont r ol | er with method

4.3.19.RELEASE Spring Framework 24

https://jira.spring.io/browse/SPR-6299
https://github.com/FasterXML/jackson-dataformat-xml

Spring Framework Reference Documentation

handl eFoo is named "FC#handleFoo". The naming strategy is pluggable. It is also possible to name
an @Request Mappi ng explicitly through its name attribute. Anew nvcUr | function in the Spring JSP
tag library makes this easy to use in JSP pages. See the section called “Building URIs to Controllers
and methods from views”.

* ResponseEnti ty provides a builder-style API to guide controller methods towards the preparation
of server-side responses, e.g. ResponseEntity. ok().

* RequestEntity is a new type that provides a builder-style API to guide client-side REST code
towards the preparation of HTTP requests.

» MVC Java config and XML namespace:

« View resolvers can now be configured including support for content negotiation, see the section
called “View Resolvers”.

« View controllers now have built-in support for redirects and for setting the response status. An
application can use this to configure redirect URLs, render 404 responses with a view, send "no
content" responses, etc. Some use cases are listed here.

« Path matching customizations are frequently used and now built-in. See the section called “Path
Matching”.

» Groovy markup template support (based on Groovy 2.3). See the Gr oovyMar kupConfi gur er and
respecitve Vi ewResol ver and "View' implementations.

4.4 WebSocket Messaging Improvements

» SockJS (Java) client-side support. See SockJsC i ent and classes in same package.

* New application context events Sessi onSubscri beEvent and Sessi onUnsubscri beEvent
published when STOMP clients subscribe and unsubscribe.

* New "websocket" scope. See the section called “WebSocket Scope”.

» @endToUser can target only a single session and does not require an authenticated user.

» @kssageMappi ng methods can use dot "." instead of slash "/" as path separator. See SPR-11660.
» STOMP/WebSocket monitoring info collected and logged. See the section called “Monitoring”.

* Significantly optimized and improved logging that should remain very readable and compact even at
DEBUG level.

» Optimized message creation including support for temporary message mutability and avoiding
automatic message id and timestamp creation. See Javadoc of MessageHeader Accessor.

» Close STOMP/WebSocket connections that have no activity within 60 seconds after the WebSocket
session is established. See SPR-11884.

4.5 Testing Improvements

» Groovy scripts can now be used to configure the Appl i cat i onCont ext loaded for integration tests
in the TestContext framework.

4.3.19.RELEASE Spring Framework 25

https://jira.spring.io/browse/SPR-11543?focusedCommentId=100308&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-100308
http://groovy-lang.org/docs/groovy-2.3.6/html/documentation/markup-template-engine.html
https://jira.spring.io/browse/SPR-11660
https://jira.spring.io/browse/SPR-11884

Spring Framework Reference Documentation

« See the section called “Context configuration with Groovy scripts” for details.

» Test-managed transactions can now be programmatically started and ended within transactional test
methods via the new Test Tr ansact i on API.

* See the section called “Programmatic transaction management” for details.

* SQL script execution can now be configured declaratively via the new @ql and @ql Confi g
annotations on a per-class or per-method basis.

» See the section called “Executing SQL scripts” for details.

» Test property sources which automatically override system and application property sources can be
configured via the new @est Pr opert ySour ce annotation.

« See the section called “Context configuration with test property sources” for details.

» Default Test Execut i onLi st ener s can now be automatically discovered.
« See the section called “Automatic discovery of default TestExecutionListeners” for details.

e Custom Test Execut i onLi st ener s can now be automatically merged with the default listeners.
« See the section called “Merging TestExecutionListeners” for details.

» The documentation for transactional testing support in the TestContext framework has been improved
with more thorough explanations and additional examples.

« See the section called “Transaction management” for details.

» Various improvements to MockSer vl et Cont ext , MockHt t pSer vl et Request , and other Servlet
API mocks.

» Assert Thr ows has been refactored to support Thr owabl e instead of Except i on.

* In Spring MVC Test, JSON responses can be asserted with JSON Assert as an extra option to using
JSONPath much like it has been possible to do for XML with XMLUnit.

 MockMvcBui | der recipes can now be created with the help of MockMscConf i gur er. This was
added to make it easy to apply Spring Security setup but can be used to encapsulate common setup
for any 3rd party framework or within a project.

» MockRest Ser vi ceSer ver now supports the AsyncRest Tenpl at e for client-side testing.

4.3.19.RELEASE Spring Framework 26

https://github.com/skyscreamer/JSONassert

Spring Framework Reference Documentation

5. New Features and Enhancements in Spring
Framework 4.2

Version 4.2 included a number of improvements, as described in the following sections:
» Section 5.1, “Core Container Improvements”

» Section 5.2, “Data Access Improvements”

e Section 5.3, “JMS Improvements”

» Section 5.4, “Web Improvements”

» Section 5.5, “WebSocket Messaging Improvements”

» Section 5.6, “Testing Improvements”

5.1 Core Container Improvements

« Annotations such as @ean get detected and processed on Java 8 default methods as well, allowing
for composing a configuration class from interfaces with default @ean methods.

» Configuration classes may declare @ npor t with regular component classes now, allowing for a mix
of imported configuration classes and component classes.

» Configuration classes may declare an @ der value, getting processed in a corresponding order (e.g.
for overriding beans by name) even when detected through classpath scanning.

e @Resour ce injection points support an @.azy declaration, analogous to @A\ut owi r ed, receiving a
lazy-initializing proxy for the requested target bean.

» The application event infrastructure now offers an annotation-based model as well as the ability to
publish any arbitrary event.

* Any public method in a managed bean can be annotated with @vent Li st ener to consume
events.

e @ransactional Event Li st ener provides transaction-bound event support.

» Spring Framework 4.2 introduces first-class support for declaring and looking up aliases for annotation
attributes. The new @\ i asFor annotation can be used to declare a pair of aliased attributes within
a single annotation or to declare an alias from one attribute in a custom composed annotation to an
attribute in a meta-annotation.

e The following annotations have been retrofited with @\ i asFor support
in order to provide meaningful aliases for their val ue attributes:
@acheabl e, @acheEvi ct, @achePut, @onponent Scan, @onponent Scan. Filter,
@ nport Resource, @cope, @mhnagedResource, @leader, @rayl oad, @endToUser,
@\ ctiveProfiles, @ontextConfiguration, @bql, @estExecutionlListeners,
@est PropertySource, @ransactional, @ontrollerAdvice, @CookieVal ue,
@Cr ossOri gi n, @mtrixVari abl e, @Request Header @request Mappi ng,

4.3.19.RELEASE Spring Framework 27

Spring Framework Reference Documentation

@request Par am @Request Part, @responseSt at us, @Bessi onAttri butes,
@\ct i onMappi ng, @Render Mappi ng, @vent Li st ener, @r ansacti onal Event Li st ener.

* For example, @ont ext Confi gurati on from the spri ng-test module is now declared as
follows:

public @nterface ContextConfiguration {

@\ i asFor ("l ocations")
String[] value() default {};

@\ i asFor ("val ue")
String[] locations() default {};

[N/

« Similarly, composed annotations that override attributes from meta-annotations can now use
@A\ i asFor for fine-grained control over exactly which attributes are overridden within an
annotation hierarchy. In fact, it is now possible to declare an alias for the val ue attribute of a meta-
annotation.

« For example, one can now develop a composed annotation with a custom attribute override as
follows.

@ont ext Confi gurati on
public @nterface MyTestConfig {

@\ i asFor (annot ati on = Cont ext Confi guration.class, attribute = "val ue")
String[] xm Files();

...

* See Spring Annotation Programming Model.

* Numerous improvements to Spring’s search algorithms used for finding meta-annotations. For
example, locally declared composed annotations are now favored over inherited annotations.

» Composed annotations that override attributes from meta-annotations can now be discovered on
interfaces and on abstract, bridge, & interface methods as well as on classes, standard methods,
constructors, and fields.

* Maps representing annotation attributes (and Annotati onAttri butes instances) can be
synthesized (i.e., converted) into an annotation.

The features of field-based data binding (Di r ect Fi el dAccessor) have been aligned with the
current property-based data binding (BeanW apper). In particular, field-based binding now supports
navigation for Collections, Arrays, and Maps.

Def aul t Conver si onSer vi ce now provides out-of-the-box converters for St ream Char set,
Currency, and Ti neZone. Such converters can be added individually to any arbitrary
Conver si onSer vi ce as well.

Def aul t For mat t i ngConver si onSer vi ce comes with out-of-the-box support for the value types
in JSR-354 Money & Currency (if the 'javax.money' API is present on the classpath): namely,
Monet ar yAnount and Cur r encyUni t . This includes support for applying @Nunber For mat .

e @\unber For mat can now be used as a meta-annotation.

4.3.19.RELEASE Spring Framework 28

Spring Framework Reference Documentation

JavaMai | Sender | npl has a new t est Connecti on() method for checking connectivity to the
server.

Schedul edTaskRegi st rar exposes scheduled tasks.
Apache comons- pool 2 is now supported for a pooling AOP CormonsPool 2Tar get Sour ce.

Introduced St andar dScri pt Factory as a JSR-223 based mechanism for scripted beans,
exposed through the | ang: std element in XML. Supports e.g. JavaScript and JRuby. (Note:
JRubyScriptFactory and | ang: j r uby are deprecated now, in favor of using JSR-223.)

5.2 Data Access Improvements

j avax. transaction. Transacti onal is now supported via AspectJ.
Si nmpl eJdbcCal | Oper at i ons now supports named binding.

Full support for Hibernate ORM 5.0: as a JPA provider (automatically adapted) as well as through its
native API (covered by the new or g. spri ngf r amewor k. or m hi ber nat e5 package).

Embedded databases can now be automatically assigned unique names, and <j dbc: enbedded-
dat abase> supports a new dat abase- nane attribute. See "Testing Improvements" below for further
details.

5.3 JMS Improvements

The aut oSt ar t up attribute can be controlled via JnsLi st ener Cont ai ner Fact ory.
The type of the reply Dest i nat i on can now be configured per listener container.
The value of the @endTo annotation can now use a SpEL expression.

The response destination can be computed at runtime using JnsResponse

@nslLi st ener is now a repeatable annotation to declare several JMS containers on the same
method (use the newly introduced @nsLi st ener s if you're not using Java8 yet).

5.4 Web Improvements

HTTP Streaming and Server-Sent Events support, see the section called “HTTP Streaming”.

Built-in support for CORS including global (MVC Java config and XML namespace) and local (e.g.
@Cr ossOri gi n) configuration. See Chapter 27, CORS Support for details.

HTTP caching updates:

e new CacheControl builder; plugged into ResponseEntity, WhbContent Generator,
Resour ceHt t pRequest Handl er .

e improved ETag/Last-Modified support in WebRequest .
Custom mapping annotations, using @Request Mappi ng as a meta-annotation.

Public methods in Abst r act Handl er Met hodMappi ng to register and unregister request mappings
at runtime.

4.3.19.RELEASE Spring Framework 29

Spring Framework Reference Documentation

Protected creat eDi spat cher Ser vl et method in
Abstract Di spatcherServletlnitializer to further customize the Di spat cher Servl et
instance to use.

Handl er Met hod as a method argument on @xcepti onHandl er methods, especially handy in
@control | er Advi ce components.

java.util.concurrent. Conpl et abl eFut ur e as an @ont r ol | er method return value type.
Byte-range request support in Ht t pHeader s and for serving static resources.

@responseSt at us detected on nested exceptions.

Uri Tenpl at eHandl er extension point in the Rest Tenpl at e.

e Def aul t Uri Tenpl at eHandl er exposes baseUr | property and path segment encoding options.
« the extension point can also be used to plug in any URI template library.

OKHTTP integration with the Rest Tenpl at e.

Custom baseUr | alternative for methods in MvcUr i Conponent sBui | der.
Serialization/deserialization exception messages are now logged at WARN level.

Default JSON prefix has been changed from "{} && " to the safer)]}, " one.

New Request BodyAdvi ce extension point and built-in implementation to support Jackson’'s
@sonVi ewon @Request Body method arguments.

When using GSON or Jackson 2.6+, the handler method return type is used to improve serialization
of parameterized types like Li st <Foo>.

Introduced Scri pt Tenpl at eVi ewas a JSR-223 based mechanism for scripted web views, with a
focus on JavaScript view templating on Nashorn (JDK 8).

5.5 WebSocket Messaging Improvements

» Expose presence information about connected users and subscriptions:

* new Si npUser Regi st ry exposed as a bean named "userRegistry".

« sharing of presence information across cluster of servers (see broker relay config options).
Resolve user destinations across cluster of servers (see broker relay config options).

St ompSubPr ot ocol Err or Handl er extension point to customize and control STOMP ERROR
frames to clients.

Global @vessageExcept i onHandl er methods via @ont r ol | er Advi ce components.

Heart-beats and a SpEL expression 'selector' header for subscriptions with
Si npl eBr oker MessageHandl er .

STOMP client for use over TCP and WebSocket; see the section called “STOMP Client”.

@endTo and @endToUser can contain destination variable placeholders.

4.3.19.RELEASE Spring Framework 30

http://square.github.io/okhttp/

Spring Framework Reference Documentation

e Jackson’'s @sonVi ew supported for return values on @kssageMapping and
@dubscri beMappi ng methods.

e Li st enabl eFut ure and Conpl et abl eFut ur e as return value types from @essageMappi ng
and @ubscri beMappi ng methods.

e Marshal | i ngMessageConvert er for XML payloads.

5.6 Testing Improvements

e JUnit-based integration tests can now be executed with JUnit rules instead of the
Spri ngJUni t 4C assRunner . This allows Spring-based integration tests to be run with alternative
runners like JUnit’'s Par anet er i zed or third-party runners such as the Mocki t oJUni t Runner .

* See the section called “Spring JUnit 4 Rules” for details.

e The Spring MVC Test framework now provides first-class support for HtmlUnit, including integration
with Selenium’s WebDriver, allowing for page-based web application testing without the need to
deploy to a Servlet container.

» See the section called “HtmlUnit Integration” for details.

* AopTest Uti | s is a new testing utility that allows developers to obtain a reference to the underlying
target object hidden behind one or more Spring proxies.

* See the section called “General testing utilities” for details.
 Refl ectionTest Uil s now supports setting and getting st at i c fields, including constants.

» The original ordering of bean definition profiles declared via @\cti vePr of i | es is now retained in
order to support use cases such as Spring Boot’'s Conf i gFi | eAppl i cati onLi st ener which loads
configuration files based on the names of active profiles.

e @irtiesContext supports new BEFORE_METHOD, BEFORE_CLASS, and
BEFORE_EACH TEST_METHOD modes for closing the Appl i cat i onCont ext before a test— for
example, if some rogue (i.e., yet to be determined) test within a large test suite has corrupted the
original configuration for the Appl i cat i onCont ext .

e @Comm t is a new annotation that may be used as a direct replacement for @Rol | back(f al se).
* @Rol | back may now be used to configure class-level default rollback semantics.

e Consequently, @ransacti onConfi guration is now deprecated and will be removed in a
subsequent release.

* @ql now supports execution of inlined SQL statements via a new st at erment s attribute.

» The Cont ext Cache that is used for caching Appl i cat i onCont ext s between tests is now a public
API with a default implementation that can be replaced for custom caching needs.

» Def aul t Test Cont ext, Def aul t Boot st r apCont ext , and
Def aul t CacheAwar eCont ext Loader Del egat e are now public classes in the support
subpackage, allowing for custom extensions.

e Test Cont ext Boot st r apper s are now responsible for building the Test Cont ext .

4.3.19.RELEASE Spring Framework 31

Spring Framework Reference Documentation

In the Spring MVC Test framework, M/cResul t details can now be logged at DEBUG level or
written to a custom Qut put St r eamor Wi t er . See the new | og(), pri nt (Qut put Streanj, and
print(Witer) methodsin MockM/cResul t Handl er s for details.

The JDBC XML namespace supports a new dat abase- name attribute in <j dbc: enbedded-
dat abase>, allowing developers to set unique names for embedded databases — for example, via
a SpEL expression or a property placeholder that is influenced by the current active bean definition
profiles.

Embedded databases can now be automatically assigned a unique name, allowing common test
database configuration to be reused in different Appl i cati onCont ext s within a test suite.

< See the section called “Generating unique names for embedded databases” for details.

MockHt t pSer vl et Request and MockHt t pSer vl et Response now provide better support for
date header formatting via the get Dat eHeader and set Dat eHeader methods.

4.3.19.RELEASE Spring Framework 32

Spring Framework Reference Documentation

6. New Features and Enhancements in Spring
Framework 4.3

Version 4.3 included a number of improvements, as described in the following sections:

Section 6.1, “Core Container Improvements”
Section 6.2, “Data Access Improvements”

Section 6.3, “Caching Improvements”

Section 6.4, “JMS Improvements”

Section 6.5, “Web Improvements”

Section 6.6, “WebSocket Messaging Improvements”
Section 6.7, “Testing Improvements”

Section 6.8, “Support for new library and server generations”

6.1 Core Container Improvements

Core container exceptions provide richer metadata to evaluate programmatically.
Java 8 default methods get detected as bean property getters/setters.
Lazy candidate beans are not being created in case of injecting a primary bean.

It is no longer necessary to specify the @\ut owi r ed annotation if the target bean only defines one
constructor.

@confi gur ati on classes support constructor injection.

Any SpEL expression used to specify the condi ti on of an @vent Li st ener can now refer to
beans (e.g. @eanNane. net hod()).

Composed annotations can now override array attributes in meta-annotations with a single element of
the component type of the array. For example, the Stri ng[] pat h attribute of @Request Mappi ng
can be overridden with St ri ng pat h in a composed annotation.

@er si st enceCont ext /@&er si st enceUni t selects a primary Ent i t yManager Fact ory bean
if declared as such.

@chedul ed and @chedul es may now be used as meta-annotations to create custom composed
annotations with attribute overrides.

@chedul ed is properly supported on beans of any scope.

6.2 Data Access Improvements

jdbc:initialize-databaseandjdbc: enbedded- dat abase support a configurable separator
to be applied to each script.

4.3.19.RELEASE Spring Framework 33

Spring Framework Reference Documentation

6.3 Caching Improvements

Spring 4.3 allows concurrent calls on a given key to be synchronized so that the value is only computed
once. This is an opt-in feature that should be enabled via the new sync attribute on @acheabl e. This
features introduces a breaking change in the Cache interface as a get (Obj ect key, Cal |l abl e<T>
val ueLoader) method has been added.

Spring 4.3 also improves the caching abstraction as follows:

 SpEL expressions in caches-related annotations can now refer to beans (i.e.
@eanNane. net hod()).

» Concurrent MapCacheManager and Concurrent MapCache now support the serialization of
cache entries via a new st or eByVal ue attribute.

e @acheabl e, @acheEvi ct, @achePut , and @achi ng may now be used as meta-annotations
to create custom composed annotations with attribute overrides.

6.4 JMS Improvements

» @endTo can now be specified at the class level to share a common reply destination.

e @nslLi stener and @nsLi st eners may now be used as meta-annotations to create custom
composed annotations with attribute overrides.

6.5 Web Improvements

* Built-in support for HTTP HEAD and HTTP OPTIONS.

 New @=et Mappi ng, @Post Mappi ng, @ut Mappi ng, @el et eMappi ng, and @at chMappi ng
composed annotations for @Request Mappi ng.

* See Composed @RequestMapping Variants for details.

* New @Request Scope, @essi onScope, and @\ppl i cati onScope composed annotations for
web scopes.

* See Request scope, Session scope, and Application scope for details.

* New @RrestControllerAdvice annotation with combined @ontrollerAdvice with
@ResponseBody semantics.

* @ResponseSt at us is now supported at the class level and inherited by all methods.

* New @Bessi onAtt ri but e annotation for access to session attributes (see example).

* New @Request Att ri but e annotation for access to request attributes (see example).

e @bdel Attri but e allows preventing data binding via bi ndi ng=f al se attribute (see reference).
» @rat hVvari abl e may be declared as optional (for use on @vwdel At tri but e methods).

» Consistent exposure of Errors and custom Throwables to MVC exception handlers.

» Consistent charset handling in HTTP message converters, including a UTF-8 default for multipart text
content.

4.3.19.RELEASE Spring Framework 34

Spring Framework Reference Documentation

 Static resource handling uses the configured Cont ent Negoti ati onManager for media type
determination.

* Rest Templ ate and AsyncRestTenplate support strict URI variable encoding via
Def aul t Uri Tenpl at eHandl er.

» AsyncRest Tenpl at e supports request interception.

6.6 WebSocket Messaging Improvements

* @endTo and @endToUser can now be specified at class-level to share a common destination.

6.7 Testing Improvements

The JUnit support in the Spring TestContext Framework now requires JUnit 4.12 or higher.
New Spri ngRunner alias for the Spri ngJUni t 4Cl assRunner .

Test related annotations may now be declared on interfaces — for example, for use with test interfaces
that make use of Java 8 based interface default methods.

An empty declaration of @ont ext Conf i gur ati on can now be completely omitted if default XML
files, Groovy scripts, or @onf i gur at i on classes are detected.

@ ansact i onal test methods are no longer required to be publ i ¢ (e.g., in TestNG and JUnit 5).

@ef oreTransacti on and @\ft er Transact i on methods are no longer required to be publ i c
and may now be declared on Java 8 based interface default methods.

The ApplicationContext cache in the Spring TestContext Framework is now bounded
with a default maximum size of 32 and a least recently used eviction policy. The maximum
size can be configured by setting a JVM system property or Spring property called
spring.test.context.cache. maxSi ze.

New Cont ext Cust omi zer API for customizing a test Appl i cat i onCont ext after bean definitions
have been loaded into the context but before the context has been refreshed. Customizers can be
registered globally by third parties, foregoing the need to implement a custom Cont ext Loader .

@ql and @sql G oup may now be used as meta-annotations to create custom composed
annotations with attribute overrides.

Refl ecti onTest Uti | s now automatically unwraps proxies when setting or getting a field.
Server-side Spring MVC Test supports expectations on response headers with multiple values.
Server-side Spring MVC Test parses form data request content and populates request parameters.
Server-side Spring MVC Test supports mock-like assertions for invoked handler methods.

Client-side REST test support allows indicating how many times a request is expected and whether
the order of declaration for expectations should be ignored (see the section called “Client-Side REST
Tests").

Client-side REST Test supports expectations for form data in the request body.

4.3.19.RELEASE Spring Framework 35

Spring Framework Reference Documentation

6.8 Support for new library and server generations

Hibernate ORM 5.2 (still supporting 4.2/4.3 and 5.0/5.1 as well, with 3.6 deprecated now)
 Hibernate Validator 5.3 (minimum remains at 4.3)

« Jackson 2.8 (minimum raised to Jackson 2.6+ as of Spring 4.3)

e OkHttp 3.x (still supporting OkHttp 2.x side by side)

* Tomcat 8.5 as well as 9.0 milestones

* Netty 4.1

e Undertow 1.4

WildFly 10.1

Furthermore, Spring Framework 4.3 embeds the updated ASM 5.1, CGLIB 3.2.4, and Objenesis 2.4
inspring-core.jar.

4.3.19.RELEASE Spring Framework 36

Part Ill. Core Technologies

This part of the reference documentation covers all of those technologies that are absolutely integral
to the Spring Framework.

Foremost amongst these is the Spring Framework’s Inversion of Control (I1oC) container. A thorough
treatment of the Spring Framework’s 10C container is closely followed by comprehensive coverage of
Spring’s Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP
framework, which is conceptually easy to understand, and which successfully addresses the 80% sweet
spot of AOP requirements in Java enterprise programming.

Coverage of Spring’s integration with AspectJ (currently the richest - in terms of features - and certainly
most mature AOP implementation in the Java enterprise space) is also provided.

» Chapter 7, The IoC container

» Chapter 8, Resources

» Chapter 9, Validation, Data Binding, and Type Conversion
» Chapter 10, Spring Expression Language (SpEL)

» Chapter 11, Aspect Oriented Programming with Spring

» Chapter 12, Spring AOP APIs

Spring Framework Reference Documentation

7. The l1oC container

7.1 Introduction to the Spring 10C container and beans

This chapter covers the Spring Framework implementation of the Inversion of Control (IoC) ! principle.
loC is also known as dependency injection (DI). It is a process whereby objects define their
dependencies, that is, the other objects they work with, only through constructor arguments, arguments
to a factory method, or properties that are set on the object instance after it is constructed or returned
from a factory method. The container then injects those dependencies when it creates the bean. This
process is fundamentally the inverse, hence the name Inversion of Control (IoC), of the bean itself
controlling the instantiation or location of its dependencies by using direct construction of classes, or a
mechanism such as the Service Locator pattern.

The org. spri ngframewor k. beans and or g. spri ngf ramewor k. cont ext packages are the
basis for Spring Framework’s 10C container. The BeanFact ory interface provides an advanced
configuration mechanism capable of managing any type of object. Appl i cati onCont ext is a sub-
interface of BeanFact ory. It adds easier integration with Spring’'s AOP features; message resource
handling (for use in internationalization), event publication; and application-layer specific contexts such
as the WebAppl i cat i onCont ext for use in web applications.

In short, the BeanFact ory provides the configuration framework and basic functionality, and the
Appl i cati onCont ext adds more enterprise-specific functionality. The Appl i cati onCont ext is
a complete superset of the BeanFact ory, and is used exclusively in this chapter in descriptions
of Spring’'s l1oC container. For more information on using the BeanFactory instead of the
Appl i cati onCont ext, referto Section 7.16, “The BeanFactory”.

In Spring, the objects that form the backbone of your application and that are managed by the Spring 1oC
container are called beans. A bean is an object that is instantiated, assembled, and otherwise managed
by a Spring loC container. Otherwise, a bean is simply one of many objects in your application. Beans,
and the dependencies among them, are reflected in the configuration metadata used by a container.

7.2 Container overview

The interface or g. spri ngf r amewor k. cont ext . Appl i cat i onCont ext represents the Spring loC
container and is responsible for instantiating, configuring, and assembling the aforementioned beans.
The container gets its instructions on what objects to instantiate, configure, and assemble by reading
configuration metadata. The configuration metadata is represented in XML, Java annotations, or Java
code. It allows you to express the objects that compose your application and the rich interdependencies
between such objects.

Several implementations of the ApplicationContext interface are supplied out-of-the-
box with Spring. In standalone applications it is common to create an instance of
Cl assPat hXm Appl i cati onCont ext or Fi | eSyst emXm Appl i cat i onCont ext . While XML has
been the traditional format for defining configuration metadata you can instruct the container to use
Java annotations or code as the metadata format by providing a small amount of XML configuration to
declaratively enable support for these additional metadata formats.

In most application scenarios, explicit user code is not required to instantiate one or more instances
of a Spring 1oC container. For example, in a web application scenario, a simple eight (or so) lines

'see Background

4.3.19.RELEASE Spring Framework 38

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/beans/factory/BeanFactory.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/context/ApplicationContext.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/context/support/ClassPathXmlApplicationContext.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/context/support/FileSystemXmlApplicationContext.html

Spring Framework Reference Documentation

of boilerplate web descriptor XML in the web. xmi file of the application will typically suffice (see the
section called “Convenient ApplicationContext instantiation for web applications”). If you are using the
Spring Tool Suite Eclipse-powered development environment this boilerplate configuration can be easily
created with few mouse clicks or keystrokes.

The following diagram is a high-level view of how Spring works. Your application classes are combined
with configuration metadata so that after the Appl i cat i onCont ext is created and initialized, you have
a fully configured and executable system or application.

Your Business Objects (FOJOs)

The Spri
Configuration antapirrwlgrg

Metadata

figur

-REld;%nr Use _

Figure 7.1. The Spring loC container
Configuration metadata

As the preceding diagram shows, the Spring loC container consumes a form of configuration metadata;
this configuration metadata represents how you as an application developer tell the Spring container to
instantiate, configure, and assemble the objects in your application.

Configuration metadata is traditionally supplied in a simple and intuitive XML format, which is what most
of this chapter uses to convey key concepts and features of the Spring loC container.

Note

XML-based metadata is not the only allowed form of configuration metadata. The Spring 10C
container itself is totally decoupled from the format in which this configuration metadata is
actually written. These days many developers choose Java-based configuration for their Spring
applications.

For information about using other forms of metadata with the Spring container, see:

» Annotation-based configuration: Spring 2.5 introduced support for annotation-based configuration
metadata.

» Java-based configuration: Starting with Spring 3.0, many features provided by the Spring JavaConfig
project became part of the core Spring Framework. Thus you can define beans external to your
application classes by using Java rather than XML files. To use these new features, see the
@confi gurati on, @ean, @ nport and @ependsOn annotations.

Spring configuration consists of at least one and typically more than one bean definition that the
container must manage. XML-based configuration metadata shows these beans configured as <bean/
> elements inside a top-level <beans/ > element. Java configuration typically uses @ean annotated
methods within a @onf i gur at i on class.

4.3.19.RELEASE Spring Framework 39

https://spring.io/tools/sts

Spring Framework Reference Documentation

These bean definitions correspond to the actual objects that make up your application. Typically you
define service layer objects, data access objects (DAOS), presentation objects such as Struts Act i on
instances, infrastructure objects such as Hibernate Sessi onFact ori es, JMS Queues, and so forth.
Typically one does not configure fine-grained domain objects in the container, because it is usually the
responsibility of DAOs and business logic to create and load domain objects. However, you can use
Spring’s integration with AspectJ to configure objects that have been created outside the control of an
loC container. See Using AspectJ to dependency-inject domain objects with Spring.

The following example shows the basic structure of XML-based configuration metadata:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
ht t p: // www. spri ngf ramewor k. or g/ schenma/ beans/ spri ng- beans. xsd" >

<bean id="..." class="...">

<l'-- collaborators and configuration for this bean go here -->
</ bean>
<bean id="..." class="...">

<l-- collaborators and configuration for this bean go here -->
</ bean>

<I-- nore bean definitions go here -->

</ beans>

The i d attribute is a string that you use to identify the individual bean definition. The cl ass attribute
defines the type of the bean and uses the fully qualified classname. The value of the id attribute refers
to collaborating objects. The XML for referring to collaborating objects is not shown in this example; see
Dependencies for more information.

Instantiating a container

Instantiating a Spring loC container is straightforward. The location path or paths supplied to an
Appl i cati onCont ext constructor are actually resource strings that allow the container to load
configuration metadata from a variety of external resources such as the local file system, from the Java
CLASSPATH, and so on.

Appl i cati onCont ext context = new C assPat hXnl Appl i cati onCont ext ("services.xnm ", "daos.xm");

Note

After you learn about Spring’s 10C container, you may want to know more about Spring’s
Resour ce abstraction, as described in Chapter 8, Resources, which provides a convenient
mechanism for reading an InputStream from locations defined in a URI syntax. In particular,
Resour ce paths are used to construct applications contexts as described in Section 8.7,
“Application contexts and Resource paths”.

The following example shows the service layer objects (servi ces. xm) configuration file:

4.3.19.RELEASE Spring Framework 40

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwm. spri ngframewor k. or g/ schena/ beans
http: // wwv. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd" >

<l-- services -->
<bean id="petStore" class="org.springframework.sanpl es.] petstore.services. PetStoreServicel npl">

<property nanme="account Dao" ref="accountDao"/>
<property name="itenDao" ref="itenDao"/>

<!-- additional collaborators and configuration for this bean go here -->
</ bean>
<!-- nore bean definitions for services go here -->
</ beans>

The following example shows the data access objects daos. xm file:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://wwmw. spri ngframewor k. or g/ schena/ beans
http://ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean id="account Dao"

cl ass="org. springfranmewor k. sanpl es. j pet st or e. dao.] pa. JpaAccount Dao" >

<!-- additional collaborators and configuration for this bean go here -->
</ bean>

<bean id="itenDao" class="org.springfranmework. sanpl es. j petstore. dao.jpa.Jpal tenDao">

<l-- additional collaborators and configuration for this bean go here -->
</ bean>
<I-- nore bean definitions for data access objects go here -->
</ beans>

In the preceding example, the service layer consists of the class Pet St or eSer vi cel npl , and two data
access objects of the type JpaAccount Dao and Jpal t enDao (based on the JPA Object/Relational
mapping standard). The property nane element refers to the name of the JavaBean property,
and the r ef element refers to the name of another bean definition. This linkage between i d and
ref elements expresses the dependency between collaborating objects. For details of configuring an
object’s dependencies, see Dependencies.

Composing XML-based configuration metadata

It can be useful to have bean definitions span multiple XML files. Often each individual XML configuration
file represents a logical layer or module in your architecture.

You can use the application context constructor to load bean definitions from all these XML fragments.
This constructor takes multiple Resour ce locations, as was shown in the previous section. Alternatively,
use one or more occurrences of the <i nport /> element to load bean definitions from another file or
files. For example:

<beans>
<i nport resource="services.xm"/>
<i nport resource="resources/ nessageSource. xm "/ >
<inport resource="/resources/theneSource. xm"/>

<bean id="beanl" class="..."/>
<bean id="bean2" class="..."/>
</ beans>

4.3.19.RELEASE Spring Framework 41

Spring Framework Reference Documentation

In the preceding example, external bean definitions are loaded from three files: servi ces. xm ,
messageSour ce. xm , and t hemeSour ce. xnl . All location paths are relative to the definition file
doing the importing, so ser vi ces. xrm must be in the same directory or classpath location as the file
doing the importing, while messageSour ce. xm and t henmeSour ce. xnl must be in a r esour ces
location below the location of the importing file. As you can see, a leading slash is ignored, but given
that these paths are relative, it is better form not to use the slash at all. The contents of the files being
imported, including the top level <beans/ > element, must be valid XML bean definitions according to
the Spring Schema.

Note

It is possible, but not recommended, to reference files in parent directories using a relative
"..I" path. Doing so creates a dependency on a file that is outside the current application. In
particular, this reference is not recommended for "classpath:" URLs (for example, "classpath:../
services.xml"), where the runtime resolution process chooses the "nearest" classpath root and
then looks into its parent directory. Classpath configuration changes may lead to the choice of a
different, incorrect directory.

You can always use fully qualified resource locations instead of relative paths: for example, "file:C:/
config/services.xml" or "classpath:/config/services.xml". However, be aware that you are coupling
your application’s configuration to specific absolute locations. It is generally preferable to keep an
indirection for such absolute locations, for example, through "${...}" placeholders that are resolved
against JVM system properties at runtime.

The import directive is a feature provided by the beans namespace itself. Further configuration features
beyond plain bean definitions are available in a selection of XML namespaces provided by Spring, e.g.
the "context" and the "util" namespace.

The Groovy Bean Definition DSL

As a further example for externalized configuration metadata, bean definitions can also be expressed in
Spring’s Groovy Bean Definition DSL, as known from the Grails framewaork. Typically, such configuration
will live in a ".groovy" file with a structure as follows:

beans {
dat aSour ce(Basi cDat aSour ce) {
driverC assName = "org. hsqgl db. j dbcDriver"

url = "jdbc: hsqgl db: mem grai | sDB"
usernane = "sa"

password =

settings = [nynew "setting"]

}
sessi onFact ory(Sessi onFactory) {
dat aSour ce = dat aSour ce
}
nyServi ce(MyService) {
nest edBean = { Anot her Bean bean ->
dat aSour ce = dat aSour ce

}

This configuration style is largely equivalent to XML bean definitions and even supports Spring’s
XML configuration namespaces. It also allows for importing XML bean definition files through an
"importBeans" directive.

4.3.19.RELEASE Spring Framework 42

Spring Framework Reference Documentation

Using the container

The Appl i cati onCont ext is the interface for an advanced factory capable of maintaining a registry
of different beans and their dependencies. Using the method T get Bean(Stri ng name, O ass<T>
requi redType) you can retrieve instances of your beans.

The Appl i cat i onCont ext enables you to read bean definitions and access them as follows:

/| create and configure beans
ApplicationContext context = new C assPat hXm Appli cationContext("services.xm", "daos.xm");

/] retrieve configured instance
Pet St oreServi ce service = context.getBean("petStore", PetStoreService.class);

/'l use configured instance
Li st <String> userList = service. getUsernaneList();

With Groovy configuration, bootstrapping looks very similar, just a different context implementation class
which is Groovy-aware (but also understands XML bean definitions):

Appl i cati onCont ext context = new Generi cG oovyApplicati onContext("services.groovy", "daos.groovy");

The most flexible variantis Gener i cAppl i cati onCont ext in combination with reader delegates, e.g.
with Xn1 BeanDef i ni t i onReader for XML files:

Generi cAppl i cationContext context = new GenericApplicationContext();
new Xm BeanDefi ni ti onReader (cont ext) .| oadBeanDefinitions("services.xm", "daos.xm");
context.refresh();

Or with G- oovyBeanDef i ni t i onReader for Groovy files:

Generi cAppl i cati onCont ext context = new GenericApplicati onContext();
new G oovyBeanDefi ni ti onReader (context).| oadBeanDefinitions("services.groovy", "daos.groovy");
context.refresh();

Such reader delegates can be mixed and matched on the same Appl i cat i onCont ext , reading bean
definitions from diverse configuration sources, if desired.

You can then use get Bean to retrieve instances of your beans. The Appl i cat i onCont ext interface
has a few other methods for retrieving beans, but ideally your application code should never use them.
Indeed, your application code should have no calls to the get Bean() method at all, and thus no
dependency on Spring APIs at all. For example, Spring’s integration with web frameworks provides
dependency injection for various web framework components such as controllers and JSF-managed
beans, allowing you to declare a dependency on a specific bean through metadata (e.g. an autowiring
annotation).

7.3 Bean overview

A Spring loC container manages one or more beans. These beans are created with the configuration
metadata that you supply to the container, for example, in the form of XML <bean/ > definitions.

Within the container itself, these bean definitions are represented as BeanDef i ni t i on objects, which
contain (among other information) the following metadata:

» A package-qualified class name: typically the actual implementation class of the bean being defined.

» Bean behavioral configuration elements, which state how the bean should behave in the container
(scope, lifecycle callbacks, and so forth).

4.3.19.RELEASE Spring Framework 43

Spring Framework Reference Documentation

» References to other beans that are needed for the bean to do its work; these references are also
called collaborators or dependencies.

» Other configuration settings to set in the newly created object, for example, the number of connections
to use in a bean that manages a connection pool, or the size limit of the pool.

This metadata translates to a set of properties that make up each bean definition.

Table 7.1. The bean definition

Property Explained in...

class the section called “Instantiating beans”
name the section called “Naming beans”

scope Section 7.5, “Bean scopes”

constructor arguments the section called “Dependency Injection”
properties the section called “Dependency Injection”
autowiring mode the section called “Autowiring collaborators”
lazy-initialization mode the section called “Lazy-initialized beans”
initialization method the section called “Initialization callbacks”
destruction method the section called “Destruction callbacks”

In addition to bean definitions that contain information on how to create a specific bean, the
Appl i cati onCont ext implementations also permit the registration of existing objects that are
created outside the container, by users. This is done by accessing the ApplicationContext's
BeanFactory via the method get BeanFact ory() which returns the BeanFactory implementation
Def aul t Li st abl eBeanFactory. Def aul tLi st abl eBeanFactory supports this registration
through the methods r egi st er Si ngl eton(..) and regi st er BeanDefinition(..). However,
typical applications work solely with beans defined through metadata bean definitions.

Note

Bean metadata and manually supplied singleton instances need to be registered as early as
possible, in order for the container to properly reason about them during autowiring and other
introspection steps. While overriding of existing metadata and existing singleton instances is
supported to some degree, the registration of new beans at runtime (concurrently with live
access to factory) is not officially supported and may lead to concurrent access exceptions and/
or inconsistent state in the bean container.

Naming beans

Every bean has one or more identifiers. These identifiers must be unique within the container that hosts
the bean. A bean usually has only one identifier, but if it requires more than one, the extra ones can
be considered aliases.

In XML-based configuration metadata, you use the i d and/or nane attributes to specify the bean
identifier(s). The i d attribute allows you to specify exactly one id. Conventionally these names are

4.3.19.RELEASE Spring Framework 44

Spring Framework Reference Documentation

alphanumeric (‘'myBean’, 'fooService', etc.), but may contain special characters as well. If you want to
introduce other aliases to the bean, you can also specify them in the nane attribute, separated by a
comma (,), semicolon (;), or white space. As a historical note, in versions prior to Spring 3.1, thei d
attribute was defined as an xsd: | Dtype, which constrained possible characters. As of 3.1, it is defined
as an xsd: stri ng type. Note that bean i d uniqueness is still enforced by the container, though no
longer by XML parsers.

You are not required to supply a name or id for a bean. If no name or id is supplied explicitly, the container
generates a unique name for that bean. However, if you want to refer to that bean by name, through the
use of the r ef element or Service Locator style lookup, you must provide a name. Motivations for not
supplying a name are related to using inner beans and autowiring collaborators.

Bean Naming Conventions

The convention is to use the standard Java convention for instance field names when naming
beans. That is, bean names start with a lowercase letter, and are camel-cased from then on.
Examples of such names would be (without quotes) ' account Manager' ,' account Servi ce',
"userDao',' | oginController',and so forth.

Naming beans consistently makes your configuration easier to read and understand, and if you
are using Spring AOP it helps a lot when applying advice to a set of beans related by name.

Note

With component scanning in the classpath, Spring generates bean names for unnamed
components, following the rules above: essentially, taking the simple class name and
turning its initial character to lower-case. However, in the (unusual) special case when
there is more than one character and both the first and second characters are upper
case, the original casing gets preserved. These are the same rules as defined by
j ava. beans. | nt rospect or. decapi t al i ze (which Spring is using here).

Aliasing a bean outside the bean definition

In a bean definition itself, you can supply more than one name for the bean, by using a combination
of up to one name specified by the i d attribute, and any number of other names in the nane attribute.
These names can be equivalent aliases to the same bean, and are useful for some situations, such as
allowing each component in an application to refer to a common dependency by using a bean name
that is specific to that component itself.

Specifying all aliases where the bean is actually defined is not always adequate, however. It is
sometimes desirable to introduce an alias for a bean that is defined elsewhere. This is commonly the
case in large systems where configuration is split amongst each subsystem, each subsystem having its
own set of object definitions. In XML-based configuration metadata, you can use the <al i as/ > element
to accomplish this.

<al i as nane="fronmNane" alias="toNanme"/>

In this case, a bean in the same container which is named f r onNane, may also, after the use of this
alias definition, be referred to as t oNane.

For example, the configuration metadata for subsystem A may refer to a DataSource via the name
subsyst emA- dat aSour ce. The configuration metadata for subsystem B may refer to a DataSource

4.3.19.RELEASE Spring Framework 45

Spring Framework Reference Documentation

via the name subsyst enB- dat aSour ce. When composing the main application that uses both these
subsystems the main application refers to the DataSource via the name my App- dat aSour ce. To have
all three names refer to the same object you add to the MyApp configuration metadata the following
aliases definitions:

<al i as name="subsyst emA- dat aSour ce" al i as="subsyst enB- dat aSource"/ >
<al i as nane="subsyst emA- dat aSour ce" al i as="nyApp- dat aSour ce" />

Now each component and the main application can refer to the dataSource through a name that is
unigue and guaranteed not to clash with any other definition (effectively creating a namespace), yet
they refer to the same bean.

Java-configuration

If you are using Java-configuration, the @Bean annotation can be used to provide aliases see the
section called “Using the @Bean annotation” for details.

Instantiating beans

A bean definition essentially is a recipe for creating one or more objects. The container looks at the
recipe for a named bean when asked, and uses the configuration metadata encapsulated by that bean
definition to create (or acquire) an actual object.

If you use XML-based configuration metadata, you specify the type (or class) of object that is to be
instantiated in the cl ass attribute of the <bean/ > element. This cl ass attribute, which internally is a
Cl ass property onaBeanDef i ni t i on instance, is usually mandatory. (For exceptions, see the section
called “Instantiation using an instance factory method” and Section 7.7, “Bean definition inheritance”.)
You use the O ass property in one of two ways:

» Typically, to specify the bean class to be constructed in the case where the container itself directly
creates the bean by calling its constructor reflectively, somewhat equivalent to Java code using the
new operator.

» To specify the actual class containing the st at i ¢ factory method that will be invoked to create the
object, in the less common case where the container invokes a st at i ¢ factory method on a class
to create the bean. The object type returned from the invocation of the st at i ¢ factory method may
be the same class or another class entirely.

Inner class names. If you want to configure a bean definition for a st at i ¢ nested class, you
have to use the binary name of the nested class.

For example, if you have a class called Foo in the com exanpl e package, and this Foo class
has a st at i ¢ nested class called Bar , the value of the ' cl ass' attribute on a bean definition
would be...

com exanpl e. Foo$Bar

Notice the use of the $ character in the name to separate the nested class nhame from the outer
class name.

4.3.19.RELEASE Spring Framework 46

Spring Framework Reference Documentation

Instantiation with a constructor

When you create a bean by the constructor approach, all normal classes are usable by and compatible
with Spring. That is, the class being developed does not need to implement any specific interfaces or
to be coded in a specific fashion. Simply specifying the bean class should suffice. However, depending
on what type of l1oC you use for that specific bean, you may need a default (empty) constructor.

The Spring 10C container can manage virtually any class you want it to manage; it is not limited to
managing true JavaBeans. Most Spring users prefer actual JavaBeans with only a default (no-argument)
constructor and appropriate setters and getters modeled after the properties in the container. You can
also have more exotic non-bean-style classes in your container. If, for example, you need to use a legacy
connection pool that absolutely does not adhere to the JavaBean specification, Spring can manage it
as well.

With XML-based configuration metadata you can specify your bean class as follows:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean"/ >

<bean nane="anot her Exanpl e" cl ass="exanpl es. Exanpl eBeanTwo" / >

For details about the mechanism for supplying arguments to the constructor (if required) and setting
object instance properties after the object is constructed, see Injecting Dependencies.

Instantiation with a static factory method

When defining a bean that you create with a static factory method, you use the cl ass attribute to specify
the class containing the st at i ¢ factory method and an attribute named f act or y- net hod to specify
the name of the factory method itself. You should be able to call this method (with optional arguments as
described later) and return a live object, which subsequently is treated as if it had been created through
a constructor. One use for such a bean definition is to call st at i ¢ factories in legacy code.

The following bean definition specifies that the bean will be created by calling a factory-method. The
definition does not specify the type (class) of the returned object, only the class containing the factory
method. In this example, the cr eat el nst ance() method must be a static method.

<bean id="client Servi ce"
cl ass="exanpl es. C i ent Servi ce"
factory-net hod="cr eat el nst ance"/ >

public class CdientService {
private static CientService clientService = new O ientService();
private dientService() {}

public static CientService createlnstance() {
return clientService;

}

For details about the mechanism for supplying (optional) arguments to the factory method and
setting object instance properties after the object is returned from the factory, see Dependencies and
configuration in detail.

Instantiation using an instance factory method

Similar to instantiation through a static factory method, instantiation with an instance factory method
invokes a non-static method of an existing bean from the container to create a new bean. To use this
mechanism, leave the cl ass attribute empty, and inthe f act or y- bean attribute, specify the name of a

4.3.19.RELEASE Spring Framework 47

Spring Framework Reference Documentation

bean in the current (or parent/ancestor) container that contains the instance method that is to be invoked
to create the object. Set the name of the factory method itself with the f act or y- met hod attribute.

<l-- the factory bean, which contains a nethod called createl nstance() -->
<bean id="serviceLocator" class="exanpl es. Def aul t Servi ceLocat or" >

<l'-- inject any dependencies required by this |ocator bean -->
</ bean>

<l-- the bean to be created via the factory bean -->
<bean id="clientService"

factory-bean="servi ceLocat or"

factory-met hod="created i ent Servi cel nstance"/ >

public class DefaultServiceLocator {
private static ClientService clientService = new CientServicelnpl();

public CientService createC ientServicelnstance() {
return clientService;

}

One factory class can also hold more than one factory method as shown here:

<bean id="servi ceLocator" class="exanpl es. Def aul t Servi ceLocat or" >
<l'-- inject any dependencies required by this |ocator bean -->
</ bean>

<bean id="clientService"
factory-bean="servi ceLocator"
factory-net hod="creat eC i ent Servi cel nstance"/ >

<bean id="account Service"
factory-bean="servi celLocat or"
fact ory- net hod="cr eat eAccount Ser vi cel nst ance"/ >

public class DefaultServiceLocator {
private static CientService clientService = new dientServicelnpl();
private static Account Service account Servi ce = new Account Servi cel npl ();

public CientService createC ientServicelnstance() {
return clientService;

}

public Account Servi ce createAccount Servi cel nstance() {
return account Service;

}

This approach shows that the factory bean itself can be managed and configured through dependency
injection (D). See Dependencies and configuration in detail.

Note

In Spring documentation, factory bean refers to a bean that is configured in the Spring container
that will create objects through an instance or static factory method. By contrast, Fact or yBean
(notice the capitalization) refers to a Spring-specific Fact or yBean.

4.3.19.RELEASE Spring Framework 48

Spring Framework Reference Documentation

7.4 Dependencies

A typical enterprise application does not consist of a single object (or bean in the Spring parlance). Even
the simplest application has a few objects that work together to present what the end-user sees as a
coherent application. This next section explains how you go from defining a number of bean definitions
that stand alone to a fully realized application where objects collaborate to achieve a goal.

Dependency Injection

Dependency injection (DI) is a process whereby objects define their dependencies, that is, the other
objects they work with, only through constructor arguments, arguments to a factory method, or properties
that are set on the object instance after it is constructed or returned from a factory method. The container
then injects those dependencies when it creates the bean. This process is fundamentally the inverse,
hence the name Inversion of Control (IoC), of the bean itself controlling the instantiation or location of
its dependencies on its own by using direct construction of classes, or the Service Locator pattern.

Code is cleaner with the DI principle and decoupling is more effective when objects are provided with
their dependencies. The object does not look up its dependencies, and does not know the location
or class of the dependencies. As such, your classes become easier to test, in particular when the
dependencies are on interfaces or abstract base classes, which allow for stub or mock implementations
to be used in unit tests.

DI exists in two major variants, Constructor-based dependency injection and Setter-based dependency
injection.

Constructor-based dependency injection

Constructor-based DI is accomplished by the container invoking a constructor with a number of
arguments, each representing a dependency. Calling a st at i ¢ factory method with specific arguments
to construct the bean is nearly equivalent, and this discussion treats arguments to a constructor and to
a st at i ¢ factory method similarly. The following example shows a class that can only be dependency-
injected with constructor injection. Notice that there is nothing special about this class, it is a POJO that
has no dependencies on container specific interfaces, base classes or annotations.

public class SinpleMuvieLister {

/1 the SinpleMvieLister has a dependency on a Movi eFi nder
private MvieFi nder novi eFi nder;

/1 a constructor so that the Spring container can inject a MvieFinder
publ i c Sinpl eMovieLi ster(MvieFinder novi eFinder) {
this. novi eFi nder = novi eFi nder;

}

/] business logic that actually uses the injected MvieFinder is omtted...

Constructor argument resolution

Constructor argument resolution matching occurs using the argument’s type. If no potential ambiguity
exists in the constructor arguments of a bean definition, then the order in which the constructor
arguments are defined in a bean definition is the order in which those arguments are supplied to the
appropriate constructor when the bean is being instantiated. Consider the following class:

4.3.19.RELEASE Spring Framework 49

Spring Framework Reference Documentation

package Xx.y;
public class Foo {
public Foo(Bar bar, Baz baz) {

11
}

No potential ambiguity exists, assuming that Bar and Baz classes are not related by inheritance. Thus
the following configuration works fine, and you do not need to specify the constructor argument indexes
and/or types explicitly in the <const r uct or - ar g/ > element.

<beans>
<bean id="foo0" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
</ bean>

<bean id="bar" class="x.y.Bar"/>

<bean id="baz" class="x.y.Baz"/>
</ beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with
the preceding example). When a simple type is used, such as <val ue>t r ue</ val ue>, Spring cannot
determine the type of the value, and so cannot match by type without help. Consider the following class:

package exanpl es;
public class Exanpl eBean {

/1 Nunber of years to calculate the Utinmate Answer
private int years;

/1 The Answer to Life, the Universe, and Everything
private String ultinmateAnswer;

publ i c Exanpl eBean(int years, String ultimteAnswer) {
this.years = years;
this.ultimateAnswer = ulti mat eAnswer;

In the preceding scenario, the container can use type matching with simple types if you explicitly specify
the type of the constructor argument using the t ype attribute. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg type="int" val ue="7500000"/>
<constructor-arg type="java.lang. String" val ue="42"/>
</ bean>

Use the i ndex attribute to specify explicitly the index of constructor arguments. For example:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg i ndex="0" val ue="7500000"/>
<constructor-arg i ndex="1" val ue="42"/>

</ bean>

In addition to resolving the ambiguity of multiple simple values, specifying an index resolves ambiguity
where a constructor has two arguments of the same type. Note that the index is 0 based.

You can also use the constructor parameter name for value disambiguation:

4.3.19.RELEASE Spring Framework 50

Spring Framework Reference Documentation

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<constructor-arg name="years" val ue="7500000"/>
<constructor-arg nane="ul ti mat eAnswer" val ue="42"/>
</ bean>

Keep in mind that to make this work out of the box your code must be compiled with the debug flag
enabled so that Spring can look up the parameter name from the constructor. If you can’t compile your
code with debug flag (or don’t want to) you can use @ConstructorProperties JDK annotation to explicitly
name your constructor arguments. The sample class would then have to look as follows:

package exanpl es;

public class Exanpl eBean {
/1l Fields onmtted
@onstructorProperties({"years", "ultinmteAnswer"})
publ i ¢ Exanpl eBean(int years, String ultimteAnswer) {

this.years = years;
this.ultimateAnswer = ultimateAnswer;

Setter-based dependency injection

Setter-based DI is accomplished by the container calling setter methods on your beans after invoking a
no-argument constructor or no-argument st at i ¢ factory method to instantiate your bean.

The following example shows a class that can only be dependency-injected using pure setter injection.
This class is conventional Java. It is a POJO that has no dependencies on container specific interfaces,
base classes or annotations.

public class SinpleMvielister {

/'l the SinpleMyvielister has a dependency on the Mvi eFi nder
private Movi eFi nder novi eFi nder;

/] a setter nethod so that the Spring container can inject a MvieFinder
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
this. novi eFi nder = novi eFi nder;

}

/| business logic that actually uses the injected MvieFinder is omtted...

The Appl i cat i onCont ext supports constructor-based and setter-based DI for the beans it manages.
It also supports setter-based DI after some dependencies have already been injected through the
constructor approach. You configure the dependencies in the form of a BeanDefi ni ti on, which
you use in conjunction with Propert yEdi t or instances to convert properties from one format to
another. However, most Spring users do not work with these classes directly (i.e., programmatically) but
rather with XML bean definitions, annotated components (i.e., classes annotated with @onponent ,
@ont rol | er, etc.), or @ean methods in Java-based @onf i gur at i on classes. These sources are
then converted internally into instances of BeanDef i ni ti on and used to load an entire Spring loC
container instance.

Constructor-based or setter-based DI?

Since you can mix constructor-based and setter-based DI, it is a good rule of thumb to use
constructors for mandatory dependencies and setter methods or configuration methods for

4.3.19.RELEASE Spring Framework 51

http://download.oracle.com/javase/6/docs/api/java/beans/ConstructorProperties.html

Spring Framework Reference Documentation

optional dependencies. Note that use of the @Required annotation on a setter method can be
used to make the property a required dependency.

The Spring team generally advocates constructor injection as it enables one to implement
application components as immutable objects and to ensure that required dependencies are not
nul | . Furthermore constructor-injected components are always returned to client (calling) code
in a fully initialized state. As a side note, a large number of constructor arguments is a bad code
smell, implying that the class likely has too many responsibilities and should be refactored to better
address proper separation of concerns.

Setter injection should primarily only be used for optional dependencies that can be assigned
reasonable default values within the class. Otherwise, not-null checks must be performed
everywhere the code uses the dependency. One benefit of setter injection is that setter methods
make objects of that class amenable to reconfiguration or re-injection later. Management through
JMX MBeans is therefore a compelling use case for setter injection.

Use the DI style that makes the most sense for a particular class. Sometimes, when dealing with
third-party classes for which you do not have the source, the choice is made for you. For example,
if a third-party class does not expose any setter methods, then constructor injection may be the
only available form of DI.

Dependency resolution process

The container performs bean dependency resolution as follows:

e The Appl i cat i onCont ext is created and initialized with configuration metadata that describes all

the beans. Configuration metadata can be specified via XML, Java code, or annotations.

For each bean, its dependencies are expressed in the form of properties, constructor arguments,

or

arguments to the static-factory method if you are using that instead of a normal constructor. These

dependencies are provided to the bean, when the bean is actually created.

Each property or constructor argument is an actual definition of the value to set, or a reference
another bean in the container.

to

Each property or constructor argument which is a value is converted from its specified format to the
actual type of that property or constructor argument. By default Spring can convert a value supplied

in string format to all built-in types, such asi nt, | ong, St ri ng, bool ean, etc.

The Spring container validates the configuration of each bean as the container is created. However,
the bean properties themselves are not set until the bean is actually created. Beans that are singleton-
scoped and set to be pre-instantiated (the default) are created when the container is created. Scopes

are defined in Section 7.5, “Bean scopes”. Otherwise, the bean is created only when it is requested.
Creation of a bean potentially causes a graph of beans to be created, as the bean’s dependencies and
its dependencies' dependencies (and so on) are created and assigned. Note that resolution mismatches

among those dependencies may show up late, i.e. on first creation of the affected bean.

Circular dependencies

If you use predominantly constructor injection, it is possible to create an unresolvable circular
dependency scenario.

4.3.19.RELEASE Spring Framework

52

Spring Framework Reference Documentation

For example: Class A requires an instance of class B through constructor injection, and class B
requires an instance of class A through constructor injection. If you configure beans for classes
A and B to be injected into each other, the Spring 1oC container detects this circular reference at
runtime, and throws a BeanCurrent | yl nCr eat i onExcepti on.

One possible solution is to edit the source code of some classes to be configured by setters
rather than constructors. Alternatively, avoid constructor injection and use setter injection only. In
other words, although it is not recommended, you can configure circular dependencies with setter
injection.

Unlike the typical case (with no circular dependencies), a circular dependency between bean A
and bean B forces one of the beans to be injected into the other prior to being fully initialized itself
(a classic chicken/egg scenario).

You can generally trust Spring to do the right thing. It detects configuration problems, such as references
to non-existent beans and circular dependencies, at container load-time. Spring sets properties and
resolves dependencies as late as possible, when the bean is actually created. This means that a Spring
container which has loaded correctly can later generate an exception when you request an object if there
is a problem creating that object or one of its dependencies. For example, the bean throws an exception
as aresult of a missing or invalid property. This potentially delayed visibility of some configuration issues
is why Appl i cat i onCont ext implementations by default pre-instantiate singleton beans. At the cost
of some upfront time and memory to create these beans before they are actually needed, you discover
configuration issues when the Appl i cati onCont ext is created, not later. You can still override this
default behavior so that singleton beans will lazy-initialize, rather than be pre-instantiated.

If no circular dependencies exist, when one or more collaborating beans are being injected into a
dependent bean, each collaborating bean is totally configured prior to being injected into the dependent
bean. This means that if bean A has a dependency on bean B, the Spring loC container completely
configures bean B prior to invoking the setter method on bean A. In other words, the bean is instantiated
(if not a pre-instantiated singleton), its dependencies are set, and the relevant lifecycle methods (such
as a configured init method or the InitializingBean callback method) are invoked.

Examples of dependency injection

The following example uses XML-based configuration metadata for setter-based DI. A small part of a
Spring XML configuration file specifies some bean definitions:

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<I-- setter injection using the nested ref elenent -->
<property name="beanOne">
<ref bean="anot her Exanpl eBean"/ >
</ property>

<I-- setter injection using the neater ref attribute -->
<property name="beanTwo" ref="yet Anot her Bean"/>
<property name="integerProperty" val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean id="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

4.3.19.RELEASE Spring Framework 53

Spring Framework Reference Documentation

public class Exanpl eBean {
private Anot her Bean beanOne;
private YetAnot her Bean beanTwo;
private int i;

public void set BeanOne(Anot her Bean beanOne) {
this. beanOne = beanOne;
}

public void set BeanTwo(Yet Anot her Bean beanTwo) {
this. beanTwo = beanTwo;

}

public void setlntegerProperty(int i) {
this.i =1i;

}

In the preceding example, setters are declared to match against the properties specified in the XML file.
The following example uses constructor-based DI:

<bean id="exanpl eBean" cl ass="exanpl es. Exanpl eBean" >
<l-- constructor injection using the nested ref elenent -->
<const ructor-arg>
<ref bean="anot her Exanpl eBean"/ >
</ constructor-ar g>

<I-- constructor injection using the neater ref attribute -->
<constructor-arg ref="yet Anot her Bean"/ >

<constructor-arg type="int" val ue="1"/>
</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean id="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {
private Anot her Bean beanOne;
private YetAnot her Bean beanTwo;
private int i;
publ i ¢ Exanpl eBean(
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {
t hi s. beanOne = anot her Bean;

this. beanTwo = yet Anot her Bean;
this.i =i;

The constructor arguments specified in the bean definition will be used as arguments to the constructor
of the Exanpl eBean.

Now consider a variant of this example, where instead of using a constructor, Spring is told to call a
st ati c factory method to return an instance of the object:

4.3.19.RELEASE Spring Framework 54

Spring Framework Reference Documentation

<bean i d="exanpl eBean" cl ass="exanpl es. Exanpl eBean" factory-nethod="creat el nstance">
<constructor-arg ref="anot her Exanpl eBean"/ >
<constructor-arg ref="yet Anot her Bean"/ >
<constructor-arg val ue="1"/>

</ bean>

<bean i d="anot her Exanpl eBean" cl ass="exanpl es. Anot her Bean"/ >
<bean i d="yet Anot her Bean" cl ass="exanpl es. Yet Anot her Bean"/ >

public class Exanpl eBean {

/'l a private constructor
private ExanpleBean(...) {

}

/1 a static factory nethod; the argunents to this nethod can be
/'l considered the dependenci es of the bean that is returned,
/'l regardl ess of how those argunents are actually used.
public static Exanpl eBean createl nstance (
Anot her Bean anot her Bean, Yet Anot her Bean yet Anot herBean, int i) {

Exanpl eBean eb = new Exanpl eBean (...);
/'l sone other operations...
return eb;

Arguments to the st at i ¢ factory method are supplied via <const r uct or - ar g/ > elements, exactly
the same as if a constructor had actually been used. The type of the class being returned by the factory
method does not have to be of the same type as the class that contains the st at i ¢ factory method,
although in this example it is. An instance (non-static) factory method would be used in an essentially
identical fashion (aside from the use of the f act or y- bean attribute instead of the cl ass attribute),
so details will not be discussed here.

Dependencies and configuration in detail

As mentioned in the previous section, you can define bean properties and constructor arguments as
references to other managed beans (collaborators), or as values defined inline. Spring’s XML-based
configuration metadata supports sub-element types within its <pr operty/ > and <const r uct or -
ar g/ > elements for this purpose.

Straight values (primitives, Strings, and so on)

The val ue attribute of the <pr operty/ > element specifies a property or constructor argument as a
human-readable string representation. Spring’s conversion service is used to convert these values from
a St ri ng to the actual type of the property or argument.

<bean id="nyDat aSource" class="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy-net hod="cl ose">
<I-- results in a setDriverCl assNane(String) call -->
<property name="driverC assName" val ue="com nysql .jdbc. Driver"/>
<property name="url" val ue="j dbc: nysql://1 ocal host: 3306/ nydb"/ >
<property name="usernanme" val ue="root"/>
<property name="password" val ue="masterkaoli"/>
</ bean>

The following example uses the p-namespace for even more succinct XML configuration.

4.3.19.RELEASE Spring Framework 55

Spring Framework Reference Documentation

<beans xm ns="http://ww. springframework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springframework. or g/ schema/ p"
xsi : schemaLocati on="http://wwm. spri ngframewor k. or g/ schena/ beans
htt p: // wwv. spri ngf ranewor k. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean id="nyDat aSour ce" cl ass="org. apache. cormons. dbcp. Basi cDat aSour ce"
dest roy- met hod="cl ose"
p: driver d assNane="com nysql . j dbc. Dri ver"
p:url="jdbc:nysql://I| ocal host: 3306/ nydb"
p: user name="r oot "
p: passwor d="nast erkaol i "/ >

</ beans>

The preceding XML is more succinct; however, typos are discovered at runtime rather than design time,
unless you use an IDE such as IntelliJ IDEA or the Spring Tool Suite (STS) that support automatic
property completion when you create bean definitions. Such IDE assistance is highly recommended.

You can also configure aj ava. util . Properti es instance as:

<bean id="mappi ngs"
cl ass="org. spri ngfranmewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">

<l-- typed as a java.util.Properties -->
<property name="properties">
<val ue>

jdbc. driver. cl assName=com nysql . j dbc. Dri ver
jdbc.url=jdbc: mysql ://1ocal host: 3306/ nydb
</ val ue>
</ property>
</ bean>

The Spring container converts the text inside the <val ue/ > elementintoaj ava. util . Properti es
instance by using the JavaBeans Pr oper t yEdi t or mechanism. This is a nice shortcut, and is one of
a few places where the Spring team do favor the use of the nested <val ue/ > element over the val ue
attribute style.

The idref element

Thei dr ef elementis simply an error-proof way to pass the id (string value - not a reference) of another
bean in the container to a <const r uct or - ar g/ > or <pr oper t y/ > element.

<bean id="theTarget Bean" class="..."/>

<bean id="thed ientBean" class="...">
<property name="tar get Name" >
<i dref bean="t heTar get Bean"/ >
</ property>
</ bean>

The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:
<bean id="theTargetBean" class="..." />
<bean id="client" class="...">

<property nanme="target Name" val ue="t heTar get Bean"/ >
</ bean>

The first form is preferable to the second, because using the i dr ef tag allows the container to validate at
deployment time that the referenced, named bean actually exists. In the second variation, no validation
is performed on the value that is passed to the t ar get Nane property of the cl i ent bean. Typos are
only discovered (with most likely fatal results) when the cl i ent bean is actually instantiated. If the

4.3.19.RELEASE Spring Framework 56

http://www.jetbrains.com/idea/
https://spring.io/tools/sts

Spring Framework Reference Documentation

cl i ent bean is a prototype bean, this typo and the resulting exception may only be discovered long
after the container is deployed.

Note

The | ocal attribute on the i dr ef element is no longer supported in the 4.0 beans xsd since
it does not provide value over a regular bean reference anymore. Simply change your existing
i dref | ocal referencestoi dref bean when upgrading to the 4.0 schema.

A common place (at least in versions earlier than Spring 2.0) where the <i dr ef / > element brings value
is in the configuration of AOP interceptors in a Pr oxyFact or yBean bean definition. Using <i dr ef / >
elements when you specify the interceptor names prevents you from misspelling an interceptor id.

References to other beans (collaborators)

The ref element is the final element inside a <const ruct or-ar g/ > or <pr operty/ > definition
element. Here you set the value of the specified property of a bean to be a reference to another
bean (a collaborator) managed by the container. The referenced bean is a dependency of the bean
whose property will be set, and it is initialized on demand as needed before the property is set. (If
the collaborator is a singleton bean, it may be initialized already by the container.) All references are
ultimately a reference to another object. Scoping and validation depend on whether you specify the id/
name of the other object through the bean, | ocal , or par ent attributes.

Specifying the target bean through the bean attribute of the <r ef / > tag is the most general form, and
allows creation of a reference to any bean in the same container or parent container, regardless of
whether it is in the same XML file. The value of the bean attribute may be the same as the i d attribute
of the target bean, or as one of the values in the nane attribute of the target bean.

<ref bean="soneBean"/ >

Specifying the target bean through the par ent attribute creates a reference to a bean that is in a parent
container of the current container. The value of the par ent attribute may be the same as either the i d
attribute of the target bean, or one of the values in the nane attribute of the target bean, and the target
bean must be in a parent container of the current one. You use this bean reference variant mainly when
you have a hierarchy of containers and you want to wrap an existing bean in a parent container with a
proxy that will have the same name as the parent bean.

<l-- in the parent context -->

<bean id="account Servi ce" cl ass="com foo. Si npl eAccount Servi ce">
<l-- insert dependencies as required as here -->

</ bean>

<l-- in the child (descendant) context -->

<bean id="account Servi ce" <!-- bean nane is the same as the parent bean -->
cl ass="org. springframewor k. aop. f ramewor k. Pr oxyFact or yBean" >
<property name="target">

<ref parent="account Service"/> <!-- notice how we refer to the parent bean -->
</ property>
<l-- insert other configuration and dependencies as required here -->
</ bean>

Note

The | ocal attribute on the r ef element is no longer supported in the 4.0 beans xsd since it
does not provide value over a regular bean reference anymore. Simply change your existing r ef
| ocal referencestoref bean when upgrading to the 4.0 schema.

4.3.19.RELEASE Spring Framework 57

Spring Framework Reference Documentation

Inner beans

A <bean/ > elementinside the <pr operty/ > or<const r uct or - ar g/ > elements defines a so-called
inner bean.

<bean id="outer" class="...">
<I-- instead of using a reference to a target bean, sinply define the target bean inline -->
<property name="target">
<bean cl ass="com exanpl e. Person"> <!-- this is the inner bean -->

<property name="nanme" val ue="Fi ona Apple"/>
<property name="age" val ue="25"/>
</ bean>
</ property>
</ bean>

An inner bean definition does not require a defined id or name; if specified, the container does not use
such a value as an identifier. The container also ignores the scope flag on creation: Inner beans are
always anonymous and they are always created with the outer bean. It is not possible to inject inner
beans into collaborating beans other than into the enclosing bean or to access them independently.

As a corner case, it is possible to receive destruction callbacks from a custom scope, e.g. for a request-
scoped inner bean contained within a singleton bean: The creation of the inner bean instance will be tied
to its containing bean, but destruction callbacks allow it to participate in the request scope’s lifecycle.
This is not a common scenario; inner beans typically simply share their containing bean’s scope.

Collections

Inthe <l i st/ >, <set/ >, <map/ >, and <pr ops/ > elements, you set the properties and arguments of
the Java Col | ecti on types Li st, Set, Map, and Pr operti es, respectively.

<bean i d="noreConpl exbj ect” cl ass="exanpl e. Conpl exhj ect" >

<I-- results in a set Adm nEmai |l s(java.util.Properties) call -->
<property name="admi nEmail s">
<pr OpS>

<prop key="adm ni strator">adm ni strator @xanpl e. or g</ prop>
<prop key="support">support @xanpl e. or g</ pr op>
<prop key="devel opnment " >devel opment @xanpl e. or g</ pr op>

</ props>
</ property>
<l-- results in a setSoneList(java.util.List) call -->
<property name="soneList">

<list>

<val ue>a list elenment followed by a reference</val ue>
<ref bean="nyDat aSource" />

</list>
</ property>
<l-- results in a setSoneMap(java.util.Mp) call -->
<property name="soneMap">

<map>

<entry key="an entry" val ue="just some string"/>
<entry key ="a ref" val ue-ref="nyDat aSource"/>

</ map>
</ property>
<l-- results in a setSoneSet(java.util.Set) call -->
<property name="someSet">

<set >

<val ue>j ust some string</val ue>
<ref bean="nyDat aSource" />
</ set >
</ property>
</ bean>

The value of a map key or value, or a set value, can also again be any of the following elements:

4.3.19.RELEASE Spring Framework 58

Spring Framework Reference Documentation

bean | ref | idref | list | set | map | props | value | nul

Collection merging

The Spring container also supports the merging of collections. An application developer can define a
parent-style <l i st/ >, <map/ >, <set/ > or <pr ops/ > element, and have child-style <l i st/ >, <map/
>, <set /> or <pr ops/ > elements inherit and override values from the parent collection. That is, the
child collection’s values are the result of merging the elements of the parent and child collections, with
the child’s collection elements overriding values specified in the parent collection.

This section on merging discusses the parent-child bean mechanism. Readers unfamiliar with parent
and child bean definitions may wish to read the relevant section before continuing.

The following example demonstrates collection merging:

<beans>
<bean id="parent" abstract="true" cl ass="exanpl e. Conpl ex(bj ect">
<property nanme="adm nEmail s">
<props>
<prop key="adm ni strator">adm ni strat or @xanpl e. com</ pr op>
<prop key="support">support @xanpl e. com</ pr op>
</ props>
</ property>
</ bean>
<bean id="child" parent="parent">
<property name="adm nEmail s">
<I-- the nmerge is specified on the child collection definition -->
<props mnerge="true">
<prop key="sal es" >sal es@xanpl e. com</ prop>
<prop key="support">support @xanpl e. co. uk</ prop>
</ pr ops>
</ property>
</ bean>
<beans>

Notice the use of the mer ge=t r ue attribute on the <pr ops/ > element of the adm nEmai | s property
of the chi | d bean definition. When the chi | d bean is resolved and instantiated by the container, the
resulting instance has an adm nEnai | s Properti es collection that contains the result of the merging
of the child’s adm nEnai | s collection with the parent’s adni nEmai | s collection.

adm ni strat or=adm ni strat or @xanpl e. com
sal es=sal es@xanpl e. com
suppor t =support @xanpl e. co. uk

The child Pr oper ti es collection’s value set inherits all property elements from the parent <pr ops/ >,
and the child’s value for the support value overrides the value in the parent collection.

This merging behavior applies similarly to the <l i st/ >, <map/ >, and <set / > collection types. In the
specific case of the <l i st/ > element, the semantics associated with the Li st collection type, that is,
the notion of an or der ed collection of values, is maintained; the parent’s values precede all of the child
list's values. In the case of the Map, Set , and Pr opert i es collection types, no ordering exists. Hence
no ordering semantics are in effect for the collection types that underlie the associated Map, Set , and
Properti es implementation types that the container uses internally.

Limitations of collection merging

You cannot merge different collection types (such as a Map and a Li st), and if you do attempt to do
S0 an appropriate Except i on is thrown. The ner ge attribute must be specified on the lower, inherited,

4.3.19.RELEASE Spring Framework 59

Spring Framework Reference Documentation

child definition; specifying the mer ge attribute on a parent collection definition is redundant and will not
result in the desired merging.

Strongly-typed collection

With the introduction of generic types in Java 5, you can use strongly typed collections. That is, it is
possible to declare a Col | ect i on type such that it can only contain St ri ng elements (for example).
If you are using Spring to dependency-inject a strongly-typed Col | ecti on into a bean, you can
take advantage of Spring’'s type-conversion support such that the elements of your strongly-typed
Col | ect i on instances are converted to the appropriate type prior to being added to the Col | ecti on.

public class Foo {
private Map<String, Float> accounts;
public void setAccounts(Map<String, Float> accounts) {

this.accounts = accounts;

}

<beans>
<bean id="fo0" class="x.y.Foo">
<property name="accounts">
<n‘ap>
<entry key="one" val ue="9.99"/>
<entry key="two" val ue="2.75"/>
<entry key="six" value="3.99"/>
</ map>
</ property>
</ bean>
</ beans>

When the account s property of the f 0o bean is prepared for injection, the generics information about
the element type of the strongly-typed Map<Stri ng, Fl oat > is available by reflection. Thus Spring’s
type conversion infrastructure recognizes the various value elements as being of type Fl oat , and the
string values 9. 99, 2. 75, and 3. 99 are converted into an actual Fl oat type.

Null and empty string values

Spring treats empty arguments for properties and the like as empty St r i ngs. The following XML-based
configuration metadata snippet sets the email property to the empty St ri ng value (™).

<bean cl ass="Exanpl eBean" >
<property name="email" val ue=""/>
</ bean>

The preceding example is equivalent to the following Java code:

exanpl eBean. setEmai | ("");

The <nul | / > element handles nul | values. For example:

<bean cl ass="Exanpl eBean" >
<property name="email ">
<nul | />
</ property>
</ bean>

The above configuration is equivalent to the following Java code:

exanpl eBean. set Emai | (nul |);

4.3.19.RELEASE Spring Framework 60

Spring Framework Reference Documentation

XML shortcut with the p-namespace

The p-namespace enables you to use the bean element’s attributes, instead of nested <pr operty/ >
elements, to describe your property values and/or collaborating beans.

Spring supports extensible configuration formats with namespaces, which are based on an XML Schema
definition. The beans configuration format discussed in this chapter is defined in an XML Schema
document. However, the p-namespace is not defined in an XSD file and exists only in the core of Spring.

The following example shows two XML snippets that resolve to the same result: The first uses standard
XML format and the second uses the p-namespace.

<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. spri ngfranmewor k. org/ schena/ p"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
ht t p: // www. spri ngf ramewor k. or g/ schenma/ beans/ spri ng- beans. xsd" >

<bean name="cl assi ¢c" cl ass="com exanpl e. Exanpl eBean" >
<property name="email" val ue="foo@ar. coni'/>
</ bean>

<bean nane="p-nanmespace" cl ass="com exanpl e. Exanpl eBean"
p: emai | ="f oo@ar . cont'/ >
</ beans>

The example shows an attribute in the p-namespace called email in the bean definition. This tells Spring
to include a property declaration. As previously mentioned, the p-namespace does not have a schema
definition, so you can set the name of the attribute to the property name.

This next example includes two more bean definitions that both have a reference to another bean:

<beans xm ns="http://ww. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. springfranmework. or g/ schema/ p"
xsi : schemalLocati on="http://ww. spri ngfranmework. or g/ schena/ beans
ht t p: / / www. spri ngf ramewor k. or g/ schenma/ beans/ spri ng- beans. xsd" >

<bean nane="j ohn-cl assi ¢c" cl ass="com exanpl e. Person">
<property name="nanme" val ue="John Doe"/>
<property name="spouse" ref="jane"/>

</ bean>

<bean nane="j ohn- noder n"
cl ass="com exanpl e. Person"
p: nane="John Doe"
p: spouse-ref="jane"/>

<bean nane="j ane" cl ass="com exanpl e. Person" >
<property name="name" val ue="Jane Doe"/>
</ bean>
</ beans>

As you can see, this example includes not only a property value using the p-namespace, but also uses
a special format to declare property references. Whereas the first bean definition uses <property
name="spouse" ref="jane"/> to create a reference from bean j ohn to bean j ane, the second
bean definition uses p: spouse-ref ="j ane" as an attribute to do the exact same thing. In this case
spouse is the property name, whereas the - r ef partindicates that this is not a straight value but rather
a reference to another bean.

4.3.19.RELEASE Spring Framework 61

Spring Framework Reference Documentation

Note

The p-namespace is not as flexible as the standard XML format. For example, the format for
declaring property references clashes with properties that end in Ref , whereas the standard XML
format does not. We recommend that you choose your approach carefully and communicate this
to your team members, to avoid producing XML documents that use all three approaches at the
same time.

XML shortcut with the c-namespace

Similar to the the section called “XML shortcut with the p-namespace”, the c-namespace, newly
introduced in Spring 3.1, allows usage of inlined attributes for configuring the constructor arguments
rather then nested const r uct or - ar g elements.

Let's review the examples from the section called “Constructor-based dependency injection” with the
C: namespace:

<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: c="http://ww. springfranmewor k. or g/ schema/ c"
xsi : schemalLocati on="http://ww. springfranmework. or g/ schema/ beans
http://ww. springfranework. or g/ schena/ beans/ spri ng- beans. xsd" >

<bean id="bar" class="x.y.Bar"/>
<bean id="baz" class="x.y.Baz"/>

<l-- traditional declaration -->

<bean id="foo0" class="x.y.Foo">
<constructor-arg ref="bar"/>
<constructor-arg ref="baz"/>
<constructor-arg val ue="f oo@ar.conl'/>

</ bean>

<l-- c-nanespace declaration -->

<bean id="foo0" class="x.y.Foo" c:bar-ref="bar" c:baz-ref="baz" c:email ="foo@ar.conl/>
</ beans>

The c: namespace uses the same conventions as the p: one (trailing - r ef for bean references) for
setting the constructor arguments by their names. And just as well, it needs to be declared even though
it is not defined in an XSD schema (but it exists inside the Spring core).

For the rare cases where the constructor argument names are not available (usually if the bytecode was
compiled without debugging information), one can use fallback to the argument indexes:

<l-- c-nanespace index declaration -->
<bean id="fo0" class="x.y.Foo" c:_O-ref="bar" c:_1-ref="baz"/>

Note

Due to the XML grammar, the index notation requires the presence of the leading _ as XML
attribute names cannot start with a number (even though some IDE allow it).

In practice, the constructor resolution mechanism is quite efficient in matching arguments so unless one
really needs to, we recommend using the name notation through-out your configuration.

4.3.19.RELEASE Spring Framework 62

Spring Framework Reference Documentation

Compound property names

You can use compound or nested property names when you set bean properties, as long as all
components of the path except the final property name are not nul | . Consider the following bean
definition.

<bean id="foo0" class="foo.Bar">
<property name="fred. bob. samy" val ue="123" />
</ bean>

The f oo beanhas af r ed property, which has a bob property, which has a samy property, and that final
sanmmy property is being set to the value 123. In order for this to work, the f r ed property of f 00, and the
bob property of f r ed must not be nul | after the bean is constructed, or a Nul | Poi nt er Excepti on
is thrown.

Using depends-on

If a bean is a dependency of another that usually means that one bean is set as a property of another.
Typically you accomplish this with the <r ef / > element in XML-based configuration metadata. However,
sometimes dependencies between beans are less direct; for example, a static initializer in a class needs
to be triggered, such as database driver registration. The depends- on attribute can explicitly force one
or more beans to be initialized before the bean using this element is initialized. The following example
uses the depends- on attribute to express a dependency on a single bean:

<bean id="beanOne" cl ass="Exanpl eBean" depends-on="manager"/>
<bean id="nmnager" cl ass="Manager Bean" />

To express a dependency on multiple beans, supply a list of bean names as the value of the depends-
on attribute, with commas, whitespace and semicolons, used as valid delimiters:

<bean i d="beanOne" cl ass="Exanpl eBean" depends-on="nanager, account Dao" >
<property name="manager" ref="manager" />
</ bean>

<bean id="manager" cl ass="ManagerBean" />
<bean id="account Dao" cl ass="x.y.]dbc.JdbcAccount Dao" />

Note

The depends- on attribute in the bean definition can specify both an initialization time dependency
and, in the case of singleton beans only, a corresponding destroy time dependency. Dependent
beans that define a depends- on relationship with a given bean are destroyed first, prior to the
given bean itself being destroyed. Thus depends- on can also control shutdown order.

Lazy-initialized beans

By default, Appl i cati onCont ext implementations eagerly create and configure all singleton beans
as part of the initialization process. Generally, this pre-instantiation is desirable, because errors in the
configuration or surrounding environment are discovered immediately, as opposed to hours or even
days later. When this behavior is not desirable, you can prevent pre-instantiation of a singleton bean by
marking the bean definition as lazy-initialized. A lazy-initialized bean tells the 10C container to create a
bean instance when it is first requested, rather than at startup.

In XML, this behavior is controlled by the | azy-i ni t attribute on the <bean/ > element; for example:

4.3.19.RELEASE Spring Framework 63

Spring Framework Reference Documentation

<bean id="lazy" class="com fo00. Expensi veToCr eat eBean" |azy-init="true"/>
<bean nanme="not.|azy" cl ass="com f0o0. Anot her Bean"/ >

When the preceding configuration is consumed by an Appl i cati onCont ext , the bean named | azy
is not eagerly pre-instantiated when the Appl i cat i onCont ext is starting up, whereas the not . | azy
bean is eagerly pre-instantiated.

However, when a lazy-initialized bean is a dependency of a singleton bean that is not lazy-initialized,
the Appl i cati onCont ext creates the lazy-initialized bean at startup, because it must satisfy the
singleton’s dependencies. The lazy-initialized bean is injected into a singleton bean elsewhere that is
not lazy-initialized.

You can also control lazy-initialization at the container level by using the def aul t - | azy-i ni t attribute
on the <beans/ > element; for example:

<beans default-lazy-init="true">
<I-- no beans will be pre-instantiated... -->
</ beans>

Autowiring collaborators

The Spring container can autowire relationships between collaborating beans. You can allow Spring
to resolve collaborators (other beans) automatically for your bean by inspecting the contents of the
Appl i cati onCont ext . Autowiring has the following advantages:

» Autowiring can significantly reduce the need to specify properties or constructor arguments. (Other
mechanisms such as a bean template discussed elsewhere in this chapter are also valuable in this
regard.)

» Autowiring can update a configuration as your objects evolve. For example, if you need to add a
dependency to a class, that dependency can be satisfied automatically without you needing to modify
the configuration. Thus autowiring can be especially useful during development, without negating the
option of switching to explicit wiring when the code base becomes more stable.

When using XML-based configuration metadata 10, you specify autowire mode for a bean definition
with the aut owi r e attribute of the <bean/ > element. The autowiring functionality has four modes. You
specify autowiring per bean and thus can choose which ones to autowire.

Table 7.2. Autowiring modes

Mode Explanation

no (Default) No autowiring. Bean references must
be defined via a r ef element. Changing the
default setting is not recommended for larger
deployments, because specifying collaborators
explicitly gives greater control and clarity. To
some extent, it documents the structure of a
system.

byName Autowiring by property name. Spring looks for
a bean with the same name as the property

%see the section called “Dependency Injection”

4.3.19.RELEASE Spring Framework 64

Spring Framework Reference Documentation

Mode Explanation

that needs to be autowired. For example, if a
bean definition is set to autowire by name, and
it contains a master property (that is, it has a
setMaster(..) method), Spring looks for a bean
definition named nmast er, and uses it to set the

property.

byType Allows a property to be autowired if exactly one
bean of the property type exists in the container.
If more than one exists, a fatal exception is
thrown, which indicates that you may not use
byType autowiring for that bean. If there are no
matching beans, nothing happens; the property
is not set.

constructor Analogous to byType, but applies to constructor
arguments. If there is not exactly one bean of
the constructor argument type in the container, a
fatal error is raised.

With byType or constructor autowiring mode, you can wire arrays and typed-collections. In such cases
all autowire candidates within the container that match the expected type are provided to satisfy the
dependency. You can autowire strongly-typed Maps if the expected key type is St ri ng. An autowired
Maps values will consist of all bean instances that match the expected type, and the Maps keys will
contain the corresponding bean names.

You can combine autowire behavior with dependency checking, which is performed after autowiring
completes.

Limitations and disadvantages of autowiring

Autowiring works best when it is used consistently across a project. If autowiring is not used in general,
it might be confusing to developers to use it to wire only one or two bean definitions.

Consider the limitations and disadvantages of autowiring:

» Explicit dependencies in property and construct or - ar g settings always override autowiring.
You cannot autowire so-called simple properties such as primitives, St ri ngs, and C asses (and
arrays of such simple properties). This limitation is by-design.

» Autowiring is less exact than explicit wiring. Although, as noted in the above table, Spring is careful
to avoid guessing in case of ambiguity that might have unexpected results, the relationships between
your Spring-managed objects are no longer documented explicitly.

» Wiring information may not be available to tools that may generate documentation from a Spring
container.

» Multiple bean definitions within the container may match the type specified by the setter method
or constructor argument to be autowired. For arrays, collections, or Maps, this is not necessarily
a problem. However for dependencies that expect a single value, this ambiguity is not arbitrarily
resolved. If no unique bean definition is available, an exception is thrown.

4.3.19.RELEASE Spring Framework 65

Spring Framework Reference Documentation

In the latter scenario, you have several options:
» Abandon autowiring in favor of explicit wiring.

« Avoid autowiring for a bean definition by setting its aut owi r e- candi dat e attributes to f al se as
described in the next section.

» Designate a single bean definition as the primary candidate by setting the pri mary attribute of its
<bean/ > elementtotrue.

* Implement the more fine-grained control available with annotation-based configuration, as described
in Section 7.9, “Annotation-based container configuration”.

Excluding a bean from autowiring

On a per-bean basis, you can exclude a bean from autowiring. In Spring’s XML format, set the
aut owi r e- candi dat e attribute of the <bean/ > element to f al se; the container makes that specific
bean definition unavailable to the autowiring infrastructure (including annotation style configurations
such as @\ut owi r ed).

Note

The aut owi r e- candi dat e attribute is designed to only affect type-based autowiring. It does
not affect explicit references by name, which will get resolved even if the specified bean is not
marked as an autowire candidate. As a consequence, autowiring by name will nevertheless inject
a bean if the name matches.

You can also limit autowire candidates based on pattern-matching against bean names. The top-
level <beans/ > element accepts one or more patterns within its def aul t - aut owi r e- candi dat es
attribute. For example, to limit autowire candidate status to any bean whose name ends with Repository,
provide a value of *Repository. To provide multiple patterns, define them in a comma-separated list. An
explicit value of t r ue or f al se for a bean definitions aut owi r e- candi dat e attribute always takes
precedence, and for such beans, the pattern matching rules do not apply.

These techniques are useful for beans that you never want to be injected into other beans by autowiring.
It does not mean that an excluded bean cannot itself be configured using autowiring. Rather, the bean
itself is not a candidate for autowiring other beans.

Method injection

In most application scenarios, most beans in the container are singletons. When a singleton bean needs
to collaborate with another singleton bean, or a non-singleton bean needs to collaborate with another
non-singleton bean, you typically handle the dependency by defining one bean as a property of the
other. A problem arises when the bean lifecycles are different. Suppose singleton bean A needs to use
non-singleton (prototype) bean B, perhaps on each method invocation on A. The container only creates
the singleton bean A once, and thus only gets one opportunity to set the properties. The container cannot
provide bean A with a new instance of bean B every time one is needed.

A solution is to forego some inversion of control. You can make bean A aware of the container by
implementing the Appl i cati onCont ext Awar e interface, and by making a getBean("B") call to the
container ask for (a typically new) bean B instance every time bean A needs it. The following is an
example of this approach:

4.3.19.RELEASE Spring Framework 66

Spring Framework Reference Documentation

/1 a class that uses a stateful Command-style class to perform sone processing
package fiona. appl e;

/'l Spring-APl inports

i nport org.springfranework. beans. BeansExcepti on;

i nport org.springframework. cont ext. Appli cati onCont ext;

i nport org.springfranework. cont ext. Appl i cati onCont ext Awar e;

public class CommandManager inplenents ApplicationContextAware {
private ApplicationContext applicationContext;

public Object process(Map commandState) {
/1 grab a new instance of the appropriate Command
Command command = creat eCommand() ;
/'l set the state on the (hopefully brand new) Comrand instance
command. set St at e(commandSt at e) ;
return command. execut e() ;

}

protected Conmand creat eCommand() {
/1 notice the Spring APl dependency!
return this.applicationContext.getBean("conmand", Conmand. cl ass);

}

public void setApplicationContext (
Appl i cati onCont ext applicationContext) throws BeansException {
this.applicationContext = applicationContext;

The preceding is not desirable, because the business code is aware of and coupled to the Spring
Framework. Method Injection, a somewhat advanced feature of the Spring loC container, allows this

use case to be handled in a clean fashion.

You can read more about the motivation for Method Injection in this blog entry.

Lookup method injection

Lookup method injection is the ability of the container to override methods on container managed beans,
to return the lookup result for another named bean in the container. The lookup typically involves a
prototype bean as in the scenario described in the preceding section. The Spring Framework implements
this method injection by using bytecode generation from the CGLIB library to generate dynamically a

subclass that overrides the method.

Note

» For this dynamic subclassing to work, the class that the Spring bean container will subclass
cannot be f i nal , and the method to be overridden cannot be fi nal either.

» Unit-testing a class that has an abst r act method requires you to subclass the class yourself
and to supply a stub implementation of the abst r act method.

» Concrete methods are also necessary for component scanning which requires concrete classes
to pick up.

» Afurther key limitation is that lookup methods won’'t work with factory methods and in particular
not with @ean methods in configuration classes, since the container is not in charge of creating
the instance in that case and therefore cannot create a runtime-generated subclass on the fly.

4.3.19.RELEASE Spring Framework

67

https://spring.io/blog/2004/08/06/method-injection/

Spring Framework Reference Documentation

Looking at the CommandManager class in the previous code snippet, you see that the Spring
container will dynamically override the implementation of the creat eConmand() method. Your
ConmandManager class will not have any Spring dependencies, as can be seen in the reworked
example:

package fiona. appl e;
/1 no nore Spring inports!
public abstract class ConmandManager {

public Object process(Object commandState) {
/1 grab a new instance of the appropriate Conmand interface
Command conmmand = creat eCommand() ;
/] set the state on the (hopefully brand new) Command i nstance
command. set St at e(commandSt at e) ;
return conmand. execut e();

}

/| okay... but where is the inplenentation of this nethod?
protected abstract Command creat eCommand() ;

In the client class containing the method to be injected (the ConmandManager in this case), the method
to be injected requires a signature of the following form:

<public|protected> [abstract] <return-type> theMethodNane(no-argunents);

If the method is abst r act, the dynamically-generated subclass implements the method. Otherwise,
the dynamically-generated subclass overrides the concrete method defined in the original class. For
example:

<I-- a stateful bean deployed as a prototype (non-singleton) -->

<bean i d="myCommand" cl ass="fi ona. appl e. AsyncConmand" scope="prototype">
<!-- inject dependencies here as required -->

</ bean>

<!'-- commandPr ocessor uses stateful CommandHel per -->

<bean id="comandManager" cl ass="fi ona. appl e. CommandManager " >
<l ookup- net hod name="cr eat eCommand" bean="nyConmmand"/ >
</ bean>

The bean identified as commandManager calls its own method cr eat eCormand() whenever it needs
a new instance of the myCommand bean. You must be careful to deploy the myConmmand bean as a
prototype, if that is actually what is needed. If it is as a singleton, the same instance of the ny Command
bean is returned each time.

Alternatively, within the annotation-based component model, you may declare a lookup method through
the @Q.ookup annotation:

public abstract class ConmandManager {

public Object process(Object commandState) {
Command command = creat eCommand() ;
conmand. set St at e(commandSt at e) ;
return command. execut e() ;

}

@.ookup(" myCommand")
protected abstract Conmand creat eConmand();

4.3.19.RELEASE Spring Framework 68

Spring Framework Reference Documentation

Or, more idiomatically, you may rely on the target bean getting resolved against the declared return
type of the lookup method:

public abstract class ConmandManager {

public Object process(Object commandState) {
MyConmand conmand = creat eConmand() ;
command. set St at e(commandSt at e) ;
return conmand. execut e() ;

}

@ookup
protected abstract MyConmand creat eConmand() ;

Note that you will typically declare such annotated lookup methods with a concrete stub implementation,
in order for them to be compatible with Spring’s component scanning rules where abstract classes get
ignored by default. This limitation does not apply in case of explicitly registered or explicitly imported
bean classes.

Tip

Another way of accessing differently scoped target beans is an (bj ect Fact ory/ Provi der
injection point. Check out the section called “Scoped beans as dependencies”.

The interested reader may also find the ServiceLocatorFactoryBean (in the
org. springfranmewor k. beans. factory. confi g package) to be of use.

Arbitrary method replacement

A less useful form of method injection than lookup method injection is the ability to replace arbitrary
methods in a managed bean with another method implementation. Users may safely skip the rest of
this section until the functionality is actually needed.

With XML-based configuration metadata, you can use the r epl aced- net hod element to replace an
existing method implementation with another, for a deployed bean. Consider the following class, with
a method computeValue, which we want to override:

public class MyVal ueCal cul ator {
public String conputeValue(String input) {
/1 sone real code...

}

/1 sone ot her nethods. ..

A class implementing the or g. spri ngf ranmewor k. beans. f act ory. support. Met hodRepl acer
interface provides the new method definition.

4.3.19.RELEASE Spring Framework 69

Spring Framework Reference Documentation

/**
* meant to be used to override the existing conputeVal ue(String)
* inplementation in MyVal ueCal cul at or
*/
public class Repl acenent Conput eVal ue i npl enents Met hodRepl acer {
public Object reinplenent(Object o, Method m Object[] args) throws Throwable {
/1 get the input value, work with it, and return a conputed result

String input = (String) args[O0];

return ...;

The bean definition to deploy the original class and specify the method override would look like this:

<bean id="myVal ueCal cul ator" class="x.y.z. MyVal ueCal cul ator">
<!-- arbitrary nethod replacenment -->
<repl aced- net hod nanme="conput eVal ue" repl acer="r epl acenent Conput eVal ue" >
<arg-type>String</arg-type>
</repl aced- net hod>
</ bean>

<bean id="repl acenent Conput eVal ue" cl ass="a.b. c. Repl acenent Conput eVal ue"/ >

You can use one or more contained <ar g-type/ > elements within the <r epl aced- net hod/ >
element to indicate the method signature of the method being overridden. The signature for the
arguments is necessary only if the method is overloaded and multiple variants exist within the class.
For convenience, the type string for an argument may be a substring of the fully qualified type name.
For example, the following all match j ava. | ang. Stri ng:

java.lang. String
String
Str

Because the number of arguments is often enough to distinguish between each possible choice, this
shortcut can save a lot of typing, by allowing you to type only the shortest string that will match an
argument type.

7.5 Bean scopes

When you create a bean definition, you create a recipe for creating actual instances of the class defined
by that bean definition. The idea that a bean definition is a recipe is important, because it means that,
as with a class, you can create many object instances from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged into
an object that is created from a particular bean definition, but also the scope of the objects created from
a particular bean definition. This approach is powerful and flexible in that you can choose the scope
of the objects you create through configuration instead of having to bake in the scope of an object at
the Java class level. Beans can be defined to be deployed in one of a number of scopes: out of the
box, the Spring Framework supports seven scopes, five of which are available only if you use a web-
aware Appl i cat i onCont ext .

The following scopes are supported out of the box. You can also create a custom scope.

4.3.19.RELEASE Spring Framework 70

Spring Framework Reference Documentation

Table 7.3. Bean scopes

Scope Description
singleton (Default) Scopes a single bean definition to a
single object instance per Spring 1oC container.
prototype Scopes a single bean definition to any number of
object instances.
request Scopes a single bean definition to the lifecycle
of a single HTTP request; that is, each HTTP
request has its own instance of a bean created
off the back of a single bean definition. Only
valid in the context of a web-aware Spring
Appl i cati onCont ext .
session Scopes a single bean definition to the lifecycle of
an HTTP Sessi on. Only valid in the context of a
web-aware Spring Appl i cati onCont ext .
globalSession Scopes a single bean definition to the lifecycle
of a global HTTP Sessi on. Typically only
valid when used in a Portlet context. Only
valid in the context of a web-aware Spring
Appl i cati onCont ext .
application Scopes a single bean definition to the lifecycle of
a Ser vl et Cont ext . Only valid in the context of
a web-aware Spring Appl i cati onCont ext .
websocket Scopes a single bean definition to the lifecycle
of a WebSocket . Only valid in the context of a
web-aware Spring Appl i cati onCont ext .
Note

As of Spring 3.0, a thread scope is available, but is not registered by default. For more information,
see the documentation for Si_ npl eThr eadScope. For instructions on how to register this or any
other custom scope, see the section called “Using a custom scope”.

The singleton scope

Only one shared instance of a singleton bean is managed, and all requests for beans with an id or
ids matching that bean definition result in that one specific bean instance being returned by the Spring

container.

To put it another way, when you define a bean definition and it is scoped as a singleton, the Spring 1oC
container creates exactly one instance of the object defined by that bean definition. This single instance
is stored in a cache of such singleton beans, and all subsequent requests and references for that named

bean return the cached object.

4.3.19.RELEASE

Spring Framework

71

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/context/support/SimpleThreadScope.html

Spring Framework Reference Documentation

‘ Only one instance is ever created...

1

<bean id="accountDaeo" =lass="..." />

... and this same shared instance is injected into each collaborating object

Spring’s concept of a singleton bean differs from the Singleton pattern as defined in the Gang of Four
(GoF) patterns book. The GoF Singleton hard-codes the scope of an object such that one and only
one instance of a particular class is created per ClassLoader. The scope of the Spring singleton is best
described as per container and per bean. This means that if you define one bean for a particular class
in a single Spring container, then the Spring container creates one and only one instance of the class
defined by that bean definition. The singleton scope is the default scope in Spring. To define a bean as
a singleton in XML, you would write, for example:

<bean id="account Servi ce" cl ass="com f 0o. Def aul t Account Servi ce"/ >

<l-- the follow ng is equival ent, though redundant (singleton scope is the default) -->
<bean id="account Servi ce" class="com foo. Def aul t Account Servi ce" scope="si ngl eton"/>

The prototype scope

The non-singleton, prototype scope of bean deployment results in the creation of a new bean instance
every time a request for that specific bean is made. That is, the bean is injected into another bean or
you request it through a get Bean() method call on the container. As a rule, use the prototype scope
for all stateful beans and the singleton scope for stateless beans.

The following diagram illustrates the Spring prototype scope. A data access object (DAO) is not typically
configured as a prototype, because a typical DAO does not hold any conversational state; it was just
easier for this author to reuse the core of the singleton diagram.

4.3.19.RELEASE Spring Framework 72

Spring Framework Reference Documentation

A brand new bean instance is created...

/., | <bean id="accountDao" class="..."
; scope="prototype" />

... each and every time the prototype is referenced by collaborating beans

The following example defines a bean as a prototype in XML:

<bean id="account Servi ce" cl ass="com f o0o. Def aul t Account Servi ce" scope="prototype"/>

In contrast to the other scopes, Spring does not manage the complete lifecycle of a prototype bean: the
container instantiates, configures, and otherwise assembles a prototype object, and hands it to the client,
with no further record of that prototype instance. Thus, although initialization lifecycle callback methods
are called on all objects regardless of scope, in the case of prototypes, configured destruction lifecycle
callbacks are not called. The client code must clean up prototype-scoped objects and release expensive
resources that the prototype bean(s) are holding. To get the Spring container to release resources held
by prototype-scoped beans, try using a custom bean post-processor, which holds a reference to beans
that need to be cleaned up.

In some respects, the Spring container’s role in regard to a prototype-scoped bean is a replacement
for the Java new operator. All lifecycle management past that point must be handled by the client. (For
details on the lifecycle of a bean in the Spring container, see the section called “Lifecycle callbacks”.)

Singleton beans with prototype-bean dependencies

When you use singleton-scoped beans with dependencies on prototype beans, be aware that
dependencies are resolved at instantiation time. Thus if you dependency-inject a prototype-scoped bean
into a singleton-scoped bean, a new prototype bean is instantiated and then dependency-injected into
the singleton bean. The prototype instance is the sole instance that is ever supplied to the singleton-
scoped bean.

However, suppose you want the singleton-scoped bean to acquire a new instance of the prototype-
scoped bean repeatedly at runtime. You cannot dependency-inject a prototype-scoped bean into your
singleton bean, because that injection occurs only once, when the Spring container is instantiating the
singleton bean and resolving and injecting its dependencies. If you need a new instance of a prototype
bean at runtime more than once, see the section called “Method injection”

Request, session, global session, application, and WebSocket scopes

The request, session, gl obal Session, application, and websocket scopes are only
available if you use a web-aware Spring ApplicationContext implementation (such as
Xm WebAppl i cati onCont ext). If you use these scopes with regular Spring 1oC containers

4.3.19.RELEASE Spring Framework 73

Spring Framework Reference Documentation

such as the d assPat hXm Appl i cati onContext, an ||| egal St at eExcepti on will be thrown
complaining about an unknown bean scope.

Initial web configuration

To support the scoping of beans at the r equest, sessi on, gl obal Sessi on, appl i cati on, and
websocket levels (web-scoped beans), some minor initial configuration is required before you define
your beans. (This initial setup is not required for the standard scopes, si ngl et on and pr ot ot ype.)

How you accomplish this initial setup depends on your particular Servlet environment.

If you access scoped beans within Spring Web MVC, in effect, within a request that is processed
by the Spring Di spat cher Servl et or Di spat cher Port| et, then no special setup is necessary:
Di spat cher Servl et and Di spat cher Port | et already expose all relevant state.

If you wuse a Servlet 2.5 web container, with requests processed outside of
Spring’s Di spatcher Servl et (for example, when wusing JSF or Struts), you need
to register the org.springfranework. web. cont ext.request. Request Cont ext Li st ener
Servl et Request Li stener. For Servlet 3.0+, this can be done programmatically via the
WebApplicationlnitializer interface. Alternatively, or for older containers, add the following
declaration to your web application’s web. xm file:

<web- app>

<l|istener>
<listener-cl ass>
or g. spri ngf ramewor k. web. cont ext . request . Request Cont ext Li st ener
</listener-class>
</listener>

</ web- app>

Alternatively, if there are issues with your listener setup, consider using Spring’s
Request Context Fil ter. The filter mapping depends on the surrounding web application
configuration, so you have to change it as appropriate.

<web- app>

<filter>
<filter-name>requestContextFilter</filter-name>
<filter-class>org.springframework.web.filter.RequestContextFilter</filter-class>
</filter>
<filter-mppi ng>
<filter-name>requestContextFilter</filter-nane>
<url -pattern>/*</url -pattern>
</filter-mappi ng>

</ web- app>

Di spat cher Servl et, Request Cont ext Li st ener, and Request Cont ext Fi | t er all do exactly
the same thing, namely bind the HTTP request object to the Thr ead that is servicing that request. This
makes beans that are request- and session-scoped available further down the call chain.

Request scope

Consider the following XML configuration for a bean definition:

<bean id="I|ogi nAction" class="com foo. Logi nActi on" scope="request"/>

4.3.19.RELEASE Spring Framework 74

Spring Framework Reference Documentation

The Spring container creates a new instance of the Logi nAct i on bean by using the | ogi nActi on
bean definition for each and every HTTP request. That is, the | ogi nActi on bean is scoped at the
HTTP request level. You can change the internal state of the instance that is created as much as you
want, because other instances created from the same | ogi nAct i on bean definition will not see these
changes in state; they are particular to an individual request. When the request completes processing,
the bean that is scoped to the request is discarded.

When using annotation-driven components or Java Config, the @equest Scope annotation can be
used to assign a component to the r equest scope.

@rRequest Scope

@onponent

public class LoginAction {
...

}

Session scope
Consider the following XML configuration for a bean definition:

<bean id="userPreferences" class="com foo. UserPreferences" scope="session"/>

The Spring container creates a new instance of the User Preferences bean by using the
user Pr ef er ences bean definition for the lifetime of a single HTTP Sessi on. In other words, the
user Pr ef er ences bean is effectively scoped at the HTTP Sessi on level. As with r equest - scoped
beans, you can change the internal state of the instance that is created as much as you want,
knowing that other HTTP Sessi on instances that are also using instances created from the same
user Pr ef er ences bean definition do not see these changes in state, because they are particular to an
individual HTTP Sessi on. When the HTTP Sessi on is eventually discarded, the bean that is scoped
to that particular HTTP Sessi on is also discarded.

When using annotation-driven components or Java Config, the @essi onScope annotation can be
used to assign a component to the sessi on scope.

@essi onScope

@onponent

public class UserPreferences {
I

}

Global session scope
Consider the following bean definition:

<bean id="user Preferences" class="com foo. UserPreferences" scope="gl obal Sessi on"/>

The gl obal Sessi on scope is similar to the standard HTTP Sessi on scope (described above), and
applies only in the context of portlet-based web applications. The portlet specification defines the notion
of a global Sessi on that is shared among all portlets that make up a single portlet web application.
Beans defined at the gl obal Sessi on scope are scoped (or bound) to the lifetime of the global portlet
Sessi on.

If you write a standard Servlet-based web application and you define one or more beans as having
gl obal Sessi on scope, the standard HTTP Sessi on scope is used, and no error is raised.

Application scope

Consider the following XML configuration for a bean definition:

4.3.19.RELEASE Spring Framework 75

Spring Framework Reference Documentation

<bean i d="appPreferences" class="com foo. AppPref erences" scope="application"/>

The Spring container creates a new instance of the AppPreferences bean by using the
appPr ef er ences bean definition once for the entire web application. That is, the appPr ef er ences
bean is scoped at the Ser vl et Cont ext level, stored as a regular Ser vl et Cont ext attribute. This
is somewhat similar to a Spring singleton bean but differs in two important ways: It is a singleton per
Ser vl et Cont ext, not per Spring 'ApplicationContext' (for which there may be several in any given
web application), and it is actually exposed and therefore visible as a Ser vl et Cont ext attribute.

When using annotation-driven components or Java Config, the @\ppl i cat i onScope annotation can
be used to assign a component to the appl i cat i on scope.

@\ppl i cati onScope

@onponent

public class AppPreferences {
...

}
Scoped beans as dependencies

The Spring IoC container manages not only the instantiation of your objects (beans), but also the wiring
up of collaborators (or dependencies). If you want to inject (for example) an HTTP request scoped bean
into another bean of a longer-lived scope, you may choose to inject an AOP proxy in place of the scoped
bean. That is, you need to inject a proxy object that exposes the same public interface as the scoped
object but that can also retrieve the real target object from the relevant scope (such as an HTTP request)
and delegate method calls onto the real object.

Note

You may also use <aop: scoped- pr oxy/ > between beans that are scoped as si ngl et on, with
the reference then going through an intermediate proxy that is serializable and therefore able to
re-obtain the target singleton bean on deserialization.

When declaring <aop: scoped- pr oxy/ > against a bean of scope pr ot ot ype, every method
call on the shared proxy will lead to the creation of a new target instance which the call is then
being forwarded to.

Also, scoped proxies are not the only way to access beans from shorter scopes in a lifecycle-safe
fashion. You may also simply declare your injection point (i.e. the constructor/setter argument
or autowired field) as Obj ect Fact or y<MyTar get Bean>, allowing for a get Obj ect () call to
retrieve the current instance on demand every time it is needed - without holding on to the instance
or storing it separately.

As an extended variant, you may declare Cbj ect Pr ovi der <MyTar get Bean> which delivers
several additional access variants, including get | f Avai | abl e and get | f Uni que.

The JSR-330 variant of this is called Provi der, used with a Provi der <MyTar get Bean>
declaration and a corresponding get () call for every retrieval attempt. See here for more details
on JSR-330 overall.

The configuration in the following example is only one line, but it is important to understand the "why"
as well as the "how" behind it.

4.3.19.RELEASE Spring Framework 76

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww.springfranework. org/ schema/ aop"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
ht t p: // www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmewor k. or g/ schema/ aop
http://ww. springfranework. org/ schema/ aop/ spri ng- aop. xsd" >

<l-- an HITP Sessi on-scoped bean exposed as a proxy -->

<bean id="user Preferences" class="com foo. UserPreferences" scope="session">
<l-- instructs the container to proxy the surrounding bean -->
<aop: scoped- pr oxy/ >

</ bean>

<I-- a singl eton-scoped bean injected with a proxy to the above bean -->
<bean id="user Service" class="com foo. Si npl eUser Servi ce">
<l-- a reference to the proxi ed userPreferences bean -->
<property name="user Preferences" ref="userPreferences"/>
</ bean>
</ beans>

To create such a proxy, you insert a child <aop: scoped- proxy/ > element into a scoped bean
definition (see the section called “Choosing the type of proxy to create” and Chapter 41, XML Schema-
based configuration). Why do definitions of beans scoped at the r equest , sessi on, gl obal Sessi on
and custom-scope levels require the <aop: scoped- pr oxy/ > element? Let's examine the following
singleton bean definition and contrast it with what you need to define for the aforementioned scopes
(note that the following user Pr ef er ences bean definition as it stands is incomplete).

<bean id="userPreferences" class="com foo. UserPreferences" scope="session"/>

<bean id="user Manager" cl ass="com fo0o. User Manager" >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

In the preceding example, the singleton bean user Manager is injected with a reference to the HTTP
Sessi on-scoped bean user Pr ef er ences. The salient point here is that the user Manager beanis a
singleton: it will be instantiated exactly once per container, and its dependencies (in this case only one,
the user Pr ef er ences bean) are also injected only once. This means that the user Manager bean
will only operate on the exact same user Pr ef er ences object, that is, the one that it was originally
injected with.

This is not the behavior you want when injecting a shorter-lived scoped bean into a longer-
lived scoped bean, for example injecting an HTTP Sessi on-scoped collaborating bean as a
dependency into singleton bean. Rather, you need a single user Manager object, and for the
lifetime of an HTTP Sessi on, you need a user Pr ef er ences object that is specific to said HTTP
Sessi on. Thus the container creates an object that exposes the exact same public interface as
the User Pr ef er ences class (ideally an object that is a User Pr ef er ences instance) which can
fetch the real User Pr ef er ences object from the scoping mechanism (HTTP request, Sessi on,
etc.). The container injects this proxy object into the user Manager bean, which is unaware that this
User Pr ef er ences reference is a proxy. In this example, when a User Manager instance invokes
a method on the dependency-injected User Pr ef er ences object, it actually is invoking a method on
the proxy. The proxy then fetches the real User Pr ef er ences object from (in this case) the HTTP
Sessi on, and delegates the method invocation onto the retrieved real User Pr ef er ences object.

Thus you need the following, correct and complete, configuration when injecting r equest -, sessi on-,
and gl obal Sessi on- scoped beans into collaborating objects:

4.3.19.RELEASE Spring Framework 77

Spring Framework Reference Documentation

<bean id="userPreferences" class="com foo. UserPreferences" scope="session">
<aop: scoped- pr oxy/ >
</ bean>

<bean id="user Manager" cl ass="com f 0o. User Manager" >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

Choosing the type of proxy to create

By default, when the Spring container creates a proxy for a bean that is marked up with the
<aop: scoped- pr oxy/ > element, a CGLIB-based class proxy is created.

Note

CGLIB proxies only intercept public method calls! Do not call non-public methods on such a proxy;
they will not be delegated to the actual scoped target object.

Alternatively, you can configure the Spring container to create standard JDK interface-based proxies
for such scoped beans, by specifying f al se for the value of the pr oxy-t ar get - cl ass attribute of
the <aop: scoped- pr oxy/ > element. Using JDK interface-based proxies means that you do not need
additional libraries in your application classpath to effect such proxying. However, it also means that the
class of the scoped bean must implement at least one interface, and that all collaborators into which the
scoped bean is injected must reference the bean through one of its interfaces.

<!l-- Defaul tUserPreferences inplenents the UserPreferences interface -->

<bean id="userPreferences" class="com foo. Defaul t User Pref erences" scope="session">
<aop: scoped- proxy proxy-target-class="fal se"/>

</ bean>

<bean id="user Manager" class="com fo0o. User Manager" >
<property name="user Preferences" ref="userPreferences"/>
</ bean>

For more detailed information about choosing class-based or interface-based proxying, see
Section 11.6, “Proxying mechanisms”.

Custom scopes

The bean scoping mechanism is extensible; You can define your own scopes, or even redefine existing
scopes, although the latter is considered bad practice and you cannot override the built-in si ngl et on
and pr ot ot ype scopes.

Creating a custom scope

To integrate your custom scope(s) into the Spring container, you need to implement the
or g. spri ngframewor k. beans. factory. confi g. Scope interface, which is described in this
section. For an idea of how to implement your own scopes, see the Scope implementations that are
supplied with the Spring Framework itself and the Scope javadocs, which explains the methods you
need to implement in more detail.

The Scope interface has four methods to get objects from the scope, remove them from the scope,
and allow them to be destroyed.

The following method returns the object from the underlying scope. The session scope implementation,
for example, returns the session-scoped bean (and if it does not exist, the method returns a new instance
of the bean, after having bound it to the session for future reference).

4.3.19.RELEASE Spring Framework 78

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/beans/factory/config/Scope.html

Spring Framework Reference Documentation

Obj ect get(String name, ObjectFactory objectFactory)

The following method removes the object from the underlying scope. The session scope implementation
for example, removes the session-scoped bean from the underlying session. The object should be
returned, but you can return null if the object with the specified name is not found.

Obj ect renobve(String nane)

The following method registers the callbacks the scope should execute when it is destroyed or when
the specified object in the scope is destroyed. Refer to the javadocs or a Spring scope implementation
for more information on destruction callbacks.

voi d regi sterDestructionCal | back(String name, Runnabl e destructionCall back)

The following method obtains the conversation identifier for the underlying scope. This identifier is
different for each scope. For a session scoped implementation, this identifier can be the session
identifier.

String getConversationld()

Using a custom scope

After you write and test one or more custom Scope implementations, you need to make the Spring
container aware of your new scope(s). The following method is the central method to register a new
Scope with the Spring container:

voi d regi sterScope(String scopeNane, Scope scope);

This method is declared on the Conf i gur abl eBeanFact ory interface, which is available on most
of the concrete Appl i cati onCont ext implementations that ship with Spring via the BeanFactory

property.

The first argument to the regi st er Scope(..) method is the unigue name associated with a
scope; examples of such names in the Spring container itself are si ngl et on and pr ot ot ype. The
second argument to the r egi st er Scope(..) method is an actual instance of the custom Scope
implementation that you wish to register and use.

Suppose that you write your custom Scope implementation, and then register it as below.

Note

The example below uses Si mpl eThr eadScope which is included with Spring, but not registered
by default. The instructions would be the same for your own custom Scope implementations.

Scope threadScope = new Si npl eThr eadScope();
beanFact ory. regi st er Scope("thread", threadScope);

You then create bean definitions that adhere to the scoping rules of your custom Scope:

<bean id="..." class="..." scope="thread">

With a custom Scope implementation, you are not limited to programmatic registration of the scope.
You can also do the Scope registration declaratively, using the Cust onScopeConf i gur er class:

4.3.19.RELEASE Spring Framework 79

Spring Framework Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: aop="http://ww.springfranework. org/ schema/ aop"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
ht t p: // www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmewor k. or g/ schema/ aop
http://ww. springfranework. org/ schema/ aop/ spri ng- aop. xsd" >

<bean cl ass="org. springfranmewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property name="scopes">
<map>
<entry key="thread">
<bean cl ass="org. spri ngframewor k. cont ext. support. Si npl eThr eadScope"/ >
</entry>
</ map>
</ property>
</ bean>

<bean id="bar" class="x.y.Bar" scope="thread">
<property name="name" val ue="Ri ck"/>
<aop: scoped- pr oxy/ >

</ bean>

<bean id="foo0" class="x.y.Foo">
<property name="bar" ref="bar"/>

</ bean>

</ beans>

Note

When you place <aop: scoped- proxy/ > in a Fact or yBean implementation, it is the factory
bean itself that is scoped, not the object returned from get Obj ect () .

7.6 Customizing the nature of a bean

Lifecycle callbacks

To interact with the container's management of the bean lifecycle, you can implement
the Spring InitializingBean and Disposabl eBean interfaces. The container calls
after PropertiesSet () for the former and dest roy() for the latter to allow the bean to perform
certain actions upon initialization and destruction of your beans.

Tip

The JSR-250 @Post Const ruct and @r eDest r oy annotations are generally considered best
practice for receiving lifecycle callbacks in a modern Spring application. Using these annotations
means that your beans are not coupled to Spring specific interfaces. For details see the section
called “@PostConstruct and @PreDestroy”.

If you don’t want to use the JSR-250 annotations but you are still looking to remove coupling
consider the use of init-method and destroy-method object definition metadata.

Internally, the Spring Framework uses BeanPost Pr ocessor implementations to process any callback
interfaces it can find and call the appropriate methods. If you need custom features or other lifecycle
behavior Spring does not offer out-of-the-box, you can implement a BeanPost Pr ocessor yourself.
For more information, see Section 7.8, “Container Extension Points”.

4.3.19.RELEASE Spring Framework 80

Spring Framework Reference Documentation

In addition to the initialization and destruction callbacks, Spring-managed objects may also implement
the Li f ecycl e interface so that those objects can participate in the startup and shutdown process as
driven by the container’s own lifecycle.

The lifecycle callback interfaces are described in this section.
Initialization callbacks

The org. spri ngframewor k. beans. factory. I nitializingBean interface allows a bean to
perform initialization work after all necessary properties on the bean have been set by the container.
The I ni tializi ngBean interface specifies a single method:

void afterPropertiesSet() throws Exception;

It is recommended that you do not use the | ni ti al i zi ngBean interface because it unnecessarily
couples the code to Spring. Alternatively, use the @ost Const r uct annotation or specify a POJO
initialization method. In the case of XML-based configuration metadata, you use the i ni t - net hod
attribute to specify the name of the method that has a void no-argument signature. With Java config,
you use the i ni t Met hod attribute of @ean, see the section called “Receiving lifecycle callbacks”. For
example, the following:

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" init-nmethod="init"/>

public class Exanpl eBean {

public void init() {
/1 do sone initialization work

}

...is exactly the same as...

<bean id="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public class Another Exanpl eBean i nplenents InitializingBean {

public void afterPropertiesSet() {
/1 do sone initialization work

}

but does not couple the code to Spring.
Destruction callbacks

Implementing the or g. spri ngf ramewor k. beans. f act ory. Di sposabl eBean interface allows a
bean to get a callback when the container containing it is destroyed. The Di sposabl eBean interface
specifies a single method:

voi d destroy() throws Exception;

It is recommended that you do not use the Di sposabl eBean callback interface because it
unnecessarily couples the code to Spring. Alternatively, use the @r eDest r oy annotation or specify
a generic method that is supported by bean definitions. With XML-based configuration metadata, you
use the dest r oy- net hod attribute on the <bean/ >. With Java config, you use the dest r oyMet hod
attribute of @ean, see the section called “Receiving lifecycle callbacks”. For example, the following
definition:

4.3.19.RELEASE Spring Framework 81

Spring Framework Reference Documentation

<bean i d="exanpl el ni t Bean" cl ass="exanpl es. Exanpl eBean" destroy- net hod="cl eanup"/ >

public class Exanpl eBean {

public void cleanup() {
/1 do sonme destruction work (like rel easing pool ed connecti ons)

}

is exactly the same as:

<bean id="exanpl el ni t Bean" cl ass="exanpl es. Anot her Exanpl eBean"/ >

public class Anot her Exanpl eBean i npl enents Di sposabl eBean {

public void destroy() {
/1 do sone destruction work (like rel easing pool ed connecti ons)

}

but does not couple the code to Spring.

Tip

The dest r oy- et hod attribute of a <bean> element can be assigned a special (i nf erred)
value which instructs Spring to automatically detect a public cl ose or shut down method
on the specific bean class (any class that implements j ava. | ang. Aut oCl oseabl e or
j ava. i o. C oseabl e would therefore match). This special (i nf er r ed) value can also be set
on the def aul t - dest r oy- net hod attribute of a <beans> element to apply this behavior to an
entire set of beans (see the section called “Default initialization and destroy methods”). Note that
this is the default behavior with Java config.

Default initialization and destroy methods

When you write initialization and destroy method callbacks that do not use the Spring-specific
InitializingBean and D sposabl eBean callback interfaces, you typically write methods with
namessuchasinit(),initialize(),dispose(),andsoon.Ideally, the names of such lifecycle
callback methods are standardized across a project so that all developers use the same method names
and ensure consistency.

You can configure the Spring container to | ook for named initialization and destroy callback method
names on every bean. This means that you, as an application developer, can write your application
classes and use an initialization callback called i ni t (), without having to configure an init-
nmet hod="ini t" attribute with each bean definition. The Spring 10C container calls that method
when the bean is created (and in accordance with the standard lifecycle callback contract described
previously). This feature also enforces a consistent naming convention for initialization and destroy
method callbacks.

Suppose that your initialization callback methods are named i ni t () and destroy callback methods are
named dest r oy() . Your class will resemble the class in the following example.

4.3.19.RELEASE Spring Framework 82

Spring Framework Reference Documentation

public class DefaultBlogService inplenents Bl ogService {
private Bl ogDao bl ogDao;

public void set Bl ogDao(Bl ogDao bl ogDao) {
this. bl ogDao = bl ogDao;
}

/1 this is (unsurprisingly) the initialization callback nethod
public void init() {
if (this.blogbao == null) {
throw new Il egal StateException("The [bl ogDao] property nust be set.");
}

<beans defaul t-init-nethod="init">
<bean id="bl ogServi ce" class="com foo. Def aul t Bl ogServi ce">
<property nanme="bl ogDao" ref="bl ogDao" />

</ bean>

</ beans>

The presence of the def aul t -i ni t - met hod attribute on the top-level <beans/ > element attribute
causes the Spring IoC container to recognize a method called i ni t on beans as the initialization method
callback. When a bean is created and assembled, if the bean class has such a method, it is invoked
at the appropriate time.

You configure destroy method callbacks similarly (in XML, that is) by using the def aul t - dest r oy-
net hod attribute on the top-level <beans/ > element.

Where existing bean classes already have callback methods that are named at variance with the
convention, you can override the default by specifying (in XML, that is) the method name using the
i nit-nmethodand dest roy- net hod attributes of the <bean/ > itself.

The Spring container guarantees that a configured initialization callback is called immediately after
a bean is supplied with all dependencies. Thus the initialization callback is called on the raw bean
reference, which means that AOP interceptors and so forth are not yet applied to the bean. A target
bean is fully created first, then an AOP proxy (for example) with its interceptor chain is applied. If the
target bean and the proxy are defined separately, your code can even interact with the raw target bean,
bypassing the proxy. Hence, it would be inconsistent to apply the interceptors to the init method, because
doing so would couple the lifecycle of the target bean with its proxy/interceptors and leave strange
semantics when your code interacts directly to the raw target bean.

Combining lifecycle mechanisms

As of Spring 2.5, you have three options for controlling bean lifecycle behavior: the I ni ti al i zi ngBean
and Di sposabl eBean callback interfaces; custom init() and destroy() methods; and the
@ost Const ruct _and @°r eDest r oy annotations. You can combine these mechanisms to control a
given bean.

Note

If multiple lifecycle mechanisms are configured for a bean, and each mechanism is configured
with a different method name, then each configured method is executed in the order listed below.
However, if the same method name is configured - for example, i ni t () for an initialization
method - for more than one of these lifecycle mechanisms, that method is executed once, as
explained in the preceding section.

4.3.19.RELEASE Spring Framework 83

Spring Framework Reference Documentation

Multiple lifecycle mechanisms configured for the same bean, with different initialization methods, are
called as follows:

* Methods annotated with @ost Const r uct

« afterPropertiesSet() asdefinedbythelnitializingBean callback interface
» A custom configured i ni t () method

Destroy methods are called in the same order:

» Methods annotated with @°r eDest r oy

» destroy() as defined by the Di sposabl eBean callback interface

» A custom configured dest r oy() method

Startup and shutdown callbacks

The Li f ecycl e interface defines the essential methods for any object that has its own lifecycle
requirements (e.g. starts and stops some background process):

public interface Lifecycle {
void start();
void stop();

bool ean i sRunni ng();

Any Spring-managed object may implement that interface. Then, when the Appl i cat i onCont ext
itself receives start and stop signals, e.g. for a stop/restart scenario at runtime, it will cascade those
calls to all Li fecycl e implementations defined within that context. It does this by delegating to a
Li f ecycl eProcessor:

public interface Lifecycl eProcessor extends Lifecycle {
voi d onRefresh();

voi d ond ose();

Notice that the Li f ecycl ePr ocessor is itself an extension of the Li f ecycl e interface. It also adds
two other methods for reacting to the context being refreshed and closed.

Tip

Note that the regular or g. spri ngf ramewor k. cont ext . Li f ecycl e interface is just a plain
contract for explicit start/stop notifications and does NOT imply auto-startup at context refresh
time. Consider implementing or g. spri ngf r anmewor k. cont ext . Smart Li f ecycl e instead
for fine-grained control over auto-startup of a specific bean (including startup phases). Also, please
note that stop notifications are not guaranteed to come before destruction: On regular shutdown,
all Li f ecycl e beans will first receive a stop notification before the general destruction callbacks
are being propagated; however, on hot refresh during a context’s lifetime or on aborted refresh
attempts, only destroy methods will be called.

4.3.19.RELEASE Spring Framework 84

Spring Framework Reference Documentation

The order of startup and shutdown invocations can be important. If a "depends-on" relationship exists
between any two objects, the dependent side will start after its dependency, and it will stop before its
dependency. However, at times the direct dependencies are unknown. You may only know that objects
of a certain type should start prior to objects of another type. In those cases, the SnartLi f ecycl e
interface defines another option, namely the get Phase() method as defined on its super-interface,
Phased.

public interface Phased {

i nt get Phase();

public interface SmartLifecycle extends Lifecycle, Phased {
bool ean i sAutoStartup();

voi d stop(Runnabl e cal | back);

When starting, the objects with the lowest phase start first, and when stopping, the reverse order is
followed. Therefore, an object that implements Snmart Li f ecycl e and whose get Phase() method
returns | nt eger . M N_VALUE would be among the first to start and the last to stop. At the other end of
the spectrum, a phase value of | nt eger . MAX_VALUE would indicate that the object should be started
last and stopped first (likely because it depends on other processes to be running). When considering
the phase value, it's also important to know that the default phase for any "normal” Li f ecycl e object
that does not implement Snart Li f ecycl e would be 0. Therefore, any negative phase value would
indicate that an object should start before those standard components (and stop after them), and vice
versa for any positive phase value.

As you can see the stop method defined by Smar t Li f ecycl e accepts a callback. Any implementation
must invoke that callback’s r un() method after that implementation’s shutdown process is complete.
That enables asynchronous shutdown where necessary since the default implementation of the
Li fecycl eProcessor interface, Def aul t Li f ecycl eProcessor, will wait up to its timeout value
for the group of objects within each phase to invoke that callback. The default per-phase timeout
is 30 seconds. You can override the default lifecycle processor instance by defining a bean named
"lifecycleProcessor" within the context. If you only want to modify the timeout, then defining the following
would be sufficient:

<bean id="lifecycl eProcessor" class="org.springfranmework.context.support.DefaultLifecycleProcessor">
<l-- timeout value in mlliseconds -->
<property nanme="ti meout Per Shut dowmnPhase" val ue="10000"/>

</ bean>

As mentioned, the Li f ecycl ePr ocessor interface defines callback methods for the refreshing and
closing of the context as well. The latter will simply drive the shutdown process as if st op() had
been called explicitly, but it will happen when the context is closing. The 'refresh' callback on the
other hand enables another feature of Snart Li f ecycl e beans. When the context is refreshed (after
all objects have been instantiated and initialized), that callback will be invoked, and at that point the
default lifecycle processor will check the boolean value returned by each Smart Li f ecycl e object’s
i sAut oSt art up() method. If "true", then that object will be started at that point rather than waiting for
an explicit invocation of the context’s or its own st ar t () method (unlike the context refresh, the context
start does not happen automatically for a standard context implementation). The "phase" value as well
as any "depends-on" relationships will determine the startup order in the same way as described above.

4.3.19.RELEASE Spring Framework 85

Spring Framework Reference Documentation

Shutting down the Spring loC container gracefully in non-web applications

Note

This section applies only to non-web applications. Spring’s web-based Appl i cat i onCont ext
implementations already have code in place to shut down the Spring IoC container gracefully
when the relevant web application is shut down.

If you are using Spring’s 1oC container in a non-web application environment; for example, in a rich
client desktop environment; you register a shutdown hook with the JVM. Doing so ensures a graceful
shutdown and calls the relevant destroy methods on your singleton beans so that all resources are
released. Of course, you must still configure and implement these destroy callbacks correctly.

To register a shutdown hook, you call the r egi st er Shut downHook () method that is declared on the
Confi gur abl eAppl i cati onCont ext interface:

i mport org.springframework. cont ext. Confi gurabl eAppl i cati onCont ext;
i mport org.springframework. cont ext. support.d assPat hXm Appl i cati onCont ext ;

public final class Boot {

public static void main(final String[] args) throws Exception {
Conf i gur abl eAppli cati onContext ctx = new Cl assPat hXml Appl i cati onCont ext ("“beans. xm ") ;

/1 add a shutdown hook for the above context...
ct x. regi st er Shut downHook() ;

/1 app runs here...

/1 main nethod exits, hook is called prior to the app shutting down...

ApplicationContextAware and BeanNameAware

When an ApplicationContext creates an object instance that implements the
org. spri ngfranmewor k. cont ext. Appl i cati onCont ext Awar e interface, the instance is
provided with a reference to that Appl i cat i onCont ext .

public interface ApplicationContextAware {

voi d set ApplicationContext (ApplicationContext applicationContext) throws BeansExcepti on;

}

Thus beans can manipulate programmatically the Appl i cat i onCont ext that created them, through
the Appl i cat i onCont ext interface, or by casting the reference to a known subclass of this interface,
such as Confi gurabl eAppl i cati onCont ext, which exposes additional functionality. One use
would be the programmatic retrieval of other beans. Sometimes this capability is useful; however, in
general you should avoid it, because it couples the code to Spring and does not follow the Inversion
of Control style, where collaborators are provided to beans as properties. Other methods of the
Appl i cati onCont ext provide access to file resources, publishing application events, and accessing
a MessageSour ce. These additional features are described in Section 7.15, “Additional capabilities of
the ApplicationContext”

As of Spring 2.5, autowiring is another alternative to obtain reference to the Appl i cat i onCont ext .
The "traditional" construct or and byType autowiring modes (as described in the section called
“Autowiring collaborators”) can provide a dependency of type Appl i cat i onCont ext for a constructor
argument or setter method parameter, respectively. For more flexibility, including the ability to autowire

4.3.19.RELEASE Spring Framework 86

Spring Framework Reference Documentation

fields and multiple parameter methods, use the new annotation-based autowiring features. If you do,
the Appl i cati onCont ext is autowired into a field, constructor argument, or method parameter that
is expecting the Appl i cati onCont ext type if the field, constructor, or method in question carries the
@\ut owi r ed annotation. For more information, see the section called “@Autowired”.

When an Appl i cat i onCont ext creates a class that implements the
org. spri ngfranmewor k. beans. f act ory. BeanNaneAwar e interface, the class is provided with a
reference to the name defined in its associated object definition.

public interface BeanNaneAware {

voi d set BeanName(String nane) throws BeansExcepti on;

}

The callback is invoked after population of normal bean properties but before an initialization callback
such as |l nitializi ngBean afterPropertiesSet or a custom init-method.

Other Aware interfaces

Besides Appl i cat i onCont ext Awar e and BeanNaneAwar e discussed above, Spring offers a range
of Awar e interfaces that allow beans to indicate to the container that they require a certain infrastructure
dependency. The most important Awar e interfaces are summarized below - as a general rule, the name
is a good indication of the dependency type:

Table 7.4. Aware interfaces

Name Injected Dependency Explained in...
Appl i cati onCont ext Awar e | Declaring the section called
Appl i cati onCont ext “ApplicationContextAware and
BeanNameAware”

Appl i cati onEvent Publ i sher Bwanepublisher of the enclosing Section 7.15, “Additional
Appl i cati onCont ext capabilities of the
ApplicationContext”

BeanCl assLoader Awar e Class loader used to load the the section called “Instantiating
bean classes. beans”

BeanFact or yAwar e Declaring BeanFact ory the section called
“ApplicationContextAware and
BeanNameAware”

BeanNanmeAwar e Name of the declaring bean the section called
“ApplicationContextAware and
BeanNameAware”

Boot st r apCont ext Awar e Resource adapter Chapter 32, JCA CCI

Boot st r apCont ext the
container runs in. Typically
available only in JCA aware
Appl i cati onCont ext s

LoadTi meV\eaver Awar e Defined weaver for processing the section called “Load-time
class definition at load time weaving with AspectJ in the
Spring Framework”

4.3.19.RELEASE Spring Framework 87

Spring Framework Reference Documentation

Name

Injected Dependency

Explained in...

MessageSour ceAwar e

Configured strategy for
resolving messages (with
support for parametrization and
internationalization)

Section 7.15, “Additional
capabilities of the
ApplicationContext”

Noti fi cati onPubl i sher Awar

Port| et Confi gAwar e

Por t | et Cont ext Awar e

Resour ceLoader Anar e

&pring JMX natification
publisher

Current Port | et Confi g
the container runs in. Valid
only in a web-aware Spring
Appl i cat i onCont ext

Current Por t | et Cont ext
the container runs in. Valid
only in a web-aware Spring
Appl i cati onCont ext

Configured loader for low-level
access to resources

Section 31.7, “Notifications

Chapter 25, Portlet MVC
Framework

Chapter 25, Portlet MVC
Framework

Chapter 8, Resources

Ser vl et Confi gAwar e

Ser vl et Cont ext Awar e

Current Ser vl et Confi g
the container runs in. Valid
only in a web-aware Spring
Appl i cati onCont ext

Current Ser vl et Cont ext
the container runs in. Valid
only in a web-aware Spring
Appl i cati onCont ext

Chapter 22, Web MVC
framework

Chapter 22, Web MVC
framework

Note again that usage of these interfaces ties your code to the Spring APl and does not follow
the Inversion of Control style. As such, they are recommended for infrastructure beans that require
programmatic access to the container.

7.7 Bean definition inheritance

A bean definition can contain a lot of configuration information, including constructor arguments, property
values, and container-specific information such as initialization method, static factory method name,
and so on. A child bean definition inherits configuration data from a parent definition. The child definition
can override some values, or add others, as needed. Using parent and child bean definitions can save
a lot of typing. Effectively, this is a form of templating.

If you work with an ApplicationContext interface programmatically, child bean definitions
are represented by the ChildBeanDefinition class. Most users do not work with
them on this level, instead configuring bean definitions declaratively in something like the
Cl assPat hXm Appl i cati onCont ext. When you use XML-based configuration metadata, you
indicate a child bean definition by using the par ent attribute, specifying the parent bean as the value
of this attribute.

4.3.19.RELEASE Spring Framework 88

Spring Framework Reference Documentation

<bean id="inheritedTest Bean" abstract="true"
cl ass="org. springframewor k. beans. Test Bean" >
<property name="name" val ue="parent"/>
<property name="age" val ue="1"/>
</ bean>

<bean id="inheritsWthDi fferentd ass"
cl ass="org. springfranmewor k. beans. Deri vedTest Bean"
parent ="inheritedTest Bean" init-method="initialize">
<property nanme="nane" val ue="override"/>
<l-- the age property value of 1 will be inherited fromparent -->
</ bean>

A child bean definition uses the bean class from the parent definition if none is specified, but can also
override it. In the latter case, the child bean class must be compatible with the parent, that is, it must
accept the parent’s property values.

A child bean definition inherits scope, constructor argument values, property values, and method
overrides from the parent, with the option to add new values. Any scope, initialization method, destroy
method, and/or st at i ¢ factory method settings that you specify will override the corresponding parent
settings.

The remaining settings are always taken from the child definition: depends on, autowire mode,
dependency check, singleton, lazy init.

The preceding example explicitly marks the parent bean definition as abstract by using the abst r act
attribute. If the parent definition does not specify a class, explicitly marking the parent bean definition
as abstract is required, as follows:

<bean id="inheritedTest BeanWthout Gl ass" abstract="true">
<property name="nanme" val ue="parent"/>
<property name="age" val ue="1"/>

</ bean>

<bean id="inheritsWthC ass" cl ass="org. spri ngfranmework. beans. Deri vedTest Bean"
parent ="i nheritedTest BeanWthout d ass" init-nmethod="initialize">
<property name="nanme" val ue="override"/>
<l-- age will inherit the value of 1 fromthe parent bean definition-->
</ bean>

The parent bean cannot be instantiated on its own because it is incomplete, and it is also explicitly
marked as abstract. When a definition is abst r act like this, it is usable only as a pure template
bean definition that serves as a parent definition for child definitions. Trying to use such an
abstract parent bean on its own, by referring to it as a ref property of another bean or doing an
explicit get Bean() call with the parent bean id, returns an error. Similarly, the container’s internal
prel nstanti at eSi ngl et ons() method ignores bean definitions that are defined as abstract.

Note

Appl i cati onCont ext pre-instantiates all singletons by default. Therefore, it is important (at
least for singleton beans) that if you have a (parent) bean definition which you intend to use only
as atemplate, and this definition specifies a class, you must make sure to set the abstract attribute
to true, otherwise the application context will actually (attempt to) pre-instantiate the abst r act
bean.

4.3.19.RELEASE Spring Framework 89

Spring Framework Reference Documentation

7.8 Container Extension Points

Typically, an application developer does not need to subclass Appl i cat i onCont ext implementation
classes. Instead, the Spring 10C container can be extended by plugging in implementations of special
integration interfaces. The next few sections describe these integration interfaces.

Customizing beans using a BeanPostProcessor

The BeanPost Pr ocessor interface defines callback methods that you can implement to provide your
own (or override the container’'s default) instantiation logic, dependency-resolution logic, and so forth. If
you want to implement some custom logic after the Spring container finishes instantiating, configuring,
and initializing a bean, you can plug in one or more BeanPost Pr ocessor implementations.

You can configure multiple BeanPost Processor instances, and you can control the order in
which these BeanPost Processors execute by setting the order property. You can set this
property only if the BeanPost Processor implements the Or der ed interface; if you write your own
BeanPost Processor you should consider implementing the Or der ed interface too. For further
details, consult the javadocs of the BeanPost Pr ocessor and Or der ed interfaces. See also the note
below on programmatic registration of BeanPost Pr ocessor s.

Note

BeanPost Pr ocessor s operate on bean (or object) instances; that is to say, the Spring 1oC
container instantiates a bean instance and then BeanPost Pr ocessor s do their work.

BeanPost Pr ocessor s are scoped per-container. This is only relevant if you are using container
hierarchies. If you define a BeanPost Processor in one container, it will only post-process the
beans in that container. In other words, beans that are defined in one container are not post-
processed by a BeanPost Pr ocessor defined in another container, even if both containers are
part of the same hierarchy.

To change the actual bean definition (i.e., the blueprint that defines the bean), you instead
need to use a BeanFact or yPost Processor as described in the section called “Customizing
configuration metadata with a BeanFactoryPostProcessor”.

The or g. spri ngf ranewor k. beans. fact ory. confi g. BeanPost Pr ocessor interface consists
of exactly two callback methods. When such a class is registered as a post-processor with the container,
for each bean instance that is created by the container, the post-processor gets a callback from the
container both before container initialization methods (such as InitializingBean's afterPropertiesSet()
and any declared init method) are called as well as after any bean initialization callbacks. The post-
processor can take any action with the bean instance, including ignoring the callback completely. A
bean post-processor typically checks for callback interfaces or may wrap a bean with a proxy. Some
Spring AOP infrastructure classes are implemented as bean post-processors in order to provide proxy-
wrapping logic.

An Appl i cati onCont ext automatically detects any beans that are defined in the configuration
metadata which implement the BeanPost Pr ocessor interface. The Appl i cat i onCont ext registers
these beans as post-processors so that they can be called later upon bean creation. Bean post-
processors can be deployed in the container just like any other beans.

Note that when declaring a BeanPost Pr ocessor using an @ean factory method on a configuration
class, the return type of the factory method should be the implementation class itself or at least

4.3.19.RELEASE Spring Framework 90

Spring Framework Reference Documentation

the org. springframework. beans. factory. confi g. BeanPost Processor interface, clearly
indicating the post-processor nature of that bean. Otherwise, the Appl i cat i onCont ext won't be able
to autodetect it by type before fully creating it. Since a BeanPost Pr ocessor needs to be instantiated
early in order to apply to the initialization of other beans in the context, this early type detection is critical.

Programmatically registering BeanPostProcessors

While the recommended approach for BeanPost Processor registration is through
Appl i cati onCont ext auto-detection (as described above), it is also possible to register them
programmatically against a Conf i gur abl eBeanFact or y using the addBeanPost Pr ocessor
method. This can be useful when needing to evaluate conditional logic before registration,
or even for copying bean post processors across contexts in a hierarchy. Note however
that BeanPost Processor s added programmatically do not respect the Or der ed interface.
Here it is the order of registration that dictates the order of execution. Note also that
BeanPost Processor s registered programmatically are always processed before those
registered through auto-detection, regardless of any explicit ordering.

BeanPostProcessors and AOP auto-proxying

Classes that implement the BeanPost Pr ocessor interface are special and are treated differently
by the container. All BeanPost Processors and beans that they reference directly are
instantiated on startup, as part of the special startup phase of the Appl i cat i onCont ext . Next,
all BeanPost Pr ocessor s are registered in a sorted fashion and applied to all further beans in the
container. Because AOP auto-proxying is implemented as a BeanPost Pr ocessor itself, neither
BeanPost Pr ocessor s nor the beans they reference directly are eligible for auto-proxying, and
thus do not have aspects woven into them.

For any such bean, you should see an informational log message: "Bean foo is not eligible
for getting processed by all BeanPostProcessor interfaces (for example: not eligible for auto-

proxying)".

Note that if you have beans wired into your BeanPost Processor using autowiring or
@=esour ce (which may fall back to autowiring), Spring might access unexpected beans when
searching for type-matching dependency candidates, and therefore make them ineligible for
auto-proxying or other kinds of bean post-processing. For example, if you have a dependency
annotated with @Resour ce where the field/setter name does not directly correspond to the
declared name of a bean and no name attribute is used, then Spring will access other beans for
matching them by type.

The following examples show how to write, register, and use BeanPost Processors in an
Appl i cati onCont ext .

Example: Hello World, BeanPostProcessor-style

This first example illustrates basic usage. The example shows a custom BeanPost Processor
implementation that invokes the t oSt ri ng() method of each bean as it is created by the container
and prints the resulting string to the system console.

Find below the custom BeanPost Pr ocessor implementation class definition:

4.3.19.RELEASE Spring Framework 91

Spring Framework Reference Documentation

package scripting;
i mport org.springfranmework. beans. factory. confi g. BeanPost Processor;
public class InstantiationTraci ngBeanPost Processor i npl enents BeanPost Processor {

/] sinply return the instantiated bean as-is
public Object postProcessBeforelnitialization(Object bean, String beanNane) {
return bean; // we could potentially return any object reference here...

}

public Object postProcessAfterlnitialization(Object bean, String beanNane) {
Systemout.println("Bean '" + beanNanme + "' created : " + bean.toString());
return bean;

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. spri ngframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: | ang="http: //ww. spri ngfranmewor k. or g/ schenma/ | ang"
xsi : schemaLocati on="http://ww. spri ngfranmework. or g/ schena/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
ht t p: / / www. spri ngf ramewor k. or g/ schena/ | ang
ht t p: / / www. spri ngf ramewor k. or g/ schena/ | ang/ spri ng-| ang. xsd" >

<l ang: gr oovy id="nmessenger"
script-source="cl asspat h: or g/ spri ngf ramewor k/ scri pti ng/ gr oovy/ Messenger. gr oovy" >
<l ang: property nanme="nessage" val ue="Fiona Apple |Is Just So Dreany."/>
</l ang: gr oovy>

<l--

when the above bean (nessenger) is instantiated, this custom

BeanPost Processor inplenentation will output the fact to the system consol e
oo

<bean cl ass="scripting.|nstantiationTraci ngBeanPost Processor"/>

</ beans>

Notice how the | nst anti ati onTr aci ngBeanPost Processor is simply defined. It does not even
have a name, and because it is a bean it can be dependency-injected just like any other bean. (The
preceding configuration also defines a bean that is backed by a Groovy script. The Spring dynamic
language support is detailed in the chapter entitled Chapter 35, Dynamic language support.)

The following simple Java application executes the preceding code and configuration:

i nport org.springfranmework. context. Appl i cati onCont ext;
i mport org.springfranmework. cont ext. support.C assPat hXm Appl i cati onCont ext ;
i nport org.springframework. scripting. Messenger;

public final class Boot {

public static void main(final String[] args) throws Exception {
Appl i cationContext ctx = new C assPat hXm Appli cati onContext ("scripting/ beans.xm");
Messenger nessenger = (Messenger) ctx.getBean("nessenger");
System out. printl n(nessenger);

The output of the preceding application resembles the following:

Bean 'nessenger' created : org.springframework.scripting.groovy. GoovyMessenger @72961
org. springframewor k. scri pting. groovy. G oovyMessenger @72961

4.3.19.RELEASE Spring Framework 92

Spring Framework Reference Documentation

Example: The RequiredAnnotationBeanPostProcessor

Using callback interfaces or annotations in conjunction with a custom BeanPost Processor
implementation is a common means of extending the Spring IoC container. An example is Spring’s
Requi r edAnnot at i onBeanPost Processor - a BeanPost Processor implementation that ships
with the Spring distribution which ensures that JavaBean properties on beans that are marked with an
(arbitrary) annotation are actually (configured to be) dependency-injected with a value.

Customizing configuration metadata with a BeanFactoryPostProcessor

The next extension point that we will look at is
the org.springfranmework. beans. factory. confi g. BeanFact or yPost Processor. The
semantics of this interface are similar to those of the BeanPost Pr ocessor , with one major difference:
BeanFact or yPost Pr ocessor operates on the bean configuration metadata; that is, the Spring loC
container allows a BeanFact or yPost Pr ocessor to read the configuration metadata and potentially
change it before the container instantiates any beans other than BeanFact or yPost Pr ocessor s.

You can configure multiple BeanFact or yPost Processor s, and you can control the order in which
these BeanFact or yPost Pr ocessor s execute by setting the or der property. However, you can only
set this property if the BeanFact or yPost Processor implements the Or der ed interface. If you write
your own BeanFact or yPost Pr ocessor, you should consider implementing the Or der ed interface
too. Consult the javadocs of the BeanFact or yPost Processor and Or der ed interfaces for more
details.

Note

If you want to change the actual bean instances (i.e., the objects that are created from the
configuration metadata), then you instead need to use a BeanPost Processor (described
above in the section called “Customizing beans using a BeanPostProcessor”). While it is
technically possible to work with bean instances within a BeanFact or yPost Pr ocessor (e.g.,
using BeanFact ory. get Bean()), doing so causes premature bean instantiation, violating the
standard container lifecycle. This may cause negative side effects such as bypassing bean post
processing.

Also, BeanFact or yPost Pr ocessor s are scoped per-container. This is only relevant if you are
using container hierarchies. If you define a BeanFact or yPost Pr ocessor in one container, it
will only be applied to the bean definitions in that container. Bean definitions in one container
will not be post-processed by BeanFact or yPost Pr ocessor s in another container, even if both
containers are part of the same hierarchy.

A bean factory post-processor is executed automatically when it is declared inside an
ApplicationContext, in order to apply changes to the configuration metadata that
define the container. Spring includes a number of predefined bean factory post-processors,
such as PropertyOverrideConfigurer and PropertyPl acehol der Confi gurer. A custom
BeanFact or yPost Processor can also be used, for example, to register custom property editors.

An Appl i cati onCont ext automatically detects any beans that are deployed into it that implement
the BeanFact or yPost Pr ocessor interface. It uses these beans as bean factory post-processors, at
the appropriate time. You can deploy these post-processor beans as you would any other bean.

4.3.19.RELEASE Spring Framework 93

Spring Framework Reference Documentation

Note

As with BeanPostProcessors , you typically do not want to configure
BeanFact or yPost Processors for lazy initialization. If no other bean references a
Bean(Fact ory) Post Processor, that post-processor will not get instantiated at all. Thus,
marking it for lazy initialization will be ignored, and the Bean(Fact or y) Post Processor will be
instantiated eagerly even if you setthe def aul t - | azy-i ni t attribute tot r ue on the declaration
of your <beans /> element.

Example: the Class name substitution PropertyPlaceholderConfigurer

You use the PropertyPl acehol der Confi gurer to externalize property values from a bean
definition in a separate file using the standard Java Pr operti es format. Doing so enables the person
deploying an application to customize environment-specific properties such as database URLs and
passwords, without the complexity or risk of modifying the main XML definition file or files for the
container.

Consider the following XML-based configuration metadata fragment, where a Dat aSour ce with
placeholder values is defined. The example shows properties configured from an external Pr operti es
file. At runtime, a PropertyPl acehol der Confi gur er is applied to the metadata that will replace
some properties of the DataSource. The values to replace are specified as placeholders of the form
${ property-nane} which follows the Ant/log4j/ JSP EL style.

<bean cl ass="org. springframework. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="| ocati ons" val ue="cl asspat h: coni f oo/ j dbc. properties"/>
</ bean>

<bean i d="dat aSource" destroy-nethod="cl ose"
cl ass="or g. apache. cormons. dbcp. Basi cDat aSour ce" >
<property name="driverd assNanme" val ue="${j dbc. dri verC assNane}"/ >
<property name="url" val ue="${jdbc.url}"/>
<property nanme="usernanme" val ue="${j dbc. usernane}"/>
<property name="password" val ue="${j dbc. password}"/>
</ bean>

The actual values come from another file in the standard Java Pr operti es format:

jdbc. driverd assNane=or g. hsql db. j dbcDri ver
jdbc. url =j dbc: hsql db: hsql : // producti on: 9002
j dbc. user nane=sa

j dbc. passwor d=r oot

Therefore, the string ${j dbc. username} is replaced at runtime with the value 'sa’, and
the same applies for other placeholder values that match keys in the properties file. The
Pr opert yPl acehol der Conf i gur er checks for placeholders in most properties and attributes of a
bean definition. Furthermore, the placeholder prefix and suffix can be customized.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property placeholders
with a dedicated configuration element. One or more locations can be provided as a comma-separated
listin the | ocat i on attribute.

<cont ext: property-pl acehol der | ocati on="cl asspat h: coni f oo/ j dbc. properties"/>

The PropertyPl acehol der Confi gur er not only looks for properties in the Pr operti es file you
specify. By default it also checks against the Java Syst emproperties if it cannot find a property in the
specified properties files. You can customize this behavior by setting the syst enProperti esMbde
property of the configurer with one of the following three supported integer values:

4.3.19.RELEASE Spring Framework 94

Spring Framework Reference Documentation

» never (0): Never check system properties

« fallback (1): Check system properties if not resolvable in the specified properties files. This is the
default.

» override (2): Check system properties first, before trying the specified properties files. This allows
system properties to override any other property source.

Consult the Pr opert yPl acehol der Conf i gur er javadocs for more information.
Tip

You can use the PropertyPl acehol der Confi gurer to substitute class names, which is
sometimes useful when you have to pick a particular implementation class at runtime. For
example:

<bean cl ass="org. springframework. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="| ocati ons">
<val ue>cl asspat h: conl f oo/ strat egy. properti es</val ue>
</ property>
<property name="properties">
<val ue>cust om strat egy. cl ass=com f 0oo. Def aul t St r at egy</ val ue>
</ property>
</ bean>

<bean id="serviceStrategy" class="${custom strategy.class}"/>

If the class cannot be resolved at runtime to a valid class, resolution of the bean fails when
it is about to be created, which is during the pr el nst anti at eSi ngl et ons() phase of an
Appl i cati onCont ext for a non-lazy-init bean.

Example: the PropertyOverrideConfigurer

The PropertyOverrideConfigurer, another bean factory post-processor, resembles the
PropertyPl acehol der Confi gur er, but unlike the latter, the original definitions can have default
values or no values at all for bean properties. If an overriding Pr operti es file does not have an entry
for a certain bean property, the default context definition is used.

Note that the bean definition is not aware of being overridden, so it is not immediately obvious
from the XML definition file that the override configurer is being used. In case of multiple
PropertyOverri deConfi gurer instances that define different values for the same bean property,
the last one wins, due to the overriding mechanism.

Properties file configuration lines take this format:

beanNane. pr operty=val ue

For example:

dat aSour ce. dri ver Cl assName=com nysql . j dbc. Dri ver
dat aSour ce. ur | =j dbc: nysql : nydb

This example file can be used with a container definition that contains a bean called dataSource, which
has driver and url properties.

Compound property names are also supported, as long as every component of the path except the
final property being overridden is already non-null (presumably initialized by the constructors). In this
example...

4.3.19.RELEASE Spring Framework 95

Spring Framework Reference Documentation

f oo. fred. bob. sammy=123

i. the sammy property of the bob property of the f r ed property of the f 00 bean is set to the scalar
value 123.

Note

Specified override values are always literal values; they are not translated into bean references.
This convention also applies when the original value in the XML bean definition specifies a bean
reference.

With the cont ext namespace introduced in Spring 2.5, it is possible to configure property overriding
with a dedicated configuration element:

<cont ext: property-override | ocati on="cl asspat h: overri de. properties"/>

Customizing instantiation logic with a FactoryBean

Implement the or g. spri ngf ramewor k. beans. f act ory. Fact or yBean interface for objects that
are themselves factories.

The Fact or yBean interface is a point of pluggability into the Spring loC container’s instantiation logic.
If you have complex initialization code that is better expressed in Java as opposed to a (potentially)
verbose amount of XML, you can create your own Fact or yBean, write the complex initialization inside
that class, and then plug your custom Fact or yBean into the container.

The Fact or yBean interface provides three methods:

« (bj ect get bject(): returns an instance of the object this factory creates. The instance can
possibly be shared, depending on whether this factory returns singletons or prototypes.

* bool ean i sSi ngl et on() : returnst r ue if this Fact or yBean returns singletons, f al se otherwise.

» Cl ass get Obj ect Type() : returns the object type returned by the get Cbj ect () method or nul |
if the type is not known in advance.

The Fact or yBean concept and interface is used in a number of places within the Spring Framework;
more than 50 implementations of the Fact or yBean interface ship with Spring itself.

When you need to ask a container for an actual Fact or yBean instance itself instead of the bean
it produces, preface the bean’s id with the ampersand symbol (& when calling the get Bean()
method of the Appl i cati onCont ext . So for a given Fact or yBean with an id of nyBean, invoking
get Bean(" nyBean") on the container returns the product of the Fact or yBean; whereas, invoking
get Bean(" &ryBean") returns the Fact or yBean instance itself.

7.9 Annotation-based container configuration

Are annotations better than XML for configuring Spring?

The introduction of annotation-based configurations raised the question of whether this approach
is 'better' than XML. The short answer is it depends. The long answer is that each approach has
its pros and cons, and usually it is up to the developer to decide which strategy suits them better.
Due to the way they are defined, annotations provide a lot of context in their declaration, leading
to shorter and more concise configuration. However, XML excels at wiring up components without

4.3.19.RELEASE Spring Framework 96

Spring Framework Reference Documentation

touching their source code or recompiling them. Some developers prefer having the wiring close
to the source while others argue that annotated classes are no longer POJOs and, furthermore,
that the configuration becomes decentralized and harder to control.

No matter the choice, Spring can accommodate both styles and even mix them together. It's worth
pointing out that through its JavaConfig option, Spring allows annotations to be used in a non-
invasive way, without touching the target components source code and that in terms of tooling, all
configuration styles are supported by the Spring Tool Suite.

An alternative to XML setups is provided by annotation-based configuration which rely on the bytecode
metadata for wiring up components instead of angle-bracket declarations. Instead of using XML to
describe a bean wiring, the developer moves the configuration into the component class itself by using
annotations on the relevant class, method, or field declaration. As mentioned in the section called
“Example: The RequiredAnnotationBeanPostProcessor”, using a BeanPost Pr ocessor in conjunction
with annotations is a common means of extending the Spring loC container. For example, Spring
2.0 introduced the possibility of enforcing required properties with the @Required annotation. Spring
2.5 made it possible to follow that same general approach to drive Spring’s dependency injection.
Essentially, the @\ut owi r ed annotation provides the same capabilities as described in the section
called “Autowiring collaborators” but with more fine-grained control and wider applicability. Spring 2.5
also added support for JSR-250 annotations such as @Post Const r uct, and @°r eDest r oy. Spring
3.0 added support for JSR-330 (Dependency Injection for Java) annotations contained in the javax.inject
package such as @ nj ect and @Naned. Details about those annotations can be found in the relevant
section.

Note

Annotation injection is performed before XML injection, thus the latter configuration will override
the former for properties wired through both approaches.

As always, you can register them as individual bean definitions, but they can also be implicitly registered
by including the following tag in an XML-based Spring configuration (notice the inclusion of the cont ext
namespace):

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schenma/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: context ="http://ww. springfranmework. or g/ schema/ cont ext "
xsi : schemaLocat i on="http://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schena/ cont ext
http://ww. spri ngfranmework. or g/ schema/ cont ext/ spri ng-cont ext . xsd">

<cont ext: annot ati on-confi g/ >

</ beans>

(The implicitly registered post-processors include Aut owi r edAnnot at i onBeanPost Pr ocessor,
CommonAnnot at i onBeanPost Pr ocessor, Per si st enceAnnot at i onBeanPost Pr ocessor, as
well as the aforementioned Requi r edAnnot at i onBeanPost Pr ocessor .)

Note

<cont ext : annot at i on- conf i g/ >only looks for annotations on beans in the same application
context in which it is defined. This means that, if you put <cont ext : annot at i on- confi g/ >

4.3.19.RELEASE Spring Framework 97

https://spring.io/tools/sts
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/beans/factory/annotation/AutowiredAnnotationBeanPostProcessor.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/context/annotation/CommonAnnotationBeanPostProcessor.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/orm/jpa/support/PersistenceAnnotationBeanPostProcessor.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/beans/factory/annotation/RequiredAnnotationBeanPostProcessor.html

Spring Framework Reference Documentation

in a WebAppl i cat i onCont ext for a Di spat cher Servl et it only checks for @\ut owi r ed
beans in your controllers, and not your services. See Section 22.2, “The DispatcherServlet” for
more information.

@Required

The @Requi r ed annotation applies to bean property setter methods, as in the following example:

public class SinpleMvieLister {
private MovieFi nder novi eFi nder;

@Requi red
public void set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

...

This annotation simply indicates that the affected bean property must be populated at configuration time,
through an explicit property value in a bean definition or through autowiring. The container throws an
exception if the affected bean property has not been populated; this allows for eager and explicit failure,
avoiding Nul | Poi nt er Except i ons or the like later on. It is still recommended that you put assertions
into the bean class itself, for example, into an init method. Doing so enforces those required references
and values even when you use the class outside of a container.

@Autowired

Note

JSR 330's @ nj ect annotation can be used in place of Spring’s @\ut owi r ed annotation in the
examples below. See here for more details.

You can apply the @Aut owi r ed annotation to constructors:

public class Myvi eRecommender {
private final CustonerPreferenceDao custonerPreferenceDao;
@\ut owi red
publ i ¢ Movi eReconmender (Cust oner Pr ef er enceDao cust oner Pr ef er enceDao) {

this.custonerPreferencebDao = custoner PreferencebDao;

}

...

Note

As of Spring Framework 4.3, an @\ut owi r ed annotation on such a constructor is no longer
necessary if the target bean only defines one constructor to begin with. However, if several
constructors are available, at least one must be annotated to teach the container which one to use.

As expected, you can also apply the @\ut owi r ed annotation to "traditional" setter methods:

4.3.19.RELEASE Spring Framework 98

Spring Framework Reference Documentation

public class SinpleMvielister {
private MvieFi nder novi eFi nder;
@\ut owi r ed

public voi d set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

Il

You can also apply the annotation to methods with arbitrary names and/or multiple arguments:

public class Myvi eRecommender {
private MyvieCatal og novi eCat al og;
private CustonerPreferenceDao customnerPreferenceDao;

@\ut owi r ed
public void prepare(MvieCatal og novi eCat al og,
Cust orrer Pr ef er enceDao cust oner Pr ef er enceDao) {
this. novi eCat al og = novi eCat al og;
this.custonerPreferencebDao = custoner PreferencebDao;

You can apply @\ut owi r ed to fields as well and even mix it with constructors:

public class Myvi eRecommender {
private final CustonerPreferenceDao custonerPreferenceDao;

@\ut owi r ed
private MyvieCatal og novi eCat al og;

@\ut owi r ed
publi ¢ Movi eReconmender (Cust oner Pr ef er enceDao cust oner Pr ef er enceDao) {
t hi s. cust oner Pref erenceDao = cust oner Pr ef er enceDao;

}

Il

Tip

the injection points referring to your bean).

Make sure that your target components (e.g. Movi eCat al og, Cust orrer Pr ef er encebDao) are
consistently declared by the type that you are using for your @\ut owi r ed-annotated injection
points. Otherwise injection may fail due to no type match found at runtime.

For XML-defined beans or component classes found through a classpath scan, the container
usually knows the concrete type upfront. However, for @ean factory methods, you need to
make sure that the declared return type is sufficiently expressive. For components implementing
several interfaces or for components potentially referred to by their implementation type, consider
declaring the most specific return type on your factory method (at least as specific as required by

It is also possible to provide all beans of a particular type from the Appl i cat i onCont ext by adding

the annotation to a field or method that expects an array of that type:

4.3.19.RELEASE Spring Framework

99

Spring Framework Reference Documentation

public class Myvi eRecommender {

@\ut owi r ed
private MovieCatal og[] novi eCat al ogs;

...

The same applies for typed collections:

public class Myvi eRecommender {
private Set<Mvi eCatal og> novi eCat al ogs;
@\ut owi r ed
public voi d set Mvi eCat al ogs(Set <Movi eCat al og> novi eCat al ogs) {

t hi s. novi eCat al ogs = novi eCat al ogs;

}

N/

Tip

Your target beans can implement the or g. spri ngf r anewor k. cor e. Or der ed interface or use
the @ der or standard @i ori t y annotation if you want items in the array or list to be sorted
in a specific order. Otherwise their order will follow the registration order of the corresponding
target bean definitions in the container.

The @ der annotation may be declared at target class level but also on @ean methods,
potentially being very individual per bean definition (in case of multiple definitions with the same
bean class). @x der values may influence priorities at injection points, but please be aware
that they do not influence singleton startup order which is an orthogonal concern determined by
dependency relationships and @ependsOn declarations.

Note that the standard j avax. annot ati on. Pri ori t y annotation is not available at the @ean
level since it cannot be declared on methods. Its semantics can be modeled through @ der
values in combination with @°r i mar y on a single bean per type.

Even typed Maps can be autowired as long as the expected key type is St ri ng. The Map values will

contain all beans of the expected type, and the keys will contain the corresponding bean names:

public class Myvi eRecommender {
private Map<String, MvieCatal og> novi eCat al ogs;
@\ut owi r ed
public void set Mvi eCat al ogs(Map<String, Mvi eCatal og> novi eCat al ogs) {

t hi s. novi eCat al ogs = novi eCat al ogs;

}

...

By default, the autowiring fails whenever zero candidate beans are available; the default behavior is to
treat annotated methods, constructors, and fields as indicating required dependencies. This behavior

can be changed as demonstrated below.

4.3.19.RELEASE Spring Framework

Spring Framework Reference Documentation

public class SinpleMvielister {
private MvieFi nder novi eFi nder;
@\wut owi red(required = fal se)

public voi d set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

...

Note

Only one annotated constructor per-class can be marked as required, but multiple non-required
constructors can be annotated. In that case, each is considered among the candidates and Spring
uses the greediest constructor whose dependencies can be satisfied, that is the constructor that
has the largest number of arguments.

The required attribute of @A\ut owi r ed is recommended over the @Requi r ed annotation. The
required attribute indicates that the property is not required for autowiring purposes, the property
is ignored if it cannot be autowired. @Requi r ed, on the other hand, is stronger in that it enforces
the property that was set by any means supported by the container. If no value is injected, a
corresponding exception is raised.

Alternatively, you may express the non-required nature of a particular dependency through Java 8’s
java.util.Optional:

public class SinpleMvielister {

@\ut owi r ed
public voi d set Mvi eFi nder (Opti onal <Mbvi eFi nder > novi eFi nder) {

}

You <can also wuse @\utow red for interfaces that are well-known resolvable
dependencies: BeanFactory, ApplicationContext, Environnent, ResourcelLoader,
Appl i cationEvent Publ i sher, and MessageSource. These interfaces and their extended
interfaces, such as Confi gur abl eAppl i cati onCont ext or ResourcePatt ernResol ver, are
automatically resolved, with no special setup necessary.

public class Myvi eRecommender {

@\ut owi r ed
private ApplicationContext context;

publ i c Myvi eRecommender () {
}

N/

Note

@\wutowi red, @nject, @esource, and @al ue annotations are handled by Spring
BeanPost Pr ocessor implementations which in turn means that you cannot apply these
annotations within your own BeanPost Pr ocessor or BeanFact or yPost Processor types (if
any). These types must be ‘wired up' explicitly via XML or using a Spring @ean method.

4.3.19.RELEASE Spring Framework 101

Spring Framework Reference Documentation

Fine-tuning annotation-based autowiring with @Primary

Because autowiring by type may lead to multiple candidates, it is often necessary to have more
control over the selection process. One way to accomplish this is with Spring’s @°r i nar y annotation.
@ri mary indicates that a particular bean should be given preference when multiple beans are
candidates to be autowired to a single-valued dependency. If exactly one ‘primary’ bean exists among
the candidates, it will be the autowired value.

Let's assume we have the following configuration that defines fi r st Movi eCat al og as the primary
Movi eCat al og.

@onfiguration
public class MvieConfiguration {

@Bean
@rimary
public MvieCatalog firstMvieCatalog() { ... }

@Bean
public MyvieCatal og secondMvi eCatalog() { ... }

/1

With such configuration, the following Mbvi eReconmender will be autowired with the
firstMvieCatal og.

public class MyvieRecommender {

@\ut owi r ed
private MyvieCatal og novi eCat al og;

/1

The corresponding bean definitions appear as follows.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: context ="http://ww. springframework. or g/ schema/ cont ext "
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schena/ beans
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
ht t p: / / www. spri ngf ramewor k. or g/ schena/ cont ext
http://ww. spri ngfranework. or g/ schenma/ cont ext/ spri ng-cont ext . xsd">

<cont ext : annot ati on- confi g/ >
<bean cl ass="exanpl e. Si npl eMovi eCat al og" primary="true">
<l-- inject any dependencies required by this bean -->
</ bean>
<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<I-- inject any dependencies required by this bean -->
</ bean>

<bean id="novi eRecomender" cl ass="exanpl e. Movi eRecommender "/ >

</ beans>

Fine-tuning annotation-based autowiring with qualifiers

@rimary is an effective way to use autowiring by type with several instances when one primary
candidate can be determined. When more control over the selection process is required, Spring's

4.3.19.RELEASE Spring Framework 102

Spring Framework Reference Documentation

@ual i fi er annotation can be used. You can associate qualifier values with specific arguments,
narrowing the set of type matches so that a specific bean is chosen for each argument. In the simplest
case, this can be a plain descriptive value:

public class Myvi eRecommender {
@\ut owi r ed
@alifier("min")
private Movi eCatal og novi eCat al og;

/1

The @ual i fi er annotation can also be specified on individual constructor arguments or method
parameters:

public class Myvi eRecommender {
private Movi eCat al og novi eCat al og;
private CustonerPreferenceDao custoner PreferenceDao;

@\ut owi r ed
public void prepare(@ualifier("min")MyvieCatal og novi eCat al og,
Cust oner Pr ef er enceDao cust oner Pr ef er enceDao) {
t hi s. novi eCat al og = novi eCat al og;
t hi s. cust oner Pref erenceDao = cust oner Pr ef er enceDao;

The corresponding bean definitions appear as follows. The bean with qualifier value "main" is wired with
the constructor argument that is qualified with the same value.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://wwm. spri ngframewor k. or g/ schena/ cont ext "
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
ht t p: // www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schena/ cont ext
http://ww. springfranework. or g/ schema/ cont ext/ spri ng-cont ext . xsd">

<cont ext : annot ati on-confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >
<qualifier value="min"/>

<l'-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >
<qualifier value="action"/>

<l'-- inject any dependencies required by this bean -->
</ bean>

<bean id="novi eRecormender" cl ass="exanpl e. Movi eRecommender "/ >

</ beans>

For a fallback match, the bean name is considered a default qualifier value. Thus you can define the bean
with an id "main" instead of the nested qualifier element, leading to the same matching result. However,
although you can use this convention to refer to specific beans by name, @\ut owi r ed is fundamentally

4.3.19.RELEASE Spring Framework 103

Spring Framework Reference Documentation

about type-driven injection with optional semantic qualifiers. This means that qualifier values, even with
the bean name fallback, always have narrowing semantics within the set of type matches; they do not
semantically express a reference to a unique bean id. Good qualifier values are "main" or "EMEA" or
"persistent"”, expressing characteristics of a specific component that are independent from the beani d,
which may be auto-generated in case of an anonymous bean definition like the one in the preceding

example.

Qualifiers also apply to typed collections, as discussed above, for example, to Set <Movi eCat al og>. In
this case, all matching beans according to the declared qualifiers are injected as a collection. This implies
that qualifiers do not have to be unique; they rather simply constitute filtering criteria. For example, you
can define multiple Movi eCat al og beans with the same qualifier value "action"”, all of which would be

injected into a Set <Movi eCat al og> annotated with @ual i fi er ("action").
Tip

Letting qualifier values select against target bean names, within the type-matching candidates,
doesn’t evenrequire a @ual i f i er annotation at the injection point. If there is no other resolution
indicator (e.g. a qualifier or a primary marker), for a non-unique dependency situation, Spring will
match the injection point name (i.e. field name or parameter name) against the target bean names
and choose the same-named candidate, if any.

That said, if you intend to express annotation-driven injection by name, do not primarily use
@\ut owi r ed, even if is capable of selecting by bean name among type-matching candidates.
Instead, use the JSR-250 @Resour ce annotation, which is semantically defined to identify
a specific target component by its unique name, with the declared type being irrelevant for
the matching process. @\ut owi r ed has rather different semantics: After selecting candidate
beans by type, the specified String qualifier value will be considered within those type-selected
candidates only, e.g. matching an "account" qualifier against beans marked with the same qualifier
label.

For beans that are themselves defined as a collection/map or array type, @Resour ce is a fine
solution, referring to the specific collection or array bean by unique name. That said, as of 4.3,
collection/map and array types can be matched through Spring’s @\ut owi r ed type matching
algorithm as well, as long as the element type information is preserved in @ean return type
signatures or collection inheritance hierarchies. In this case, qualifier values can be used to select
among same-typed collections, as outlined in the previous paragraph.

As of 4.3, @\ut owi r ed also considers self references for injection, i.e. references back to the
bean that is currently injected. Note that self injection is a fallback; regular dependencies on other
components always have precedence. In that sense, self references do not participate in regular
candidate selection and are therefore in particular never primary; on the contrary, they always end
up as lowest precedence. In practice, use self references as a last resort only, e.g. for calling other
methods on the same instance through the bean’s transactional proxy: Consider factoring out the
affected methods to a separate delegate bean in such a scenario. Alternatively, use @Resour ce
which may obtain a proxy back to the current bean by its unique name.

@\ut owi r ed applies to fields, constructors, and multi-argument methods, allowing for narrowing
through qualifier annotations at the parameter level. By contrast, @Resour ce is supported only
for fields and bean property setter methods with a single argument. As a consequence, stick with
qualifiers if your injection target is a constructor or a multi-argument method.

4.3.19.RELEASE Spring Framework

104

Spring Framework Reference Documentation

You can create your own custom qualifier annotations. Simply define an annotation and provide the
@ual i fi er annotation within your definition:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@ualifier

public @nterface Genre {

String val ue();

Then you can provide the custom qualifier on autowired fields and parameters:

public class Myvi eRecommender {

@\ut owi r ed
@zenre("Action")
private Movi eCatal og actionCat al og;

private MvieCatal og conedyCat al og;
@\ut owi r ed
public void set ConedyCat al og(@enr e(" Conedy") Mvi eCat al og conedyCat al og) {

this. comedyCat al og = conedyCat al og;
}

Il

Next, provide the information for the candidate bean definitions. You can add <qual i fi er/ > tags as
sub-elements of the <bean/ > tag and then specify the t ype and val ue to match your custom qualifier
annotations. The type is matched against the fully-qualified class name of the annotation. Or, as a
convenience if no risk of conflicting names exists, you can use the short class name. Both approaches
are demonstrated in the following example.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranmewor k. or g/ schema/ cont ext "
xsi : schemaLocati on="http://ww. spri ngfranmework. or g/ schena/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
ht t p: / / www. spri ngf ramewor k. or g/ schena/ cont ext
http: //wwv. spri ngfranewor k. or g/ schena/ cont ext/ spri ng- cont ext . xsd" >

<cont ext: annot ati on-confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qualifier type="Genre" val ue="Action"/>

<!-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<qual i fier type="exanple. Genre" val ue="Conedy"/>

<I-- inject any dependencies required by this bean -->
</ bean>

<bean id="novi eRecommender" cl ass="exanpl e. Movi eReconmender"/ >

</ beans>

In Section 7.10, “Classpath scanning and managed components”, you will see an annotation-based
alternative to providing the qualifier metadata in XML. Specifically, see the section called “Providing
qualifier metadata with annotations”.

4.3.19.RELEASE Spring Framework 105

Spring Framework Reference Documentation

In some cases, it may be sufficient to use an annotation without a value. This may be useful when
the annotation serves a more generic purpose and can be applied across several different types of
dependencies. For example, you may provide an offline catalog that would be searched when no Internet

connection is available. First define the simple annotation:
@ar get ({El enment Type. FI ELD, El enent Type. PARAVETER})
@=et enti on(Ret enti onPol i cy. RUNTI MVE)
@ualifier
public @nterface Ofline {

}

Then add the annotation to the field or property to be autowired:

public class Myvi eRecommender {
@\ut owi r ed
@fline
private MvieCatal og offlineCatal og;

Il

Now the bean definition only needs a qualifier t ype:

<bean cl ass="exanpl e. Si npl eMovi eCat al 0og" >

<qualifier type="Ofline"/>

<l-- inject any dependencies required by this bean -->
</ bean>

You can also define custom qualifier annotations that accept named attributes in addition to or instead
of the simple val ue attribute. If multiple attribute values are then specified on a field or parameter
to be autowired, a bean definition must match all such attribute values to be considered an autowire
candidate. As an example, consider the following annotation definition:

@rar get ({ El enent Type. FI ELD, El enent Type. PARAVETER})
@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@ualifier

public @nterface MovieQualifier {

String genre();

Format format();

In this case For mat is an enum:

public enum Format {
VHS, DVD, BLURAY
}

The fields to be autowired are annotated with the custom qualifier and include values for both attributes:
genre and f or mat .

4.3.19.RELEASE Spring Framework 106

Spring Framework Reference Documentation

public class Myvi eRecommender {

@\ut owi r ed
@mbvi eQual i fier(format=Format.VHS, genre="Action")
private MvieCatal og actionVhsCatal og;

@\ut owi r ed
@mbvi eQual i fier(format=Format.VHS, genre="Conedy")
private MvieCatal og conedyVhsCat al og;

@\ut owi r ed
@mbvi eQual i fier(format=Fornmat.DVD, genre="Action")
private MvieCatal og acti onDvdCat al og;

@\ut owi r ed
@mbvi eQual i fier(format=Format . BLURAY, genre="Conedy")
private Mvi eCatal og comedyBl uRayCat al og;

Il

Finally, the bean definitions should contain matching qualifier values. This example also demonstrates
that bean meta attributes may be used instead of the <qual i f i er/ > sub-elements. If available, the
<qual i fier/> and its attributes take precedence, but the autowiring mechanism falls back on the
values provided within the <net a/ > tags if no such qualifier is present, as in the last two bean definitions
in the following example.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. spri ngframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. spri ngfranmewor k. or g/ schema/ cont ext "
xsi : schemaLocati on="http://ww. spri ngfranmework. or g/ schena/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
ht t p: / / www. spri ngf ramewor k. or g/ schena/ cont ext
http: //wwv. spri ngfranewor k. or g/ schena/ cont ext / spri ng- cont ext . xsd" >

<cont ext: annot ati on-confi g/ >

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qualifier type="MyvieQualifier">
<attribute key="format" val ue="VHS"/>
<attribute key="genre" value="Action"/>
</qualifier>
<l-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >
<qualifier type="MyvieQualifier">
<attribute key="format" val ue="VHS"/>
<attribute key="genre" val ue="Conedy"/>
</qualifier>
<!-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<nmeta key="format" val ue="DVD'/ >

<meta key="genre" val ue="Action"/>

<!-- inject any dependencies required by this bean -->
</ bean>

<bean cl ass="exanpl e. Si npl eMovi eCat al og" >

<nmeta key="format" val ue="BLURAY"/>

<meta key="genre" val ue="Conedy"/ >

<!-- inject any dependencies required by this bean -->
</ bean>

</ beans>

4.3.19.RELEASE Spring Framework 107

Spring Framework Reference Documentation

Using generics as autowiring qualifiers

In addition to the @ual i fi er annotation, it is also possible to use Java generic types as an implicit
form of qualification. For example, suppose you have the following configuration:

@onfiguration
public class MyConfiguration {

@Bean
public StringStore stringStore() {
return new StringStore();

}

@Bean
public IntegerStore integerStore() {
return new I ntegerStore();

}

Assuming that beans above implement a generic interface, i.e. Store<String> and
St or e<I nt eger >, you can @\ut ow r e the St or e interface and the generic will be used as a qualifier:

@\ut owi r ed
private Store<String> sl; // <String> qualifier, injects the stringStore bean

@\ut owi r ed
private Store<lnteger> s2; // <Integer> qualifier, injects the integerStore bean

Generic qualifiers also apply when autowiring Lists, Maps and Arrays:

/1 Inject all Store beans as |ong as they have an <l nteger> generic
/| Store<String> beans will not appear in this |ist

@\ut owi r ed

private List<Store<l|nteger>> s;

CustomAutowireConfigurer

The Cust omAut owi r eConfi gur er is a BeanFact or yPost Processor that enables you to register
your own custom qualifier annotation types even if they are not annotated with Spring’s @ual i fi er
annotation.

<bean i d="cust omAut ow reConfi gurer"
cl ass="org. spri ngframewor k. beans. f act ory. annot ati on. Cust omAut owi r eConf i gurer">
<property name="custonQualifierTypes">
<set >
<val ue>exanpl e. Cust omQual i fi er </ val ue>
</ set>
</ property>
</ bean>

The Aut owi r eCandi dat eResol ver determines autowire candidates by:
» the aut owi r e- candi dat e value of each bean definition
« any def aul t - aut owi r e- candi dat es pattern(s) available on the <beans/ > element

» the presence of @ualifier annotations and any custom annotations registered with the
Cust omAut owi r eConf i gur er

When multiple beans qualify as autowire candidates, the determination of a "primary" is the following:
if exactly one bean definition among the candidates has a pri mary attribute set to t r ue, it will be
selected.

4.3.19.RELEASE Spring Framework 108

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/beans/factory/annotation/CustomAutowireConfigurer.html

Spring Framework Reference Documentation

@Resource

Spring also supports injection using the JSR-250 @Resour ce annotation on fields or bean property
setter methods. This is a common pattern in Java EE 5 and 6, for example in JSF 1.2 managed beans
or JAX-WS 2.0 endpoints. Spring supports this pattern for Spring-managed objects as well.

@resour ce takes a name attribute, and by default Spring interprets that value as the bean name to be
injected. In other words, it follows by-name semantics, as demonstrated in this example:

public class SinpleMvielister {
private Mvi eFi nder novi eFi nder;

@Resour ce(nane="nyMvi eFi nder ")
public void setMvieFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

If no name is specified explicitly, the default name is derived from the field name or setter method. In
case of a field, it takes the field name; in case of a setter method, it takes the bean property name. So
the following example is going to have the bean with name "movieFinder" injected into its setter method:

public class SinpleMvielister {

private Mvi eFi nder novi eFi nder;

@Rresour ce
public voi d set Mvi eFi nder (Myvi eFi nder novi eFi nder) {
this. novi eFi nder = novi eFi nder;
}
}
Note

The name provided with the annotation is resolved as a bean name by the
Appl i cati onCont ext of which the ConmonAnnot at i onBeanPost Pr ocessor is aware. The
names can be resolved through JNDI if you configure Spring’s Si npl eJndi BeanFact ory
explicitly. However, it is recommended that you rely on the default behavior and simply use
Spring’s JNDI lookup capabilities to preserve the level of indirection.

In the exclusive case of @Resour ce usage with no explicit name specified, and similar to @\ut owi r ed,
@resour ce finds a primary type match instead of a specific named bean and resolves well-
known resolvable dependencies: the BeanFact ory, Appl i cati onCont ext, Resour ceLoader,
Appl i cati onEvent Publ i sher, and MessageSour ce interfaces.

Thus in the following example, the cust oner PreferenceDao field first looks for a bean
named customerPreferenceDao, then falls back to a primary type match for the type
Cust oner Pr ef er enceDao. The "context" field is injected based on the known resolvable dependency
type Appl i cati onCont ext .

4.3.19.RELEASE Spring Framework 109

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/jndi/support/SimpleJndiBeanFactory.html

Spring Framework Reference Documentation

public class Myvi eRecommender {

@resour ce
private CustomnerPreferenceDao customnerPreferenceDao;

@Resour ce
private ApplicationContext context;

publ i c Movi eRecommender () {
}

...

@PostConstruct and @PreDestroy

The ConmonAnnot at i onBeanPost Processor not only recognizes the @Resour ce annotation
but also the JSR-250 lifecycle annotations. Introduced in Spring 2.5, the support for these
annotations offers yet another alternative to those described in initialization callbacks and destruction
callbacks. Provided that the CommonAnnot at i onBeanPost Pr ocessor is registered within the Spring
Appl i cati onCont ext , a method carrying one of these annotations is invoked at the same point in the
lifecycle as the corresponding Spring lifecycle interface method or explicitly declared callback method.
In the example below, the cache will be pre-populated upon initialization and cleared upon destruction.

public class Cachi ngWbvi eLi ster {

@ost Const ruct
public void popul at eMovi eCache() {
/'l popul ates the novie cache upon initialization...

}

@r eDest r oy
public void clearMvieCache() {
/1 clears the novie cache upon destruction...

}

Note

For details about the effects of combining various lifecycle mechanisms, see the section called
“Combining lifecycle mechanisms”.

7.10 Classpath scanning and managed components

Most examples in this chapter use XML to specify the configuration metadata that produces each
BeanDef i ni ti on within the Spring container. The previous section (Section 7.9, “Annotation-based
container configuration”) demonstrates how to provide a lot of the configuration metadata through
source-level annotations. Even in those examples, however, the "base" bean definitions are explicitly
defined in the XML file, while the annotations only drive the dependency injection. This section describes
an option for implicitly detecting the candidate components by scanning the classpath. Candidate
components are classes that match against a filter criteria and have a corresponding bean definition
registered with the container. This removes the need to use XML to perform bean registration; instead
you can use annotations (for example @onponent), Aspect] type expressions, or your own custom
filter criteria to select which classes will have bean definitions registered with the container.

4.3.19.RELEASE Spring Framework 110

Spring Framework Reference Documentation

Note

Starting with Spring 3.0, many features provided by the Spring JavaConfig project are part of
the core Spring Framework. This allows you to define beans using Java rather than using the
traditional XML files. Take a look at the @onf i gur at i on, @ean, @ nport , and @ependsOn
annotations for examples of how to use these new features.

@Component and further stereotype annotations

The @Reposi t or y annotation is a marker for any class that fulfills the role or stereotype of a repository
(also known as Data Access Object or DAO). Among the uses of this marker is the automatic translation
of exceptions as described in the section called “Exception translation”.

Spring provides further stereotype annotations: @onponent, @ervice, and @ontroll er.
@omponent is a generic stereotype for any Spring-managed component. @Reposi t ory, @er vi ce,
and @ontrol | er are specializations of @onponent for more specific use cases, for example,
in the persistence, service, and presentation layers, respectively. Therefore, you can annotate your
component classes with @onponent, but by annotating them with @eposi t ory, @bervi ce, or
@control | er instead, your classes are more properly suited for processing by tools or associating
with aspects. For example, these stereotype annotations make ideal targets for pointcuts. It is also
possible that @Reposi t ory, @er vi ce, and @ont r ol | er may carry additional semantics in future
releases of the Spring Framewaork. Thus, if you are choosing between using @onponent or @er vi ce
for your service layer, @er vi ce is clearly the better choice. Similarly, as stated above, @Reposi t ory
is already supported as a marker for automatic exception translation in your persistence layer.

Meta-annotations
Many of the annotations provided by Spring can be used as meta-annotations in your own code. A

meta-annotation is simply an annotation that can be applied to another annotation. For example, the
@er vi ce annotation mentioned above is meta-annotated with @onponent :

@rar get (El enent Type. TYPE)

@Ret ent i on(Ret ent i onPol i cy. RUNTI ME)

@ocunent ed

@conmponent // Spring will see this and treat @ervice in the same way as @onponent
public @nterface Service {

I ooao

Meta-annotations can also be combined to create composed annotations. For example,
the @Rrest Control | er annotation from Spring MVC is composed of @ontroller and
@RresponseBody.

In addition, composed annotations may optionally redeclare attributes from meta-annotations to allow
user customization. This can be particularly useful when you want to only expose a subset of the meta-
annotation’s attributes. For example, Spring’s @essi onScope annotation hardcodes the scope name
to sessi on but still allows customization of the pr oxyMode.

4.3.19.RELEASE Spring Framework 111

Spring Framework Reference Documentation

@rar get ({ El enent Type. TYPE, El enent Type. VETHOD})
@Ret ent i on(Ret enti onPol i cy. RUNTI ME)

@ocunent ed

@cope(WebAppl i cati onCont ext . SCOPE_SESSI ON)
public @nterface SessionScope {

/**

* Alias for {@ink Scope#proxyMde}.

* <p>Defaults to {@ink ScopedProxyMde#TARGET_CLASS}.

*/

@\ i asFor (annotati on = Scope. cl ass)

ScopedPr oxyMdde proxyMdde() default ScopedProxyMde. TARGET_CLASS;

@bessi onScope can then be used without declaring the pr oxyMbde as follows:

@ervi ce

@essi onScope

public class SessionScopedService {
/1

}

Or with an overridden value for the pr oxyMode as follows:

@ervi ce

@essi onScope(proxyMde = ScopedProxyMde. | NTERFACES)

public class SessionScopedUser Service inplenents UserService {
/1

}

For further details, consult the Spring Annotation Programming Model.

Automatically detecting classes and registering bean definitions

Spring can automatically detect stereotyped classes and register corresponding BeanDef i ni ti ons
with the Appl i cati onCont ext. For example, the following two classes are eligible for such

autodetection:

@er vi ce
public class SinpleMvielister {

private MvieFi nder novi eFi nder;

@\ut owi red
public Sinpl eMvi elLi ster(MvieFinder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

@Reposi tory
public class JpaMvi eFi nder inplenents MvieFi nder {
/1 inplenmentation elided for clarity

}

To autodetect these classes and register the corresponding beans, you need to add @onponent Scan
to your @onf i gur ati on class, where the basePackages attribute is a common parent package for
the two classes. (Alternatively, you can specify a comma/semicolon/space-separated list that includes

the parent package of each class.)

4.3.19.RELEASE Spring Framework

112

Spring Framework Reference Documentation

@onfi guration
@onponent Scan(basePackages = "org. exanpl e")
public class AppConfig {

}

Note

For concision, the above may have used the val ue attribute of the annotation, i.e.
@omponent Scan(" or g. exanpl e")

The following is an alternative using XML

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: context ="http://ww. springfranework. org/ schema/ cont ext "
xsi : schemaLocat i on="http://ww. spri ngfranework. or g/ schena/ beans
http://ww. springfranework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranework. or g/ schena/ cont ext
ht t p: // www. spri ngf ramewor k. or g/ schenma/ cont ext / spri ng- cont ext . xsd" >

<cont ext: conponent - scan base- package="or g. exanpl e"/ >

</ beans>

Tip

The wuse of <context:conponent-scan> implicitty enables the functionality of
<cont ext:annotation-config> There is wusually no need to include the
<cont ext : annot at i on- conf i g> element when using <cont ext : conponent - scan>.

Note

The scanning of classpath packages requires the presence of corresponding directory entries
in the classpath. When you build JARs with Ant, make sure that you do not activate the files-
only switch of the JAR task. Also, classpath directories may not get exposed based on security
policies in some environments, e.g. standalone apps on JDK 1.7.0_45 and higher (which requires
"Trusted-Library' setup in your manifests; see http://stackoverflow.com/questions/19394570/java-
jre-7u45-breaks-classloader-getresources).

Furthermore, the Aut owi r edAnnot at i onBeanPost Processor and
ConmonAnnot at i onBeanPost Processor are both included implicitly when you use the component-
scan element. That means that the two components are autodetected and wired together - all without
any bean configuration metadata provided in XML.

Note

You can disable the registration of Aut owi r edAnnot ati onBeanPost Processor and
ConmmonAnnot at i onBeanPost Processor by including the annotation-config attribute with a
value of f al se.

4.3.19.RELEASE Spring Framework 113

http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources
http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources

Spring Framework Reference Documentation

Using filters to customize scanning

By default, classes annotated with @onponent, @Repository, @ervi ce, @ontroller, or
a custom annotation that itself is annotated with @onponent are the only detected candidate
components. However, you can modify and extend this behavior simply by applying custom filters. Add
them as includeFilters or excludeFilters parameters of the @onponent Scan annotation (or as include-
filter or exclude-filter sub-elements of the conponent - scan element). Each filter element requires the
t ype and expr essi on attributes. The following table describes the filtering options.

Table 7.5. Filter Types

Filter Type Example Expression Description

annotation (default) or g. exanpl e. SoneAnnot at i 0An annotation to be present
at the type level in target
components.

assignable or g. exanpl e. Soned ass A class (or interface) that

the target components
are assignable to (extend/

implement).

aspectj org. exanpl e..*Service+ An Aspect] type expression
to be matched by the target
components.

regex org\.exanple\.Default.* A regex expression to be

matched by the target
components class names.

custom org. exanpl e. MyTypeFi | t er A custom implementation of the
org. springframework. core.type . TypeFi
interface.

The following example shows the configuration ignoring all @Reposi t or y annotations and using "stub"
repositories instead.

@configuration

@onponent Scan(basePackages = "org. exanpl e"
includeFilters = @ilter(type = FilterType. REGEX, pattern = ".*Stub. *Repository")
excludeFilters = @ilter(Repository.class))

public class AppConfig {

}

and the equivalent using XML

<beans>
<cont ext : conponent - scan base- package="or g. exanpl e" >
<context:include-filter type="regex"
expressi on=".*Stub. *Reposi tory"/>
<context:exclude-filter type="annotation"
expressi on="org. spri ngf ranmewor k. st er eot ype. Reposi tory"/ >
</ cont ext : conponent - scan>
</ beans>

4.3.19.RELEASE Spring Framework 114

Spring Framework Reference Documentation

Note

You can also disable the default filters by setting useDef aul t Fi | t er s=f al se onthe annotation
or providing use-default-filters="fal se" as an attribute of the <conponent - scan/ >
element. This will in effect disable automatic detection of classes annotated with @onponent ,
@reposi tory, @ervice, @ontroll er, or @onfiguration.

Defining bean metadata within components

Spring components can also contribute bean definition metadata to the container. You do this with the
same @ean annotation used to define bean metadata within @onf i gur at i on annotated classes.
Here is a simple example:

@onponent
public class FactoryMet hodConponent {

@Bean
@ualifier("public")
public TestBean publiclnstance() {
return new Test Bean("publiclnstance");

}

public void dowrk() {
/'l Conponent nethod inplenentation onitted

}

This class is a Spring component that has application-specific code contained in its doWr k()
method. However, it also contributes a bean definition that has a factory method referring to the
method publ i cl nst ance(). The @ean annotation identifies the factory method and other bean
definition properties, such as a qualifier value through the @ual i f i er annotation. Other method level
annotations that can be specified are @cope, @Qazy, and custom qualifier annotations.

Tip

In addition to its role for component initialization, the @azy annotation may also be placed on
injection points marked with @\ut owi r ed or @ nj ect . In this context, it leads to the injection
of a lazy-resolution proxy.

Autowired fields and methods are supported as previously discussed, with additional support for
autowiring of @ean methods:

4.3.19.RELEASE Spring Framework 115

Spring Framework Reference Documentation

@Conponent
public class FactoryMet hodConponent {

private static int i;

@Bean
@ualifier("public")
publ i c TestBean publiclnstance() {
return new Test Bean("publiclnstance");

}

/| use of a customqualifier and autowi ring of nethod paraneters
@Bean
protected Test Bean protectedl nst ance(
@ualifier("public") TestBean spouse,
@/al ue("#{privatelnstance.age}") String country) {
Test Bean tb = new Test Bean("protect edl nstance", 1);
tb. set Spouse(spouse);
tb. set Country(country);
return tbh;

}

@Bean
private TestBean privatelnstance() {
return new Test Bean("privatel nstance", i++);

}

@Bean
@Request Scope
publ i c Test Bean request Scopedl nst ance() {
return new Test Bean("request Scopedl nst ance", 3);

}

The example autowires the St ri ng method parameter count ry to the value of the age property on
another bean named pri vat el nst ance. A Spring Expression Language element defines the value
of the property through the notation #{ <expressi on> }. For @/al ue annotations, an expression
resolver is preconfigured to look for bean names when resolving expression text.

As of Spring Framework 4.3, you may also declare a factory method parameter of type
I nj ecti onPoi nt (or its more specific subclass DependencyDescri pt or) in order to access the
requesting injection point that triggers the creation of the current bean. Note that this will only apply to
the actual creation of bean instances, not to the injection of existing instances. As a consequence, this
feature makes most sense for beans of prototype scope. For other scopes, the factory method will only
ever see the injection point which triggered the creation of a new bean instance in the given scope: for
example, the dependency that triggered the creation of a lazy singleton bean. Use the provided injection
point metadata with semantic care in such scenarios.

@Conponent
public class FactoryMethodConponent {

@ean @cope(" prototype")
publ i c Test Bean prototypel nstance(lnjecti onPoint injectionPoint) {
return new Test Bean("prototypelnstance for " + injectionPoint.getMnber());

}

The @ean methods in a regular Spring component are processed differently than their counterparts
inside a Spring @onf i gur at i on class. The difference is that @onponent classes are not enhanced
with CGLIB to intercept the invocation of methods and fields. CGLIB proxying is the means by which
invoking methods or fields within @ean methods in @onf i gur at i on classes creates bean metadata
references to collaborating objects; such methods are not invoked with normal Java semantics but
rather go through the container in order to provide the usual lifecycle management and proxying of

4.3.19.RELEASE Spring Framework 116

Spring Framework Reference Documentation

Spring beans even when referring to other beans via programmatic calls to @Bean methods. In contrast,
invoking a method or field in an @ean method within a plain @onponent class has standard Java

semantics, with no special CGLIB processing or other constraints applying.

Note

You may declare @ean methods as st at i ¢, allowing for them to be called without creating their
containing configuration class as an instance. This makes particular sense when defining post-
processor beans, e.g. of type BeanFact or yPost Processor or BeanPost Pr ocessor, since
such beans will get initialized early in the container lifecycle and should avoid triggering other
parts of the configuration at that point.

Note that calls to static @ean methods will never get intercepted by the container, not even within
@confi gurati on classes (see above). This is due to technical limitations: CGLIB subclassing
can only override non-static methods. As a consequence, a direct call to another @ean method
will have standard Java semantics, resulting in an independent instance being returned straight
from the factory method itself.

The Java language visibility of @ean methods does not have an immediate impact on the
resulting bean definition in Spring’s container. You may freely declare your factory methods as
you see fit in non-@Confi gur ati on classes and also for static methods anywhere. However,
regular @ean methods in @onfi gur ati on classes need to be overridable, i.e. they must not
be declared as pri vate orfi nal .

@ean methods will also be discovered on base classes of a given component or configuration
class, as well as on Java 8 default methods declared in interfaces implemented by the component
or configuration class. This allows for a lot of flexibility in composing complex configuration
arrangements, with even multiple inheritance being possible through Java 8 default methods as
of Spring 4.2.

Finally, note that a single class may hold multiple @ean methods for the same bean, as an
arrangement of multiple factory methods to use depending on available dependencies at runtime.
This is the same algorithm as for choosing the "greediest" constructor or factory method in
other configuration scenarios: The variant with the largest number of satisfiable dependencies
will be picked at construction time, analogous to how the container selects between multiple
@\ut owi r ed constructors.

Naming autodetected components

When a component is autodetected as part of the scanning process, its bean name is generated by the
BeanNameGener at or strategy known to that scanner. By default, any Spring stereotype annotation
(@Conponent, @Reposi tory, @ervi ce, and @ontrol | er) that contains a name val ue will

thereby provide that name to the corresponding bean definition.

If such an annotation contains no name val ue or for any other detected component (such as those
discovered by custom filters), the default bean name generator returns the uncapitalized non-qualified
class name. For example, if the following component classes were detected, the names would be

nyMovi eLi st er and novi eFi nder | npl :

@er vi ce("nyMvi eLi ster™)
public class SinpleMvieLister {
...

}

4.3.19.RELEASE Spring Framework

117

Spring Framework Reference Documentation

@Reposi tory
public class MvieFinderlnpl inplenents MvieFinder {
...

}

Note

If you do not want to rely on the default bean-naming strategy, you can provide a custom bean-
naming strategy. First, implement the BeanNaneGener at or interface, and be sure to include
a default no-arg constructor. Then, provide the fully-qualified class name when configuring the
scanner:

@onfi guration
@onponent Scan(basePackages = "org. exanpl e", naneCenerator = My/NaneGener at or. cl ass)
public class AppConfig {

}

<beans>
<cont ext: conponent - scan base- package="or g. exanpl e"
nane- gener at or =" or g. exanpl e. \yNaneGener ator" />
</ beans>

As a general rule, consider specifying the name with the annotation whenever other components may be
making explicit references to it. On the other hand, the auto-generated names are adequate whenever
the container is responsible for wiring.

Providing a scope for autodetected components
As with Spring-managed components in general, the default and most common scope for autodetected

components is si ngl et on. However, sometimes you need a different scope which can be specified
via the @cope annotation. Simply provide the name of the scope within the annotation:

@scope(" prot ot ype")

@Reposi tory

public class MvieFinderlnpl inplenments MvieFinder {
...

}

Note

@scope annotations are only introspected on the concrete bean class (for annotated components)
or the factory method (for @ean methods). In contrast to XML bean definitions, there is no notion
of bean definition inheritance, and inheritance hierarchies at the class level are irrelevant for
metadata purposes.

For details on web-specific scopes such as "request”/"session" in a Spring context, see the section called
“Request, session, global session, application, and WebSocket scopes”. Like the pre-built annotations
for those scopes, you may also compose your own scoping annotations using Spring’s meta-annotation
approach: e.g. a custom annotation meta-annotated with @cope(" pr ot ot ype"), possibly also
declaring a custom scoped-proxy mode.

4.3.19.RELEASE Spring Framework 118

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/beans/factory/support/BeanNameGenerator.html

Spring Framework Reference Documentation

Note

To provide a custom strategy for scope resolution rather than relying on the annotation-based
approach, implement the ScopeMet adat aResol ver interface, and be sure to include a default
no-arg constructor. Then, provide the fully-qualified class name when configuring the scanner:

@onfiguration
@onponent Scan(basePackages = "org. exanpl e", scopeResol ver = MyScopeResol ver. cl ass)
public class AppConfig {

}

<beans>
<cont ext: conponent - scan base- package="or g. exanpl e" scope-resol ver ="or g. exanpl e. M/ScopeResol ver"/ >
</ beans>

When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped
objects. The reasoning is described in the section called “Scoped beans as dependencies”. For this
purpose, a scoped-proxy attribute is available on the component-scan element. The three possible
values are: no, interfaces, and targetClass. For example, the following configuration will result in
standard JDK dynamic proxies:

@onfi guration
@onponent Scan(basePackages = "org. exanpl e", scopedProxy = ScopedProxyMde. | NTERFACES)
public class AppConfig {

}

<beans>
<cont ext: conponent - scan base- package="or g. exanpl e" scoped- proxy="i nterfaces"/>
</ beans>

Providing qualifier metadata with annotations

The @ualifier annotation is discussed in the section called “Fine-tuning annotation-based
autowiring with qualifiers”. The examples in that section demonstrate the use of the @ual i fi er
annotation and custom qualifier annotations to provide fine-grained control when you resolve autowire
candidates. Because those examples were based on XML bean definitions, the qualifier metadata was
provided on the candidate bean definitions using the qual i fi er or nmet a sub-elements of the bean
element in the XML. When relying upon classpath scanning for autodetection of components, you
provide the qualifier metadata with type-level annotations on the candidate class. The following three
examples demonstrate this technique:

@onponent

@ual i fier("Action")

public class ActionMvieCatal og inplenents MvieCatal og {
/1

}

@onponent

@zenre("Action")

public class ActionMvieCatal og inplenents MvieCatal og {
/1

}

@Conponent

@xfline

public class Cachi ngWbvi eCat al og i npl enents Myvi eCat al og {
/1

}

4.3.19.RELEASE Spring Framework 119

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/context/annotation/ScopeMetadataResolver.html

Spring Framework Reference Documentation

Note

As with most annotation-based alternatives, keep in mind that the annotation metadata is bound
to the class definition itself, while the use of XML allows for multiple beans of the same type
to provide variations in their qualifier metadata, because that metadata is provided per-instance
rather than per-class.

7.11 Using JSR 330 Standard Annotations

Starting with Spring 3.0, Spring offers support for JSR-330 standard annotations (Dependency
Injection). Those annotations are scanned in the same way as the Spring annotations. You just need
to have the relevant jars in your classpath.

Note

If you are using Maven, the j avax.inject artifact is available in the standard Maven
repository (http://repol.maven.org/maven2/javax/inject/javax.inject/1/). You can add the following
dependency to your file pom.xmil:

<dependency>
<groupl d>j avax. i nj ect </ gr oupl d>
<artifactld>avax.inject</artifactld>
<ver si on>1</ ver si on>

</ dependency>

Dependency Injection with @Inject and @Named

Instead of @\ut owi r ed, @ avax. i nj ect. | nject may be used as follows:

i nport javax.inject.|nject;

public class SinpleMvielister {
private Mvi eFi nder novi eFi nder;
@ nj ect

public voi d set Mvi eFi nder (Mvi eFi nder novi eFi nder) {
this. novi eFi nder = novi eFi nder;

}

public void IistMvies() {
t hi s. novi eFi nder. fi ndMovi es(...);

As with @Aut owi r ed, it is possible to use @ nj ect at the field level, method level and constructor-
argument level. Furthermore, you may declare your injection point as a Pr ovi der, allowing for on-
demand access to beans of shorter scopes or lazy access to other beans through a Pr ovi der . get ()
call. As a variant of the example above:

4.3.19.RELEASE Spring Framework 120

http://repo1.maven.org/maven2/javax/inject/javax.inject/1/

Spring Framework Reference Documentation

i nport javax.inject.Inject;
i nport javax.inject. Provider;

public class SinpleMuvielister {
private Provider<Mvi eFi nder> novi eFi nder;
@ nj ect
public void set Mvi eFi nder (Provi der <Movi eFi nder > novi eFi nder) {

this. novi eFi nder = novi eFi nder;

}

public void IistMvies() {
t hi s. novi eFi nder. get (). findMovies(...);

If you would like to use a qualified name for the dependency that should be injected, you should use
the @aned annotation as follows:

i nport javax.inject.Inject;
i nport javax.inject. Naned;

public class SinpleMuvielister {
private MvieFi nder novi eFi nder;
@ nj ect
public void setMvieFi nder (@laned("mai n") Mvi eFi nder novi eFi nder) {

this. novi eFi nder = novi eFi nder;

}

Il

Like @ut owi red, @ nj ect can also be used with j ava. util. Opti onal or @Wul | abl e. This is
even more applicable here since @ nj ect does not have ar equi r ed attribute.

public class SinpleMuvieLister {

@ nj ect
public void set Mvi eFi nder (Opti onal <Mbvi eFi nder > novi eFi nder) {

}

public class SinpleMvielister {

@ nj ect
public void setMvieFi nder (@l | abl e Mvi eFi nder novi eFi nder) {

}

@Named and @ManagedBean: standard equivalents to the @Component
annotation

Instead of @onponent, @ avax. i nj ect. Named or j avax. annot at i on. ManagedBean may be
used as follows:

4.3.19.RELEASE Spring Framework 121

Spring Framework Reference Documentation

i nport javax.inject.Inject;
i nport javax.inject. Naned;

@\aned("novi eLi stener") [/ @managedBean("novi eLi stener") could be used as well
public class SinpleMvieLister {

private Mvi eFi nder novi eFi nder;
@ nj ect
public voi d set Mvi eFi nder (Myvi eFi nder novi eFi nder) {

t hi s. novi eFi nder = novi eFi nder;

}

Il

It is very common to use @onponent without specifying a name for the component. @Naned can be
used in a similar fashion:

i nport javax.inject.Inject;
i nport javax.inject.Naned;

@\aned
public class SinpleMvielister {

private MovieFi nder novi eFi nder;

@ nj ect
public void setMvi eFi nder (Mvi eFi nder novi eFi nder) {
t hi s. novi eFi nder = novi eFi nder;

}

/1

When using @Named or @/anagedBean, it is possible to use component scanning in the exact same
way as when using Spring annotations:

@onfiguration
@onponent Scan(basePackages = "org. exanpl e")
public class AppConfig {

}

Note

In contrast to @onponent , the JSR-330 @Naned and the JSR-250 ManagedBean annotations
are not composable. Please use Spring's stereotype model for building custom component
annotations.

Limitations of JSR-330 standard annotations

When working with standard annotations, it is important to know that some significant features are not
available as shown in the table below:

4.3.19.RELEASE Spring Framework 122

Spring Framework Reference Documentation

Table 7.6. Spring component model elements vs. JSR-330 variants

Spring javax.inject.* javax.inject restrictions /
comments
@Autowired @Inject @ nj ect has no 'required'

attribute; can be used with Java
8's Opt i onal instead.

@Component @Named / @ManagedBean JSR-330 does not provide a
composable model, just a way
to identify named components.

@Scope("singleton™) @Singleton The JSR-330 default scope

is like Spring’s pr ot ot ype.
However, in order to keep

it consistent with Spring’s
general defaults, a JSR-330
bean declared in the Spring
container is a si ngl et on by
default. In order to use a scope
other than si ngl et on, you
should use Spring’s @cope
annotation. j avax. i nj ect
also provides a @Scope
annotation. Nevertheless, this
one is only intended to be
used for creating your own
annotations.

@Qualifier @Qualifier / @Named javax.inject.Qualifier
is just a meta-annotation

for building custom

qualifiers. Concrete String
qualifiers (like Spring’s

@ual i fi er with a value)
can be associated through

j avax.inj ect. Naned.

@Value - no equivalent
@Required - no equivalent
@Lazy - no equivalent
ObjectFactory Provider j avax.inject. Provider is

a direct alternative to Spring’s
hj ect Fact ory, just with

a shorter get () method
name. It can also be used

in combination with Spring’s
@A\ut owi r ed or with non-

4.3.19.RELEASE Spring Framework 123

http://download.oracle.com/javaee/6/api/javax/inject/Scope.html

Spring Framework Reference Documentation

Spring javax.inject.* javax.inject restrictions /
comments

annotated constructors and
setter methods.

7.12 Java-based container configuration

Basic concepts: @Bean and @Configuration

The central artifacts in Spring’s new Java-configuration support are @onfi gur at i on-annotated
classes and @ean-annotated methods.

The @ean annotation is used to indicate that a method instantiates, configures and initializes a
new object to be managed by the Spring IoC container. For those familiar with Spring’s <beans/ >
XML configuration the @ean annotation plays the same role as the <bean/ > element. You can use
@ean annotated methods with any Spring @onponent , however, they are most often used with
@confi gurati on beans.

Annotating a class with @onf i gur at i on indicates that its primary purpose is as a source of bean
definitions. Furthermore, @onf i gur at i on classes allow inter-bean dependencies to be defined by
simply calling other @ean methods in the same class. The simplest possible @onf i gur at i on class
would read as follows:

@onfiguration
public class AppConfig {

@Bean
public MyService nyService() {
return new MyServicel npl ();
}
}

The AppConf i g class above would be equivalent to the following Spring <beans/ > XML.:

<beans>
<bean id="nmyService" class="com acne. servi ces. MyServicelnpl"/>
</ beans>

Full @Configuration vs 'lite' @Bean mode?

When @ean methods are declared within classes that are not annotated with @onf i gur ati on
they are referred to as being processed in a 'lite' mode. Bean methods declared in a @onponent
or even in a plain old class will be considered 'lite’, with a different primary purpose of the containing
class and an @ean method just being a sort of bonus there. For example, service components
may expose management views to the container through an additional @ean method on each
applicable component class. In such scenarios, @ean methods are a simple general-purpose
factory method mechanism.

Unlike full @onfi gurati on, lite @ean methods cannot declare inter-bean dependencies.
Instead, they operate on their containing component’s internal state and optionally on arguments
that they may declare. Such an @ean method should therefore not invoke other @Bean methods;
each such method is literally just a factory method for a particular bean reference, without any
special runtime semantics. The positive side-effect here is that no CGLIB subclassing has to be
applied at runtime, so there are no limitations in terms of class design (i.e. the containing class
may nevertheless be fi nal etc).

4.3.19.RELEASE Spring Framework 124

Spring Framework Reference Documentation

In common scenarios, @ean methods are to be declared within @onfi gurati on classes,
ensuring that 'full' mode is always used and that cross-method references will therefore get
redirected to the container’s lifecycle management. This will prevent the same @ean method from
accidentally being invoked through a regular Java call which helps to reduce subtle bugs that can
be hard to track down when operating in 'lite' mode.

The @ean and @onf i gur ati on annotations will be discussed in depth in the sections below. First,
however, we’'ll cover the various ways of creating a spring container using Java-based configuration.

Instantiating the Spring container using
AnnotationConfigApplicationContext

The sections below document Spring’s Annot at i onConf i gAppl i cat i onCont ext, new in Spring
3.0. This versatile ApplicationContext implementation is capable of accepting not only
@onfi gurati on classes as input, but also plain @onponent classes and classes annotated with
JSR-330 metadata.

When @Conf i gur at i on classes are provided as input, the @onf i gur at i on class itself is registered
as a bean definition, and all declared @ean methods within the class are also registered as bean
definitions.

When @onponent and JSR-330 classes are provided, they are registered as bean definitions, and it
is assumed that DI metadata such as @\ut owi r ed or @ nj ect are used within those classes where
necessary.

Simple construction

In much the same way that Spring XML files are used as input when instantiating a
Cl assPat hXm Appl i cati onCont ext, @onfi gurati on classes may be used as input when
instantiating an Annot ati onConfi gAppl i cati onCont ext. This allows for completely XML-free
usage of the Spring container:

public static void main(String[] args) {
ApplicationContext ctx = new Annotati onConfi gAppli cationContext (AppConfig.class);
My/Servi ce nyService = ctx.getBean(M/Service. cl ass);
nyServi ce. doSt uf f ();

}

As mentioned above, Annot at i onConf i gAppl i cati onCont ext is not limited to working only with
@confi gur ati on classes. Any @onponent or JSR-330 annotated class may be supplied as input
to the constructor. For example:

public static void main(String[] args) {
Appl i cationContext ctx = new Annotati onConfi gAppli cationContext (MServicel npl.class,
Dependencyl. cl ass, Dependency?2. cl ass);
My/Servi ce nyService = ctx.getBean(M/Servi ce. cl ass);
nyServi ce. doSt uf f () ;
}

The above assumes that MySer vi cel npl , Dependency1 and Dependency?2 use Spring dependency
injection annotations such as @\ut owi r ed.

Building the container programmatically using register(Class<?>...)

An Annot ati onConfi gAppl i cati onCont ext may be instantiated using a no-arg constructor
and then configured using the regi ster() method. This approach is particularly useful when
programmatically building an Annot at i onConfi gAppl i cati onCont ext .

4.3.19.RELEASE Spring Framework 125

Spring Framework Reference Documentation

public static void main(String[] args) {
Annot at i onConf i gAppl i cati onCont ext ctx = new Annot ati onConfi gAppl i cati onContext();
ctx. regi ster(AppConfig.class, OherConfig.class);
ctx.regi ster(Additional Config.class);
ctx.refresh();
MyServi ce nyService = ctx. get Bean(M/Servi ce. cl ass);
nmyServi ce. doSt uff () ;

Enabling component scanning with scan(String...)

To enable component scanning, just annotate your @onf i gur at i on class as follows:

@onfiguration
@onponent Scan(basePackages = "com acne")
public class AppConfig {

}
Tip
Experienced Spring users will be familiar with the XML declaration equivalent from Spring’s

cont ext : namespace

<beans>
<cont ext : conponent - scan base- package="com acne"/ >
</ beans>

In the example above, the com acne package will be scanned, looking for any @onponent -
annotated classes, and those classes will be registered as Spring bean definitions within the container.
Annot at i onConf i gAppl i cati onCont ext exposes the scan(String..) method to allow for the
same component-scanning functionality:

public static void main(String[] args) {
Annot at i onConf i gAppl i cati onContext ctx = new Annot ati onConfi gAppl i cati onContext();
ctx.scan("com acne");
ctx.refresh();
MyServi ce nyService = ctx. get Bean(M/Servi ce. cl ass);

Note

Remember that @onfi gurati on classes are meta-annotated with @onponent, so they
are candidates for component-scanning! In the example above, assuming that AppConfi g is
declared within the com acrne package (or any package underneath), it will be picked up during
the callto scan() ,and uponr ef resh() allits @ean methods will be processed and registered
as bean definitions within the container.

Support for web applications with AnnotationConfigWebApplicationContext

A WebAppl i cati onCont ext variant of Annot ati onConfi gAppl i cati onCont ext is available
with Annot at i onConf i g\WebAppl i cati onContext. This implementation may be used
when configuring the Spring Cont extLoaderLi stener servlet listener, Spring MVC
Di spat cher Ser vl et , etc. What follows is a web. xml snippet that configures a typical Spring MVC
web application. Note the use of the cont ext Cl ass context-param and init-param:

4.3.19.RELEASE Spring Framework 126

Spring Framework Reference Documentation

<web- app>

<l-- Configure ContextLoaderlListener to use Annotati onConfi gWebAppli cati onCont ext
i nstead of the default Xm WebApplicationContext -->

<cont ext - par an»
<par am nanme>cont ext 0 ass</ par am nanme>
<par am val ue>

or g. spri ngf ramewor k. web. cont ext . support. Annot at i onConf i g\WebAppl i cat i onCont ext

</ par am val ue>

</ cont ext - par an>

<l-- Configuration |locations nmust consist of one or nore comma- or space-delimted
fully-qualified @onfiguration classes. Fully-qualified packages nay al so be
speci fied for conponent-scanning -->

<cont ext - par an»
<par am nanme>cont ext Conf i gLocat i on</ par am nane>
<param val ue>com acne. AppConfi g</ param val ue>

</ cont ext - par an>

<l-- Bootstrap the root application context as usual using ContextLoaderListener -->
<l i stener>

<l i stener-cl ass>org. spri ngframewor k. web. cont ext . Cont ext Loader Li stener</|istener-class>
</listener>

<l-- Declare a Spring M/C D spat cherServl et as usual -->
<servl et >
<servl et - nane>di spat cher </ ser vl et - nane>
<servl et-cl ass>org. spri ngframewor k. web. servl et. Di spat cher Servl et </ servlet-class>
<!-- Configure DispatcherServlet to use Annotati onConfi gWebAppl i cati onCont ext
instead of the default Xnl WebApplicationContext -->
<init-paranp
<par am nane>cont ext Cl ass</ par am nanme>
<par am val ue>
or g. springfranmewor k. web. cont ext . support . Annot ati onConf i gWebAppl i cati onCont ext
</ param val ue>
</init-paran>
<l-- Again, config |locations nust consist of one or nobre comma- or space-delimted
and fully-qualified @onfiguration classes -->
<init-paranp
<par am nanme>cont ext Conf i gLocat i on</ par am nane>
<param val ue>com acne. web. MrcConfi g</ param val ue>
</init-paranme
</ servlet>

<I-- map all requests for /app/* to the dispatcher servliet -->
<servl et - mappi ng>
<ser vl et - name>di spat cher </ ser vl et - name>
<url -pattern>/app/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

Using the @Bean annotation

@ean is a method-level annotation and a direct analog of the XML <bean/ > element. The annotation
supports some of the attributes offered by <bean/ >, such as: init-method, destroy-method, autowiring
and nane.

You can use the @ean annotation in a @onf i gur ati on-annotated or in a @onponent -annotated
class.

Declaring a bean

To declare a bean, simply annotate a method with the @ean annotation. You use this method to register
a bean definition within an Appl i cati onCont ext of the type specified as the method'’s return value.
By default, the bean name will be the same as the method name. The following is a simple example
of a @ean method declaration:

4.3.19.RELEASE Spring Framework 127

Spring Framework Reference Documentation

@onfi guration
public class AppConfig {

@Bean
public TransferServicel npl transferService() {
return new TransferServicelnpl ();

}

The preceding configuration is exactly equivalent to the following Spring XML:

<beans>
<bean id="transferService" class="com acne. Transfer Servi cel npl "/ >
</ beans>

Both declarations make a bean named t r ansf er Ser vi ce available in the Appl i cati onCont ext,
bound to an object instance of type Tr ansf er Ser vi cel npl :

transferService -> com acne. Transf er Servi cel npl

You may also declare your @ean method with an interface (or base class) return type:

@onfi guration
public class AppConfig {

@Bean
public TransferService transferService() {
return new Transfer Servicel npl ();

}

However, this limits the visibility for advance type prediction to the specified interface type
(Transf er Ser vi ce) then, with the full type (Tr ansf er Ser vi cel nmpl) only known to the container
once the affected singleton bean has been instantiated. Non-lazy singleton beans get instantiated
according to their declaration order, so you may see different type matching results depending
on when another component tries to match by a non-declared type (such as @A\ut owi red
Transf er Servi cel npl which will only resolve once the "transferService" bean has been
instantiated).

Tip

If you consistently refer to your types by a declared service interface, your @ean return types
may safely join that design decision. However, for components implementing several interfaces
or for components potentially referred to by their implementation type, it is safer to declare the
most specific return type possible (at least as specific as required by the injection points referring
to your bean).

Bean dependencies

A @Bean annotated method can have an arbitrary number of parameters describing the dependencies
required to build that bean. For instance if our Tr ansf er Ser vi ce requires an Account Reposi tory
we can materialize that dependency via a method parameter:

4.3.19.RELEASE Spring Framework 128

Spring Framework Reference Documentation

@onfi guration
public class AppConfig {

@Bean
public TransferService transferService(Account Repository account Repository) {
return new Transfer Servi cel npl (account Repository);

}

The resolution mechanism is pretty much identical to constructor-based dependency injection, see the
relevant section for more details.

Receiving lifecycle callbacks

Any classes defined with the @ean annotation support the regular lifecycle callbacks and can use the
@ost Const ruct and @r eDest r oy annotations from JSR-250, see JSR-250 annotations for further
details.

The regular Spring lifecycle callbacks are fully supported as well. If a bean implements
InitializingBean, Di sposabl eBean, or Li f ecycl e, their respective methods are called by the
container.

The standard set of *Aware interfaces such as BeanFactoryAware, BeanNameAware,
MessageSourceAware, ApplicationContextAware, and so on are also fully supported.

The @ean annotation supports specifying arbitrary initialization and destruction callback methods,
much like Spring XML’s i ni t - met hod and dest r oy- net hod attributes on the bean element:

public class Foo {

public void init() {
/1l initialization |ogic
}
}

public class Bar {

public void cleanup() {
/] destruction |ogic
}
}

@onfiguration
public class AppConfig {

@ean(initMethod = "init")
public Foo foo() {
return new Foo();

}

@Bean(destroyMet hod = "cl eanup")
public Bar bar() {
return new Bar();

}

Note

By default, beans defined using Java config that have a public cl ose or shut down method
are automatically enlisted with a destruction callback. If you have a public cl ose or shut down
method and you do not wish for it to be called when the container shuts down, simply add
@ean(destroyMet hod="") to your bean definition to disable the default (i nf er r ed) mode.

4.3.19.RELEASE Spring Framework 129

Spring Framework Reference Documentation

You may want to do that by default for a resource that you acquire via JNDI as its lifecycle is
managed outside the application. In particular, make sure to always do it for a Dat aSour ce as
it is known to be problematic on Java EE application servers.

@ean(dest royMet hod="")

publ i ¢ Dat aSour ce dataSource() throws Nam ngException {
return (DataSource) jndi Tenpl ate.|ookup("MDS");

}

Also, with @ean methods, you will typically choose to use programmatic JNDI lookups:
either using Spring’s Jndi Tenpl at e/Jndi Locat or Del egat e helpers or straight JNDI
I nitial Context usage, butnotthe Jndi Obj ect Fact or yBean variant which would force you
to declare the return type as the Fact or yBean type instead of the actual target type, making it
harder to use for cross-reference calls in other @ean methods that intend to refer to the provided
resource here.

Of course, in the case of Foo above, it would be equally as valid to call the i ni t () method directly

during construction:

@onfi guration
public class AppConfig {

@Bean

public Foo foo() {
Foo foo = new Foo();
foo.init();
return foo;

Tip

When you work directly in Java, you can do anything you like with your objects and do not always
need to rely on the container lifecycle!

Specifying bean scope

Using the @Scope annotation

You can specify that your beans defined with the @ean annotation should have a specific scope. You

can use any of the standard scopes specified in the Bean Scopes section.
The default scope is si ngl et on, but you can override this with the @cope annotation:

@onfiguration
public class MyConfiguration {

@Bean
@cope(" prot ot ype")
public Encryptor encryptor() {
...
}
}

@Scope and scoped-proxy

Spring offers a convenient way of working with scoped dependencies through scoped proxies. The
easiest way to create such a proxy when using the XML configuration is the <aop: scoped- pr oxy/

4.3.19.RELEASE Spring Framework

130

Spring Framework Reference Documentation

> element. Configuring your beans in Java with a @Scope annotation offers equivalent support with
the proxyMode attribute. The default is no proxy (ScopedPr oxyMode. NO), but you can specify
ScopedPr oxyMdde. TARGET_CLASS or ScopedPr oxyMde. | NTERFACES.

If you port the scoped proxy example from the XML reference documentation (see preceding link) to
our @ean using Java, it would look like the following:

/1 an HTTP Sessi on-scoped bean exposed as a proxy
@Bean
@pessi onScope
public UserPreferences userPreferences() {
return new User Preferences();

}

@ean

public Service userService() {
User Servi ce service = new Si npl eUser Service();
/'l a reference to the proxied userPreferences bean
servi ce. set User Pref erences(user Preferences());
return service;

Customizing bean naming

By default, configuration classes use a @ean method’'s name as the name of the resulting bean. This
functionality can be overridden, however, with the nane attribute.

@onfiguration
public class AppConfig {

@ean(nane = "nyFoo")
public Foo foo() {
return new Foo();

}

Bean aliasing

As discussed in the section called “Naming beans”, it is sometimes desirable to give a single bean
multiple names, otherwise known as bean aliasing. The nane attribute of the @ean annotation accepts
a String array for this purpose.

@configuration
public class AppConfig {

@ean(nanme = { "dataSource", "subsystemA-dataSource", "subsystenB-dataSource" })
publ i ¢ Dat aSource dataSource() {
/] instantiate, configure and return DataSource bean...

}

Bean description

Sometimes it is helpful to provide a more detailed textual description of a bean. This can be particularly
useful when beans are exposed (perhaps via JMX) for monitoring purposes.

To add a description to a @ean the @escr i pti on annotation can be used:

4.3.19.RELEASE Spring Framework 131

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/context/annotation/Description.html

Spring Framework Reference Documentation

@onfi guration
public class AppConfig {

@Bean
@escription("Provides a basic exanpl e of a bean")
public Foo foo() {

return new Foo();

}

Using the @Configuration annotation

@confi gur ati on is a class-level annotation indicating that an object is a source of bean definitions.
@confi gurati on classes declare beans via public @ean annotated methods. Calls to @ean
methods on @onf i gur at i on classes can also be used to define inter-bean dependencies. See the
section called “Basic concepts: @Bean and @Configuration” for a general introduction.

Injecting inter-bean dependencies

When @eans have dependencies on one another, expressing that dependency is as simple as having
one bean method call another:

@onfiguration
public class AppConfig {

@Bean
public Foo foo() {
return new Foo(bar());

}

@Bean
public Bar bar() {
return new Bar();

}

In the example above, the f 00 bean receives a reference to bar via constructor injection.

Note

This method of declaring inter-bean dependencies only works when the @ean method is declared
within a @Confi guration class. You cannot declare inter-bean dependencies using plain
@onponent classes.

Lookup method injection

As noted earlier, lookup method injection is an advanced feature that you should use rarely. It is useful
in cases where a singleton-scoped bean has a dependency on a prototype-scoped bean. Using Java
for this type of configuration provides a natural means for implementing this pattern.

public abstract class ConmandManager {
public Object process(Object coomandState) {
/1 grab a new instance of the appropriate Command interface
Command conmmand = creat eCommand() ;
/1 set the state on the (hopefully brand new) Command i nstance
conmand. set St at e(commandSt at e) ;
return comnmand. execut e() ;

}

/'l okay... but where is the inplenentation of this nethod?
protected abstract Conmand creat eConmand();

4.3.19.RELEASE Spring Framework 132

Spring Framework Reference Documentation

Using Java-configuration support , you can create a subclass of CormandManager where the abstract
cr eat eCommand() method is overridden in such a way that it looks up a new (prototype) command
object:

@Bean

@cope(" prot ot ype")

publ i c AsyncConmand asyncCommand() {
AsyncCommand command = new AsyncCommand() ;
/'l inject dependencies here as required
return command;

}

@Bean
publ i ¢ CommandManager conmandManager () {
/'l return new anonynous i nplenentation of CommandManager with conmand() overridden
/1 to return a new prototype Command obj ect
return new CommandManager () {
protected Conmand creat eCommand() {
return asyncConmand();

}

Further information about how Java-based configuration works internally

The following example shows a @ean annotated method being called twice:

@onfiguration
public class AppConfig {

@Bean

public CientService clientServicel() {
ClientServicelnpl clientService = new CientServicelnpl();
clientService.setCientDao(clientDao());
return clientService;

}

@Bean

public dientService clientService2() {
ClientServicelnpl clientService = new CientServicelnpl();
clientService.setCientDao(clientDao());
return clientService;

}

@Bean

public CientDao clientDao() {
return new C i ent Daol npl ();

}

cl i ent Dao() has been calledonceincl i ent Servi cel() andonceincl i ent Servi ce2(). Since
this method creates a new instance of d i ent Daol npl and returns it, you would normally expect
having 2 instances (one for each service). That definitely would be problematic: in Spring, instantiated
beans have a si ngl et on scope by default. This is where the magic comes in: All @onfi gur ati on
classes are subclassed at startup-time with CGLI B. In the subclass, the child method checks the
container first for any cached (scoped) beans before it calls the parent method and creates a new
instance. Note that as of Spring 3.2, it is no longer necessary to add CGLIB to your classpath because
CGLIB classes have been repackaged under or g. spri ngf ranewor k. cgl i b and included directly
within the spring-core JAR.

4.3.19.RELEASE Spring Framework 133

Spring Framework Reference Documentation

Note

The behavior could be different according to the scope of your bean. We are talking about
singletons here.

Tip

There are a few restrictions due to the fact that CGLIB dynamically adds features at startup-time,
in particular that configuration classes must not be final. However, as of 4.3, any constructors
are allowed on configuration classes, including the use of @\ut owi r ed or a single non-default
constructor declaration for default injection.

If you prefer to avoid any CGLIB-imposed limitations, consider declaring your @ean methods
on non-@onfi gurati on classes, e.g. on plain @onponent classes instead. Cross-method
calls between @ean methods won't get intercepted then, so you'll have to exclusively rely on
dependency injection at the constructor or method level there.

Composing Java-based configurations
Using the @Import annotation

Much as the <i npor t / > element is used within Spring XML files to aid in modularizing configurations,
the @ nport annotation allows for loading @ean definitions from another configuration class:

@Confi guration
public class ConfigA {

@Bean
public A a() {
return new A();
}
}

@onfiguration
@ nport (Confi gA. cl ass)
public class ConfigB {

@Bean
public B b() {
return new B();

}

Now, rather than needing to specify both Confi gA. cl ass and Confi gB. cl ass when instantiating
the context, only Conf i gB needs to be supplied explicitly:

public static void main(String[] args) {
Appl i cationContext ctx = new Annot ati onConfi gAppl i cati onCont ext (Confi gB. cl ass);

/1 now both beans A and B will be available...
A a = ctx.getBean(A. class);
B b = ctx. get Bean(B. cl ass);

This approach simplifies container instantiation, as only one class needs to be dealt with, rather than
requiring the developer to remember a potentially large number of @onfi gur ati on classes during
construction.

4.3.19.RELEASE Spring Framework 134

Spring Framework Reference Documentation

Tip

As of Spring Framework 4.2, @ nport also supports references to regular component classes,
analogous to the Annot ati onConfi gApplicati onContext.regi ster method. This is
particularly useful if you'd like to avoid component scanning, using a few configuration classes as
entry points for explicitly defining all your components.

Injecting dependencies on imported @Bean definitions

The example above works, but is simplistic. In most practical scenarios, beans will have dependencies
on one another across configuration classes. When using XML, this is not an issue, per se, because
there is no compiler involved, and one can simply declare r ef =" someBean" and trust that Spring will
work it out during container initialization. Of course, when using @onf i gur ati on classes, the Java
compiler places constraints on the configuration model, in that references to other beans must be valid
Java syntax.

Fortunately, solving this problem is simple. As we already discussed, @ean method can have an
arbitrary number of parameters describing the bean dependencies. Let's consider a more real-world
scenario with several @Conf i gur at i on classes, each depending on beans declared in the others:

@onfi guration
public class ServiceConfig {

@Bean
public TransferService transferService(Account Repository account Repository) {
return new Transfer Servi cel npl (account Repository);
}
}

@onfiguration
public class RepositoryConfig {

@Bean
publ i ¢ Account Reposi tory account Reposi t ory(Dat aSour ce dat aSource) {
return new JdbcAccount Reposi t ory(dat aSource);
}
}

@onfi guration
@ nport ({Servi ceConfig.class, RepositoryConfig.class})
public class SysteniTestConfig {

@Bean
publ i c Dat aSour ce dataSource() {
/1 return new DataSource
}
}

public static void main(String[] args) {
Appl i cati onContext ctx = new Annot ati onConfi gAppl i cati onCont ext (Syst eniTest Confi g. cl ass);
/1 everything wires up across configuration classes...
Transfer Servi ce transferService = ctx.getBean(TransferService.cl ass);
transferService.transfer(100.00, "A123", "C456");

There is another way to achieve the same result. Remember that @onfi gurati on classes are
ultimately just another bean in the container: This means that they can take advantage of @\ut owi r ed
and @al ue injection etc just like any other bean!

4.3.19.RELEASE Spring Framework 135

Spring Framework Reference Documentation

Warning

Make sure that the dependencies you inject that way are of the simplest kind only.
@confi gurati on classes are processed quite early during the initialization of the context and
forcing a dependency to be injected this way may lead to unexpected early initialization. Whenever
possible, resort to parameter-based injection as in the example above.

Also, be particularly careful with BeanPost Processor and BeanFact or yPost Processor
definitions via @ean. Those should usually be declared as static @ean methods, not
triggering the instantiation of their containing configuration class. Otherwise, @\ut owi r ed and
@/al ue won't work on the configuration class itself since it is being created as a bean instance
too early.

@onfiguration
public class ServiceConfig {

@\ut owi r ed
private Account Repository account Repository;

@Bean
public TransferService transferService() {
return new Transfer Servi cel npl (account Reposi tory);
}
}

@configuration
public class RepositoryConfig {

private final DataSource dataSource;

@\ut owi r ed
publ i ¢ RepositoryConfi g(DataSource dataSource) {
t hi s. dat aSour ce = dat aSource;

}

@Bean
publ i ¢ Account Reposi tory account Repository() {
return new JdbcAccount Reposi t ory(dat aSour ce) ;
}
}

@onfi guration
@ nport ({ServiceConfig.class, RepositoryConfig.class})
public class SystenTestConfig {

@Bean
publ i ¢ Dat aSource dataSource() {
/1 return new DataSource
}
}

public static void main(String[] args) {
Appl i cati onCont ext ctx = new Annot ati onConfi gAppl i cati onCont ext (Syst eniTest Confi g. cl ass);
/'l everything wires up across configuration classes...
Transf er Servi ce transferService = ctx.getBean(TransferService.cl ass);
transferService. transfer(100. 00, "A123", "C456");

Tip

Constructor injection in @onf i gur at i on classes is only supported as of Spring Framework
4.3. Note also that there is no need to specify @\ut owi r ed if the target bean defines only one

4.3.19.RELEASE Spring Framework 136

Spring Framework Reference Documentation

constructor; in the example above, @\ut owi r ed is not necessary on the Reposi t oryConfi g
constructor.

In the scenario above, using @\ut owi r ed works well and provides the desired modularity, but
determining exactly where the autowired bean definitions are declared is still somewhat ambiguous. For
example, as a developer looking at Ser vi ceConf i g, how do you know exactly where the @\ut owi r ed
Account Reposi tory bean is declared? It's not explicit in the code, and this may be just fine.
Remember that the Spring Tool Suite provides tooling that can render graphs showing how everything
is wired up - that may be all you need. Also, your Java IDE can easily find all declarations and uses of
the Account Reposi t ory type, and will quickly show you the location of @ean methods that return
that type.

In cases where this ambiguity is not acceptable and you wish to have direct navigation from within
your IDE from one @Conf i gur ati on class to another, consider autowiring the configuration classes
themselves:

@onfi guration
public class ServiceConfig {

@\ut owi r ed
private RepositoryConfig repositoryConfig;

@Bean
public TransferService transferService() {
/1 navigate 'through' the config class to the @ean nethod!
return new Transfer Servicel npl (repositoryConfig.account Repository());

In the situation above, it is completely explicit where Account Reposi tory is defined. However,
Ser vi ceConf i g is now tightly coupled to Reposi t or yConf i g; that's the tradeoff. This tight coupling
can be somewhat mitigated by using interface-based or abstract class-based @confi guration
classes. Consider the following:

4.3.19.RELEASE Spring Framework 137

https://spring.io/tools/sts

Spring Framework Reference Documentation

@onfi guration
public class ServiceConfig {

@\ut owi r ed
private RepositoryConfig repositoryConfig;

@Bean
public TransferService transferService() {
return new Transfer Servicel npl (repositoryConfig.account Repository());
}
}

@onfi guration
public interface RepositoryConfig {

@Bean
Account Reposi t ory account Repository();

}

@onfi guration
public class Defaul t RepositoryConfig inplenents RepositoryConfig {

@Bean
publ i ¢ Account Reposi tory account Repository() {
return new JdbcAccount Repository(...);
}
}

@onfiguration
@ nport ({ServiceConfig.class, DefaultRepositoryConfig.class}) // inport the concrete config!
public class SystenTestConfig {

@ean
publ i c DataSource dataSource() {
/'l return DataSource

}
}

public static void main(String[] args) {
Appl i cati onCont ext ctx = new Annot ati onConfi gAppl i cati onCont ext (Syst eniTest Confi g. cl ass);
TransferService transferService = ctx.getBean(TransferService.class);
transferService. transfer(100. 00, "A123", "C456");

Now Ser vi ceConfi g is loosely coupled with respect to the concrete Def aul t Reposi t or yConfi g,
and built-in IDE tooling is still useful: it will be easy for the developer to get a type hierarchy of
Reposi t or yConfi g implementations. In this way, navigating @onf i gur ati on classes and their
dependencies becomes no different than the usual process of navigating interface-based code.

Tip

If you would like to influence the startup creation order of certain beans, consider declaring some
of them as @azy (for creation on first access instead of on startup) or as @ependsOn on certain
other beans (making sure that specific other beans will be created before the current bean, beyond
what the latter’s direct dependencies imply).

Conditionally include @Configuration classes or @Bean methods

It is often useful to conditionally enable or disable a complete @Confi gurati on class, or even
individual @Bean methods, based on some arbitrary system state. One common example of this is to
use the @°r of i | e annotation to activate beans only when a specific profile has been enabled in the
Spring Envi ronnent (see the section called “Bean definition profiles” for details).

4.3.19.RELEASE Spring Framework 138

Spring Framework Reference Documentation

The @rrofile annotation is actually implemented using a much more flexible
annotation called @onditional. The @Conditional annotation indicates specific
or g. spri ngframewor k. cont ext. annot ati on. Condi ti on implementations that should be
consulted before a @ean is registered.

Implementations of the Condi t i on interface simply provide a mat ches(..) method that returnstrue
or f al se. For example, here is the actual Condi ti on implementation used for @r of i | e:

@verride
publ i c bool ean mat ches(Condi ti onCont ext context, AnnotatedTypeMetadata netadata) {
if (context.getEnvironnent() != null) {

// Read the @rofile annotation attributes
Mul ti Val ueMap<String, Object> attrs =
nmet adat a. get Al | Annot ati onAttributes(Profile.class.getNane());
if (attrs !'= null) {
for (Cbject value : attrs.get("value")) {
i f (context.getEnvironnent().acceptsProfiles(((String[]) value))) {
return true;
}
}
return false;
}
}

return true;

See the @Condi ti onal javadocs for more detail.

Combining Java and XML configuration

Spring’s @onfi gur ati on class support does not aim to be a 100% complete replacement for Spring
XML. Some facilities such as Spring XML namespaces remain an ideal way to configure the container.
In cases where XML is convenient or necessary, you have a choice: either instantiate the container in an
"XML-centric" way using, for example, Cl assPat hXm Appl i cati onCont ext, or in a "Java-centric"
fashion using Annot at i onConf i gAppl i cati onCont ext and the @ nport Resour ce annotation to
import XML as needed.

XML-centric use of @Configuration classes

It may be preferable to bootstrap the Spring container from XML and include @onf i gur at i on classes
in an ad-hoc fashion. For example, in a large existing codebase that uses Spring XML, it will be easier to
create @onf i gur ati on classes on an as-needed basis and include them from the existing XML files.
Below you'll find the options for using @onf i gur at i on classes in this kind of "XML-centric" situation.

Remember that @onfi gur ati on classes are ultimately just bean definitions in the container. In this
example, we create a @onf i gur at i on class named AppConf i g andinclude itwithinsyst em t est -
config.xm as a <bean/ > definition. Because <cont ext : annot ati on- confi g/ > is switched
on, the container will recognize the @onf i gur at i on annotation and process the @ean methods
declared in AppConf i g properly.

4.3.19.RELEASE Spring Framework 139

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/context/annotation/Conditional.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/context/annotation/Conditional.html

Spring Framework Reference Documentation

@onfi guration
public class AppConfig {

@\ut owi r ed
private DataSource dataSource;

@Bean
publ i ¢ Account Reposi tory account Repository() {
return new JdbcAccount Reposi t or y(dat aSour ce) ;

}

@Bean
public TransferService transferService() {
return new Transfer Servi ce(account Repository());

}

system-test-config.xml:

<beans>
<I-- enabl e processing of annotations such as @\wutow red and @onfiguration -->
<cont ext : annot ati on-confi g/ >
<cont ext: property-placehol der |ocation="cl asspath:/conf acne/jdbc. properties"/>

<bean cl ass="com acne. AppConfig"/>

<bean cl ass="org. springframework.j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="url" val ue="${jdbc.url}"/>
<property name="usernanme" val ue="${j dbc. usernane}"/>
<property name="password" val ue="${j dbc. password}"/>
</ bean>
</ beans>

jdbc.properties:

jdbc. url =j dbc: hsql db: hsql : / /1 ocal host/ xdb
j dbc. user nane=sa
j dbc. passwor d=

public static void main(String[] args) {

ApplicationContext ctx = new C assPat hXm Appli cati onContext ("cl asspath:/conf acne/ systemtest -
config.xm");

Transf er Servi ce transferService = ctx.getBean(TransferService.cl ass);

/1

Note

In systemtest-config.xm above, the AppConfi g <bean/ > does not declare an id
element. While it would be acceptable to do so, it is unnecessary given that no other bean will ever
refer to it, and it is unlikely that it will be explicitly fetched from the container by name. Likewise
with the Dat aSour ce bean - it is only ever autowired by type, so an explicit bean i d is not strictly
required.

Because @onfi guration is meta-annotated with @onponent, @Confi gur ati on-annotated
classes are automatically candidates for component scanning. Using the same scenario as above,
we can redefine systemtest-config. xm to take advantage of component-scanning. Note that
in this case, we don't need to explicitly declare <cont ext: annot ati on-confi g/ >, because
<cont ext : component - scan/ > enables the same functionality.

system-test-config.xml:

4.3.19.RELEASE Spring Framework 140

Spring Framework Reference Documentation

<beans>
<l-- picks up and registers AppConfig as a bean definition -->
<cont ext : conponent - scan base- package="com acne"/ >
<cont ext: property-placehol der |ocati on="cl asspath:/conl acne/jdbc. properties"/>

<bean cl ass="org. springfranework. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="url" val ue="${jdbc.url}"/>
<property nanme="usernanme" val ue="${j dbc. usernanme}"/>
<property nanme="password" val ue="${j dbc. password}"/>
</ bean>
</ beans>

@Configuration class-centric use of XML with @ImportResource

In applications where @onfi gur ati on classes are the primary mechanism for configuring the
container, it will still likely be necessary to use at least some XML. In these scenarios, simply use
@ npor t Resour ce and define only as much XML as is needed. Doing so achieves a "Java-centric"
approach to configuring the container and keeps XML to a bare minimum.

@onfi guration
@ npor t Resour ce("cl asspat h: / conf acne/ properties-config.xm")
public class AppConfig {

@/al ue("${jdbc.url}")
private String url;

@/al ue(" ${j dbc. user nane}")
private String usernane;

@/al ue(" ${j dbc. password}")
private String password;

@Bean
publ i c Dat aSour ce dataSource() {
return new Driver Manager Dat aSour ce(url, usernanme, password);

}

properties-config.xm
<beans>

<cont ext: property-pl acehol der | ocati on="cl asspath:/com acne/j dbc. properties"/>
</ beans>

jdbc. properties

jdbc. url =j dbc: hsqgl db: hsql : //1 ocal host/ xdb
j dbc. user nane=sa

j dbc. passwor d=

public static void main(String[] args) {
Appl i cati onContext ctx = new Annot ati onConfi gAppl i cati onCont ext (AppConfi g. cl ass);
Transfer Servi ce transferService = ctx.getBean(TransferService.cl ass);
/1

7.13 Environment abstraction

The Envi ronnent is an abstraction integrated in the container that models two key aspects of the
application environment: profiles and properties.

A profile is a named, logical group of bean definitions to be registered with the container only if the given
profile is active. Beans may be assigned to a profile whether defined in XML or via annotations. The role
of the Envi r onnent object with relation to profiles is in determining which profiles (if any) are currently
active, and which profiles (if any) should be active by default.

4.3.19.RELEASE Spring Framework 141

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/core/env/Environment.html

Spring Framework Reference Documentation

Properties play an important role in almost all applications, and may originate from a variety of
sources: properties files, JVM system properties, system environment variables, JNDI, servlet context
parameters, ad-hoc Properties objects, Maps, and so on. The role of the Envi r onnment object with
relation to properties is to provide the user with a convenient service interface for configuring property
sources and resolving properties from them.

Bean definition profiles

Bean definition profiles is a mechanism in the core container that allows for registration of different beans
in different environments. The word environment can mean different things to different users and this
feature can help with many use cases, including:

» working against an in-memory datasource in development vs looking up that same datasource from
JNDI when in QA or production

 registering monitoring infrastructure only when deploying an application into a performance
environment

* registering customized implementations of beans for customer A vs. customer B deployments

Let's consider the first use case in a practical application that requires a Dat aSour ce. In a test
environment, the configuration may look like this:

@Bean
publ i ¢ Dat aSour ce dataSource() {
return new EnbeddedDat abaseBui | der ()
. set Type(EmbeddedDat abaseType. HSQL)
.addScri pt ("ny-schena. sql ")
.addScri pt ("ny-test-data.sqgl")
Lbuild();

}

Let’'s now consider how this application will be deployed into a QA or production environment, assuming
that the datasource for the application will be registered with the production application server’s JNDI
directory. Our dat aSour ce bean now looks like this:

@Bean(dest r oyMet hod="")
publ i c Dat aSour ce dataSource() throws Exception {
Context ctx = new Initial Context();
return (DataSource) ctx.|ookup("java:conp/env/jdbc/datasource");

}

The problem is how to switch between using these two variations based on the current environment.
Over time, Spring users have devised a number of ways to get this done, usually relying on a combination
of system environment variables and XML <i nport/> statements containing ${ pl acehol der}
tokens that resolve to the correct configuration file path depending on the value of an environment
variable. Bean definition profiles is a core container feature that provides a solution to this problem.

If we generalize the example use case above of environment-specific bean definitions, we end up with
the need to register certain bean definitions in certain contexts, while not in others. You could say that
you want to register a certain profile of bean definitions in situation A, and a different profile in situation
B. Let's first see how we can update our configuration to reflect this need.

@Profile

The @r of i | e annotation allows you to indicate that a component is eligible for registration when
one or more specified profiles are active. Using our example above, we can rewrite the dat aSour ce
configuration as follows:

4.3.19.RELEASE Spring Framework 142

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/context/annotation/Profile.html

Spring Framework Reference Documentation

@onfi guration
@rofile("devel opnent™)
public class Standal oneDat aConfig {

@Bean
publ i ¢ Dat aSource dataSource() {
return new EnbeddedDat abaseBui | der ()
. set Type(EnbeddedDat abaseType. HSQL)
.addScri pt ("cl asspat h: conml bank/ confi g/ sql / schema. sql ")
.addScri pt ("cl asspat h: conml bank/ confi g/ sql /test-data.sql")
Lbuild();

@onfiguration
@rofile("production")
public class Jndi Dat aConfig {

@ean(dest royMet hod="")
publ i c Dat aSource dataSource() throws Exception {
Context ctx = new Initial Context();
return (DataSource) ctx.|ookup("java:conp/env/jdbc/datasource");

Note

As mentioned before, with @ean methods, you will typically choose to use programmatic JNDI
lookups: either using Spring’s Jndi Tenpl at e/Jndi Locat or Del egat e helpers or the straight
JNDI | ni ti al Cont ext usage shown above, but not the Jndi Cbj ect Fact or yBean variant
which would force you to declare the return type as the Fact or yBean type.

@rofile can be used as a meta-annotation for the purpose of creating a custom composed
annotation. The following example defines a custom @r oduct i on annotation that can be used as a

drop-in replacement for @r of i | e(" producti on"):

@ar get (El enent Type. TYPE)

@Ret ent i on(Ret ent i onPol i cy. RUNTI MVE)
@rofile("production")

public @nterface Production {

}

Tip

If a @onfi guration class is marked with @r of i | e, all of the @ean methods and @ npor t
annotations associated with that class will be bypassed unless one or more of the specified profiles
are active. If a @onponent or @onfi gurati on class is marked with @r of i | e({"pl",
"p2"}), that class will not be registered/processed unless profiles 'pl' and/or 'p2' have been
activated. If a given profile is prefixed with the NOT operator (!), the annotated element will
be registered if the profile is not active. For example, given @rofil e({"pl", "!p2"}),
registration will occur if profile 'pl' is active or if profile 'p2' is not active.

@r of i | e can also be declared at the method level to include only one particular bean of a configuration

class, e.g. for alternative variants of a particular bean:

4.3.19.RELEASE Spring Framework

143

Spring Framework Reference Documentation

@onfi guration
public class AppConfig {

@ean(" dat aSour ce")
@rofile("devel opnent™)
publ i ¢ Dat aSour ce standal oneDat aSource() {
return new EnbeddedDat abaseBui | der ()
. set Type(EnbeddedDat abaseType. HSQL)
.addScri pt ("cl asspat h: conml bank/ confi g/ sql / schema. sql ")
.addScri pt ("cl asspat h: conml bank/ confi g/ sql /test-data.sql")
Lbuild();
}

@Bean(" dat aSour ce")
@rofile("production")
publ i c DataSource jndi DataSource() throws Exception {
Context ctx = new Initial Context();
return (DataSource) ctx.|ookup("java:conp/env/jdbc/datasource");

Note

With @r of i | e on @ean methods, a special scenario may apply: In the case of overloaded
@ean methods of the same Java method name (analogous to constructor overloading), an
@r of i | e condition needs to be consistently declared on all overloaded methods. If the
conditions are inconsistent, only the condition on the first declaration among the overloaded
methods will matter. @r of i | e can therefore not be used to select an overloaded method with a
particular argument signature over another; resolution between all factory methods for the same
bean follows Spring’s constructor resolution algorithm at creation time.

If you would like to define alternative beans with different profile conditions, use distinct Java
method names pointing to the same bean name via the @ean name attribute, as indicated in the
example above. If the argument signatures are all the same (e.qg. all of the variants have no-arg
factory methods), this is the only way to represent such an arrangement in a valid Java class in
the first place (since there can only be one method of a particular name and argument signature).

XML bean definition profiles

The XML counterpartisthe pr of i | e attribute of the <beans> element. Our sample configuration above

can be rewritten in two XML files as follows:

<beans profil e="devel opment"
xm ns="http://ww. springfranmework. org/ scherma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: j dbc="http://ww. springframework. or g/ schenma/ j dbc"
xsi:schemalLocation="...">

<j dbc: enbedded- dat abase i d="dat aSour ce" >
<j dbc:script |ocation="classpath:conl bank/config/sql/schena.sql"/>
<j dbc: script |ocation="cl asspath: com bank/config/sql/test-data.sql"/>
</ j dbc: enmbedded- dat abase>
</ beans>

<beans profile="production"
xm ns="http://ww. spri ngfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: j ee="http://ww. springframework. org/ schena/j ee"
xsi:schemalLocation="...">

<j ee:j ndi -l ookup id="dataSource" jndi-nanme="java: conp/env/jdbc/datasource"/>
</ beans>

4.3.19.RELEASE Spring Framework

144

Spring Framework Reference Documentation

It is also possible to avoid that split and nest <beans/ > elements within the same file:

<beans xml ns="http://wwm. spri ngframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: j dbc="http://ww. springframework. org/ schena/j dbc"
xm ns: j ee="http://ww. springfranmework. org/ schena/j ee"
xsi:schemalLocation="...">

<I-- other bean definitions -->

<beans profil e="devel opment">
<j dbc: enbedded- dat abase i d="dat aSour ce">
<j dbc: script |ocation="cl asspath: conf bank/ confi g/sqgl/schema. sql "/ >
<j dbc: script |ocation="classpath: conf bank/ config/sqgl/test-data.sql"/>
</ j dbc: enbedded- dat abase>
</ beans>

<beans profil e="production">
<j ee:] ndi -1 ookup i d="dataSource" jndi-nanme="java: conp/ env/j dbc/ dat asource"/ >
</ beans>
</ beans>

The spri ng- bean. xsd has been constrained to allow such elements only as the last ones in the file.
This should help provide flexibility without incurring clutter in the XML files.

Activating a profile

Now that we have updated our configuration, we still need to instruct Spring which profile is active. If
we started our sample application right now, we would see a NoSuchBeanDefi ni ti onExcepti on
thrown, because the container could not find the Spring bean named dat aSour ce.

Activating a profile can be done in several ways, but the most straightforward is to do it programmatically
against the Envi r onnent API which is available via an Appl i cat i onCont ext :

Annot ati onConf i gAppl i cati onContext ctx = new AnnotationConfi gApplicationContext();
ct x. get Envi ronnment (). set Acti veProfil es("devel opnent");

ctx. regi ster(SonmeConfig.cl ass, Standal oneDat aConfi g.cl ass, Jndi DataConfi g. cl ass);
ctx.refresh();

In addition, profiles may also be activated declaratively through the spring. profiles. active
property which may be specified through system environment variables, JVM system properties, servlet
context parameters in web. xm , or even as an entry in JNDI (see the section called “PropertySource
abstraction”). In integration tests, active profiles can be declared via the @\ct i vePr of i | es annotation
inthe spri ng-t est module (see the section called “Context configuration with environment profiles”).

Note that profiles are not an "either-or" proposition; it is possible to activate multiple profiles at once.
Programmatically, simply provide multiple profile names to the set Act i vePr of i | es() method, which
accepts St ri ng...varargs:

ctx. get Environnent ().setActiveProfiles("profilel”, "profile2");

Declaratively, spri ng. profil es. acti ve may accept a comma-separated list of profile names:

‘ -Dspring.profiles.active="profilel,profile2"
Default profile

The default profile represents the profile that is enabled by default. Consider the following:

4.3.19.RELEASE Spring Framework 145

Spring Framework Reference Documentation

@onfi guration
@rofile("default")
public class Defaul t DataConfig {

@Bean
publ i ¢ Dat aSource dataSource() {
return new EnbeddedDat abaseBui | der ()
. set Type(EnbeddedDat abaseType. HSQL)
.addScri pt ("cl asspat h: conml bank/ confi g/ sql / schema. sql ")
.build();

If no profile is active, the dat aSour ce above will be created; this can be seen as a way to provide a
default definition for one or more beans. If any profile is enabled, the default profile will not apply.

The name of the default profile can be changed using set Def aul t Pr of i | es() onthe Envi r onnent
or declaratively using the spri ng. profi | es. def aul t property.

PropertySource abstraction

Spring’s Envi ronment abstraction provides search operations over a configurable hierarchy of
property sources. To explain fully, consider the following:

Appl i cationContext ctx = new Ceneri cApplicationContext();

Envi ronnent env = ctx. get Environnent () ;

bool ean cont ai nsFoo = env. cont ai nsProperty("foo");

System out. println("Does ny environnment contain the 'foo" property? " + contai nsFoo);

Inthe snippet above, we see a high-level way of asking Spring whether the f oo property is defined for the
current environment. To answer this question, the Envi r onnment object performs a search over a set of
Pr oper t ySour ce objects. A Propert ySour ce is a simple abstraction over any source of key-value
pairs, and Spring’s St andar dEnvi r onnment is configured with two PropertySource objects —one
representing the set of JVM system properties (ala Syst em get Properti es()) and one representing
the set of system environment variables (a la Syst em get env()).

Note

These default property sources are present for Standar dEnvironnent, for use in
standalone applications. St andar dServl et Envi ronnent is populated with additional
default property sources including servlet config and servlet context parameters.
St andar dPor t | et Envi ronnent similarly has access to portlet config and portlet context
parameters as property sources. Both can optionally enable a Jndi Pr oper t ySour ce. See the
javadocs for details.

Concretely, when using the St andar dEnvi r onnent , the call to env. cont ai nsProperty("foo")
will return true if a f 00 system property or f 00 environment variable is present at runtime.

Tip

The search performed is hierarchical. By default, system properties have precedence over
environment variables, so if the f 0o property happens to be set in both places during a call to
env. get Property("foo"), the system property value will 'win' and be returned preferentially
over the environment variable. Note that property values will not get merged but rather completely
overridden by a preceding entry.

4.3.19.RELEASE Spring Framework 146

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/core/env/PropertySource.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/core/env/StandardEnvironment.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/web/context/support/StandardServletEnvironment.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/web/portlet/context/StandardPortletEnvironment.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/jndi/JndiPropertySource.html

Spring Framework Reference Documentation

For a common St andar dSer vl et Envi r onnent , the full hierarchy looks as follows, with the
highest-precedence entries at the top:

» ServletConfig parameters (if applicable, e.g. in case of a Di spat cher Ser vl et context)
» ServletContext parameters (web.xml context-param entries)
» JNDI environment variables ("java:comp/env/" entries)

» JVM system properties ("-D" command-line arguments)

» JVM system environment (operating system environment variables)

Most importantly, the entire mechanism is configurable. Perhaps you have a custom source of properties
that you'd like to integrate into this search. No problem — simply implement and instantiate your own
Pr oper t ySour ce and add it to the set of Pr oper t ySour ces for the current Envi r onment :

Confi gur abl eAppl i cati onContext ctx = new GenericApplicationContext();
Mut abl ePr opert ySour ces sources = ctx.get Environnent (). get PropertySources();
sour ces. addFi r st (new MyPropertySource());

In the code above, MyPr opert ySour ce has been added with highest precedence in the search. If
it contains a f oo property, it will be detected and returned ahead of any f oo property in any other
Pr opert ySour ce. The Mut abl ePr opert ySour ces API exposes a number of methods that allow for
precise manipulation of the set of property sources.

@PropertySource

The @r opertySour ce annotation provides a convenient and declarative mechanism for adding a
Pr opert ySour ce to Spring’s Envi r onnent .

Given a file "app.properties" containing the key/value pair t est bean. nane=nyTest Bean, the
following @Configuration class uses @ropertySource in such a way that a call to
t est Bean. get Nane() will return "myTestBean".

@onfiguration
@r opertySource("cl asspat h: / com myco/ app. properties")
public class AppConfig {

@\ut owi r ed
Envi ronnent env;

@Bean

public TestBean testBean() {
Test Bean testBean = new Test Bean();
t est Bean. set Nane(env. get Property("testbean. nane"));
return testBean;

Any ${ ..} placeholders presentin a @r opert ySour ce resource location will be resolved against the
set of property sources already registered against the environment. For example:

4.3.19.RELEASE Spring Framework 147

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/core/env/MutablePropertySources.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/context/annotation/PropertySource.html

Spring Framework Reference Documentation

@onfi guration
@r opertySour ce("cl asspat h: / coml ${ ny. pl acehol der: def aul t/ pat h}/ app. properties")
public class AppConfig {

@\ut owi r ed
Envi ronnent env;

@Bean

public TestBean testBean() {
Test Bean testBean = new Test Bean();
t est Bean. set Nane(env. get Property("testbean. nane"));
return testBean;

Assuming that "my.placeholder" is present in one of the property sources already registered, e.g. system
properties or environment variables, the placeholder will be resolved to the corresponding value. If not,
then "default/path” will be used as a default. If no default is specified and a property cannot be resolved,
an ||| egal Argurment Except i on will be thrown.

Note

The @°r opert ySour ce annotation is repeatable according to Java 8 conventions. However, all
such @r oper t ySour ce annotations need to be declared at the same level: either directly on the
configuration class or as meta-annotations within the same custom annotation. Mixing of direct
annotations and meta-annotations is not recommended since direct annotations will effectively
override meta-annotations.

Placeholder resolution in statements

Historically, the value of placeholders in elements could be resolved only against JVM system properties
or environment variables. No longer is this the case. Because the Environment abstraction is integrated
throughout the container, it's easy to route resolution of placeholders through it. This means that you
may configure the resolution process in any way you like: change the precedence of searching through
system properties and environment variables, or remove them entirely; add your own property sources
to the mix as appropriate.

Concretely, the following statement works regardless of where the cust onmer property is defined, as
long as it is available in the Envi r onnent :

<beans>
<i nport resource="com bank/servi ce/ ${custoner}-config.xm"/>
</ beans>

7.14 Registering a LoadTimeWeaver

The LoadTi nreWeaver is used by Spring to dynamically transform classes as they are loaded into the
Java virtual machine (JVM).

To enable load-time weaving add the @nabl eLoadTi neWeavi ng to one of your @onfi gurati on
classes:

@onfi guration
@Enabl eLoadTi neWeavi ng
public class AppConfig {

}

4.3.19.RELEASE Spring Framework 148

Spring Framework Reference Documentation

Alternatively for XML configuration use the cont ext : | oad-ti nme- weaver element:

<beans>
<cont ext : | oad-ti me-weaver/ >
</ beans>

Once configured for the Appli cati onContext. Any bean within that Appli cati onCont ext
may implement LoadTi neWeaver Awar e, thereby receiving a reference to the load-time
weaver instance. This is particularly useful in combination with Spring’s JPA support
where load-time weaving may be necessary for JPA class transformation. Consult the
Local Cont ai ner Enti t yManager Fact or yBean javadocs for more detail. For more on AspectJ
load-time weaving, see the section called “Load-time weaving with AspectJ in the Spring Framework”.

7.15 Additional capabilities of the ApplicationContext

As was discussed in the chapter introduction, the or g. spr i ngf r anewor k. beans. f act or y package
provides basic functionality for managing and manipulating beans, including in a programmatic
way. The or g. spri ngfranmewor k. cont ext package adds the Appl i cati onCont ext interface,
which extends the BeanFact ory interface, in addition to extending other interfaces to provide
additional functionality in a more application framework-oriented style. Many people use the
Appl i cati onCont ext in a completely declarative fashion, not even creating it programmatically,
but instead relying on support classes such as Cont ext Loader to automatically instantiate an
Appl i cati onCont ext as part of the normal startup process of a Java EE web application.

To enhance BeanFact ory functionality in a more framework-oriented style the context package also
provides the following functionality:

» Access to messages in i18n-style, through the MessageSour ce interface.
» Access to resources, such as URLs and files, through the Resour ceLoader interface.

» Event publication to namely beans implementing the Appl i cat i onLi st ener interface, through the
use of the Appl i cati onEvent Publ i sher interface.

» Loading of multiple (hierarchical) contexts, allowing each to be focused on one particular layer, such
as the web layer of an application, through the Hi er ar chi cal BeanFact or y interface.

Internationalization using MessageSource

The ApplicationContext interface extends an interface called MessageSource, and
therefore provides internationalization (i18n) functionality. Spring also provides the interface
Hi er ar chi cal MessageSour ce, which can resolve messages hierarchically. Together these
interfaces provide the foundation upon which Spring effects message resolution. The methods defined
on these interfaces include:

* String get Message(String code, Cbject[] args, String default, Locale |oc):
The basic method used to retrieve a message from the MessageSour ce. When no message is found
for the specified locale, the default message is used. Any arguments passed in become replacement
values, using the MessageFor mat functionality provided by the standard library.

 String get Message(String code, Cbject[] args, Local e |oc): Essentially the same
as the previous method, but with one difference: no default message can be specified; if the message
cannot be found, a NoSuchMessageExcept i on is thrown.

4.3.19.RELEASE Spring Framework 149

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/context/ApplicationContext.html

Spring Framework Reference Documentation

e String getMessage(MessageSourceResol vable resolvable, Locale |locale):
All properties used in the preceding methods are also wrapped in a class named
MessageSour ceResol vabl e, which you can use with this method.

When an Appl i cati onCont ext is loaded, it automatically searches for a MessageSour ce bean
defined in the context. The bean must have the name nmessageSour ce. If such a bean is found, all
calls to the preceding methods are delegated to the message source. If no message source is found,
the Appl i cat i onCont ext attempts to find a parent containing a bean with the same name. If it does,
it uses that bean as the MessageSour ce. If the Appl i cati onCont ext cannot find any source for
messages, an empty Del egat i ngMessageSour ce is instantiated in order to be able to accept calls
to the methods defined above.

Spring provides two MessageSour ce implementations, Resour ceBundl eMessageSour ce and
St ati cMessageSour ce. Both implement Hi er ar chi cal MessageSour ce in order to do nested
messaging. The St ati cMessageSour ce is rarely used but provides programmatic ways to add
messages to the source. The Resour ceBundl eMessageSour ce is shown in the following example:

<beans>
<bean i d="nmessageSource"
cl ass="org. springframewor k. cont ext. support. Resour ceBundl eMessageSour ce" >
<property nanme="basenanes">
<list>
<val ue>f ormat </ val ue>
<val ue>excepti ons</ val ue>
<val ue>wi ndows</ val ue>
</list>
</ property>
</ bean>
</ beans>

In the example it is assumed you have three resource bundles defined in your classpath called f or mat ,
excepti ons and wi ndows. Any request to resolve a message will be handled in the JDK standard
way of resolving messages through ResourceBundles. For the purposes of the example, assume the
contents of two of the above resource bundle files are...

in format. properties
message=Al | i gators rock!

in exceptions.properties
argurnent . requi red=The {0} argunment is required.

A program to execute the MessageSour ce functionality is shown in the next example. Remember that
all Appl i cati onCont ext implementations are also MessageSour ce implementations and so can be
cast to the MessageSour ce interface.

public static void main(String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ");
String nessage = resources. get Message("nessage", null, "Default", null);
System out. printl n(nessage);

The resulting output from the above program will be...

Al ligators rock!

So to summarize, the MessageSour ce is defined in a file called beans. xm , which exists at the root of
your classpath. The messageSour ce bean definition refers to a number of resource bundles through
its basenanes property. The three files that are passed in the list to the basenanes property exist as

4.3.19.RELEASE Spring Framework 150

Spring Framework Reference Documentation

files at the root of your classpath and are called f or mat . properti es, excepti ons. properties,
and wi ndows. properti es respectively.

The next example shows arguments passed to the message lookup; these arguments will be converted
into Strings and inserted into placeholders in the lookup message.

<beans>

<l-- this MessageSource is being used in a web application -->

<bean id="nmessageSource" cl ass="org.springfranmework. cont ext.support.ResourceBundl eMessageSour ce" >
<property name="basenanme" val ue="exceptions"/>

</ bean>

<l-- lets inject the above MessageSource into this PQJO -->
<bean id="exanple" class="com foo. Exanpl e" >

<property name="nmessages" ref="nmessageSource"/>
</ bean>

</ beans>

public class Exanple {
private MessageSource nessages;

public void set Messages(MessageSour ce nessages) {
thi s. nessages = nessages;

}

public void execute() {
String nessage = this.nmessages. get Message("argunent.required”,
new Object [] {"userDao"}, "Required", null);
System out. printl n(nmessage);

The resulting output from the invocation of the execut e() method will be...

The userDao argunment is required.

With regard to internationalization (i18n), Spring’s various MessageSour ce implementations follow
the same locale resolution and fallback rules as the standard JDK Resour ceBundl e. In short, and
continuing with the example messageSour ce defined previously, if you want to resolve messages
against the British (en- GB) locale, you would create files called for mat _en_GB. properti es,
exceptions_en_GB. properties,andw ndows_en_GB. properti es respectively.

Typically, locale resolution is managed by the surrounding environment of the application. In this
example, the locale against which (British) messages will be resolved is specified manually.

in exceptions_en_GCB. properties
argunent . requi red=Ebagum | ad, the {0} argunment is required, | say, required.

public static void main(final String[] args) {
MessageSour ce resources = new C assPat hXm Appl i cati onCont ext ("beans. xm ") ;
String nessage = resources. get Message("argunent.required",
new Object [] {"userDao"}, "Required", Locale.UK);
System out. printl n(nmessage) ;

The resulting output from the running of the above program will be...

Ebagum | ad, the 'userDao' argunent is required, | say, required.

4.3.19.RELEASE Spring Framework 151

Spring Framework Reference Documentation

You can also use the MessageSour ceAwar e interface to acquire a reference to any MessageSour ce
that has been defined. Any bean that is defined in an Appl i cati onCont ext that implements the
MessageSour ceAwar e interface is injected with the application context’'s MessageSour ce when the
bean is created and configured.

Note

As an alternative to ResourceBundl eMessageSource, Spring provides a
Rel oadabl eResour ceBundl eMessageSour ce class. This variant supports the same bundle
file format but is more flexible than the standard JDK based Resour ceBundl eMessageSour ce
implementation. In particular, it allows for reading files from any Spring resource location (not just
from the classpath) and supports hot reloading of bundle property files (while efficiently caching
them in between). Check out the Rel oadabl eResour ceBundl eMessageSour ce javadocs for
details.

Standard and custom events

Event handling in the Appl i cati onCont ext is provided through the Appli cati onEvent class
and ApplicationLi stener interface. If a bean that implements the Appl i cati onLi st ener
interface is deployed into the context, every time an Appli cati onEvent gets published to the
Appl i cati onCont ext , that bean is notified. Essentially, this is the standard Observer design pattern.

Tip

As of Spring 4.2, the event infrastructure has been significantly improved and offer an annotation-
based model as well as the ability to publish any arbitrary event, that is an object that does not
necessarily extend from Appl i cat i onEvent . When such an object is published we wrap it in
an event for you.

Spring provides the following standard events:

Table 7.7. Built-in Events

Event Explanation

Cont ext Ref r eshedEvent Published when the Appl i cati onCont ext
is initialized or refreshed, for example,
using the r ef resh() method on the
Confi gur abl eAppl i cati onCont ext
interface. "Initialized" here means that all
beans are loaded, post-processor beans are
detected and activated, singletons are pre-
instantiated, and the Appl i cati onCont ext
object is ready for use. As long as the
context has not been closed, a refresh can
be triggered multiple times, provided that
the chosen Appl i cati onCont ext actually
supports such "hot" refreshes. For example,
Xm WebAppl i cati onCont ext supports hot
refreshes, but Generi cAppl i cati onCont ext
does not.

4.3.19.RELEASE Spring Framework 152

Spring Framework Reference Documentation

Event Explanation

Cont ext St art edEvent Published when the Appl i cati onCont ext
is started, using the st art () method on
the Conf i gur abl eAppl i cati onCont ext
interface. "Started" here means that all
Li f ecycl e beans receive an explicit start
signal. Typically this signal is used to restart
beans after an explicit stop, but it may also
be used to start components that have not
been configured for autostart , for example,
components that have not already started on
initialization.

Cont ext St oppedEvent Published when the Appl i cat i onCont ext
is stopped, using the st op() method on
the Conf i gur abl eAppl i cati onCont ext
interface. "Stopped" here means that all
Li f ecycl e beans receive an explicit stop
signal. A stopped context may be restarted
throughastart () call

Cont ext Cl osedEvent Published when the Appl i cati onCont ext
is closed, using the cl ose() method on the
Confi gur abl eAppl i cati onCont ext
interface. "Closed" here means that all singleton
beans are destroyed. A closed context reaches
its end of life; it cannot be refreshed or restarted.

Request Handl edEvent A web-specific event telling all beans that an
HTTP request has been serviced. This event
is published after the request is complete. This
event is only applicable to web applications
using Spring’s Di spat cher Ser vl et .

You can also create and publish your own custom events. This example demonstrates a simple class
that extends Spring’s Appl i cati onEvent base class:

public class BlackListEvent extends ApplicationEvent {

private final String address;
private final String content;

public Bl ackLi st Event (Cbj ect source, String address, String content) {
super (source);
this.address = address;
this.content = content;

}

/| accessor and ot her nethods. ..

To publish a custom ApplicationEvent, call the publishEvent() method on an
Appl i cati onEvent Publ i sher. Typically this is done by creating a class that implements

4.3.19.RELEASE Spring Framework 153

Spring Framework Reference Documentation

Appl i cati onEvent Publ i sher Awar e and registering it as a Spring bean. The following example
demonstrates such a class:

public class Email Service inplenents ApplicationEvent PublisherAware {

private List<String> blackList;
private ApplicationEventPublisher publisher;

public void setBl ackLi st (List<String> bl ackList) {
t his. bl ackLi st = bl ackLi st;
}

public voi d setApplicati onEvent Publi sher (Appli cationEvent Publisher publisher) {
this.publisher = publisher;
}

public void sendEmail (String address, String content) {
i f (bl ackList.contains(address)) {
publ i sher. publ i shEvent (new Bl ackLi st Event (thi s, address, content));
return;

}

/1 send enuil ...

At configuration time, the Spring container will detect that Email Service
implements Appl i cati onEvent Publ i sher Awnar e and will automatically call
set Appl i cati onEvent Publ i sher () . Inreality, the parameter passed in will be the Spring container
itself; you're simply interacting with the application context via its Appl i cat i onEvent Publ i sher
interface.

To receive the custom Appl i cati onEvent, create a class that implements Appl i cat i onLi st ener
and register it as a Spring bean. The following example demonstrates such a class:

public class Bl ackListNotifier inplenents ApplicationListener<Bl ackLi st Event> {
private String notificationAddress;

public void setNotificationAddress(String notificationAddress) {
this.notificationAddress = notificati onAddress;

}

public voi d onApplicationEvent (Bl ackLi st Event event) {
/1 notify appropriate parties via notificationAddress...

}

Notice that Appl i cat i onLi st ener is generically parameterized with the type of your custom event,
Bl ackLi st Event . This means that the onAppl i cati onEvent () method can remain type-safe,
avoiding any need for downcasting. You may register as many event listeners as you wish, but note that
by default event listeners receive events synchronously. This means the publ i shEvent () method
blocks until all listeners have finished processing the event. One advantage of this synchronous and
single-threaded approach is that when a listener receives an event, it operates inside the transaction
context of the publisher if a transaction context is available. If another strategy for event publication
becomes necessary, refer to the javadoc for Spring’s Appl i cat i onEvent Mul ti cast er interface.

The following example shows the bean definitions used to register and configure each of the classes
above:

4.3.19.RELEASE Spring Framework 154

Spring Framework Reference Documentation

<bean id="email Servi ce" cl ass="exanpl e. Emai | Servi ce">
<property name="bl ackLi st">
<list>
<val ue>known. spanmmrer @xanpl e. or g</ val ue>
<val ue>known. hacker @xanpl e. or g</ val ue>
<val ue>j ohn. doe@xanpl e. or g</ val ue>
</list>
</ property>
</ bean>

<bean id="bl ackLi st Notifier" class="exanple.Bl ackLi stNotifier">
<property name="notificati onAddress" val ue="bl ackl i st @xanpl e.org"/ >
</ bean>

Putting it all together, when the sendEnai | () method of the emai | Ser vi ce bean is called, if there
are any emails that should be blacklisted, a custom event of type Bl ackLi st Event is published.
The bl ackLi st Noti fi er bean is registered as an Appl i cati onLi st ener and thus receives the
Bl ackLi st Event , at which point it can notify appropriate parties.

Note

Spring’s eventing mechanism is designed for simple communication between Spring beans within
the same application context. However, for more sophisticated enterprise integration needs,
the separately-maintained Spring Integration project provides complete support for building
lightweight, pattern-oriented, event-driven architectures that build upon the well-known Spring
programming model.

Annotation-based event listeners

As of Spring 4.2, an event listener can be registered on any public method of a managed bean via the
Event Li st ener annotation. The Bl ackLi st Noti fi er can be rewritten as follows:

public class BlackListNotifier {
private String notificationAddress;

public void setNotificationAddress(String notificationAddress) {
this.notificationAddress = notificati onAddress;

}

@:vent Li st ener
public void processBl ackLi st Event (Bl ackLi st Event event) {
/1 notify appropriate parties via notificationAddress...

}

As you can see above, the method signature once again declares the event type it listens to, but this
time with a flexible name and without implementing a specific listener interface. The event type can also
be narrowed through generics as long as the actual event type resolves your generic parameter in its
implementation hierarchy.

If your method should listen to several events or if you want to define it with no parameter at all, the
event type(s) can also be specified on the annotation itself:

@vent Li st ener ({Cont ext St art edEvent . cl ass, Cont ext Ref reshedEvent. cl ass})
public void handl eContextStart () {

}

4.3.19.RELEASE Spring Framework 155

http://projects.spring.io/spring-integration/
http://www.enterpriseintegrationpatterns.com

Spring Framework Reference Documentation

It is also possible to add additional runtime filtering via the condi t i on attribute of the annotation that
defines a SpEL expression that should match to actually invoke the method for a particular event.

For instance, our notifier can be rewritten to be only invoked if the cont ent attribute of the event is
equal to f oo:

@vent Li stener (condi tion = "#bl Event.content == 'foo'")
public void processBl ackLi st Event (Bl ackLi st Event bl Event) {
/'l notify appropriate parties via notificationAddress...

}

Each SpEL expression evaluates against a dedicated context. The next table lists the items made
available to the context so one can use them for conditional event processing:

Table 7.8. Event SpEL available metadata
Name Location Description Example

Event root object The actual #r oot . event
Appl i cati onEvent

Arguments array root object The arguments (as #r oot . ar gs[0]
array) used for invoking
the target

Argument name evaluation context Name of any of the #bl Event or #a0 (one
method arguments. can also use #p0 or
If for some reason #p<#ar g> notation as
the names are not an alias).

available (e.g. no
debug information),
the argument names
are also available
under the #a<#ar g>
where #arg stands for
the argument index
(starting from 0).

Note that #r oot . event allows you to access to the underlying event, even if your method signature
actually refers to an arbitrary object that was published.

If you need to publish an event as the result of processing another, just change the method signature
to return the event that should be published, something like:

@tvent Li st ener

public ListUpdat eEvent handl eBl ackLi st Event (Bl ackLi st Event event) {
/1 notify appropriate parties via notificationAddress and
/1 then publish a ListUpdateEvent. ..

Note

This feature is not supported for asynchronous listeners.

This new method will publish a new Li st Updat eEvent for every Bl ackLi st Event handled by the
method above. If you need to publish several events, just return a Col | ect i on of events instead.

4.3.19.RELEASE Spring Framework 156

Spring Framework Reference Documentation

Asynchronous Listeners

If you want a particular listener to process events asynchronously, simply reuse the regular @GAsync
support:

@tvent Li st ener

@\sync

public void processBl ackLi st Event (Bl ackLi st Event event) {
/| Bl ackLi st Event is processed in a separate thread

}

Be aware of the following limitations when using asynchronous events:

1. If the event listener throws an Exception it will not be propagated to the caller, check
AsyncUncaught Except i onHandl er for more details.

2. Such event listener cannot send replies. If you need to send another event as the result of the
processing, inject Appl i cat i onEvent Publ i sher to send the event manually.

Ordering listeners

If you need the listener to be invoked before another one, just add the @ der annotation to the method
declaration:

@tvent Li st ener
@ der (42)
public void processBl ackLi st Event (Bl ackLi st Event event) {
/1 notify appropriate parties via notificationAddress...

}
Generic events

You may also use generics to further define the structure of your event. Consider an
EntityCreat edEvent <T> where T is the type of the actual entity that got created. You can create
the following listener definition to only receive Ent i t yCr eat edEvent for a Per son:

@vent Li st ener
public void onPersonCreated(EntityCreat edEvent <Person> event) {

}

Due to type erasure, this will only work if the event that is fired resolves the generic parameter(s) on
which the event listener filters on (that is something like cl ass Per sonCreat edEvent extends
EntityCreat edEvent <Person> { ...}).

In certain circumstances, this may become quite tedious if all events follow the same structure
(as it should be the case for the event above). In such a case, you can implement
Resol vabl eTypePr ovi der to guide the framework beyond what the runtime environment provides:

public class EntityCreatedEvent <T> ext ends ApplicationEvent inplenents Resol vabl eTypeProvi der {

public EntityCreatedEvent (T entity) {
super (entity);
}

@verride
publ i ¢ Resol vabl eType get Resol vabl eType() {
return Resol vabl eType. forC assWt hGeneri cs(getC ass(),
Resol vabl eType. f or | nst ance(get Source()));

4.3.19.RELEASE Spring Framework 157

Spring Framework Reference Documentation

Tip

This works not only for Appl i cat i onEvent but any arbitrary object that you'd send as an event.

Convenient access to low-level resources

For optimal usage and understanding of application contexts, users should generally familiarize
themselves with Spring’s Resour ce abstraction, as described in the chapter Chapter 8, Resources.

An application context is a Resour ceLoader , which can be used to load Resour ces. A Resour ce is
essentially a more feature rich version of the JDK class j ava. net . URL, in fact, the implementations
of the Resour ce wrap an instance of j ava. net . URL where appropriate. A Resour ce can obtain
low-level resources from almost any location in a transparent fashion, including from the classpath,
a filesystem location, anywhere describable with a standard URL, and some other variations. If the
resource location string is a simple path without any special prefixes, where those resources come from
is specific and appropriate to the actual application context type.

You can configure a bean deployed into the application context to implement the special callback
interface, Resour ceLoader Awar e, to be automatically called back at initialization time with the
application context itself passed in as the Resour ceLoader . You can also expose properties of type
Resour ce, to be used to access static resources; they will be injected into it like any other properties.
You can specify those Resour ce properties as simple String paths, and rely on a special JavaBean
Propert yEdi t or that is automatically registered by the context, to convert those text strings to actual
Resour ce objects when the bean is deployed.

The location path or paths supplied to an Appl i cati onCont ext constructor are actually resource
strings, and in simple form are treated appropriately to the specific context implementation.
Cl assPat hXm Appl i cati onCont ext treats a simple location path as a classpath location. You can
also use location paths (resource strings) with special prefixes to force loading of definitions from the
classpath or a URL, regardless of the actual context type.

Convenient ApplicationContext instantiation for web applications

You can create ApplicationContext instances declaratively by using, for example, a
Cont ext Loader . Of course you can also create Appl i cat i onCont ext instances programmatically
by using one of the Appl i cat i onCont ext implementations.

You can register an Appl i cat i onCont ext using the Cont ext Loader Li st ener as follows:

<cont ext - par an>

<par am nane>cont ext Conf i gLocat i on</ par am nane>

<param val ue>/ WEB- | NF/ daoCont ext . xm /WEB- | NF/ appl i cati onCont ext . xm </ par am val ue>
</ cont ext - par an>

<l'i stener>
<l i stener-cl ass>org. spri ngframewor k. web. cont ext . Cont ext Loader Li stener</|istener-class>
</listener>

The listener inspects the cont ext Conf i gLocat i on parameter. If the parameter does not exist, the
listener uses / VEEB- | NF/ appl i cat i onCont ext . xml as a default. When the parameter does exist,
the listener separates the String by using predefined delimiters (comma, semicolon and whitespace)
and uses the values as locations where application contexts will be searched. Ant-style path patterns
are supported as well. Examples are / EB- | NF/ * Cont ext . xm for all files with names ending with
"Context.xml", residing in the "WEB-INF" directory, and / VVEB- | NF/ **/ * Cont ext . xm , for all such
files in any subdirectory of "WEB-INF".

4.3.19.RELEASE Spring Framework 158

Spring Framework Reference Documentation

Deploying a Spring ApplicationContext as a Java EE RAR file

It is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating the context and all of
its required bean classes and library JARs in a Java EE RAR deployment unit. This is the equivalent
of bootstrapping a standalone ApplicationContext, just hosted in Java EE environment, being able
to access the Java EE servers facilities. RAR deployment is more natural alternative to scenario of
deploying a headless WAR file, in effect, a WAR file without any HTTP entry points that is used only for
bootstrapping a Spring ApplicationContext in a Java EE environment.

RAR deployment is ideal for application contexts that do not need HTTP entry points but rather
consist only of message endpoints and scheduled jobs. Beans in such a context can use application
server resources such as the JTA transaction manager and JNDI-bound JDBC DataSources and JMS
ConnectionFactory instances, and may also register with the platform’s JIMX server - all through Spring’s
standard transaction management and JNDI and JMX support facilities. Application components
can also interact with the application server's JCA WorkManager through Spring’s TaskExecut or
abstraction.

Check out the javadoc of the Spri ngCont ext Resour ceAdapt er class for the configuration details
involved in RAR deployment.

For a simple deployment of a Spring ApplicationContext as a Java EE RAR file: package all application
classes into a RAR file, which is a standard JAR file with a different file extension. Add all required
library JARs into the root of the RAR archive. Add a "META-INF/ra.xml" deployment descriptor (as
shown in Spri ngCont ext Resour ceAdapt er s javadoc) and the corresponding Spring XML bean
definition file(s) (typically "META-INF/applicationContext.xml"), and drop the resulting RAR file into your
application server’s deployment directory.

Note

Such RAR deployment units are usually self-contained; they do not expose components to the
outside world, not even to other modules of the same application. Interaction with a RAR-based
ApplicationContext usually occurs through JMS destinations that it shares with other modules. A
RAR-based ApplicationContext may also, for example, schedule some jobs, reacting to new files
in the file system (or the like). If it needs to allow synchronous access from the outside, it could
for example export RMI endpoints, which of course may be used by other application modules
on the same machine.

7.16 The BeanFactory

The BeanFact ory API provides the underlying basis for Spring’s 1oC functionality. Its specific
contracts are mostly used in integration with other parts of Spring and related third-party frameworks,
and its Def aul t Li st abl eBeanFact ory implementation is a key delegate within the higher-level
Generi cAppl i cati onCont ext container.

BeanFactory and related interfaces such as BeanFactoryAware, InitializingBean,
Di sposabl eBean are important integration points for other framework components: not requiring any
annotations or even reflection, they allow for very efficient interaction between the container and its
components. Application-level beans may use the same callback interfaces but will typically prefer
declarative dependency injection instead, either via annotations or through programmatic configuration.

Note that the core BeanFact or y API level and its Def aul t Li st abl eBeanFact or y implementation
do not make assumptions about the configuration format or any component annotations to be

4.3.19.RELEASE Spring Framework 159

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/jca/context/SpringContextResourceAdapter.html

Spring Framework Reference Documentation

used. All of these flavors come in through extensions such as Xm BeanDefi ni ti onReader and
Aut owi r edAnnot at i onBeanPost Pr ocessor , operating on shared BeanDef i ni t i on objects as a
core metadata representation. This is the essence of what makes Spring’s container so flexible and
extensible.

The following section explains the differences between the BeanFact or y and Appl i cat i onCont ext
container levels and the implications on bootstrapping.

BeanFactory or ApplicationContext?

Use an ApplicationContext unless you have a good reason for not doing so, with
Ceneri cAppl i cati onCont ext and its subclass Annot at i onConfi gAppl i cati onCont ext as
the common implementations for custom bootstrapping. These are the primary entry points to Spring’s
core container for all common purposes: loading of configuration files, triggering a classpath scan,
programmatically registering bean definitions and annotated classes.

Because an Appli cati onCont ext includes all functionality of a BeanFactory, it is generally
recommended over a plain BeanFact ory, except for a scenarios where full control over bean
processing is needed. Within an Appl i cat i onCont ext such asthe Generi cAppl i cati onCont ext
implementation, several kinds of beans will be detected by convention (i.e. by bean name or by bean
type), in particular post-processors, whereas a plain Def aul t Li st abl eBeanFact ory is agnostic
about any special beans.

For many extended container features such as annotation processing and AOP proxying,
the BeanPost Processor extension point is essential. If you wuse only a plain
Def aul t Li st abl eBeanFact ory, such post-processors will not get detected and activated by default.
This situation could be confusing because nothing is actually wrong with your bean configuration; it is
rather the container which needs to be fully bootstrapped through additional setup in such a scenario.

The following table lists features provided by the BeanFact or y and Appl i cat i onCont ext interfaces
and implementations.

Table 7.9. Feature Matrix

Feature BeanFact ory Appl i cat i onCont ext
Bean instantiation/wiring Yes Yes

Integrated lifecycle No Yes

management

Automatic No Yes

BeanPost Processor
registration

Automatic No Yes
BeanFact or yPost Processor
registration

Convenient MessageSour ce No Yes
access (for internalization)

Built-in Appl i cati onEvent No Yes
publication mechanism

4.3.19.RELEASE Spring Framework 160

Spring Framework Reference Documentation

To explicitly register a bean post-processor with a Def aul t Li st abl eBeanFact ory, you need to
programmatically call addBeanPost Pr ocessor :

Def aul t Li st abl eBeanFactory factory = new Def aul t Li st abl eBeanFactory();
/| populate the factory with bean definitions

/1 now register any needed BeanPost Processor instances
factory. addBeanPost Processor (new Aut owi r edAnnot at i onBeanPost Processor());
factory. addBeanPost Processor (new MyBeanPost Processor());

/1 now start using the factory

To apply a BeanFact or yPost Processor to a plain Def aul t Li st abl eBeanFact ory, you need to
call its post Pr ocessBeanFact or y method:

Def aul t Li st abl eBeanFactory factory = new Def aul t Li st abl eBeanFactory();
Xm BeanDef i ni ti onReader reader = new Xm BeanDefi ni ti onReader (factory);
reader. | oadBeanDef i ni ti ons(new Fi | eSyst enResour ce("beans. xm "));

/1 bring in sonme property values froma Properties file
PropertyPl acehol der Confi gurer cfg = new PropertyPl acehol der Confi gurer();
cfg.setLocation(new Fil eSyst enResour ce("j dbc. properties"));

/1 now actual ly do the repl acenent
cf g. post ProcessBeanFact ory(factory);

In both cases, the explicit registration steps are inconvenient, which is why the various
Appl i cationCont ext variants are preferred over a plain Defaul t Li st abl eBeanFact ory
in Spring-backed applications, especially when relying on BeanFact or yPost Processors and
BeanPost Pr ocessor s for extended container functionality in a typical enterprise setup.

Note

An Annot ati onConfi gAppl i cati onCont ext has all common annotation post-processors
registered out of the box and may bring in additional processors underneath the covers through
configuration annotations such as @nabl eTr ansact i onManagenent . At the abstraction level
of Spring’s annotation-based configuration model, the notion of bean post-processors becomes
a mere internal container detail.

Glue code and the evil singleton

It is best to write most application code in a dependency-injection (DI) style, where that code is served
out of a Spring loC container, has its own dependencies supplied by the container when it is created, and
is completely unaware of the container. However, for the small glue layers of code that are sometimes
needed to tie other code together, you sometimes need a singleton (or quasi-singleton) style access
to a Spring loC container. For example, third-party code may try to construct new objects directly (
Cl ass. for Name() style), without the ability to get these objects out of a Spring 1oC container.If the
object constructed by the third-party code is a small stub or proxy, which then uses a singleton style
access to a Spring loC container to get a real object to delegate to, then inversion of control has still been
achieved for the majority of the code (the object coming out of the container). Thus most code is still
unaware of the container or how it is accessed, and remains decoupled from other code, with all ensuing
benefits. EJBs may also use this stub/proxy approach to delegate to a plain Java implementation object,
retrieved from a Spring loC container. While the Spring 10C container itself ideally does not have to be
a singleton, it may be unrealistic in terms of memory usage or initialization times (when using beans in
the Spring 10C container such as a Hibernate Sessi onFact or y) for each bean to use its own, non-
singleton Spring IoC container.

4.3.19.RELEASE Spring Framework 161

Spring Framework Reference Documentation

Looking up the application context in a service locator style is sometimes the only option for accessing
shared Spring-managed components, such as in an EJB 2.1 environment, or when you want to share
a single ApplicationContext as a parent to WebApplicationContexts across WAR files. In this case
you should look into using the utility class Cont ext Si ngl et onBeanFact or yLocat or locator that is

described in this Spring team blog entry.

4.3.19.RELEASE Spring Framework 162

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/context/access/ContextSingletonBeanFactoryLocator.html
https://spring.io/blog/2007/06/11/using-a-shared-parent-application-context-in-a-multi-war-spring-application/

Spring Framework Reference Documentation

8. Resources

8.1 Introduction

Java’'s standard j ava. net . URL class and standard handlers for various URL prefixes unfortunately are
not quite adequate enough for all access to low-level resources. For example, there is no standardized
URL implementation that may be used to access a resource that needs to be obtained from the classpath,
or relative to a Ser vl et Cont ext . While it is possible to register new handlers for specialized URL
prefixes (similar to existing handlers for prefixes such as ht t p:), this is generally quite complicated, and
the URL interface still lacks some desirable functionality, such as a method to check for the existence
of the resource being pointed to.

8.2 The Resource interface

Spring’s Resour ce interface is meant to be a more capable interface for abstracting access to low-
level resources.

public interface Resource extends |nputStreanSource {
bool ean exi sts();
bool ean isOpen();
URL get URL() throws | OException;
File getFile() throws |COException;
Resource createRel ative(String relativePath) throws | OException;
String getFil enane();

String getDescription();

public interface |nputStreanSource {

I nput St ream get | nput Strean() throws | OException;

}

Some of the most important methods from the Resour ce interface are:

» get |l nput Strean() : locates and opens the resource, returning an | nput St r eamfor reading from
the resource. It is expected that each invocation returns a fresh | nput St r eam It is the responsibility
of the caller to close the stream.

e exi sts():returns a bool ean indicating whether this resource actually exists in physical form.

e i sOpen(): returns a bool ean indicating whether this resource represents a handle with an open
stream. If t r ue, the | nput St r eamcannot be read multiple times, and must be read once only and
then closed to avoid resource leaks. Will be f al se for all usual resource implementations, with the
exception of | nput St r eanResour ce.

» get Descri pti on() :returns a description for this resource, to be used for error output when working
with the resource. This is often the fully qualified file name or the actual URL of the resource.

Other methods allow you to obtain an actual URL or Fi | e object representing the resource (if the
underlying implementation is compatible, and supports that functionality).

4.3.19.RELEASE Spring Framework 163

Spring Framework Reference Documentation

The Resour ce abstraction is used extensively in Spring itself, as an argument type in many method
signatures when a resource is needed. Other methods in some Spring APIs (such as the constructors to
various Appl i cat i onCont ext implementations), take a St ri ng which in unadorned or simple form
is used to create a Resour ce appropriate to that context implementation, or via special prefixes on
the St ri ng path, allow the caller to specify that a specific Resour ce implementation must be created
and used.

While the Resour ce interface is used a lot with Spring and by Spring, it's actually very useful to use as
a general utility class by itself in your own code, for access to resources, even when your code doesn't
know or care about any other parts of Spring. While this couples your code to Spring, it really only
couples it to this small set of utility classes, which are serving as a more capable replacement for URL,
and can be considered equivalent to any other library you would use for this purpose.

It is important to note that the Resour ce abstraction does not replace functionality: it wraps it where
possible. For example, a Ur | Resour ce wraps a URL, and uses the wrapped URL to do its work.

8.3 Built-in Resource implementations

There are a number of Resour ce implementations that come supplied straight out of the box in Spring:
UrlResource

The Ur | Resour ce wraps a j ava. net . URL, and may be used to access any object that is normally
accessible via a URL, such as files, an HTTP target, an FTP target, etc. All URLs have a standardized
St ri ng representation, such that appropriate standardized prefixes are used to indicate one URL type
from another. This includes fi | e: for accessing filesystem paths, ht t p: for accessing resources via
the HTTP protocol, f t p: for accessing resources via FTP, etc.

A Ur | Resour ce is created by Java code explicitly using the Ur | Resour ce constructor, but will often
be created implicitly when you call an API method which takes a St ri ng argument which is meant
to represent a path. For the latter case, a JavaBeans Pr opert yEdi t or will ultimately decide which
type of Resour ce to create. If the path string contains a few well-known (to it, that is) prefixes such as
cl asspat h: , it will create an appropriate specialized Resour ce for that prefix. However, if it doesn’t
recognize the prefix, it will assume the this is just a standard URL string, and will create a Ur | Resour ce.

ClassPathResource

This class represents a resource which should be obtained from the classpath. This uses either the
thread context class loader, a given class loader, or a given class for loading resources.

This Resour ce implementation supports resolution as j ava.i o. Fi | e if the class path resource
resides in the file system, but not for classpath resources which reside in a jar and have not been
expanded (by the servlet engine, or whatever the environment is) to the filesystem. To address this the
various Resour ce implementations always support resolution as aj ava. net . URL.

A d assPat hResource is created by Java code explicitly using the O assPat hResource
constructor, but will often be created implicitly when you call an APl method which takes a Stri ng
argument which is meant to represent a path. For the latter case, a JavaBeans Pr opert yEdi t or will
recognize the special prefix cl asspat h: on the string path, and create a G assPat hResour ce in
that case.

4.3.19.RELEASE Spring Framework 164

Spring Framework Reference Documentation

FileSystemResource

This is a Resour ce implementation for j ava. i 0. Fi | e handles. It obviously supports resolution as a
Fi |l e, and as a URL.

ServletContextResource

This is a Resour ce implementation for Ser vl et Cont ext resources, interpreting relative paths within
the relevant web application’s root directory.

This always supports stream access and URL access, but only allows j ava. i o. Fi | e access when
the web application archive is expanded and the resource is physically on the filesystem. Whether or
not it's expanded and on the filesystem like this, or accessed directly from the JAR or somewhere else
like a DB (it's conceivable) is actually dependent on the Servlet container.

InputStreamResource

A Resour ce implementation for a given | nput St r eam This should only be used if no specific
Resour ce implementation is applicable. In particular, prefer Byt eAr r ayResour ce or any of the file-
based Resour ce implementations where possible.

In contrast to other Resour ce implementations, this is a descriptor for an already opened resource -
therefore returning t r ue from i sQpen() . Do not use it if you need to keep the resource descriptor
somewhere, or if you need to read a stream multiple times.

ByteArrayResource

This is a Resour ce implementation for a given byte array. It creates a Byt eAr r ayl nput St r eamfor
the given byte array.

It's useful for loading content from any given byte array, without having to resort to a single-use
| nput St reanResour ce.

8.4 The ResourcelLoader

The Resour ceLoader interface is meant to be implemented by objects that can return (i.e. load)
Resour ce instances.

public interface ResourcelLoader {

Resour ce get Resource(String |ocation);

All application contexts implement the Resour ceLoader interface, and therefore all application
contexts may be used to obtain Resour ce instances.

When you call get Resour ce() on a specific application context, and the location path specified
doesn’t have a specific prefix, you will get back a Resour ce type that is appropriate to that particular
application context. For example, assume the following snippet of code was executed against a
Cl assPat hXm Appl i cati onCont ext instance:

Resource tenplate = ctx.get Resource("sone/resource/ path/ myTenpl ate. txt");

4.3.19.RELEASE Spring Framework 165

Spring Framework Reference Documentation

What would be returned would be a C assPat hResour ce; if the same method was executed against
aFil eSystemXm Appl i cati onCont ext instance, you'd get back a Fi | eSyst enResour ce. For a
WebAppl i cati onCont ext, you'd get back a Ser vl et Cont ext Resour ce, and so on.

As such, you can load resources in a fashion appropriate to the particular application context.

On the other hand, you may also force Cl assPat hResour ce to be used, regardless of the application
context type, by specifying the special cl asspat h: prefix:

‘ Resource tenpl ate = ctx. get Resource("cl asspat h: sone/ resour ce/ pat h/ nyTenpl ate. txt");

Similarly, one can force a Ur | Resour ce to be used by specifying any of the standard j ava. net . URL
prefixes:

‘ Resource tenplate = ctx.getResource("file:///sone/resourcel/path/ nyTenplate.txt");

‘ Resource tenplate = ctx.getResource("http://myhost.conlresource/path/nyTenpl ate. txt");

The following table summarizes the strategy for converting St ri ngs to Resour ces:

Table 8.1. Resource strings

Prefix Example Explanation
classpath: cl asspat h: cont nyapp/ Loaded from the classpath.
config.xm
file: file:///data/config.xm Loaded as a URL, from the
filesystem. !
http: http://nyserver/ Loaded as a URL.
| 0go. png
(none) / dat a/ confi g. xm Depends on the underlying
Appl i cati onCont ext .

But see also the section called “FileSystemResource caveats”.

8.5 The ResourceLoaderAware interface

The Resour ceLoader Awar e interface is a special marker interface, identifying objects that expect to
be provided with a Resour ceLoader reference.

public interface ResourcelLoader Anare {

voi d set Resour ceLoader (Resour ceLoader resourcelLoader);

}

When a class implements Resour ceLoader Awar e and is deployed into an application context (as a
Spring-managed bean), it is recognized as Resour ceLoader Awar e by the application context. The
application context will then invoke the set Resour ceLoader (Resour ceLoader) , supplying itself as
the argument (remember, all application contexts in Spring implement the Resour ceLoader interface).

Of course, since an Appl i cati onCont ext is a Resour ceLoader, the bean could also implement
the Appl i cati onCont ext Awar e interface and use the supplied application context directly to load
resources, but in general, it's better to use the specialized Resour ceLoader interface if that's all that's
needed. The code would just be coupled to the resource loading interface, which can be considered a
utility interface, and not the whole Spring Appl i cati onCont ext interface.

4.3.19.RELEASE Spring Framework 166

file:///data/config.xml
http://myserver/logo.png
http://myserver/logo.png

Spring Framework Reference Documentation

As of Spring 2.5, you can rely upon autowiring of the ResourcelLoader as an alternative to
implementing the Resour ceLoader Awar e interface. The "traditional" construct or and byType
autowiring modes (as described in the section called “Autowiring collaborators”) are now capable
of providing a dependency of type Resour ceLoader for either a constructor argument or setter
method parameter respectively. For more flexibility (including the ability to autowire fields and multiple
parameter methods), consider using the new annotation-based autowiring features. In that case, the
Resour ceLoader will be autowired into a field, constructor argument, or method parameter that is
expecting the Resour ceLoader type as long as the field, constructor, or method in question carries
the @\ut owi r ed annotation. For more information, see the section called “@Autowired”.

8.6 Resources as dependencies

If the bean itself is going to determine and supply the resource path through some sort of dynamic
process, it probably makes sense for the bean to use the Resour ceLoader interface to load resources.
Consider as an example the loading of a template of some sort, where the specific resource that is
needed depends on the role of the user. If the resources are static, it makes sense to eliminate the use
of the Resour ceLoader interface completely, and just have the bean expose the Resour ce properties
it needs, and expect that they will be injected into it.

What makes it trivial to then inject these properties, is that all application contexts register and use a
special JavaBeans Pr opert yEdi t or which can convert Stri ng paths to Resour ce objects. So if
nmyBean has a template property of type Resour ce, it can be configured with a simple string for that
resource, as follows:

<bean id="nyBean" class="...">
<property nanme="tenpl ate" val ue="sone/resource/ path/ myTenpl ate. txt"/>
</ bean>

Note that the resource path has no prefix, so because the application context itself is going to
be used as the Resour ceLoader, the resource itself will be loaded via a C assPat hResour ce,
Fi | eSyst enmResour ce, or Ser vl et Cont ext Resour ce (as appropriate) depending on the exact type
of the context.

If there is a need to force a specific Resour ce type to be used, then a prefix may be used. The following
two examples show how to force a Cl assPat hResour ce and a Ur | Resour ce (the latter being used
to access a filesystem file).

<property name="tenpl ate" val ue="cl asspat h: sone/ resour ce/ pat h/ nyTenpl ate. t xt">

<property name="tenpl ate" value="file:///some/resource/path/ myTenpl ate.txt"/>

8.7 Application contexts and Resource paths

Constructing application contexts

An application context constructor (for a specific application context type) generally takes a string or
array of strings as the location path(s) of the resource(s) such as XML files that make up the definition
of the context.

When such a location path doesn’t have a prefix, the specific Resour ce type built from that path and
used to load the bean definitions, depends on and is appropriate to the specific application context. For
example, if you create a Cl assPat hXm Appl i cati onCont ext as follows:

4.3.19.RELEASE Spring Framework 167

Spring Framework Reference Documentation

‘ Appl i cationContext ctx = new C assPat hXnl Appl i cati onCont ext (" conf/appCont ext.xm ");

The bean definitions will be loaded from the classpath, as a Cl assPat hResour ce will be used. But if
you create a Fi | eSyst enXm Appl i cat i onCont ext as follows:

ApplicationContext ctx =
new Fi | eSyst emXnl Appl i cati onCont ext ("conf/appCont ext.xm ");

The bean definition will be loaded from a filesystem location, in this case relative to the current working
directory.

Note that the use of the special classpath prefix or a standard URL prefix on the location
path will override the default type of Resource created to load the definition. So this
Fi | eSyst emXm Appl i cati onCont ext ...

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext ("cl asspat h: conf/appCont ext. xm ") ;

i. will actually load its bean definitions from the classpath. However, it is still a
Fi | eSyst emXm Appl i cati onCont ext . If it is subsequently used as a Resour ceLoader, any
unprefixed paths will still be treated as filesystem paths.

Constructing ClassPathXmlApplicationContext instances - shortcuts

The Cl assPat hXm Appl i cati onCont ext exposes a number of constructors to enable convenient
instantiation. The basic idea is that one supplies merely a string array containing just the filenames of
the XML files themselves (without the leading path information), and one also supplies a d ass; the
Gl assPat hXm Appl i cati onCont ext will derive the path information from the supplied class.

An example will hopefully make this clear. Consider a directory layout that looks like this:

conl
f oo/
services. xm
daos. xm
Messenger Ser vi ce. cl ass

A Cl assPat hXm Appli cati onCont ext instance composed of the beans defined in the
"services.xm' and' daos. xm ' could be instantiated like so...

Appl i cationContext ctx = new O assPat hXnl Appl i cati onCont ext (
new String[] {"services.xm", "daos.xm "}, Messenger Servi ce. cl ass);

Please do consult the C assPat hXnl Appl i cat i onCont ext javadocs for details on the various
constructors.

Wildcards in application context constructor resource paths

The resource paths in application context constructor values may be a simple path (as shown
above) which has a one-to-one mapping to a target Resource, or alternately may contain the special
"classpath*:" prefix and/or internal Ant-style regular expressions (matched using Spring’s Pat hivat cher
utility). Both of the latter are effectively wildcards

One use for this mechanism is when doing component-style application assembly. All components can
'‘publish’ context definition fragments to a well-known location path, and when the final application context
is created using the same path prefixed via cl asspat h*: , all component fragments will be picked up
automatically.

4.3.19.RELEASE Spring Framework 168

Spring Framework Reference Documentation

Note that this wildcarding is specific to use of resource paths in application context constructors (or
when using the Pat hivat cher utility class hierarchy directly), and is resolved at construction time. It
has nothing to do with the Resour ce type itself. It's not possible to use the cl asspat h*: prefix to
construct an actual Resour ce, as a resource points to just one resource at a time.

Ant-style Patterns
When the path location contains an Ant-style pattern, for example:

[V\EB- | NF/ *- cont ext . xni
conl myconpany/ **/ appl i cati onCont ext . xm
file:C /sone/path/*-context.xn
cl asspat h: comf myconpany/ **/ appl i cati onCont ext . xm

The resolver follows a more complex but defined procedure to try to resolve the wildcard. It produces
a Resource for the path up to the last non-wildcard segment and obtains a URL from it. If this URL is
notaj ar: URL or container-specific variant (e.g. zi p: in WebLogic, wsj ar in WebSphere, etc.), then
ajava.io. Fil e is obtained from it and used to resolve the wildcard by traversing the filesystem. In
the case of a jar URL, the resolver either gets a j ava. net . Jar URLConnect i on from it or manually
parses the jar URL and then traverses the contents of the jar file to resolve the wildcards.

Implications on portability

If the specified path is already a file URL (either explicitly, or implicity because the base
Resour ceLoader is a filesystem one, then wildcarding is guaranteed to work in a completely portable
fashion.

If the specified path is a classpath location, then the resolver must obtain the last non-wildcard path
segment URL via a Cl assl oader . get Resour ce() call. Since this is just a node of the path (not the
file at the end) it is actually undefined (in the Cl assLoader javadocs) exactly what sort of a URL is
returned in this case. In practice, it is always a j ava. i 0. Fi | e representing the directory, where the
classpath resource resolves to a filesystem location, or a jar URL of some sort, where the classpath
resource resolves to a jar location. Still, there is a portability concern on this operation.

If a jar URL is obtained for the last non-wildcard segment, the resolver must be able to get a
j ava. net . Jar URLConnect i on from it, or manually parse the jar URL, to be able to walk the contents
of the jar, and resolve the wildcard. This will work in most environments, but will fail in others, and it is
strongly recommended that the wildcard resolution of resources coming from jars be thoroughly tested
in your specific environment before you rely on it.

The classpath*: prefix

When constructing an XML-based application context, a location string may use the special
cl asspat h*: prefix:

ApplicationContext ctx =
new C assPat hXm Appl i cati onCont ext (" cl asspat h*: conf/ appCont ext . xm ") ;

This special prefix specifies that all classpath resources that match the given name must be obtained
(internally, this essentially happens via a O assLoader . get Resour ces(..) call), and then merged
to form the final application context definition.

Note

The wildcard classpath relies on the get Resour ces() method of the underlying classloader.
As most application servers nowadays supply their own classloader implementation, the

4.3.19.RELEASE Spring Framework 169

Spring Framework Reference Documentation

behavior might differ especially when dealing with jar files. A simple test to check if
cl asspat h* works is to use the classloader to load a file from within a jar on the classpath:
get O ass() . get d assLoader (). get Resour ces("<soneFi |l el nsi deTheJdar>"). Try
this test with files that have the same name but are placed inside two different locations. In case
an inappropriate result is returned, check the application server documentation for settings that
might affect the classloader behavior.

The cl asspat h*: prefix can also be combined with a Pat hMat cher pattern in the rest of the location
path, for example cl asspat h*: META- | NF/ *- beans. xni . In this case, the resolution strategy is fairly
simple: aC assLoader . get Resour ces() callis used on the last non-wildcard path segmentto get all
the matching resources in the class loader hierarchy, and then off each resource the same PathMatcher
resolution strategy described above is used for the wildcard subpath.

Other notes relating to wildcards

Please note that cl asspat h*: when combined with Ant-style patterns will only work reliably with at
least one root directory before the pattern starts, unless the actual target files reside in the file system.
This means that a pattern like cl asspat h*: *. xm might not retrieve files from the root of jar files but
rather only from the root of expanded directories.

Spring’s ability to retrieve classpath entries originates from the JDK'’s
Cl assLoader . get Resour ces() method which only returns file system locations for a passed-
in empty string (indicating potential roots to search). Spring evaluates URLCl assLoader runtime
configuration and the "java.class.path" manifest in jar files as well but this is not guaranteed to lead to
portable behavior.

Note

The scanning of classpath packages requires the presence of corresponding directory entries
in the classpath. When you build JARs with Ant, make sure that you do not activate the files-
only switch of the JAR task. Also, classpath directories may not get exposed based on security
policies in some environments, e.g. standalone apps on JDK 1.7.0_45 and higher (which requires
Trusted-Library' setup in your manifests; see http://stackoverflow.com/questions/19394570/java-
jre-7u45-breaks-classloader-getresources).

Ant-style patterns with cl asspat h: resources are not guaranteed to find matching resources if the root
package to search is available in multiple class path locations. This is because a resource such as

coni myconpany/ packagel/ servi ce- cont ext . xm

may be in only one location, but when a path such as

cl asspat h: coml nyconpany/ **/ servi ce- cont ext . xni

is used to try to resolve it, the resolver will work off the (first) URL returned by get Resour ce(" com
nmyconpany") ;. If this base package node exists in multiple classloader locations, the actual end
resource may not be underneath. Therefore, preferably, use " “classpath*:™ with the same Ant-style
pattern in such a case, which will search all class path locations that contain the root package.

FileSystemResource caveats

A Fi | eSyst emResour ce that is not attached to a Fi | eSyst emAppl i cati onCont ext (that is,
a Fil eSystemAppl i cati onCont ext is not the actual Resour ceLoader) will treat absolute vs.

4.3.19.RELEASE Spring Framework 170

http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources
http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources

Spring Framework Reference Documentation

relative paths as you would expect. Relative paths are relative to the current working directory, while
absolute paths are relative to the root of the filesystem.

For backwards compatibility (historical) reasons however, this changes
when the Fi | eSyst emAppl i cat i onCont ext is the Resour ceLoader. The
Fi | eSyst emAppl i cati onCont ext simply forces all attached Fi | eSyst emResour ce instances to
treat all location paths as relative, whether they start with a leading slash or not. In practice, this means
the following are equivalent:

Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext ("conf/context.xm");

ApplicationContext ctx =
new Fi | eSyst enXm Appl i cati onCont ext ("/conf/context.xm ");

As are the following: (Even though it would make sense for them to be different, as one case is relative
and the other absolute.)

Fi | eSyst emXm Appl i cati onContext ctx = ...;
ct x. get Resour ce("sone/ resour ce/ pat h/ nyTenpl ate. txt");

Fi | eSyst enXm Appl i cati onContext ctx = ...;
ct x. get Resource("/sone/ resour ce/ path/ nyTenpl ate. txt");

In practice, if true absolute filesystem paths are needed, it is better to forgo the use of absolute paths
with Fi | eSyst enResour ce / Fi | eSyst emXmi Appl i cati onCont ext, and just force the use of a
Ur | Resour ce, by using the fi | e: URL prefix.

/'l actual context type doesn't matter, the Resource will always be Ul Resource
ct x. get Resource("file:///sonme/ resource/ path/ nyTenplate. txt");

/| force this FileSystenXnl ApplicationContext to load its definition via a Ul Resource
Appl i cationContext ctx =
new Fi | eSyst enXm Appl i cati onContext ("file:///conf/context.xm");

4.3.19.RELEASE Spring Framework 171

Spring Framework Reference Documentation

9. Validation, Data Binding, and Type Conversion

9.1 Introduction

JSR-303/JSR-349 Bean Validation

Spring Framework 4.0 supports Bean Validation 1.0 (JSR-303) and Bean Validation 1.1 (JSR-349)
in terms of setup support, also adapting it to Spring’s Val i dat or interface.

An application can choose to enable Bean Validation once globally, as described in Section 9.8,
“Spring Validation”, and use it exclusively for all validation needs.

An application can also register additional Spring Val i dat or instances per Dat aBi nder
instance, as described in the section called “Configuring a DataBinder”. This may be useful for
plugging in validation logic without the use of annotations.

There are pros and cons for considering validation as business logic, and Spring offers a design for
validation (and data binding) that does not exclude either one of them. Specifically validation should
not be tied to the web tier, should be easy to localize and it should be possible to plug in any validator
available. Considering the above, Spring has come up with a Val i dat or interface that is both basic
and eminently usable in every layer of an application.

Data binding is useful for allowing user input to be dynamically bound to the domain model of
an application (or whatever objects you use to process user input). Spring provides the so-called
Dat aBi nder to do exactly that. The Val i dat or and the Dat aBi nder make up the val i dati on
package, which is primarily used in but not limited to the MVC framework.

The BeanW apper is a fundamental concept in the Spring Framework and is used in a lot of places.
However, you probably will not have the need to use the BeanW apper directly. Because this is
reference documentation however, we felt that some explanation might be in order. We will explain the
BeanW apper in this chapter since, if you were going to use it at all, you would most likely do so when
trying to bind data to objects.

Spring’s DataBinder and the lower-level BeanWrapper both use PropertyEditors to parse and format
property values. The PropertyEdi t or concept is part of the JavaBeans specification, and is also
explained in this chapter. Spring 3 introduces a "core.convert" package that provides a general type
conversion facility, as well as a higher-level "format" package for formatting Ul field values. These new
packages may be used as simpler alternatives to PropertyEditors, and will also be discussed in this
chapter.

9.2 Validation using Spring’s Validator interface

Spring features a Val i dat or interface that you can use to validate objects. The Val i dat or interface
works using an Er r or s object so that while validating, validators can report validation failures to the
Err or s object.

Let’s consider a small data object:

4.3.19.RELEASE Spring Framework 172

Spring Framework Reference Documentation

public class Person {

private String nane;
private int age;

/1 the usual getters and setters...

We’'re going to provide validation behavior for the Per son class by implementing the following two
methods of the or g. spri ngfranewor k. val i dati on. Val i dat or interface:

» supports(d ass) - Can this Val i dat or validate instances of the supplied Cl ass?

- validate(Qbject, org.springfranmework.validation.Errors) - validates the given
object and in case of validation errors, registers those with the given Err or s object

Implementing a Validator is fairly straightforward, especially when you know of the
Val i dationUti | s helper class that the Spring Framework also provides.

public class PersonValidator inplenents Validator {

/**
* This Validator validates *just* Person instances
*/
public bool ean supports(d ass clazz) {
return Person.cl ass. equal s(cl azz);

}

public void validate(Object obj, Errors e) {
ValidationUils.rejectlfEnpty(e, "nane", "nane.enpty");
Person p = (Person) obj;
if (p.getAge() < 0) {

e.rejectVal ue("age", "negativeval ue");
} else if (p.getAge() > 110) {
e.rej ectVal ue("age", "too.darn.old");

}

As you can see, thestaticrejectlfEmpty(..) methodonthe ValidationUils classis used
to reject the ' name' property if it is nul | or the empty string. Have a look at the Val i dati onUtil s
javadocs to see what functionality it provides besides the example shown previously.

While it is certainly possible to implement a single Val i dat or class to validate each of the nested
objects in a rich object, it may be better to encapsulate the validation logic for each nested class
of object in its own Val i dat or implementation. A simple example of a 'rich' object would be a
Cust oner that is composed of two Stri ng properties (a first and second name) and a complex
Addr ess object. Addr ess objects may be used independently of Cust onmer objects, and so a distinct
Addr essVal i dat or has been implemented. If you want your Cust oner Val i dat or to reuse the
logic contained within the Addr essVal i dat or class without resorting to copy-and-paste, you can
dependency-inject or instantiate an Addr essVal i dat or within your Cust oner Val i dat or, and use
it like so:

4.3.19.RELEASE Spring Framework 173

Spring Framework Reference Documentation

public class CustonerValidator inplenents Validator {
private final Validator addressValidator;

publ i c CustonerValidator(Validator addressValidator) {

if (addressValidator == null) {
throw new I || egal Argunent Exception("The supplied [Validator] is " +
"required and nmust not be null.");

}
if (!addressValidator.supports(Address.class)) {
throw new I || egal Argunent Excepti on("The supplied [Validator] nust " +
"support the validation of [Address] instances.");
}

t his. addressVal i dat or = addressVal i dat or;

}

/**
* This Validator validates Custoner instances, and any subcl asses of Custoner too
*/
publ i c bool ean supports(C ass clazz) {
return Custoner.cl ass.isAssignabl eFron(cl azz);

}

public void validate(Qbject target, Errors errors) {
Val idationUWils.rejectlfEnptyO Wiitespace(errors, "firstNane", "field.required");

Val i dationUils.rejectlfEnptyO Wiitespace(errors, "surnane", "field.required");
Cust omer customer = (Custoner) target;
try {

errors. pushNest edPat h("address") ;

Val i dationUils.invokeValidator(this.addressValidator, custoner.getAddress(), errors);
} finally {

errors. popNest edPat h() ;
}

Validation errors are reported to the Er r or s object passed to the validator. In case of Spring Web MVC
you can use <spri ng: bi nd/ > tag to inspect the error messages, but of course you can also inspect
the errors object yourself. More information about the methods it offers can be found in the javadocs.

9.3 Resolving codes to error messages

We've talked about databinding and validation. Outputting messages corresponding to validation errors
is the last thing we need to discuss. In the example we've shown above, we rejected the nane and
the age field. If we're going to output the error messages by using a MessageSour ce, we will do
so using the error code we've given when rejecting the field (‘'name' and 'age' in this case). When
you call (either directly, or indirectly, using for example the Val i dati onUti | s class) r ej ect Val ue
or one of the other r ej ect methods from the Err or s interface, the underlying implementation will
not only register the code you've passed in, but also a number of additional error codes. What
error codes it registers is determined by the MessageCodesResol ver that is used. By default, the
Def aul t MessageCodesResol ver is used, which for example not only registers a message with
the code you gave, but also messages that include the field name you passed to the reject method.
So in case you reject a field using rej ect Val ue("age", "too.darn.old"), apart from the
t 0o. dar n. ol d code, Spring will also register t 0o. dar n. ol d. age and t oo. dar n. ol d. age. i nt
(so the first will include the field name and the second will include the type of the field); this is done as
a convenience to aid developers in targeting error messages and suchlike.

More information on the MessageCodesResol ver and the default strategy can be found online in the
javadocs of MessageCodesResol ver and Def aul t MessageCodesResol ver , respectively.

4.3.19.RELEASE Spring Framework 174

http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/validation/MessageCodesResolver.html
http://docs.spring.io/spring-framework/docs/4.3.19.RELEASE/javadoc-api/org/springframework/validation/DefaultMessageCodesResolver.html

Spring Framework Reference Documentation

9.4 Bean manipulation and the BeanWrapper

The org. spri ngframewor k. beans package adheres to the JavaBeans standard provided by
Oracle. A JavaBean is simply a class with a default no-argument constructor, which follows a naming
convention where (by way of an example) a property named bi ngoMadness would have a setter
method set Bi ngoMadness(..) and a getter method get Bi ngoMadness() . For more information
about JavaBeans and the specification, please refer to Oracle’s website (javabeans).

One quite important class in the beans package is the BeanW apper interface and its corresponding
implementation (BeanW apper | npl). As quoted from the javadocs, the BeanW apper offers
functionality to set and get property values (individually or in bulk), get property descriptors, and to
query properties to determine if they are readable or writable. Also, the BeanW apper offers support
for nested properties, enabling the setting of properties on sub-properties to an unlimited depth. Then,
the BeanW apper supports the ability to add standard JavaBeans Pr oper t yChangelLi st ener s and
Vet oabl eChangeli st ener s, without the need for supporting code in the target class. Last but not
least, the BeanW apper provides support for the setting of indexed properties. The BeanW apper
usually isn't used by application code directly, but by the Dat aBi nder and the BeanFact ory.

The way the BeanW apper works is partly indicated by its name: it wraps a bean to perform actions
on that bean, like setting and retrieving properties.

Setting and getting basic and nested properties
Setting and getting properties is done using the setPropertyValue(s) and
get PropertyVal ue(s) methods that both come with a couple of overloaded variants. They're all

described in more detail in the javadocs Spring comes with. What's important to know is that there are
a couple of conventions for indicating properties of an object. A couple of examples:

Table 9.1. Examples of properties

Expression Explanation

nane Indicates the property nane corresponding to
the methods get Name() ori sNanme() and
set Nanme(. .)

account . nane Indicates the nested property name of the

property account corresponding e.g. to the
methods get Account () . set Nane() or
get Account (). get Name()

account[2] Indicates the third element of the indexed
property account . Indexed properties can be
of type array, | i st or other naturally ordered
collection

account [COVPANYNANME] Indicates the value of the map entry indexed by
the key COMPANYNAME of the Map property
account

Below you'll find some examples of working with the BeanW apper to get and set properties.

4.3.19.RELEASE Spring Framework 175

http://docs.oracle.com/javase/6/docs/api/java/beans/package-summary.html

Spring Framework Reference Documentation

(This next section is not vitally important to you if you're not planning to work with the BeanW apper
directly. If you're just using the Dat aBi nder and the BeanFactory and their out-of-the-box
implementation, you should skip ahead to the section about Pr opert yEdi t ors.)

Consider the following two classes:

public class Conpany {

private String nane;
private Enpl oyee managi ngDirector;

public String getNane() {
return this.name;

}

public void setNane(String nane) {
t his. nanme = nane;

}

publ i c Enpl oyee get Managi ngDirector() {
return this.managi ngDirector;

}

public void set Managi ngDi r ect or (Enpl oyee managi ngDi rector) {
thi s. managi ngDi rect or = managi ngDi rect or;

}

public class Enpl oyee {
private String nane;
private float salary;

public String getNane() {
return this.naneg;

}

public void setNane(String nane) {
this.name = nane;

}

public float getSalary() {
return salary;

}

public void setSalary(float salary) {
this.salary = sal ary;

}

The following code snippets show some examples of how to retrieve and manipulate some of the
properties of instantiated Conpani es and Enpl oyees:

4.3.19.RELEASE Spring Framework 176

Spring Framework Reference Documentation

BeanW apper conpany = new BeanW apper | npl (new Conpany());

/] setting the conpany nane..

conpany. set PropertyVal ue("nanme", "Some Conpany Inc.");

/1 ... can also be done like this:

PropertyVal ue val ue = new PropertyVal ue("nane", "Sone Conpany Inc.");
conpany. set PropertyVal ue(val ue);

/1 ok, let's create the director and tie it to the conpany:

BeanW apper jim = new BeanW apper | npl (new Enpl oyee());
jimsetPropertyVal ue("nane", "Jim Stravinsky");

conpany. set PropertyVal ue(" managi nghi rector", jim get Wappedl nstance());

/'l retrieving the salary of the nmanagi ngDirector through the conpany
Fl oat salary = (Float) conpany.get PropertyVal ue("nanagi ngDi rector.sal ary");

Built-in PropertyEditor implementations

Spring uses the concept of Propert yEdi t or s to effect the conversion between an Cbj ect and a
String. If you think about it, it sometimes might be handy to be able to represent properties in a
different way than the object itself. For example, a Dat e can be represented in a human readable way
(asthe String' 2007-14-09'), while we're still able to convert the human readable form back to the
original date (or even better: convert any date entered in a human readable form, back to Dat e objects).
This behavior can be achieved by registering custom editors, of type j ava. beans. Propert yEdi t or.
Registering custom editors on a BeanW apper or alternately in a specific loC container as mentioned
in the previous chapter, gives it the knowledge of how to convert properties to the desired type. Read
more about Pr opert yEdi t or s in the javadocs of the j ava. beans package provided by Oracle.

A couple of examples where property editing is used in Spring:

e setting properties on beans is done wusing PropertyEditors. When mentioning
java. |l ang. Stri ng as the value of a property of some bean you're declaring in XML file, Spring
will (if the setter of the corresponding property has a Cl ass-parameter) use the Cl assEdi t or to try
to resolve the parameter to a Cl ass object.

e parsing HTTP request parameters in Spring's MVC framework is done using all kinds of
Pr opert yEdi t or s that you can manually bind in all subclasses of the ConmandCont rol | er.

Spring has a number of built-in Pr oper t yEdi t or s to make life easy. Each of those is listed below
and they are all located in the or g. spri ngf r amewor k. beans. propertyedit or s package. Most,
but not all (as indicated below), are registered by default by BeanW apper | npl . Where the property
editor is configurable in some fashion, you can of course still register your own variant to override the
default one:

Table 9.2. Built-in PropertyEditors

Class Explanation

Byt eArrayPr opert yEdi t or Editor for byte arrays. Strings will simply
be converted to their corresponding byte
representations. Registered by default by
BeanW apper | npl .

Cl assEdi tor Parses Strings representing classes to actual
classes and the other way around. When a class
is not found, an I I | egal Ar gunent Excepti on
is thrown. Registered by default by
BeanW apper | mpl .

4.3.19.RELEASE Spring Framework 177

Spring Framework Reference Documentation

Class Explanation

Cust onBool eanEdi t or Customizable property editor for Bool ean
properties. Registered by default by
BeanW apper | npl , but, can be overridden
by registering custom instance of it as custom
editor.

Cust onCol | ecti onEdi t or Property editor for Collections, converting
any source Col | ecti on to a given target
Col | ecti on type.

Cust onDat eEdi t or Customizable property editor for java.util.Date,
supporting a custom DateFormat. NOT
registered by default. Must be user registered as
needed with appropriate format.

Cust omNunber Edi t or Customizable property editor for any Number
subclass like | nt eger, Long, Fl oat, Doubl e.
Registered by default by BeanW apper | npl ,
but can be overridden by registering custom
instance of it as a custom editor.

Fi | eEdi t or Capable of resolving Stringstoj ava.io. Fil e
objects. Registered by default by
BeanW apper | mpl .

| nput St r eanEdi t or One-way property editor, capable of taking a
text string and producing (via an intermediate
Resour ceEdi t or and Resour ce) an
I nput St r eam so | nput St r eamproperties
may be directly set as Strings. Note
that the default usage will not close the
I nput St r eamfor you! Registered by default by
BeanW apper | npl .

Local eEdi t or Capable of resolving Strings to Local e
objects and vice versa (the String format is
[country][variant], which is the same thing
the toString() method of Locale provides).
Registered by default by BeanW apper | npl .

PatternEditor Capable of resolving Strings to
java. util.regex. Pattern objects and vice
versa.

Properti esEditor Capable of converting Strings (formatted

using the format as defined in the javadocs
ofthejava. util. Properties class) to

Pr operti es objects. Registered by default by
BeanW apper | mpl .

4.3.19.RELEASE Spring Framework 178

Spring Framework Reference Documentation

Class Explanation

StringTri mrer Editor Property editor that trims Strings. Optionally
allows transforming an empty string into a nul |
value. NOT registered by default; must be user
registered as needed.

URLEdi t or Capable of resolving a String representation of
a URL to an actual URL object. Registered by
default by BeanW apper | npl .

Spring uses the java. beans. PropertyEdi t or Manager to set the search path for property
editors that might be needed. The search path also includes sun. bean. edi t or s, which includes
Propert yEdi t or implementations for types such as Font, Col or, and most of the primitive types.
Note also that the standard JavaBeans infrastructure will automatically discover Pr opert yEdi t or
classes (without you having to register them explicitly) if they are in the same package as the class
they handle, and have the same name as that class, with ' Edi t or' appended; for example, one could
have the following class and package structure, which would be sufficient for the FooEdi t or class to
be recognized and used as the Pr oper t yEdi t or for Foo-typed properties.

com
chank

pop
Foo
FooEditor // the PropertyEditor for the Foo class

Note that you can also use the standard Beanl nf o JavaBeans mechanism here as well (described
in_not-amazing-detail here). Find below an example of using the Beanl nf o mechanism for explicitly
registering one or more Pr opert yEdi t or instances with the properties of an associated class.

com
chank
pop
Foo
FooBeanl nfo // the Beanlnfo for the Foo class

Here is the Java source code for the referenced FooBeanl nf o class. This would associate a
Cust omNunber Edi t or with the age property of the Foo class.

public class FooBeanl nfo extends SinpleBeanlnfo {

public PropertyDescriptor[] getPropertyDescriptors() {
try {
final PropertyEditor nunber PE = new CustonNunber Edi tor (I nteger.class, true)
PropertyDescri ptor ageDescriptor = new PropertyDescriptor("age", Foo.class) {
public PropertyEditor createPropertyEditor(CObject bean) {
return nunber PE
b
B
return new PropertyDescriptor[] { ageDescriptor }
}
catch (Introspecti onException ex) {
throw new Error(ex.toString())

}

4.3.19.RELEASE Spring Framework 179

http://docs.oracle.com/javase/tutorial/javabeans/advanced/customization.html

Spring Framework Reference Documentation

Registering additional custom PropertyEditors

When setting bean properties as a string value, a Spring 1oC container ultimately uses standard
JavaBeans Pr oper t yEdi t or s to convert these Strings to the complex type of the property. Spring pre-
registers a number of custom Pr opert yEdi t or s (for example, to convert a classname expressed as
a string into a real Cl ass object). Additionally, Java’s standard JavaBeans Pr oper t yEdi t or lookup
mechanism allows a Pr opert yEdi t or for a class simply to be named appropriately and placed in the
same package as the class it provides support for, to be found automatically.

If there is a need to register other custom Pr oper t yEdi t or s, there are several mechanisms available.
The most manual approach, which is not normally convenient or recommended, is to simply use the
regi st er Cust ontdi t or () method of the Confi gur abl eBeanFact ory interface, assuming you
have a BeanFact or y reference. Another, slightly more convenient, mechanism is to use a special bean
factory post-processor called Cust onEdi t or Conf i gur er . Although bean factory post-processors can
be used with BeanFact or y implementations, the Cust onEdi t or Conf i gur er has a nested property
setup, so it is strongly recommended that it is used with the Appl i cat i onCont ext , where it may be
deployed in similar fashion to any other bean, and automatically detected and applied.

Note that all bean factories and application contexts automatically use a number of built-in property
editors, through their use of something called a BeanW apper to handle property conversions. The
standard property editors that the BeanW apper registers are listed in the previous section. Additionally,
Appl i cati onCont ext s also override or add an additional number of editors to handle resource
lookups in a manner appropriate to the specific application context type.

Standard JavaBeans Pr opert yEdi t or instances are used to convert property values expressed as
strings to the actual complex type of the property. Cust onEdi t or Conf i gur er, a bean factory post-
processor, may be used to conveniently add support for additional Pr oper t yEdi t or instances to an
Appl i cati onCont ext .

Consider a user class Exoti cType, and another class DependsOnExoti cType which needs
Exoti cType set as a property:

package exanpl e;
public class ExoticType {
private String nane;
public ExoticType(String name) {
this.name = nane;
}
}
public class DependsOnExoticType {
private ExoticType type;
public void set Type(ExoticType type) {

this.type = type;
}

When things are properly set up, we want to be able to assign the type property as a string, which a
Pr opert yEdi t or will behind the scenes convert into an actual Exot i cType instance:

<bean id="sanpl e" cl ass="exanpl e. DependsOnExoti cType" >
<property name="type" val ue="aNanmeFor Exoti cType"/>
</ bean>

4.3.19.RELEASE Spring Framework 180

Spring Framework Reference Documentation

The Pr opert yEdi t or implementation could look similar to this:

/'l converts string representation to ExoticType object
package exanpl e;

public class ExoticTypeEditor extends PropertyEditorSupport {

public void setAsText (String text) {
set Val ue(new Exoti cType(text.toUpperCase()));
}

Finally, we use CustonEditorConfigurer to register the new PropertyEditor with the
Appl i cati onCont ext , which will then be able to use it as needed:

<bean cl ass="org. spri ngfranewor k. beans. factory. confi g. Cust onEdi t or Confi gurer">
<property name="cust onEdi tors">
<map>
<entry key="exanpl e. Exoti cType" val ue="exanpl e. Exoti cTypeEdi tor"/>
</ map>
</ property>
</ bean>

Using PropertyEditorRegistrars

Another mechanism for registering property editors with the Spring container is to create and
use a PropertyEditorRegistrar. This interface is particularly useful when you need to
use the same set of property editors in several different situations: write a corresponding
registrar and reuse that in each case. PropertyEditorRegi strars work in conjunction with
an interface called PropertyEditor Regi stry, an interface that is implemented by the Spring
BeanW apper (and Dat aBi nder). Propert yEdi t or Regi strars are particularly convenient when
used in conjunction with the Cust onEdit or Confi gurer (introduced here), which exposes a
property called set PropertyEditorRegi strars(..): PropertyEditorRegi strars added to
a Cust onEdi t or Confi gur er in this fashion can easily be shared with Dat aBi nder and Spring
MVC Control | ers. Furthermore, it avoids the need for synchronization on custom editors: a
PropertyEdi t or Regi strar is expected to create fresh Pr oper t yEdi t or instances for each bean
creation attempt.

Using a Pr opert yEdi t or Regi st rar is perhaps best illustrated with an example. First off, you need
to create your own Pr opert yEdi t or Regi st r ar implementation:

package com foo. editors. spring;
public final class CustonPropertyEditorRegistrar inplenents PropertyEditorRegistrar {
public void registerCustonEditors(PropertyEditorRegistry registry) {

/1 it is expected that new PropertyEditor instances are created
registry.regi sterCustonEdi tor (Exoti cType. cl ass, new ExoticTypeEditor());

/1 you could register as nmany custom property editors as are required here...

See also the org. springfranmework. beans. support. ResourceEdi t or Regi strar for an
example PropertyEditorRegi strar implementation. Notice how in its implementation of the
regi st er Cust onkdi t or s(..) method it creates new instances of each property editor.

Next we configure a CustonEditorConfigurer and inject an instance of our
Cust onPropert yEdi t or Regi strar intoit:

4.3.19.RELEASE Spring Framework 181

Spring Framework Reference Documentation

<bean cl ass="org. spri ngfranmewor k. beans. factory. confi g. Cust onEdi t or Confi gurer">
<property name="propertyEditorRegistrars">
<list>
<ref bean="custonPropertyEditorRegistrar"/>
</list>
</ property>
</ bean>

<bean id="custonPropertyEditorRegistrar"
cl ass="com f 0o. edi tors. spri ng. Cust onProper t yEdi t or Regi strar"/ >

Finally, and in a bit of a departure from the focus of this chapter, for those of you using Spring’s MVC
web framework, using Pr oper t yEdi t or Regi st r ar s in conjunction with data-binding Control | ers
(such as Si npl eFornControl | er) can be very convenient. Find below an example of using a
Propert yEdi t or Regi st rar in the implementation of ani ni t Bi nder (. .) method:

public final class RegisterUserController extends SinpleFornController {
private final PropertyEditorRegistrar custonPropertyEditorRegistrar;

publ i c Regi sterUserController(PropertyEditorRegistrar propertyEditorRegistrar) {
this. cust onPropertyEditorRegi strar = propertyEditorRegistrar;
}

protected void initBinder(HttpServletRequest request,
Ser vl et Request Dat aBi nder bi nder) throws Exception {
t hi s. cust onPropert yEdit or Regi strar.regi sterCust onkditors(binder);
}

/'l other nmethods to do with registering a User

This style of PropertyEditor registration can lead to concise code (the implementation of
i ni tBi nder(..) isjustone line long!), and allows common Pr opert yEdi t or registration code to
be encapsulated in a class and then shared amongst as many Cont r ol | er s as needed.

9.5 Spring Type Conversion

Spring 3 introduces a cor e. convert package that provides a general type conversion system. The
system defines an SPIto implement type conversion logic, as well as an API to execute type conversions
at runtime. Within a Spring container, this system can be used as an alternative to PropertyEditors to
convert externalized bean property value strings to required property types. The public APl may also be
used anywhere in your application where type conversion is needed.

Converter SPI

The SPI to implement type conversion logic is simple and strongly typed:

package org. spri ngfranework. core. convert.converter;
public interface Converter<S, T> {

T convert (S source);

To create your own converter, simply implement the interface above. Parameterize S as the type
you are converting from, and T as the type you are converting to. Such a converter can also be
applied transparently if a collection or array of S needs to be converted to an array or collection
of T, provided that a delegating array/collection converter has been registered as well (which
Def aul t Conver si onSer vi ce does by default).

4.3.19.RELEASE Spring Framework 182

Spring Framework Reference Documentation

For each call to convert (S), the source argument is guaranteed to be NOT null. Your Converter
may throw any unchecked exception if conversion fails; specifically, an 1 | | egal Ar gunment Excepti on
should be thrown to report an invalid source value. Take care to ensure that your Converter
implementation is thread-safe.

Several converter implementations are provided in the core. convert. support package as a
convenience. These include converters from Strings to Numbers and other common types. Consider
StringTol nt eger as an example for a typical Convert er implementation:

package org. springframework. core. convert.support;
final class StringTol nteger inplenents Converter<String, |nteger> {

public Integer convert(String source) {
return Integer.val ueX (source);

}

ConverterFactory
When you need to centralize the conversion logic for an entire class hierarchy, for example, when
converting from String to java.lang.Enum objects, implement Convert er Fact ory:

package org. springframework. core. convert.converter;

public interface ConverterFactory<S, R> {

<T extends R> Converter<S, T> getConverter(C ass<T> targetType);

Parameterize S to be the type you are converting from and R to be the base type defining the range of
classes you can convert to. Then implement getConverter(Class<T>), where T is a subclass of R.

Consider the St ri ngToEnumConverterFactory as an example:

package org. spri ngfranework. core. convert. support;
final class StringToEnunConverterFactory inplenents ConverterFactory<String, Enunp {

public <T extends Enum> Converter<String, T> getConverter(C ass<T> targetType) {
return new StringToEnunConverter (targetType);

}

private final class StringToEnunConverter<T extends Enun® inplenments Converter<String, T> {
private C ass<T> enuniype;

public StringToEnunConverter (C ass<T> enunilype) {
thi s. enuniType = enuniype;

}

public T convert(String source) {
return (T) Enum val ueCf (t hi s. enunfType, source.trin());

}

GenericConverter

When you require a sophisticated Converter implementation, consider the GenericConverter interface.
With a more flexible but less strongly typed signature, a GenericConverter supports converting between

4.3.19.RELEASE Spring Framework 183

Spring Framework Reference Documentation

multiple source and target types. In addition, a GenericConverter makes available source and target field
context you can use when implementing your conversion logic. Such context allows a type conversion
to be driven by a field annotation, or generic information declared on a field signature.

package org. springframework. core. convert.converter;
public interface GenericConverter {
publ i c Set<Converti bl ePair> get Convertibl eTypes();

Obj ect convert(Qbj ect source, TypeDescriptor sourceType, TypeDescriptor targetType);

To implement a GenericConverter, have getConvertibleTypes() return the supported source#target type
pairs. Then implement convert(Object, TypeDescriptor, TypeDescriptor) to implement your conversion
logic. The source TypeDescriptor provides access to the source field holding the value being converted.
The target TypeDescriptor provides access to the target field where the converted value will be set.

A good example of a GenericConverter is a converter that converts between a Java Array and a
Collection. Such an ArrayToCollectionConverter introspects the field that declares the target Collection
type to resolve the Collection’s element type. This allows each element in the source array to be
converted to the Collection element type before the Collection is set on the target field.

Note

Because GenericConverter is a more complex SPI interface, only use it when you need it. Favor
Converter or ConverterFactory for basic type conversion needs.

ConditionalGenericConverter

Sometimes you only want a Convert er to execute if a specific condition holds true. For example,
you might only want to execute a Converter if a specific annotation is present on the target
field. Or you might only want to execute a Converter if a specific method, such as a static
val ueOf method, is defined on the target class. Condi t i onal Generi cConvert er isthe union of the
Generi cConverter and Condi ti onal Convert er interfaces that allows you to define such custom
matching criteria:

public interface Conditional Converter {

bool ean mat ches(TypeDescri ptor sourceType, TypeDescriptor targetType);
}

public interface Conditional GenericConverter extends GenericConverter, Conditional Converter {

}

A good example of a Condi ti onal Generi cConvert er is an EntityConverter that converts between
an persistent entity identifier and an entity reference. Such a EntityConverter might only match if the
target entity type declares a static finder method e.g. f i ndAccount (Long) . You would perform such
a finder method check in the implementation of mat ches(TypeDescri ptor, TypeDescriptor).

ConversionService API

The ConversionService defines a unified API for executing type conversion logic at runtime. Converters
are often executed behind this facade interface:

4.3.19.RELEASE Spring Framework 184

Spring Framework Reference Documentation

package org. springfranework. core. convert;

public interface ConversionService {

bool ean canConvert (C ass<?> sourceType, C ass<?> target Type);

<T> T convert (Cbject source, C ass<T> targetType);

bool ean canConvert (TypeDescri ptor sourceType, TypeDescriptor targetType);

bj ect convert (Qbj ect source, TypeDescriptor sourceType, TypeDescriptor targetType);

Most ConversionService implementations also implement Convert er Regi st ry, which provides an
SPI for registering converters. Internally, a ConversionService implementation delegates to its registered
converters to carry out type conversion logic.

A robust ConversionService implementation is provided in the core. convert. support package.
Generi cConversi onServi ce is the general-purpose implementation suitable for use in most
environments. Conver si onSer vi ceFact ory provides a convenient factory for creating common
ConversionService configurations.

Configuring a ConversionService

A ConversionService is a stateless object designed to be instantiated at application startup, then shared
between multiple threads. In a Spring application, you typically configure a ConversionService instance
per Spring container (or ApplicationContext). That ConversionService will be picked up by Spring and
then used whenever a type conversion needs to be performed by the framework. You may also inject
this ConversionService into any of your beans and invoke it directly.

Note

If no ConversionService is registered with Spring, the original PropertyEditor-based system is
used.

To register a default ConversionService with Spring, add the following bean definition with id
conver si onSer vi ce:

<bean id="conversi onServi ce"
cl ass="org. springframewor k. cont ext. support. Conver si onSer vi ceFact or yBean"/ >

A default ConversionService can convert between strings, numbers, enums, collections, maps, and
other common types. To supplement or override the default converters with your own custom
converter(s), set the convert ers property. Property values may implement either of the Converter,
ConverterFactory, or GenericConverter interfaces.

<bean i d="conversi onService"
cl ass="org. spri ngfranmewor k. cont ext. support. Conver si onSer vi ceFact or yBean" >
<property name="converters">
<set >
<bean cl ass="exanpl e. M\yCust onConverter"/>
</ set >
</ property>
</ bean>

It is also common to use a ConversionService within a Spring MVC application. See the section called
“Conversion and Formatting” in the Spring MVC chapter.

4.3.19.RELEASE Spring Framework 185

Spring Framework Reference Documentation

In certain situations you may wish to apply formatting during conversion. See the section called
“FormatterRegistry SPI” for details on using For mat t i ngConver si onSer vi ceFact or yBean.

Using a ConversionService programmatically

To work with a ConversionService instance programmatically, simply inject a reference to it like you
would for any other bean:

@ervi ce
public class MyService {

@\ut owi r ed
public MyServi ce(ConversionService conversionService) {
this.conversionService = conversionService;

}

public void dolt() {
t hi s. conversionService.convert(...)

}

For most use cases, the conver t method specifying the targetType can be used but it will not work with
more complex types such as a collection of a parameterized element. If you want to convert a Li st of
I nt eger to aList of String programmatically, for instance, you need to provide a formal definition
of the source and target types.

Fortunately, TypeDescri pt or provides various options to make that straightforward:
Def aul t Conver si onServi ce cs = new Defaul t Conver si onService();

Li st<Integer> input =

cs. convert (i nput,
TypeDescriptor.forQoject(input), // List<Integer> type descriptor
TypeDescriptor.col | ection(List.class, TypeDescriptor.valueX(String.class)));

Note that Def aul t Conver si onSer vi ce registers converters automatically which are appropriate for
most environments. This includes collection converters, scalar converters, and also basic (bj ect to
St ri ng converters. The same converters can be registered with any Convert er Regi st ry using the
static addDef aul t Convert er s method on the Def aul t Conver si onSer vi ce class.

Converters for value types will be reused for arrays and collections, so there is no need to create a
specific converter to convert from a Col | ecti on of Sto a Col | ecti on of T, assuming that standard
collection handling is appropriate.

9.6 Spring Field Formatting

As discussed in the previous section, cor e. convert is a general-purpose type conversion system. It
provides a unified ConversionService API as well as a strongly-typed Converter SPI for implementing
conversion logic from one type to another. A Spring Container uses this system to bind bean property
values. In addition, both the Spring Expression Language (SpEL) and DataBinder use this system
to bind field values. For example, when SpEL needs to coerce a Short to a Long to complete
an expressi on. set Val ue(Obj ect bean, bject val ue) attempt, the core.convert system
performs the coercion.

Now consider the type conversion requirements of a typical client environment such as a web or desktop
application. In such environments, you typically convert from String to support the client postback

4.3.19.RELEASE Spring Framework 186

Spring Framework Reference Documentation

process, as well as back to String to support the view rendering process. In addition, you often need to
localize String values. The more general core.convert Converter SPI1 does not address such formatting
requirements directly. To directly address them, Spring 3 introduces a convenient Formatter SPI that
provides a simple and robust alternative to PropertyEditors for client environments.

In general, use the Converter SPI when you need to implement general-purpose type conversion logic;
for example, for converting between a java.util.Date and and java.lang.Long. Use the Formatter SPI
when you’re working in a client environment, such as a web application, and need to parse and print
localized field values. The ConversionService provides a unified type conversion API for both SPIs.

Formatter SPI

The Formatter SPI to implement field formatting logic is simple and strongly typed:

package org. springfranework. fornat ;

public interface Formatter<T> extends Printer<T> Parser<T> {

}

Where Formatter extends from the Printer and Parser building-block interfaces:

public interface Printer<T> {

String print(T fieldvalue, Locale |ocale);

i nport java.text.ParseException;
public interface Parser<T> {

T parse(String clientValue, Locale |ocale) throws ParseException;

To create your own Formatter, simply implement the Formatter interface above. Parameterize T to be the
type of object you wish to format, for example, j ava. uti | . Dat e. Implement the pri nt () operation
to print an instance of T for display in the client locale. Implement the par se() operation to parse an
instance of T from the formatted representation returned from the client locale. Your Formatter should
throw a ParseException or lllegalArgumentException if a parse attempt fails. Take care to ensure your
Formatter implementation is thread-safe.

Several Formatter implementations are provided in format subpackages as a convenience.
The nunber package provides a Nunber StyleFormatter, CurrencyStyl eFormatter,
and PercentStyl eFormatter to format java.lang. Nunber objects using a
java.text. Nunber Format. The datetine package provides a DateFormatter to format
java. util . Dat e objectswithaj ava. t ext . Dat eFor mat . The dat et i ne. j oda package provides
comprehensive datetime formatting support based on the Joda-Time library.

Consider Dat eFor mat t er as an example For mat t er implementation:

4.3.19.RELEASE Spring Framework 187

http://joda-time.sourceforge.net

Spring Framework Reference Documentation

package org. springfranework. format. dateti ne;
public final class DateFormatter inplenents Fornatter<Date> {
private String pattern;

public DateFormatter(String pattern) {
this.pattern = pattern;

}

public String print(Date date, Locale |ocale) {
if (date == null) {
return "";
}

return get Dat eFor mat (1 ocal e) . format (date);

}

public Date parse(String formatted, Locale |ocale) throws ParseException {
if (formatted.l ength() == 0) {
return null;
}

return get Dat eFormat (| ocal e). parse(formatted);

}

protected Dat eFormat get Dat eFor nat (Local e | ocal e) {
Dat eFor mat dat eFormat = new Si npl eDat eFor mat (t hi s. pattern, |ocale);
dat eFor mat . set Leni ent (f al se);
return dateFormat;

The Spring team welcomes community-driven For mat t er contributions; see jira.spring.io to contribute.

Annotation-driven Formatting

As you will see, field formatting can be configured by field type or annotation. To bind an Annotation to
a formatter, implement AnnotationFormatterFactory:

package org. springfranework. fornat ;

public interface AnnotationFornmatterFactory<A extends Annotation> {
Set <Cl ass<?>> get Fi el dTypes();
Printer<?> getPrinter(A annotation, Cass<?> fieldType);

Par ser <?> get Parser (A annotation, C ass<?> fieldType);

Parameterize A to be the field annotationType you wish to associate formatting logic
with, for example org.springframework.format. annotati on. Dat eTi meFormat. Have
get Fi el dTypes() return the types of fields the annotation may be used on. Have get Pri nt er ()
return a Printer to print the value of an annotated field. Have get Par ser () return a Parser to parse
a clientValue for an annotated field.

The example AnnotationFormatterFactory implementation below binds the @ NumberFormat Annotation
to a formatter. This annotation allows either a number style or pattern to be specified:

4.3.19.RELEASE Spring Framework 188

https://jira.spring.io/browse/SPR

Spring Framework Reference Documentation

public final class Nunber For mat Annot ati onFor matt er Fact ory
i npl enent s Annot at i onFor mat t er Fact or y<Nunber For mat > {

public Set<C ass<?>> get Fi el dTypes() {
return new HashSet <Cl ass<?>>(asLi st (new O ass<?>[] {
Short.class, Integer.class, Long.class, Float.class,
Doubl e. cl ass, Bi gDeci mal . cl ass, Biglnteger.class }));

}

public Printer<Nunber> getPrinter(Nunber Format annotation, Cass<?> fieldType) {
return configureFormatterFron{annotation, fieldType);

}

publ i ¢ Par ser <Nunber > get Par ser (Nunber For mat annot ati on, C ass<?> fiel dType) {
return configureFormatterFron{annotation, fieldType);

}

private Formatter<Nunmber> confi gureFormatterFron(Nunber For mat annotati on, O ass<?> fiel dType) {
if (lannotation.pattern().iseEmpty()) {
return new Nunber Styl eFor matter (annotation. pattern());
} else {
Style style = annotation.style();
if (style == Style. PERCENT) {
return new Percent Styl eFormatter();
} else if (style == Style. CURRENCY) {
return new CurrencyStyl eFormatter();
} else {
return new Nunber Styl eFormatter();
}

To trigger formatting, simply annotate fields with @NumberFormat:

public class MyMdel {

@unber For mat (st yl e=St yl e. CURRENCY)
private Bi gDeci mal decinmal;

Format Annotation API

A portable format annotation API exists in the org. spri ngfranmework. f or mat . annot ati on
package. Use @NumberFormat to format java.lang.Number fields. Use @DateTimeFormat to format
java.util.Date, java.util.Calendar, java.util.Long, or Joda-Time fields.

The example below uses @DateTimeFormat to format a java.util.Date as a ISO Date (yyyy-MM-dd):

public class MyMdel {

@pat eTi meFor mat (i so=I SO. DATE)
private Date date;

FormatterRegistry SPI

The FormatterRegistry is an SPI for registering formatters and converters.
Format ti ngConver si onServi ce is an implementation of FormatterRegistry suitable for most
environments. This implementation may be configured programmatically or declaratively as a Spring
bean using For matti ngConver si onSer vi ceFact or yBean. Because this implementation also
implements Conver si onSer vi ce, it can be directly configured for use with Spring’s DataBinder and
the Spring Expression Language (SpEL).

4.3.19.RELEASE Spring Framework 189

Spring Framework Reference Documentation

Review the FormatterRegistry SPI below:

package org. springframework. format;

public interface FormatterRegi stry extends ConverterRegistry {
voi d addFor nat t er For Fi el dType(d ass<?> fiel dType, Printer<?> printer, Parser<?> parser);
voi d addFormatter For Fi el dType(d ass<?> fiel dType, Formatter<?> formatter);
voi d addFor nat t er For Fi el dType(Fornatter<?> fornmatter);

voi d addFor nat t er For Annot at i on(Annot ati onFor mat t er Fact ory<?, ?> factory);

As shown above, Formatters can be registered by fieldType or annotation.

The FormatterRegistry SPI allows you to configure Formatting rules centrally, instead of duplicating such
configuration across your Controllers. For example, you might want to enforce that all Date fields are
formatted a certain way, or fields with a specific annotation are formatted in a certain way. With a shared
FormatterRegistry, you define these rules once and they are applied whenever formatting is needed.

FormatterRegistrar SPI

The FormatterRegistrar is an SPI for registering formatters and converters through the
FormatterRegistry:

package org. springfranmework. format;
public interface FormatterRegistrar {

voi d regi sterFornmatters(FornatterRegistry registry);

A FormatterRegistrar is useful when registering multiple related converters and formatters for a given
formatting category, such as Date formatting. It can also be useful where declarative registration is
insufficient. For example when a formatter needs to be indexed under a specific field type different from
its own <T> or when registering a Printer/Parser pair. The next section provides more information on
converter and formatter registration.

Configuring Formatting in Spring MVC
See the section called “Conversion and Formatting” in the Spring MVC chapter.

9.7 Configuring a global date & time format

By default, date and time fields that are not annotated with @Dat eTi meFor mat are converted from
strings using the Dat eFor mat . SHORT style. If you prefer, you can change this by defining your own
global format.

You will need to ensure that Spring does not register default
formatters, and instead you should register all formatters manually. Use
the org.springfranmework. format. datetine.joda.JodaTi neFormatter Regi strar or
org. springframework. fornmat. dateti nme. Dat eFor matt er Regi strar class depending on
whether you use the Joda-Time library.

For example, the following Java configuration will register a global ' 'yyyyMMdd’ format. This example
does not depend on the Joda-Time library:

4.3.19.RELEASE Spring Framework 190

Spring Framework Reference Documentation

@onfi guration
public class AppConfig {

@Bean
public FormattingConversionServi ce conversionService() {

/'l Use the DefaultFornattingConversionService but do not register defaults
Def aul t For mat t i ngConver si onSer vi ce conver si onServi ce = new
Def aul t For mat t i ngConver si onSer vi ce(f al se);

/1 Ensure @WunberFormat is still supported
conver si onSer vi ce. addFor mat t er For Fi el dAnnot at i on(new Nunber For mat Annot ati onFor matter Factory());

/'l Register date conversion with a specific global format

Dat eFor mat t er Regi strar regi strar = new Dat eFormatterRegistrar();
registrar.set Formatter(new DateFormatter("yyyyMwdd"));
registrar.regi sterFornmatters(conversionService);

return conversi onService;

If you prefer XML based configuration you can use a
For mat t i ngConver si onSer vi ceFact or yBean. Here is the same example, this time using Joda
Time:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. spri ngframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="
http://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd>

<bean
i d="conversi onServi ce" class="org.springfranmework.format.support.FornattingConversi onServi ceFact or yBean">
<property name="regi sterDefaul t Formatters" value="fal se" />
<property name="formatters">
<set >
<bean cl ass="org. springframework. f or mat. nunmber . Nunber For mat Annot ati onFor matt er Fact ory" /

>
</ set >
</ property>
<property name="formatterRegi strars">
<set >
<bean cl ass="org. springframework. format. datetinme.joda.JodaTi meFor matterRegi strar">
<property nanme="dat eFormatter">
<bean cl ass="org. springfranework. format. datetine.joda. Dat eTi meFor matt er Fact or yBean" >
<property name="pattern" val ue="yyyyMvd"/ >
</ bean>
</ property>
</ bean>
</ set >
</ property>
</ bean>
</ beans>
Note

Joda-Time provides separate distinct types to represent date, time and date-tinme
values. The dat eFormatter, ti neFornmatter and dat eTi meFor matt er properties of the
JodaTi neFor mat t er Regi st rar should be used to configure the different formats for each
type. The Dat eTi meFor mat t er Fact or yBean provides a convenient way to create formatters.

4.3.19.RELEASE Spring Framework 191

Spring Framework Reference Documentation

If you are using Spring MVC remember to explicitly configure the conversion service that is used. For
Java based @onf i gur at i on this means extending the WebMscConf i gur at i onSupport class and
overriding the mvcConver si onSer vi ce() method. For XML you should use the ' conver si on-
servi ce' attribute of the mvc: annot ati on-dri ven element. See the section called “Conversion
and Formatting” for detalils.

9.8 Spring Validation

Spring 3 introduces several enhancements to its validation support. First, the JSR-303 Bean Validation
APl is now fully supported. Second, when used programmatically, Spring’s DataBinder can now validate
objects as well as bind to them. Third, Spring MVC now has support for declaratively validating
@control | er inputs.

Overview of the JSR-303 Bean Validation API

JSR-303 standardizes validation constraint declaration and metadata for the Java platform. Using this
API, you annotate domain model properties with declarative validation constraints and the runtime
enforces them. There are a number of built-in constraints you can take advantage of. You may also
define your own custom constraints.

To illustrate, consider a simple PersonForm model with two properties:

public class PersonForm {
private String nane;
private int age;

JSR-303 allows you to define declarative validation constraints against such properties:

public class PersonForm {

@\Not Nul |
@i ze(max=64)
private String nane;

@1 n(0)
private int age;

When an instance of this class is validated by a JSR-303 Validator, these constraints will be enforced.

For general information on JSR-303/JSR-349, see the Bean Validation website. For information on the
specific capabilities of the default reference implementation, see the Hibernate Validator documentation.
To learn how to setup a Bean Validation provider as a Spring bean, keep reading.

Configuring a Bean Validation Provider

Spring provides full support for the Bean Validation API. This includes convenient support for
bootstrapping a JSR-303/JSR-349 Bean Validation provider as a Spring bean. This allows for
a javax.validation. ValidatorFactory or javax.validation. Validator to be injected
wherever validation is needed in your application.

Use the Local Val i dat or Fact or yBean to configure a default Validator as a Spring bean:

<bean id="validator"
cl ass="org. spri ngfranmewor k. val i dati on. beanval i dati on. Local Val i dat or Fact or yBean"/ >

4.3.19.RELEASE Spring Framework 192

http://beanvalidation.org/
https://www.hibernate.org/412.html

Spring Framework Reference Documentation

The basic configuration above will trigger Bean Validation to initialize using its default bootstrap
mechanism. A JSR-303/JSR-349 provider, such as Hibernate Validator, is expected to be present in
the classpath and will be detected automatically.

Injecting a Validator

Local Val i dat or Fact or yBean implements both j avax. val i dati on. Val i dat or Fact ory and
j avax.val i dation. Val i dat or, as well as Spring’s
org. springfranmework. val i dati on. Val i dat or. You may inject a reference to either of these
interfaces into beans that need to invoke validation logic.

Inject a reference to j avax. val i dati on. Val i dat or if you prefer to work with the Bean Validation
API directly:

i nport javax.validation.Validator;

@ber vi ce
public class MyService {

@\ut owi r ed
private Validator validator;

Inject a reference to or g. spri ngf ramewor k. val i dati on. Val i dat or if your bean requires the
Spring Validation API:

i nport org.springframework. validation. Validator;

@er vi ce
public class MyService {

@\ut owi r ed
private Validator validator;

Configuring Custom Constraints

Each Bean Validation constraint consists of two parts. First, a @Constrai nt annotation
that declares the constraint and its configurable properties. Second, an implementation of
the javax.validation. ConstraintValidator interface that implements the constraint’s
behavior. To associate a declaration with an implementation, each @Constrai nt annotation
references a corresponding Constrai ntVal i dator implementation class. At runtime, a
Constrai nt Val i dat or Fact ory instantiates the referenced implementation when the constraint
annotation is encountered in your domain model.

By default, the Local Val i dat or Fact or yBean configures a
SpringConstrai nt Val i dat or Fact ory that uses Spring to create ConstraintValidator instances.
This allows your custom ConstraintValidators to benefit from dependency injection like any other Spring
bean.

Shown below is an example of a custom @Constrai nt declaration, followed by an associated
Const rai nt Val i dat or implementation that uses Spring for dependency injection:

@rar get ({ El enment Type. METHOD, El enent Type. FlI ELD})
@=et enti on(Ret enti onPol i cy. RUNTI MVE)

@onstrai nt (val i dat edBy=MyConst r ai nt Val i dat or . cl ass)
public @nterface MyConstraint {

}

4.3.19.RELEASE Spring Framework 193

Spring Framework Reference Documentation

i nport javax.validation. ConstraintValidator;
public class MyConstraintValidator inplenents ConstraintValidator {

@\ut owi r ed;
private Foo aDependency;

As you can see, a ConstraintValidator implementation may have its dependencies @Autowired like any
other Spring bean.

Spring-driven Method Validation

The method validation feature supported by Bean Validation 1.1, and as a custom extension
also by Hibernate Validator 4.3, can be integrated into a Spring context through a
Met hodVal i dat i onPost Pr ocessor bean definition:

<bean cl ass="org. springfranmework. val i dati on. beanval i dati on. Met hodVal i dati onPost Processor"/ >

In order to be eligible for Spring-driven method validation, all target classes need to be annotated
with Spring’'s @/al i dat ed annotation, optionally declaring the validation groups to use. Check out the
Met hodVal i dat i onPost Pr ocessor javadocs for setup details with Hibernate Validator and Bean
Validation 1.1 providers.

Additional Configuration Options

The default Local Val i dat or Fact or yBean configuration should prove sufficient for most cases.
There are a number of configuration options for various Bean Validation constructs, from message
interpolation to traversal resolution. See the Local Val i dat or Fact or yBean javadocs for more
information on these options.

Configuring a DataBinder

Since Spring 3, a DataBinder instance can be configured with a Validator. Once configured, the Validator
may be invoked by calling bi nder . val i dat e() . Any validation Errors are automatically added to the
binder’s BindingResult.

When working with the DataBinder programmatically, this can be used to invoke validation logic after
binding to a target object:

Foo target = new Foo();

Dat aBi nder bi nder = new Dat aBi nder (t arget);
bi nder. set Val i dat or (new FooVal i dator());

/1 bind to the target object
bi nder. bi nd(propertyVal ues);

/1 validate the target object
bi nder . val i date();

/'l get BindingResult that includes any validation errors
Bi ndi ngResult results = binder. getBi ndi ngResul t ();

A DataBinder can also be configured with multiple Validator instances via
dat aBi nder. addVal i dators and dat aBi nder. repl aceVal i dators. This is useful when
combining globally configured Bean Validation with a Spring Val i dat or configured locally on a
DataBinder instance. See ???.

4.3.19.RELEASE Spring Framework 194

Spring Framework Reference Documentation

Spring MVC 3 Validation

See the section called “Validation” in the Spring MVC chapter.

4.3.19.RELEASE Spring Framework 195

Spring Framework Reference Documentation

10. Spring Expression Language (SpEL)

10.1 Introduction

The Spring Expression Language (SpEL for short) is a powerful expression language that supports
guerying and manipulating an object graph at runtime. The language syntax is similar to Unified EL but
offers additional features, most notably method invocation and basic string templating functionality.

While there are several other Java expression languages available, OGNL, MVEL, and JBoss EL, to
name a few, the Spring Expression Language was created to provide the Spring community with a single
well supported expression language that can be used across all the products in the Spring portfolio.
Its language features are driven by the requirements of the projects in the Spring portfolio, including
tooling requirements for code completion support within the eclipse based Spring Tool Suite. That said,
SpEL is based on a technology agnostic API allowing other expression language implementations to
be integrated should the need arise.

While SpEL serves as the foundation for expression evaluation within the Spring portfolio, it is not directly
tied to Spring and can be used independently. In order to be self contained, many of the examples in
this chapter use SpEL as if it were an independent expression language. This requires creating a few
bootstrapping infrastructure classes such as the parser. Most Spring users will not need to deal with this
infrastructure and will instead only author expression strings for evaluation. An example of this typical
use is the integration of SpEL into creating XML or annotated based bean definitions as shown in the
section Expression support for defining bean definitions.

This chapter covers the features of the expression language, its API, and its language syntax. In several
places an Inventor and Inventor’s Society class are used as the target objects for expression evaluation.
These class declarations and the data used to populate them are listed at the end of the chapter.

The expression language supports the following functionality:
* Literal expressions

» Boolean and relational operators

* Regular expressions

» Class expressions

» Accessing properties, arrays, lists, maps
* Method invocation

* Relational operators

» Assignment

 Calling constructors

» Bean references

 Array construction

* Inline lists

* Inline maps

 Ternary operator

4.3.19.RELEASE Spring Framework 196

Spring Framework Reference Documentation

Variables

» User defined functions

Collection projection

Collection selection

Templated expressions

10.2 Evaluation

This section introduces the simple use of SpEL interfaces and its expression language. The complete
language reference can be found in the section Language Reference.

The following code introduces the SpEL API to evaluate the literal string expression 'Hello World'.

Expr essi onPar ser parser = new Spel Expressi onParser();
Expression exp = parser.parseExpression("' Hello Wrld ");
String nmessage = (String) exp.getValue();

The value of the message variable is simply 'Hello World'.

The SpEL classes and interfaces you are most likely to use are located in the packages
org. spri ngfranmewor k. expr essi on and its sub packages and spel . support.

The interface Expr essi onPar ser is responsible for parsing an expression string. In this example
the expression string is a string literal denoted by the surrounding single quotes. The interface
Expr essi on is responsible for evaluating the previously defined expression string. There are
two exceptions that can be thrown, Par seExcepti on and Eval uati onExcepti on when calling
par ser. par seExpr essi on and exp. get Val ue respectively.

SpEL supports a wide range of features, such as calling methods, accessing properties, and calling
constructors.

As an example of method invocation, we call the concat method on the string literal.

Expr essi onPar ser parser = new Spel Expressi onParser();
Expression exp = parser.parseExpression("' Hello Wrld' .concat('!")");
String nmessage = (String) exp.getValue();

The value of message is now 'Hello World!".
As an example of calling a JavaBean property, the String property Byt es can be called as shown below.

Expressi onParser parser = new Spel Expressi onParser();
/1 invokes 'getBytes()'

Expressi on exp = parser. parseExpression("' Hello Wrld'.bytes");
byte[] bytes = (byte[]) exp.getValue();

SpEL also supports nested properties using standard dot notation, i.e. propl.prop2.prop3 and the setting
of property values

Public fields may also be accessed.
Expr essi onPar ser parser = new Spel Expressi onParser();
/'l invokes 'getBytes().length'

Expressi on exp = parser. parseExpression("' Hello Wrld'.bytes.length");
int length = (Integer) exp.getValue();

4.3.19.RELEASE Spring Framework 197

Spring Framework Reference Documentation

The String’s constructor can be called instead of using a string literal.

Expr essi onPar ser parser = new Spel Expressi onParser();
Expressi on exp = parser. parseExpression("new String('hello world').toUpperCase()");
String nmessage = exp.getVal ue(String.class);

Note the use of the generic method publ i ¢ <T> T get Val ue(d ass<T> desi redResul t Type).
Using this method removes the need to cast the value of the expression to the desired result type. An
Eval uati onExcepti on will be thrown if the value cannot be cast to the type T or converted using
the registered type converter.

The more common usage of SpEL is to provide an expression string that is evaluated against a specific
object instance (called the root object). The example shows how to retrieve the nane property from an
instance of the | nvent or class or create a boolean condition:

/1 Create and set a cal endar
Gregori anCal endar ¢ = new Gregori anCal endar () ;
c.set (1856, 7, 9);

/1 The constructor argunents are nane, birthday, and nationality.
Inventor tesla = new I nventor ("N kola Tesla", c.getTinme(), "Serbian");

Expr essi onPar ser parser = new Spel Expressi onParser () ;

Expression exp = parser. parseExpression("nane");
String name = (String) exp.getValue(tesla);

/1 nane == "N kol a Tesl a"

exp = parser.parseExpression("name == 'N kola Tesla'");
bool ean result = exp. getVal ue(tesla, Bool ean.class);

/] result == true

Eval uat i onCont ext

The interface Eval uati onCont ext is used when evaluating an expression to resolve properties,
methods, fields, and to help perform type conversion. There are two out-of-the-box implementations.

* Si npl eEval uati onCont ext —exposes a subset of essential SpEL language features and
configuration options, for categories of expressions that do not require the full extent of the SpEL
language syntax and should be meaningfully restricted. Examples include but are not limited to data
binding expressions, property-based filters, and others.

» St andar dEval uat i onCont ext —exposes the full set of SpEL language features and
configuration options. You may use it to specify a default root object, and to configure every available
evaluation-related strategy.

Si npl eEval uat i onCont ext is designed to support only a subset of the SpEL language syntax. It
excludes Java type references, constructors, and bean references. It also requires explicit choosing
the level of support for properties and methods in expressions. By default, the cr eat e() static factory
method enables only read access to properties. You can also obtain a builder to configure the exact
level of support needed, targeting one of, or some combination of the following:

1. Custom Pr opert yAccessor only (no reflection).
2. Data binding properties for read-only access.

3. Data binding properties for read and write.

4.3.19.RELEASE Spring Framework 198

Spring Framework Reference Documentation

Type conversion

By default SpEL uses the conversion service available in Spring core (
org. spri ngfranmework. core. convert. Conversi onServi ce). This conversion service comes
with many converters built in for common conversions but is also fully extensible so custom conversions
between types can be added. Additionally it has the key capability that it is generics aware. This means
that when working with generic types in expressions, SpEL will attempt conversions to maintain type
correctness for any objects it encounters.

What does this mean in practice? Suppose assignment, using set Val ue() , isbeingusedtosetali st
property. The type of the property is actually Li st <Bool ean>. SpEL will recognize that the elements
of the list need to be converted to Bool ean before being placed in it. A simple example:

class Sinple {
public Li st <Bool ean> bool eanLi st = new Arrayli st <Bool ean>();

}

Sinple sinple = new Sinple();
si npl e. bool eanLi st. add(true);

Si npl eEval uati onCont ext context = Sinpl eEval uati onContext().create();

/] false is passed in here as a string. SpEL and the conversion service will
/'l correctly recognize that it needs to be a Bool ean and convert it

par ser. par seExpr essi on("bool eanLi st[0]"). set Val ue(context, sinple, "false");

/1 b will be false
Bool ean b = si npl e. bool eanLi st. get (0);

Parser configuration

It is possible to configure the SpEL expression parser using a parser configuration object
(org. spri ngframewor k. expr essi on. spel . Spel Par ser Confi gurati on). The configuration
object controls the behavior of some of the expression components. For example, if indexing into an
array or collection and the element at the specified index is nul | itis possible to automatically create the
element. This is useful when using expressions made up of a chain of property references. If indexing
into an array or list and specifying an index that is beyond the end of the current size of the array or list
it is possible to automatically grow the array or list to accommodate that index.

cl ass Denp {
public List<String> |ist;

}

/] Turn on:

/1 - auto null reference initialization

/1 - auto collection grow ng

Spel Par ser Confi guration config = new Spel Parser Configuration(true,true);
Expr essi onPar ser parser = new Spel Expressi onParser(config);

Expressi on expressi on = parser. parseExpression("list[3]");

Dermp denp = new Deno();

Obj ect o = expression. get Val ue(deno) ;

// denp.list will now be a real collection of 4 entries
/'l Each entry is a new enpty String

It is also possible to configure the behaviour of the SpEL expression compiler.

4.3.19.RELEASE Spring Framework 199

Spring Framework Reference Documentation

SpEL compilation

Spring Framework 4.1 includes a basic expression compiler. Expressions are usually interpreted which
provides a lot of dynamic flexibility during evaluation but does not provide the optimum performance. For
occasional expression usage this is fine, but when used by other components like Spring Integration,
performance can be very important and there is no real need for the dynamism.

The new SpEL compiler is intended to address this need. The compiler will generate a real Java
class on the fly during evaluation that embodies the expression behavior and use that to achieve
much faster expression evaluation. Due to the lack of typing around expressions the compiler uses
information gathered during the interpreted evaluations of an expression when performing compilation.
For example, it does not know the type of a property reference purely from the expression but during the
first interpreted evaluation it will find out what it is. Of course, basing the compilation on this information
could cause trouble later if the types of the various expression elements change over time. For this
reason compilation is best suited to expressions whose type information is not going to change on
repeated evaluations.

For a basic expression like this:
someArray[0] . someProperty. someQt her Property < 0.1

which involves array access, some property derefencing and numeric operations, the performance gain
can be very noticeable. In an example micro benchmark run of 50000 iterations, it was taking 75ms to
evaluate using only the interpreter and just 3ms using the compiled version of the expression.

Compiler configuration

The compiler is not turned on by default, but there are two ways to turn it on. It can be turned on using the
parser configuration process discussed earlier or via a system property when SpEL usage is embedded
inside another component. This section discusses both of these options.

Itis important to understand that there are a few modes the compiler can operate in, captured in an enum
(org. spri ngframewor k. expr essi on. spel . Spel Conpi | er Mode). The modes are as follows:

e OFF - The compiler is switched off; this is the default.

* | MVEDI ATE - In immediate mode the expressions are compiled as soon as possible. This is typically
after the first interpreted evaluation. If the compiled expression fails (typically due to a type changing,
as described above) then the caller of the expression evaluation will receive an exception.

* M XED - In mixed mode the expressions silently switch between interpreted and compiled mode over
time. After some number of interpreted runs they will switch to compiled form and if something goes
wrong with the compiled form (like a type changing, as described above) then the expression will
automatically switch back to interpreted form again. Sometime later it may generate another compiled
form and switch to it. Basically the exception that the user gets in | MVEDI ATE mode is instead handled
internally.

| MVEDI ATE mode exists because M XED mode could cause issues for expressions that have side
effects. If a compiled expression blows up after partially succeeding it may have already done something
that has affected the state of the system. If this has happened the caller may not want it to silently re-
run in interpreted mode since part of the expression may be running twice.

After selecting a mode, use the Spel Par ser Confi gur at i on to configure the parser:

4.3.19.RELEASE Spring Framework 200

Spring Framework Reference Documentation

Spel Par ser Confi gurati on config = new Spel Par ser Confi gurati on(Spel Conpi | er Mode. | MVEDI ATE,
this.getd ass().getd assLoader());

Spel Expr essi onParser parser = new Spel Expressi onPar ser (confi g);
Expression expr = parser. parseExpression("payl oad");

M/Message nessage = new MyMessage();

Obj ect payl oad = expr. get Val ue(nessage) ;

When specifying the compiler mode it is also possible to specify a classloader (passing null is allowed).
Compiled expressions will be defined in a child classloader created under any that is supplied. It is
important to ensure if a classloader is specified it can see all the types involved in the expression
evaluation process. If none is specified then a default classloader will be used (typically the context
classloader for the thread that is running during expression evaluation).

The second way to configure the compiler is for use when SpEL is embedded inside some other
component and it may not be possible to configure via a configuration object. In these cases it is possible
to use a system property. The property spri ng. expr essi on. conpi | er. node can be set to one of
the Spel Conpi | er Mode enum values (of f , i mmedi at e, or mi xed).

Compiler limitations

With Spring Framework 4.1 the basic compilation framework is in place. However, the framework
does not yet support compiling every kind of expression. The initial focus has been on the common
expressions that are likely to be used in performance critical contexts. These kinds of expression cannot
be compiled at the moment:

e expressions involving assignment

 expressions relying on the conversion service

* expressions using custom resolvers or accessors
e expressions using selection or projection

More and more types of expression will be compilable in the future.

10.3 Expressions in bean definitions

SpEL expressions can be used with XML or annotation-based configuration metadata for defining
BeanDef i ni t i ons. In both cases the syntax to define the expression is of the form #{ <expr essi on
string> }.

XML configuration

A property or constructor-arg value can be set using expressions as shown below.

<bean id="nunber Guess" cl ass="org. spring. sanpl es. Nunber Guess" >
<property name="randomNunmber" val ue="#{ T(java.lang. Math).random() * 100.0 }"/>

<l-- other properties -->
</ bean>

The variable syst enPr oper ti es is predefined, so you can use it in your expressions as shown below.
Note that you do not have to prefix the predefined variable with the # symbol in this context.

4.3.19.RELEASE Spring Framework 201

Spring Framework Reference Documentation

<bean id="taxCal cul ator" class="org.spring. sanpl es. TaxCal cul at or">
<property name="def aul t Local e" val ue="#{ systenProperties['user.region'] }"/>

<I-- other properties -->
</ bean>

You can also refer to other bean properties by name, for example.

<bean id="nunber Guess" cl ass="org. spring. sanpl es. Nunber Guess" >
<property name="randonNunber" val ue="#{ T(java.lang.Math).randon() * 100.0 }"/>

<l-- other properties -->
</ bean>

<bean id="shapeGuess" cl ass="org. spring. sanpl es. ShapeGuess" >
<property name="initial ShapeSeed" val ue="#{ nunber Guess.random\unber }"/>

<l-- other properties -->
</ bean>

Annotation config

The @/al ue annotation can be placed on fields, methods and method/constructor parameters to specify
a default value.

Here is an example to set the default value of a field variable.

public static class Fiel dVal ueTest Bean

@/al ue("#{ systenProperties['user.region'] }")
private String defaultLocal e;

public void setDefaul tLocal e(String defaul tLocale) {
this.defaultLocal e = defaul tLocal e;

}

public String getDefaul tLocal e() {
return this.defaul tLocale;

}

The equivalent but on a property setter method is shown below.

public static class PropertyVal ueTest Bean
private String defaultLocal e;

@/al ue("#{ systenProperties['user.region'] }")
public void setDefaultLocal e(String defaul tLocale) {
this.defaultLocal e = defaul tLocal e;

}

public String getDefaul tLocal e() {
return this.defaul tLocale;

}

Autowired methods and constructors can also use the @/al ue annotation.

4.3.19.RELEASE Spring Framework 202

Spring Framework Reference Documentation

public class SinpleMvielister {

private MvieFi nder novi eFi nder;
private String defaul tLocal e;

@\ut owi r ed
public void configure(MvieFinder novi eFi nder,
@/al ue("#{ systenProperties['user.region'] }") String defaultLocale) {
t hi s. novi eFi nder = novi eFi nder;
this.defaul tLocal e = defaul tLocal e;

public class Myvi eRecommender {
private String defaul tLocal e;
private CustonerPreferenceDao custonerPreferencebDao;

@\ut owi r ed
publ i ¢ Movi eReconmender (Cust oner Pr ef er enceDao cust oner Pr ef er enceDao,
@/al ve("#{systenProperties|[user.country']}") String defaultLocale) {
this.custonerPreferencebDao = custoner PreferencebDao;
this.defaul tLocal e = defaul t Local e;

10.4 Language Reference

Literal expressions

The types of literal expressions supported are strings, numeric values (int, real, hex), boolean and null.
Strings are delimited by single quotes. To put a single quote itself in a string, use two single quote
characters.

The following listing shows simple usage of literals. Typically they would not be used in isolation like
this but rather as part of a more complex expression, for example using a literal on one side of a logical
comparison operator.

Expr essi onPar ser parser = new Spel Expressi onParser();

/] evals to "Hello World"
String helloWwrld = (String) parser.parseExpression("' Hello Wrld ").getVal ue();

doubl e avogadr osNunmber = (Doubl e) parser. parseExpression("6.0221415E+23"). get Val ue();

/] evals to 2147483647
int maxVal ue = (Integer) parser.parseExpression("0x7FFFFFFF") . get Val ue();

bool ean trueVal ue = (Bool ean) parser. parseExpression("true"). getVal ue();

Obj ect nul | Val ue = parser. parseExpression("null"). getVal ue();

Numbers support the use of the negative sign, exponential notation, and decimal points. By default real
numbers are parsed using Double.parseDouble().

Properties, Arrays, Lists, Maps, Indexers

Navigating with property references is easy: just use a period to indicate a nested property value. The
instances of the | nvent or class, pupin, and tesla, were populated with data listed in the section Classes

4.3.19.RELEASE Spring Framework 203

Spring Framework Reference Documentation

used in the examples. To navigate "down" and get Tesla’s year of birth and Pupin’s city of birth the
following expressions are used.

/1l evals to 1856
int year = (Integer) parser.parseExpression("Birthdate. Year + 1900"). get Val ue(cont ext);

String city = (String) parser.parseExpression("placeOBirth.City").getVal ue(context);

Case insensitivity is allowed for the first letter of property names. The contents of arrays and lists are
obtained using square bracket notation.

Expr essi onPar ser parser = new Spel Expressi onParser () ;
Si npl eEval uati onCont ext context = Sinpl eEval uati onCont ext.create();

/'l Inventions Array

/1 evaluates to "Induction notor"
String invention = parser.parseExpression("inventions[3]").getVal ue(
context, tesla, String.class);

/1 Menbers List

/] evaluates to "N kola Tesla"
String name = parser. par seExpressi on("Menbers[0] . Nane") . get Val ue(
context, ieee, String.class);

/1 List and Array navigation

/1 evaluates to "Wrel ess comunication”

String invention = parser. parseExpression("Menbers[0].|nventions[6]").getVal ue(
context, ieee, String.class);

The contents of maps are obtained by specifying the literal key value within the brackets. In this case,
because keys for the Officers map are strings, we can specify string literals.

/'l Oficer's Dictionary

I nventor pupin = parser.parseExpression("Officers[' president']"). getVal ue(
soci etyCont ext, |nventor.class);

/1l evaluates to "ldvor"
String city = parser.parseExpression("O ficers[' president'].PlaceOBirth.City").getVal ue(
soci etyContext, String.class);

/] setting val ues
par ser. par seExpression(" O ficers['advisors'][0].PlaceOBirth. Country"). set Val ue(
soci etyContext, "Croatia");

Inline lists

Lists can be expressed directly in an expression using { } notation.

/] evaluates to a Java list containing the four nunbers
Li st nunbers = (List) parser.parseExpression("{1,2,3,4}").getVal ue(context);

List listOfLists = (List) parser.parseExpression("{{"a","'b"},{"x","y" }}").getVal ue(context);

{} by itself means an empty list. For performance reasons, if the list is itself entirely composed of fixed
literals then a constant list is created to represent the expression, rather than building a new list on
each evaluation.

Inline Maps

Maps can also be expressed directly in an expression using { key: val ue} notation.

4.3.19.RELEASE Spring Framework 204

Spring Framework Reference Documentation

/1 evaluates to a Java nap containing the two entries
Map i nventorlnfo = (Map) parser. parseExpression("{nane:"'N kol a', dob: "' 10-Jul y-1856'}"). get Val ue(cont ext);

Map mapOf Maps = (Map) parser. parseExpression("{nanme:{first:' Nikola',last:'Tesla'}, dob:
{day: 10, nont h: * Jul y' , year: 1856}}"). get Val ue(cont ext);

{:} by itself means an empty map. For performance reasons, if the map is itself composed of fixed
literals or other nested constant structures (lists or maps) then a constant map is created to represent
the expression, rather than building a new map on each evaluation. Quoting of the map keys is optional,
the examples above are not using quoted keys.

Array construction

Arrays can be built using the familiar Java syntax, optionally supplying an initializer to have the array
populated at construction time.

int[] nunbersl = (int[]) parser.parseExpression("new int[4]").getVal ue(context);

/1 Array with initializer
int[] nunbers2 = (int[]) parser.parseExpression("new int[]{1,2,3}").getValue(context);

/1 Multi dinensional array
int[][] nunbers3 = (int[][]) parser.parseExpression("new int[4][5]").getVal ue(context);

It is not currently allowed to supply an initializer when constructing a multi-dimensional array.
Methods

Methods are invoked using typical Java programming syntax. You may also invoke methods on literals.
Varargs are also supported.

/] string literal, evaluates to "bc"
String bc = parser.parseExpression("' abc'.substring(1, 3)").getValue(String.class);

/1 evaluates to true
bool ean i sMenber = parser. parseExpression("i sMenber (' M hajlo Pupin')").getVal ue(
soci et yCont ext, Bool ean. cl ass);

Operators
Relational operators

The relational operators; equal, not equal, less than, less than or equal, greater than, and greater than
or equal are supported using standard operator notation.

/| evaluates to true
bool ean trueVal ue = parser. parseExpression("2 == 2"). get Val ue(Bool ean. cl ass);

/1 evaluates to false
bool ean fal seVal ue = parser. parseExpression("2 < -5.0"). get Val ue(Bool ean. cl ass);

/| evaluates to true
bool ean trueVal ue = parser. parseExpression("' bl ack' < 'block'").getVal ue(Bool ean. cl ass);

Note

Greater/less-than comparisons against nul | follow a simple rule: nul | is treated as nothing here
(i.e. NOT as zero). As a consequence, any other value is always greater than nul | (X > nul |
is always t r ue) and no other value is ever less than nothing (X < nul | is always f al se).

4.3.19.RELEASE Spring Framework 205

Spring Framework Reference Documentation

If you prefer numeric comparisons instead, please avoid number-based nul | comparisons in
favor of comparisons against zero (e.g. X > 0 or X < 0).

In addition to standard relational operators SpEL supports the i nst anceof and regular expression
based mat ches operator.

/] evaluates to fal se
bool ean fal seVal ue = parser. par seExpressi on(
"' xyz' instanceof T(Integer)").getVal ue(Bool ean.cl ass);

/| evaluates to true
bool ean trueVal ue = parser. par seExpressi on(
"'5.00" matches "\N-2\\d+(\\.\\d{2})?$ ").get Val ue(Bool ean. cl ass);

/levaluates to false
bool ean fal seVal ue = parser. par seExpressi on(
"'5.0067" matches "\N-2A\\d+(\\.\\d{2})?$""). get Val ue(Bool ean. cl ass);

Note

Be careful with primitive types as they are immediately boxed up to the wrapper type, so 1
i nstanceof T(int) evaluates to fal se while 1 instanceof T(Integer) evaluates to
t rue, as expected.

Each symbolic operator can also be specified as a purely alphabetic equivalent. This avoids problems
where the symbols used have special meaning for the document type in which the expression is
embedded (eg. an XML document). The textual equivalents are shown here: I t (<), gt (), | e (#), ge
(>=),eq (==),ne (! =),div (/), nod (%, not (!). These are case insensitive.

Logical operators

The logical operators that are supported are and, or, and not. Their use is demonstrated below.

/1 -- AND --

/'l evaluates to fal se
bool ean fal seVal ue = parser. parseExpression("true and fal se"). getVal ue(Bool ean. cl ass);

/1l evaluates to true
String expression = "isMenber (' Ni kola Tesla') and i sMenber (' M hajlo Pupin')";
bool ean trueVal ue = parser. parseExpressi on(expression). get Val ue(soci et yCont ext, Bool ean. cl ass);

0 == @R ==

/1l evaluates to true
bool ean trueVal ue = parser. parseExpression("true or false").getVal ue(Bool ean. cl ass);

/| evaluates to true
String expression = "isMenber(' N kola Tesla') or isMenber('Al bert Einstein)";
bool ean trueVal ue = parser. par seExpressi on(expressi on) . get Val ue(soci et yCont ext, Bool ean. cl ass);

/1 -- NOT --

/1 evaluates to fal se
bool ean fal seVal ue = parser. parseExpression("!true"). getVal ue(Bool ean. cl ass);

/1 -- AND and NOT --
String expression = "isMenber (' Nikola Tesla') and !isMenber('Mhajlo Pupin')";
bool ean fal seVal ue = parser. par seExpressi on(expressi on). get Val ue(soci et yCont ext, Bool ean. cl ass);

4.3.19.RELEASE Spring Framework 206

Spring Framework Reference Documentation

Mathematical operators

The addition operator can be used on both numbers and strings. Subtraction, multiplication and
division can be used only on numbers. Other mathematical operators supported are modulus (%) and
exponential power (). Standard operator p