4.3.7.RELEASE
Copyright © 2004-2016
Table of Contents
The Spring Framework is a lightweight solution and a potential one-stop-shop for building your enterprise-ready applications. However, Spring is modular, allowing you to use only those parts that you need, without having to bring in the rest. You can use the IoC container, with any web framework on top, but you can also use only the Hibernate integration code or the JDBC abstraction layer. The Spring Framework supports declarative transaction management, remote access to your logic through RMI or web services, and various options for persisting your data. It offers a full-featured MVC framework, and enables you to integrate AOP transparently into your software.
Spring is designed to be non-intrusive, meaning that your domain logic code generally has no dependencies on the framework itself. In your integration layer (such as the data access layer), some dependencies on the data access technology and the Spring libraries will exist. However, it should be easy to isolate these dependencies from the rest of your code base.
This document is a reference guide to Spring Framework features. If you have any requests, comments, or questions on this document, please post them on the user mailing list. Questions on the Framework itself should be asked on StackOverflow (see https://spring.io/questions).
This reference guide provides detailed information about the Spring Framework. It provides comprehensive documentation for all features, as well as some background about the underlying concepts (such as "Dependency Injection") that Spring has embraced.
If you are just getting started with Spring, you may want to begin using the Spring Framework by creating a Spring Boot based application. Spring Boot provides a quick (and opinionated) way to create a production-ready Spring based application. It is based on the Spring Framework, favors convention over configuration, and is designed to get you up and running as quickly as possible.
You can use start.spring.io to generate a basic project or follow one of the "Getting Started" guides like the Getting Started Building a RESTful Web Service one. As well as being easier to digest, these guides are very task focused, and most of them are based on Spring Boot. They also cover other projects from the Spring portfolio that you might want to consider when solving a particular problem.
The Spring Framework is a Java platform that provides comprehensive infrastructure support for developing Java applications. Spring handles the infrastructure so you can focus on your application.
Spring enables you to build applications from "plain old Java objects" (POJOs) and to apply enterprise services non-invasively to POJOs. This capability applies to the Java SE programming model and to full and partial Java EE.
Examples of how you, as an application developer, can benefit from the Spring platform:
A Java application — a loose term that runs the gamut from constrained, embedded applications to n-tier, server-side enterprise applications — typically consists of objects that collaborate to form the application proper. Thus the objects in an application have dependencies on each other.
Although the Java platform provides a wealth of application development functionality, it lacks the means to organize the basic building blocks into a coherent whole, leaving that task to architects and developers. Although you can use design patterns such as Factory, Abstract Factory, Builder, Decorator, and Service Locator to compose the various classes and object instances that make up an application, these patterns are simply that: best practices given a name, with a description of what the pattern does, where to apply it, the problems it addresses, and so forth. Patterns are formalized best practices that you must implement yourself in your application.
The Spring Framework Inversion of Control (IoC) component addresses this concern by providing a formalized means of composing disparate components into a fully working application ready for use. The Spring Framework codifies formalized design patterns as first-class objects that you can integrate into your own application(s). Numerous organizations and institutions use the Spring Framework in this manner to engineer robust, maintainable applications.
The Spring Framework consists of features organized into about 20 modules. These modules are grouped into Core Container, Data Access/Integration, Web, AOP (Aspect Oriented Programming), Instrumentation, Messaging, and Test, as shown in the following diagram.
The following sections list the available modules for each feature along with their artifact names and the topics they cover. Artifact names correlate to artifact IDs used in Dependency Management tools.
The Core Container consists of the spring-core
,
spring-beans
, spring-context
, spring-context-support
, and spring-expression
(Spring Expression Language) modules.
The spring-core
and spring-beans
modules provide the fundamental
parts of the framework, including the IoC and Dependency Injection features. The
BeanFactory
is a sophisticated implementation of the factory pattern. It removes the
need for programmatic singletons and allows you to decouple the configuration and
specification of dependencies from your actual program logic.
The Context (spring-context
) module builds on the solid
base provided by the Core and Beans modules: it is a means to
access objects in a framework-style manner that is similar to a JNDI registry. The
Context module inherits its features from the Beans module and adds support for
internationalization (using, for example, resource bundles), event propagation, resource
loading, and the transparent creation of contexts by, for example, a Servlet container.
The Context module also supports Java EE features such as EJB, JMX, and basic remoting.
The ApplicationContext
interface is the focal point of the Context module.
spring-context-support
provides support for integrating common third-party libraries
into a Spring application context for caching (EhCache, Guava, JCache), mailing
(JavaMail), scheduling (CommonJ, Quartz) and template engines (FreeMarker, JasperReports,
Velocity).
The spring-expression
module provides a powerful Expression
Language for querying and manipulating an object graph at runtime. It is an extension
of the unified expression language (unified EL) as specified in the JSP 2.1
specification. The language supports setting and getting property values, property
assignment, method invocation, accessing the content of arrays, collections and indexers,
logical and arithmetic operators, named variables, and retrieval of objects by name from
Spring’s IoC container. It also supports list projection and selection as well as common
list aggregations.
The spring-aop
module provides an AOP Alliance-compliant
aspect-oriented programming implementation allowing you to define, for example,
method interceptors and pointcuts to cleanly decouple code that implements functionality
that should be separated. Using source-level metadata functionality, you can also
incorporate behavioral information into your code, in a manner similar to that of .NET
attributes.
The separate spring-aspects
module provides integration with AspectJ.
The spring-instrument
module provides class instrumentation support and classloader
implementations to be used in certain application servers. The spring-instrument-tomcat
module contains Spring’s instrumentation agent for Tomcat.
Spring Framework 4 includes a spring-messaging
module with key abstractions from the
Spring Integration project such as Message
, MessageChannel
, MessageHandler
, and
others to serve as a foundation for messaging-based applications. The module also
includes a set of annotations for mapping messages to methods, similar to the Spring MVC
annotation based programming model.
The Data Access/Integration layer consists of the JDBC, ORM, OXM, JMS, and Transaction modules.
The spring-jdbc
module provides a JDBC-abstraction layer that
removes the need to do tedious JDBC coding and parsing of database-vendor specific error
codes.
The spring-tx
module supports programmatic and declarative transaction
management for classes that implement special interfaces and for all your POJOs (Plain
Old Java Objects).
The spring-orm
module provides integration layers for popular
object-relational mapping APIs, including JPA,
JDO, and Hibernate. Using the spring-orm
module you can
use all of these O/R-mapping frameworks in combination with all of the other features
Spring offers, such as the simple declarative transaction management feature mentioned
previously.
The spring-oxm
module provides an abstraction layer that supports Object/XML
mapping implementations such as JAXB, Castor, XMLBeans, JiBX and XStream.
The spring-jms
module (Java Messaging Service) contains features for producing and
consuming messages. Since Spring Framework 4.1, it provides integration with the
spring-messaging
module.
The Web layer consists of the spring-web
, spring-webmvc
, spring-websocket
, and
spring-webmvc-portlet
modules.
The spring-web
module provides basic web-oriented integration features such as
multipart file upload functionality and the initialization of the IoC container using
Servlet listeners and a web-oriented application context. It also contains an HTTP client
and the web-related parts of Spring’s remoting support.
The spring-webmvc
module (also known as the Web-Servlet module) contains Spring’s
model-view-controller (MVC) and REST Web Services implementation
for web applications. Spring’s MVC framework provides a clean separation between domain
model code and web forms and integrates with all of the other features of the Spring
Framework.
The spring-webmvc-portlet
module (also known as the Web-Portlet module) provides
the MVC implementation to be used in a Portlet environment and mirrors the functionality
of the spring-webmvc
module.
The spring-test
module supports the unit testing and
integration testing of Spring components with JUnit or TestNG. It
provides consistent loading of Spring
ApplicationContext
s and caching of those
contexts. It also provides mock objects that you can use to test your
code in isolation.
The building blocks described previously make Spring a logical choice in many scenarios, from embedded applications that run on resource-constrained devices to full-fledged enterprise applications that use Spring’s transaction management functionality and web framework integration.
Spring’s declarative transaction management features make
the web application fully transactional, just as it would be if you used EJB
container-managed transactions. All your custom business logic can be implemented with
simple POJOs and managed by Spring’s IoC container. Additional services include support
for sending email and validation that is independent of the web layer, which lets you
choose where to execute validation rules. Spring’s ORM support is integrated with JPA,
Hibernate and JDO; for example, when using Hibernate, you can continue to use
your existing mapping files and standard Hibernate SessionFactory
configuration. Form
controllers seamlessly integrate the web-layer with the domain model, removing the need
for ActionForms
or other classes that transform HTTP parameters to values for your
domain model.
Sometimes circumstances do not allow you to completely switch to a different framework.
The Spring Framework does not force you to use everything within it; it is not an
all-or-nothing solution. Existing front-ends built with Struts, Tapestry, JSF
or other UI frameworks can be integrated with a Spring-based middle-tier, which allows
you to use Spring transaction features. You simply need to wire up your business logic
using an ApplicationContext
and use a WebApplicationContext
to integrate your web
layer.
When you need to access existing code through web services, you can use Spring’s
Hessian-
, Burlap-
, Rmi-
or JaxRpcProxyFactory
classes. Enabling remote access to
existing applications is not difficult.
The Spring Framework also provides an access and abstraction layer for Enterprise JavaBeans, enabling you to reuse your existing POJOs and wrap them in stateless session beans for use in scalable, fail-safe web applications that might need declarative security.
Dependency management and dependency injection are different things. To get those nice
features of Spring into your application (like dependency injection) you need to
assemble all the libraries needed (jar files) and get them onto your classpath at
runtime, and possibly at compile time. These dependencies are not virtual components
that are injected, but physical resources in a file system (typically). The process of
dependency management involves locating those resources, storing them and adding them to
classpaths. Dependencies can be direct (e.g. my application depends on Spring at
runtime), or indirect (e.g. my application depends on commons-dbcp
which depends on
commons-pool
). The indirect dependencies are also known as "transitive" and it is
those dependencies that are hardest to identify and manage.
If you are going to use Spring you need to get a copy of the jar libraries that comprise
the pieces of Spring that you need. To make this easier Spring is packaged as a set of
modules that separate the dependencies as much as possible, so for example if you don’t
want to write a web application you don’t need the spring-web modules. To refer to
Spring library modules in this guide we use a shorthand naming convention spring-*
or
spring-*.jar,
where *
represents the short name for the module
(e.g. spring-core
, spring-webmvc
, spring-jms
, etc.). The actual jar file name that
you use is normally the module name concatenated with the version number
(e.g. spring-core-4.3.7.RELEASE.jar).
Each release of the Spring Framework will publish artifacts to the following places:
spring-*-<version>.jar
and the Maven groupId
is org.springframework
.
So the first thing you need to decide is how to manage your dependencies: we generally recommend the use of an automated system like Maven, Gradle or Ivy, but you can also do it manually by downloading all the jars yourself.
You will find bellow the list of Spring artifacts. For a more complete description of each modules, see Section 2.2, “Modules”.
Table 2.1. Spring Framework Artifacts
GroupId | ArtifactId | Description |
---|---|---|
org.springframework | spring-aop | Proxy-based AOP support |
org.springframework | spring-aspects | AspectJ based aspects |
org.springframework | spring-beans | Beans support, including Groovy |
org.springframework | spring-context | Application context runtime, including scheduling and remoting abstractions |
org.springframework | spring-context-support | Support classes for integrating common third-party libraries into a Spring application context |
org.springframework | spring-core | Core utilities, used by many other Spring modules |
org.springframework | spring-expression | Spring Expression Language (SpEL) |
org.springframework | spring-instrument | Instrumentation agent for JVM bootstrapping |
org.springframework | spring-instrument-tomcat | Instrumentation agent for Tomcat |
org.springframework | spring-jdbc | JDBC support package, including DataSource setup and JDBC access support |
org.springframework | spring-jms | JMS support package, including helper classes to send and receive JMS messages |
org.springframework | spring-messaging | Support for messaging architectures and protocols |
org.springframework | spring-orm | Object/Relational Mapping, including JPA and Hibernate support |
org.springframework | spring-oxm | Object/XML Mapping |
org.springframework | spring-test | Support for unit testing and integration testing Spring components |
org.springframework | spring-tx | Transaction infrastructure, including DAO support and JCA integration |
org.springframework | spring-web | Web support packages, including client and web remoting |
org.springframework | spring-webmvc | REST Web Services and model-view-controller implementation for web applications |
org.springframework | spring-webmvc-portlet | MVC implementation to be used in a Portlet environment |
org.springframework | spring-websocket | WebSocket and SockJS implementations, including STOMP support |
Although Spring provides integration and support for a huge range of enterprise and other external tools, it intentionally keeps its mandatory dependencies to an absolute minimum: you shouldn’t have to locate and download (even automatically) a large number of jar libraries in order to use Spring for simple use cases. For basic dependency injection there is only one mandatory external dependency, and that is for logging (see below for a more detailed description of logging options).
Next we outline the basic steps needed to configure an application that depends on Spring, first with Maven and then with Gradle and finally using Ivy. In all cases, if anything is unclear, refer to the documentation of your dependency management system, or look at some sample code - Spring itself uses Gradle to manage dependencies when it is building, and our samples mostly use Gradle or Maven.
If you are using Maven for dependency management you don’t even need to supply the logging dependency explicitly. For example, to create an application context and use dependency injection to configure an application, your Maven dependencies will look like this:
<dependencies> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-context</artifactId> <version>4.3.7.RELEASE</version> <scope>runtime</scope> </dependency> </dependencies>
That’s it. Note the scope can be declared as runtime if you don’t need to compile against Spring APIs, which is typically the case for basic dependency injection use cases.
The example above works with the Maven Central repository. To use the Spring Maven repository (e.g. for milestones or developer snapshots), you need to specify the repository location in your Maven configuration. For full releases:
<repositories> <repository> <id>io.spring.repo.maven.release</id> <url>http://repo.spring.io/release/</url> <snapshots><enabled>false</enabled></snapshots> </repository> </repositories>
For milestones:
<repositories> <repository> <id>io.spring.repo.maven.milestone</id> <url>http://repo.spring.io/milestone/</url> <snapshots><enabled>false</enabled></snapshots> </repository> </repositories>
And for snapshots:
<repositories> <repository> <id>io.spring.repo.maven.snapshot</id> <url>http://repo.spring.io/snapshot/</url> <snapshots><enabled>true</enabled></snapshots> </repository> </repositories>
It is possible to accidentally mix different versions of Spring JARs when using Maven. For example, you may find that a third-party library, or another Spring project, pulls in a transitive dependency to an older release. If you forget to explicitly declare a direct dependency yourself, all sorts of unexpected issues can arise.
To overcome such problems Maven supports the concept of a "bill of materials" (BOM)
dependency. You can import the spring-framework-bom
in your dependencyManagement
section to ensure that all spring dependencies (both direct and transitive) are at
the same version.
<dependencyManagement> <dependencies> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-framework-bom</artifactId> <version>4.3.7.RELEASE</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement>
An added benefit of using the BOM is that you no longer need to specify the <version>
attribute when depending on Spring Framework artifacts:
<dependencies> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-context</artifactId> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-web</artifactId> </dependency> <dependencies>
To use the Spring repository with the Gradle build system,
include the appropriate URL in the repositories
section:
repositories { mavenCentral() // and optionally... maven { url "http://repo.spring.io/release" } }
You can change the repositories
URL from /release
to /milestone
or /snapshot
as
appropriate. Once a repository has been configured, you can declare dependencies in the
usual Gradle way:
dependencies { compile("org.springframework:spring-context:4.3.7.RELEASE") testCompile("org.springframework:spring-test:4.3.7.RELEASE") }
If you prefer to use Ivy to manage dependencies then there are similar configuration options.
To configure Ivy to point to the Spring repository add the following resolver to your
ivysettings.xml
:
<resolvers> <ibiblio name="io.spring.repo.maven.release" m2compatible="true" root="http://repo.spring.io/release/"/> </resolvers>
You can change the root
URL from /release/
to /milestone/
or /snapshot/
as
appropriate.
Once configured, you can add dependencies in the usual way. For example (in ivy.xml
):
<dependency org="org.springframework" name="spring-core" rev="4.3.7.RELEASE" conf="compile->runtime"/>
Although using a build system that supports dependency management is the recommended way to obtain the Spring Framework, it is still possible to download a distribution zip file.
Distribution zips are published to the Spring Maven Repository (this is just for our convenience, you don’t need Maven or any other build system in order to download them).
To download a distribution zip open a web browser to
http://repo.spring.io/release/org/springframework/spring and select the appropriate
subfolder for the version that you want. Distribution files end -dist.zip
, for example
spring-framework-{spring-version}-RELEASE-dist.zip. Distributions are also published
for milestones and
snapshots.
Logging is a very important dependency for Spring because a) it is the only mandatory external dependency, b) everyone likes to see some output from the tools they are using, and c) Spring integrates with lots of other tools all of which have also made a choice of logging dependency. One of the goals of an application developer is often to have unified logging configured in a central place for the whole application, including all external components. This is more difficult than it might have been since there are so many choices of logging framework.
The mandatory logging dependency in Spring is the Jakarta Commons Logging API (JCL). We
compile against JCL and we also make JCL Log
objects visible for classes that extend
the Spring Framework. It’s important to users that all versions of Spring use the same
logging library: migration is easy because backwards compatibility is preserved even
with applications that extend Spring. The way we do this is to make one of the modules
in Spring depend explicitly on commons-logging
(the canonical implementation of JCL),
and then make all the other modules depend on that at compile time. If you are using
Maven for example, and wondering where you picked up the dependency on
commons-logging
, then it is from Spring and specifically from the central module
called spring-core
.
The nice thing about commons-logging
is that you don’t need anything else to make your
application work. It has a runtime discovery algorithm that looks for other logging
frameworks in well known places on the classpath and uses one that it thinks is
appropriate (or you can tell it which one if you need to). If nothing else is available
you get pretty nice looking logs just from the JDK (java.util.logging or JUL for short).
You should find that your Spring application works and logs happily to the console out
of the box in most situations, and that’s important.
Unfortunately, the runtime discovery algorithm in commons-logging
, while convenient
for the end-user, is problematic. If we could turn back the clock and start Spring now
as a new project it would use a different logging dependency. The first choice would
probably be the Simple Logging Facade for Java ( SLF4J), which is
also used by a lot of other tools that people use with Spring inside their applications.
There are basically two ways to switch off commons-logging
:
spring-core
module (as it is the only module that
explicitly depends on commons-logging
)
commons-logging
dependency that replaces the library with
an empty jar (more details can be found in the
SLF4J FAQ)
To exclude commons-logging, add the following to your dependencyManagement
section:
<dependencies> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-core</artifactId> <version>4.3.7.RELEASE</version> <exclusions> <exclusion> <groupId>commons-logging</groupId> <artifactId>commons-logging</artifactId> </exclusion> </exclusions> </dependency> </dependencies>
Now this application is probably broken because there is no implementation of the JCL API on the classpath, so to fix it a new one has to be provided. In the next section we show you how to provide an alternative implementation of JCL using SLF4J as an example.
SLF4J is a cleaner dependency and more efficient at runtime than commons-logging
because it uses compile-time bindings instead of runtime discovery of the other logging
frameworks it integrates. This also means that you have to be more explicit about what
you want to happen at runtime, and declare it or configure it accordingly. SLF4J
provides bindings to many common logging frameworks, so you can usually choose one that
you already use, and bind to that for configuration and management.
SLF4J provides bindings to many common logging frameworks, including JCL, and it also
does the reverse: bridges between other logging frameworks and itself. So to use SLF4J
with Spring you need to replace the commons-logging
dependency with the SLF4J-JCL
bridge. Once you have done that then logging calls from within Spring will be translated
into logging calls to the SLF4J API, so if other libraries in your application use that
API, then you have a single place to configure and manage logging.
A common choice might be to bridge Spring to SLF4J, and then provide explicit binding
from SLF4J to Log4j. You need to supply 4 dependencies (and exclude the existing
commons-logging
): the bridge, the SLF4J API, the binding to Log4j, and the Log4j
implementation itself. In Maven you would do that like this
<dependencies> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-core</artifactId> <version>4.3.7.RELEASE</version> <exclusions> <exclusion> <groupId>commons-logging</groupId> <artifactId>commons-logging</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>jcl-over-slf4j</artifactId> <version>1.5.8</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api</artifactId> <version>1.5.8</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> <version>1.5.8</version> </dependency> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>1.2.14</version> </dependency> </dependencies>
That might seem like a lot of dependencies just to get some logging. Well it is, but it
is optional, and it should behave better than the vanilla commons-logging
with
respect to classloader issues, notably if you are in a strict container like an OSGi
platform. Allegedly there is also a performance benefit because the bindings are at
compile-time not runtime.
A more common choice amongst SLF4J users, which uses fewer steps and generates fewer
dependencies, is to bind directly to Logback. This removes the
extra binding step because Logback implements SLF4J directly, so you only need to depend
on two libraries not four ( jcl-over-slf4j
and logback
). If you do that you might
also need to exclude the slf4j-api dependency from other external dependencies (not
Spring), because you only want one version of that API on the classpath.
Note | |
---|---|
Log4j 1.x is EOL and Log4j 2.3 is the last Java 6 compatible release |
Many people use Log4j as a logging framework for configuration and management purposes. It’s efficient and well-established, and in fact it’s what we use at runtime when we build and test Spring. Spring also provides some utilities for configuring and initializing Log4j, so it has an optional compile-time dependency on Log4j in some modules.
To make Log4j 1 work with the default JCL dependency ( commons-logging
) all you need to
do is put Log4j on the classpath, and provide it with a configuration file (
log4j.properties
or log4j.xml
in the root of the classpath). So for Maven users this
is your dependency declaration:
<dependencies> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-core</artifactId> <version>4.3.7.RELEASE</version> </dependency> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>1.2.14</version> </dependency> </dependencies>
And here’s a sample log4j.properties for logging to the console:
log4j.rootCategory=INFO, stdout log4j.appender.stdout=org.apache.log4j.ConsoleAppender log4j.appender.stdout.layout=org.apache.log4j.PatternLayout log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} %5p %t %c{2}:%L - %m%n log4j.category.org.springframework.beans.factory=DEBUG
To use Log4j 2 with JCL, all you need to do is put Log4j on the classpath and provide
it with a configuration file (log4j2.xml
, log4j2.properties
, or other
supported configuration
formats). For Maven users, the minimal dependencies needed are:
<dependencies> <dependency> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-core</artifactId> <version>2.7</version> </dependency> <dependency> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-jcl</artifactId> <version>2.7</version> </dependency> </dependencies>
If you also wish to use SLF4J, the following dependencies are also needed:
<dependencies> <dependency> <groupId>org.apache.logging.log4j</groupId> <artifactId>log4j-slf4j-impl</artifactId> <version>2.7</version> </dependency> </dependencies>
Here is an example log4j2.xml
for logging to the console:
<?xml version="1.0" encoding="UTF-8"?> <Configuration status="WARN"> <Appenders> <Console name="Console" target="SYSTEM_OUT"> <PatternLayout pattern="%d{HH:mm:ss.SSS} [%t] %-5level %logger{36} - %msg%n"/> </Console> </Appenders> <Loggers> <Logger name="org.springframework.beans.factory" level="DEBUG"/> <Root level="error"> <AppenderRef ref="Console"/> </Root> </Loggers> </Configuration>
Many people run their Spring applications in a container that itself provides an
implementation of JCL. IBM Websphere Application Server (WAS) is the archetype. This
often causes problems, and unfortunately there is no silver bullet solution; simply
excluding commons-logging
from your application is not enough in most situations.
To be clear about this: the problems reported are usually not with JCL per se, or even
with commons-logging
: rather they are to do with binding commons-logging
to another
framework (often Log4j). This can fail because commons-logging
changed the way they do
the runtime discovery in between the older versions (1.0) found in some containers and
the modern versions that most people use now (1.1). Spring does not use any unusual
parts of the JCL API, so nothing breaks there, but as soon as Spring or your application
tries to do any logging you can find that the bindings to Log4j are not working.
In such cases with WAS the easiest thing to do is to invert the class loader hierarchy (IBM calls it "parent last") so that the application controls the JCL dependency, not the container. That option isn’t always open, but there are plenty of other suggestions in the public domain for alternative approaches, and your mileage may vary depending on the exact version and feature set of the container.
The Spring Framework was first released in 2004; since then there have been significant
major revisions: Spring 2.0 provided XML namespaces and AspectJ support; Spring 2.5
embraced annotation-driven configuration; Spring 3.0 introduced a strong Java 5+ foundation
across the framework codebase, and features such as the Java-based @Configuration
model.
Version 4.0 is the latest major release of the Spring Framework and the first to fully support Java 8 features. You can still use Spring with older versions of Java, however, the minimum requirement has now been raised to Java SE 6. We have also taken the opportunity of a major release to remove many deprecated classes and methods.
A migration guide for upgrading to Spring 4.0 is available on the Spring Framework GitHub Wiki.
The new spring.io website provides a whole series of "Getting Started" guides to help you learn Spring. You can read more about the guides in the Chapter 1, Getting Started with Spring section in this document. The new website also provides a comprehensive overview of the many additional projects that are released under the Spring umbrella.
If you are a Maven user you may also be interested in the helpful bill of materials POM file that is now published with each Spring Framework release.
All deprecated packages, and many deprecated classes and methods have been removed with version 4.0. If you are upgrading from a previous release of Spring, you should ensure that you have fixed any deprecated calls that you were making to outdated APIs.
For a complete set of changes, check out the API Differences Report.
Note that optional third-party dependencies have been raised to a 2010/2011 minimum (i.e. Spring 4 generally only supports versions released in late 2010 or later now): notably, Hibernate 3.6+, EhCache 2.1+, Quartz 1.8+, Groovy 1.8+, and Joda-Time 2.0+. As an exception to the rule, Spring 4 requires the recent Hibernate Validator 4.3+, and support for Jackson has been focused on 2.0+ now (with Jackson 1.8/1.9 support retained for the time being where Spring 3.2 had it; now just in deprecated form).
Spring Framework 4.0 provides support for several Java 8 features. You can make use of
lambda expressions and method references with Spring’s callback interfaces. There
is first-class support for java.time
(JSR-310),
and several existing annotations have been retrofitted as @Repeatable
. You can also
use Java 8’s parameter name discovery (based on the -parameters
compiler flag) as an
alternative to compiling your code with debug information enabled.
Spring remains compatible with older versions of Java and the JDK: concretely, Java SE 6 (specifically, a minimum level equivalent to JDK 6 update 18, as released in January 2010) and above are still fully supported. However, for newly started development projects based on Spring 4, we recommend the use of Java 7 or 8.
Java EE version 6 or above is now considered the baseline for Spring Framework 4, with the JPA 2.0 and Servlet 3.0 specifications being of particular relevance. In order to remain compatible with Google App Engine and older application servers, it is possible to deploy a Spring 4 application into a Servlet 2.5 environment. However, Servlet 3.0+ is strongly recommended and a prerequisite in Spring’s test and mock packages for test setups in development environments.
Note | |
---|---|
If you are a WebSphere 7 user, be sure to install the JPA 2.0 feature pack. On WebLogic 10.3.4 or higher, install the JPA 2.0 patch that comes with it. This turns both of those server generations into Spring 4 compatible deployment environments. |
On a more forward-looking note, Spring Framework 4.0 supports the Java EE 7 level of applicable specifications now: in particular, JMS 2.0, JTA 1.2, JPA 2.1, Bean Validation 1.1, and JSR-236 Concurrency Utilities. As usual, this support focuses on individual use of those specifications, e.g. on Tomcat or in standalone environments. However, it works equally well when a Spring application is deployed to a Java EE 7 server.
Note that Hibernate 4.3 is a JPA 2.1 provider and therefore only supported as of Spring Framework 4.0. The same applies to Hibernate Validator 5.0 as a Bean Validation 1.1 provider. Neither of the two are officially supported with Spring Framework 3.2.
Beginning with Spring Framework 4.0, it is possible to define external bean configuration using a Groovy DSL. This is similar in concept to using XML bean definitions but allows for a more concise syntax. Using Groovy also allows you to easily embed bean definitions directly in your bootstrap code. For example:
def reader = new GroovyBeanDefinitionReader(myApplicationContext) reader.beans { dataSource(BasicDataSource) { driverClassName = "org.hsqldb.jdbcDriver" url = "jdbc:hsqldb:mem:grailsDB" username = "sa" password = "" settings = [mynew:"setting"] } sessionFactory(SessionFactory) { dataSource = dataSource } myService(MyService) { nestedBean = { AnotherBean bean -> dataSource = dataSource } } }
For more information consult the GroovyBeanDefinitionReader
javadocs.
There have been several general improvements to the core container:
Repository
you can now easily inject a specific implementation:
@Autowired Repository<Customer> customerRepository
.
@Order
annotation and Ordered
interface are
supported.
@Lazy
annotation can now be used on injection points, as well as on @Bean
definitions.
@Description
annotation has been introduced for
developers using Java-based configuration.
@Conditional
annotation. This is similar to @Profile
support but
allows for user-defined strategies to be developed programmatically.
LocaleContext
.
Deployment to Servlet 2.5 servers remains an option, but Spring Framework 4.0 is now focused primarily on Servlet 3.0+ environments. If you are using the Spring MVC Test Framework you will need to ensure that a Servlet 3.0 compatible JAR is in your test classpath.
In addition to the WebSocket support mentioned later, the following general improvements have been made to Spring’s Web modules:
@RestController
annotation with Spring
MVC applications, removing the need to add @ResponseBody
to each of your
@RequestMapping
methods.
AsyncRestTemplate
class has been added, allowing
non-blocking asynchronous support when developing REST clients.
A new spring-websocket
module provides comprehensive support for WebSocket-based,
two-way communication between client and server in web applications. It is compatible with
JSR-356, the Java WebSocket API, and in addition
provides SockJS-based fallback options (i.e. WebSocket emulation) for use in browsers
that don’t yet support the WebSocket protocol (e.g. Internet Explorer < 10).
A new spring-messaging
module adds support for STOMP as the WebSocket sub-protocol
to use in applications along with an annotation programming model for routing and
processing STOMP messages from WebSocket clients. As a result an @Controller
can now contain both @RequestMapping
and @MessageMapping
methods for handling
HTTP requests and messages from WebSocket-connected clients. The new spring-messaging
module also contains key abstractions formerly from the
Spring Integration project such as
Message
, MessageChannel
, MessageHandler
, and others to serve as a foundation
for messaging-based applications.
For further details, including a more thorough introduction, see the Chapter 26, WebSocket Support section.
In addition to pruning of deprecated code within the spring-test
module, Spring
Framework 4.0 introduces several new features for use in unit and integration testing.
spring-test
module (e.g., @ContextConfiguration
,
@WebAppConfiguration
, @ContextHierarchy
, @ActiveProfiles
, etc.) can now be used
as meta-annotations to create custom
composed annotations and reduce configuration duplication across a test suite.
ActiveProfilesResolver
and registering it via the resolver
attribute of @ActiveProfiles
.
SocketUtils
class has been introduced in the spring-core
module
which enables you to scan for free TCP and UDP server ports on localhost. This
functionality is not specific to testing but can prove very useful when writing
integration tests that require the use of sockets, for example tests that start
an in-memory SMTP server, FTP server, Servlet container, etc.
org.springframework.mock.web
package is
now based on the Servlet 3.0 API. Furthermore, several of the Servlet API mocks
(e.g., MockHttpServletRequest
, MockServletContext
, etc.) have been updated with
minor enhancements and improved configurability.
Spring 4.1 introduces a much simpler infrastructure to register JMS
listener endpoints by annotating bean methods with
@JmsListener
.
The XML namespace has been enhanced to support this new style (jms:annotation-driven
),
and it is also possible to fully configure the infrastructure using Java config
(@EnableJms
,
JmsListenerContainerFactory
). It is also possible to register listener endpoints
programmatically using
JmsListenerConfigurer
.
Spring 4.1 also aligns its JMS support to allow you to benefit from the spring-messaging
abstraction introduced in 4.0, that is:
@Payload
, @Header
, @Headers
, and @SendTo
. It
is also possible to use a standard Message
in lieu of javax.jms.Message
as method
argument.
JmsMessageOperations
interface is available and permits JmsTemplate
like operations using the Message
abstraction.
Finally, Spring 4.1 provides additional miscellaneous improvements:
JmsTemplate
<jms:listener/>
element
BackOff
implementation
Spring 4.1 supports JCache (JSR-107) annotations using Spring’s existing cache configuration and infrastructure abstraction; no changes are required to use the standard annotations.
Spring 4.1 also improves its own caching abstraction significantly:
CacheResolver
. As a result the
value
argument defining the cache name(s) to use is no longer mandatory.
@CacheConfig
class-level annotation allows
common settings to be shared at the class level without enabling any cache operation.
CacheErrorHandler
Spring 4.1 also has a breaking change in the Cache
interface as a new putIfAbsent
method has been added.
ResourceHttpRequestHandler
has been expanded with new abstractions ResourceResolver
, ResourceTransformer
,
and ResourceUrlProvider
. A number of built-in implementations provide support
for versioned resource URLs (for effective HTTP caching), locating gzipped resources,
generating an HTML 5 AppCache manifests, and more. See Section 22.16.9, “Serving of Resources”.
java.util.Optional
is now supported for @RequestParam
, @RequestHeader
,
and @MatrixVariable
controller method arguments.
ListenableFuture
is supported as a return value alternative to DeferredResult
where an underlying service (or perhaps a call to AsyncRestTemplate
) already
returns ListenableFuture
.
@ModelAttribute
methods are now invoked in an order that respects inter-dependencies.
See SPR-6299.
@JsonView
is supported directly on @ResponseBody
and ResponseEntity
controller methods for serializing different amounts of detail for the same POJO (e.g.
summary vs. detail page). This is also supported with View-based rendering by
adding the serialization view type as a model attribute under a special key.
See the section called “Jackson Serialization View Support” for details.
@ResponseBody
and ResponseEntity
methods just after the controller method returns and before the response is written.
To take advantage declare an @ControllerAdvice
bean that implements ResponseBodyAdvice
.
The built-in support for @JsonView
and JSONP take advantage of this.
See Section 22.4.1, “Intercepting requests with a HandlerInterceptor”.
There are three new HttpMessageConverter
options:
@EnableWebMvc
or <mvc:annotation-driven/>
, this is used by default
instead of JAXB2 if jackson-dataformat-xml
is in the classpath.
@RequestMapping
. For example FooController
with method handleFoo
is named "FC#handleFoo". The naming strategy is pluggable.
It is also possible to name an @RequestMapping
explicitly through its name attribute.
A new mvcUrl
function in the Spring JSP tag library makes this easy to use in JSP pages.
See Section 22.7.2, “Building URIs to Controllers and methods from views”.
ResponseEntity
provides a builder-style API to guide controller methods
towards the preparation of server-side responses, e.g. ResponseEntity.ok()
.
RequestEntity
is a new type that provides a builder-style API to guide client-side REST
code towards the preparation of HTTP requests.
MVC Java config and XML namespace:
GroovyMarkupConfigurer
and respecitve
ViewResolver
and `View' implementations.
SockJsClient
and classes in same package.
SessionSubscribeEvent
and SessionUnsubscribeEvent
published
when STOMP clients subscribe and unsubscribe.
@SendToUser
can target only a single session and does not require an authenticated user.
@MessageMapping
methods can use dot "." instead of slash "/" as path separator.
See SPR-11660.
MessageHeaderAccessor
.
Groovy scripts can now be used to configure the ApplicationContext
loaded for
integration tests in the TestContext framework.
Test-managed transactions can now be programmatically started and ended within
transactional test methods via the new TestTransaction
API.
SQL script execution can now be configured declaratively via the new @Sql
and
@SqlConfig
annotations on a per-class or per-method basis.
Test property sources which automatically override system and application property
sources can be configured via the new @TestPropertySource
annotation.
Default TestExecutionListener
s can now be automatically discovered.
Custom TestExecutionListener
s can now be automatically merged with the default
listeners.
The documentation for transactional testing support in the TestContext framework has been improved with more thorough explanations and additional examples.
MockServletContext
, MockHttpServletRequest
, and other
Servlet API mocks.
AssertThrows
has been refactored to support Throwable
instead of Exception
.
MockMvcBuilder
recipes can now be created with the help of MockMvcConfigurer
. This
was added to make it easy to apply Spring Security setup but can be used to encapsulate
common setup for any 3rd party framework or within a project.
MockRestServiceServer
now supports the AsyncRestTemplate
for client-side testing.
@Bean
get detected and processed on Java 8 default methods as well,
allowing for composing a configuration class from interfaces with default @Bean
methods.
@Import
with regular component classes now, allowing
for a mix of imported configuration classes and component classes.
@Order
value, getting processed in a corresponding
order (e.g. for overriding beans by name) even when detected through classpath scanning.
@Resource
injection points support an @Lazy
declaration, analogous to @Autowired
,
receiving a lazy-initializing proxy for the requested target bean.
The application event infrastructure now offers an annotation-based model as well as the ability to publish any arbitrary event.
@EventListener
to consume events.
@TransactionalEventListener
provides transaction-bound event support.
Spring Framework 4.2 introduces first-class support for declaring and
looking up aliases for annotation attributes. The new @AliasFor
annotation can be used to declare a pair of aliased attributes within
a single annotation or to declare an alias from one attribute in a
custom composed annotation to an attribute in a meta-annotation.
@AliasFor
support
in order to provide meaningful aliases for their value
attributes:
@Cacheable
, @CacheEvict
, @CachePut
, @ComponentScan
,
@ComponentScan.Filter
, @ImportResource
, @Scope
, @ManagedResource
,
@Header
, @Payload
, @SendToUser
, @ActiveProfiles
,
@ContextConfiguration
, @Sql
, @TestExecutionListeners
,
@TestPropertySource
, @Transactional
, @ControllerAdvice
,
@CookieValue
, @CrossOrigin
, @MatrixVariable
, @RequestHeader
,
@RequestMapping
, @RequestParam
, @RequestPart
, @ResponseStatus
,
@SessionAttributes
, @ActionMapping
, @RenderMapping
,
@EventListener
, @TransactionalEventListener
.
For example, @ContextConfiguration
from the spring-test
module
is now declared as follows:
public @interface ContextConfiguration { @AliasFor("locations") String[] value() default {}; @AliasFor("value") String[] locations() default {}; // ... }
@AliasFor
for fine-grained control
over exactly which attributes are overridden within an annotation
hierarchy. In fact, it is now possible to declare an alias for the
value
attribute of a meta-annotation.
For example, one can now develop a composed annotation with a custom attribute override as follows.
@ContextConfiguration public @interface MyTestConfig { @AliasFor(annotation = ContextConfiguration.class, attribute = "value") String[] xmlFiles(); // ... }
AnnotationAttributes
instances)
can be synthesized (i.e., converted) into an annotation.
DirectFieldAccessor
) have been aligned with the current
property-based data binding (BeanWrapper
). In particular, field-based binding now supports
navigation for Collections, Arrays, and Maps.
DefaultConversionService
now provides out-of-the-box converters for Stream
, Charset
,
Currency
, and TimeZone
. Such converters can be added individually to any arbitrary
ConversionService
as well.
DefaultFormattingConversionService
comes with out-of-the-box support for the value types
in JSR-354 Money & Currency (if the 'javax.money' API is present on the classpath): namely,
MonetaryAmount
and CurrencyUnit
. This includes support for applying @NumberFormat
.
@NumberFormat
can now be used as a meta-annotation.
JavaMailSenderImpl
has a new testConnection()
method for checking connectivity to the server.
ScheduledTaskRegistrar
exposes scheduled tasks.
commons-pool2
is now supported for a pooling AOP CommonsPool2TargetSource
.
StandardScriptFactory
as a JSR-223 based mechanism for scripted beans,
exposed through the lang:std
element in XML. Supports e.g. JavaScript and JRuby.
(Note: JRubyScriptFactory and lang:jruby
are deprecated now, in favor of using JSR-223.)
javax.transaction.Transactional
is now supported via AspectJ.
SimpleJdbcCallOperations
now supports named binding.
org.springframework.orm.hibernate5
package).
<jdbc:embedded-database>
supports a new database-name
attribute.
See "Testing Improvements" below for further details.
autoStartup
attribute can be controlled via JmsListenerContainerFactory
.
Destination
can now be configured per listener container.
@SendTo
annotation can now use a SpEL expression.
JmsResponse
@JmsListener
is now a repeatable annotation to declare several JMS containers on the same
method (use the newly introduced @JmsListeners
if you’re not using Java8 yet).
@CrossOrigin
) configuration. See Chapter 27, CORS Support for details.
HTTP caching updates:
CacheControl
builder; plugged into ResponseEntity
, WebContentGenerator
,
ResourceHttpRequestHandler
.
WebRequest
.
@RequestMapping
as a meta-annotation.
AbstractHandlerMethodMapping
to register and unregister request
mappings at runtime.
createDispatcherServlet
method in AbstractDispatcherServletInitializer
to
further customize the DispatcherServlet
instance to use.
HandlerMethod
as a method argument on @ExceptionHandler
methods, especially
handy in @ControllerAdvice
components.
java.util.concurrent.CompletableFuture
as an @Controller
method return value type.
HttpHeaders
and for serving static resources.
@ResponseStatus
detected on nested exceptions.
UriTemplateHandler
extension point in the RestTemplate
.
DefaultUriTemplateHandler
exposes baseUrl
property and path segment encoding options.
RestTemplate
.
baseUrl
alternative for methods in MvcUriComponentsBuilder
.
RequestBodyAdvice
extension point and built-in implementation to support Jackson’s
@JsonView
on @RequestBody
method arguments.
List<Foo>
.
ScriptTemplateView
as a JSR-223 based mechanism for scripted web views,
with a focus on JavaScript view templating on Nashorn (JDK 8).
Expose presence information about connected users and subscriptions:
SimpUserRegistry
exposed as a bean named "userRegistry".
StompSubProtocolErrorHandler
extension point to customize and control STOMP ERROR frames to clients.
@MessageExceptionHandler
methods via @ControllerAdvice
components.
SimpleBrokerMessageHandler
.
@SendTo
and @SendToUser
can contain destination variable placeholders.
@JsonView
supported for return values on @MessageMapping
and @SubscribeMapping
methods.
ListenableFuture
and CompletableFuture
as return value types from
@MessageMapping
and @SubscribeMapping
methods.
MarshallingMessageConverter
for XML payloads.
JUnit-based integration tests can now be executed with JUnit rules instead of the
SpringJUnit4ClassRunner
. This allows Spring-based integration tests to be run with
alternative runners like JUnit’s Parameterized
or third-party runners such as the
MockitoJUnitRunner
.
The Spring MVC Test framework now provides first-class support for HtmlUnit, including integration with Selenium’s WebDriver, allowing for page-based web application testing without the need to deploy to a Servlet container.
AopTestUtils
is a new testing utility that allows developers to
obtain a reference to the underlying target object hidden behind one
or more Spring proxies.
ReflectionTestUtils
now supports setting and getting static
fields,
including constants.
@ActiveProfiles
is now retained in order to support use cases such
as Spring Boot’s ConfigFileApplicationListener
which loads
configuration files based on the names of active profiles.
@DirtiesContext
supports new BEFORE_METHOD
, BEFORE_CLASS
, and
BEFORE_EACH_TEST_METHOD
modes for closing the ApplicationContext
before a test — for example, if some rogue (i.e., yet to be
determined) test within a large test suite has corrupted the original
configuration for the ApplicationContext
.
@Commit
is a new annotation that may be used as a direct replacement for
@Rollback(false)
.
@Rollback
may now be used to configure class-level default rollback semantics.
@TransactionConfiguration
is now deprecated and will be removed in a
subsequent release.
@Sql
now supports execution of inlined SQL statements via a new
statements
attribute.
ContextCache
that is used for caching ApplicationContext
s
between tests is now a public API with a default implementation that
can be replaced for custom caching needs.
DefaultTestContext
, DefaultBootstrapContext
, and
DefaultCacheAwareContextLoaderDelegate
are now public classes in the
support
subpackage, allowing for custom extensions.
TestContextBootstrapper
s are now responsible for building the
TestContext
.
MvcResult
details can now be logged
at DEBUG
level or written to a custom OutputStream
or Writer
. See
the new log()
, print(OutputStream)
, and print(Writer)
methods in
MockMvcResultHandlers
for details.
database-name
attribute in
<jdbc:embedded-database>
, allowing developers to set unique names
for embedded databases –- for example, via a SpEL expression or a
property placeholder that is influenced by the current active bean
definition profiles.
Embedded databases can now be automatically assigned a unique name,
allowing common test database configuration to be reused in different
ApplicationContext
s within a test suite.
MockHttpServletRequest
and MockHttpServletResponse
now provide better
support for date header formatting via the getDateHeader
and setDateHeader
methods.
@Autowired
annotation if the target
bean only defines one constructor.
@Configuration
classes support constructor injection.
condition
of an @EventListener
can
now refer to beans (e.g. @beanName.method()
).
String[] path
attribute of @RequestMapping
can be overridden with
String path
in a composed annotation.
@PersistenceContext
/@PersistenceUnit
selects a primary EntityManagerFactory
bean if declared as such.
@Scheduled
and @Schedules
may now be used as meta-annotations to create
custom composed annotations with attribute overrides.
@Scheduled
is properly supported on beans of any scope.
jdbc:initialize-database
and jdbc:embedded-database
support a configurable
separator to be applied to each script.
Spring 4.3 allows concurrent calls on a given key to be synchronized so that the
value is only computed once. This is an opt-in feature that should be enabled via
the new sync
attribute on @Cacheable
. This features introduces a breaking
change in the Cache
interface as a get(Object key, Callable<T> valueLoader)
method has been added.
Spring 4.3 also improves the caching abstraction as follows:
@beanName.method()
).
ConcurrentMapCacheManager
and ConcurrentMapCache
now support the serialization
of cache entries via a new storeByValue
attribute.
@Cacheable
, @CacheEvict
, @CachePut
, and @Caching
may now be used as
meta-annotations to create custom composed annotations with attribute overrides.
@SendTo
can now be specified at the class level to share a common reply destination.
@JmsListener
and @JmsListeners
may now be used as meta-annotations to create
custom composed annotations with attribute overrides.
New @GetMapping
, @PostMapping
, @PutMapping
, @DeleteMapping
, and @PatchMapping
composed annotations for @RequestMapping
.
New @RequestScope
, @SessionScope
, and @ApplicationScope
composed annotations
for web scopes.
@RestControllerAdvice
annotation with combined @ControllerAdvice
with @ResponseBody
semantics.
@ResponseStatus
is now supported at the class level and inherited by all methods.
@SessionAttribute
annotation for access to session attributes (see example).
@RequestAttribute
annotation for access to request attributes (see example).
@ModelAttribute
allows preventing data binding via binding=false
attribute (see reference).
@PathVariable
may be declared as optional (for use on @ModelAttribute
methods).
ContentNegotiationManager
for media type determination.
RestTemplate
and AsyncRestTemplate
support strict URI variable encoding via DefaultUriTemplateHandler
.
AsyncRestTemplate
supports request interception.
@SendTo
and @SendToUser
can now be specified at class-level to share a common destination.
SpringRunner
alias for the SpringJUnit4ClassRunner
.
@ContextConfiguration
can now be completely omitted if default
XML files, Groovy scripts, or @Configuration
classes are detected.
@Transactional
test methods are no longer required to be public
(e.g., in TestNG and JUnit 5).
@BeforeTransaction
and @AfterTransaction
methods are no longer required to be public
and may now be declared on Java 8 based interface default methods.
ApplicationContext
cache in the Spring TestContext Framework is now bounded with a
default maximum size of 32 and a least recently used eviction policy. The maximum size
can be configured by setting a JVM system property or Spring property called
spring.test.context.cache.maxSize
.
ContextCustomizer
API for customizing a test ApplicationContext
after bean
definitions have been loaded into the context but before the context has been refreshed.
Customizers can be registered globally by third parties, foregoing the need to implement a
custom ContextLoader
.
@Sql
and @SqlGroup
may now be used as meta-annotations to create custom composed
annotations with attribute overrides.
ReflectionTestUtils
now automatically unwraps proxies when setting or getting a field.
Furthermore, Spring Framework 4.3 embeds the updated ASM 5.1, CGLIB 3.2.4, and Objenesis 2.4
in spring-core.jar
.
This part of the reference documentation covers all of those technologies that are absolutely integral to the Spring Framework.
Foremost amongst these is the Spring Framework’s Inversion of Control (IoC) container. A thorough treatment of the Spring Framework’s IoC container is closely followed by comprehensive coverage of Spring’s Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own AOP framework, which is conceptually easy to understand, and which successfully addresses the 80% sweet spot of AOP requirements in Java enterprise programming.
Coverage of Spring’s integration with AspectJ (currently the richest - in terms of features - and certainly most mature AOP implementation in the Java enterprise space) is also provided.
This chapter covers the Spring Framework implementation of the Inversion of Control (IoC) [1] principle. IoC is also known as dependency injection (DI). It is a process whereby objects define their dependencies, that is, the other objects they work with, only through constructor arguments, arguments to a factory method, or properties that are set on the object instance after it is constructed or returned from a factory method. The container then injects those dependencies when it creates the bean. This process is fundamentally the inverse, hence the name Inversion of Control (IoC), of the bean itself controlling the instantiation or location of its dependencies by using direct construction of classes, or a mechanism such as the Service Locator pattern.
The org.springframework.beans
and org.springframework.context
packages are the basis
for Spring Framework’s IoC container. The
BeanFactory
interface provides an advanced configuration mechanism capable of managing any type of
object.
ApplicationContext
is a sub-interface of BeanFactory
. It adds easier integration with Spring’s AOP
features; message resource handling (for use in internationalization), event
publication; and application-layer specific contexts such as the WebApplicationContext
for use in web applications.
In short, the BeanFactory
provides the configuration framework and basic
functionality, and the ApplicationContext
adds more enterprise-specific functionality.
The ApplicationContext
is a complete superset of the BeanFactory
, and is used
exclusively in this chapter in descriptions of Spring’s IoC container. For more
information on using the BeanFactory
instead of the ApplicationContext,
refer to
Section 7.16, “The BeanFactory”.
In Spring, the objects that form the backbone of your application and that are managed by the Spring IoC container are called beans. A bean is an object that is instantiated, assembled, and otherwise managed by a Spring IoC container. Otherwise, a bean is simply one of many objects in your application. Beans, and the dependencies among them, are reflected in the configuration metadata used by a container.
The interface org.springframework.context.ApplicationContext
represents the Spring IoC
container and is responsible for instantiating, configuring, and assembling the
aforementioned beans. The container gets its instructions on what objects to
instantiate, configure, and assemble by reading configuration metadata. The
configuration metadata is represented in XML, Java annotations, or Java code. It allows
you to express the objects that compose your application and the rich interdependencies
between such objects.
Several implementations of the ApplicationContext
interface are supplied
out-of-the-box with Spring. In standalone applications it is common to create an
instance of
ClassPathXmlApplicationContext
or FileSystemXmlApplicationContext
.
While XML has been the traditional format for defining configuration metadata you can
instruct the container to use Java annotations or code as the metadata format by
providing a small amount of XML configuration to declaratively enable support for these
additional metadata formats.
In most application scenarios, explicit user code is not required to instantiate one or
more instances of a Spring IoC container. For example, in a web application scenario, a
simple eight (or so) lines of boilerplate web descriptor XML in the web.xml
file
of the application will typically suffice (see Section 7.15.4, “Convenient ApplicationContext instantiation for web applications”). If you are using the
Spring Tool Suite Eclipse-powered development
environment this boilerplate configuration can be easily created with few mouse clicks or
keystrokes.
The following diagram is a high-level view of how Spring works. Your application classes
are combined with configuration metadata so that after the ApplicationContext
is
created and initialized, you have a fully configured and executable system or
application.
As the preceding diagram shows, the Spring IoC container consumes a form of configuration metadata; this configuration metadata represents how you as an application developer tell the Spring container to instantiate, configure, and assemble the objects in your application.
Configuration metadata is traditionally supplied in a simple and intuitive XML format, which is what most of this chapter uses to convey key concepts and features of the Spring IoC container.
Note | |
---|---|
XML-based metadata is not the only allowed form of configuration metadata. The Spring IoC container itself is totally decoupled from the format in which this configuration metadata is actually written. These days many developers choose Java-based configuration for their Spring applications. |
For information about using other forms of metadata with the Spring container, see:
@Configuration
, @Bean
, @Import
and @DependsOn
annotations.
Spring configuration consists of at least one and typically more than one bean
definition that the container must manage. XML-based configuration metadata shows these
beans configured as <bean/>
elements inside a top-level <beans/>
element. Java
configuration typically uses @Bean
annotated methods within a @Configuration
class.
These bean definitions correspond to the actual objects that make up your application.
Typically you define service layer objects, data access objects (DAOs), presentation
objects such as Struts Action
instances, infrastructure objects such as Hibernate
SessionFactories
, JMS Queues
, and so forth. Typically one does not configure
fine-grained domain objects in the container, because it is usually the responsibility
of DAOs and business logic to create and load domain objects. However, you can use
Spring’s integration with AspectJ to configure objects that have been created outside
the control of an IoC container. See Using AspectJ to
dependency-inject domain objects with Spring.
The following example shows the basic structure of XML-based configuration metadata:
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd"> <bean id="..." class="..."> <!-- collaborators and configuration for this bean go here --> </bean> <bean id="..." class="..."> <!-- collaborators and configuration for this bean go here --> </bean> <!-- more bean definitions go here --> </beans>
The id
attribute is a string that you use to identify the individual bean definition.
The class
attribute defines the type of the bean and uses the fully qualified
classname. The value of the id attribute refers to collaborating objects. The XML for
referring to collaborating objects is not shown in this example; see
Dependencies for more information.
Instantiating a Spring IoC container is straightforward. The location path or paths
supplied to an ApplicationContext
constructor are actually resource strings that allow
the container to load configuration metadata from a variety of external resources such
as the local file system, from the Java CLASSPATH
, and so on.
ApplicationContext context = new ClassPathXmlApplicationContext(new String[] {"services.xml", "daos.xml"});
Note | |
---|---|
After you learn about Spring’s IoC container, you may want to know more about Spring’s
|
The following example shows the service layer objects (services.xml)
configuration file:
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd"> <!-- services --> <bean id="petStore" class="org.springframework.samples.jpetstore.services.PetStoreServiceImpl"> <property name="accountDao" ref="accountDao"/> <property name="itemDao" ref="itemDao"/> <!-- additional collaborators and configuration for this bean go here --> </bean> <!-- more bean definitions for services go here --> </beans>
The following example shows the data access objects daos.xml
file:
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd"> <bean id="accountDao" class="org.springframework.samples.jpetstore.dao.jpa.JpaAccountDao"> <!-- additional collaborators and configuration for this bean go here --> </bean> <bean id="itemDao" class="org.springframework.samples.jpetstore.dao.jpa.JpaItemDao"> <!-- additional collaborators and configuration for this bean go here --> </bean> <!-- more bean definitions for data access objects go here --> </beans>
In the preceding example, the service layer consists of the class PetStoreServiceImpl
,
and two data access objects of the type JpaAccountDao
and JpaItemDao
(based
on the JPA Object/Relational mapping standard). The property name
element refers to the
name of the JavaBean property, and the ref
element refers to the name of another bean
definition. This linkage between id
and ref
elements expresses the dependency between
collaborating objects. For details of configuring an object’s dependencies, see
Dependencies.
It can be useful to have bean definitions span multiple XML files. Often each individual XML configuration file represents a logical layer or module in your architecture.
You can use the application context constructor to load bean definitions from all these
XML fragments. This constructor takes multiple Resource
locations, as was shown in the
previous section. Alternatively, use one or more occurrences of the <import/>
element
to load bean definitions from another file or files. For example:
<beans> <import resource="services.xml"/> <import resource="resources/messageSource.xml"/> <import resource="/resources/themeSource.xml"/> <bean id="bean1" class="..."/> <bean id="bean2" class="..."/> </beans>
In the preceding example, external bean definitions are loaded from three files:
services.xml
, messageSource.xml
, and themeSource.xml
. All location paths are
relative to the definition file doing the importing, so services.xml
must be in the
same directory or classpath location as the file doing the importing, while
messageSource.xml
and themeSource.xml
must be in a resources
location below the
location of the importing file. As you can see, a leading slash is ignored, but given
that these paths are relative, it is better form not to use the slash at all. The
contents of the files being imported, including the top level <beans/>
element, must
be valid XML bean definitions according to the Spring Schema.
Note | |
---|---|
It is possible, but not recommended, to reference files in parent directories using a relative "../" path. Doing so creates a dependency on a file that is outside the current application. In particular, this reference is not recommended for "classpath:" URLs (for example, "classpath:../services.xml"), where the runtime resolution process chooses the "nearest" classpath root and then looks into its parent directory. Classpath configuration changes may lead to the choice of a different, incorrect directory. You can always use fully qualified resource locations instead of relative paths: for example, "file:C:/config/services.xml" or "classpath:/config/services.xml". However, be aware that you are coupling your application’s configuration to specific absolute locations. It is generally preferable to keep an indirection for such absolute locations, for example, through "${…}" placeholders that are resolved against JVM system properties at runtime. |
The import directive is a feature provided by the beans namespace itself. Further configuration features beyond plain bean definitions are available in a selection of XML namespaces provided by Spring, e.g. the "context" and the "util" namespace.
As a further example for externalized configuration metadata, bean definitions can also be expressed in Spring’s Groovy Bean Definition DSL, as known from the Grails framework. Typically, such configuration will live in a ".groovy" file with a structure as follows:
beans { dataSource(BasicDataSource) { driverClassName = "org.hsqldb.jdbcDriver" url = "jdbc:hsqldb:mem:grailsDB" username = "sa" password = "" settings = [mynew:"setting"] } sessionFactory(SessionFactory) { dataSource = dataSource } myService(MyService) { nestedBean = { AnotherBean bean -> dataSource = dataSource } } }
This configuration style is largely equivalent to XML bean definitions and even supports Spring’s XML configuration namespaces. It also allows for importing XML bean definition files through an "importBeans" directive.
The ApplicationContext
is the interface for an advanced factory capable of maintaining
a registry of different beans and their dependencies. Using the method T getBean(String
name, Class<T> requiredType)
you can retrieve instances of your beans.
The ApplicationContext
enables you to read bean definitions and access them as follows:
// create and configure beans ApplicationContext context = new ClassPathXmlApplicationContext("services.xml", "daos.xml"); // retrieve configured instance PetStoreService service = context.getBean("petStore", PetStoreService.class); // use configured instance List<String> userList = service.getUsernameList();
With Groovy configuration, bootstrapping looks very similar, just a different context implementation class which is Groovy-aware (but also understands XML bean definitions):
ApplicationContext context = new GenericGroovyApplicationContext("services.groovy", "daos.groovy");
The most flexible variant is GenericApplicationContext
in combination with reader
delegates, e.g. with XmlBeanDefinitionReader
for XML files:
GenericApplicationContext context = new GenericApplicationContext(); new XmlBeanDefinitionReader(ctx).loadBeanDefinitions("services.xml", "daos.xml"); context.refresh();
Or with GroovyBeanDefinitionReader
for Groovy files:
GenericApplicationContext context = new GenericApplicationContext(); new GroovyBeanDefinitionReader(ctx).loadBeanDefinitions("services.groovy", "daos.groovy"); context.refresh();
Such reader delegates can be mixed and matched on the same ApplicationContext
,
reading bean definitions from diverse configuration sources, if desired.
You can then use getBean
to retrieve instances of your beans. The ApplicationContext
interface has a few other methods for retrieving beans, but ideally your application
code should never use them. Indeed, your application code should have no calls to the
getBean()
method at all, and thus no dependency on Spring APIs at all. For example,
Spring’s integration with web frameworks provides dependency injection for various web
framework components such as controllers and JSF-managed beans, allowing you to declare
a dependency on a specific bean through metadata (e.g. an autowiring annotation).
A Spring IoC container manages one or more beans. These beans are created with the
configuration metadata that you supply to the container, for example, in the form of XML
<bean/>
definitions.
Within the container itself, these bean definitions are represented as BeanDefinition
objects, which contain (among other information) the following metadata:
This metadata translates to a set of properties that make up each bean definition.
Table 7.1. The bean definition
Property | Explained in… |
---|---|
class | |
name | |
scope | |
constructor arguments | |
properties | |
autowiring mode | |
lazy-initialization mode | |
initialization method | |
destruction method |
In addition to bean definitions that contain information on how to create a specific
bean, the ApplicationContext
implementations also permit the registration of existing
objects that are created outside the container, by users. This is done by accessing the
ApplicationContext’s BeanFactory via the method getBeanFactory()
which returns the
BeanFactory implementation DefaultListableBeanFactory
. DefaultListableBeanFactory
supports this registration through the methods registerSingleton(..)
and
registerBeanDefinition(..)
. However, typical applications work solely with beans
defined through metadata bean definitions.
Note | |
---|---|
Bean metadata and manually supplied singleton instances need to be registered as early as possible, in order for the container to properly reason about them during autowiring and other introspection steps. While overriding of existing metadata and existing singleton instances is supported to some degree, the registration of new beans at runtime (concurrently with live access to factory) is not officially supported and may lead to concurrent access exceptions and/or inconsistent state in the bean container. |
Every bean has one or more identifiers. These identifiers must be unique within the container that hosts the bean. A bean usually has only one identifier, but if it requires more than one, the extra ones can be considered aliases.
In XML-based configuration metadata, you use the id
and/or name
attributes
to specify the bean identifier(s). The id
attribute allows you to specify
exactly one id. Conventionally these names are alphanumeric ('myBean',
'fooService', etc.), but may contain special characters as well. If you want to
introduce other aliases to the bean, you can also specify them in the name
attribute, separated by a comma (,
), semicolon (;
), or white space. As a
historical note, in versions prior to Spring 3.1, the id
attribute was
defined as an xsd:ID
type, which constrained possible characters. As of 3.1,
it is defined as an xsd:string
type. Note that bean id
uniqueness is still
enforced by the container, though no longer by XML parsers.
You are not required to supply a name or id for a bean. If no name or id is supplied
explicitly, the container generates a unique name for that bean. However, if you want to
refer to that bean by name, through the use of the ref
element or
Service Locator style lookup, you must provide a name.
Motivations for not supplying a name are related to using inner
beans and autowiring collaborators.
Note | |
---|---|
With component scanning in the classpath, Spring generates bean names for unnamed
components, following the rules above: essentially, taking the simple class name
and turning its initial character to lower-case. However, in the (unusual) special
case when there is more than one character and both the first and second characters
are upper case, the original casing gets preserved. These are the same rules as
defined by |
In a bean definition itself, you can supply more than one name for the bean, by using a
combination of up to one name specified by the id
attribute, and any number of other
names in the name
attribute. These names can be equivalent aliases to the same bean,
and are useful for some situations, such as allowing each component in an application to
refer to a common dependency by using a bean name that is specific to that component
itself.
Specifying all aliases where the bean is actually defined is not always adequate,
however. It is sometimes desirable to introduce an alias for a bean that is defined
elsewhere. This is commonly the case in large systems where configuration is split
amongst each subsystem, each subsystem having its own set of object definitions. In
XML-based configuration metadata, you can use the <alias/>
element to accomplish this.
<alias name="fromName" alias="toName"/>
In this case, a bean in the same container which is named fromName
, may also,
after the use of this alias definition, be referred to as toName
.
For example, the configuration metadata for subsystem A may refer to a DataSource via
the name subsystemA-dataSource
. The configuration metadata for subsystem B may refer to
a DataSource via the name subsystemB-dataSource
. When composing the main application
that uses both these subsystems the main application refers to the DataSource via the
name myApp-dataSource
. To have all three names refer to the same object you add to the
MyApp configuration metadata the following aliases definitions:
<alias name="subsystemA-dataSource" alias="subsystemB-dataSource"/> <alias name="subsystemA-dataSource" alias="myApp-dataSource" />
Now each component and the main application can refer to the dataSource through a name that is unique and guaranteed not to clash with any other definition (effectively creating a namespace), yet they refer to the same bean.
A bean definition essentially is a recipe for creating one or more objects. The container looks at the recipe for a named bean when asked, and uses the configuration metadata encapsulated by that bean definition to create (or acquire) an actual object.
If you use XML-based configuration metadata, you specify the type (or class) of object
that is to be instantiated in the class
attribute of the <bean/>
element. This
class
attribute, which internally is a Class
property on a BeanDefinition
instance, is usually mandatory. (For exceptions, see
the section called “Instantiation using an instance factory method” and Section 7.7, “Bean definition inheritance”.)
You use the Class
property in one of two ways:
new
operator.
static
factory method that will be
invoked to create the object, in the less common case where the container invokes a
static
factory method on a class to create the bean. The object type returned
from the invocation of the static
factory method may be the same class or another
class entirely.
When you create a bean by the constructor approach, all normal classes are usable by and compatible with Spring. That is, the class being developed does not need to implement any specific interfaces or to be coded in a specific fashion. Simply specifying the bean class should suffice. However, depending on what type of IoC you use for that specific bean, you may need a default (empty) constructor.
The Spring IoC container can manage virtually any class you want it to manage; it is not limited to managing true JavaBeans. Most Spring users prefer actual JavaBeans with only a default (no-argument) constructor and appropriate setters and getters modeled after the properties in the container. You can also have more exotic non-bean-style classes in your container. If, for example, you need to use a legacy connection pool that absolutely does not adhere to the JavaBean specification, Spring can manage it as well.
With XML-based configuration metadata you can specify your bean class as follows:
<bean id="exampleBean" class="examples.ExampleBean"/> <bean name="anotherExample" class="examples.ExampleBeanTwo"/>
For details about the mechanism for supplying arguments to the constructor (if required) and setting object instance properties after the object is constructed, see Injecting Dependencies.
When defining a bean that you create with a static factory method, you use the class
attribute to specify the class containing the static
factory method and an attribute
named factory-method
to specify the name of the factory method itself. You should be
able to call this method (with optional arguments as described later) and return a live
object, which subsequently is treated as if it had been created through a constructor.
One use for such a bean definition is to call static
factories in legacy code.
The following bean definition specifies that the bean will be created by calling a
factory-method. The definition does not specify the type (class) of the returned object,
only the class containing the factory method. In this example, the createInstance()
method must be a static method.
<bean id="clientService" class="examples.ClientService" factory-method="createInstance"/>
public class ClientService { private static ClientService clientService = new ClientService(); private ClientService() {} public static ClientService createInstance() { return clientService; } }
For details about the mechanism for supplying (optional) arguments to the factory method and setting object instance properties after the object is returned from the factory, see Dependencies and configuration in detail.
Similar to instantiation through a static
factory method, instantiation with an instance factory method invokes a non-static
method of an existing bean from the container to create a new bean. To use this
mechanism, leave the class
attribute empty, and in the factory-bean
attribute,
specify the name of a bean in the current (or parent/ancestor) container that contains
the instance method that is to be invoked to create the object. Set the name of the
factory method itself with the factory-method
attribute.
<!-- the factory bean, which contains a method called createInstance() --> <bean id="serviceLocator" class="examples.DefaultServiceLocator"> <!-- inject any dependencies required by this locator bean --> </bean> <!-- the bean to be created via the factory bean --> <bean id="clientService" factory-bean="serviceLocator" factory-method="createClientServiceInstance"/>
public class DefaultServiceLocator { private static ClientService clientService = new ClientServiceImpl(); private DefaultServiceLocator() {} public ClientService createClientServiceInstance() { return clientService; } }
One factory class can also hold more than one factory method as shown here:
<bean id="serviceLocator" class="examples.DefaultServiceLocator"> <!-- inject any dependencies required by this locator bean --> </bean> <bean id="clientService" factory-bean="serviceLocator" factory-method="createClientServiceInstance"/> <bean id="accountService" factory-bean="serviceLocator" factory-method="createAccountServiceInstance"/>
public class DefaultServiceLocator { private static ClientService clientService = new ClientServiceImpl(); private static AccountService accountService = new AccountServiceImpl(); private DefaultServiceLocator() {} public ClientService createClientServiceInstance() { return clientService; } public AccountService createAccountServiceInstance() { return accountService; } }
This approach shows that the factory bean itself can be managed and configured through dependency injection (DI). See Dependencies and configuration in detail.
Note | |
---|---|
In Spring documentation, factory bean refers to a bean that is configured in the
Spring container that will create objects through an
instance or
static factory method. By contrast,
|
A typical enterprise application does not consist of a single object (or bean in the Spring parlance). Even the simplest application has a few objects that work together to present what the end-user sees as a coherent application. This next section explains how you go from defining a number of bean definitions that stand alone to a fully realized application where objects collaborate to achieve a goal.
Dependency injection (DI) is a process whereby objects define their dependencies, that is, the other objects they work with, only through constructor arguments, arguments to a factory method, or properties that are set on the object instance after it is constructed or returned from a factory method. The container then injects those dependencies when it creates the bean. This process is fundamentally the inverse, hence the name Inversion of Control (IoC), of the bean itself controlling the instantiation or location of its dependencies on its own by using direct construction of classes, or the Service Locator pattern.
Code is cleaner with the DI principle and decoupling is more effective when objects are provided with their dependencies. The object does not look up its dependencies, and does not know the location or class of the dependencies. As such, your classes become easier to test, in particular when the dependencies are on interfaces or abstract base classes, which allow for stub or mock implementations to be used in unit tests.
DI exists in two major variants, Constructor-based dependency injection and Setter-based dependency injection.
Constructor-based DI is accomplished by the container invoking a constructor with a
number of arguments, each representing a dependency. Calling a static
factory method
with specific arguments to construct the bean is nearly equivalent, and this discussion
treats arguments to a constructor and to a static
factory method similarly. The
following example shows a class that can only be dependency-injected with constructor
injection. Notice that there is nothing special about this class, it is a POJO that
has no dependencies on container specific interfaces, base classes or annotations.
public class SimpleMovieLister { // the SimpleMovieLister has a dependency on a MovieFinder private MovieFinder movieFinder; // a constructor so that the Spring container can inject a MovieFinder public SimpleMovieLister(MovieFinder movieFinder) { this.movieFinder = movieFinder; } // business logic that actually uses the injected MovieFinder is omitted... }
Constructor argument resolution matching occurs using the argument’s type. If no potential ambiguity exists in the constructor arguments of a bean definition, then the order in which the constructor arguments are defined in a bean definition is the order in which those arguments are supplied to the appropriate constructor when the bean is being instantiated. Consider the following class:
package x.y; public class Foo { public Foo(Bar bar, Baz baz) { // ... } }
No potential ambiguity exists, assuming that Bar
and Baz
classes are not related by
inheritance. Thus the following configuration works fine, and you do not need to specify
the constructor argument indexes and/or types explicitly in the <constructor-arg/>
element.
<beans> <bean id="foo" class="x.y.Foo"> <constructor-arg ref="bar"/> <constructor-arg ref="baz"/> </bean> <bean id="bar" class="x.y.Bar"/> <bean id="baz" class="x.y.Baz"/> </beans>
When another bean is referenced, the type is known, and matching can occur (as was the
case with the preceding example). When a simple type is used, such as
<value>true</value>
, Spring cannot determine the type of the value, and so cannot match
by type without help. Consider the following class:
package examples; public class ExampleBean { // Number of years to calculate the Ultimate Answer private int years; // The Answer to Life, the Universe, and Everything private String ultimateAnswer; public ExampleBean(int years, String ultimateAnswer) { this.years = years; this.ultimateAnswer = ultimateAnswer; } }
In the preceding scenario, the container can use type matching with simple types if
you explicitly specify the type of the constructor argument using the type
attribute.
For example:
<bean id="exampleBean" class="examples.ExampleBean"> <constructor-arg type="int" value="7500000"/> <constructor-arg type="java.lang.String" value="42"/> </bean>
Use the index
attribute to specify explicitly the index of constructor arguments. For
example:
<bean id="exampleBean" class="examples.ExampleBean"> <constructor-arg index="0" value="7500000"/> <constructor-arg index="1" value="42"/> </bean>
In addition to resolving the ambiguity of multiple simple values, specifying an index resolves ambiguity where a constructor has two arguments of the same type. Note that the index is 0 based.
You can also use the constructor parameter name for value disambiguation:
<bean id="exampleBean" class="examples.ExampleBean"> <constructor-arg name="years" value="7500000"/> <constructor-arg name="ultimateAnswer" value="42"/> </bean>
Keep in mind that to make this work out of the box your code must be compiled with the debug flag enabled so that Spring can look up the parameter name from the constructor. If you can’t compile your code with debug flag (or don’t want to) you can use @ConstructorProperties JDK annotation to explicitly name your constructor arguments. The sample class would then have to look as follows:
package examples; public class ExampleBean { // Fields omitted @ConstructorProperties({"years", "ultimateAnswer"}) public ExampleBean(int years, String ultimateAnswer) { this.years = years; this.ultimateAnswer = ultimateAnswer; } }
Setter-based DI is accomplished by the container calling setter methods on your
beans after invoking a no-argument constructor or no-argument static
factory method to
instantiate your bean.
The following example shows a class that can only be dependency-injected using pure setter injection. This class is conventional Java. It is a POJO that has no dependencies on container specific interfaces, base classes or annotations.
public class SimpleMovieLister { // the SimpleMovieLister has a dependency on the MovieFinder private MovieFinder movieFinder; // a setter method so that the Spring container can inject a MovieFinder public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } // business logic that actually uses the injected MovieFinder is omitted... }
The ApplicationContext
supports constructor-based and setter-based DI for the beans it
manages. It also supports setter-based DI after some dependencies have already been
injected through the constructor approach. You configure the dependencies in the form of
a BeanDefinition
, which you use in conjunction with PropertyEditor
instances to
convert properties from one format to another. However, most Spring users do not work
with these classes directly (i.e., programmatically) but rather with XML bean
definitions, annotated components (i.e., classes annotated with @Component
,
@Controller
, etc.), or @Bean
methods in Java-based @Configuration
classes. These
sources are then converted internally into instances of BeanDefinition
and used to
load an entire Spring IoC container instance.
The container performs bean dependency resolution as follows:
ApplicationContext
is created and initialized with configuration metadata that
describes all the beans. Configuration metadata can be specified via XML, Java code, or
annotations.
int
,
long
, String
, boolean
, etc.
The Spring container validates the configuration of each bean as the container is created. However, the bean properties themselves are not set until the bean is actually created. Beans that are singleton-scoped and set to be pre-instantiated (the default) are created when the container is created. Scopes are defined in Section 7.5, “Bean scopes”. Otherwise, the bean is created only when it is requested. Creation of a bean potentially causes a graph of beans to be created, as the bean’s dependencies and its dependencies' dependencies (and so on) are created and assigned. Note that resolution mismatches among those dependencies may show up late, i.e. on first creation of the affected bean.
You can generally trust Spring to do the right thing. It detects configuration problems,
such as references to non-existent beans and circular dependencies, at container
load-time. Spring sets properties and resolves dependencies as late as possible, when
the bean is actually created. This means that a Spring container which has loaded
correctly can later generate an exception when you request an object if there is a
problem creating that object or one of its dependencies. For example, the bean throws an
exception as a result of a missing or invalid property. This potentially delayed
visibility of some configuration issues is why ApplicationContext
implementations by
default pre-instantiate singleton beans. At the cost of some upfront time and memory to
create these beans before they are actually needed, you discover configuration issues
when the ApplicationContext
is created, not later. You can still override this default
behavior so that singleton beans will lazy-initialize, rather than be pre-instantiated.
If no circular dependencies exist, when one or more collaborating beans are being injected into a dependent bean, each collaborating bean is totally configured prior to being injected into the dependent bean. This means that if bean A has a dependency on bean B, the Spring IoC container completely configures bean B prior to invoking the setter method on bean A. In other words, the bean is instantiated (if not a pre-instantiated singleton), its dependencies are set, and the relevant lifecycle methods (such as a configured init method or the InitializingBean callback method) are invoked.
The following example uses XML-based configuration metadata for setter-based DI. A small part of a Spring XML configuration file specifies some bean definitions:
<bean id="exampleBean" class="examples.ExampleBean"> <!-- setter injection using the nested ref element --> <property name="beanOne"> <ref bean="anotherExampleBean"/> </property> <!-- setter injection using the neater ref attribute --> <property name="beanTwo" ref="yetAnotherBean"/> <property name="integerProperty" value="1"/> </bean> <bean id="anotherExampleBean" class="examples.AnotherBean"/> <bean id="yetAnotherBean" class="examples.YetAnotherBean"/>
public class ExampleBean { private AnotherBean beanOne; private YetAnotherBean beanTwo; private int i; public void setBeanOne(AnotherBean beanOne) { this.beanOne = beanOne; } public void setBeanTwo(YetAnotherBean beanTwo) { this.beanTwo = beanTwo; } public void setIntegerProperty(int i) { this.i = i; } }
In the preceding example, setters are declared to match against the properties specified in the XML file. The following example uses constructor-based DI:
<bean id="exampleBean" class="examples.ExampleBean"> <!-- constructor injection using the nested ref element --> <constructor-arg> <ref bean="anotherExampleBean"/> </constructor-arg> <!-- constructor injection using the neater ref attribute --> <constructor-arg ref="yetAnotherBean"/> <constructor-arg type="int" value="1"/> </bean> <bean id="anotherExampleBean" class="examples.AnotherBean"/> <bean id="yetAnotherBean" class="examples.YetAnotherBean"/>
public class ExampleBean { private AnotherBean beanOne; private YetAnotherBean beanTwo; private int i; public ExampleBean( AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) { this.beanOne = anotherBean; this.beanTwo = yetAnotherBean; this.i = i; } }
The constructor arguments specified in the bean definition will be used as arguments to
the constructor of the ExampleBean
.
Now consider a variant of this example, where instead of using a constructor, Spring is
told to call a static
factory method to return an instance of the object:
<bean id="exampleBean" class="examples.ExampleBean" factory-method="createInstance"> <constructor-arg ref="anotherExampleBean"/> <constructor-arg ref="yetAnotherBean"/> <constructor-arg value="1"/> </bean> <bean id="anotherExampleBean" class="examples.AnotherBean"/> <bean id="yetAnotherBean" class="examples.YetAnotherBean"/>
public class ExampleBean { // a private constructor private ExampleBean(...) { ... } // a static factory method; the arguments to this method can be // considered the dependencies of the bean that is returned, // regardless of how those arguments are actually used. public static ExampleBean createInstance ( AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) { ExampleBean eb = new ExampleBean (...); // some other operations... return eb; } }
Arguments to the static
factory method are supplied via <constructor-arg/>
elements,
exactly the same as if a constructor had actually been used. The type of the class being
returned by the factory method does not have to be of the same type as the class that
contains the static
factory method, although in this example it is. An instance
(non-static) factory method would be used in an essentially identical fashion (aside
from the use of the factory-bean
attribute instead of the class
attribute), so
details will not be discussed here.
As mentioned in the previous section, you can define bean properties and constructor
arguments as references to other managed beans (collaborators), or as values defined
inline. Spring’s XML-based configuration metadata supports sub-element types within its
<property/>
and <constructor-arg/>
elements for this purpose.
The value
attribute of the <property/>
element specifies a property or constructor
argument as a human-readable string representation. Spring’s
conversion service is used to convert these
values from a String
to the actual type of the property or argument.
<bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close"> <!-- results in a setDriverClassName(String) call --> <property name="driverClassName" value="com.mysql.jdbc.Driver"/> <property name="url" value="jdbc:mysql://localhost:3306/mydb"/> <property name="username" value="root"/> <property name="password" value="masterkaoli"/> </bean>
The following example uses the p-namespace for even more succinct XML configuration.
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd"> <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close" p:driverClassName="com.mysql.jdbc.Driver" p:url="jdbc:mysql://localhost:3306/mydb" p:username="root" p:password="masterkaoli"/> </beans>
The preceding XML is more succinct; however, typos are discovered at runtime rather than design time, unless you use an IDE such as IntelliJ IDEA or the Spring Tool Suite (STS) that support automatic property completion when you create bean definitions. Such IDE assistance is highly recommended.
You can also configure a java.util.Properties
instance as:
<bean id="mappings" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> <!-- typed as a java.util.Properties --> <property name="properties"> <value> jdbc.driver.className=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://localhost:3306/mydb </value> </property> </bean>
The Spring container converts the text inside the <value/>
element into a
java.util.Properties
instance by using the JavaBeans PropertyEditor
mechanism. This
is a nice shortcut, and is one of a few places where the Spring team do favor the use of
the nested <value/>
element over the value
attribute style.
The idref
element is simply an error-proof way to pass the id (string value - not
a reference) of another bean in the container to a <constructor-arg/>
or <property/>
element.
<bean id="theTargetBean" class="..."/> <bean id="theClientBean" class="..."> <property name="targetName"> <idref bean="theTargetBean" /> </property> </bean>
The above bean definition snippet is exactly equivalent (at runtime) to the following snippet:
<bean id="theTargetBean" class="..." /> <bean id="client" class="..."> <property name="targetName" value="theTargetBean" /> </bean>
The first form is preferable to the second, because using the idref
tag allows the
container to validate at deployment time that the referenced, named bean actually
exists. In the second variation, no validation is performed on the value that is passed
to the targetName
property of the client
bean. Typos are only discovered (with most
likely fatal results) when the client
bean is actually instantiated. If the client
bean is a prototype bean, this typo and the resulting exception
may only be discovered long after the container is deployed.
Note | |
---|---|
The |
A common place (at least in versions earlier than Spring 2.0) where the <idref/>
element
brings value is in the configuration of AOP interceptors in a
ProxyFactoryBean
bean definition. Using <idref/>
elements when you specify the
interceptor names prevents you from misspelling an interceptor id.
The ref
element is the final element inside a <constructor-arg/>
or <property/>
definition element. Here you set the value of the specified property of a bean to be a
reference to another bean (a collaborator) managed by the container. The referenced bean
is a dependency of the bean whose property will be set, and it is initialized on demand
as needed before the property is set. (If the collaborator is a singleton bean, it may
be initialized already by the container.) All references are ultimately a reference to
another object. Scoping and validation depend on whether you specify the id/name of the
other object through the bean
, local,
or parent
attributes.
Specifying the target bean through the bean
attribute of the <ref/>
tag is the most
general form, and allows creation of a reference to any bean in the same container or
parent container, regardless of whether it is in the same XML file. The value of the
bean
attribute may be the same as the id
attribute of the target bean, or as one of
the values in the name
attribute of the target bean.
<ref bean="someBean"/>
Specifying the target bean through the parent
attribute creates a reference to a bean
that is in a parent container of the current container. The value of the parent
attribute may be the same as either the id
attribute of the target bean, or one of the
values in the name
attribute of the target bean, and the target bean must be in a
parent container of the current one. You use this bean reference variant mainly when you
have a hierarchy of containers and you want to wrap an existing bean in a parent
container with a proxy that will have the same name as the parent bean.
<!-- in the parent context --> <bean id="accountService" class="com.foo.SimpleAccountService"> <!-- insert dependencies as required as here --> </bean>
<!-- in the child (descendant) context --> <bean id="accountService" <!-- bean name is the same as the parent bean --> class="org.springframework.aop.framework.ProxyFactoryBean"> <property name="target"> <ref parent="accountService"/> <!-- notice how we refer to the parent bean --> </property> <!-- insert other configuration and dependencies as required here --> </bean>
Note | |
---|---|
The |
A <bean/>
element inside the <property/>
or <constructor-arg/>
elements defines a
so-called inner bean.
<bean id="outer" class="..."> <!-- instead of using a reference to a target bean, simply define the target bean inline --> <property name="target"> <bean class="com.example.Person"> <!-- this is the inner bean --> <property name="name" value="Fiona Apple"/> <property name="age" value="25"/> </bean> </property> </bean>
An inner bean definition does not require a defined id or name; if specified, the container
does not use such a value as an identifier. The container also ignores the scope
flag on
creation: Inner beans are always anonymous and they are always created with the outer
bean. It is not possible to inject inner beans into collaborating beans other than into
the enclosing bean or to access them independently.
As a corner case, it is possible to receive destruction callbacks from a custom scope, e.g. for a request-scoped inner bean contained within a singleton bean: The creation of the inner bean instance will be tied to its containing bean, but destruction callbacks allow it to participate in the request scope’s lifecycle. This is not a common scenario; inner beans typically simply share their containing bean’s scope.
In the <list/>
, <set/>
, <map/>
, and <props/>
elements, you set the properties
and arguments of the Java Collection
types List
, Set
, Map
, and Properties
,
respectively.
<bean id="moreComplexObject" class="example.ComplexObject"> <!-- results in a setAdminEmails(java.util.Properties) call --> <property name="adminEmails"> <props> <prop key="administrator">[email protected]</prop> <prop key="support">[email protected]</prop> <prop key="development">[email protected]</prop> </props> </property> <!-- results in a setSomeList(java.util.List) call --> <property name="someList"> <list> <value>a list element followed by a reference</value> <ref bean="myDataSource" /> </list> </property> <!-- results in a setSomeMap(java.util.Map) call --> <property name="someMap"> <map> <entry key="an entry" value="just some string"/> <entry key ="a ref" value-ref="myDataSource"/> </map> </property> <!-- results in a setSomeSet(java.util.Set) call --> <property name="someSet"> <set> <value>just some string</value> <ref bean="myDataSource" /> </set> </property> </bean>
The value of a map key or value, or a set value, can also again be any of the following elements:
bean | ref | idref | list | set | map | props | value | null
The Spring container also supports the merging of collections. An application
developer can define a parent-style <list/>
, <map/>
, <set/>
or <props/>
element,
and have child-style <list/>
, <map/>
, <set/>
or <props/>
elements inherit and
override values from the parent collection. That is, the child collection’s values are
the result of merging the elements of the parent and child collections, with the child’s
collection elements overriding values specified in the parent collection.
This section on merging discusses the parent-child bean mechanism. Readers unfamiliar with parent and child bean definitions may wish to read the relevant section before continuing.
The following example demonstrates collection merging:
<beans> <bean id="parent" abstract="true" class="example.ComplexObject"> <property name="adminEmails"> <props> <prop key="administrator">[email protected]</prop> <prop key="support">[email protected]</prop> </props> </property> </bean> <bean id="child" parent="parent"> <property name="adminEmails"> <!-- the merge is specified on the child collection definition --> <props merge="true"> <prop key="sales">[email protected]</prop> <prop key="support">[email protected]</prop> </props> </property> </bean> <beans>
Notice the use of the merge=true
attribute on the <props/>
element of the
adminEmails
property of the child
bean definition. When the child
bean is resolved
and instantiated by the container, the resulting instance has an adminEmails
Properties
collection that contains the result of the merging of the child’s
adminEmails
collection with the parent’s adminEmails
collection.
[email protected] [email protected] [email protected]
The child Properties
collection’s value set inherits all property elements from the
parent <props/>
, and the child’s value for the support
value overrides the value in
the parent collection.
This merging behavior applies similarly to the <list/>
, <map/>
, and <set/>
collection types. In the specific case of the <list/>
element, the semantics
associated with the List
collection type, that is, the notion of an ordered
collection of values, is maintained; the parent’s values precede all of the child list’s
values. In the case of the Map
, Set
, and Properties
collection types, no ordering
exists. Hence no ordering semantics are in effect for the collection types that underlie
the associated Map
, Set
, and Properties
implementation types that the container
uses internally.
You cannot merge different collection types (such as a Map
and a List
), and if you
do attempt to do so an appropriate Exception
is thrown. The merge
attribute must be
specified on the lower, inherited, child definition; specifying the merge
attribute on
a parent collection definition is redundant and will not result in the desired merging.
With the introduction of generic types in Java 5, you can use strongly typed collections.
That is, it is possible to declare a Collection
type such that it can only contain
String
elements (for example). If you are using Spring to dependency-inject a
strongly-typed Collection
into a bean, you can take advantage of Spring’s
type-conversion support such that the elements of your strongly-typed Collection
instances are converted to the appropriate type prior to being added to the Collection
.
public class Foo { private Map<String, Float> accounts; public void setAccounts(Map<String, Float> accounts) { this.accounts = accounts; } }
<beans> <bean id="foo" class="x.y.Foo"> <property name="accounts"> <map> <entry key="one" value="9.99"/> <entry key="two" value="2.75"/> <entry key="six" value="3.99"/> </map> </property> </bean> </beans>
When the accounts
property of the foo
bean is prepared for injection, the generics
information about the element type of the strongly-typed Map<String, Float>
is
available by reflection. Thus Spring’s type conversion infrastructure recognizes the
various value elements as being of type Float
, and the string values 9.99, 2.75
, and
3.99
are converted into an actual Float
type.
Spring treats empty arguments for properties and the like as empty Strings
. The
following XML-based configuration metadata snippet sets the email property to the empty
String
value ("").
<bean class="ExampleBean"> <property name="email" value=""/> </bean>
The preceding example is equivalent to the following Java code:
exampleBean.setEmail("")
The <null/>
element handles null
values. For example:
<bean class="ExampleBean"> <property name="email"> <null/> </property> </bean>
The above configuration is equivalent to the following Java code:
exampleBean.setEmail(null)
The p-namespace enables you to use the bean
element’s attributes, instead of nested
<property/>
elements, to describe your property values and/or collaborating beans.
Spring supports extensible configuration formats with namespaces, which are
based on an XML Schema definition. The beans
configuration format discussed in this
chapter is defined in an XML Schema document. However, the p-namespace is not defined in
an XSD file and exists only in the core of Spring.
The following example shows two XML snippets that resolve to the same result: The first uses standard XML format and the second uses the p-namespace.
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd"> <bean name="classic" class="com.example.ExampleBean"> <property name="email" value="[email protected]"/> </bean> <bean name="p-namespace" class="com.example.ExampleBean" p:email="[email protected]"/> </beans>
The example shows an attribute in the p-namespace called email in the bean definition. This tells Spring to include a property declaration. As previously mentioned, the p-namespace does not have a schema definition, so you can set the name of the attribute to the property name.
This next example includes two more bean definitions that both have a reference to another bean:
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd"> <bean name="john-classic" class="com.example.Person"> <property name="name" value="John Doe"/> <property name="spouse" ref="jane"/> </bean> <bean name="john-modern" class="com.example.Person" p:name="John Doe" p:spouse-ref="jane"/> <bean name="jane" class="com.example.Person"> <property name="name" value="Jane Doe"/> </bean> </beans>
As you can see, this example includes not only a property value using the p-namespace,
but also uses a special format to declare property references. Whereas the first bean
definition uses <property name="spouse" ref="jane"/>
to create a reference from bean
john
to bean jane
, the second bean definition uses p:spouse-ref="jane"
as an
attribute to do the exact same thing. In this case spouse
is the property name,
whereas the -ref
part indicates that this is not a straight value but rather a
reference to another bean.
Note | |
---|---|
The p-namespace is not as flexible as the standard XML format. For example, the format
for declaring property references clashes with properties that end in |
Similar to the the section called “XML shortcut with the p-namespace”, the c-namespace, newly introduced in Spring
3.1, allows usage of inlined attributes for configuring the constructor arguments rather
then nested constructor-arg
elements.
Let’s review the examples from the section called “Constructor-based dependency injection” with the c:
namespace:
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:c="http://www.springframework.org/schema/c" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd"> <bean id="bar" class="x.y.Bar"/> <bean id="baz" class="x.y.Baz"/> <!-- traditional declaration --> <bean id="foo" class="x.y.Foo"> <constructor-arg ref="bar"/> <constructor-arg ref="baz"/> <constructor-arg value="[email protected]"/> </bean> <!-- c-namespace declaration --> <bean id="foo" class="x.y.Foo" c:bar-ref="bar" c:baz-ref="baz" c:email="[email protected]"/> </beans>
The c:
namespace uses the same conventions as the p:
one (trailing -ref
for bean
references) for setting the constructor arguments by their names. And just as well, it
needs to be declared even though it is not defined in an XSD schema (but it exists
inside the Spring core).
For the rare cases where the constructor argument names are not available (usually if the bytecode was compiled without debugging information), one can use fallback to the argument indexes:
<!-- c-namespace index declaration --> <bean id="foo" class="x.y.Foo" c:_0-ref="bar" c:_1-ref="baz"/>
Note | |
---|---|
Due to the XML grammar, the index notation requires the presence of the leading |
In practice, the constructor resolution mechanism is quite efficient in matching arguments so unless one really needs to, we recommend using the name notation through-out your configuration.
You can use compound or nested property names when you set bean properties, as long as
all components of the path except the final property name are not null
. Consider the
following bean definition.
<bean id="foo" class="foo.Bar"> <property name="fred.bob.sammy" value="123" /> </bean>
The foo
bean has a fred
property, which has a bob
property, which has a sammy
property, and that final sammy
property is being set to the value 123
. In order for
this to work, the fred
property of foo
, and the bob
property of fred
must not be
null
after the bean is constructed, or a NullPointerException
is thrown.
If a bean is a dependency of another that usually means that one bean is set as a
property of another. Typically you accomplish this with the <ref/>
element in XML-based configuration metadata. However, sometimes dependencies between
beans are less direct; for example, a static initializer in a class needs to be
triggered, such as database driver registration. The depends-on
attribute can
explicitly force one or more beans to be initialized before the bean using this element
is initialized. The following example uses the depends-on
attribute to express a
dependency on a single bean:
<bean id="beanOne" class="ExampleBean" depends-on="manager"/> <bean id="manager" class="ManagerBean" />
To express a dependency on multiple beans, supply a list of bean names as the value of
the depends-on
attribute, with commas, whitespace and semicolons, used as valid
delimiters:
<bean id="beanOne" class="ExampleBean" depends-on="manager,accountDao"> <property name="manager" ref="manager" /> </bean> <bean id="manager" class="ManagerBean" /> <bean id="accountDao" class="x.y.jdbc.JdbcAccountDao" />
Note | |
---|---|
The |
By default, ApplicationContext
implementations eagerly create and configure all
singleton beans as part of the initialization
process. Generally, this pre-instantiation is desirable, because errors in the
configuration or surrounding environment are discovered immediately, as opposed to hours
or even days later. When this behavior is not desirable, you can prevent
pre-instantiation of a singleton bean by marking the bean definition as
lazy-initialized. A lazy-initialized bean tells the IoC container to create a bean
instance when it is first requested, rather than at startup.
In XML, this behavior is controlled by the lazy-init
attribute on the <bean/>
element; for example:
<bean id="lazy" class="com.foo.ExpensiveToCreateBean" lazy-init="true"/> <bean name="not.lazy" class="com.foo.AnotherBean"/>
When the preceding configuration is consumed by an ApplicationContext
, the bean named
lazy
is not eagerly pre-instantiated when the ApplicationContext
is starting up,
whereas the not.lazy
bean is eagerly pre-instantiated.
However, when a lazy-initialized bean is a dependency of a singleton bean that is
not lazy-initialized, the ApplicationContext
creates the lazy-initialized bean at
startup, because it must satisfy the singleton’s dependencies. The lazy-initialized bean
is injected into a singleton bean elsewhere that is not lazy-initialized.
You can also control lazy-initialization at the container level by using the
default-lazy-init
attribute on the <beans/>
element; for example:
<beans default-lazy-init="true"> <!-- no beans will be pre-instantiated... --> </beans>
The Spring container can autowire relationships between collaborating beans. You can
allow Spring to resolve collaborators (other beans) automatically for your bean by
inspecting the contents of the ApplicationContext
. Autowiring has the following
advantages:
When using XML-based configuration metadata [2], you specify autowire
mode for a bean definition with the autowire
attribute of the <bean/>
element. The
autowiring functionality has four modes. You specify autowiring per bean and thus
can choose which ones to autowire.
Table 7.2. Autowiring modes
Mode | Explanation |
---|---|
no | (Default) No autowiring. Bean references must be defined via a |
byName | Autowiring by property name. Spring looks for a bean with the same name as the
property that needs to be autowired. For example, if a bean definition is set to
autowire by name, and it contains a master property (that is, it has a
setMaster(..) method), Spring looks for a bean definition named |
byType | Allows a property to be autowired if exactly one bean of the property type exists in the container. If more than one exists, a fatal exception is thrown, which indicates that you may not use byType autowiring for that bean. If there are no matching beans, nothing happens; the property is not set. |
constructor | Analogous to byType, but applies to constructor arguments. If there is not exactly one bean of the constructor argument type in the container, a fatal error is raised. |
With byType or constructor autowiring mode, you can wire arrays and
typed-collections. In such cases all autowire candidates within the container that
match the expected type are provided to satisfy the dependency. You can autowire
strongly-typed Maps if the expected key type is String
. An autowired Maps values will
consist of all bean instances that match the expected type, and the Maps keys will
contain the corresponding bean names.
You can combine autowire behavior with dependency checking, which is performed after autowiring completes.
Autowiring works best when it is used consistently across a project. If autowiring is not used in general, it might be confusing to developers to use it to wire only one or two bean definitions.
Consider the limitations and disadvantages of autowiring:
property
and constructor-arg
settings always override
autowiring. You cannot autowire so-called simple properties such as primitives,
Strings
, and Classes
(and arrays of such simple properties). This limitation is
by-design.
In the latter scenario, you have several options:
autowire-candidate
attributes
to false
as described in the next section.
primary
attribute of its <bean/>
element to true
.
On a per-bean basis, you can exclude a bean from autowiring. In Spring’s XML format, set
the autowire-candidate
attribute of the <bean/>
element to false
; the container
makes that specific bean definition unavailable to the autowiring infrastructure
(including annotation style configurations such as @Autowired
).
Note | |
---|---|
The |
You can also limit autowire candidates based on pattern-matching against bean names. The
top-level <beans/>
element accepts one or more patterns within its
default-autowire-candidates
attribute. For example, to limit autowire candidate status
to any bean whose name ends with Repository, provide a value of *Repository. To
provide multiple patterns, define them in a comma-separated list. An explicit value of
true
or false
for a bean definitions autowire-candidate
attribute always takes
precedence, and for such beans, the pattern matching rules do not apply.
These techniques are useful for beans that you never want to be injected into other beans by autowiring. It does not mean that an excluded bean cannot itself be configured using autowiring. Rather, the bean itself is not a candidate for autowiring other beans.
In most application scenarios, most beans in the container are singletons. When a singleton bean needs to collaborate with another singleton bean, or a non-singleton bean needs to collaborate with another non-singleton bean, you typically handle the dependency by defining one bean as a property of the other. A problem arises when the bean lifecycles are different. Suppose singleton bean A needs to use non-singleton (prototype) bean B, perhaps on each method invocation on A. The container only creates the singleton bean A once, and thus only gets one opportunity to set the properties. The container cannot provide bean A with a new instance of bean B every time one is needed.
A solution is to forego some inversion of control. You can make
bean A aware of the container by implementing the ApplicationContextAware
interface,
and by making a getBean("B") call to the container ask for (a
typically new) bean B instance every time bean A needs it. The following is an example
of this approach:
// a class that uses a stateful Command-style class to perform some processing package fiona.apple; // Spring-API imports import org.springframework.beans.BeansException; import org.springframework.context.ApplicationContext; import org.springframework.context.ApplicationContextAware; public class CommandManager implements ApplicationContextAware { private ApplicationContext applicationContext; public Object process(Map commandState) { // grab a new instance of the appropriate Command Command command = createCommand(); // set the state on the (hopefully brand new) Command instance command.setState(commandState); return command.execute(); } protected Command createCommand() { // notice the Spring API dependency! return this.applicationContext.getBean("command", Command.class); } public void setApplicationContext( ApplicationContext applicationContext) throws BeansException { this.applicationContext = applicationContext; } }
The preceding is not desirable, because the business code is aware of and coupled to the Spring Framework. Method Injection, a somewhat advanced feature of the Spring IoC container, allows this use case to be handled in a clean fashion.
Lookup method injection is the ability of the container to override methods on container managed beans, to return the lookup result for another named bean in the container. The lookup typically involves a prototype bean as in the scenario described in the preceding section. The Spring Framework implements this method injection by using bytecode generation from the CGLIB library to generate dynamically a subclass that overrides the method.
Note | |
---|---|
|
Looking at the CommandManager
class in the previous code snippet, you see that the
Spring container will dynamically override the implementation of the createCommand()
method. Your CommandManager
class will not have any Spring dependencies, as can be
seen in the reworked example:
package fiona.apple; // no more Spring imports! public abstract class CommandManager { public Object process(Object commandState) { // grab a new instance of the appropriate Command interface Command command = createCommand(); // set the state on the (hopefully brand new) Command instance command.setState(commandState); return command.execute(); } // okay... but where is the implementation of this method? protected abstract Command createCommand(); }
In the client class containing the method to be injected (the CommandManager
in this
case), the method to be injected requires a signature of the following form:
<public|protected> [abstract] <return-type> theMethodName(no-arguments);
If the method is abstract
, the dynamically-generated subclass implements the method.
Otherwise, the dynamically-generated subclass overrides the concrete method defined in
the original class. For example:
<!-- a stateful bean deployed as a prototype (non-singleton) --> <bean id="myCommand" class="fiona.apple.AsyncCommand" scope="prototype"> <!-- inject dependencies here as required --> </bean> <!-- commandProcessor uses statefulCommandHelper --> <bean id="commandManager" class="fiona.apple.CommandManager"> <lookup-method name="createCommand" bean="myCommand"/> </bean>
The bean identified as commandManager calls its own method createCommand()
whenever it needs a new instance of the myCommand bean. You must be careful to deploy
the myCommand
bean as a prototype, if that is actually what is needed. If it is
as a singleton, the same instance of the myCommand
bean is returned each time.
Alternatively, within the annotation-based component model, you may declare a lookup
method through the @Lookup
annotation:
public abstract class CommandManager { public Object process(Object commandState) { Command command = createCommand(); command.setState(commandState); return command.execute(); } @Lookup("myCommand") protected abstract Command createCommand(); }
Or, more idiomatically, you may rely on the target bean getting resolved against the declared return type of the lookup method:
public abstract class CommandManager { public Object process(Object commandState) { MyCommand command = createCommand(); command.setState(commandState); return command.execute(); } @Lookup protected abstract MyCommand createCommand(); }
Note that you will typically declare such annotated lookup methods with a concrete stub implementation, in order for them to be compatible with Spring’s component scanning rules where abstract classes get ignored by default. This limitation does not apply in case of explicitly registered or explicitly imported bean classes.
Tip | |
---|---|
Another way of accessing differently scoped target beans is an The interested reader may also find the |
A less useful form of method injection than lookup method injection is the ability to replace arbitrary methods in a managed bean with another method implementation. Users may safely skip the rest of this section until the functionality is actually needed.
With XML-based configuration metadata, you can use the replaced-method
element to
replace an existing method implementation with another, for a deployed bean. Consider
the following class, with a method computeValue, which we want to override:
public class MyValueCalculator { public String computeValue(String input) { // some real code... } // some other methods... }
A class implementing the org.springframework.beans.factory.support.MethodReplacer
interface provides the new method definition.
/** * meant to be used to override the existing computeValue(String) * implementation in MyValueCalculator */ public class ReplacementComputeValue implements MethodReplacer { public Object reimplement(Object o, Method m, Object[] args) throws Throwable { // get the input value, work with it, and return a computed result String input = (String) args[0]; ... return ...; } }
The bean definition to deploy the original class and specify the method override would look like this:
<bean id="myValueCalculator" class="x.y.z.MyValueCalculator"> <!-- arbitrary method replacement --> <replaced-method name="computeValue" replacer="replacementComputeValue"> <arg-type>String</arg-type> </replaced-method> </bean> <bean id="replacementComputeValue" class="a.b.c.ReplacementComputeValue"/>
You can use one or more contained <arg-type/>
elements within the <replaced-method/>
element to indicate the method signature of the method being overridden. The signature
for the arguments is necessary only if the method is overloaded and multiple variants
exist within the class. For convenience, the type string for an argument may be a
substring of the fully qualified type name. For example, the following all match
java.lang.String
:
java.lang.String String Str
Because the number of arguments is often enough to distinguish between each possible choice, this shortcut can save a lot of typing, by allowing you to type only the shortest string that will match an argument type.
When you create a bean definition, you create a recipe for creating actual instances of the class defined by that bean definition. The idea that a bean definition is a recipe is important, because it means that, as with a class, you can create many object instances from a single recipe.
You can control not only the various dependencies and configuration values that are to
be plugged into an object that is created from a particular bean definition, but also
the scope of the objects created from a particular bean definition. This approach is
powerful and flexible in that you can choose the scope of the objects you create
through configuration instead of having to bake in the scope of an object at the Java
class level. Beans can be defined to be deployed in one of a number of scopes: out of
the box, the Spring Framework supports seven scopes, five of which are available only if
you use a web-aware ApplicationContext
.
The following scopes are supported out of the box. You can also create a custom scope.
Table 7.3. Bean scopes
Scope | Description |
---|---|
(Default) Scopes a single bean definition to a single object instance per Spring IoC container. | |
Scopes a single bean definition to any number of object instances. | |
Scopes a single bean definition to the lifecycle of a single HTTP request; that is,
each HTTP request has its own instance of a bean created off the back of a single bean
definition. Only valid in the context of a web-aware Spring | |
Scopes a single bean definition to the lifecycle of an HTTP | |
Scopes a single bean definition to the lifecycle of a global HTTP | |
Scopes a single bean definition to the lifecycle of a | |
Scopes a single bean definition to the lifecycle of a |
Note | |
---|---|
As of Spring 3.0, a thread scope is available, but is not registered by default. For
more information, see the documentation for
|
Only one shared instance of a singleton bean is managed, and all requests for beans with an id or ids matching that bean definition result in that one specific bean instance being returned by the Spring container.
To put it another way, when you define a bean definition and it is scoped as a singleton, the Spring IoC container creates exactly one instance of the object defined by that bean definition. This single instance is stored in a cache of such singleton beans, and all subsequent requests and references for that named bean return the cached object.
Spring’s concept of a singleton bean differs from the Singleton pattern as defined in the Gang of Four (GoF) patterns book. The GoF Singleton hard-codes the scope of an object such that one and only one instance of a particular class is created per ClassLoader. The scope of the Spring singleton is best described as per container and per bean. This means that if you define one bean for a particular class in a single Spring container, then the Spring container creates one and only one instance of the class defined by that bean definition. The singleton scope is the default scope in Spring. To define a bean as a singleton in XML, you would write, for example:
<bean id="accountService" class="com.foo.DefaultAccountService"/> <!-- the following is equivalent, though redundant (singleton scope is the default) --> <bean id="accountService" class="com.foo.DefaultAccountService" scope="singleton"/>
The non-singleton, prototype scope of bean deployment results in the creation of a new
bean instance every time a request for that specific bean is made. That is, the bean
is injected into another bean or you request it through a getBean()
method call on the
container. As a rule, use the prototype scope for all stateful beans and the singleton
scope for stateless beans.
The following diagram illustrates the Spring prototype scope. A data access object (DAO) is not typically configured as a prototype, because a typical DAO does not hold any conversational state; it was just easier for this author to reuse the core of the singleton diagram.
The following example defines a bean as a prototype in XML:
<bean id="accountService" class="com.foo.DefaultAccountService" scope="prototype"/>
In contrast to the other scopes, Spring does not manage the complete lifecycle of a prototype bean: the container instantiates, configures, and otherwise assembles a prototype object, and hands it to the client, with no further record of that prototype instance. Thus, although initialization lifecycle callback methods are called on all objects regardless of scope, in the case of prototypes, configured destruction lifecycle callbacks are not called. The client code must clean up prototype-scoped objects and release expensive resources that the prototype bean(s) are holding. To get the Spring container to release resources held by prototype-scoped beans, try using a custom bean post-processor, which holds a reference to beans that need to be cleaned up.
In some respects, the Spring container’s role in regard to a prototype-scoped bean is a
replacement for the Java new
operator. All lifecycle management past that point must
be handled by the client. (For details on the lifecycle of a bean in the Spring
container, see Section 7.6.1, “Lifecycle callbacks”.)
When you use singleton-scoped beans with dependencies on prototype beans, be aware that dependencies are resolved at instantiation time. Thus if you dependency-inject a prototype-scoped bean into a singleton-scoped bean, a new prototype bean is instantiated and then dependency-injected into the singleton bean. The prototype instance is the sole instance that is ever supplied to the singleton-scoped bean.
However, suppose you want the singleton-scoped bean to acquire a new instance of the prototype-scoped bean repeatedly at runtime. You cannot dependency-inject a prototype-scoped bean into your singleton bean, because that injection occurs only once, when the Spring container is instantiating the singleton bean and resolving and injecting its dependencies. If you need a new instance of a prototype bean at runtime more than once, see Section 7.4.6, “Method injection”
The request
, session
, globalSession
, application
, and websocket
scopes are
only available if you use a web-aware Spring ApplicationContext
implementation
(such as XmlWebApplicationContext
). If you use these scopes with regular Spring IoC
containers such as the ClassPathXmlApplicationContext
, an IllegalStateException
will
be thrown complaining about an unknown bean scope.
To support the scoping of beans at the request
, session
, globalSession
,
application
, and websocket
levels (web-scoped beans), some minor initial
configuration is required before you define your beans. (This initial setup is not
required for the standard scopes, singleton
and prototype
.)
How you accomplish this initial setup depends on your particular Servlet environment.
If you access scoped beans within Spring Web MVC, in effect, within a request that is
processed by the Spring DispatcherServlet
or DispatcherPortlet
, then no special
setup is necessary: DispatcherServlet
and DispatcherPortlet
already expose all
relevant state.
If you use a Servlet 2.5 web container, with requests processed outside of Spring’s
DispatcherServlet
(for example, when using JSF or Struts), you need to register the
org.springframework.web.context.request.RequestContextListener
ServletRequestListener
.
For Servlet 3.0+, this can be done programmatically via the WebApplicationInitializer
interface. Alternatively, or for older containers, add the following declaration to
your web application’s web.xml
file:
<web-app> ... <listener> <listener-class> org.springframework.web.context.request.RequestContextListener </listener-class> </listener> ... </web-app>
Alternatively, if there are issues with your listener setup, consider using Spring’s
RequestContextFilter
. The filter mapping depends on the surrounding web
application configuration, so you have to change it as appropriate.
<web-app> ... <filter> <filter-name>requestContextFilter</filter-name> <filter-class>org.springframework.web.filter.RequestContextFilter</filter-class> </filter> <filter-mapping> <filter-name>requestContextFilter</filter-name> <url-pattern>/*</url-pattern> </filter-mapping> ... </web-app>
DispatcherServlet
, RequestContextListener
, and RequestContextFilter
all do exactly
the same thing, namely bind the HTTP request object to the Thread
that is servicing
that request. This makes beans that are request- and session-scoped available further
down the call chain.
Consider the following XML configuration for a bean definition:
<bean id="loginAction" class="com.foo.LoginAction" scope="request"/>
The Spring container creates a new instance of the LoginAction
bean by using the
loginAction
bean definition for each and every HTTP request. That is, the
loginAction
bean is scoped at the HTTP request level. You can change the internal
state of the instance that is created as much as you want, because other instances
created from the same loginAction
bean definition will not see these changes in state;
they are particular to an individual request. When the request completes processing, the
bean that is scoped to the request is discarded.
When using annotation-driven components or Java Config, the @RequestScope
annotation
can be used to assign a component to the request
scope.
@RequestScope @Component public class LoginAction { // ... }
Consider the following XML configuration for a bean definition:
<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/>
The Spring container creates a new instance of the UserPreferences
bean by using the
userPreferences
bean definition for the lifetime of a single HTTP Session
. In other
words, the userPreferences
bean is effectively scoped at the HTTP Session
level. As
with request-scoped
beans, you can change the internal state of the instance that is
created as much as you want, knowing that other HTTP Session
instances that are also
using instances created from the same userPreferences
bean definition do not see these
changes in state, because they are particular to an individual HTTP Session
. When the
HTTP Session
is eventually discarded, the bean that is scoped to that particular HTTP
Session
is also discarded.
When using annotation-driven components or Java Config, the @SessionScope
annotation
can be used to assign a component to the session
scope.
@SessionScope @Component public class UserPreferences { // ... }
Consider the following bean definition:
<bean id="userPreferences" class="com.foo.UserPreferences" scope="globalSession"/>
The globalSession
scope is similar to the standard HTTP Session
scope
(described above), and applies only in the context of
portlet-based web applications. The portlet specification defines the notion of a global
Session
that is shared among all portlets that make up a single portlet web
application. Beans defined at the globalSession
scope are scoped (or bound) to the
lifetime of the global portlet Session
.
If you write a standard Servlet-based web application and you define one or more beans
as having globalSession
scope, the standard HTTP Session
scope is used, and no
error is raised.
Consider the following XML configuration for a bean definition:
<bean id="appPreferences" class="com.foo.AppPreferences" scope="application"/>
The Spring container creates a new instance of the AppPreferences
bean by using the
appPreferences
bean definition once for the entire web application. That is, the
appPreferences
bean is scoped at the ServletContext
level, stored as a regular
ServletContext
attribute. This is somewhat similar to a Spring singleton bean but
differs in two important ways: It is a singleton per ServletContext
, not per Spring
'ApplicationContext' (for which there may be several in any given web application),
and it is actually exposed and therefore visible as a ServletContext
attribute.
When using annotation-driven components or Java Config, the @ApplicationScope
annotation can be used to assign a component to the application
scope.
@ApplicationScope @Component public class AppPreferences { // ... }
The Spring IoC container manages not only the instantiation of your objects (beans), but also the wiring up of collaborators (or dependencies). If you want to inject (for example) an HTTP request scoped bean into another bean of a longer-lived scope, you may choose to inject an AOP proxy in place of the scoped bean. That is, you need to inject a proxy object that exposes the same public interface as the scoped object but that can also retrieve the real target object from the relevant scope (such as an HTTP request) and delegate method calls onto the real object.
Note | |
---|---|
You may also use When declaring Also, scoped proxies are not the only way to access beans from shorter scopes in a
lifecycle-safe fashion. You may also simply declare your injection point (i.e. the
constructor/setter argument or autowired field) as The JSR-330 variant of this is called |
The configuration in the following example is only one line, but it is important to understand the "why" as well as the "how" behind it.
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop.xsd"> <!-- an HTTP Session-scoped bean exposed as a proxy --> <bean id="userPreferences" class="com.foo.UserPreferences" scope="session"> <!-- instructs the container to proxy the surrounding bean --> <aop:scoped-proxy/> </bean> <!-- a singleton-scoped bean injected with a proxy to the above bean --> <bean id="userService" class="com.foo.SimpleUserService"> <!-- a reference to the proxied userPreferences bean --> <property name="userPreferences" ref="userPreferences"/> </bean> </beans>
To create such a proxy, you insert a child <aop:scoped-proxy/>
element into a scoped
bean definition (see the section called “Choosing the type of proxy to create” and
Chapter 41, XML Schema-based configuration). Why do definitions of beans scoped at the request
, session
,
globalSession
and custom-scope levels require the <aop:scoped-proxy/>
element?
Let’s examine the following singleton bean definition and contrast it with what you need
to define for the aforementioned scopes (note that the following userPreferences
bean
definition as it stands is incomplete).
<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"/> <bean id="userManager" class="com.foo.UserManager"> <property name="userPreferences" ref="userPreferences"/> </bean>
In the preceding example, the singleton bean userManager
is injected with a reference
to the HTTP Session
-scoped bean userPreferences
. The salient point here is that the
userManager
bean is a singleton: it will be instantiated exactly once per
container, and its dependencies (in this case only one, the userPreferences
bean) are
also injected only once. This means that the userManager
bean will only operate on the
exact same userPreferences
object, that is, the one that it was originally injected
with.
This is not the behavior you want when injecting a shorter-lived scoped bean into a
longer-lived scoped bean, for example injecting an HTTP Session
-scoped collaborating
bean as a dependency into singleton bean. Rather, you need a single userManager
object, and for the lifetime of an HTTP Session
, you need a userPreferences
object
that is specific to said HTTP Session
. Thus the container creates an object that
exposes the exact same public interface as the UserPreferences
class (ideally an
object that is a UserPreferences
instance) which can fetch the real
UserPreferences
object from the scoping mechanism (HTTP request, Session
, etc.). The
container injects this proxy object into the userManager
bean, which is unaware that
this UserPreferences
reference is a proxy. In this example, when a UserManager
instance invokes a method on the dependency-injected UserPreferences
object, it
actually is invoking a method on the proxy. The proxy then fetches the real
UserPreferences
object from (in this case) the HTTP Session
, and delegates the
method invocation onto the retrieved real UserPreferences
object.
Thus you need the following, correct and complete, configuration when injecting
request-
, session-
, and globalSession-scoped
beans into collaborating objects:
<bean id="userPreferences" class="com.foo.UserPreferences" scope="session"> <aop:scoped-proxy/> </bean> <bean id="userManager" class="com.foo.UserManager"> <property name="userPreferences" ref="userPreferences"/> </bean>
By default, when the Spring container creates a proxy for a bean that is marked up with
the <aop:scoped-proxy/>
element, a CGLIB-based class proxy is created.
Note | |
---|---|
CGLIB proxies only intercept public method calls! Do not call non-public methods on such a proxy; they will not be delegated to the actual scoped target object. |
Alternatively, you can configure the Spring container to create standard JDK
interface-based proxies for such scoped beans, by specifying false
for the value of
the proxy-target-class
attribute of the <aop:scoped-proxy/>
element. Using JDK
interface-based proxies means that you do not need additional libraries in your
application classpath to effect such proxying. However, it also means that the class of
the scoped bean must implement at least one interface, and that all collaborators
into which the scoped bean is injected must reference the bean through one of its
interfaces.
<!-- DefaultUserPreferences implements the UserPreferences interface --> <bean id="userPreferences" class="com.foo.DefaultUserPreferences" scope="session"> <aop:scoped-proxy proxy-target-class="false"/> </bean> <bean id="userManager" class="com.foo.UserManager"> <property name="userPreferences" ref="userPreferences"/> </bean>
For more detailed information about choosing class-based or interface-based proxying, see Section 11.6, “Proxying mechanisms”.
The bean scoping mechanism is extensible; You can define your own
scopes, or even redefine existing scopes, although the latter is considered bad practice
and you cannot override the built-in singleton
and prototype
scopes.
To integrate your custom scope(s) into the Spring container, you need to implement the
org.springframework.beans.factory.config.Scope
interface, which is described in this
section. For an idea of how to implement your own scopes, see the Scope
implementations that are supplied with the Spring Framework itself and the
Scope
javadocs,
which explains the methods you need to implement in more detail.
The Scope
interface has four methods to get objects from the scope, remove them from
the scope, and allow them to be destroyed.
The following method returns the object from the underlying scope. The session scope implementation, for example, returns the session-scoped bean (and if it does not exist, the method returns a new instance of the bean, after having bound it to the session for future reference).
Object get(String name, ObjectFactory objectFactory)
The following method removes the object from the underlying scope. The session scope implementation for example, removes the session-scoped bean from the underlying session. The object should be returned, but you can return null if the object with the specified name is not found.
Object remove(String name)
The following method registers the callbacks the scope should execute when it is destroyed or when the specified object in the scope is destroyed. Refer to the javadocs or a Spring scope implementation for more information on destruction callbacks.
void registerDestructionCallback(String name, Runnable destructionCallback)
The following method obtains the conversation identifier for the underlying scope. This identifier is different for each scope. For a session scoped implementation, this identifier can be the session identifier.
String getConversationId()
After you write and test one or more custom Scope
implementations, you need to make
the Spring container aware of your new scope(s). The following method is the central
method to register a new Scope
with the Spring container:
void registerScope(String scopeName, Scope scope);
This method is declared on the ConfigurableBeanFactory
interface, which is available
on most of the concrete ApplicationContext
implementations that ship with Spring via
the BeanFactory property.
The first argument to the registerScope(..)
method is the unique name associated with
a scope; examples of such names in the Spring container itself are singleton
and
prototype
. The second argument to the registerScope(..)
method is an actual instance
of the custom Scope
implementation that you wish to register and use.
Suppose that you write your custom Scope
implementation, and then register it as below.
Note | |
---|---|
The example below uses |
Scope threadScope = new SimpleThreadScope(); beanFactory.registerScope("thread", threadScope);
You then create bean definitions that adhere to the scoping rules of your custom Scope
:
<bean id="..." class="..." scope="thread">
With a custom Scope
implementation, you are not limited to programmatic registration
of the scope. You can also do the Scope
registration declaratively, using the
CustomScopeConfigurer
class:
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop.xsd"> <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer"> <property name="scopes"> <map> <entry key="thread"> <bean class="org.springframework.context.support.SimpleThreadScope"/> </entry> </map> </property> </bean> <bean id="bar" class="x.y.Bar" scope="thread"> <property name="name" value="Rick"/> <aop:scoped-proxy/> </bean> <bean id="foo" class="x.y.Foo"> <property name="bar" ref="bar"/> </bean> </beans>
Note | |
---|---|
When you place |
To interact with the container’s management of the bean lifecycle, you can implement the
Spring InitializingBean
and DisposableBean
interfaces. The container calls
afterPropertiesSet()
for the former and destroy()
for the latter to allow the bean
to perform certain actions upon initialization and destruction of your beans.
Tip | |
---|---|
The JSR-250 If you don’t want to use the JSR-250 annotations but you are still looking to remove coupling consider the use of init-method and destroy-method object definition metadata. |
Internally, the Spring Framework uses BeanPostProcessor
implementations to process any
callback interfaces it can find and call the appropriate methods. If you need custom
features or other lifecycle behavior Spring does not offer out-of-the-box, you can
implement a BeanPostProcessor
yourself. For more information, see
Section 7.8, “Container Extension Points”.
In addition to the initialization and destruction callbacks, Spring-managed objects may
also implement the Lifecycle
interface so that those objects can participate in the
startup and shutdown process as driven by the container’s own lifecycle.
The lifecycle callback interfaces are described in this section.
The org.springframework.beans.factory.InitializingBean
interface allows a bean to
perform initialization work after all necessary properties on the bean have been set by
the container. The InitializingBean
interface specifies a single method:
void afterPropertiesSet() throws Exception;
It is recommended that you do not use the InitializingBean
interface because it
unnecessarily couples the code to Spring. Alternatively, use
the @PostConstruct
annotation or
specify a POJO initialization method. In the case of XML-based configuration metadata,
you use the init-method
attribute to specify the name of the method that has a void
no-argument signature. With Java config, you use the initMethod
attribute of @Bean
,
see the section called “Receiving lifecycle callbacks”. For example, the following:
<bean id="exampleInitBean" class="examples.ExampleBean" init-method="init"/>
public class ExampleBean { public void init() { // do some initialization work } }
…is exactly the same as…
<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>
public class AnotherExampleBean implements InitializingBean { public void afterPropertiesSet() { // do some initialization work } }
but does not couple the code to Spring.
Implementing the org.springframework.beans.factory.DisposableBean
interface allows a
bean to get a callback when the container containing it is destroyed. The
DisposableBean
interface specifies a single method:
void destroy() throws Exception;
It is recommended that you do not use the DisposableBean
callback interface because it
unnecessarily couples the code to Spring. Alternatively, use
the @PreDestroy
annotation or
specify a generic method that is supported by bean definitions. With XML-based
configuration metadata, you use the destroy-method
attribute on the <bean/>
.
With Java config, you use the destroyMethod
attribute of @Bean
, see
the section called “Receiving lifecycle callbacks”. For example, the following definition:
<bean id="exampleInitBean" class="examples.ExampleBean" destroy-method="cleanup"/>
public class ExampleBean { public void cleanup() { // do some destruction work (like releasing pooled connections) } }
is exactly the same as:
<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>
public class AnotherExampleBean implements DisposableBean { public void destroy() { // do some destruction work (like releasing pooled connections) } }
but does not couple the code to Spring.
Tip | |
---|---|
The |
When you write initialization and destroy method callbacks that do not use the
Spring-specific InitializingBean
and DisposableBean
callback interfaces, you
typically write methods with names such as init()
, initialize()
, dispose()
, and so
on. Ideally, the names of such lifecycle callback methods are standardized across a
project so that all developers use the same method names and ensure consistency.
You can configure the Spring container to look
for named initialization and destroy
callback method names on every bean. This means that you, as an application
developer, can write your application classes and use an initialization callback called
init()
, without having to configure an init-method="init"
attribute with each bean
definition. The Spring IoC container calls that method when the bean is created (and in
accordance with the standard lifecycle callback contract described previously). This
feature also enforces a consistent naming convention for initialization and destroy
method callbacks.
Suppose that your initialization callback methods are named init()
and destroy
callback methods are named destroy()
. Your class will resemble the class in the
following example.
public class DefaultBlogService implements BlogService { private BlogDao blogDao; public void setBlogDao(BlogDao blogDao) { this.blogDao = blogDao; } // this is (unsurprisingly) the initialization callback method public void init() { if (this.blogDao == null) { throw new IllegalStateException("The [blogDao] property must be set."); } } }
<beans default-init-method="init"> <bean id="blogService" class="com.foo.DefaultBlogService"> <property name="blogDao" ref="blogDao" /> </bean> </beans>
The presence of the default-init-method
attribute on the top-level <beans/>
element
attribute causes the Spring IoC container to recognize a method called init
on beans
as the initialization method callback. When a bean is created and assembled, if the bean
class has such a method, it is invoked at the appropriate time.
You configure destroy method callbacks similarly (in XML, that is) by using the
default-destroy-method
attribute on the top-level <beans/>
element.
Where existing bean classes already have callback methods that are named at variance
with the convention, you can override the default by specifying (in XML, that is) the
method name using the init-method
and destroy-method
attributes of the <bean/>
itself.
The Spring container guarantees that a configured initialization callback is called immediately after a bean is supplied with all dependencies. Thus the initialization callback is called on the raw bean reference, which means that AOP interceptors and so forth are not yet applied to the bean. A target bean is fully created first, then an AOP proxy (for example) with its interceptor chain is applied. If the target bean and the proxy are defined separately, your code can even interact with the raw target bean, bypassing the proxy. Hence, it would be inconsistent to apply the interceptors to the init method, because doing so would couple the lifecycle of the target bean with its proxy/interceptors and leave strange semantics when your code interacts directly to the raw target bean.
As of Spring 2.5, you have three options for controlling bean lifecycle behavior: the
InitializingBean
and
DisposableBean
callback interfaces; custom
init()
and destroy()
methods; and the
@PostConstruct
and @PreDestroy
annotations. You can combine these mechanisms to control a given bean.
Note | |
---|---|
If multiple lifecycle mechanisms are configured for a bean, and each mechanism is
configured with a different method name, then each configured method is executed in the
order listed below. However, if the same method name is configured - for example,
|
Multiple lifecycle mechanisms configured for the same bean, with different initialization methods, are called as follows:
@PostConstruct
afterPropertiesSet()
as defined by the InitializingBean
callback interface
init()
method
Destroy methods are called in the same order:
@PreDestroy
destroy()
as defined by the DisposableBean
callback interface
destroy()
method
The Lifecycle
interface defines the essential methods for any object that has its own
lifecycle requirements (e.g. starts and stops some background process):
public interface Lifecycle { void start(); void stop(); boolean isRunning(); }
Any Spring-managed object may implement that interface. Then, when the
ApplicationContext
itself receives start and stop signals, e.g. for a stop/restart
scenario at runtime, it will cascade those calls to all Lifecycle
implementations
defined within that context. It does this by delegating to a LifecycleProcessor
:
public interface LifecycleProcessor extends Lifecycle { void onRefresh(); void onClose(); }
Notice that the LifecycleProcessor
is itself an extension of the Lifecycle
interface. It also adds two other methods for reacting to the context being refreshed
and closed.
Tip | |
---|---|
Note that the regular |
The order of startup and shutdown invocations can be important. If a "depends-on"
relationship exists between any two objects, the dependent side will start after its
dependency, and it will stop before its dependency. However, at times the direct
dependencies are unknown. You may only know that objects of a certain type should start
prior to objects of another type. In those cases, the SmartLifecycle
interface defines
another option, namely the getPhase()
method as defined on its super-interface,
Phased
.
public interface Phased { int getPhase(); }
public interface SmartLifecycle extends Lifecycle, Phased { boolean isAutoStartup(); void stop(Runnable callback); }
When starting, the objects with the lowest phase start first, and when stopping, the
reverse order is followed. Therefore, an object that implements SmartLifecycle
and
whose getPhase()
method returns Integer.MIN_VALUE
would be among the first to start
and the last to stop. At the other end of the spectrum, a phase value of
Integer.MAX_VALUE
would indicate that the object should be started last and stopped
first (likely because it depends on other processes to be running). When considering the
phase value, it’s also important to know that the default phase for any "normal"
Lifecycle
object that does not implement SmartLifecycle
would be 0. Therefore, any
negative phase value would indicate that an object should start before those standard
components (and stop after them), and vice versa for any positive phase value.
As you can see the stop method defined by SmartLifecycle
accepts a callback. Any
implementation must invoke that callback’s run()
method after that implementation’s
shutdown process is complete. That enables asynchronous shutdown where necessary since
the default implementation of the LifecycleProcessor
interface,
DefaultLifecycleProcessor
, will wait up to its timeout value for the group of objects
within each phase to invoke that callback. The default per-phase timeout is 30 seconds.
You can override the default lifecycle processor instance by defining a bean named
"lifecycleProcessor" within the context. If you only want to modify the timeout, then
defining the following would be sufficient:
<bean id="lifecycleProcessor" class="org.springframework.context.support.DefaultLifecycleProcessor"> <!-- timeout value in milliseconds --> <property name="timeoutPerShutdownPhase" value="10000"/> </bean>
As mentioned, the LifecycleProcessor
interface defines callback methods for the
refreshing and closing of the context as well. The latter will simply drive the shutdown
process as if stop()
had been called explicitly, but it will happen when the context is
closing. The 'refresh' callback on the other hand enables another feature of
SmartLifecycle
beans. When the context is refreshed (after all objects have been
instantiated and initialized), that callback will be invoked, and at that point the
default lifecycle processor will check the boolean value returned by each
SmartLifecycle
object’s isAutoStartup()
method. If "true", then that object will be
started at that point rather than waiting for an explicit invocation of the context’s or
its own start()
method (unlike the context refresh, the context start does not happen
automatically for a standard context implementation). The "phase" value as well as any
"depends-on" relationships will determine the startup order in the same way as described
above.
Note | |
---|---|
This section applies only to non-web applications. Spring’s web-based
|
If you are using Spring’s IoC container in a non-web application environment; for example, in a rich client desktop environment; you register a shutdown hook with the JVM. Doing so ensures a graceful shutdown and calls the relevant destroy methods on your singleton beans so that all resources are released. Of course, you must still configure and implement these destroy callbacks correctly.
To register a shutdown hook, you call the registerShutdownHook()
method that is
declared on the ConfigurableApplicationContext
interface:
import org.springframework.context.ConfigurableApplicationContext; import org.springframework.context.support.ClassPathXmlApplicationContext; public final class Boot { public static void main(final String[] args) throws Exception { ConfigurableApplicationContext ctx = new ClassPathXmlApplicationContext( new String []{"beans.xml"}); // add a shutdown hook for the above context... ctx.registerShutdownHook(); // app runs here... // main method exits, hook is called prior to the app shutting down... } }
When an ApplicationContext
creates an object instance that implements the
org.springframework.context.ApplicationContextAware
interface, the instance is provided
with a reference to that ApplicationContext
.
public interface ApplicationContextAware { void setApplicationContext(ApplicationContext applicationContext) throws BeansException; }
Thus beans can manipulate programmatically the ApplicationContext
that created them,
through the ApplicationContext
interface, or by casting the reference to a known
subclass of this interface, such as ConfigurableApplicationContext
, which exposes
additional functionality. One use would be the programmatic retrieval of other beans.
Sometimes this capability is useful; however, in general you should avoid it, because it
couples the code to Spring and does not follow the Inversion of Control style, where
collaborators are provided to beans as properties. Other methods of the
ApplicationContext
provide access to file resources, publishing application events, and
accessing a MessageSource
. These additional features are described in
Section 7.15, “Additional Capabilities of the ApplicationContext”
As of Spring 2.5, autowiring is another alternative to obtain reference to the
ApplicationContext
. The "traditional" constructor
and byType
autowiring modes (as
described in Section 7.4.5, “Autowiring collaborators”) can provide a dependency of type
ApplicationContext
for a constructor argument or setter method parameter,
respectively. For more flexibility, including the ability to autowire fields and
multiple parameter methods, use the new annotation-based autowiring features. If you do,
the ApplicationContext
is autowired into a field, constructor argument, or method
parameter that is expecting the ApplicationContext
type if the field, constructor, or
method in question carries the @Autowired
annotation. For more information, see
Section 7.9.2, “@Autowired”.
When an ApplicationContext
creates a class that implements the
org.springframework.beans.factory.BeanNameAware
interface, the class is provided with
a reference to the name defined in its associated object definition.
public interface BeanNameAware { void setBeanName(String name) throws BeansException; }
The callback is invoked after population of normal bean properties but before an
initialization callback such as InitializingBean
afterPropertiesSet or a custom
init-method.
Besides ApplicationContextAware
and BeanNameAware
discussed above, Spring offers a
range of Aware
interfaces that allow beans to indicate to the container that they
require a certain infrastructure dependency. The most important Aware
interfaces
are summarized below - as a general rule, the name is a good indication of the
dependency type:
Table 7.4. Aware interfaces
Name | Injected Dependency | Explained in… |
---|---|---|
| Declaring | |
| Event publisher of the enclosing | Section 7.15, “Additional Capabilities of the ApplicationContext” |
| Class loader used to load the bean classes. | |
| Declaring | |
| Name of the declaring bean | |
| Resource adapter | |
| Defined weaver for processing class definition at load time | Section 11.8.4, “Load-time weaving with AspectJ in the Spring Framework” |
| Configured strategy for resolving messages (with support for parametrization and internationalization) | Section 7.15, “Additional Capabilities of the ApplicationContext” |
| Spring JMX notification publisher | |
| Current | |
| Current | |
| Configured loader for low-level access to resources | |
| Current | |
| Current |
Note again that usage of these interfaces ties your code to the Spring API and does not follow the Inversion of Control style. As such, they are recommended for infrastructure beans that require programmatic access to the container.
A bean definition can contain a lot of configuration information, including constructor arguments, property values, and container-specific information such as initialization method, static factory method name, and so on. A child bean definition inherits configuration data from a parent definition. The child definition can override some values, or add others, as needed. Using parent and child bean definitions can save a lot of typing. Effectively, this is a form of templating.
If you work with an ApplicationContext
interface programmatically, child bean
definitions are represented by the ChildBeanDefinition
class. Most users do not work
with them on this level, instead configuring bean definitions declaratively in something
like the ClassPathXmlApplicationContext
. When you use XML-based configuration
metadata, you indicate a child bean definition by using the parent
attribute,
specifying the parent bean as the value of this attribute.
<bean id="inheritedTestBean" abstract="true" class="org.springframework.beans.TestBean"> <property name="name" value="parent"/> <property name="age" value="1"/> </bean> <bean id="inheritsWithDifferentClass" class="org.springframework.beans.DerivedTestBean" parent="inheritedTestBean" init-method="initialize"> <property name="name" value="override"/> <!-- the age property value of 1 will be inherited from parent --> </bean>
A child bean definition uses the bean class from the parent definition if none is specified, but can also override it. In the latter case, the child bean class must be compatible with the parent, that is, it must accept the parent’s property values.
A child bean definition inherits scope, constructor argument values, property values, and
method overrides from the parent, with the option to add new values. Any scope, initialization
method, destroy method, and/or static
factory method settings that you specify will
override the corresponding parent settings.
The remaining settings are always taken from the child definition: depends on, autowire mode, dependency check, singleton, lazy init.
The preceding example explicitly marks the parent bean definition as abstract by using
the abstract
attribute. If the parent definition does not specify a class, explicitly
marking the parent bean definition as abstract
is required, as follows:
<bean id="inheritedTestBeanWithoutClass" abstract="true"> <property name="name" value="parent"/> <property name="age" value="1"/> </bean> <bean id="inheritsWithClass" class="org.springframework.beans.DerivedTestBean" parent="inheritedTestBeanWithoutClass" init-method="initialize"> <property name="name" value="override"/> <!-- age will inherit the value of 1 from the parent bean definition--> </bean>
The parent bean cannot be instantiated on its own because it is incomplete, and it is
also explicitly marked as abstract
. When a definition is abstract
like this, it is
usable only as a pure template bean definition that serves as a parent definition for
child definitions. Trying to use such an abstract
parent bean on its own, by referring
to it as a ref property of another bean or doing an explicit getBean()
call with the
parent bean id, returns an error. Similarly, the container’s internal
preInstantiateSingletons()
method ignores bean definitions that are defined as
abstract.
Note | |
---|---|
|
Typically, an application developer does not need to subclass ApplicationContext
implementation classes. Instead, the Spring IoC container can be extended by plugging in
implementations of special integration interfaces. The next few sections describe these
integration interfaces.
The BeanPostProcessor
interface defines callback methods that you can implement to
provide your own (or override the container’s default) instantiation logic,
dependency-resolution logic, and so forth. If you want to implement some custom logic
after the Spring container finishes instantiating, configuring, and initializing a bean,
you can plug in one or more BeanPostProcessor
implementations.
You can configure multiple BeanPostProcessor
instances, and you can control the order
in which these BeanPostProcessor
s execute by setting the order
property. You can
set this property only if the BeanPostProcessor
implements the Ordered
interface; if
you write your own BeanPostProcessor
you should consider implementing the Ordered
interface too. For further details, consult the javadocs of the BeanPostProcessor
and
Ordered
interfaces. See also the note below on
programmatic
registration of BeanPostProcessor
s.
Note | |
---|---|
To change the actual bean definition (i.e., the blueprint that defines the bean),
you instead need to use a |
The org.springframework.beans.factory.config.BeanPostProcessor
interface consists of
exactly two callback methods. When such a class is registered as a post-processor with
the container, for each bean instance that is created by the container, the
post-processor gets a callback from the container both before container
initialization methods (such as InitializingBean’s afterPropertiesSet() and any
declared init method) are called as well as after any bean initialization callbacks.
The post-processor can take any action with the bean instance, including ignoring the
callback completely. A bean post-processor typically checks for callback interfaces or
may wrap a bean with a proxy. Some Spring AOP infrastructure classes are implemented as
bean post-processors in order to provide proxy-wrapping logic.
An ApplicationContext
automatically detects any beans that are defined in the
configuration metadata which implement the BeanPostProcessor
interface. The
ApplicationContext
registers these beans as post-processors so that they can be called
later upon bean creation. Bean post-processors can be deployed in the container just
like any other beans.
Note that when declaring a BeanPostProcessor
using an @Bean
factory method on a
configuration class, the return type of the factory method should be the implementation
class itself or at least the org.springframework.beans.factory.config.BeanPostProcessor
interface, clearly indicating the post-processor nature of that bean. Otherwise, the
ApplicationContext
won’t be able to autodetect it by type before fully creating it.
Since a BeanPostProcessor
needs to be instantiated early in order to apply to the
initialization of other beans in the context, this early type detection is critical.
BeanPostProcessors and AOP auto-proxying | |
---|---|
Classes that implement the For any such bean, you should see an informational log message: "Bean foo is not eligible for getting processed by all BeanPostProcessor interfaces (for example: not eligible for auto-proxying)". Note that if you have beans wired into your |
The following examples show how to write, register, and use BeanPostProcessor
s in an
ApplicationContext
.
This first example illustrates basic usage. The example shows a custom
BeanPostProcessor
implementation that invokes the toString()
method of each bean as
it is created by the container and prints the resulting string to the system console.
Find below the custom BeanPostProcessor
implementation class definition:
package scripting; import org.springframework.beans.factory.config.BeanPostProcessor; import org.springframework.beans.BeansException; public class InstantiationTracingBeanPostProcessor implements BeanPostProcessor { // simply return the instantiated bean as-is public Object postProcessBeforeInitialization(Object bean, String beanName) throws BeansException { return bean; // we could potentially return any object reference here... } public Object postProcessAfterInitialization(Object bean, String beanName) throws BeansException { System.out.println("Bean '" + beanName + "' created : " + bean.toString()); return bean; } }
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:lang="http://www.springframework.org/schema/lang" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang.xsd"> <lang:groovy id="messenger" script-source="classpath:org/springframework/scripting/groovy/Messenger.groovy"> <lang:property name="message" value="Fiona Apple Is Just So Dreamy."/> </lang:groovy> <!-- when the above bean (messenger) is instantiated, this custom BeanPostProcessor implementation will output the fact to the system console --> <bean class="scripting.InstantiationTracingBeanPostProcessor"/> </beans>
Notice how the InstantiationTracingBeanPostProcessor
is simply defined. It does not
even have a name, and because it is a bean it can be dependency-injected just like any
other bean. (The preceding configuration also defines a bean that is backed by a Groovy
script. The Spring dynamic language support is detailed in the chapter entitled
Chapter 35, Dynamic language support.)
The following simple Java application executes the preceding code and configuration:
import org.springframework.context.ApplicationContext; import org.springframework.context.support.ClassPathXmlApplicationContext; import org.springframework.scripting.Messenger; public final class Boot { public static void main(final String[] args) throws Exception { ApplicationContext ctx = new ClassPathXmlApplicationContext("scripting/beans.xml"); Messenger messenger = (Messenger) ctx.getBean("messenger"); System.out.println(messenger); } }
The output of the preceding application resembles the following:
Bean 'messenger' created : org.springframework.scripting.groovy.GroovyMessenger@272961 org.springframework.scripting.groovy.GroovyMessenger@272961
Using callback interfaces or annotations in conjunction with a custom
BeanPostProcessor
implementation is a common means of extending the Spring IoC
container. An example is Spring’s RequiredAnnotationBeanPostProcessor
- a
BeanPostProcessor
implementation that ships with the Spring distribution which ensures
that JavaBean properties on beans that are marked with an (arbitrary) annotation are
actually (configured to be) dependency-injected with a value.
The next extension point that we will look at is the
org.springframework.beans.factory.config.BeanFactoryPostProcessor
. The semantics of
this interface are similar to those of the BeanPostProcessor
, with one major
difference: BeanFactoryPostProcessor
operates on the bean configuration metadata;
that is, the Spring IoC container allows a BeanFactoryPostProcessor
to read the
configuration metadata and potentially change it before the container instantiates
any beans other than BeanFactoryPostProcessor
s.
You can configure multiple BeanFactoryPostProcessor
s, and you can control the order in
which these BeanFactoryPostProcessor
s execute by setting the order
property.
However, you can only set this property if the BeanFactoryPostProcessor
implements the
Ordered
interface. If you write your own BeanFactoryPostProcessor
, you should
consider implementing the Ordered
interface too. Consult the javadocs of the
BeanFactoryPostProcessor
and Ordered
interfaces for more details.
Note | |
---|---|
If you want to change the actual bean instances (i.e., the objects that are created
from the configuration metadata), then you instead need to use a Also, |
A bean factory post-processor is executed automatically when it is declared inside an
ApplicationContext
, in order to apply changes to the configuration metadata that
define the container. Spring includes a number of predefined bean factory
post-processors, such as PropertyOverrideConfigurer
and
PropertyPlaceholderConfigurer
. A custom BeanFactoryPostProcessor
can also be used,
for example, to register custom property editors.
An ApplicationContext
automatically detects any beans that are deployed into it that
implement the BeanFactoryPostProcessor
interface. It uses these beans as bean factory
post-processors, at the appropriate time. You can deploy these post-processor beans as
you would any other bean.
Note | |
---|---|
As with |
You use the PropertyPlaceholderConfigurer
to externalize property values from a bean
definition in a separate file using the standard Java Properties
format. Doing so
enables the person deploying an application to customize environment-specific properties
such as database URLs and passwords, without the complexity or risk of modifying the
main XML definition file or files for the container.
Consider the following XML-based configuration metadata fragment, where a DataSource
with placeholder values is defined. The example shows properties configured from an
external Properties
file. At runtime, a PropertyPlaceholderConfigurer
is applied to
the metadata that will replace some properties of the DataSource. The values to replace
are specified as placeholders of the form ${property-name}
which follows the Ant /
log4j / JSP EL style.
<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> <property name="locations" value="classpath:com/foo/jdbc.properties"/> </bean> <bean id="dataSource" destroy-method="close" class="org.apache.commons.dbcp.BasicDataSource"> <property name="driverClassName" value="${jdbc.driverClassName}"/> <property name="url" value="${jdbc.url}"/> <property name="username" value="${jdbc.username}"/> <property name="password" value="${jdbc.password}"/> </bean>
The actual values come from another file in the standard Java Properties
format:
jdbc.driverClassName=org.hsqldb.jdbcDriver jdbc.url=jdbc:hsqldb:hsql://production:9002 jdbc.username=sa jdbc.password=root
Therefore, the string ${jdbc.username}
is replaced at runtime with the value 'sa', and
the same applies for other placeholder values that match keys in the properties file.
The PropertyPlaceholderConfigurer
checks for placeholders in most properties and
attributes of a bean definition. Furthermore, the placeholder prefix and suffix can be
customized.
With the context
namespace introduced in Spring 2.5, it is possible to configure
property placeholders with a dedicated configuration element. One or more locations can
be provided as a comma-separated list in the location
attribute.
<context:property-placeholder location="classpath:com/foo/jdbc.properties"/>
The PropertyPlaceholderConfigurer
not only looks for properties in the Properties
file you specify. By default it also checks against the Java System
properties if it
cannot find a property in the specified properties files. You can customize this
behavior by setting the systemPropertiesMode
property of the configurer with one of
the following three supported integer values:
Consult the PropertyPlaceholderConfigurer
javadocs for more information.
Tip | |
---|---|
You can use the <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"> <property name="locations"> <value>classpath:com/foo/strategy.properties</value> </property> <property name="properties"> <value>custom.strategy.class=com.foo.DefaultStrategy</value> </property> </bean> <bean id="serviceStrategy" class="${custom.strategy.class}"/> If the class cannot be resolved at runtime to a valid class, resolution of the bean
fails when it is about to be created, which is during the |
The PropertyOverrideConfigurer
, another bean factory post-processor, resembles the
PropertyPlaceholderConfigurer
, but unlike the latter, the original definitions can
have default values or no values at all for bean properties. If an overriding
Properties
file does not have an entry for a certain bean property, the default
context definition is used.
Note that the bean definition is not aware of being overridden, so it is not
immediately obvious from the XML definition file that the override configurer is being
used. In case of multiple PropertyOverrideConfigurer
instances that define different
values for the same bean property, the last one wins, due to the overriding mechanism.
Properties file configuration lines take this format:
beanName.property=value
For example:
dataSource.driverClassName=com.mysql.jdbc.Driver dataSource.url=jdbc:mysql:mydb
This example file can be used with a container definition that contains a bean called dataSource, which has driver and url properties.
Compound property names are also supported, as long as every component of the path except the final property being overridden is already non-null (presumably initialized by the constructors). In this example…
foo.fred.bob.sammy=123
sammy
property of the bob
property of the fred
property of the foo
bean
is set to the scalar value 123
.
Note | |
---|---|
Specified override values are always literal values; they are not translated into bean references. This convention also applies when the original value in the XML bean definition specifies a bean reference. |
With the context
namespace introduced in Spring 2.5, it is possible to configure
property overriding with a dedicated configuration element:
<context:property-override location="classpath:override.properties"/>
Implement the org.springframework.beans.factory.FactoryBean
interface for objects that
are themselves factories.
The FactoryBean
interface is a point of pluggability into the Spring IoC container’s
instantiation logic. If you have complex initialization code that is better expressed in
Java as opposed to a (potentially) verbose amount of XML, you can create your own
FactoryBean
, write the complex initialization inside that class, and then plug your
custom FactoryBean
into the container.
The FactoryBean
interface provides three methods:
Object getObject()
: returns an instance of the object this factory creates. The
instance can possibly be shared, depending on whether this factory returns singletons
or prototypes.
boolean isSingleton()
: returns true
if this FactoryBean
returns singletons,
false
otherwise.
Class getObjectType()
: returns the object type returned by the getObject()
method
or null
if the type is not known in advance.
The FactoryBean
concept and interface is used in a number of places within the Spring
Framework; more than 50 implementations of the FactoryBean
interface ship with Spring
itself.
When you need to ask a container for an actual FactoryBean
instance itself instead of
the bean it produces, preface the bean’s id with the ampersand symbol ( &
) when
calling the getBean()
method of the ApplicationContext
. So for a given FactoryBean
with an id of myBean
, invoking getBean("myBean")
on the container returns the
product of the FactoryBean
; whereas, invoking getBean("&myBean")
returns the
FactoryBean
instance itself.
An alternative to XML setups is provided by annotation-based configuration which rely on
the bytecode metadata for wiring up components instead of angle-bracket declarations.
Instead of using XML to describe a bean wiring, the developer moves the configuration
into the component class itself by using annotations on the relevant class, method, or
field declaration. As mentioned in the section called “Example: The RequiredAnnotationBeanPostProcessor”, using
a BeanPostProcessor
in conjunction with annotations is a common means of extending the
Spring IoC container. For example, Spring 2.0 introduced the possibility of enforcing
required properties with the @Required annotation. Spring
2.5 made it possible to follow that same general approach to drive Spring’s dependency
injection. Essentially, the @Autowired
annotation provides the same capabilities as
described in Section 7.4.5, “Autowiring collaborators” but with more fine-grained control and wider
applicability. Spring 2.5 also added support for JSR-250 annotations such as
@PostConstruct
, and @PreDestroy
. Spring 3.0 added support for JSR-330 (Dependency
Injection for Java) annotations contained in the javax.inject package such as @Inject
and @Named
. Details about those annotations can be found in the
relevant section.
Note | |
---|---|
Annotation injection is performed before XML injection, thus the latter configuration will override the former for properties wired through both approaches. |
As always, you can register them as individual bean definitions, but they can also be
implicitly registered by including the following tag in an XML-based Spring
configuration (notice the inclusion of the context
namespace):
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd"> <context:annotation-config/> </beans>
(The implicitly registered post-processors include
AutowiredAnnotationBeanPostProcessor
,
CommonAnnotationBeanPostProcessor
,
PersistenceAnnotationBeanPostProcessor
,
as well as the aforementioned
RequiredAnnotationBeanPostProcessor
.)
Note | |
---|---|
|
The @Required
annotation applies to bean property setter methods, as in the following
example:
public class SimpleMovieLister { private MovieFinder movieFinder; @Required public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } // ... }
This annotation simply indicates that the affected bean property must be populated at
configuration time, through an explicit property value in a bean definition or through
autowiring. The container throws an exception if the affected bean property has not been
populated; this allows for eager and explicit failure, avoiding NullPointerException
s
or the like later on. It is still recommended that you put assertions into the bean
class itself, for example, into an init method. Doing so enforces those required
references and values even when you use the class outside of a container.
Note | |
---|---|
JSR 330’s |
You can apply the @Autowired
annotation to constructors:
public class MovieRecommender { private final CustomerPreferenceDao customerPreferenceDao; @Autowired public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) { this.customerPreferenceDao = customerPreferenceDao; } // ... }
Note | |
---|---|
As of Spring Framework 4.3, the |
As expected, you can also apply the @Autowired
annotation to "traditional" setter
methods:
public class SimpleMovieLister { private MovieFinder movieFinder; @Autowired public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } // ... }
You can also apply the annotation to methods with arbitrary names and/or multiple arguments:
public class MovieRecommender { private MovieCatalog movieCatalog; private CustomerPreferenceDao customerPreferenceDao; @Autowired public void prepare(MovieCatalog movieCatalog, CustomerPreferenceDao customerPreferenceDao) { this.movieCatalog = movieCatalog; this.customerPreferenceDao = customerPreferenceDao; } // ... }
You can apply @Autowired
to fields as well and even mix it with constructors:
public class MovieRecommender { private final CustomerPreferenceDao customerPreferenceDao; @Autowired private MovieCatalog movieCatalog; @Autowired public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) { this.customerPreferenceDao = customerPreferenceDao; } // ... }
It is also possible to provide all beans of a particular type from the
ApplicationContext
by adding the annotation to a field or method that expects an array
of that type:
public class MovieRecommender { @Autowired private MovieCatalog[] movieCatalogs; // ... }
The same applies for typed collections:
public class MovieRecommender { private Set<MovieCatalog> movieCatalogs; @Autowired public void setMovieCatalogs(Set<MovieCatalog> movieCatalogs) { this.movieCatalogs = movieCatalogs; } // ... }
Tip | |
---|---|
Your beans can implement the |
Even typed Maps can be autowired as long as the expected key type is String
. The Map
values will contain all beans of the expected type, and the keys will contain the
corresponding bean names:
public class MovieRecommender { private Map<String, MovieCatalog> movieCatalogs; @Autowired public void setMovieCatalogs(Map<String, MovieCatalog> movieCatalogs) { this.movieCatalogs = movieCatalogs; } // ... }
By default, the autowiring fails whenever zero candidate beans are available; the default behavior is to treat annotated methods, constructors, and fields as indicating required dependencies. This behavior can be changed as demonstrated below.
public class SimpleMovieLister { private MovieFinder movieFinder; @Autowired(required=false) public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } // ... }
Note | |
---|---|
Only one annotated constructor per-class can be marked as required, but multiple non-required constructors can be annotated. In that case, each is considered among the candidates and Spring uses the greediest constructor whose dependencies can be satisfied, that is the constructor that has the largest number of arguments.
|
You can also use @Autowired
for interfaces that are well-known resolvable
dependencies: BeanFactory
, ApplicationContext
, Environment
, ResourceLoader
,
ApplicationEventPublisher
, and MessageSource
. These interfaces and their extended
interfaces, such as ConfigurableApplicationContext
or ResourcePatternResolver
, are
automatically resolved, with no special setup necessary.
public class MovieRecommender { @Autowired private ApplicationContext context; public MovieRecommender() { } // ... }
Note | |
---|---|
|
Because autowiring by type may lead to multiple candidates, it is often necessary to have
more control over the selection process. One way to accomplish this is with Spring’s
@Primary
annotation. @Primary
indicates that a particular bean should be given
preference when multiple beans are candidates to be autowired to a single-valued
dependency. If exactly one 'primary' bean exists among the candidates, it will be the
autowired value.
Let’s assume we have the following configuration that defines firstMovieCatalog
as the
primary MovieCatalog
.
@Configuration public class MovieConfiguration { @Bean @Primary public MovieCatalog firstMovieCatalog() { ... } @Bean public MovieCatalog secondMovieCatalog() { ... } // ... }
With such configuration, the following MovieRecommender
will be autowired with the
firstMovieCatalog
.
public class MovieRecommender { @Autowired private MovieCatalog movieCatalog; // ... }
The corresponding bean definitions appear as follows.
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd"> <context:annotation-config/> <bean class="example.SimpleMovieCatalog" primary="true"> <!-- inject any dependencies required by this bean --> </bean> <bean class="example.SimpleMovieCatalog"> <!-- inject any dependencies required by this bean --> </bean> <bean id="movieRecommender" class="example.MovieRecommender"/> </beans>
@Primary
is an effective way to use autowiring by type with several instances when one
primary candidate can be determined. When more control over the selection process is
required, Spring’s @Qualifier
annotation can be used. You can associate qualifier values
with specific arguments, narrowing the set of type matches so that a specific bean is
chosen for each argument. In the simplest case, this can be a plain descriptive value:
public class MovieRecommender { @Autowired @Qualifier("main") private MovieCatalog movieCatalog; // ... }
The @Qualifier
annotation can also be specified on individual constructor arguments or
method parameters:
public class MovieRecommender { private MovieCatalog movieCatalog; private CustomerPreferenceDao customerPreferenceDao; @Autowired public void prepare(@Qualifier("main")MovieCatalog movieCatalog, CustomerPreferenceDao customerPreferenceDao) { this.movieCatalog = movieCatalog; this.customerPreferenceDao = customerPreferenceDao; } // ... }
The corresponding bean definitions appear as follows. The bean with qualifier value "main" is wired with the constructor argument that is qualified with the same value.
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd"> <context:annotation-config/> <bean class="example.SimpleMovieCatalog"> <qualifier value="main"/> <!-- inject any dependencies required by this bean --> </bean> <bean class="example.SimpleMovieCatalog"> <qualifier value="action"/> <!-- inject any dependencies required by this bean --> </bean> <bean id="movieRecommender" class="example.MovieRecommender"/> </beans>
For a fallback match, the bean name is considered a default qualifier value. Thus you
can define the bean with an id "main" instead of the nested qualifier element, leading
to the same matching result. However, although you can use this convention to refer to
specific beans by name, @Autowired
is fundamentally about type-driven injection with
optional semantic qualifiers. This means that qualifier values, even with the bean name
fallback, always have narrowing semantics within the set of type matches; they do not
semantically express a reference to a unique bean id. Good qualifier values are "main"
or "EMEA" or "persistent", expressing characteristics of a specific component that are
independent from the bean id
, which may be auto-generated in case of an anonymous bean
definition like the one in the preceding example.
Qualifiers also apply to typed collections, as discussed above, for example, to
Set<MovieCatalog>
. In this case, all matching beans according to the declared
qualifiers are injected as a collection. This implies that qualifiers do not have to be
unique; they rather simply constitute filtering criteria. For example, you can define
multiple MovieCatalog
beans with the same qualifier value "action", all of which would
be injected into a Set<MovieCatalog>
annotated with @Qualifier("action")
.
Tip | |
---|---|
If you intend to express annotation-driven injection by name, do not primarily use
For beans that are themselves defined as a collection/map or array type, As of 4.3,
|
You can create your own custom qualifier annotations. Simply define an annotation and
provide the @Qualifier
annotation within your definition:
@Target({ElementType.FIELD, ElementType.PARAMETER}) @Retention(RetentionPolicy.RUNTIME) @Qualifier public @interface Genre { String value(); }
Then you can provide the custom qualifier on autowired fields and parameters:
public class MovieRecommender { @Autowired @Genre("Action") private MovieCatalog actionCatalog; private MovieCatalog comedyCatalog; @Autowired public void setComedyCatalog(@Genre("Comedy") MovieCatalog comedyCatalog) { this.comedyCatalog = comedyCatalog; } // ... }
Next, provide the information for the candidate bean definitions. You can add
<qualifier/>
tags as sub-elements of the <bean/>
tag and then specify the type
and
value
to match your custom qualifier annotations. The type is matched against the
fully-qualified class name of the annotation. Or, as a convenience if no risk of
conflicting names exists, you can use the short class name. Both approaches are
demonstrated in the following example.
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd"> <context:annotation-config/> <bean class="example.SimpleMovieCatalog"> <qualifier type="Genre" value="Action"/> <!-- inject any dependencies required by this bean --> </bean> <bean class="example.SimpleMovieCatalog"> <qualifier type="example.Genre" value="Comedy"/> <!-- inject any dependencies required by this bean --> </bean> <bean id="movieRecommender" class="example.MovieRecommender"/> </beans>
In Section 7.10, “Classpath scanning and managed components”, you will see an annotation-based alternative to providing the qualifier metadata in XML. Specifically, see Section 7.10.8, “Providing qualifier metadata with annotations”.
In some cases, it may be sufficient to use an annotation without a value. This may be useful when the annotation serves a more generic purpose and can be applied across several different types of dependencies. For example, you may provide an offline catalog that would be searched when no Internet connection is available. First define the simple annotation:
@Target({ElementType.FIELD, ElementType.PARAMETER}) @Retention(RetentionPolicy.RUNTIME) @Qualifier public @interface Offline { }
Then add the annotation to the field or property to be autowired:
public class MovieRecommender { @Autowired @Offline private MovieCatalog offlineCatalog; // ... }
Now the bean definition only needs a qualifier type
:
<bean class="example.SimpleMovieCatalog"> <qualifier type="Offline"/> <!-- inject any dependencies required by this bean --> </bean>
You can also define custom qualifier annotations that accept named attributes in
addition to or instead of the simple value
attribute. If multiple attribute values are
then specified on a field or parameter to be autowired, a bean definition must match
all such attribute values to be considered an autowire candidate. As an example,
consider the following annotation definition:
@Target({ElementType.FIELD, ElementType.PARAMETER}) @Retention(RetentionPolicy.RUNTIME) @Qualifier public @interface MovieQualifier { String genre(); Format format(); }
In this case Format
is an enum:
public enum Format {
VHS, DVD, BLURAY
}
The fields to be autowired are annotated with the custom qualifier and include values
for both attributes: genre
and format
.
public class MovieRecommender { @Autowired @MovieQualifier(format=Format.VHS, genre="Action") private MovieCatalog actionVhsCatalog; @Autowired @MovieQualifier(format=Format.VHS, genre="Comedy") private MovieCatalog comedyVhsCatalog; @Autowired @MovieQualifier(format=Format.DVD, genre="Action") private MovieCatalog actionDvdCatalog; @Autowired @MovieQualifier(format=Format.BLURAY, genre="Comedy") private MovieCatalog comedyBluRayCatalog; // ... }
Finally, the bean definitions should contain matching qualifier values. This example
also demonstrates that bean meta attributes may be used instead of the
<qualifier/>
sub-elements. If available, the <qualifier/>
and its attributes take
precedence, but the autowiring mechanism falls back on the values provided within the
<meta/>
tags if no such qualifier is present, as in the last two bean definitions in
the following example.
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd"> <context:annotation-config/> <bean class="example.SimpleMovieCatalog"> <qualifier type="MovieQualifier"> <attribute key="format" value="VHS"/> <attribute key="genre" value="Action"/> </qualifier> <!-- inject any dependencies required by this bean --> </bean> <bean class="example.SimpleMovieCatalog"> <qualifier type="MovieQualifier"> <attribute key="format" value="VHS"/> <attribute key="genre" value="Comedy"/> </qualifier> <!-- inject any dependencies required by this bean --> </bean> <bean class="example.SimpleMovieCatalog"> <meta key="format" value="DVD"/> <meta key="genre" value="Action"/> <!-- inject any dependencies required by this bean --> </bean> <bean class="example.SimpleMovieCatalog"> <meta key="format" value="BLURAY"/> <meta key="genre" value="Comedy"/> <!-- inject any dependencies required by this bean --> </bean> </beans>
In addition to the @Qualifier
annotation, it is also possible to use Java generic types
as an implicit form of qualification. For example, suppose you have the following
configuration:
@Configuration public class MyConfiguration { @Bean public StringStore stringStore() { return new StringStore(); } @Bean public IntegerStore integerStore() { return new IntegerStore(); } }
Assuming that beans above implement a generic interface, i.e. Store<String>
and
Store<Integer>
, you can @Autowire
the Store
interface and the generic will
be used as a qualifier:
@Autowired private Store<String> s1; // <String> qualifier, injects the stringStore bean @Autowired private Store<Integer> s2; // <Integer> qualifier, injects the integerStore bean
Generic qualifiers also apply when autowiring Lists, Maps and Arrays:
// Inject all Store beans as long as they have an <Integer> generic // Store<String> beans will not appear in this list @Autowired private List<Store<Integer>> s;
The
CustomAutowireConfigurer
is a BeanFactoryPostProcessor
that enables you to register your own custom qualifier
annotation types even if they are not annotated with Spring’s @Qualifier
annotation.
<bean id="customAutowireConfigurer" class="org.springframework.beans.factory.annotation.CustomAutowireConfigurer"> <property name="customQualifierTypes"> <set> <value>example.CustomQualifier</value> </set> </property> </bean>
The AutowireCandidateResolver
determines autowire candidates by:
autowire-candidate
value of each bean definition
default-autowire-candidates
pattern(s) available on the <beans/>
element
@Qualifier
annotations and any custom annotations registered
with the CustomAutowireConfigurer
When multiple beans qualify as autowire candidates, the determination of a "primary" is
the following: if exactly one bean definition among the candidates has a primary
attribute set to true
, it will be selected.
Spring also supports injection using the JSR-250 @Resource
annotation on fields or
bean property setter methods. This is a common pattern in Java EE 5 and 6, for example
in JSF 1.2 managed beans or JAX-WS 2.0 endpoints. Spring supports this pattern for
Spring-managed objects as well.
@Resource
takes a name attribute, and by default Spring interprets that value as the
bean name to be injected. In other words, it follows by-name semantics, as
demonstrated in this example:
public class SimpleMovieLister { private MovieFinder movieFinder; @Resource(name="myMovieFinder") public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } }
If no name is specified explicitly, the default name is derived from the field name or setter method. In case of a field, it takes the field name; in case of a setter method, it takes the bean property name. So the following example is going to have the bean with name "movieFinder" injected into its setter method:
public class SimpleMovieLister { private MovieFinder movieFinder; @Resource public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } }
Note | |
---|---|
The name provided with the annotation is resolved as a bean name by the
|
In the exclusive case of @Resource
usage with no explicit name specified, and similar
to @Autowired
, @Resource
finds a primary type match instead of a specific named bean
and resolves well-known resolvable dependencies: the BeanFactory
,
ApplicationContext
, ResourceLoader
, ApplicationEventPublisher
, and MessageSource
interfaces.
Thus in the following example, the customerPreferenceDao
field first looks for a bean
named customerPreferenceDao, then falls back to a primary type match for the type
CustomerPreferenceDao
. The "context" field is injected based on the known resolvable
dependency type ApplicationContext
.
public class MovieRecommender { @Resource private CustomerPreferenceDao customerPreferenceDao; @Resource private ApplicationContext context; public MovieRecommender() { } // ... }
The CommonAnnotationBeanPostProcessor
not only recognizes the @Resource
annotation
but also the JSR-250 lifecycle annotations. Introduced in Spring 2.5, the support
for these annotations offers yet another alternative to those described in
initialization callbacks and
destruction callbacks. Provided that the
CommonAnnotationBeanPostProcessor
is registered within the Spring
ApplicationContext
, a method carrying one of these annotations is invoked at the same
point in the lifecycle as the corresponding Spring lifecycle interface method or
explicitly declared callback method. In the example below, the cache will be
pre-populated upon initialization and cleared upon destruction.
public class CachingMovieLister { @PostConstruct public void populateMovieCache() { // populates the movie cache upon initialization... } @PreDestroy public void clearMovieCache() { // clears the movie cache upon destruction... } }
Note | |
---|---|
For details about the effects of combining various lifecycle mechanisms, see the section called “Combining lifecycle mechanisms”. |
Most examples in this chapter use XML to specify the configuration metadata that produces
each BeanDefinition
within the Spring container. The previous section
(Section 7.9, “Annotation-based container configuration”) demonstrates how to provide a lot of the configuration
metadata through source-level annotations. Even in those examples, however, the "base"
bean definitions are explicitly defined in the XML file, while the annotations only drive
the dependency injection. This section describes an option for implicitly detecting the
candidate components by scanning the classpath. Candidate components are classes that
match against a filter criteria and have a corresponding bean definition registered with
the container. This removes the need to use XML to perform bean registration; instead you
can use annotations (for example @Component
), AspectJ type expressions, or your own
custom filter criteria to select which classes will have bean definitions registered with
the container.
Note | |
---|---|
Starting with Spring 3.0, many features provided by the Spring JavaConfig project are
part of the core Spring Framework. This allows you to define beans using Java rather
than using the traditional XML files. Take a look at the |
The @Repository
annotation is a marker for any class that fulfills the role or
stereotype of a repository (also known as Data Access Object or DAO). Among the uses
of this marker is the automatic translation of exceptions as described in
Section 20.2.2, “Exception translation”.
Spring provides further stereotype annotations: @Component
, @Service
, and
@Controller
. @Component
is a generic stereotype for any Spring-managed component.
@Repository
, @Service
, and @Controller
are specializations of @Component
for
more specific use cases, for example, in the persistence, service, and presentation
layers, respectively. Therefore, you can annotate your component classes with
@Component
, but by annotating them with @Repository
, @Service
, or @Controller
instead, your classes are more properly suited for processing by tools or associating
with aspects. For example, these stereotype annotations make ideal targets for
pointcuts. It is also possible that @Repository
, @Service
, and @Controller
may
carry additional semantics in future releases of the Spring Framework. Thus, if you are
choosing between using @Component
or @Service
for your service layer, @Service
is
clearly the better choice. Similarly, as stated above, @Repository
is already
supported as a marker for automatic exception translation in your persistence layer.
Many of the annotations provided by Spring can be used as meta-annotations in your
own code. A meta-annotation is simply an annotation that can be applied to another
annotation. For example, the @Service
annotation mentioned above is meta-annotated with
@Component
:
@Target(ElementType.TYPE) @Retention(RetentionPolicy.RUNTIME) @Documented @Component // Spring will see this and treat @Service in the same way as @Component public @interface Service { // .... }
Meta-annotations can also be combined to create composed annotations. For example,
the @RestController
annotation from Spring MVC is composed of @Controller
and
@ResponseBody
.
In addition, composed annotations may optionally redeclare attributes from
meta-annotations to allow user customization. This can be particularly useful when you
want to only expose a subset of the meta-annotation’s attributes. For example, Spring’s
@SessionScope
annotation hardcodes the scope name to session
but still allows
customization of the proxyMode
.
@Target({ElementType.TYPE, ElementType.METHOD}) @Retention(RetentionPolicy.RUNTIME) @Documented @Scope(WebApplicationContext.SCOPE_SESSION) public @interface SessionScope { /** * Alias for {@link Scope#proxyMode}. * <p>Defaults to {@link ScopedProxyMode#TARGET_CLASS}. */ @AliasFor(annotation = Scope.class) ScopedProxyMode proxyMode() default ScopedProxyMode.TARGET_CLASS; }
@SessionScope
can then be used without declaring the proxyMode
as follows:
@Service @SessionScope public class SessionScopedService { // ... }
Or with an overridden value for the proxyMode
as follows:
@Service @SessionScope(proxyMode = ScopedProxyMode.INTERFACES) public class SessionScopedUserService implements UserService { // ... }
For further details, consult the Spring Annotation Programming Model.
Spring can automatically detect stereotyped classes and register corresponding
BeanDefinition
s with the ApplicationContext
. For example, the following two classes
are eligible for such autodetection:
@Service public class SimpleMovieLister { private MovieFinder movieFinder; @Autowired public SimpleMovieLister(MovieFinder movieFinder) { this.movieFinder = movieFinder; } }
@Repository public class JpaMovieFinder implements MovieFinder { // implementation elided for clarity }
To autodetect these classes and register the corresponding beans, you need to add
@ComponentScan
to your @Configuration
class, where the basePackages
attribute
is a common parent package for the two classes. (Alternatively, you can specify a
comma/semicolon/space-separated list that includes the parent package of each class.)
@Configuration @ComponentScan(basePackages = "org.example") public class AppConfig { ... }
Note | |
---|---|
for concision, the above may have used the |
The following is an alternative using XML
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd"> <context:component-scan base-package="org.example"/> </beans>
Tip | |
---|---|
The use of |
Note | |
---|---|
The scanning of classpath packages requires the presence of corresponding directory entries in the classpath. When you build JARs with Ant, make sure that you do not activate the files-only switch of the JAR task. Also, classpath directories may not get exposed based on security policies in some environments, e.g. standalone apps on JDK 1.7.0_45 and higher (which requires 'Trusted-Library' setup in your manifests; see http://stackoverflow.com/questions/19394570/java-jre-7u45-breaks-classloader-getresources). |
Furthermore, the AutowiredAnnotationBeanPostProcessor
and
CommonAnnotationBeanPostProcessor
are both included implicitly when you use the
component-scan element. That means that the two components are autodetected and
wired together - all without any bean configuration metadata provided in XML.
Note | |
---|---|
You can disable the registration of |
By default, classes annotated with @Component
, @Repository
, @Service
,
@Controller
, or a custom annotation that itself is annotated with @Component
are the
only detected candidate components. However, you can modify and extend this behavior
simply by applying custom filters. Add them as includeFilters or excludeFilters
parameters of the @ComponentScan
annotation (or as include-filter or exclude-filter
sub-elements of the component-scan
element). Each filter element requires the type
and expression
attributes. The following table describes the filtering options.
Table 7.5. Filter Types
Filter Type | Example Expression | Description |
---|---|---|
annotation (default) |
| An annotation to be present at the type level in target components. |
assignable |
| A class (or interface) that the target components are assignable to (extend/implement). |
aspectj |
| An AspectJ type expression to be matched by the target components. |
regex |
| A regex expression to be matched by the target components class names. |
custom |
| A custom implementation of the |
The following example shows the configuration ignoring all @Repository
annotations
and using "stub" repositories instead.
@Configuration @ComponentScan(basePackages = "org.example", includeFilters = @Filter(type = FilterType.REGEX, pattern = ".*Stub.*Repository"), excludeFilters = @Filter(Repository.class)) public class AppConfig { ... }
and the equivalent using XML
<beans> <context:component-scan base-package="org.example"> <context:include-filter type="regex" expression=".*Stub.*Repository"/> <context:exclude-filter type="annotation" expression="org.springframework.stereotype.Repository"/> </context:component-scan> </beans>
Note | |
---|---|
You can also disable the default filters by setting |
Spring components can also contribute bean definition metadata to the container. You do
this with the same @Bean
annotation used to define bean metadata within @Configuration
annotated classes. Here is a simple example:
@Component public class FactoryMethodComponent { @Bean @Qualifier("public") public TestBean publicInstance() { return new TestBean("publicInstance"); } public void doWork() { // Component method implementation omitted } }
This class is a Spring component that has application-specific code contained in its
doWork()
method. However, it also contributes a bean definition that has a factory
method referring to the method publicInstance()
. The @Bean
annotation identifies the
factory method and other bean definition properties, such as a qualifier value through
the @Qualifier
annotation. Other method level annotations that can be specified are
@Scope
, @Lazy
, and custom qualifier annotations.
Tip | |
---|---|
In addition to its role for component initialization, the |
Autowired fields and methods are supported as previously discussed, with additional
support for autowiring of @Bean
methods:
@Component public class FactoryMethodComponent { private static int i; @Bean @Qualifier("public") public TestBean publicInstance() { return new TestBean("publicInstance"); } // use of a custom qualifier and autowiring of method parameters @Bean protected TestBean protectedInstance( @Qualifier("public") TestBean spouse, @Value("#{privateInstance.age}") String country) { TestBean tb = new TestBean("protectedInstance", 1); tb.setSpouse(spouse); tb.setCountry(country); return tb; } @Bean private TestBean privateInstance() { return new TestBean("privateInstance", i++); } @Bean @RequestScope public TestBean requestScopedInstance() { return new TestBean("requestScopedInstance", 3); } }
The example autowires the String
method parameter country
to the value of the Age
property on another bean named privateInstance
. A Spring Expression Language element
defines the value of the property through the notation #{ <expression> }
. For @Value
annotations, an expression resolver is preconfigured to look for bean names when
resolving expression text.
As of Spring Framework 4.3, you may also declare a factory method parameter of type
InjectionPoint
(or its more specific subclass DependencyDescriptor
) in order to
access the requesting injection point that triggers the creation of the current bean.
Note that this will only apply to the actual creation of bean instances, not to the
injection of existing instances. As a consequence, this feature makes most sense for
beans of prototype scope. For other scopes, the factory method will only ever see the
injection point which triggered the creation of a new bean instance in the given scope:
for example, the dependency that triggered the creation of a lazy singleton bean.
Use the provided injection point metadata with semantic care in such scenarios.
@Component public class FactoryMethodComponent { @Bean @Scope("prototype") public TestBean prototypeInstance(InjectionPoint injectionPoint) { return new TestBean("prototypeInstance for " + injectionPoint.getMember()); } }
The @Bean
methods in a regular Spring component are processed differently than their
counterparts inside a Spring @Configuration
class. The difference is that @Component
classes are not enhanced with CGLIB to intercept the invocation of methods and fields.
CGLIB proxying is the means by which invoking methods or fields within @Bean
methods
in @Configuration
classes creates bean metadata references to collaborating objects;
such methods are not invoked with normal Java semantics but rather go through the
container in order to provide the usual lifecycle management and proxying of Spring
beans even when referring to other beans via programmatic calls to @Bean
methods.
In contrast, invoking a method or field in an @Bean
method within a plain @Component
class has standard Java semantics, with no special CGLIB processing or other
constraints applying.
Note | |
---|---|
You may declare Note that calls to static The Java language visibility of
Finally, note that a single class may hold multiple |
When a component is autodetected as part of the scanning process, its bean name is
generated by the BeanNameGenerator
strategy known to that scanner. By default, any
Spring stereotype annotation (@Component
, @Repository
, @Service
, and
@Controller
) that contains a name value
will thereby provide that name to the
corresponding bean definition.
If such an annotation contains no name value
or for any other detected component (such
as those discovered by custom filters), the default bean name generator returns the
uncapitalized non-qualified class name. For example, if the following two components
were detected, the names would be myMovieLister
and movieFinderImpl
:
@Service("myMovieLister") public class SimpleMovieLister { // ... }
@Repository public class MovieFinderImpl implements MovieFinder { // ... }
Note | |
---|---|
If you do not want to rely on the default bean-naming strategy, you can provide a custom
bean-naming strategy. First, implement the
|
@Configuration @ComponentScan(basePackages = "org.example", nameGenerator = MyNameGenerator.class) public class AppConfig { ... }
<beans> <context:component-scan base-package="org.example" name-generator="org.example.MyNameGenerator" /> </beans>
As a general rule, consider specifying the name with the annotation whenever other components may be making explicit references to it. On the other hand, the auto-generated names are adequate whenever the container is responsible for wiring.
As with Spring-managed components in general, the default and most common scope for
autodetected components is singleton
. However, sometimes you need a different scope
which can be specified via the @Scope
annotation. Simply provide the name of the scope
within the annotation:
@Scope("prototype") @Repository public class MovieFinderImpl implements MovieFinder { // ... }
For details on web-specific scopes, see Section 7.5.4, “Request, session, global session, application, and WebSocket scopes”.
Note | |
---|---|
To provide a custom strategy for scope resolution rather than relying on the
annotation-based approach, implement the
|
@Configuration @ComponentScan(basePackages = "org.example", scopeResolver = MyScopeResolver.class) public class AppConfig { ... }
<beans> <context:component-scan base-package="org.example" scope-resolver="org.example.MyScopeResolver" /> </beans>
When using certain non-singleton scopes, it may be necessary to generate proxies for the scoped objects. The reasoning is described in the section called “Scoped beans as dependencies”. For this purpose, a scoped-proxy attribute is available on the component-scan element. The three possible values are: no, interfaces, and targetClass. For example, the following configuration will result in standard JDK dynamic proxies:
@Configuration @ComponentScan(basePackages = "org.example", scopedProxy = ScopedProxyMode.INTERFACES) public class AppConfig { ... }
<beans> <context:component-scan base-package="org.example" scoped-proxy="interfaces" /> </beans>
The @Qualifier
annotation is discussed in Section 7.9.4, “Fine-tuning annotation-based autowiring with qualifiers”.
The examples in that section demonstrate the use of the @Qualifier
annotation and
custom qualifier annotations to provide fine-grained control when you resolve autowire
candidates. Because those examples were based on XML bean definitions, the qualifier
metadata was provided on the candidate bean definitions using the qualifier
or meta
sub-elements of the bean
element in the XML. When relying upon classpath scanning for
autodetection of components, you provide the qualifier metadata with type-level
annotations on the candidate class. The following three examples demonstrate this
technique:
@Component @Qualifier("Action") public class ActionMovieCatalog implements MovieCatalog { // ... }
@Component @Genre("Action") public class ActionMovieCatalog implements MovieCatalog { // ... }
@Component @Offline public class CachingMovieCatalog implements MovieCatalog { // ... }
Note | |
---|---|
As with most annotation-based alternatives, keep in mind that the annotation metadata is bound to the class definition itself, while the use of XML allows for multiple beans of the same type to provide variations in their qualifier metadata, because that metadata is provided per-instance rather than per-class. |
Starting with Spring 3.0, Spring offers support for JSR-330 standard annotations (Dependency Injection). Those annotations are scanned in the same way as the Spring annotations. You just need to have the relevant jars in your classpath.
Note | |
---|---|
If you are using Maven, the <dependency> <groupId>javax.inject</groupId> <artifactId>javax.inject</artifactId> <version>1</version> </dependency> |
Instead of @Autowired
, @javax.inject.Inject
may be used as follows:
import javax.inject.Inject; public class SimpleMovieLister { private MovieFinder movieFinder; @Inject public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } public void listMovies() { this.movieFinder.findMovies(...); ... } }
As with @Autowired
, it is possible to use @Inject
at the field level, method level
and constructor-argument level. Furthermore, you may declare your injection point as a
Provider
, allowing for on-demand access to beans of shorter scopes or lazy access to
other beans through a Provider.get()
call. As a variant of the example above:
import javax.inject.Inject; import javax.inject.Provider; public class SimpleMovieLister { private Provider<MovieFinder> movieFinder; public void listMovies() { this.movieFinder.get().findMovies(...); ... } }
If you would like to use a qualified name for the dependency that should be injected,
you should use the @Named
annotation as follows:
import javax.inject.Inject; import javax.inject.Named; public class SimpleMovieLister { private MovieFinder movieFinder; @Inject public void setMovieFinder(@Named("main") MovieFinder movieFinder) { this.movieFinder = movieFinder; } // ... }
Instead of @Component
, @javax.inject.Named
or javax.annotation.ManagedBean
may be
used as follows:
import javax.inject.Inject; import javax.inject.Named; @Named("movieListener") // @ManagedBean("movieListener") could be used as well public class SimpleMovieLister { private MovieFinder movieFinder; @Inject public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } // ... }
It is very common to use @Component
without specifying a name for the component.
@Named
can be used in a similar fashion:
import javax.inject.Inject; import javax.inject.Named; @Named public class SimpleMovieLister { private MovieFinder movieFinder; @Inject public void setMovieFinder(MovieFinder movieFinder) { this.movieFinder = movieFinder; } // ... }
When using @Named
or @ManagedBean
, it is possible to use component scanning in the
exact same way as when using Spring annotations:
@Configuration @ComponentScan(basePackages = "org.example") public class AppConfig { ... }
Note | |
---|---|
In contrast to |
When working with standard annotations, it is important to know that some significant features are not available as shown in the table below:
Table 7.6. Spring component model elements vs. JSR-330 variants
Spring | javax.inject.* | javax.inject restrictions / comments |
---|---|---|
@Autowired | @Inject |
|
@Component | @Named / @ManagedBean | JSR-330 does not provide a composable model, just a way to identify named components. |
@Scope("singleton") | @Singleton | The JSR-330 default scope is like Spring’s |
@Qualifier | @Qualifier / @Named |
|
@Value | - | no equivalent |
@Required | - | no equivalent |
@Lazy | - | no equivalent |
ObjectFactory | Provider |
|
The central artifacts in Spring’s new Java-configuration support are
@Configuration
-annotated classes and @Bean
-annotated methods.
The @Bean
annotation is used to indicate that a method instantiates, configures and
initializes a new object to be managed by the Spring IoC container. For those familiar
with Spring’s <beans/>
XML configuration the @Bean
annotation plays the same role as
the <bean/>
element. You can use @Bean
annotated methods with any Spring
@Component
, however, they are most often used with @Configuration
beans.
Annotating a class with @Configuration
indicates that its primary purpose is as a
source of bean definitions. Furthermore, @Configuration
classes allow inter-bean
dependencies to be defined by simply calling other @Bean
methods in the same class.
The simplest possible @Configuration
class would read as follows:
@Configuration public class AppConfig { @Bean public MyService myService() { return new MyServiceImpl(); } }
The AppConfig
class above would be equivalent to the following Spring <beans/>
XML:
<beans> <bean id="myService" class="com.acme.services.MyServiceImpl"/> </beans>
The @Bean
and @Configuration
annotations will be discussed in depth in the sections
below. First, however, we’ll cover the various ways of creating a spring container using
Java-based configuration.
The sections below document Spring’s AnnotationConfigApplicationContext
, new in Spring
3.0. This versatile ApplicationContext
implementation is capable of accepting not only
@Configuration
classes as input, but also plain @Component
classes and classes
annotated with JSR-330 metadata.
When @Configuration
classes are provided as input, the @Configuration
class itself
is registered as a bean definition, and all declared @Bean
methods within the class
are also registered as bean definitions.
When @Component
and JSR-330 classes are provided, they are registered as bean
definitions, and it is assumed that DI metadata such as @Autowired
or @Inject
are
used within those classes where necessary.
In much the same way that Spring XML files are used as input when instantiating a
ClassPathXmlApplicationContext
, @Configuration
classes may be used as input when
instantiating an AnnotationConfigApplicationContext
. This allows for completely
XML-free usage of the Spring container:
public static void main(String[] args) { ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class); MyService myService = ctx.getBean(MyService.class); myService.doStuff(); }
As mentioned above, AnnotationConfigApplicationContext
is not limited to working only
with @Configuration
classes. Any @Component
or JSR-330 annotated class may be supplied
as input to the constructor. For example:
public static void main(String[] args) { ApplicationContext ctx = new AnnotationConfigApplicationContext(MyServiceImpl.class, Dependency1.class, Dependency2.class); MyService myService = ctx.getBean(MyService.class); myService.doStuff(); }
The above assumes that MyServiceImpl
, Dependency1
and Dependency2
use Spring
dependency injection annotations such as @Autowired
.
An AnnotationConfigApplicationContext
may be instantiated using a no-arg constructor
and then configured using the register()
method. This approach is particularly useful
when programmatically building an AnnotationConfigApplicationContext
.
public static void main(String[] args) { AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext(); ctx.register(AppConfig.class, OtherConfig.class); ctx.register(AdditionalConfig.class); ctx.refresh(); MyService myService = ctx.getBean(MyService.class); myService.doStuff(); }
To enable component scanning, just annotate your @Configuration
class as follows:
@Configuration @ComponentScan(basePackages = "com.acme") public class AppConfig { ... }
Tip | |
---|---|
Experienced Spring users will be familiar with the XML declaration equivalent from
Spring’s <beans> <context:component-scan base-package="com.acme"/> </beans> |
In the example above, the com.acme
package will be scanned, looking for any
@Component
-annotated classes, and those classes will be registered as Spring bean
definitions within the container. AnnotationConfigApplicationContext
exposes the
scan(String…)
method to allow for the same component-scanning functionality:
public static void main(String[] args) { AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext(); ctx.scan("com.acme"); ctx.refresh(); MyService myService = ctx.getBean(MyService.class); }
Note | |
---|---|
Remember that |
A WebApplicationContext
variant of AnnotationConfigApplicationContext
is available
with AnnotationConfigWebApplicationContext
. This implementation may be used when
configuring the Spring ContextLoaderListener
servlet listener, Spring MVC
DispatcherServlet
, etc. What follows is a web.xml
snippet that configures a typical
Spring MVC web application. Note the use of the contextClass
context-param and
init-param:
<web-app> <!-- Configure ContextLoaderListener to use AnnotationConfigWebApplicationContext instead of the default XmlWebApplicationContext --> <context-param> <param-name>contextClass</param-name> <param-value> org.springframework.web.context.support.AnnotationConfigWebApplicationContext </param-value> </context-param> <!-- Configuration locations must consist of one or more comma- or space-delimited fully-qualified @Configuration classes. Fully-qualified packages may also be specified for component-scanning --> <context-param> <param-name>contextConfigLocation</param-name> <param-value>com.acme.AppConfig</param-value> </context-param> <!-- Bootstrap the root application context as usual using ContextLoaderListener --> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> <!-- Declare a Spring MVC DispatcherServlet as usual --> <servlet> <servlet-name>dispatcher</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <!-- Configure DispatcherServlet to use AnnotationConfigWebApplicationContext instead of the default XmlWebApplicationContext --> <init-param> <param-name>contextClass</param-name> <param-value> org.springframework.web.context.support.AnnotationConfigWebApplicationContext </param-value> </init-param> <!-- Again, config locations must consist of one or more comma- or space-delimited and fully-qualified @Configuration classes --> <init-param> <param-name>contextConfigLocation</param-name> <param-value>com.acme.web.MvcConfig</param-value> </init-param> </servlet> <!-- map all requests for /app/* to the dispatcher servlet --> <servlet-mapping> <servlet-name>dispatcher</servlet-name> <url-pattern>/app/*</url-pattern> </servlet-mapping> </web-app>
@Bean
is a method-level annotation and a direct analog of the XML <bean/>
element.
The annotation supports some of the attributes offered by <bean/>
, such as:
init-method,
destroy-method,
autowiring and name
.
You can use the @Bean
annotation in a @Configuration
-annotated or in a
@Component
-annotated class.
To declare a bean, simply annotate a method with the @Bean
annotation. You use this
method to register a bean definition within an ApplicationContext
of the type
specified as the method’s return value. By default, the bean name will be the same as
the method name. The following is a simple example of a @Bean
method declaration:
@Configuration public class AppConfig { @Bean public TransferService transferService() { return new TransferServiceImpl(); } }
The preceding configuration is exactly equivalent to the following Spring XML:
<beans> <bean id="transferService" class="com.acme.TransferServiceImpl"/> </beans>
Both declarations make a bean named transferService
available in the
ApplicationContext
, bound to an object instance of type TransferServiceImpl
:
transferService -> com.acme.TransferServiceImpl
A @Bean
annotated method can have an arbitrary number of parameters describing the
dependencies required to build that bean. For instance if our TransferService
requires an AccountRepository
we can materialize that dependency via a method
parameter:
@Configuration public class AppConfig { @Bean public TransferService transferService(AccountRepository accountRepository) { return new TransferServiceImpl(accountRepository); } }
The resolution mechanism is pretty much identical to constructor-based dependency injection, see the relevant section for more details.
Any classes defined with the @Bean
annotation support the regular lifecycle callbacks
and can use the @PostConstruct
and @PreDestroy
annotations from JSR-250, see
JSR-250 annotations for further
details.
The regular Spring lifecycle callbacks are fully supported as
well. If a bean implements InitializingBean
, DisposableBean
, or Lifecycle
, their
respective methods are called by the container.
The standard set of *Aware
interfaces such as BeanFactoryAware,
BeanNameAware,
MessageSourceAware,
ApplicationContextAware, and so on are also fully supported.
The @Bean
annotation supports specifying arbitrary initialization and destruction
callback methods, much like Spring XML’s init-method
and destroy-method
attributes
on the bean
element:
public class Foo { public void init() { // initialization logic } } public class Bar { public void cleanup() { // destruction logic } } @Configuration public class AppConfig { @Bean(initMethod = "init") public Foo foo() { return new Foo(); } @Bean(destroyMethod = "cleanup") public Bar bar() { return new Bar(); } }
Note | |
---|---|
By default, beans defined using Java config that have a public You may want to do that by default for a resource that you acquire via JNDI as its
lifecycle is managed outside the application. In particular, make sure to always do it
for a @Bean(destroyMethod="") public DataSource dataSource() throws NamingException { return (DataSource) jndiTemplate.lookup("MyDS"); } Also, with |
Of course, in the case of Foo
above, it would be equally as valid to call the init()
method directly during construction:
@Configuration public class AppConfig { @Bean public Foo foo() { Foo foo = new Foo(); foo.init(); return foo; } // ... }
Tip | |
---|---|
When you work directly in Java, you can do anything you like with your objects and do not always need to rely on the container lifecycle! |
You can specify that your beans defined with the @Bean
annotation should have a
specific scope. You can use any of the standard scopes specified in the
Bean Scopes section.
The default scope is singleton
, but you can override this with the @Scope
annotation:
@Configuration public class MyConfiguration { @Bean @Scope("prototype") public Encryptor encryptor() { // ... } }
Spring offers a convenient way of working with scoped dependencies through
scoped proxies. The easiest way to create such
a proxy when using the XML configuration is the <aop:scoped-proxy/>
element.
Configuring your beans in Java with a @Scope annotation offers equivalent support with
the proxyMode attribute. The default is no proxy ( ScopedProxyMode.NO
), but you can
specify ScopedProxyMode.TARGET_CLASS
or ScopedProxyMode.INTERFACES
.
If you port the scoped proxy example from the XML reference documentation (see preceding
link) to our @Bean
using Java, it would look like the following:
// an HTTP Session-scoped bean exposed as a proxy @Bean @SessionScope public UserPreferences userPreferences() { return new UserPreferences(); } @Bean public Service userService() { UserService service = new SimpleUserService(); // a reference to the proxied userPreferences bean service.setUserPreferences(userPreferences()); return service; }
By default, configuration classes use a @Bean
method’s name as the name of the
resulting bean. This functionality can be overridden, however, with the name
attribute.
@Configuration public class AppConfig { @Bean(name = "myFoo") public Foo foo() { return new Foo(); } }
As discussed in Section 7.3.1, “Naming beans”, it is sometimes desirable to give a single bean
multiple names, otherwise known as bean aliasing. The name
attribute of the @Bean
annotation accepts a String array for this purpose.
@Configuration public class AppConfig { @Bean(name = { "dataSource", "subsystemA-dataSource", "subsystemB-dataSource" }) public DataSource dataSource() { // instantiate, configure and return DataSource bean... } }
Sometimes it is helpful to provide a more detailed textual description of a bean. This can be particularly useful when beans are exposed (perhaps via JMX) for monitoring purposes.
To add a description to a @Bean
the
@Description
annotation can be used:
@Configuration public class AppConfig { @Bean @Description("Provides a basic example of a bean") public Foo foo() { return new Foo(); } }
@Configuration
is a class-level annotation indicating that an object is a source of
bean definitions. @Configuration
classes declare beans via public @Bean
annotated
methods. Calls to @Bean
methods on @Configuration
classes can also be used to define
inter-bean dependencies. See Section 7.12.1, “Basic concepts: @Bean and @Configuration” for a general introduction.
When @Bean
s have dependencies on one another, expressing that dependency is as simple
as having one bean method call another:
@Configuration public class AppConfig { @Bean public Foo foo() { return new Foo(bar()); } @Bean public Bar bar() { return new Bar(); } }
In the example above, the foo
bean receives a reference to bar
via constructor
injection.
Note | |
---|---|
This method of declaring inter-bean dependencies only works when the |
As noted earlier, lookup method injection is an advanced feature that you should use rarely. It is useful in cases where a singleton-scoped bean has a dependency on a prototype-scoped bean. Using Java for this type of configuration provides a natural means for implementing this pattern.
public abstract class CommandManager { public Object process(Object commandState) { // grab a new instance of the appropriate Command interface Command command = createCommand(); // set the state on the (hopefully brand new) Command instance command.setState(commandState); return command.execute(); } // okay... but where is the implementation of this method? protected abstract Command createCommand(); }
Using Java-configuration support , you can create a subclass of CommandManager
where
the abstract createCommand()
method is overridden in such a way that it looks up a new
(prototype) command object:
@Bean @Scope("prototype") public AsyncCommand asyncCommand() { AsyncCommand command = new AsyncCommand(); // inject dependencies here as required return command; } @Bean public CommandManager commandManager() { // return new anonymous implementation of CommandManager with command() overridden // to return a new prototype Command object return new CommandManager() { protected Command createCommand() { return asyncCommand(); } } }
The following example shows a @Bean
annotated method being called twice:
@Configuration public class AppConfig { @Bean public ClientService clientService1() { ClientServiceImpl clientService = new ClientServiceImpl(); clientService.setClientDao(clientDao()); return clientService; } @Bean public ClientService clientService2() { ClientServiceImpl clientService = new ClientServiceImpl(); clientService.setClientDao(clientDao()); return clientService; } @Bean public ClientDao clientDao() { return new ClientDaoImpl(); } }
clientDao()
has been called once in clientService1()
and once in clientService2()
.
Since this method creates a new instance of ClientDaoImpl
and returns it, you would
normally expect having 2 instances (one for each service). That definitely would be
problematic: in Spring, instantiated beans have a singleton
scope by default. This is
where the magic comes in: All @Configuration
classes are subclassed at startup-time
with CGLIB
. In the subclass, the child method checks the container first for any
cached (scoped) beans before it calls the parent method and creates a new instance. Note
that as of Spring 3.2, it is no longer necessary to add CGLIB to your classpath because
CGLIB classes have been repackaged under org.springframework.cglib
and included directly
within the spring-core JAR.
Note | |
---|---|
The behavior could be different according to the scope of your bean. We are talking about singletons here. |
Tip | |
---|---|
There are a few restrictions due to the fact that CGLIB dynamically adds features at
startup-time, in particular that configuration classes must not be final. However, as
of 4.3, any constructors are allowed on configuration classes, including the use of
If you prefer to avoid any CGLIB-imposed limitations, consider declaring your |
Much as the <import/>
element is used within Spring XML files to aid in modularizing
configurations, the @Import
annotation allows for loading @Bean
definitions from
another configuration class:
@Configuration public class ConfigA { @Bean public A a() { return new A(); } } @Configuration @Import(ConfigA.class) public class ConfigB { @Bean public B b() { return new B(); } }
Now, rather than needing to specify both ConfigA.class
and ConfigB.class
when
instantiating the context, only ConfigB
needs to be supplied explicitly:
public static void main(String[] args) { ApplicationContext ctx = new AnnotationConfigApplicationContext(ConfigB.class); // now both beans A and B will be available... A a = ctx.getBean(A.class); B b = ctx.getBean(B.class); }
This approach simplifies container instantiation, as only one class needs to be dealt
with, rather than requiring the developer to remember a potentially large number of
@Configuration
classes during construction.
Tip | |
---|---|
As of Spring Framework 4.2, |
The example above works, but is simplistic. In most practical scenarios, beans will have
dependencies on one another across configuration classes. When using XML, this is not an
issue, per se, because there is no compiler involved, and one can simply declare
ref="someBean"
and trust that Spring will work it out during container initialization.
Of course, when using @Configuration
classes, the Java compiler places constraints on
the configuration model, in that references to other beans must be valid Java syntax.
Fortunately, solving this problem is simple. As we already discussed,
@Bean
method can have an arbitrary number of parameters describing the bean
dependencies. Let’s consider a more real-world scenario with several @Configuration
classes, each depending on beans declared in the others:
@Configuration public class ServiceConfig { @Bean public TransferService transferService(AccountRepository accountRepository) { return new TransferServiceImpl(accountRepository); } } @Configuration public class RepositoryConfig { @Bean public AccountRepository accountRepository(DataSource dataSource) { return new JdbcAccountRepository(dataSource); } } @Configuration @Import({ServiceConfig.class, RepositoryConfig.class}) public class SystemTestConfig { @Bean public DataSource dataSource() { // return new DataSource } } public static void main(String[] args) { ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig.class); // everything wires up across configuration classes... TransferService transferService = ctx.getBean(TransferService.class); transferService.transfer(100.00, "A123", "C456"); }
There is another way to achieve the same result. Remember that @Configuration
classes are
ultimately just another bean in the container: This means that they can take advantage of
@Autowired
and @Value
injection etc just like any other bean!
Warning | |
---|---|
Make sure that the dependencies you inject that way are of the simplest kind only. Also, be particularly careful with |
@Configuration public class ServiceConfig { @Autowired private AccountRepository accountRepository; @Bean public TransferService transferService() { return new TransferServiceImpl(accountRepository); } } @Configuration public class RepositoryConfig { private final DataSource dataSource; @Autowired public RepositoryConfig(DataSource dataSource) { this.dataSource = dataSource; } @Bean public AccountRepository accountRepository() { return new JdbcAccountRepository(dataSource); } } @Configuration @Import({ServiceConfig.class, RepositoryConfig.class}) public class SystemTestConfig { @Bean public DataSource dataSource() { // return new DataSource } } public static void main(String[] args) { ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig.class); // everything wires up across configuration classes... TransferService transferService = ctx.getBean(TransferService.class); transferService.transfer(100.00, "A123", "C456"); }
Tip | |
---|---|
Constructor injection in |
In the scenario above, using @Autowired
works well and provides the desired
modularity, but determining exactly where the autowired bean definitions are declared is
still somewhat ambiguous. For example, as a developer looking at ServiceConfig
, how do
you know exactly where the @Autowired AccountRepository
bean is declared? It’s not
explicit in the code, and this may be just fine. Remember that the
Spring Tool Suite provides tooling that
can render graphs showing how everything is wired up - that may be all you need. Also,
your Java IDE can easily find all declarations and uses of the AccountRepository
type,
and will quickly show you the location of @Bean
methods that return that type.
In cases where this ambiguity is not acceptable and you wish to have direct navigation
from within your IDE from one @Configuration
class to another, consider autowiring the
configuration classes themselves:
@Configuration public class ServiceConfig { @Autowired private RepositoryConfig repositoryConfig; @Bean public TransferService transferService() { // navigate 'through' the config class to the @Bean method! return new TransferServiceImpl(repositoryConfig.accountRepository()); } }
In the situation above, it is completely explicit where AccountRepository
is defined.
However, ServiceConfig
is now tightly coupled to RepositoryConfig
; that’s the
tradeoff. This tight coupling can be somewhat mitigated by using interface-based or
abstract class-based @Configuration
classes. Consider the following:
@Configuration public class ServiceConfig { @Autowired private RepositoryConfig repositoryConfig; @Bean public TransferService transferService() { return new TransferServiceImpl(repositoryConfig.accountRepository()); } } @Configuration public interface RepositoryConfig { @Bean AccountRepository accountRepository(); } @Configuration public class DefaultRepositoryConfig implements RepositoryConfig { @Bean public AccountRepository accountRepository() { return new JdbcAccountRepository(...); } } @Configuration @Import({ServiceConfig.class, DefaultRepositoryConfig.class}) // import the concrete config! public class SystemTestConfig { @Bean public DataSource dataSource() { // return DataSource } } public static void main(String[] args) { ApplicationContext ctx = new AnnotationConfigApplicationContext(SystemTestConfig.class); TransferService transferService = ctx.getBean(TransferService.class); transferService.transfer(100.00, "A123", "C456"); }
Now ServiceConfig
is loosely coupled with respect to the concrete
DefaultRepositoryConfig
, and built-in IDE tooling is still useful: it will be easy for
the developer to get a type hierarchy of RepositoryConfig
implementations. In this
way, navigating @Configuration
classes and their dependencies becomes no different
than the usual process of navigating interface-based code.
It is often useful to conditionally enable or disable a complete @Configuration
class,
or even individual @Bean
methods, based on some arbitrary system state. One common
example of this is to use the @Profile
annotation to activate beans only when a specific
profile has been enabled in the Spring Environment
(see Section 7.13.1, “Bean definition profiles”
for details).
The @Profile
annotation is actually implemented using a much more flexible annotation
called @Conditional
.
The @Conditional
annotation indicates specific
org.springframework.context.annotation.Condition
implementations that should be
consulted before a @Bean
is registered.
Implementations of the Condition
interface simply provide a matches(…)
method that returns true
or false
. For example, here is the actual
Condition
implementation used for @Profile
:
@Override public boolean matches(ConditionContext context, AnnotatedTypeMetadata metadata) { if (context.getEnvironment() != null) { // Read the @Profile annotation attributes MultiValueMap<String, Object> attrs = metadata.getAllAnnotationAttributes(Profile.class.getName()); if (attrs != null) { for (Object value : attrs.get("value")) { if (context.getEnvironment().acceptsProfiles(((String[]) value))) { return true; } } return false; } } return true; }
See the
@Conditional
javadocs for more detail.
Spring’s @Configuration
class support does not aim to be a 100% complete replacement
for Spring XML. Some facilities such as Spring XML namespaces remain an ideal way to
configure the container. In cases where XML is convenient or necessary, you have a
choice: either instantiate the container in an "XML-centric" way using, for example,
ClassPathXmlApplicationContext
, or in a "Java-centric" fashion using
AnnotationConfigApplicationContext
and the @ImportResource
annotation to import XML
as needed.
It may be preferable to bootstrap the Spring container from XML and include
@Configuration
classes in an ad-hoc fashion. For example, in a large existing codebase
that uses Spring XML, it will be easier to create @Configuration
classes on an
as-needed basis and include them from the existing XML files. Below you’ll find the
options for using @Configuration
classes in this kind of "XML-centric" situation.
Remember that @Configuration
classes are ultimately just bean definitions in the
container. In this example, we create a @Configuration
class named AppConfig
and
include it within system-test-config.xml
as a <bean/>
definition. Because
<context:annotation-config/>
is switched on, the container will recognize the
@Configuration
annotation and process the @Bean
methods declared in AppConfig
properly.
@Configuration public class AppConfig { @Autowired private DataSource dataSource; @Bean public AccountRepository accountRepository() { return new JdbcAccountRepository(dataSource); } @Bean public TransferService transferService() { return new TransferService(accountRepository()); } }
system-test-config.xml:
<beans> <!-- enable processing of annotations such as @Autowired and @Configuration --> <context:annotation-config/> <context:property-placeholder location="classpath:/com/acme/jdbc.properties"/> <bean class="com.acme.AppConfig"/> <bean class="org.springframework.jdbc.datasource.DriverManagerDataSource"> <property name="url" value="${jdbc.url}"/> <property name="username" value="${jdbc.username}"/> <property name="password" value="${jdbc.password}"/> </bean> </beans>
jdbc.properties:
jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password=
public static void main(String[] args) { ApplicationContext ctx = new ClassPathXmlApplicationContext("classpath:/com/acme/system-test-config.xml"); TransferService transferService = ctx.getBean(TransferService.class); // ... }
Note | |
---|---|
In |
Because @Configuration
is meta-annotated with @Component
, @Configuration
-annotated
classes are automatically candidates for component scanning. Using the same scenario as
above, we can redefine system-test-config.xml
to take advantage of component-scanning.
Note that in this case, we don’t need to explicitly declare
<context:annotation-config/>
, because <context:component-scan/>
enables the same
functionality.
system-test-config.xml:
<beans> <!-- picks up and registers AppConfig as a bean definition --> <context:component-scan base-package="com.acme"/> <context:property-placeholder location="classpath:/com/acme/jdbc.properties"/> <bean class="org.springframework.jdbc.datasource.DriverManagerDataSource"> <property name="url" value="${jdbc.url}"/> <property name="username" value="${jdbc.username}"/> <property name="password" value="${jdbc.password}"/> </bean> </beans>
In applications where @Configuration
classes are the primary mechanism for configuring
the container, it will still likely be necessary to use at least some XML. In these
scenarios, simply use @ImportResource
and define only as much XML as is needed. Doing
so achieves a "Java-centric" approach to configuring the container and keeps XML to a
bare minimum.
@Configuration @ImportResource("classpath:/com/acme/properties-config.xml") public class AppConfig { @Value("${jdbc.url}") private String url; @Value("${jdbc.username}") private String username; @Value("${jdbc.password}") private String password; @Bean public DataSource dataSource() { return new DriverManagerDataSource(url, username, password); } }
properties-config.xml <beans> <context:property-placeholder location="classpath:/com/acme/jdbc.properties"/> </beans>
jdbc.properties jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password=
public static void main(String[] args) { ApplicationContext ctx = new AnnotationConfigApplicationContext(AppConfig.class); TransferService transferService = ctx.getBean(TransferService.class); // ... }
The Environment
is an abstraction integrated in the container that models two key
aspects of the application environment: profiles
and properties.
A profile is a named, logical group of bean definitions to be registered with the
container only if the given profile is active. Beans may be assigned to a profile
whether defined in XML or via annotations. The role of the Environment
object with
relation to profiles is in determining which profiles (if any) are currently active,
and which profiles (if any) should be active by default.
Properties play an important role in almost all applications, and may originate from
a variety of sources: properties files, JVM system properties, system environment
variables, JNDI, servlet context parameters, ad-hoc Properties objects, Maps, and so
on. The role of the Environment
object with relation to properties is to provide the
user with a convenient service interface for configuring property sources and resolving
properties from them.
Bean definition profiles is a mechanism in the core container that allows for registration of different beans in different environments. The word environment can mean different things to different users and this feature can help with many use cases, including:
Let’s consider the first use case in a practical application that requires a
DataSource
. In a test environment, the configuration may look like this:
@Bean public DataSource dataSource() { return new EmbeddedDatabaseBuilder() .setType(EmbeddedDatabaseType.HSQL) .addScript("my-schema.sql") .addScript("my-test-data.sql") .build(); }
Let’s now consider how this application will be deployed into a QA or production
environment, assuming that the datasource for the application will be registered
with the production application server’s JNDI directory. Our dataSource
bean
now looks like this:
@Bean(destroyMethod="") public DataSource dataSource() throws Exception { Context ctx = new InitialContext(); return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource"); }
The problem is how to switch between using these two variations based on the
current environment. Over time, Spring users have devised a number of ways to
get this done, usually relying on a combination of system environment variables
and XML <import/>
statements containing ${placeholder}
tokens that resolve
to the correct configuration file path depending on the value of an environment
variable. Bean definition profiles is a core container feature that provides a
solution to this problem.
If we generalize the example use case above of environment-specific bean definitions, we end up with the need to register certain bean definitions in certain contexts, while not in others. You could say that you want to register a certain profile of bean definitions in situation A, and a different profile in situation B. Let’s first see how we can update our configuration to reflect this need.
The @Profile
annotation allows you to indicate that a component is eligible for registration
when one or more specified profiles are active. Using our example above, we
can rewrite the dataSource
configuration as follows:
@Configuration @Profile("dev") public class StandaloneDataConfig { @Bean public DataSource dataSource() { return new EmbeddedDatabaseBuilder() .setType(EmbeddedDatabaseType.HSQL) .addScript("classpath:com/bank/config/sql/schema.sql") .addScript("classpath:com/bank/config/sql/test-data.sql") .build(); } }
@Configuration @Profile("production") public class JndiDataConfig { @Bean(destroyMethod="") public DataSource dataSource() throws Exception { Context ctx = new InitialContext(); return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource"); } }
Note | |
---|---|
As mentioned before, with |
@Profile
can be used as a meta-annotation for the purpose
of creating a custom composed annotation. The following example defines a custom
@Production
annotation that can be used as a drop-in replacement for
@Profile("production")
:
@Target(ElementType.TYPE) @Retention(RetentionPolicy.RUNTIME) @Profile("production") public @interface Production { }
@Profile
can also be declared at the method level to include only one particular bean
of a configuration class:
@Configuration public class AppConfig { @Bean @Profile("dev") public DataSource devDataSource() { return new EmbeddedDatabaseBuilder() .setType(EmbeddedDatabaseType.HSQL) .addScript("classpath:com/bank/config/sql/schema.sql") .addScript("classpath:com/bank/config/sql/test-data.sql") .build(); } @Bean @Profile("production") public DataSource productionDataSource() throws Exception { Context ctx = new InitialContext(); return (DataSource) ctx.lookup("java:comp/env/jdbc/datasource"); } }
Tip | |
---|---|
If a |
The XML counterpart is the profile
attribute of the <beans>
element. Our sample
configuration above can be rewritten in two XML files as follows:
<beans profile="dev" xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:jdbc="http://www.springframework.org/schema/jdbc" xsi:schemaLocation="..."> <jdbc:embedded-database id="dataSource"> <jdbc:script location="classpath:com/bank/config/sql/schema.sql"/> <jdbc:script location="classpath:com/bank/config/sql/test-data.sql"/> </jdbc:embedded-database> </beans>
<beans profile="production" xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:jee="http://www.springframework.org/schema/jee" xsi:schemaLocation="..."> <jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/datasource"/> </beans>
It is also possible to avoid that split and nest <beans/>
elements within the same file:
<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:jdbc="http://www.springframework.org/schema/jdbc" xmlns:jee="http://www.springframework.org/schema/jee" xsi:schemaLocation="..."> <!-- other bean definitions --> <beans profile="dev"> <jdbc:embedded-database id="dataSource"> <jdbc:script location="classpath:com/bank/config/sql/schema.sql"/> <jdbc:script location="classpath:com/bank/config/sql/test-data.sql"/> </jdbc:embedded-database> </beans> <beans profile="production"> <jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/datasource"/> </beans> </beans>
The spring-bean.xsd
has been constrained to allow such elements only as the
last ones in the file. This should help provide flexibility without incurring
clutter in the XML files.
Now that we have updated our configuration, we still need to instruct Spring which
profile is active. If we started our sample application right now, we would see
a NoSuchBeanDefinitionException
thrown, because the container could not find
the Spring bean named dataSource
.
Activating a profile can be done in several ways, but the most straightforward is to do
it programmatically against the Environment
API which is available via an
ApplicationContext
:
AnnotationConfigApplicationContext ctx = new AnnotationConfigApplicationContext(); ctx.getEnvironment().setActiveProfiles("dev"); ctx.register(SomeConfig.class, StandaloneDataConfig.class, JndiDataConfig.class); ctx.refresh();
In addition, profiles may also be activated declaratively through the
spring.profiles.active
property which may be specified through system environment
variables, JVM system properties, servlet context parameters in web.xml
, or even as an
entry in JNDI (see Section 7.13.3, “PropertySource abstraction”). In integration tests, active
profiles can be declared via the @ActiveProfiles
annotation in the spring-test
module
(see the section called “Context configuration with environment profiles”).
Note that profiles are not an "either-or" proposition; it is possible to activate multiple
profiles at once. Programmatically, simply provide multiple profile names to the
setActiveProfiles()
method, which accepts String…
varargs:
ctx.getEnvironment().setActiveProfiles("profile1", "profile2");
Declaratively, spring.profiles.active
may accept a comma-separated list of profile names:
-Dspring.profiles.active="profile1,profile2"
The default profile represents the profile that is enabled by default. Consider the following:
@Configuration @Profile("default") public class DefaultDataConfig { @Bean public DataSource dataSource() { return new EmbeddedDatabaseBuilder() .setType(EmbeddedDatabaseType.HSQL) .addScript("classpath:com/bank/config/sql/schema.sql") .build(); } }
If no profile is active, the dataSource
above will be created; this can be
seen as a way to provide a default definition for one or more beans. If any
profile is enabled, the default profile will not apply.
The name of the default profile can be changed using setDefaultProfiles()
on
the Environment
or declaratively using the spring.profiles.default
property.
Spring’s Environment
abstraction provides search operations over a configurable
hierarchy of property sources. To explain fully, consider the following:
ApplicationContext ctx = new GenericApplicationContext(); Environment env = ctx.getEnvironment(); boolean containsFoo = env.containsProperty("foo"); System.out.println("Does my environment contain the 'foo' property? " + containsFoo);
In the snippet above, we see a high-level way of asking Spring whether the foo
property is
defined for the current environment. To answer this question, the Environment
object performs
a search over a set of PropertySource
objects. A PropertySource
is a simple abstraction over any source of key-value pairs, and
Spring’s StandardEnvironment
is configured with two PropertySource objects — one representing the set of JVM system properties
(a la System.getProperties()
) and one representing the set of system environment variables
(a la System.getenv()
).
Note | |
---|---|
These default property sources are present for |
Concretely, when using the StandardEnvironment
, the call to env.containsProperty("foo")
will return true if a foo
system property or foo
environment variable is present at
runtime.
Tip | |
---|---|
The search performed is hierarchical. By default, system properties have precedence over
environment variables, so if the For a common
|
Most importantly, the entire mechanism is configurable. Perhaps you have a custom source
of properties that you’d like to integrate into this search. No problem — simply implement
and instantiate your own PropertySource
and add it to the set of PropertySources
for the
current Environment
:
ConfigurableApplicationContext ctx = new GenericApplicationContext(); MutablePropertySources sources = ctx.getEnvironment().getPropertySources(); sources.addFirst(new MyPropertySource());
In the code above, MyPropertySource
has been added with highest precedence in the
search. If it contains a foo
property, it will be detected and returned ahead of
any foo
property in any other PropertySource
. The
MutablePropertySources
API exposes a number of methods that allow for precise manipulation of the set of
property sources.
The @PropertySource
annotation provides a convenient and declarative mechanism for adding a PropertySource
to Spring’s Environment
.
Given a file "app.properties" containing the key/value pair testbean.name=myTestBean
,
the following @Configuration
class uses @PropertySource
in such a way that
a call to testBean.getName()
will return "myTestBean".
@Configuration @PropertySource("classpath:/com/myco/app.properties") public class AppConfig { @Autowired Environment env; @Bean public TestBean testBean() { TestBean testBean = new TestBean(); testBean.setName(env.getProperty("testbean.name")); return testBean; } }
Any ${…}
placeholders present in a @PropertySource
resource location will
be resolved against the set of property sources already registered against the
environment. For example:
@Configuration @PropertySource("classpath:/com/${my.placeholder:default/path}/app.properties") public class AppConfig { @Autowired Environment env; @Bean public TestBean testBean() { TestBean testBean = new TestBean(); testBean.setName(env.getProperty("testbean.name")); return testBean; } }
Assuming that "my.placeholder" is present in one of the property sources already
registered, e.g. system properties or environment variables, the placeholder will
be resolved to the corresponding value. If not, then "default/path" will be used
as a default. If no default is specified and a property cannot be resolved, an
IllegalArgumentException
will be thrown.
Historically, the value of placeholders in elements could be resolved only against JVM system properties or environment variables. No longer is this the case. Because the Environment abstraction is integrated throughout the container, it’s easy to route resolution of placeholders through it. This means that you may configure the resolution process in any way you like: change the precedence of searching through system properties and environment variables, or remove them entirely; add your own property sources to the mix as appropriate.
Concretely, the following statement works regardless of where the customer
property is defined, as long as it is available in the Environment
:
<beans> <import resource="com/bank/service/${customer}-config.xml"/> </beans>
The LoadTimeWeaver
is used by Spring to dynamically transform classes as they are
loaded into the Java virtual machine (JVM).
To enable load-time weaving add the @EnableLoadTimeWeaving
to one of your
@Configuration
classes:
@Configuration @EnableLoadTimeWeaving public class AppConfig { }
Alternatively for XML configuration use the context:load-time-weaver
element:
<beans> <context:load-time-weaver/> </beans>
Once configured for the ApplicationContext
. Any bean within that ApplicationContext
may implement LoadTimeWeaverAware
, thereby receiving a reference to the load-time
weaver instance. This is particularly useful in combination with Spring’s JPA
support where load-time weaving may be necessary for JPA class transformation. Consult
the LocalContainerEntityManagerFactoryBean
javadocs for more detail. For more on
AspectJ load-time weaving, see Section 11.8.4, “Load-time weaving with AspectJ in the Spring Framework”.
As was discussed in the chapter introduction, the org.springframework.beans.factory
package provides basic functionality for managing and manipulating beans, including in a
programmatic way. The org.springframework.context
package adds the
ApplicationContext
interface, which extends the BeanFactory
interface, in addition to extending other
interfaces to provide additional functionality in a more application
framework-oriented style. Many people use the ApplicationContext
in a completely
declarative fashion, not even creating it programmatically, but instead relying on
support classes such as ContextLoader
to automatically instantiate an
ApplicationContext
as part of the normal startup process of a Java EE web application.
To enhance BeanFactory
functionality in a more framework-oriented style the context
package also provides the following functionality:
MessageSource
interface.
ResourceLoader
interface.
ApplicationListener
interface,
through the use of the ApplicationEventPublisher
interface.
HierarchicalBeanFactory
interface.
The ApplicationContext
interface extends an interface called MessageSource
, and
therefore provides internationalization (i18n) functionality. Spring also provides the
interface HierarchicalMessageSource
, which can resolve messages hierarchically.
Together these interfaces provide the foundation upon which Spring effects message
resolution. The methods defined on these interfaces include:
String getMessage(String code, Object[] args, String default, Locale loc)
: The basic
method used to retrieve a message from the MessageSource
. When no message is found
for the specified locale, the default message is used. Any arguments passed in become
replacement values, using the MessageFormat
functionality provided by the standard
library.
String getMessage(String code, Object[] args, Locale loc)
: Essentially the same as
the previous method, but with one difference: no default message can be specified; if
the message cannot be found, a NoSuchMessageException
is thrown.
String getMessage(MessageSourceResolvable resolvable, Locale locale)
: All properties
used in the preceding methods are also wrapped in a class named
MessageSourceResolvable
, which you can use with this method.
When an ApplicationContext
is loaded, it automatically searches for a MessageSource
bean defined in the context. The bean must have the name messageSource
. If such a bean
is found, all calls to the preceding methods are delegated to the message source. If no
message source is found, the ApplicationContext
attempts to find a parent containing a
bean with the same name. If it does, it uses that bean as the MessageSource
. If the
ApplicationContext
cannot find any source for messages, an empty
DelegatingMessageSource
is instantiated in order to be able to accept calls to the
methods defined above.
Spring provides two MessageSource
implementations, ResourceBundleMessageSource
and
StaticMessageSource
. Both implement HierarchicalMessageSource
in order to do nested
messaging. The StaticMessageSource
is rarely used but provides programmatic ways to
add messages to the source. The ResourceBundleMessageSource
is shown in the following
example:
<beans> <bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource"> <property name="basenames"> <list> <value>format</value> <value>exceptions</value> <value>windows</value> </list> </property> </bean> </beans>
In the example it is assumed you have three resource bundles defined in your classpath
called format
, exceptions
and windows
. Any request to resolve a message will be
handled in the JDK standard way of resolving messages through ResourceBundles. For the
purposes of the example, assume the contents of two of the above resource bundle files
are…
# in format.properties message=Alligators rock!
# in exceptions.properties
argument.required=The {0} argument is required.
A program to execute the MessageSource
functionality is shown in the next example.
Remember that all ApplicationContext
implementations are also MessageSource
implementations and so can be cast to the MessageSource
interface.
public static void main(String[] args) { MessageSource resources = new ClassPathXmlApplicationContext("beans.xml"); String message = resources.getMessage("message", null, "Default", null); System.out.println(message); }
The resulting output from the above program will be…
Alligators rock!
So to summarize, the MessageSource
is defined in a file called beans.xml
, which
exists at the root of your classpath. The messageSource
bean definition refers to a
number of resource bundles through its basenames
property. The three files that are
passed in the list to the basenames
property exist as files at the root of your
classpath and are called format.properties
, exceptions.properties
, and
windows.properties
respectively.
The next example shows arguments passed to the message lookup; these arguments will be converted into Strings and inserted into placeholders in the lookup message.
<beans> <!-- this MessageSource is being used in a web application --> <bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource"> <property name="basename" value="exceptions"/> </bean> <!-- lets inject the above MessageSource into this POJO --> <bean id="example" class="com.foo.Example"> <property name="messages" ref="messageSource"/> </bean> </beans>
public class Example { private MessageSource messages; public void setMessages(MessageSource messages) { this.messages = messages; } public void execute() { String message = this.messages.getMessage("argument.required", new Object [] {"userDao"}, "Required", null); System.out.println(message); } }
The resulting output from the invocation of the execute()
method will be…
The userDao argument is required.
With regard to internationalization (i18n), Spring’s various MessageSource
implementations follow the same locale resolution and fallback rules as the standard JDK
ResourceBundle
. In short, and continuing with the example messageSource
defined
previously, if you want to resolve messages against the British (en-GB
) locale, you
would create files called format_en_GB.properties
, exceptions_en_GB.properties
, and
windows_en_GB.properties
respectively.
Typically, locale resolution is managed by the surrounding environment of the application. In this example, the locale against which (British) messages will be resolved is specified manually.
# in exceptions_en_GB.properties argument.required=Ebagum lad, the {0} argument is required, I say, required.
public static void main(final String[] args) { MessageSource resources = new ClassPathXmlApplicationContext("beans.xml"); String message = resources.getMessage("argument.required", new Object [] {"userDao"}, "Required", Locale.UK); System.out.println(message); }
The resulting output from the running of the above program will be…
Ebagum lad, the 'userDao' argument is required, I say, required.
You can also use the MessageSourceAware
interface to acquire a reference to any
MessageSource
that has been defined. Any bean that is defined in an
ApplicationContext
that implements the MessageSourceAware
interface is injected with
the application context’s MessageSource
when the bean is created and configured.
Note | |
---|---|
As an alternative to |
Event handling in the ApplicationContext
is provided through the ApplicationEvent
class and ApplicationListener
interface. If a bean that implements the
ApplicationListener
interface is deployed into the context, every time an
ApplicationEvent
gets published to the ApplicationContext
, that bean is notified.
Essentially, this is the standard Observer design pattern.
Tip | |
---|---|
As of Spring 4.2, the event infrastructure has been significantly improved and offer
an annotation-based model as well as the
ability to publish any arbitrary event, that is an object that does not necessarily
extend from |
Spring provides the following standard events:
Table 7.7. Built-in Events
Event | Explanation |
---|---|
| Published when the |
| Published when the |
| Published when the |
| Published when the |
| A web-specific event telling all beans that an HTTP request has been serviced. This
event is published after the request is complete. This event is only applicable to
web applications using Spring’s |
You can also create and publish your own custom events. This example demonstrates a
simple class that extends Spring’s ApplicationEvent
base class:
public class BlackListEvent extends ApplicationEvent { private final String address; private final String test; public BlackListEvent(Object source, String address, String test) { super(source); this.address = address; this.test = test; } // accessor and other methods... }
To publish a custom ApplicationEvent
, call the publishEvent()
method on an
ApplicationEventPublisher
. Typically this is done by creating a class that implements
ApplicationEventPublisherAware
and registering it as a Spring bean. The following
example demonstrates such a class:
public class EmailService implements ApplicationEventPublisherAware { private List<String> blackList; private ApplicationEventPublisher publisher; public void setBlackList(List<String> blackList) { this.blackList = blackList; } public void setApplicationEventPublisher(ApplicationEventPublisher publisher) { this.publisher = publisher; } public void sendEmail(String address, String text) { if (blackList.contains(address)) { BlackListEvent event = new BlackListEvent(this, address, text); publisher.publishEvent(event); return; } // send email... } }
At configuration time, the Spring container will detect that EmailService
implements
ApplicationEventPublisherAware
and will automatically call
setApplicationEventPublisher()
. In reality, the parameter passed in will be the Spring
container itself; you’re simply interacting with the application context via its
ApplicationEventPublisher
interface.
To receive the custom ApplicationEvent
, create a class that implements
ApplicationListener
and register it as a Spring bean. The following example
demonstrates such a class:
public class BlackListNotifier implements ApplicationListener<BlackListEvent> { private String notificationAddress; public void setNotificationAddress(String notificationAddress) { this.notificationAddress = notificationAddress; } public void onApplicationEvent(BlackListEvent event) { // notify appropriate parties via notificationAddress... } }
Notice that ApplicationListener
is generically parameterized with the type of your
custom event, BlackListEvent
. This means that the onApplicationEvent()
method can
remain type-safe, avoiding any need for downcasting. You may register as many event
listeners as you wish, but note that by default event listeners receive events
synchronously. This means the publishEvent()
method blocks until all listeners have
finished processing the event. One advantage of this synchronous and single-threaded
approach is that when a listener receives an event, it operates inside the transaction
context of the publisher if a transaction context is available. If another strategy for
event publication becomes necessary, refer to the JavaDoc for Spring’s
ApplicationEventMulticaster
interface.
The following example shows the bean definitions used to register and configure each of the classes above:
<bean id="emailService" class="example.EmailService"> <property name="blackList"> <list> <value>[email protected]</value> <value>[email protected]</value> <value>[email protected]</value> </list> </property> </bean> <bean id="blackListNotifier" class="example.BlackListNotifier"> <property name="notificationAddress" value="[email protected]"/> </bean>
Putting it all together, when the sendEmail()
method of the emailService
bean is
called, if there are any emails that should be blacklisted, a custom event of type
BlackListEvent
is published. The blackListNotifier
bean is registered as an
ApplicationListener
and thus receives the BlackListEvent
, at which point it can
notify appropriate parties.
Note | |
---|---|
Spring’s eventing mechanism is designed for simple communication between Spring beans within the same application context. However, for more sophisticated enterprise integration needs, the separately-maintained Spring Integration project provides complete support for building lightweight, pattern-oriented, event-driven architectures that build upon the well-known Spring programming model. |
As of Spring 4.2, an event listener can be registered on any public method of a managed
bean via the EventListener
annotation. The BlackListNotifier
can be rewritten as
follows:
public class BlackListNotifier { private String notificationAddress; public void setNotificationAddress(String notificationAddress) { this.notificationAddress = notificationAddress; } @EventListener public void processBlackListEvent(BlackListEvent event) { // notify appropriate parties via notificationAddress... } }
As you can see above, the method signature actually infer which even type it listens to. This also works for nested generics as long as the actual event resolves the generics parameter you would filter on.
If your method should listen to several events or if you want to define it with no parameter at all, the event type(s) can also be specified on the annotation itself:
@EventListener({ContextStartedEvent.class, ContextRefreshedEvent.class}) public void handleContextStart() { }
It is also possible to add additional runtime filtering via the condition
attribute of the
annotation that defines a SpEL
expression that should match to actually invoke
the method for a particular event.
For instance, our notifier can be rewritten to be only invoked if the test
attribute of the
event is equal to foo
:
@EventListener(condition = "#blEvent.test == 'foo'") public void processBlackListEvent(BlackListEvent blEvent) { // notify appropriate parties via notificationAddress... }
Each SpEL
expression evaluates again a dedicated context. The next table lists the items made
available to the context so one can use them for conditional event processing:
Table 7.8. Event SpEL available metadata
Name | Location | Description | Example |
---|---|---|---|
Event | root object | The actual |
|
Arguments array | root object | The arguments (as array) used for invoking the target |
|
Argument name | evaluation context | Name of any of the method arguments. If for some reason the names are not available
(e.g. no debug information), the argument names are also available under the |
|
Note that #root.event
allows you to access to the underlying event, even if your method
signature actually refers to an arbitrary object that was published.
If you need to publish an event as the result of processing another, just change the method signature to return the event that should be published, something like:
@EventListener public ListUpdateEvent handleBlackListEvent(BlackListEvent event) { // notify appropriate parties via notificationAddress and // then publish a ListUpdateEvent... }
Note | |
---|---|
This feature is not supported for asynchronous listeners. |
This new method will publish a new ListUpdateEvent
for every BlackListEvent
handled
by the method above. If you need to publish several events, just return a Collection
of
events instead.
If you want a particular listener to process events asynchronously, simply reuse the
regular @Async
support:
@EventListener @Async public void processBlackListEvent(BlackListEvent event) { // BlackListEvent is processed in a separate thread }
Be aware of the following limitations when using asynchronous events:
Exception
it will not be propagated to the caller,
check AsyncUncaughtExceptionHandler
for more details.
ApplicationEventPublisher
to send the event
manually.
If you need the listener to be invoked before another one, just add the @Order
annotation to the method declaration:
@EventListener @Order(42) public void processBlackListEvent(BlackListEvent event) { // notify appropriate parties via notificationAddress... }
You may also use generics to further define the structure of your event. Consider an
EntityCreatedEvent<T>
where T
is the type of the actual entity that got created. You
can create the following listener definition to only receive EntityCreatedEvent
for a
Person
:
@EventListener public void onPersonCreated(EntityCreatedEvent<Person> event) { ... }
Due to type erasure, this will only work if the event that is fired resolves the generic
parameter(s) on which the event listener filters on (that is something like
class PersonCreatedEvent extends EntityCreatedEvent<Person> { … }
).
In certain circumstances, this may become quite tedious if all events follow the same
structure (as it should be the case for the event above). In such a case, you can
implement ResolvableTypeProvider
to guide the framework beyond what the runtime
environment provides:
public class EntityCreatedEvent<T> extends ApplicationEvent implements ResolvableTypeProvider { public EntityCreatedEvent(T entity) { super(entity); } @Override public ResolvableType getResolvableType() { return ResolvableType.forClassWithGenerics(getClass(), ResolvableType.forInstance(getSource())); } }
Tip | |
---|---|
This works not only for |
For optimal usage and understanding of application contexts, users should generally
familiarize themselves with Spring’s Resource
abstraction, as described in the chapter
Chapter 8, Resources.
An application context is a ResourceLoader
, which can be used to load Resource
s. A
Resource
is essentially a more feature rich version of the JDK class java.net.URL
,
in fact, the implementations of the Resource
wrap an instance of java.net.URL
where
appropriate. A Resource
can obtain low-level resources from almost any location in a
transparent fashion, including from the classpath, a filesystem location, anywhere
describable with a standard URL, and some other variations. If the resource location
string is a simple path without any special prefixes, where those resources come from is
specific and appropriate to the actual application context type.
You can configure a bean deployed into the application context to implement the special
callback interface, ResourceLoaderAware
, to be automatically called back at
initialization time with the application context itself passed in as the
ResourceLoader
. You can also expose properties of type Resource
, to be used to
access static resources; they will be injected into it like any other properties. You
can specify those Resource
properties as simple String paths, and rely on a special
JavaBean PropertyEditor
that is automatically registered by the context, to convert
those text strings to actual Resource
objects when the bean is deployed.
The location path or paths supplied to an ApplicationContext
constructor are actually
resource strings, and in simple form are treated appropriately to the specific context
implementation. ClassPathXmlApplicationContext
treats a simple location path as a
classpath location. You can also use location paths (resource strings) with special
prefixes to force loading of definitions from the classpath or a URL, regardless of the
actual context type.
You can create ApplicationContext
instances declaratively by using, for example, a
ContextLoader
. Of course you can also create ApplicationContext
instances
programmatically by using one of the ApplicationContext
implementations.
You can register an ApplicationContext
using the ContextLoaderListener
as follows:
<context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/daoContext.xml /WEB-INF/applicationContext.xml</param-value> </context-param> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener>
The listener inspects the contextConfigLocation
parameter. If the parameter does not
exist, the listener uses /WEB-INF/applicationContext.xml
as a default. When the
parameter does exist, the listener separates the String by using predefined
delimiters (comma, semicolon and whitespace) and uses the values as locations where
application contexts will be searched. Ant-style path patterns are supported as well.
Examples are /WEB-INF/*Context.xml
for all files with names ending with "Context.xml",
residing in the "WEB-INF" directory, and /WEB-INF/**/*Context.xml
, for all such files
in any subdirectory of "WEB-INF".
It is possible to deploy a Spring ApplicationContext as a RAR file, encapsulating the context and all of its required bean classes and library JARs in a Java EE RAR deployment unit. This is the equivalent of bootstrapping a standalone ApplicationContext, just hosted in Java EE environment, being able to access the Java EE servers facilities. RAR deployment is more natural alternative to scenario of deploying a headless WAR file, in effect, a WAR file without any HTTP entry points that is used only for bootstrapping a Spring ApplicationContext in a Java EE environment.
RAR deployment is ideal for application contexts that do not need HTTP entry points but
rather consist only of message endpoints and scheduled jobs. Beans in such a context can
use application server resources such as the JTA transaction manager and JNDI-bound JDBC
DataSources and JMS ConnectionFactory instances, and may also register with the
platform’s JMX server - all through Spring’s standard transaction management and JNDI
and JMX support facilities. Application components can also interact with the
application server’s JCA WorkManager through Spring’s TaskExecutor
abstraction.
Check out the JavaDoc of the
SpringContextResourceAdapter
class for the configuration details involved in RAR deployment.
For a simple deployment of a Spring ApplicationContext as a Java EE RAR file: package
all application classes into a RAR file, which is a standard JAR file with a different
file extension. Add all required library JARs into the root of the RAR archive. Add a
"META-INF/ra.xml" deployment descriptor (as shown in SpringContextResourceAdapter
s
JavaDoc) and the corresponding Spring XML bean definition file(s) (typically
"META-INF/applicationContext.xml"), and drop the resulting RAR file into your
application server’s deployment directory.
Note | |
---|---|
Such RAR deployment units are usually self-contained; they do not expose components to the outside world, not even to other modules of the same application. Interaction with a RAR-based ApplicationContext usually occurs through JMS destinations that it shares with other modules. A RAR-based ApplicationContext may also, for example, schedule some jobs, reacting to new files in the file system (or the like). If it needs to allow synchronous access from the outside, it could for example export RMI endpoints, which of course may be used by other application modules on the same machine. |
The BeanFactory
provides the underlying basis for Spring’s IoC functionality but it is
only used directly in integration with other third-party frameworks and is now largely
historical in nature for most users of Spring. The BeanFactory
and related interfaces,
such as BeanFactoryAware
, InitializingBean
, DisposableBean
, are still present in
Spring for the purposes of backward compatibility with the large number of third-party
frameworks that integrate with Spring. Often third-party components that can not use
more modern equivalents such as @PostConstruct
or @PreDestroy
in order to remain
compatible with JDK 1.4 or to avoid a dependency on JSR-250.
This section provides additional background into the differences between the
BeanFactory
and ApplicationContext
and how one might access the IoC container
directly through a classic singleton lookup.
Use an ApplicationContext
unless you have a good reason for not doing so.
Because the ApplicationContext
includes all functionality of the BeanFactory
, it is
generally recommended over the BeanFactory
, except for a few situations such as in
embedded applications running on resource-constrained devices where memory consumption
might be critical and a few extra kilobytes might make a difference. However, for
most typical enterprise applications and systems, the ApplicationContext
is what you
will want to use. Spring makes heavy use of the BeanPostProcessor
extension point (to effect proxying and so on). If you use only a
plain BeanFactory
, a fair amount of support such as transactions and AOP will not take
effect, at least not without some extra steps on your part. This situation could be
confusing because nothing is actually wrong with the configuration.
The following table lists features provided by the BeanFactory
and
ApplicationContext
interfaces and implementations.
Table 7.9. Feature Matrix
Feature | BeanFactory | ApplicationContext |
---|---|---|
Bean instantiation/wiring | Yes | Yes |
Automatic | No | Yes |
Automatic | No | Yes |
Convenient | No | Yes |
| No | Yes |
To explicitly register a bean post-processor with a BeanFactory
implementation,
you need to write code like this:
DefaultListableBeanFactory factory = new DefaultListableBeanFactory(); // populate the factory with bean definitions // now register any needed BeanPostProcessor instances MyBeanPostProcessor postProcessor = new MyBeanPostProcessor(); factory.addBeanPostProcessor(postProcessor); // now start using the factory
To explicitly register a BeanFactoryPostProcessor
when using a BeanFactory
implementation, you must write code like this:
DefaultListableBeanFactory factory = new DefaultListableBeanFactory(); XmlBeanDefinitionReader reader = new XmlBeanDefinitionReader(factory); reader.loadBeanDefinitions(new FileSystemResource("beans.xml")); // bring in some property values from a Properties file PropertyPlaceholderConfigurer cfg = new PropertyPlaceholderConfigurer(); cfg.setLocation(new FileSystemResource("jdbc.properties")); // now actually do the replacement cfg.postProcessBeanFactory(factory);
In both cases, the explicit registration step is inconvenient, which is one reason why
the various ApplicationContext
implementations are preferred above plain BeanFactory
implementations in the vast majority of Spring-backed applications, especially when
using BeanFactoryPostProcessor
s and BeanPostProcessor
s. These mechanisms implement
important functionality such as property placeholder replacement and AOP.
It is best to write most application code in a dependency-injection (DI) style, where
that code is served out of a Spring IoC container, has its own dependencies supplied by
the container when it is created, and is completely unaware of the container. However,
for the small glue layers of code that are sometimes needed to tie other code together,
you sometimes need a singleton (or quasi-singleton) style access to a Spring IoC
container. For example, third-party code may try to construct new objects directly (
Class.forName()
style), without the ability to get these objects out of a Spring IoC
container.If the object constructed by the third-party code is a small stub or proxy,
which then uses a singleton style access to a Spring IoC container to get a real object
to delegate to, then inversion of control has still been achieved for the majority of
the code (the object coming out of the container). Thus most code is still unaware of
the container or how it is accessed, and remains decoupled from other code, with all
ensuing benefits. EJBs may also use this stub/proxy approach to delegate to a plain Java
implementation object, retrieved from a Spring IoC container. While the Spring IoC
container itself ideally does not have to be a singleton, it may be unrealistic in terms
of memory usage or initialization times (when using beans in the Spring IoC container
such as a Hibernate SessionFactory
) for each bean to use its own, non-singleton Spring
IoC container.
Looking up the application context in a service locator style is sometimes the only
option for accessing shared Spring-managed components, such as in an EJB 2.1
environment, or when you want to share a single ApplicationContext as a parent to
WebApplicationContexts across WAR files. In this case you should look into using the
utility class
ContextSingletonBeanFactoryLocator
locator that is described in this
Spring
team blog entry.
Java’s standard java.net.URL
class and standard handlers for various URL prefixes
unfortunately are not quite adequate enough for all access to low-level resources. For
example, there is no standardized URL
implementation that may be used to access a
resource that needs to be obtained from the classpath, or relative to a
ServletContext
. While it is possible to register new handlers for specialized URL
prefixes (similar to existing handlers for prefixes such as http:
), this is generally
quite complicated, and the URL
interface still lacks some desirable functionality,
such as a method to check for the existence of the resource being pointed to.
Spring’s Resource
interface is meant to be a more capable interface for abstracting
access to low-level resources.
public interface Resource extends InputStreamSource { boolean exists(); boolean isOpen(); URL getURL() throws IOException; File getFile() throws IOException; Resource createRelative(String relativePath) throws IOException; String getFilename(); String getDescription(); }
public interface InputStreamSource { InputStream getInputStream() throws IOException; }
Some of the most important methods from the Resource
interface are:
getInputStream()
: locates and opens the resource, returning an InputStream
for
reading from the resource. It is expected that each invocation returns a fresh
InputStream
. It is the responsibility of the caller to close the stream.
exists()
: returns a boolean
indicating whether this resource actually exists in
physical form.
isOpen()
: returns a boolean
indicating whether this resource represents a handle
with an open stream. If true
, the InputStream
cannot be read multiple times, and
must be read once only and then closed to avoid resource leaks. Will be false
for
all usual resource implementations, with the exception of InputStreamResource
.
getDescription()
: returns a description for this resource, to be used for error
output when working with the resource. This is often the fully qualified file name or
the actual URL of the resource.
Other methods allow you to obtain an actual URL
or File
object representing the
resource (if the underlying implementation is compatible, and supports that
functionality).
The Resource
abstraction is used extensively in Spring itself, as an argument type in
many method signatures when a resource is needed. Other methods in some Spring APIs
(such as the constructors to various ApplicationContext
implementations), take a
String
which in unadorned or simple form is used to create a Resource
appropriate to
that context implementation, or via special prefixes on the String
path, allow the
caller to specify that a specific Resource
implementation must be created and used.
While the Resource
interface is used a lot with Spring and by Spring, it’s actually
very useful to use as a general utility class by itself in your own code, for access to
resources, even when your code doesn’t know or care about any other parts of Spring.
While this couples your code to Spring, it really only couples it to this small set of
utility classes, which are serving as a more capable replacement for URL
, and can be
considered equivalent to any other library you would use for this purpose.
It is important to note that the Resource
abstraction does not replace functionality:
it wraps it where possible. For example, a UrlResource
wraps a URL, and uses the
wrapped URL
to do its work.
There are a number of Resource
implementations that come supplied straight out of the
box in Spring:
The UrlResource
wraps a java.net.URL
, and may be used to access any object that is
normally accessible via a URL, such as files, an HTTP target, an FTP target, etc. All
URLs have a standardized String
representation, such that appropriate standardized
prefixes are used to indicate one URL type from another. This includes file:
for
accessing filesystem paths, http:
for accessing resources via the HTTP protocol,
ftp:
for accessing resources via FTP, etc.
A UrlResource
is created by Java code explicitly using the UrlResource
constructor,
but will often be created implicitly when you call an API method which takes a String
argument which is meant to represent a path. For the latter case, a JavaBeans
PropertyEditor
will ultimately decide which type of Resource
to create. If the path
string contains a few well-known (to it, that is) prefixes such as classpath:
, it will
create an appropriate specialized Resource
for that prefix. However, if it doesn’t
recognize the prefix, it will assume the this is just a standard URL string, and will
create a UrlResource
.
This class represents a resource which should be obtained from the classpath. This uses either the thread context class loader, a given class loader, or a given class for loading resources.
This Resource
implementation supports resolution as java.io.File
if the class path
resource resides in the file system, but not for classpath resources which reside in a
jar and have not been expanded (by the servlet engine, or whatever the environment is)
to the filesystem. To address this the various Resource
implementations always support
resolution as a java.net.URL
.
A ClassPathResource
is created by Java code explicitly using the ClassPathResource
constructor, but will often be created implicitly when you call an API method which
takes a String
argument which is meant to represent a path. For the latter case, a
JavaBeans PropertyEditor
will recognize the special prefix classpath:
on the string
path, and create a ClassPathResource
in that case.
This is a Resource
implementation for java.io.File
handles. It obviously supports
resolution as a File
, and as a URL
.
This is a Resource
implementation for ServletContext
resources, interpreting
relative paths within the relevant web application’s root directory.
This always supports stream access and URL access, but only allows java.io.File
access
when the web application archive is expanded and the resource is physically on the
filesystem. Whether or not it’s expanded and on the filesystem like this, or accessed
directly from the JAR or somewhere else like a DB (it’s conceivable) is actually
dependent on the Servlet container.
A Resource
implementation for a given InputStream
. This should only be used if no
specific Resource
implementation is applicable. In particular, prefer
ByteArrayResource
or any of the file-based Resource
implementations where possible.
In contrast to other Resource
implementations, this is a descriptor for an already
opened resource - therefore returning true
from isOpen()
. Do not use it if you need
to keep the resource descriptor somewhere, or if you need to read a stream multiple
times.
The ResourceLoader
interface is meant to be implemented by objects that can return
(i.e. load) Resource
instances.
public interface ResourceLoader { Resource getResource(String location); }
All application contexts implement the ResourceLoader
interface, and therefore all
application contexts may be used to obtain Resource
instances.
When you call getResource()
on a specific application context, and the location path
specified doesn’t have a specific prefix, you will get back a Resource
type that is
appropriate to that particular application context. For example, assume the following
snippet of code was executed against a ClassPathXmlApplicationContext
instance:
Resource template = ctx.getResource("some/resource/path/myTemplate.txt");
What would be returned would be a ClassPathResource
; if the same method was executed
against a FileSystemXmlApplicationContext
instance, you’d get back a
FileSystemResource
. For a WebApplicationContext
, you’d get back a
ServletContextResource
, and so on.
As such, you can load resources in a fashion appropriate to the particular application context.
On the other hand, you may also force ClassPathResource
to be used, regardless of the
application context type, by specifying the special classpath:
prefix:
Resource template = ctx.getResource("classpath:some/resource/path/myTemplate.txt");
Similarly, one can force a UrlResource
to be used by specifying any of the standard
java.net.URL
prefixes:
Resource template = ctx.getResource("file:///some/resource/path/myTemplate.txt");
Resource template = ctx.getResource("http://myhost.com/resource/path/myTemplate.txt");
The following table summarizes the strategy for converting String
s to Resource
s:
Table 8.1. Resource strings
Prefix | Example | Explanation |
---|---|---|
classpath: |
| Loaded from the classpath. |
file: | Loaded as a | |
http: | Loaded as a | |
(none) |
| Depends on the underlying |
[1] But see also Section 8.7.3, “FileSystemResource caveats”. |
The ResourceLoaderAware
interface is a special marker interface, identifying objects
that expect to be provided with a ResourceLoader
reference.
public interface ResourceLoaderAware { void setResourceLoader(ResourceLoader resourceLoader); }
When a class implements ResourceLoaderAware
and is deployed into an application
context (as a Spring-managed bean), it is recognized as ResourceLoaderAware
by the
application context. The application context will then invoke the
setResourceLoader(ResourceLoader)
, supplying itself as the argument (remember, all
application contexts in Spring implement the ResourceLoader
interface).
Of course, since an ApplicationContext
is a ResourceLoader
, the bean could also
implement the ApplicationContextAware
interface and use the supplied application
context directly to load resources, but in general, it’s better to use the specialized
ResourceLoader
interface if that’s all that’s needed. The code would just be coupled
to the resource loading interface, which can be considered a utility interface, and not
the whole Spring ApplicationContext
interface.
As of Spring 2.5, you can rely upon autowiring of the ResourceLoader
as an alternative
to implementing the ResourceLoaderAware
interface. The "traditional" constructor
and
byType
autowiring modes (as described in Section 7.4.5, “Autowiring collaborators”) are now capable
of providing a dependency of type ResourceLoader
for either a constructor argument or
setter method parameter respectively. For more flexibility (including the ability to
autowire fields and multiple parameter methods), consider using the new annotation-based
autowiring features. In that case, the ResourceLoader
will be autowired into a field,
constructor argument, or method parameter that is expecting the ResourceLoader
type as
long as the field, constructor, or method in question carries the @Autowired
annotation. For more information, see Section 7.9.2, “@Autowired”.
If the bean itself is going to determine and supply the resource path through some sort
of dynamic process, it probably makes sense for the bean to use the ResourceLoader
interface to load resources. Consider as an example the loading of a template of some
sort, where the specific resource that is needed depends on the role of the user. If the
resources are static, it makes sense to eliminate the use of the ResourceLoader
interface completely, and just have the bean expose the Resource
properties it needs,
and expect that they will be injected into it.
What makes it trivial to then inject these properties, is that all application contexts
register and use a special JavaBeans PropertyEditor
which can convert String
paths
to Resource
objects. So if myBean
has a template property of type Resource
, it can
be configured with a simple string for that resource, as follows:
<bean id="myBean" class="..."> <property name="template" value="some/resource/path/myTemplate.txt"/> </bean>
Note that the resource path has no prefix, so because the application context itself is
going to be used as the ResourceLoader
, the resource itself will be loaded via a
ClassPathResource
, FileSystemResource
, or ServletContextResource
(as appropriate)
depending on the exact type of the context.
If there is a need to force a specific Resource
type to be used, then a prefix may be
used. The following two examples show how to force a ClassPathResource
and a
UrlResource
(the latter being used to access a filesystem file).
<property name="template" value="classpath:some/resource/path/myTemplate.txt">
<property name="template" value="file:///some/resource/path/myTemplate.txt"/>
An application context constructor (for a specific application context type) generally takes a string or array of strings as the location path(s) of the resource(s) such as XML files that make up the definition of the context.
When such a location path doesn’t have a prefix, the specific Resource
type built from
that path and used to load the bean definitions, depends on and is appropriate to the
specific application context. For example, if you create a
ClassPathXmlApplicationContext
as follows:
ApplicationContext ctx = new ClassPathXmlApplicationContext("conf/appContext.xml");
The bean definitions will be loaded from the classpath, as a ClassPathResource
will be
used. But if you create a FileSystemXmlApplicationContext
as follows:
ApplicationContext ctx = new FileSystemXmlApplicationContext("conf/appContext.xml");
The bean definition will be loaded from a filesystem location, in this case relative to the current working directory.
Note that the use of the special classpath prefix or a standard URL prefix on the
location path will override the default type of Resource
created to load the
definition. So this FileSystemXmlApplicationContext
…
ApplicationContext ctx = new FileSystemXmlApplicationContext("classpath:conf/appContext.xml");
FileSystemXmlApplicationContext
. If it is subsequently used as a ResourceLoader
, any
unprefixed paths will still be treated as filesystem paths.
The ClassPathXmlApplicationContext
exposes a number of constructors to enable
convenient instantiation. The basic idea is that one supplies merely a string array
containing just the filenames of the XML files themselves (without the leading path
information), and one also supplies a Class
; the ClassPathXmlApplicationContext
will derive the path information from the supplied class.
An example will hopefully make this clear. Consider a directory layout that looks like this:
com/ foo/ services.xml daos.xml MessengerService.class
A ClassPathXmlApplicationContext
instance composed of the beans defined in the
'services.xml'
and 'daos.xml'
could be instantiated like so…
ApplicationContext ctx = new ClassPathXmlApplicationContext( new String[] {"services.xml", "daos.xml"}, MessengerService.class);
Please do consult the ClassPathXmlApplicationContext
javadocs for details
on the various constructors.
The resource paths in application context constructor values may be a simple path (as
shown above) which has a one-to-one mapping to a target Resource, or alternately may
contain the special "classpath*:" prefix and/or internal Ant-style regular expressions
(matched using Spring’s PathMatcher
utility). Both of the latter are effectively
wildcards
One use for this mechanism is when doing component-style application assembly. All
components can 'publish' context definition fragments to a well-known location path, and
when the final application context is created using the same path prefixed via
classpath*:
, all component fragments will be picked up automatically.
Note that this wildcarding is specific to use of resource paths in application context
constructors (or when using the PathMatcher
utility class hierarchy directly), and is
resolved at construction time. It has nothing to do with the Resource
type itself.
It’s not possible to use the classpath*:
prefix to construct an actual Resource
, as
a resource points to just one resource at a time.
When the path location contains an Ant-style pattern, for example:
/WEB-INF/*-context.xml com/mycompany/**/applicationContext.xml file:C:/some/path/*-context.xml classpath:com/mycompany/**/applicationContext.xml
The resolver follows a more complex but defined procedure to try to resolve the
wildcard. It produces a Resource for the path up to the last non-wildcard segment and
obtains a URL from it. If this URL is not a jar:
URL or container-specific variant
(e.g. zip:
in WebLogic, wsjar
in WebSphere, etc.), then a java.io.File
is
obtained from it and used to resolve the wildcard by traversing the filesystem. In the
case of a jar URL, the resolver either gets a java.net.JarURLConnection
from it or
manually parses the jar URL and then traverses the contents of the jar file to resolve
the wildcards.
If the specified path is already a file URL (either explicitly, or implicitly because
the base ResourceLoader
is a filesystem one, then wildcarding is guaranteed to work in
a completely portable fashion.
If the specified path is a classpath location, then the resolver must obtain the last
non-wildcard path segment URL via a Classloader.getResource()
call. Since this is just
a node of the path (not the file at the end) it is actually undefined (in the
ClassLoader
javadocs) exactly what sort of a URL is returned in this case. In
practice, it is always a java.io.File
representing the directory, where the classpath
resource resolves to a filesystem location, or a jar URL of some sort, where the
classpath resource resolves to a jar location. Still, there is a portability concern on
this operation.
If a jar URL is obtained for the last non-wildcard segment, the resolver must be able to
get a java.net.JarURLConnection
from it, or manually parse the jar URL, to be able to
walk the contents of the jar, and resolve the wildcard. This will work in most
environments, but will fail in others, and it is strongly recommended that the wildcard
resolution of resources coming from jars be thoroughly tested in your specific
environment before you rely on it.
When constructing an XML-based application context, a location string may use the
special classpath*:
prefix:
ApplicationContext ctx = new ClassPathXmlApplicationContext("classpath*:conf/appContext.xml");
This special prefix specifies that all classpath resources that match the given name
must be obtained (internally, this essentially happens via a
ClassLoader.getResources(…)
call), and then merged to form the final application
context definition.
Note | |
---|---|
The wildcard classpath relies on the |
The classpath*:
prefix can also be combined with a PathMatcher
pattern in the
rest of the location path, for example classpath*:META-INF/*-beans.xml
. In this
case, the resolution strategy is fairly simple: a ClassLoader.getResources()
call is
used on the last non-wildcard path segment to get all the matching resources in the
class loader hierarchy, and then off each resource the same PathMatcher resolution
strategy described above is used for the wildcard subpath.
Please note that classpath*:
when combined with Ant-style patterns will only work
reliably with at least one root directory before the pattern starts, unless the actual
target files reside in the file system. This means that a pattern like
classpath*:*.xml
will not retrieve files from the root of jar files but rather only
from the root of expanded directories. This originates from a limitation in the JDK’s
ClassLoader.getResources()
method which only returns file system locations for a
passed-in empty string (indicating potential roots to search).
Ant-style patterns with classpath:
resources are not guaranteed to find matching
resources if the root package to search is available in multiple class path locations.
This is because a resource such as
com/mycompany/package1/service-context.xml
may be in only one location, but when a path such as
classpath:com/mycompany/**/service-context.xml
is used to try to resolve it, the resolver will work off the (first) URL returned by
getResource("com/mycompany")
;. If this base package node exists in multiple
classloader locations, the actual end resource may not be underneath. Therefore,
preferably, use " `classpath*:`" with the same Ant-style pattern in such a case, which
will search all class path locations that contain the root package.
A FileSystemResource
that is not attached to a FileSystemApplicationContext
(that
is, a FileSystemApplicationContext
is not the actual ResourceLoader
) will treat
absolute vs. relative paths as you would expect. Relative paths are relative to the
current working directory, while absolute paths are relative to the root of the
filesystem.
For backwards compatibility (historical) reasons however, this changes when the
FileSystemApplicationContext
is the ResourceLoader
. The
FileSystemApplicationContext
simply forces all attached FileSystemResource
instances
to treat all location paths as relative, whether they start with a leading slash or not.
In practice, this means the following are equivalent:
ApplicationContext ctx = new FileSystemXmlApplicationContext("conf/context.xml");
ApplicationContext ctx = new FileSystemXmlApplicationContext("/conf/context.xml");
As are the following: (Even though it would make sense for them to be different, as one case is relative and the other absolute.)
FileSystemXmlApplicationContext ctx = ...;
ctx.getResource("some/resource/path/myTemplate.txt");
FileSystemXmlApplicationContext ctx = ...;
ctx.getResource("/some/resource/path/myTemplate.txt");
In practice, if true absolute filesystem paths are needed, it is better to forgo the use
of absolute paths with FileSystemResource
/ FileSystemXmlApplicationContext
, and
just force the use of a UrlResource
, by using the file:
URL prefix.
// actual context type doesn't matter, the Resource will always be UrlResource ctx.getResource("file:///some/resource/path/myTemplate.txt");
// force this FileSystemXmlApplicationContext to load its definition via a UrlResource ApplicationContext ctx = new FileSystemXmlApplicationContext("file:///conf/context.xml");
There are pros and cons for considering validation as business logic, and Spring offers
a design for validation (and data binding) that does not exclude either one of them.
Specifically validation should not be tied to the web tier, should be easy to localize
and it should be possible to plug in any validator available. Considering the above,
Spring has come up with a Validator
interface that is both basic and eminently usable
in every layer of an application.
Data binding is useful for allowing user input to be dynamically bound to the domain
model of an application (or whatever objects you use to process user input). Spring
provides the so-called DataBinder
to do exactly that. The Validator
and the
DataBinder
make up the validation
package, which is primarily used in but not
limited to the MVC framework.
The BeanWrapper
is a fundamental concept in the Spring Framework and is used in a lot
of places. However, you probably will not have the need to use the BeanWrapper
directly. Because this is reference documentation however, we felt that some explanation
might be in order. We will explain the BeanWrapper
in this chapter since, if you were
going to use it at all, you would most likely do so when trying to bind data to objects.
Spring’s DataBinder and the lower-level BeanWrapper both use PropertyEditors to parse
and format property values. The PropertyEditor
concept is part of the JavaBeans
specification, and is also explained in this chapter. Spring 3 introduces a
"core.convert" package that provides a general type conversion facility, as well as a
higher-level "format" package for formatting UI field values. These new packages may be
used as simpler alternatives to PropertyEditors, and will also be discussed in this
chapter.
Spring features a Validator
interface that you can use to validate objects. The
Validator
interface works using an Errors
object so that while validating,
validators can report validation failures to the Errors
object.
Let’s consider a small data object:
public class Person { private String name; private int age; // the usual getters and setters... }
We’re going to provide validation behavior for the Person
class by implementing the
following two methods of the org.springframework.validation.Validator
interface:
supports(Class)
- Can this Validator
validate instances of the supplied Class
?
validate(Object, org.springframework.validation.Errors)
- validates the given object
and in case of validation errors, registers those with the given Errors
object
Implementing a Validator
is fairly straightforward, especially when you know of the
ValidationUtils
helper class that the Spring Framework also provides.
public class PersonValidator implements Validator { /** * This Validator validates *just* Person instances */ public boolean supports(Class clazz) { return Person.class.equals(clazz); } public void validate(Object obj, Errors e) { ValidationUtils.rejectIfEmpty(e, "name", "name.empty"); Person p = (Person) obj; if (p.getAge() < 0) { e.rejectValue("age", "negativevalue"); } else if (p.getAge() > 110) { e.rejectValue("age", "too.darn.old"); } } }
As you can see, the static
rejectIfEmpty(..)
method on the ValidationUtils
class
is used to reject the 'name'
property if it is null
or the empty string. Have a look
at the ValidationUtils
javadocs to see what functionality it provides besides the
example shown previously.
While it is certainly possible to implement a single Validator
class to validate each
of the nested objects in a rich object, it may be better to encapsulate the validation
logic for each nested class of object in its own Validator
implementation. A simple
example of a 'rich' object would be a Customer
that is composed of two String
properties (a first and second name) and a complex Address
object. Address
objects
may be used independently of Customer
objects, and so a distinct AddressValidator
has been implemented. If you want your CustomerValidator
to reuse the logic contained
within the AddressValidator
class without resorting to copy-and-paste, you can
dependency-inject or instantiate an AddressValidator
within your CustomerValidator
,
and use it like so:
public class CustomerValidator implements Validator { private final Validator addressValidator; public CustomerValidator(Validator addressValidator) { if (addressValidator == null) { throw new IllegalArgumentException("The supplied [Validator] is " + "required and must not be null."); } if (!addressValidator.supports(Address.class)) { throw new IllegalArgumentException("The supplied [Validator] must " + "support the validation of [Address] instances."); } this.addressValidator = addressValidator; } /** * This Validator validates Customer instances, and any subclasses of Customer too */ public boolean supports(Class clazz) { return Customer.class.isAssignableFrom(clazz); } public void validate(Object target, Errors errors) { ValidationUtils.rejectIfEmptyOrWhitespace(errors, "firstName", "field.required"); ValidationUtils.rejectIfEmptyOrWhitespace(errors, "surname", "field.required"); Customer customer = (Customer) target; try { errors.pushNestedPath("address"); ValidationUtils.invokeValidator(this.addressValidator, customer.getAddress(), errors); } finally { errors.popNestedPath(); } } }
Validation errors are reported to the Errors
object passed to the validator. In case
of Spring Web MVC you can use <spring:bind/>
tag to inspect the error messages, but of
course you can also inspect the errors object yourself. More information about the
methods it offers can be found in the javadocs.
We’ve talked about databinding and validation. Outputting messages corresponding to
validation errors is the last thing we need to discuss. In the example we’ve shown
above, we rejected the name
and the age
field. If we’re going to output the error
messages by using a MessageSource
, we will do so using the error code we’ve given when
rejecting the field ('name' and 'age' in this case). When you call (either directly, or
indirectly, using for example the ValidationUtils
class) rejectValue
or one of the
other reject
methods from the Errors
interface, the underlying implementation will
not only register the code you’ve passed in, but also a number of additional error
codes. What error codes it registers is determined by the MessageCodesResolver
that is
used. By default, the DefaultMessageCodesResolver
is used, which for example not only
registers a message with the code you gave, but also messages that include the field
name you passed to the reject method. So in case you reject a field using
rejectValue("age", "too.darn.old")
, apart from the too.darn.old
code, Spring will
also register too.darn.old.age
and too.darn.old.age.int
(so the first will include
the field name and the second will include the type of the field); this is done as a
convenience to aid developers in targeting error messages and suchlike.
More information on the MessageCodesResolver
and the default strategy can be found
online in the javadocs of
MessageCodesResolver
and
DefaultMessageCodesResolver
,
respectively.
The org.springframework.beans
package adheres to the JavaBeans standard provided by
Oracle. A JavaBean is simply a class with a default no-argument constructor, which follows
a naming convention where (by way of an example) a property named bingoMadness
would
have a setter method setBingoMadness(..)
and a getter method getBingoMadness()
. For
more information about JavaBeans and the specification, please refer to Oracle’s website (
javabeans).
One quite important class in the beans package is the BeanWrapper
interface and its
corresponding implementation ( BeanWrapperImpl
). As quoted from the javadocs, the
BeanWrapper
offers functionality to set and get property values (individually or in
bulk), get property descriptors, and to query properties to determine if they are
readable or writable. Also, the BeanWrapper
offers support for nested properties,
enabling the setting of properties on sub-properties to an unlimited depth. Then, the
BeanWrapper
supports the ability to add standard JavaBeans PropertyChangeListeners
and VetoableChangeListeners
, without the need for supporting code in the target class.
Last but not least, the BeanWrapper
provides support for the setting of indexed
properties. The BeanWrapper
usually isn’t used by application code directly, but by
the DataBinder
and the BeanFactory
.
The way the BeanWrapper
works is partly indicated by its name: it wraps a bean to
perform actions on that bean, like setting and retrieving properties.
Setting and getting properties is done using the setPropertyValue(s)
and
getPropertyValue(s)
methods that both come with a couple of overloaded variants.
They’re all described in more detail in the javadocs Spring comes with. What’s important
to know is that there are a couple of conventions for indicating properties of an
object. A couple of examples:
Table 9.1. Examples of properties
Expression | Explanation |
---|---|
| Indicates the property |
| Indicates the nested property |
| Indicates the third element of the indexed property |
| Indicates the value of the map entry indexed by the key COMPANYNAME of the Map
property |
Below you’ll find some examples of working with the BeanWrapper
to get and set
properties.
(This next section is not vitally important to you if you’re not planning to work with
the BeanWrapper
directly. If you’re just using the DataBinder
and the BeanFactory
and their out-of-the-box implementation, you should skip ahead to the section about
PropertyEditors
.)
Consider the following two classes:
public class Company { private String name; private Employee managingDirector; public String getName() { return this.name; } public void setName(String name) { this.name = name; } public Employee getManagingDirector() { return this.managingDirector; } public void setManagingDirector(Employee managingDirector) { this.managingDirector = managingDirector; } }
public class Employee { private String name; private float salary; public String getName() { return this.name; } public void setName(String name) { this.name = name; } public float getSalary() { return salary; } public void setSalary(float salary) { this.salary = salary; } }
The following code snippets show some examples of how to retrieve and manipulate some of
the properties of instantiated Companies
and Employees
:
BeanWrapper company = new BeanWrapperImpl(new Company()); // setting the company name.. company.setPropertyValue("name", "Some Company Inc."); // ... can also be done like this: PropertyValue value = new PropertyValue("name", "Some Company Inc."); company.setPropertyValue(value); // ok, let's create the director and tie it to the company: BeanWrapper jim = new BeanWrapperImpl(new Employee()); jim.setPropertyValue("name", "Jim Stravinsky"); company.setPropertyValue("managingDirector", jim.getWrappedInstance()); // retrieving the salary of the managingDirector through the company Float salary = (Float) company.getPropertyValue("managingDirector.salary");
Spring uses the concept of PropertyEditors
to effect the conversion between an
Object
and a String
. If you think about it, it sometimes might be handy to be able
to represent properties in a different way than the object itself. For example, a Date
can be represented in a human readable way (as the String
'2007-14-09'
), while
we’re still able to convert the human readable form back to the original date (or even
better: convert any date entered in a human readable form, back to Date
objects). This
behavior can be achieved by registering custom editors, of type
java.beans.PropertyEditor
. Registering custom editors on a BeanWrapper
or
alternately in a specific IoC container as mentioned in the previous chapter, gives it
the knowledge of how to convert properties to the desired type. Read more about
PropertyEditors
in the javadocs of the java.beans
package provided by Oracle.
A couple of examples where property editing is used in Spring:
PropertyEditors
. When mentioning
java.lang.String
as the value of a property of some bean you’re declaring in XML
file, Spring will (if the setter of the corresponding property has a
Class
-parameter) use the ClassEditor
to try to resolve the parameter to a Class
object.
PropertyEditors
that you can manually bind in all subclasses of the
CommandController
.
Spring has a number of built-in PropertyEditors
to make life easy. Each of those is
listed below and they are all located in the org.springframework.beans.propertyeditors
package. Most, but not all (as indicated below), are registered by default by
BeanWrapperImpl
. Where the property editor is configurable in some fashion, you can of
course still register your own variant to override the default one:
Table 9.2. Built-in PropertyEditors
Class | Explanation |
---|---|
| Editor for byte arrays. Strings will simply be converted to their corresponding byte
representations. Registered by default by |
| Parses Strings representing classes to actual classes and the other way around. When a
class is not found, an |
| Customizable property editor for |
| Property editor for Collections, converting any source |
| Customizable property editor for java.util.Date, supporting a custom DateFormat. NOT registered by default. Must be user registered as needed with appropriate format. |
| Customizable property editor for any Number subclass like |
| Capable of resolving Strings to |
| One-way property editor, capable of taking a text string and producing (via an
intermediate |
| Capable of resolving Strings to |
| Capable of resolving Strings to |
| Capable of converting Strings (formatted using the format as defined in the javadocs
of the |
| Property editor that trims Strings. Optionally allows transforming an empty string
into a |
| Capable of resolving a String representation of a URL to an actual |
Spring uses the java.beans.PropertyEditorManager
to set the search path for property
editors that might be needed. The search path also includes sun.bean.editors
, which
includes PropertyEditor
implementations for types such as Font
, Color
, and most of
the primitive types. Note also that the standard JavaBeans infrastructure will
automatically discover PropertyEditor
classes (without you having to register them
explicitly) if they are in the same package as the class they handle, and have the same
name as that class, with 'Editor'
appended; for example, one could have the following
class and package structure, which would be sufficient for the FooEditor
class to be
recognized and used as the PropertyEditor
for Foo
-typed properties.
com chank pop Foo FooEditor // the PropertyEditor for the Foo class
Note that you can also use the standard BeanInfo
JavaBeans mechanism here as well
(described
in
not-amazing-detail here). Find below an example of using the BeanInfo
mechanism for
explicitly registering one or more PropertyEditor
instances with the properties of an
associated class.
com chank pop Foo FooBeanInfo // the BeanInfo for the Foo class
Here is the Java source code for the referenced FooBeanInfo
class. This would
associate a CustomNumberEditor
with the age
property of the Foo
class.
public class FooBeanInfo extends SimpleBeanInfo { public PropertyDescriptor[] getPropertyDescriptors() { try { final PropertyEditor numberPE = new CustomNumberEditor(Integer.class, true); PropertyDescriptor ageDescriptor = new PropertyDescriptor("age", Foo.class) { public PropertyEditor createPropertyEditor(Object bean) { return numberPE; }; }; return new PropertyDescriptor[] { ageDescriptor }; } catch (IntrospectionException ex) { throw new Error(ex.toString()); } } }
When setting bean properties as a string value, a Spring IoC container ultimately uses
standard JavaBeans PropertyEditors
to convert these Strings to the complex type of the
property. Spring pre-registers a number of custom PropertyEditors
(for example, to
convert a classname expressed as a string into a real Class
object). Additionally,
Java’s standard JavaBeans PropertyEditor
lookup mechanism allows a PropertyEditor
for a class simply to be named appropriately and placed in the same package as the class
it provides support for, to be found automatically.
If there is a need to register other custom PropertyEditors
, there are several
mechanisms available. The most manual approach, which is not normally convenient or
recommended, is to simply use the registerCustomEditor()
method of the
ConfigurableBeanFactory
interface, assuming you have a BeanFactory
reference.
Another, slightly more convenient, mechanism is to use a special bean factory
post-processor called CustomEditorConfigurer
. Although bean factory post-processors
can be used with BeanFactory
implementations, the CustomEditorConfigurer
has a
nested property setup, so it is strongly recommended that it is used with the
ApplicationContext
, where it may be deployed in similar fashion to any other bean, and
automatically detected and applied.
Note that all bean factories and application contexts automatically use a number of
built-in property editors, through their use of something called a BeanWrapper
to
handle property conversions. The standard property editors that the BeanWrapper
registers are listed in the previous section. Additionally,
ApplicationContexts
also override or add an additional number of editors to handle
resource lookups in a manner appropriate to the specific application context type.
Standard JavaBeans PropertyEditor
instances are used to convert property values
expressed as strings to the actual complex type of the property.
CustomEditorConfigurer
, a bean factory post-processor, may be used to conveniently add
support for additional PropertyEditor
instances to an ApplicationContext
.
Consider a user class ExoticType
, and another class DependsOnExoticType
which needs
ExoticType
set as a property:
package example; public class ExoticType { private String name; public ExoticType(String name) { this.name = name; } } public class DependsOnExoticType { private ExoticType type; public void setType(ExoticType type) { this.type = type; } }
When things are properly set up, we want to be able to assign the type property as a
string, which a PropertyEditor
will behind the scenes convert into an actual
ExoticType
instance:
<bean id="sample" class="example.DependsOnExoticType"> <property name="type" value="aNameForExoticType"/> </bean>
The PropertyEditor
implementation could look similar to this:
// converts string representation to ExoticType object package example; public class ExoticTypeEditor extends PropertyEditorSupport { public void setAsText(String text) { setValue(new ExoticType(text.toUpperCase())); } }
Finally, we use CustomEditorConfigurer
to register the new PropertyEditor
with the
ApplicationContext
, which will then be able to use it as needed:
<bean class="org.springframework.beans.factory.config.CustomEditorConfigurer"> <property name="customEditors"> <map> <entry key="example.ExoticType" value="example.ExoticTypeEditor"/> </map> </property> </bean>
Another mechanism for registering property editors with the Spring container is to
create and use a PropertyEditorRegistrar
. This interface is particularly useful when
you need to use the same set of property editors in several different situations: write
a corresponding registrar and reuse that in each case. PropertyEditorRegistrars
work
in conjunction with an interface called PropertyEditorRegistry
, an interface that is
implemented by the Spring BeanWrapper
(and DataBinder
). PropertyEditorRegistrars
are particularly convenient when used in conjunction with the CustomEditorConfigurer
(introduced here), which exposes a
property called setPropertyEditorRegistrars(..)
: PropertyEditorRegistrars
added to a
CustomEditorConfigurer
in this fashion can easily be shared with DataBinder
and
Spring MVC Controllers
. Furthermore, it avoids the need for synchronization on custom
editors: a PropertyEditorRegistrar
is expected to create fresh PropertyEditor
instances for each bean creation attempt.
Using a PropertyEditorRegistrar
is perhaps best illustrated with an example. First
off, you need to create your own PropertyEditorRegistrar
implementation:
package com.foo.editors.spring; public final class CustomPropertyEditorRegistrar implements PropertyEditorRegistrar { public void registerCustomEditors(PropertyEditorRegistry registry) { // it is expected that new PropertyEditor instances are created registry.registerCustomEditor(ExoticType.class, new ExoticTypeEditor()); // you could register as many custom property editors as are required here... } }
See also the org.springframework.beans.support.ResourceEditorRegistrar
for an example
PropertyEditorRegistrar
implementation. Notice how in its implementation of the
registerCustomEditors(..)
method it creates new instances of each property editor.
Next we configure a CustomEditorConfigurer
and inject an instance of our
CustomPropertyEditorRegistrar
into it:
<bean class="org.springframework.beans.factory.config.CustomEditorConfigurer"> <property name="propertyEditorRegistrars"> <list> <ref bean="customPropertyEditorRegistrar"/> </list> </property> </bean> <bean id="customPropertyEditorRegistrar" class="com.foo.editors.spring.CustomPropertyEditorRegistrar"/>
Finally, and in a bit of a departure from the focus of this chapter, for those of you
using Spring’s MVC web framework, using PropertyEditorRegistrars
in
conjunction with data-binding Controllers
(such as SimpleFormController
) can be very
convenient. Find below an example of using a PropertyEditorRegistrar
in the
implementation of an initBinder(..)
method:
public final class RegisterUserController extends SimpleFormController { private final PropertyEditorRegistrar customPropertyEditorRegistrar; public RegisterUserController(PropertyEditorRegistrar propertyEditorRegistrar) { this.customPropertyEditorRegistrar = propertyEditorRegistrar; } protected void initBinder(HttpServletRequest request, ServletRequestDataBinder binder) throws Exception { this.customPropertyEditorRegistrar.registerCustomEditors(binder); } // other methods to do with registering a User }
This style of PropertyEditor
registration can lead to concise code (the implementation
of initBinder(..)
is just one line long!), and allows common PropertyEditor
registration code to be encapsulated in a class and then shared amongst as many
Controllers
as needed.
Spring 3 introduces a core.convert
package that provides a general type conversion
system. The system defines an SPI to implement type conversion logic, as well as an API
to execute type conversions at runtime. Within a Spring container, this system can be
used as an alternative to PropertyEditors to convert externalized bean property value
strings to required property types. The public API may also be used anywhere in your
application where type conversion is needed.
The SPI to implement type conversion logic is simple and strongly typed:
package org.springframework.core.convert.converter; public interface Converter<S, T> { T convert(S source); }
To create your own converter, simply implement the interface above. Parameterize S
as the type you are converting from, and T
as the type you are converting to. Such a
converter can also be applied transparently if a collection or array of S
needs to be
converted to an array or collection of T
, provided that a delegating array/collection
converter has been registered as well (which DefaultConversionService
does by default).
For each call to convert(S)
, the source argument is guaranteed to be NOT null. Your
Converter may throw any unchecked exception if conversion fails; specifically, an
IllegalArgumentException
should be thrown to report an invalid source value.
Take care to ensure that your Converter
implementation is thread-safe.
Several converter implementations are provided in the core.convert.support
package as
a convenience. These include converters from Strings to Numbers and other common types.
Consider StringToInteger
as an example for a typical Converter
implementation:
package org.springframework.core.convert.support; final class StringToInteger implements Converter<String, Integer> { public Integer convert(String source) { return Integer.valueOf(source); } }
When you need to centralize the conversion logic for an entire class hierarchy, for
example, when converting from String to java.lang.Enum objects, implement
ConverterFactory
:
package org.springframework.core.convert.converter; public interface ConverterFactory<S, R> { <T extends R> Converter<S, T> getConverter(Class<T> targetType); }
Parameterize S to be the type you are converting from and R to be the base type defining the range of classes you can convert to. Then implement getConverter(Class<T>), where T is a subclass of R.
Consider the StringToEnum
ConverterFactory as an example:
package org.springframework.core.convert.support; final class StringToEnumConverterFactory implements ConverterFactory<String, Enum> { public <T extends Enum> Converter<String, T> getConverter(Class<T> targetType) { return new StringToEnumConverter(targetType); } private final class StringToEnumConverter<T extends Enum> implements Converter<String, T> { private Class<T> enumType; public StringToEnumConverter(Class<T> enumType) { this.enumType = enumType; } public T convert(String source) { return (T) Enum.valueOf(this.enumType, source.trim()); } } }
When you require a sophisticated Converter implementation, consider the GenericConverter interface. With a more flexible but less strongly typed signature, a GenericConverter supports converting between multiple source and target types. In addition, a GenericConverter makes available source and target field context you can use when implementing your conversion logic. Such context allows a type conversion to be driven by a field annotation, or generic information declared on a field signature.
package org.springframework.core.convert.converter; public interface GenericConverter { public Set<ConvertiblePair> getConvertibleTypes(); Object convert(Object source, TypeDescriptor sourceType, TypeDescriptor targetType); }
To implement a GenericConverter, have getConvertibleTypes() return the supported source→target type pairs. Then implement convert(Object, TypeDescriptor, TypeDescriptor) to implement your conversion logic. The source TypeDescriptor provides access to the source field holding the value being converted. The target TypeDescriptor provides access to the target field where the converted value will be set.
A good example of a GenericConverter is a converter that converts between a Java Array and a Collection. Such an ArrayToCollectionConverter introspects the field that declares the target Collection type to resolve the Collection’s element type. This allows each element in the source array to be converted to the Collection element type before the Collection is set on the target field.
Note | |
---|---|
Because GenericConverter is a more complex SPI interface, only use it when you need it. Favor Converter or ConverterFactory for basic type conversion needs. |
Sometimes you only want a Converter
to execute if a specific condition holds true. For
example, you might only want to execute a Converter
if a specific annotation is present
on the target field. Or you might only want to execute a Converter
if a specific method,
such as a static valueOf
method, is defined on the target class.
ConditionalGenericConverter
is the union of the GenericConverter
and
ConditionalConverter
interfaces that allows you to define such custom matching criteria:
public interface ConditionalGenericConverter extends GenericConverter, ConditionalConverter { boolean matches(TypeDescriptor sourceType, TypeDescriptor targetType); }
A good example of a ConditionalGenericConverter
is an EntityConverter that converts
between an persistent entity identifier and an entity reference. Such a EntityConverter
might only match if the target entity type declares a static finder method e.g.
findAccount(Long)
. You would perform such a finder method check in the implementation of
matches(TypeDescriptor, TypeDescriptor)
.
The ConversionService defines a unified API for executing type conversion logic at runtime. Converters are often executed behind this facade interface:
package org.springframework.core.convert; public interface ConversionService { boolean canConvert(Class<?> sourceType, Class<?> targetType); <T> T convert(Object source, Class<T> targetType); boolean canConvert(TypeDescriptor sourceType, TypeDescriptor targetType); Object convert(Object source, TypeDescriptor sourceType, TypeDescriptor targetType); }
Most ConversionService implementations also implement ConverterRegistry
, which
provides an SPI for registering converters. Internally, a ConversionService
implementation delegates to its registered converters to carry out type conversion logic.
A robust ConversionService implementation is provided in the core.convert.support
package. GenericConversionService
is the general-purpose implementation suitable for
use in most environments. ConversionServiceFactory
provides a convenient factory for
creating common ConversionService configurations.
A ConversionService is a stateless object designed to be instantiated at application startup, then shared between multiple threads. In a Spring application, you typically configure a ConversionService instance per Spring container (or ApplicationContext). That ConversionService will be picked up by Spring and then used whenever a type conversion needs to be performed by the framework. You may also inject this ConversionService into any of your beans and invoke it directly.
Note | |
---|---|
If no ConversionService is registered with Spring, the original PropertyEditor-based system is used. |
To register a default ConversionService with Spring, add the following bean definition
with id conversionService
:
<bean id="conversionService" class="org.springframework.context.support.ConversionServiceFactoryBean"/>
A default ConversionService can convert between strings, numbers, enums, collections,
maps, and other common types. To supplement or override the default converters with your
own custom converter(s), set the converters
property. Property values may implement
either of the Converter, ConverterFactory, or GenericConverter interfaces.
<bean id="conversionService" class="org.springframework.context.support.ConversionServiceFactoryBean"> <property name="converters"> <set> <bean class="example.MyCustomConverter"/> </set> </property> </bean>
It is also common to use a ConversionService within a Spring MVC application. See Section 22.16.3, “Conversion and Formatting” in the Spring MVC chapter.
In certain situations you may wish to apply formatting during conversion. See
Section 9.6.3, “FormatterRegistry SPI” for details on using
FormattingConversionServiceFactoryBean
.
To work with a ConversionService instance programmatically, simply inject a reference to it like you would for any other bean:
@Service public class MyService { @Autowired public MyService(ConversionService conversionService) { this.conversionService = conversionService; } public void doIt() { this.conversionService.convert(...) } }
For most use cases, the convert
method specifying the targetType can be used but it
will not work with more complex types such as a collection of a parameterized element.
If you want to convert a List
of Integer
to a List
of String
programmatically,
for instance, you need to provide a formal definition of the source and target types.
Fortunately, TypeDescriptor
provides various options to make that straightforward:
DefaultConversionService cs = new DefaultConversionService(); List<Integer> input = .... cs.convert(input, TypeDescriptor.forObject(input), // List<Integer> type descriptor TypeDescriptor.collection(List.class, TypeDescriptor.valueOf(String.class)));
Note that DefaultConversionService
registers converters automatically which are
appropriate for most environments. This includes collection converters, scalar
converters, and also basic Object
to String
converters. The same converters can
be registered with any ConverterRegistry
using the static addDefaultConverters
method on the DefaultConversionService
class.
Converters for value types will be reused for arrays and collections, so there is
no need to create a specific converter to convert from a Collection
of S
to a
Collection
of T
, assuming that standard collection handling is appropriate.
As discussed in the previous section, core.convert
is a
general-purpose type conversion system. It provides a unified ConversionService API as
well as a strongly-typed Converter SPI for implementing conversion logic from one type
to another. A Spring Container uses this system to bind bean property values. In
addition, both the Spring Expression Language (SpEL) and DataBinder use this system to
bind field values. For example, when SpEL needs to coerce a Short
to a Long
to
complete an expression.setValue(Object bean, Object value)
attempt, the core.convert
system performs the coercion.
Now consider the type conversion requirements of a typical client environment such as a web or desktop application. In such environments, you typically convert from String to support the client postback process, as well as back to String to support the view rendering process. In addition, you often need to localize String values. The more general core.convert Converter SPI does not address such formatting requirements directly. To directly address them, Spring 3 introduces a convenient Formatter SPI that provides a simple and robust alternative to PropertyEditors for client environments.
In general, use the Converter SPI when you need to implement general-purpose type conversion logic; for example, for converting between a java.util.Date and and java.lang.Long. Use the Formatter SPI when you’re working in a client environment, such as a web application, and need to parse and print localized field values. The ConversionService provides a unified type conversion API for both SPIs.
The Formatter SPI to implement field formatting logic is simple and strongly typed:
package org.springframework.format; public interface Formatter<T> extends Printer<T>, Parser<T> { }
Where Formatter extends from the Printer and Parser building-block interfaces:
public interface Printer<T> { String print(T fieldValue, Locale locale); }
import java.text.ParseException; public interface Parser<T> { T parse(String clientValue, Locale locale) throws ParseException; }
To create your own Formatter, simply implement the Formatter interface above.
Parameterize T to be the type of object you wish to format, for example,
java.util.Date
. Implement the print()
operation to print an instance of T for
display in the client locale. Implement the parse()
operation to parse an instance of
T from the formatted representation returned from the client locale. Your Formatter
should throw a ParseException or IllegalArgumentException if a parse attempt fails. Take
care to ensure your Formatter implementation is thread-safe.
Several Formatter implementations are provided in format
subpackages as a convenience.
The number
package provides a NumberFormatter
, CurrencyFormatter
, and
PercentFormatter
to format java.lang.Number
objects using a java.text.NumberFormat
.
The datetime
package provides a DateFormatter
to format java.util.Date
objects with
a java.text.DateFormat
. The datetime.joda
package provides comprehensive datetime
formatting support based on the Joda Time library.
Consider DateFormatter
as an example Formatter
implementation:
package org.springframework.format.datetime; public final class DateFormatter implements Formatter<Date> { private String pattern; public DateFormatter(String pattern) { this.pattern = pattern; } public String print(Date date, Locale locale) { if (date == null) { return ""; } return getDateFormat(locale).format(date); } public Date parse(String formatted, Locale locale) throws ParseException { if (formatted.length() == 0) { return null; } return getDateFormat(locale).parse(formatted); } protected DateFormat getDateFormat(Locale locale) { DateFormat dateFormat = new SimpleDateFormat(this.pattern, locale); dateFormat.setLenient(false); return dateFormat; } }
The Spring team welcomes community-driven Formatter
contributions; see
jira.spring.io to contribute.
As you will see, field formatting can be configured by field type or annotation. To bind an Annotation to a formatter, implement AnnotationFormatterFactory:
package org.springframework.format; public interface AnnotationFormatterFactory<A extends Annotation> { Set<Class<?>> getFieldTypes(); Printer<?> getPrinter(A annotation, Class<?> fieldType); Parser<?> getParser(A annotation, Class<?> fieldType); }
Parameterize A to be the field annotationType you wish to associate formatting logic
with, for example org.springframework.format.annotation.DateTimeFormat
. Have
getFieldTypes()
return the types of fields the annotation may be used on. Have
getPrinter()
return a Printer to print the value of an annotated field. Have
getParser()
return a Parser to parse a clientValue for an annotated field.
The example AnnotationFormatterFactory implementation below binds the @NumberFormat Annotation to a formatter. This annotation allows either a number style or pattern to be specified:
public final class NumberFormatAnnotationFormatterFactory implements AnnotationFormatterFactory<NumberFormat> { public Set<Class<?>> getFieldTypes() { return new HashSet<Class<?>>(asList(new Class<?>[] { Short.class, Integer.class, Long.class, Float.class, Double.class, BigDecimal.class, BigInteger.class })); } public Printer<Number> getPrinter(NumberFormat annotation, Class<?> fieldType) { return configureFormatterFrom(annotation, fieldType); } public Parser<Number> getParser(NumberFormat annotation, Class<?> fieldType) { return configureFormatterFrom(annotation, fieldType); } private Formatter<Number> configureFormatterFrom(NumberFormat annotation, Class<?> fieldType) { if (!annotation.pattern().isEmpty()) { return new NumberFormatter(annotation.pattern()); } else { Style style = annotation.style(); if (style == Style.PERCENT) { return new PercentFormatter(); } else if (style == Style.CURRENCY) { return new CurrencyFormatter(); } else { return new NumberFormatter(); } } } }
To trigger formatting, simply annotate fields with @NumberFormat:
public class MyModel { @NumberFormat(style=Style.CURRENCY) private BigDecimal decimal; }
A portable format annotation API exists in the org.springframework.format.annotation
package. Use @NumberFormat to format java.lang.Number fields. Use @DateTimeFormat to
format java.util.Date, java.util.Calendar, java.util.Long, or Joda Time fields.
The example below uses @DateTimeFormat to format a java.util.Date as a ISO Date (yyyy-MM-dd):
public class MyModel { @DateTimeFormat(iso=ISO.DATE) private Date date; }
The FormatterRegistry is an SPI for registering formatters and converters.
FormattingConversionService
is an implementation of FormatterRegistry suitable for
most environments. This implementation may be configured programmatically or
declaratively as a Spring bean using FormattingConversionServiceFactoryBean
. Because
this implementation also implements ConversionService
, it can be directly configured
for use with Spring’s DataBinder and the Spring Expression Language (SpEL).
Review the FormatterRegistry SPI below:
package org.springframework.format; public interface FormatterRegistry extends ConverterRegistry { void addFormatterForFieldType(Class<?> fieldType, Printer<?> printer, Parser<?> parser); void addFormatterForFieldType(Class<?> fieldType, Formatter<?> formatter); void addFormatterForFieldType(Formatter<?> formatter); void addFormatterForAnnotation(AnnotationFormatterFactory<?, ?> factory); }
As shown above, Formatters can be registered by fieldType or annotation.
The FormatterRegistry SPI allows you to configure Formatting rules centrally, instead of duplicating such configuration across your Controllers. For example, you might want to enforce that all Date fields are formatted a certain way, or fields with a specific annotation are formatted in a certain way. With a shared FormatterRegistry, you define these rules once and they are applied whenever formatting is needed.
The FormatterRegistrar is an SPI for registering formatters and converters through the FormatterRegistry:
package org.springframework.format; public interface FormatterRegistrar { void registerFormatters(FormatterRegistry registry); }
A FormatterRegistrar is useful when registering multiple related converters and formatters for a given formatting category, such as Date formatting. It can also be useful where declarative registration is insufficient. For example when a formatter needs to be indexed under a specific field type different from its own <T> or when registering a Printer/Parser pair. The next section provides more information on converter and formatter registration.
See Section 22.16.3, “Conversion and Formatting” in the Spring MVC chapter.
By default, date and time fields that are not annotated with @DateTimeFormat
are
converted from strings using the DateFormat.SHORT
style. If you prefer, you can
change this by defining your own global format.
You will need to ensure that Spring does not register default formatters, and instead
you should register all formatters manually. Use the
org.springframework.format.datetime.joda.JodaTimeFormatterRegistrar
or
org.springframework.format.datetime.DateFormatterRegistrar
class depending on whether
you use the Joda Time library.
For example, the following Java configuration will register a global ' `yyyyMMdd’ format. This example does not depend on the Joda Time library:
@Configuration public class AppConfig { @Bean public FormattingConversionService conversionService() { // Use the DefaultFormattingConversionService but do not register defaults DefaultFormattingConversionService conversionService = new DefaultFormattingConversionService(false); // Ensure @NumberFormat is still supported conversionService.addFormatterForFieldAnnotation(new NumberFormatAnnotationFormatterFactory()); // Register date conversion with a specific global format DateFormatterRegistrar registrar = new DateFormatterRegistrar(); registrar.setFormatter(new DateFormatter("yyyyMMdd")); registrar.registerFormatters(conversionService); return conversionService; } }
If you prefer XML based configuration you can use a
FormattingConversionServiceFactoryBean
. Here is the same example, this time using Joda
Time:
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd> <bean id="conversionService" class="org.springframework.format.support.FormattingConversionServiceFactoryBean"> <property name="registerDefaultFormatters" value="false" /> <property name="formatters"> <set> <bean class="org.springframework.format.number.NumberFormatAnnotationFormatterFactory" /> </set> </property> <property name="formatterRegistrars"> <set> <bean class="org.springframework.format.datetime.joda.JodaTimeFormatterRegistrar"> <property name="dateFormatter"> <bean class="org.springframework.format.datetime.joda.DateTimeFormatterFactoryBean"> <property name="pattern" value="yyyyMMdd"/> </bean> </property> </bean> </set> </property> </bean> </beans>
Note | |
---|---|
Joda Time provides separate distinct types to represent |
If you are using Spring MVC remember to explicitly configure the conversion service that
is used. For Java based @Configuration
this means extending the
WebMvcConfigurationSupport
class and overriding the mvcConversionService()
method.
For XML you should use the 'conversion-service'
attribute of the
mvc:annotation-driven
element. See Section 22.16.3, “Conversion and Formatting” for details.
Spring 3 introduces several enhancements to its validation support. First, the JSR-303
Bean Validation API is now fully supported. Second, when used programmatically, Spring’s
DataBinder can now validate objects as well as bind to them. Third, Spring MVC now has
support for declaratively validating @Controller
inputs.
JSR-303 standardizes validation constraint declaration and metadata for the Java platform. Using this API, you annotate domain model properties with declarative validation constraints and the runtime enforces them. There are a number of built-in constraints you can take advantage of. You may also define your own custom constraints.
To illustrate, consider a simple PersonForm model with two properties:
public class PersonForm { private String name; private int age; }
JSR-303 allows you to define declarative validation constraints against such properties:
public class PersonForm { @NotNull @Size(max=64) private String name; @Min(0) private int age; }
When an instance of this class is validated by a JSR-303 Validator, these constraints will be enforced.
For general information on JSR-303/JSR-349, see the Bean Validation website. For information on the specific capabilities of the default reference implementation, see the Hibernate Validator documentation. To learn how to setup a Bean Validation provider as a Spring bean, keep reading.
Spring provides full support for the Bean Validation API. This includes convenient
support for bootstrapping a JSR-303/JSR-349 Bean Validation provider as a Spring bean.
This allows for a javax.validation.ValidatorFactory
or javax.validation.Validator
to
be injected wherever validation is needed in your application.
Use the LocalValidatorFactoryBean
to configure a default Validator as a Spring bean:
<bean id="validator" class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean"/>
The basic configuration above will trigger Bean Validation to initialize using its default bootstrap mechanism. A JSR-303/JSR-349 provider, such as Hibernate Validator, is expected to be present in the classpath and will be detected automatically.
LocalValidatorFactoryBean
implements both javax.validation.ValidatorFactory
and
javax.validation.Validator
, as well as Spring’s
org.springframework.validation.Validator
. You may inject a reference to either of
these interfaces into beans that need to invoke validation logic.
Inject a reference to javax.validation.Validator
if you prefer to work with the Bean
Validation API directly:
import javax.validation.Validator; @Service public class MyService { @Autowired private Validator validator;
Inject a reference to org.springframework.validation.Validator
if your bean requires
the Spring Validation API:
import org.springframework.validation.Validator; @Service public class MyService { @Autowired private Validator validator; }
Each Bean Validation constraint consists of two parts. First, a @Constraint
annotation
that declares the constraint and its configurable properties. Second, an implementation
of the javax.validation.ConstraintValidator
interface that implements the constraint’s
behavior. To associate a declaration with an implementation, each @Constraint
annotation
references a corresponding ValidationConstraint implementation class. At runtime, a
ConstraintValidatorFactory
instantiates the referenced implementation when the
constraint annotation is encountered in your domain model.
By default, the LocalValidatorFactoryBean
configures a SpringConstraintValidatorFactory
that uses Spring to create ConstraintValidator instances. This allows your custom
ConstraintValidators to benefit from dependency injection like any other Spring bean.
Shown below is an example of a custom @Constraint
declaration, followed by an associated
ConstraintValidator
implementation that uses Spring for dependency injection:
@Target({ElementType.METHOD, ElementType.FIELD}) @Retention(RetentionPolicy.RUNTIME) @Constraint(validatedBy=MyConstraintValidator.class) public @interface MyConstraint { }
import javax.validation.ConstraintValidator; public class MyConstraintValidator implements ConstraintValidator { @Autowired; private Foo aDependency; ... }
As you can see, a ConstraintValidator implementation may have its dependencies @Autowired like any other Spring bean.
The method validation feature supported by Bean Validation 1.1, and as a custom
extension also by Hibernate Validator 4.3, can be integrated into a Spring context
through a MethodValidationPostProcessor
bean definition:
<bean class="org.springframework.validation.beanvalidation.MethodValidationPostProcessor"/>
In order to be eligible for Spring-driven method validation, all target classes need
to be annotated with Spring’s @Validated
annotation, optionally declaring the
validation groups to use. Check out the MethodValidationPostProcessor
javadocs
for setup details with Hibernate Validator and Bean Validation 1.1 providers.
The default LocalValidatorFactoryBean
configuration should prove sufficient for most
cases. There are a number of configuration options for various Bean Validation
constructs, from message interpolation to traversal resolution. See the
LocalValidatorFactoryBean
javadocs for more information on these options.
Since Spring 3, a DataBinder instance can be configured with a Validator. Once
configured, the Validator may be invoked by calling binder.validate()
. Any validation
Errors are automatically added to the binder’s BindingResult.
When working with the DataBinder programmatically, this can be used to invoke validation logic after binding to a target object:
Foo target = new Foo(); DataBinder binder = new DataBinder(target); binder.setValidator(new FooValidator()); // bind to the target object binder.bind(propertyValues); // validate the target object binder.validate(); // get BindingResult that includes any validation errors BindingResult results = binder.getBindingResult();
A DataBinder can also be configured with multiple Validator
instances via
dataBinder.addValidators
and dataBinder.replaceValidators
. This is useful when
combining globally configured Bean Validation with a Spring Validator
configured
locally on a DataBinder instance. See ???.
See Section 22.16.4, “Validation” in the Spring MVC chapter.
The Spring Expression Language (SpEL for short) is a powerful expression language that supports querying and manipulating an object graph at runtime. The language syntax is similar to Unified EL but offers additional features, most notably method invocation and basic string templating functionality.
While there are several other Java expression languages available, OGNL, MVEL, and JBoss EL, to name a few, the Spring Expression Language was created to provide the Spring community with a single well supported expression language that can be used across all the products in the Spring portfolio. Its language features are driven by the requirements of the projects in the Spring portfolio, including tooling requirements for code completion support within the eclipse based Spring Tool Suite. That said, SpEL is based on a technology agnostic API allowing other expression language implementations to be integrated should the need arise.
While SpEL serves as the foundation for expression evaluation within the Spring portfolio, it is not directly tied to Spring and can be used independently. In order to be self contained, many of the examples in this chapter use SpEL as if it were an independent expression language. This requires creating a few bootstrapping infrastructure classes such as the parser. Most Spring users will not need to deal with this infrastructure and will instead only author expression strings for evaluation. An example of this typical use is the integration of SpEL into creating XML or annotated based bean definitions as shown in the section Expression support for defining bean definitions.
This chapter covers the features of the expression language, its API, and its language syntax. In several places an Inventor and Inventor’s Society class are used as the target objects for expression evaluation. These class declarations and the data used to populate them are listed at the end of the chapter.
The expression language supports the following functionality
This section introduces the simple use of SpEL interfaces and its expression language. The complete language reference can be found in the section Language Reference.
The following code introduces the SpEL API to evaluate the literal string expression 'Hello World'.
ExpressionParser parser = new SpelExpressionParser(); Expression exp = parser.parseExpression("'Hello World'"); String message = (String) exp.getValue();
The value of the message variable is simply 'Hello World'.
The SpEL classes and interfaces you are most likely to use are located in the packages
org.springframework.expression
and its sub packages and spel.support
.
The interface ExpressionParser
is responsible for parsing an expression string. In
this example the expression string is a string literal denoted by the surrounding single
quotes. The interface Expression
is responsible for evaluating the previously defined
expression string. There are two exceptions that can be thrown, ParseException
and
EvaluationException
when calling parser.parseExpression
and exp.getValue
respectively.
SpEL supports a wide range of features, such as calling methods, accessing properties, and calling constructors.
As an example of method invocation, we call the concat
method on the string literal.
ExpressionParser parser = new SpelExpressionParser(); Expression exp = parser.parseExpression("'Hello World'.concat('!')"); String message = (String) exp.getValue();
The value of message is now 'Hello World!'.
As an example of calling a JavaBean property, the String property Bytes
can be called
as shown below.
ExpressionParser parser = new SpelExpressionParser(); // invokes 'getBytes()' Expression exp = parser.parseExpression("'Hello World'.bytes"); byte[] bytes = (byte[]) exp.getValue();
SpEL also supports nested properties using standard dot notation, i.e. prop1.prop2.prop3 and the setting of property values
Public fields may also be accessed.
ExpressionParser parser = new SpelExpressionParser(); // invokes 'getBytes().length' Expression exp = parser.parseExpression("'Hello World'.bytes.length"); int length = (Integer) exp.getValue();
The String’s constructor can be called instead of using a string literal.
ExpressionParser parser = new SpelExpressionParser(); Expression exp = parser.parseExpression("new String('hello world').toUpperCase()"); String message = exp.getValue(String.class);
Note the use of the generic method public <T> T getValue(Class<T> desiredResultType)
.
Using this method removes the need to cast the value of the expression to the desired
result type. An EvaluationException
will be thrown if the value cannot be cast to the
type T
or converted using the registered type converter.
The more common usage of SpEL is to provide an expression string that is evaluated
against a specific object instance (called the root object). There are two options here
and which to choose depends on whether the object against which the expression is being
evaluated will be changing with each call to evaluate the expression. In the following
example we retrieve the name
property from an instance of the Inventor class.
// Create and set a calendar GregorianCalendar c = new GregorianCalendar(); c.set(1856, 7, 9); // The constructor arguments are name, birthday, and nationality. Inventor tesla = new Inventor("Nikola Tesla", c.getTime(), "Serbian"); ExpressionParser parser = new SpelExpressionParser(); Expression exp = parser.parseExpression("name"); EvaluationContext context = new StandardEvaluationContext(tesla); String name = (String) exp.getValue(context);
In the last line, the value of the string variable name
will be set to "Nikola Tesla".
The class StandardEvaluationContext is where you can specify which object the "name"
property will be evaluated against. This is the mechanism to use if the root object is
unlikely to change, it can simply be set once in the evaluation context. If the root
object is likely to change repeatedly, it can be supplied on each call to getValue
, as
this next example shows:
/ Create and set a calendar GregorianCalendar c = new GregorianCalendar(); c.set(1856, 7, 9); // The constructor arguments are name, birthday, and nationality. Inventor tesla = new Inventor("Nikola Tesla", c.getTime(), "Serbian"); ExpressionParser parser = new SpelExpressionParser(); Expression exp = parser.parseExpression("name"); String name = (String) exp.getValue(tesla);
In this case the inventor tesla
has been supplied directly to getValue
and the
expression evaluation infrastructure creates and manages a default evaluation context
internally - it did not require one to be supplied.
The StandardEvaluationContext is relatively expensive to construct and during repeated usage it builds up cached state that enables subsequent expression evaluations to be performed more quickly. For this reason it is better to cache and reuse them where possible, rather than construct a new one for each expression evaluation.
In some cases it can be desirable to use a configured evaluation context and yet still
supply a different root object on each call to getValue
. getValue
allows both to be
specified on the same call. In these situations the root object passed on the call is
considered to override any (which maybe null) specified on the evaluation context.
Note | |
---|---|
In standalone usage of SpEL there is a need to create the parser, parse expressions and perhaps provide evaluation contexts and a root context object. However, more common usage is to provide only the SpEL expression string as part of a configuration file, for example for Spring bean or Spring Web Flow definitions. In this case, the parser, evaluation context, root object and any predefined variables are all set up implicitly, requiring the user to specify nothing other than the expressions. |
As a final introductory example, the use of a boolean operator is shown using the Inventor object in the previous example.
Expression exp = parser.parseExpression("name == 'Nikola Tesla'"); boolean result = exp.getValue(context, Boolean.class); // evaluates to true