Appendices

Version 5.0.0.RELEASE

Table of Contents

1. What’s New in the Spring Framework
2. Migrating to Spring Framework 4.3 / 5.0
3. Spring Annotation Programming Model
4. Classic Spring Usage
4.1. Classic ORM usage
4.2. JMS Usage
5. Classic Spring AOP Usage
5.1. Pointcut API in Spring
5.2. Advice API in Spring
5.3. Advisor API in Spring
5.4. Using the ProxyFactoryBean to create AOP proxies
5.5. Concise proxy definitions
5.6. Creating AOP proxies programmatically with the ProxyFactory
5.7. Manipulating advised objects
5.8. Using the "autoproxy" facility
5.9. Using TargetSources
5.10. Defining new Advice types
5.11. Further resources
6. XML Schema-based configuration
6.1. Introduction
6.2. XML Schema-based configuration
7. Extensible XML authoring
7.1. Introduction
7.2. Authoring the schema
7.3. Coding a NamespaceHandler
7.4. BeanDefinitionParser
7.5. Registering the handler and the schema
7.6. Using a custom extension in your Spring XML configuration
7.7. Meatier examples
7.8. Further Resources
8. spring JSP Tag Library
8.1. Introduction
8.2. The argument tag
8.3. The bind tag
8.4. The escapeBody tag
8.5. The eval tag
8.6. The hasBindErrors tag
8.7. The htmlEscape tag

© ©O© I B B W N e

N 9 N0 9 N0 0o 9O 0o OO0 0 0 0w W W w NN DN e
0 00 9 N OO0 O o O U1 O O Ul W R R, R, R, O O v O Ul O W 0NN R, W

8.8. The message tag
8.9. The nestedPath tag
8.10. The param tag
8.11. The theme tag
8.12. The transform tag
8.13. The url tag

9. spring-form JSP Tag Library

9.1. Introduction

9.2. The button tag

9.3. The checkbox tag
9.4. The checkboxes tag
9.5. The errors tag

9.6. The form tag

9.7. The hidden tag

9.8. The input tag

9.9. The label tag

9.10. The option tag

9.11. The options tag
9.12. The password tag
9.13. The radiobutton tag
9.14. The radiobuttons tag
9.15. The select tag

9.16. The textarea tag

78
79
80
80
81
81
83
83
83
84
85
86
87
88
88
89
90
91
92
93
94
96
97

Chapter 1. What’s New in the Spring
Framework

"What’s New" guides for releases of the Spring Framework are now provided as a Wiki page.

https://github.com/spring-projects/spring-framework/wiki/What's-New-in-the-Spring-Framework

Chapter 2. Migrating to Spring Framework
4.3/5.0

Migration guides for upgrading from previous releases of the Spring Framework are now provided
as a Wiki page.

https://github.com/spring-projects/spring-framework/wiki/Migrating-from-earlier-versions-of-the-spring-framework

Chapter 3. Spring Annotation Programming
Model

Spring’s annotation programming model is documented in the Spring Framework Wiki.

https://github.com/spring-projects/spring-framework/wiki/Spring-Annotation-Programming-Model

Chapter 4. Classic Spring Usage

This appendix discusses some classic Spring usage patterns as a reference for developers
maintaining legacy Spring applications. These usage patterns no longer reflect the recommended
way of using these features, and the current recommended usage is covered in the respective
sections of the reference manual.

4.1. Classic ORM usage

This section documents the classic usage patterns that you might encounter in a legacy Spring
application. For the currently recommended usage patterns, please refer to the ORM chapter.

4.1.1. Hibernate

For the currently recommended usage patterns for Hibernate see the Hibernate section.

The HibernateTemplate

The basic programming model for templating looks as follows, for methods that can be part of any
custom data access object or business service. There are no restrictions on the implementation of
the surrounding object at all, it just needs to provide a Hibernate SessionFactory. It can get the
latter from anywhere, but preferably as bean reference from a Spring IoC container - via a simple
setSessionFactory(..) bean property setter. The following snippets show a DAO definition in a
Spring container, referencing the above defined SessionFactory, and an example for a DAO method
implementation.

<beans>
<bean id="myProductDao" class="product.ProductDaoImpl">
<property name="sessionFactory" ref="mySessionFactory"/>

</bean>

</beans>

data-access.pdf#orm
data-access.pdf#orm-hibernate

public class ProductDaoImpl implements ProductDao {
private HibernateTemplate hibernateTemplate;

public void setSessionFactory(SessionFactory sessionFactory) {
this.hibernateTemplate = new HibernateTemplate(sessionFactory);

}

public Collection loadProductsByCategory(String category) throws
DataAccessException {

return this.hibernateTemplate.find("from test.Product product where
product.category=?", category);

}
}

The HibernateTemplate class provides many methods that mirror the methods exposed on the
Hibernate Session interface, in addition to a number of convenience methods such as the one
shown above. If you need access to the Session to invoke methods that are not exposed on the
HibernateTemplate, you can always drop down to a callback-based approach like so.

public class ProductDaoImpl implements ProductDao {
private HibernateTemplate hibernateTemplate;

public void setSessionFactory(SessionFactory sessionFactory) {
this.hibernateTemplate = new HibernateTemplate(sessionFactory);

}

public Collection loadProductsByCategory(final String category) throws
DataAccessException {
return this.hibernateTemplate.execute(new HibernateCallback() {
public Object doInHibernate(Session session) {

Criteria criteria = session.createCriteria(Product.class);
criteria.add(Expression.eq("category”, category));
criteria.setMaxResults(6);
return criteria.list();

A callback implementation effectively can be used for any Hibernate data access. HibernateTemplate
will ensure that Session instances are properly opened and closed, and automatically participate in
transactions. The template instances are thread-safe and reusable, they can thus be kept as instance
variables of the surrounding class. For simple single step actions like a single find, load,
saveOrUpdate, or delete call, HibernateTemplate offers alternative convenience methods that can
replace such one line callback implementations. Furthermore, Spring provides a convenient

HibernateDaoSupport base class that provides a setSessionFactory(..) method for receiving a
SessionFactory, and getSessionFactory() and getHibernateTemplate() for use by subclasses. In
combination, this allows for very simple DAO implementations for typical requirements:

public class ProductDaoImpl extends HibernateDaoSupport implements ProductDao {

public Collection loadProductsByCategory(String category) throws
DataAccessException {
return this.getHibernateTemplate().find(
"from test.Product product where product.category=?", category);

Implementing Spring-based DAOs without callbacks

As alternative to using Spring’s HibernateTemplate to implement DAOs, data access code can also be
written in a more traditional fashion, without wrapping the Hibernate access code in a callback,
while still respecting and participating in Spring’s generic DataAccessException hierarchy. The
HibernateDaoSupport base class offers methods to access the current transactional Session and to
convert exceptions in such a scenario; similar methods are also available as static helpers on the
SessionFactoryUtils class. Note that such code will usually pass false as the value of the
getSession(..) methods allowCreate argument, to enforce running within a transaction (which
avoids the need to close the returned Session, as its lifecycle is managed by the transaction).

public class HibernateProductDao extends HibernateDaoSupport implements ProductDao {

public Collection loadProductsByCategory(String category) throws
DataAccessException, MyException {
Session session = getSession(false);
try {
Query query = session.createQuery("from test.Product product where
product.category=?");
query.setString(0, category);
List result = query.list();
if (result == null) {
throw new MyException("No search results.");
}
return result;
}
catch (HibernateException ex) {
throw convertHibernateAccessException(ex);

}

The advantage of such direct Hibernate access code is that it allows any checked application
exception to be thrown within the data access code; contrast this to the HibernateTemplate class

which is restricted to throwing only unchecked exceptions within the callback. Note that you can
often defer the corresponding checks and the throwing of application exceptions to after the
callback, which still allows working with HibernateTemplate. In general, the HibernateTemplate class'
convenience methods are simpler and more convenient for many scenarios.

4.2. JMS Usage

One of the benefits of Spring’s JMS support is to shield the user from differences between the JMS
1.0.2 and 1.1 APISs. (For a description of the differences between the two APIs see sidebar on Domain
Unification). Since it is now common to encounter only the JMS 1.1 API the use of classes that are
based on the JMS 1.0.2 API has been deprecated in Spring 3.0. This section describes Spring JMS
support for the JMS 1.0.2 deprecated classes.

Domain Unification
There are two major releases of the JMS specification, 1.0.2 and 1.1.

JMS 1.0.2 defined two types of messaging domains, point-to-point (Queues) and
publish/subscribe (Topics). The 1.0.2 API reflected these two messaging domains by providing
a parallel class hierarchy for each domain. As a result, a client application became domain
specific in its use of the JMS APIL JMS 1.1 introduced the concept of domain unification that
minimized both the functional differences and client API differences between the two
domains. As an example of a functional difference that was removed, if you use a JMS 1.1
provider you can transactionally consume a message from one domain and produce a
message on the other using the same Session.

The JMS 1.1 specification was released in April 2002 and incorporated as

0 part of J2EE 1.4 in November 2003. As a result, common J2EE 1.3 application
servers which are still in widespread use (such as BEA WebLogic 8.1 and IBM
WebSphere 5.1) are based on JMS 1.0.2.

4.2.1. JmsTemplate

Located in the package org.springframework.jms.core the class IJmsTemplate102 provides all of the
features of the JmsTemplate described the JMS chapter, but is based on the JMS 1.0.2 API instead of
the JMS 1.1 APIL. As a consequence, if you are using JmsTemplate102 you need to set the boolean
property pubSubDomain to configure the JmsTemplate with knowledge of what JMS domain is being
used. By default the value of this property is false, indicating that the point-to-point domain,
Queues, will be used.

4.2.2. Asynchronous Message Reception

MessageListenerAdapter’s are used in conjunction with Spring’s message listener containers to
support asynchronous message reception by exposing almost any class as a Message-driven POJO. If
you are using the JMS 1.0.2 API, you will want to use the 1.0.2 specific classes such as
MessagelistenerAdapter102, SimpleMessagelistenerContainer102, and

integration.pdf#jms-receiving-async-message-listener-adapter
integration.pdf#jms-mdp

DefaultMessagelistenerContainer102. These classes provide the same functionality as the JMS 1.1
based counterparts but rely only on the JMS 1.0.2 APIL

4.2.3. Connections

The ConnectionFactory interface is part of the JMS specification and serves as the entry point for
working with JMS. Spring provides an implementation of the ConnectionFactory interface,
SingleConnectionFactory102, based on the JMS 1.0.2 API that will return the same Connection on all
createConnection() calls and ignore calls to close(). You will need to set the boolean property
pubSubDomain to indicate which messaging domain is used as SingleConnectionFactory102 will always
explicitly differentiate between a javax.jms.QueueConnection and a javax.jmsTopicConnection.

4.2.4. Transaction Management

In a JMS 1.0.2 environment the class JmsTransactionManager102 provides support for managing JMS
transactions for a single Connection Factory. Please refer to the reference documentation on JMS
Transaction Management for more information on this functionality.

integration.pdf#jms-tx
integration.pdf#jms-tx

Chapter 5. Classic Spring AOP Usage

In this appendix we discuss the lower-level Spring AOP APIs and the AOP support used in Spring 1.2
applications. For new applications, we recommend the use of the Spring 2.0 AOP support described
in the AOP chapter, but when working with existing applications, or when reading books and
articles, you may come across Spring 1.2 style examples. Spring 2.0 is fully backwards compatible
with Spring 1.2 and everything described in this appendix is fully supported in Spring 2.0.

5.1. Pointcut API in Spring

Let’s look at how Spring handles the crucial pointcut concept.

5.1.1. Concepts

Spring’s pointcut model enables pointcut reuse independent of advice types. It’s possible to target
different advice using the same pointcut.

The org.springframework.aop.Pointcut interface is the central interface, used to target advices to
particular classes and methods. The complete interface is shown below:

public interface Pointcut {
ClassFilter getClassFilter();

MethodMatcher getMethodMatcher();

Splitting the Pointcut interface into two parts allows reuse of class and method matching parts, and
fine-grained composition operations (such as performing a "union" with another method matcher).

The (lassFilter interface is used to restrict the pointcut to a given set of target classes. If the
matches() method always returns true, all target classes will be matched:

public interface ClassFilter {

boolean matches(Class clazz);

The MethodMatcher interface is normally more important. The complete interface is shown below:

core.pdf#aop

public interface MethodMatcher {
boolean matches(Method m, Class target(Class);
boolean isRuntime();

boolean matches(Method m, Class targetClass, Object[] args);

The matches(Method, (Class) method is used to test whether this pointcut will ever match a given
method on a target class. This evaluation can be performed when an AOP proxy is created, to avoid
the need for a test on every method invocation. If the 2-argument matches method returns true for
a given method, and the isRuntime() method for the MethodMatcher returns true, the 3-argument
matches method will be invoked on every method invocation. This enables a pointcut to look at the
arguments passed to the method invocation immediately before the target advice is to execute.

Most MethodMatchers are static, meaning that their isRuntime() method returns false. In this case,
the 3-argument matches method will never be invoked.

Q If possible, try to make pointcuts static, allowing the AOP framework to cache the
results of pointcut evaluation when an AOP proxy is created.

5.1.2. Operations on pointcuts

Spring supports operations on pointcuts: notably, union and intersection.

* Union means the methods that either pointcut matches.
* Intersection means the methods that both pointcuts match.
* Union is usually more useful.

* Pointcuts can be composed using the static methods in the
org.springframework.aop.support.Pointcuts class, or using the ComposablePointcut class in the
same package. However, using Aspect] pointcut expressions is usually a simpler approach.

5.1.3. Aspect] expression pointcuts

Since 2.0, the most important type of ©pointcut used by Spring is
org.springframework.aop.aspectj.AspectJExpressionPointcut. This is a pointcut that uses an Aspect]
supplied library to parse an Aspect] pointcut expression string.

See the previous chapter for a discussion of supported Aspect] pointcut primitives.

5.1.4. Convenience pointcut implementations

Spring provides several convenient pointcut implementations. Some can be used out of the box;
others are intended to be subclassed in application-specific pointcuts.

10

Static pointcuts

Static pointcuts are based on method and target class, and cannot take into account the method’s
arguments. Static pointcuts are sufficient - and best - for most usages. It’s possible for Spring to
evaluate a static pointcut only once, when a method is first invoked: after that, there is no need to
evaluate the pointcut again with each method invocation.

Let’s consider some static pointcut implementations included with Spring.

Regular expression pointcuts

One obvious way to specify static pointcuts is regular expressions. Several AOP frameworks besides
Spring make this possible. org.springframework.aop.support.Per15RegexpMethodPointcut is a generic
regular expression pointcut, using Perl 5 regular expression syntax. The Per15RegexpMethodPointcut
class depends on Jakarta ORO for regular expression matching. Spring also provides the
JdkRegexpMethodPointcut class that uses the regular expression support in JDK 1.4+.

Using the Per15RegexpMethodPointcut class, you can provide a list of pattern Strings. If any of these is
a match, the pointcut will evaluate to true. (So the result is effectively the union of these pointcuts.)

The usage is shown below:

<bean id="settersAndAbsquatulatePointcut"
class="org.springframework.aop.support.Per15RegexpMethodPointcut">
<property name="patterns">
<list>
<value>.set.</value>
<value>.*absquatulate</value>
</list>
</property>
</bean>

Spring provides a convenience class, RegexpMethodPointcutAdvisor, that allows us to also reference
an Advice (remember that an Advice can be an interceptor, before advice, throws advice etc.).
Behind the scenes, Spring will use a JdkRegexpMethodPointcut. Using RegexpMethodPointcutAdvisor
simplifies wiring, as the one bean encapsulates both pointcut and advice, as shown below:

11

<bean id="settersAndAbsquatulateAdvisor"
class="org.springframework.aop.support.RegexpMethodPointcutAdvisor">
<property name="advice">
<ref bean="beanNameOfAopAlliancelInterceptor"/>
</property>
<property name="patterns">
<list>
<value>.set.</value>
<value>.*absquatulate</value>
</list>
</property>
</bean>

RegexpMethodPointcutAdvisor can be used with any Advice type.

Attribute-driven pointcuts

An important type of static pointcut is a metadata-driven pointcut. This uses the values of metadata
attributes: typically, source-level metadata.

Dynamic pointcuts

Dynamic pointcuts are costlier to evaluate than static pointcuts. They take into account
methodarguments, as well as static information. This means that they must be evaluated with every
method invocation; the result cannot be cached, as arguments will vary.

The main example is the control flow pointcut.

Control flow pointcuts

Spring control flow pointcuts are conceptually similar to Aspect] cflow pointcuts, although less
powerful. (There is currently no way to specify that a pointcut executes below a join point matched
by another pointcut.) A control flow pointcut matches the current call stack. For example, it might
fire if the join point was invoked by a method in the com.mycompany.web package, or by the
SomeCaller class. Control flow pointcuts are specified using the
org.springframework.aop.support.ControlFlowPointcut class.

Control flow pointcuts are significantly more expensive to evaluate at runtime
than even other dynamic pointcuts. In Java 1.4, the cost is about 5 times that of
other dynamic pointcuts.

5.1.5. Pointcut superclasses

Spring provides useful pointcut superclasses to help you to implement your own pointcuts.

Because static pointcuts are most useful, youw’ll probably subclass StaticMethodMatcherPointcut, as
shown below. This requires implementing just one abstract method (although it’s possible to
override other methods to customize behavior):

12

class TestStaticPointcut extends StaticMethodMatcherPointcut {

public boolean matches(Method m, Class targetClass) {
// return true if custom criteria match

}

There are also superclasses for dynamic pointcuts.

You can use custom pointcuts with any advice type in Spring 1.0 RC2 and above.

5.1.6. Custom pointcuts

Because pointcuts in Spring AOP are Java classes, rather than language features (as in Aspect]) it’s
possible to declare custom pointcuts, whether static or dynamic. Custom pointcuts in Spring can be
arbitrarily complex. However, using the Aspect] pointcut expression language is recommended if
possible.

0 Later versions of Spring may offer support for "semantic pointcuts" as offered by
JAC: for example, "all methods that change instance variables in the target object.”

5.2. Advice API in Spring

Let’s now look at how Spring AOP handles advice.

5.2.1. Advice lifecycles

Each advice is a Spring bean. An advice instance can be shared across all advised objects, or unique
to each advised object. This corresponds to per-class or per-instance advice.

Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors.
These do not depend on the state of the proxied object or add new state; they merely act on the
method and arguments.

Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds
state to the proxied object.

It’s possible to use a mix of shared and per-instance advice in the same AOP proxy.

5.2.2. Advice types in Spring

Spring provides several advice types out of the box, and is extensible to support arbitrary advice
types. Let us look at the basic concepts and standard advice types.

Interception around advice

The most fundamental advice type in Spring is interception around advice.

13

Spring is compliant with the AOP Alliance interface for around advice using method interception.
MethodInterceptors implementing around advice should implement the following interface:

public interface MethodInterceptor extends Interceptor {

Object invoke(MethodInvocation invocation) throws Throwable;

The MethodInvocation argument to the invoke() method exposes the method being invoked; the
target join point; the AOP proxy; and the arguments to the method. The invoke() method should
return the invocation’s result: the return value of the join point.

A simple MethodInterceptor implementation looks as follows:

public class DebugInterceptor implements MethodInterceptor {

public Object invoke(MethodInvocation invocation) throws Throwable {
System.out.println("Before: invocation=[" + invocation + "]");
Object rval = invocation.proceed();
System.out.println("Invocation returned");
return rval;

Note the call to the MethodInvocation’s proceed() method. This proceeds down the interceptor
chain towards the join point. Most interceptors will invoke this method, and return its return value.
However, a MethodInterceptor, like any around advice, can return a different value or throw an
exception rather than invoke the proceed method. However, you don’t want to do this without good
reason!

MethodInterceptors offer interoperability with other AOP Alliance-compliant AOP
implementations. The other advice types discussed in the remainder of this section
implement common AOP concepts, but in a Spring-specific way. While there is an
0 advantage in using the most specific advice type, stick with MethodInterceptor
around advice if you are likely to want to run the aspect in another AOP
framework. Note that pointcuts are not currently interoperable between
frameworks, and the AOP Alliance does not currently define pointcut interfaces.

Before advice

A simpler advice type is a before advice. This does not need a MethodInvocation object, since it will
only be called before entering the method.

The main advantage of a before advice is that there is no need to invoke the proceed() method, and
therefore no possibility of inadvertently failing to proceed down the interceptor chain.

14

The MethodBeforeAdvice interface is shown below. (Spring’s API design would allow for field before
advice, although the usual objects apply to field interception and it’s unlikely that Spring will ever
implement it).

public interface MethodBeforeAdvice extends BeforeAdvice {

void before(Method m, Object[] args, Object target) throws Throwable;

Note the return type is void. Before advice can insert custom behavior before the join point
executes, but cannot change the return value. If a before advice throws an exception, this will abort
further execution of the interceptor chain. The exception will propagate back up the interceptor
chain. If it is unchecked, or on the signature of the invoked method, it will be passed directly to the
client; otherwise it will be wrapped in an unchecked exception by the AOP proxy.

An example of a before advice in Spring, which counts all method invocations:

public class CountingBeforeAdvice implements MethodBeforeAdvice {
private int count;

public void before(Method m, Object[] args, Object target) throws Throwable {
++count;

}

public int getCount() {
return count;

}

Q Before advice can be used with any pointcut.

Throws advice

Throws advice is invoked after the return of the join point if the join point threw an exception.
Spring offers typed throws advice. Note that this means that the
org.springframework.aop.ThrowsAdvice interface does not contain any methods: It is a tag interface
identifying that the given object implements one or more typed throws advice methods. These
should be in the form of:

afterThrowing([Method, args, target], subclassOfThrowable)

Only the last argument is required. The method signatures may have either one or four arguments,
depending on whether the advice method is interested in the method and arguments. The following
classes are examples of throws advice.

15

The advice below is invoked if a RemoteException is thrown (including subclasses):

public class RemoteThrowsAdvice implements ThrowsAdvice {

public void afterThrowing(RemoteException ex) throws Throwable {
// Do something with remote exception

}

The following advice is invoked if a ServletException is thrown. Unlike the above advice, it declares
4 arguments, so that it has access to the invoked method, method arguments and target object:

public class ServletThrowsAdviceWithArguments implements ThrowsAdvice {

public void afterThrowing(Method m, Object[] args, Object target, ServletException
ex) {
// Do something with all arguments

}

The final example illustrates how these two methods could be used in a single class, which handles

both RemoteException and ServletException. Any number of throws advice methods can be
combined in a single class.

public static class CombinedThrowsAdvice implements ThrowsAdvice {

public void afterThrowing(RemoteException ex) throws Throwable {
// Do something with remote exception

}

public void afterThrowing(Method m, Object[] args, Object target, ServletException
ex) {
// Do something with all arguments
}

Note: If a throws-advice method throws an exception itself, it will override the original exception
(i.e. change the exception thrown to the user). The overriding exception will typically be a
RuntimeException; this is compatible with any method signature. However, if a throws-advice
method throws a checked exception, it will have to match the declared exceptions of the target
method and is hence to some degree coupled to specific target method signatures. Do not throw an
undeclared checked exception that is incompatible with the target method’s signature!

Q Throws advice can be used with any pointcut.

16

After Returning advice

An after returning advice in Spring must implement the
org.springframework.aop.AfterReturningAdvice interface, shown below:

public interface AfterReturningAdvice extends Advice {

void afterReturning(Object returnValue, Method m, Object[] args,
Object target) throws Throwable;

An after returning advice has access to the return value (which it cannot modify), invoked method,
methods arguments and target.

The following after returning advice counts all successful method invocations that have not thrown
exceptions:

public class CountingAfterReturningAdvice implements AfterReturningAdvice {
private int count;
public void afterReturning(Object returnValue, Method m, Object[] args,

Object target) throws Throwable {
++count;

public int getCount() {
return count;

}

This advice doesn’t change the execution path. If it throws an exception, this will be thrown up the
interceptor chain instead of the return value.

Q After returning advice can be used with any pointcut.

Introduction advice

Spring treats introduction advice as a special kind of interception advice.

Introduction requires an IntroductionAdvisor, and an IntroductionInterceptor, implementing the
following interface:

17

public interface IntroductionInterceptor extends MethodInterceptor {

boolean implementsInterface(Class intf);

The invoke() method inherited from the AOP Alliance MethodInterceptor interface must implement
the introduction: that is, if the invoked method is on an introduced interface, the introduction
interceptor is responsible for handling the method call - it cannot invoke proceed().

Introduction advice cannot be used with any pointcut, as it applies only at class, rather than
method, level. You can only use introduction advice with the IntroductionAdvisor, which has the
following methods:

public interface IntroductionAdvisor extends Advisor, IntroductionInfo {
ClassFilter getClassFilter();

void validateInterfaces() throws IllegalArgumentException;

public interface IntroductionInfo {

Class[] getInterfaces();

There is no MethodMatcher, and hence no Pointcut, associated with introduction advice. Only class
filtering is logical.

The getInterfaces() method returns the interfaces introduced by this advisor.

The validateInterfaces() method is used internally to see whether or not the introduced interfaces
can be implemented by the configured IntroductionInterceptor.

Let’s look at a simple example from the Spring test suite. Let’s suppose we want to introduce the
following interface to one or more objects:

18

public interface Lockable {
void lock();
void unlock();

boolean locked();

This illustrates a mixin. We want to be able to cast advised objects to Lockable, whatever their type,
and call lock and unlock methods. If we call the lock() method, we want all setter methods to throw
a LockedException. Thus we can add an aspect that provides the ability to make objects immutable,
without them having any knowledge of it: a good example of AOP.

Firstly, we’ll need an IntroductionInterceptor that does the heavy lifting. In this case, we extend the
org.springframework.aop.support.DelegatingIntroductionInterceptor convenience class. We could
implement IntroductionInterceptor directly, but using DelegatingIntroductionInterceptor is best for
most cases.

The DelegatingIntroductionInterceptor is designed to delegate an introduction to an actual
implementation of the introduced interface(s), concealing the use of interception to do so. The
delegate can be set to any object using a constructor argument; the default delegate (when the no-
arg constructor is used) is this. Thus in the example below, the delegate is the LockMixin subclass of
DelegatingIntroductionInterceptor. Given a delegate (by default itself), a
DelegatingIntroductionInterceptor instance looks for all interfaces implemented by the delegate
(other than IntroductionInterceptor), and will support introductions against any of them. It’s
possible for subclasses such as LockMixin to call the suppressInterface(Class intf) method to
suppress interfaces that should not be exposed. However, no matter how many interfaces an
IntroductionInterceptor is prepared to support, the IntroductionAdvisor used will control which
interfaces are actually exposed. An introduced interface will conceal any implementation of the
same interface by the target.

Thus LockMixin subclasses DelegatingIntroductionInterceptor and implements Lockable itself. The
superclass automatically picks up that Lockable can be supported for introduction, so we don’t
need to specify that. We could introduce any number of interfaces in this way.

Note the use of the locked instance variable. This effectively adds additional state to that held in the
target object.

19

public class LockMixin extends DelegatingIntroductionInterceptor implements Lockable {
private boolean locked;

public void lock() {
this.locked = true;

}

public void unlock() {
this.locked = false;

}

public boolean locked() {
return this.locked;

}

public Object invoke(MethodInvocation invocation) throws Throwable {
if (locked() && invocation.getMethod().getName().index0f("set") == 0) {
throw new LockedException();

}

return super.invoke(invocation);

Often it isn’t necessary to override the invoke() method: the DelegatingIntroductionInterceptor
implementation - which calls the delegate method if the method is introduced, otherwise proceeds
towards the join point - is usually sufficient. In the present case, we need to add a check: no setter
method can be invoked if in locked mode.

The introduction advisor required is simple. All it needs to do is hold a distinct LockMixin instance,
and specify the introduced interfaces - in this case, just Lockable. A more complex example might
take a reference to the introduction interceptor (which would be defined as a prototype): in this
case, there’s no configuration relevant for a LockMixin, so we simply create it using new.

public class LockMixinAdvisor extends DefaultIntroductionAdvisor {

public LockMixinAdvisor() {
super (new LockMixin(), Lockable.class);

}

We can apply this advisor very simply: it requires no configuration. (However, it is necessary: It’s
impossible to use an IntroductionInterceptor without an IntroductionAdvisor.) As usual with
introductions, the advisor must be per-instance, as it is stateful. We need a different instance of
LockMixinAdvisor, and hence LockMixin, for each advised object. The advisor comprises part of the
advised object’s state.

20

We can apply this advisor programmatically, using the Advised.addAdvisor() method, or (the
recommended way) in XML configuration, like any other advisor. All proxy creation choices
discussed below, including "auto proxy creators,” correctly handle introductions and stateful
mixins.

5.3. Advisor API in Spring

In Spring, an Advisor is an aspect that contains just a single advice object associated with a pointcut
expression.

Apart from the special case of introductions, any advisor can be used with any advice.
org.springframework.aop.support.DefaultPointcutAdvisor is the most commonly used advisor class.
For example, it can be used with a MethodInterceptor, BeforeAdvice or ThrowsAdvice.

It is possible to mix advisor and advice types in Spring in the same AOP proxy. For example, you
could use a interception around advice, throws advice and before advice in one proxy
configuration: Spring will automatically create the necessary interceptor chain.

5.4. Using the ProxyFactoryBean to create AOP proxies

If you’re using the Spring IoC container (an ApplicationContext or BeanFactory) for your business
objects - and you should be! - you will want to use one of Spring’s AOP FactoryBeans. (Remember
that a factory bean introduces a layer of indirection, enabling it to create objects of a different

type.)
0 The Spring 2.0 AOP support also uses factory beans under the covers.

The Dbasic way to create an AOP proxy in Spring is to use the
org.springframework.aop.framework.ProxyFactoryBean. This gives complete control over the
pointcuts and advice that will apply, and their ordering. However, there are simpler options that
are preferable if you don’t need such control.

5.4.1. Basics

The ProxyFactoryBean, like other Spring FactoryBean implementations, introduces a level of
indirection. If you define a ProxyFactoryBean with name foo, what objects referencing foo see is not
the ProxyFactoryBean instance itself, but an object created by the ProxyFactoryBean’s implementation
of the ‘getObject() method. This method will create an AOP proxy wrapping a target object.

One of the most important benefits of using a ProxyFactoryBean or another IoC-aware class to create
AOP proxies, is that it means that advices and pointcuts can also be managed by IoC. This is a
powerful feature, enabling certain approaches that are hard to achieve with other AOP
frameworks. For example, an advice may itself reference application objects (besides the target,
which should be available in any AOP framework), benefiting from all the pluggability provided by
Dependency Injection.

21

5.4.2. JavaBean properties

In common with most FactoryBean implementations provided with Spring, the ProxyFactoryBean
class is itself a JavaBean. Its properties are used to:

* Specify the target you want to proxy.

» Specify whether to use CGLIB (see below and also JDK- and CGLIB-based proxies).

Some key properties are inherited from org.springframework.aop.framework.ProxyConfig (the
superclass for all AOP proxy factories in Spring). These key properties include:

» proxyTarget(lass: true if the target class is to be proxied, rather than the target class' interfaces.
If this property value is set to true, then CGLIB proxies will be created (but see also below JDK-
and CGLIB-based proxies).

» optimize: controls whether or not aggressive optimizations are applied to proxies created via
CGLIB. One should not blithely use this setting unless one fully understands how the relevant
AOP proxy handles optimization. This is currently used only for CGLIB proxies; it has no effect
with JDK dynamic proxies.

» frozen: if a proxy configuration is frozen, then changes to the configuration are no longer
allowed. This is useful both as a slight optimization and for those cases when you don’t want
callers to be able to manipulate the proxy (via the Advised interface) after the proxy has been
created. The default value of this property is false, so changes such as adding additional advice
are allowed.

* exposeProxy: determines whether or not the current proxy should be exposed in a ThreadlLocal so
that it can be accessed by the target. If a target needs to obtain the proxy and the exposeProxy
property is set to true, the target can use the AopContext.currentProxy() method.

* aopProxyFactory: the implementation of AopProxyFactory to use. Offers a way of customizing
whether to use dynamic proxies, CGLIB or any other proxy strategy. The default implementation
will choose dynamic proxies or CGLIB appropriately. There should be no need to use this
property; it is intended to allow the addition of new proxy types in Spring 1.1.

Other properties specific to ProxyFactoryBean include:

» proxyInterfaces: array of String interface names. If this isn’t supplied, a CGLIB proxy for the
target class will be used (but see also below JDK- and CGLIB-based proxies).

* interceptorNames: String array of Advisor, interceptor or other advice names to apply. Ordering
is significant, on a first come-first served basis. That is to say that the first interceptor in the list
will be the first to be able to intercept the invocation.

The names are bean names in the current factory, including bean names from ancestor factories.
You can’t mention bean references here since doing so would result in the ProxyFactoryBean
ignoring the singleton setting of the advice.

You can append an interceptor name with an asterisk (*). This will result in the application of all
advisor beans with names starting with the part before the asterisk to be applied. An example of
using this feature can be found in Using 'global' advisors.

22

core.pdf#aop-pfb-proxy-types
core.pdf#aop-pfb-proxy-types
core.pdf#aop-pfb-proxy-types
core.pdf#aop-pfb-proxy-types
core.pdf#aop-global-advisors

* singleton: whether or not the factory should return a single object, no matter how often the
getObject() method is called. Several FactoryBean implementations offer such a method. The
default value is true. If you want to use stateful advice - for example, for stateful mixins - use
prototype advices along with a singleton value of false.

5.4.3. JDK- and CGLIB-based proxies

This section serves as the definitive documentation on how the ProxyFactoryBean chooses to create
one of either a JDK- and CGLIB-based proxy for a particular target object (that is to be proxied).

The behavior of the ProxyFactoryBean with regard to creating JDK- or CGLIB-based

O proxies changed between versions 1.2.x and 2.0 of Spring. The ProxyFactoryBean
now exhibits similar semantics with regard to auto-detecting interfaces as those of
the TransactionProxyFactoryBean class.

If the class of a target object that is to be proxied (hereafter simply referred to as the target class)
doesn’t implement any interfaces, then a CGLIB-based proxy will be created. This is the easiest
scenario, because JDK proxies are interface based, and no interfaces means JDK proxying isn’t even
possible. One simply plugs in the target bean, and specifies the list of interceptors via the
interceptorNames property. Note that a CGLIB-based proxy will be created even if the
proxyTarget(Class property of the ProxyFactoryBean has been set to false. (Obviously this makes no
sense, and is best removed from the bean definition because it is at best redundant, and at worst
confusing.)

If the target class implements one (or more) interfaces, then the type of proxy that is created
depends on the configuration of the ProxyFactoryBean.

If the proxyTarget(lass property of the ProxyFactoryBean has been set to true, then a CGLIB-based
proxy will be created. This makes sense, and is in keeping with the principle of least surprise. Even
if the proxyInterfaces property of the ProxyFactoryBean has been set to one or more fully qualified
interface names, the fact that the proxyTarget(lass property is set to true will cause CGLIB-based
proxying to be in effect.

If the proxyInterfaces property of the ProxyFactoryBean has been set to one or more fully qualified
interface names, then a JDK-based proxy will be created. The created proxy will implement all of
the interfaces that were specified in the proxyInterfaces property; if the target class happens to
implement a whole lot more interfaces than those specified in the proxyInterfaces property, that is
all well and good but those additional interfaces will not be implemented by the returned proxy.

If the proxyInterfaces property of the ProxyFactoryBean has not been set, but the target class does
implement one (or more) interfaces, then the ProxyFactoryBean will auto-detect the fact that the
target class does actually implement at least one interface, and a JDK-based proxy will be created.
The interfaces that are actually proxied will be all of the interfaces that the target class implements;
in effect, this is the same as simply supplying a list of each and every interface that the target class
implements to the proxyInterfaces property. However, it is significantly less work, and less prone to

typos.

23

5.4.4. Proxying interfaces
Let’s look at a simple example of ProxyFactoryBean in action. This example involves:

* A target bean that will be proxied. This is the "personTarget" bean definition in the example
below.

* An Advisor and an Interceptor used to provide advice.

* An AOP proxy bean definition specifying the target object (the personTarget bean) and the
interfaces to proxy, along with the advices to apply.

<bean id="personTarget" class="com.mycompany.PersonImpl">
<property name="name"><value>Tony</value></property>
<property name="age"><value>51</value></property>
</bean>

<bean id="myAdvisor" class="com.mycompany.MyAdvisor">

<property name="someProperty"><value>Custom string property value
</value></property>
</bean>

<bean id="debugInterceptor" class=
"org.springframework.aop.interceptor.DebugInterceptor">
</bean>

<bean id="person" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="proxyInterfaces"><value>com.mycompany.Person</value></property>
<property name="target"><ref bean="personTarget"/></property>
<property name="interceptorNames">
<list>
<value>myAdvisor</value>
<value>debuglInterceptor</value>
</list>
</property>
</bean>

Note that the interceptorNames property takes a list of String: the bean names of the interceptor or
advisors in the current factory. Advisors, interceptors, before, after returning and throws advice
objects can be used. The ordering of advisors is significant.

You might be wondering why the list doesn’t hold bean references. The reason for
this is that if the ProxyFactoryBean’s singleton property is set to false, it must be

0 able to return independent proxy instances. If any of the advisors is itself a
prototype, an independent instance would need to be returned, so it’s necessary to
be able to obtain an instance of the prototype from the factory; holding a reference
isn’t sufficient.

The "person” bean definition above can be used in place of a Person implementation, as follows:

24

Person person = (Person) factory.getBean("person");

Other beans in the same IoC context can express a strongly typed dependency on it, as with an
ordinary Java object:

<bean id="personUser" class="com.mycompany.PersonUser">
<property name="person"><ref bean="person" /></property>
</bean>

The PersonUser class in this example would expose a property of type Person. As far as it’s
concerned, the AOP proxy can be used transparently in place of a "real" person implementation.
However, its class would be a dynamic proxy class. It would be possible to cast it to the Advised
interface (discussed below).

It’s possible to conceal the distinction between target and proxy using an anonymous inner bean, as
follows. Only the ProxyFactoryBean definition is different; the advice is included only for
completeness:

<bean id="myAdvisor" class="com.mycompany.MyAdvisor">

<property name="someProperty"><value>Custom string property value
</value></property>
</bean>

<bean id="debuglnterceptor" class=
"org.springframework.aop.interceptor.DebugInterceptor"/>

<bean id="person" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="proxyInterfaces"><value>com.mycompany.Person</value></property>
<!-- Use inner bean, not local reference to target -->
<property name="target">
<bean class="com.mycompany.PersonImpl">
<property name="name"><value>Tony</value></property>
<property name="age"><value>51</value></property>
</bean>
</property>
<property name="interceptorNames">
<list>
<value>myAdvisor</value>
<value>debugInterceptor</value>
</list>
</property>
</bean>

This has the advantage that there’s only one object of type Person: useful if we want to prevent
users of the application context from obtaining a reference to the un-advised object, or need to
avoid any ambiguity with Spring IoC autowiring. There’s also arguably an advantage in that the
ProxyFactoryBean definition is self-contained. However, there are times when being able to obtain

25

the un-advised target from the factory might actually be an advantage: for example, in certain test
scenarios.

5.4.5. Proxying classes
What if you need to proxy a class, rather than one or more interfaces?

Imagine that in our example above, there was no Person interface: we needed to advise a class
called Person that didn’t implement any business interface. In this case, you can configure Spring to
use CGLIB proxying, rather than dynamic proxies. Simply set the proxyTargetClass property on the
ProxyFactoryBean above to true. While it’s best to program to interfaces, rather than classes, the
ability to advise classes that don’t implement interfaces can be useful when working with legacy
code. (In general, Spring isn’t prescriptive. While it makes it easy to apply good practices, it avoids
forcing a particular approach.)

If you want to, you can force the use of CGLIB in any case, even if you do have interfaces.

CGLIB proxying works by generating a subclass of the target class at runtime. Spring configures this
generated subclass to delegate method calls to the original target: the subclass is used to implement
the Decorator pattern, weaving in the advice.

CGLIB proxying should generally be transparent to users. However, there are some issues to
consider:

* Final methods can’t be advised, as they can’t be overridden.

» As of Spring 3.2 it is no longer required to add CGLIB to your project classpath. CGLIB classes
have been repackaged under org.springframework and included directly in the spring-core JAR.
This is both for user convenience as well as to avoid potential conflicts with other projects that
have dependence on a differing version of CGLIB.

There’s little performance difference between CGLIB proxying and dynamic proxies. As of Spring
1.0, dynamic proxies are slightly faster. However, this may change in the future. Performance
should not be a decisive consideration in this case.

5.4.6. Using 'global' advisors

By appending an asterisk to an interceptor name, all advisors with bean names matching the part
before the asterisk, will be added to the advisor chain. This can come in handy if you need to add a
standard set of 'global' advisors:

26

<bean id="proxy" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="target" ref="service"/>
<property name="interceptorNames">
<list>
<value>global*</value>
</list>
</property>
</bean>

<bean id="global_debug" class="org.springframework.aop.interceptor.DebugInterceptor"/>
<bean id="global_performance" class=
"org.springframework.aop.interceptor.PerformanceMonitorInterceptor”/>

5.5. Concise proxy definitions

Especially when defining transactional proxies, you may end up with many similar proxy
definitions. The use of parent and child bean definitions, along with inner bean definitions, can
result in much cleaner and more concise proxy definitions.

First a parent, template, bean definition is created for the proxy:

<bean id="txProxyTemplate" abstract="true"
class="
org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
<property name="transactionManager" ref="transactionManager"/>
<property name="transactionAttributes">
<props>
<prop key="*">PROPAGATION_REQUIRED</prop>
</props>
</property>
</bean>

This will never be instantiated itself, so may actually be incomplete. Then each proxy which needs
to be created is just a child bean definition, which wraps the target of the proxy as an inner bean
definition, since the target will never be used on its own anyway.

<bean id="myService" parent="txProxyTemplate">
<property name="target">
<bean class="org.springframework.samples.MyServiceImpl">
</bean>
</property>
</bean>

It is of course possible to override properties from the parent template, such as in this case, the
transaction propagation settings:

27

<bean id="mySpecialService" parent="txProxyTemplate">
<property name="target">
<bean class="org.springframework.samples.MySpecialServiceImpl">
</bean>
</property>
<property name="transactionAttributes">
<props>
<prop key="get*">PROPAGATION_REQUIRED,readOnly</prop>
<prop key="find*">PROPAGATION_REQUIRED, readOnly</prop>
<prop key="load*">PROPAGATION_REQUIRED, readOnly</prop>
<prop key="store*">PROPAGATION_REQUIRED</prop>
</props>
</property>
</bean>

Note that in the example above, we have explicitly marked the parent bean definition as abstract
by using the abstract attribute, as described previously, so that it may not actually ever be
instantiated. Application contexts (but not simple bean factories) will by default pre-instantiate all
singletons. It is therefore important (at least for singleton beans) that if you have a (parent) bean
definition which you intend to use only as a template, and this definition specifies a class, you must
make sure to set theabstract attribute to true, otherwise the application context will actually try to
pre-instantiate it.

5.6. Creating AOP proxies programmatically with the
ProxyFactory

It’s easy to create AOP proxies programmatically using Spring. This enables you to use Spring AOP
without dependency on Spring IoC.

The following listing shows creation of a proxy for a target object, with one interceptor and one
advisor. The interfaces implemented by the target object will automatically be proxied:

ProxyFactory factory = new ProxyFactory(myBusinessInterfacelmpl);
factory.addInterceptor(myMethodInterceptor);
factory.addAdvisor(myAdvisor);

MyBusinessInterface tb = (MyBusinessInterface) factory.getProxy();

The first step is to construct an object of type org.springframework.aop.framework.ProxyFactory. You
can create this with a target object, as in the above example, or specify the interfaces to be proxied
in an alternate constructor.

You can add interceptors or advisors, and manipulate them for the life of the ProxyFactory. If you
add an IntroductionInterceptionAroundAdvisor you can cause the proxy to implement additional
interfaces.

There are also convenience methods on ProxyFactory (inherited from AdvisedSupport) which allow
you to add other advice types such as before and throws advice. AdvisedSupport is the superclass of

28

core.pdf#beans-child-bean-definitions

both ProxyFactory and ProxyFactoryBean.

Integrating AOP proxy creation with the IoC framework is best practice in most
applications. We recommend that you externalize configuration from Java code
with AOP, as in general.

5.7. Manipulating advised objects

However you create AOP proxies, you can manipulate them wusing the
org.springframework.aop.framework.Advised interface. Any AOP proxy can be cast to this interface,
whichever other interfaces it implements. This interface includes the following methods:

Advisor[] getAdvisors();

void addAdvice(Advice advice) throws AopConfigException;

void addAdvice(int pos, Advice advice) throws AopConfigException;

void addAdvisor(Advisor advisor) throws AopConfigException;

void addAdvisor(int pos, Advisor advisor) throws AopConfigException;
int indexOf(Advisor advisor);

boolean removeAdvisor(Advisor advisor) throws AopConfigException;

void removeAdvisor(int index) throws AopConfigException;

boolean replaceAdvisor(Advisor a, Advisor b) throws AopConfigException;

boolean isFrozen();

The getAdvisors() method will return an Advisor for every advisor, interceptor or other advice type
that has been added to the factory. If you added an Advisor, the returned advisor at this index will
be the object that you added. If you added an interceptor or other advice type, Spring will have
wrapped this in an advisor with a pointcut that always returns true. Thus if you added a
MethodInterceptor, the advisor returned for this index will be an DefaultPointcutAdvisor returning
your MethodInterceptor and a pointcut that matches all classes and methods.

The addAdvisor () methods can be used to add any Advisor. Usually the advisor holding pointcut and
advice will be the generic DefaultPointcutAdvisor, which can be used with any advice or pointcut
(but not for introductions).

By default, it’s possible to add or remove advisors or interceptors even once a proxy has been
created. The only restriction is that it’s impossible to add or remove an introduction advisor, as
existing proxies from the factory will not show the interface change. (You can obtain a new proxy
from the factory to avoid this problem.)

29

A simple example of casting an AOP proxy to the Advised interface and examining and
manipulating its advice:

Advised advised = (Advised) myObject;
Advisor[] advisors = advised.getAdvisors();
int oldAdvisorCount = advisors.length;

System.out.println(oldAdvisorCount + " advisors");

// Add an advice 1like an interceptor without a pointcut

// Will match all proxied methods

// Can use for interceptors, before, after returning or throws advice
advised.addAdvice(new DebugInterceptor());

// Add selective advice using a pointcut
advised.addAdvisor(new DefaultPointcutAdvisor(mySpecialPointcut, myAdvice));

assertEquals("Added two advisors", oldAdvisorCount + 2, advised.getAdvisors().length);

It’s questionable whether it’s advisable (no pun intended) to modify advice on a
business object in production, although there are no doubt legitimate usage cases.
However, it can be very useful in development: for example, in tests. I have

9 sometimes found it very useful to be able to add test code in the form of an
interceptor or other advice, getting inside a method invocation I want to test. (For
example, the advice can get inside a transaction created for that method: for
example, to run SQL to check that a database was correctly updated, before
marking the transaction for roll back.)

Depending on how you created the proxy, you can usually set a frozen flag, in which case the
Advised isFrozen() method will return true, and any attempts to modify advice through addition or
removal will result in an AopConfigException. The ability to freeze the state of an advised object is
useful in some cases, for example, to prevent calling code removing a security interceptor. It may
also be used in Spring 1.1 to allow aggressive optimization if runtime advice modification is known
not to be required.

5.8. Using the "autoproxy" facility

So far we’ve considered explicit creation of AOP proxies using a ProxyFactoryBean or similar factory
bean.

Spring also allows us to use "autoproxy" bean definitions, which can automatically proxy selected
bean definitions. This is built on Spring "bean post processor" infrastructure, which enables
modification of any bean definition as the container loads.

In this model, you set up some special bean definitions in your XML bean definition file to
configure the auto proxy infrastructure. This allows you just to declare the targets eligible for
autoproxying: you don’t need to use ProxyFactoryBean.

There are two ways to do this:

30

» Using an autoproxy creator that refers to specific beans in the current context.

* A special case of autoproxy creation that deserves to be considered separately; autoproxy
creation driven by source-level metadata attributes.

5.8.1. Autoproxy bean definitions

The org.springframework.aop.framework.autoproxy package provides the following standard
autoproxy creators.

BeanNameAutoProxyCreator

The BeanNameAutoProxyCreator class is a BeanPostProcessor that automatically creates AOP proxies
for beans with names matching literal values or wildcards.

<bean class="org.springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator">
<property name="beanNames"><value>jdk*,onlyldk</value></property>
<property name="interceptorNames">
<list>
<value>myInterceptor</value>
</list>
</property>
</bean>

As with ProxyFactoryBean, there is an interceptorNames property rather than a list of interceptors, to
allow correct behavior for prototype advisors. Named "interceptors" can be advisors or any advice

type.

As with auto proxying in general, the main point of using BeanNameAutoProxyCreator is to apply the
same configuration consistently to multiple objects, with minimal volume of configuration. It is a
popular choice for applying declarative transactions to multiple objects.

Bean definitions whose names match, such as "jdkMyBean" and "onlyJdk" in the above example,
are plain old bean definitions with the target class. An AOP proxy will be created automatically by
the BeanNameAutoProxyCreator. The same advice will be applied to all matching beans. Note that if
advisors are used (rather than the interceptor in the above example), the pointcuts may apply
differently to different beans.

DefaultAdvisorAutoProxyCreator

A more general and extremely powerful auto proxy creator is DefaultAdvisorAutoProxyCreator. This
will automagically apply eligible advisors in the current context, without the need to include
specific bean names in the autoproxy advisor’s bean definition. It offers the same merit of
consistent configuration and avoidance of duplication as BeanNameAutoProxyCreator.

Using this mechanism involves:

» Specifying a DefaultAdvisorAutoProxyCreator bean definition.

» Specifying any number of Advisors in the same or related contexts. Note that these must be

31

Advisors, not just interceptors or other advices. This is necessary because there must be a
pointcut to evaluate, to check the eligibility of each advice to candidate bean definitions.

The DefaultAdvisorAutoProxyCreator will automatically evaluate the pointcut contained in each
advisor, to see what (if any) advice it should apply to each business object (such as
"businessObject1" and "businessObject2" in the example).

This means that any number of advisors can be applied automatically to each business object. If no
pointcut in any of the advisors matches any method in a business object, the object will not be
proxied. As bean definitions are added for new business objects, they will automatically be proxied
if necessary.

Autoproxying in general has the advantage of making it impossible for callers or dependencies to
obtain an un-advised object. Calling getBean("businessObject1") on this ApplicationContext will
return an AOP proxy, not the target business object. (The "inner bean" idiom shown earlier also
offers this benefit.)

<bean class=
"org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class=
"org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">

<property name="transactionInterceptor" ref="transactionInterceptor"/>
</bean>

<bean id="customAdvisor" class="com.mycompany.MyAdvisor"/>

<bean id="businessObject1" class="com.mycompany.BusinessObject1">
<!-- Properties omitted -->
</bean>

<bean id="businessObject2" class="com.mycompany.BusinessObject2"/>

The DefaultAdvisorAutoProxyCreator is very useful if you want to apply the same advice consistently
to many business objects. Once the infrastructure definitions are in place, you can simply add new
business objects without including specific proxy configuration. You can also drop in additional
aspects very easily - for example, tracing or performance monitoring aspects - with minimal change
to configuration.

The DefaultAdvisorAutoProxyCreator offers support for filtering (using a naming convention so
that only certain advisors are evaluated, allowing use of multiple, differently configured,
AdvisorAutoProxyCreators in the same factory) and ordering. Advisors can implement the
org.springframework.core.Ordered interface to ensure correct ordering if this is an issue. The
TransactionAttributeSourceAdvisor used in the above example has a configurable order value; the
default setting is unordered.

AbstractAdvisorAutoProxyCreator

This is the superclass of DefaultAdvisorAutoProxyCreator. You can create your own autoproxy

32

creators by subclassing this class, in the unlikely event that advisor definitions offer insufficient
customization to the behavior of the framework DefaultAdvisorAutoProxyCreator.

5.8.2. Using metadata-driven auto-proxying

A particularly important type of autoproxying is driven by metadata. This produces a similar
programming model to .NET ServicedComponents. Instead of using XML deployment descriptors as in
EJB, configuration for transaction management and other enterprise services is held in source-level
attributes.

In this case, you use the DefaultAdvisorAutoProxyCreator, in combination with Advisors that
understand metadata attributes. The metadata specifics are held in the pointcut part of the
candidate advisors, rather than in the autoproxy creation class itself.

This is really a special case of the DefaultAdvisorAutoProxyCreator, but deserves consideration on its
own. (The metadata-aware code is in the pointcuts contained in the advisors, not the AOP
framework itself.)

The /attributes directory of the JPetStore sample application shows the use of attribute-driven
autoproxying. In this case, there’s no need to use the TransactionProxyFactoryBean. Simply defining
transactional attributes on business objects is sufficient, because of the use of metadata-aware
pointcuts. The bean definitions include the following code, in /WEB-INF/declarativeServices.xml.
Note that this is generic, and can be used outside the JPetStore:

<bean class=
"org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class=
"org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">

<property name="transactionInterceptor" ref="transactionInterceptor"/>
</bean>

<bean id="transactionInterceptor"
class="org.springframework.transaction.interceptor.TransactionInterceptor">
<property name="transactionManager" ref="transactionManager"/>
<property name="transactionAttributeSource">
<bean class=
"org.springframework.transaction.interceptor.AttributesTransactionAttributeSource">
<property name="attributes" ref="attributes"/>
</bean>
</property>
</bean>

<bean id="attributes" class="org.springframework.metadata.commons.CommonsAttributes"/>

The DefaultAdvisorAutoProxyCreator bean definition (the name is not significant, hence it can even
be omitted) will pick up all eligible pointcuts in the current application context. In this case, the
"transactionAdvisor" bean definition, of type TransactionAttributeSourceAdvisor, will apply to
classes or methods carrying a transaction attribute. The TransactionAttributeSourceAdvisor

33

depends on a TransactionInterceptor, via constructor dependency. The example resolves this via
autowiring. The AttributesTransactionAttributeSource depends on an implementation of the
org.springframework.metadata.Attributes interface. In this fragment, the "attributes" bean satisfies
this, using the Jakarta Commons Attributes API to obtain attribute information. (The application
code must have been compiled using the Commons Attributes compilation task.)

The /annotation directory of the JPetStore sample application contains an analogous example for
auto-proxying driven by JDK 1.5+ annotations. The following configuration enables automatic
detection of Spring’s Transactional annotation, leading to implicit proxies for beans containing that
annotation:

<bean class=
"org.springframework.aop.framework.autoproxy.DefaultAdvisorAutoProxyCreator"/>

<bean class=
"org.springframework.transaction.interceptor.TransactionAttributeSourceAdvisor">

<property name="transactionInterceptor" ref="transactionInterceptor"/>
</bean>

<bean id="transactionInterceptor"”
class="org.springframework.transaction.interceptor.TransactionInterceptor">
<property name="transactionManager" ref="transactionManager"/>
<property name="transactionAttributeSource">
<bean class=
"org.springframework.transaction.annotation.AnnotationTransactionAttributeSource"/>
</property>
</bean>

The TransactionInterceptor defined here depends on a PlatformTransactionManager definition,
which is not included in this generic file (although it could be) because it will be specific to the
application’s transaction requirements (typically JTA, as in this example, or Hibernate or JDBC):

<bean id="transactionManager"
class="org.springframework.transaction.jta.JtaTransactionManager"/>

If you require only declarative transaction management, using these generic XML

Q definitions will result in Spring automatically proxying all classes or methods with
transaction attributes. You won’t need to work directly with AOP, and the
programming model is similar to that of .NET ServicedComponents.

This mechanism is extensible. It’s possible to do autoproxying based on custom attributes. You need
to:
* Define your custom attribute.

» Specify an Advisor with the necessary advice, including a pointcut that is triggered by the
presence of the custom attribute on a class or method. You may be able to use an existing
advice, merely implementing a static pointcut that picks up the custom attribute.

34

It’s possible for such advisors to be unique to each advised class (for example, mixins): they simply
need to be defined as prototype, rather than singleton, bean definitions. For example, the LockMixin
introduction interceptor from the Spring test suite, shown above, could be used in conjunction with
an attribute-driven pointcut to target a mixin, as shown here. We use the generic
DefaultPointcutAdvisor, configured using JavaBean properties:

<bean id="lockMixin" class="org.springframework.aop.LockMixin"
scope="prototype"/>

<bean id="lockableAdvisor" class=
"org.springframework.aop.support.DefaultPointcutAdvisor"
scope="prototype">
<property name="pointcut" ref="myAttributeAwarePointcut"/>
<property name="advice" ref="lockMixin"/>
</bean>

<bean id="anyBean" class="anyclass" ...

If the attribute aware pointcut matches any methods in the anyBean or other bean definitions, the
mixin will be applied. Note that both lockMixin and lockableAdvisor definitions are prototypes. The
myAttributeAwarePointcut pointcut can be a singleton definition, as it doesn’t hold state for
individual advised objects.

5.9. Using TargetSources

Spring offers the concept of a TargetSource, expressed in the org.springframework.aop.TargetSource
interface. This interface is responsible for returning the "target object” implementing the join point.
The TargetSource implementation is asked for a target instance each time the AOP proxy handles a
method invocation.

Developers using Spring AOP don’t normally need to work directly with TargetSources, but this
provides a powerful means of supporting pooling, hot swappable and other sophisticated targets.
For example, a pooling TargetSource can return a different target instance for each invocation,
using a pool to manage instances.

If you do not specify a TargetSource, a default implementation is used that wraps a local object. The
same target is returned for each invocation (as you would expect).

Let’s look at the standard target sources provided with Spring, and how you can use them.

When using a custom target source, your target will usually need to be a prototype
rather than a singleton bean definition. This allows Spring to create a new target
instance when required.

5.9.1. Hot swappable target sources

The org.springframework.aop.target.HotSwappableTargetSource exists to allow the target of an AOP

proxy to be switched while allowing callers to keep their references to it.

35

Changing the target source’s target takes effect immediately. The HotSwappableTargetSource is
threadsafe.

You can change the target via the swap() method on HotSwappableTargetSource as follows:
HotSwappableTargetSource swapper = (HotSwappableTargetSource) beanFactory.getBean(

"swapper");
Object oldTarget = swapper.swap(newTarget);

The XML definitions required look as follows:

<bean id="initialTarget" class="mycompany.0ldTarget"/>

<bean id="swapper" class="org.springframework.aop.target.HotSwappableTargetSource">
<constructor-arg ref="initialTarget"/>
</bean>

<bean id="swappable" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="targetSource" ref="swapper"/>
</bean>

The above swap() call changes the target of the swappable bean. Clients who hold a reference to
that bean will be unaware of the change, but will immediately start hitting the new target.

Although this example doesn’t add any advice - and it’s not necessary to add advice to use a
TargetSource - of course any TargetSource can be used in conjunction with arbitrary advice.

5.9.2. Pooling target sources

Using a pooling target source provides a similar programming model to stateless session EJBs, in
which a pool of identical instances is maintained, with method invocations going to free objects in
the pool.

A crucial difference between Spring pooling and SLSB pooling is that Spring pooling can be applied
to any POJO. As with Spring in general, this service can be applied in a non-invasive way.

Spring provides out-of-the-box support for Commons Pool 2.2, which provides a fairly efficient
pooling implementation. Yow’ll need the commons-pool Jar on your application’s classpath to use
this feature. It’s also possible to subclass
org.springframework.aop.target.AbstractPoolingTargetSource to support any other pooling API.

0 Commons Pool 1.5+ is also supported but deprecated as of Spring Framework 4.2.

Sample configuration is shown below:

36

<bean id="businessObjectTarget" class="com.mycompany.MyBusinessObject" scope=
"prototype">

. properties omitted
</bean>

<bean id="poolTargetSource" class=

"org.springframework.aop.target.CommonsPool2TargetSource">
<property name="targetBeanName" value="businessObjectTarget"/>
<property name="maxSize" value="25"/>

</bean>

<bean id="businessObject" class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="targetSource" ref="poolTargetSource"/>
<property name="interceptorNames" value="myInterceptor"/>

</bean>

Note that the target object - "businessObjectTarget" in the example - must be a prototype. This
allows the PoolingTargetSource implementation to create new instances of the target to grow the
pool as necessary. See the Javadoc for AbstractPoolingTargetSource and the concrete subclass you
wish to use for information about its properties: "maxSize" is the most basic, and always
guaranteed to be present.

In this case, "mylnterceptor” is the name of an interceptor that would need to be defined in the
same IoC context. However, it isn’t necessary to specify interceptors to use pooling. If you want only
pooling, and no other advice, don’t set the interceptorNames property at all.

It’s possible to configure Spring so as to be able to cast any pooled object to the
org.springframework.aop.target.PoolingConfig interface, which exposes information about the
configuration and current size of the pool through an introduction. You’ll need to define an advisor
like this:

<bean id="poolConfigAdvisor" class=
"org.springframework.beans.factory.config.MethodInvokingFactoryBean">
<property name="targetObject" ref="poolTargetSource"/>
<property name="targetMethod" value="getPoolingConfigMixin"/>
</bean>

This advisor is obtained by calling a convenience method on the AbstractPoolingTargetSource class,
hence the use of MethodInvokingFactoryBean. This advisor’s name ("poolConfigAdvisor" here)
must be in the list of interceptors names in the ProxyFactoryBean exposing the pooled object.

The cast will look as follows:

PoolingConfig conf = (PoolingConfig) beanFactory.getBean("businessObject");
System.out.println("Max pool size is " + conf.getMaxSize());

37

Pooling stateless service objects is not usually necessary. We don’t believe it should
be the default choice, as most stateless objects are naturally thread safe, and
instance pooling is problematic if resources are cached.

Simpler pooling is available using autoproxying. It’s possible to set the TargetSources used by any
autoproxy creator.

5.9.3. Prototype target sources

Setting up a "prototype" target source is similar to a pooling TargetSource. In this case, a new
instance of the target will be created on every method invocation. Although the cost of creating a
new object isn’t high in a modern JVM, the cost of wiring up the new object (satisfying its IoC
dependencies) may be more expensive. Thus you shouldn’t use this approach without very good
reason.

To do this, you could modify the poolTargetSource definition shown above as follows. (I've also
changed the name, for clarity.)

<bean id="prototypeTargetSource" class=
"org.springframework.aop.target.PrototypeTargetSource">

<property name="targetBeanName" ref="businessObjectTarget"/>
</bean>

There’s only one property: the name of the target bean. Inheritance is used in the TargetSource
implementations to ensure consistent naming. As with the pooling target source, the target bean
must be a prototype bean definition.

5.9.4. ThreadLocal target sources

ThreadlLocal target sources are useful if you need an object to be created for each incoming request
(per thread that is). The concept of a ThreadLocal provide a JDK-wide facility to transparently store
resource alongside a thread. Setting up a ThreadlLocalTargetSource is pretty much the same as was
explained for the other types of target source:

<bean id="threadlocalTargetSource" class=
"org.springframework.aop.target.ThreadlLocalTargetSource">

<property name="targetBeanName" value="businessObjectTarget"/>
</bean>

38

ThreadLocals come with serious issues (potentially resulting in memory leaks)
when incorrectly using them in a multi-threaded and multi-classloader
environments. One should always consider wrapping a threadlocal in some other
class and never directly use the ThreadlLocal itself (except of course in the wrapper

ﬁ class). Also, one should always remember to correctly set and unset (where the
latter simply involved a call to ThreadLocal.set(null)) the resource local to the
thread. Unsetting should be done in any case since not unsetting it might result in
problematic behavior. Spring’s ThreadLocal support does this for you and should
always be considered in favor of using ThreadLocals without other proper
handling code.

5.10. Defining new Advice types

Spring AOP is designed to be extensible. While the interception implementation strategy is
presently used internally, it is possible to support arbitrary advice types in addition to the out-of-
the-box interception around advice, before, throws advice and after returning advice.

The org.springframework.aop.framework.adapter package is an SPI package allowing support for new
custom advice types to be added without changing the core framework. The only constraint on a
custom Advice type is that it must implement the org.aopalliance.aop.Advice tag interface.

Please refer to the org.springframework.aop.framework.adapter package’s Javadocs for further
information.

5.11. Further resources

Please refer to the Spring sample applications for further examples of Spring AOP:

* The JPetStore’s default configuration illustrates the use of the TransactionProxyFactoryBean for
declarative transaction management.

» The /attributes directory of the JPetStore illustrates the use of attribute-driven declarative
transaction management.

39

Chapter 6. XML Schema-based configuration

6.1. Introduction

This appendix details the XML Schema-based configuration introduced in Spring 2.0 and enhanced
and extended in Spring 2.5 and 3.0.

DTD support?
Authoring Spring configuration files using the older DTD style is still fully supported.

Nothing will break if you forego the use of the new XML Schema-based approach to
authoring Spring XML configuration files. All that you lose out on is the opportunity to have
more succinct and clearer configuration. Regardless of whether the XML configuration is
DTD- or Schema-based, in the end it all boils down to the same object model in the container
(namely one or more BeanDefinition instances).

The central motivation for moving to XML Schema based configuration files was to make Spring
XML configuration easier. The 'classic’ <bean/>-based approach is good, but its generic-nature comes
with a price in terms of configuration overhead.

From the Spring IoC containers point-of-view, everything is a bean. That’s great news for the Spring
IoC container, because if everything is a bean then everything can be treated in the exact same
fashion. The same, however, is not true from a developer’s point-of-view. The objects defined in a
Spring XML configuration file are not all generic, vanilla beans. Usually, each bean requires some
degree of specific configuration.

Spring 2.0’s new XML Schema-based configuration addresses this issue. The <bean/> element is still
present, and if you wanted to, you could continue to write the exact same style of Spring XML
configuration using only <bean/> elements. The new XML Schema-based configuration does,
however, make Spring XML configuration files substantially clearer to read. In addition, it allows
you to express the intent of a bean definition.

The key thing to remember is that the new custom tags work best for infrastructure or integration
beans: for example, AOP, collections, transactions, integration with 3rd-party frameworks such as
Mule, etc., while the existing bean tags are best suited to application-specific beans, such as DAOs,
service layer objects, validators, etc.

The examples included below will hopefully convince you that the inclusion of XML Schema
support in Spring 2.0 was a good idea. The reception in the community has been encouraging; also,
please note the fact that this new configuration mechanism is totally customisable and extensible.
This means you can write your own domain-specific configuration tags that would better represent
your application’s domain; the process involved in doing so is covered in the appendix entitled
Extensible XML authoring.

40

6.2. XML Schema-based configuration

6.2.1. Referencing the schemas

To switch over from the DTD-style to the new XML Schema-style, you need to make the following
change.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN"
"http://www.springframework.org/dtd/spring-beans-2.0.dtd">

<beans>
<!-- bean definitions here -->

</beans>
The equivalent file in the XML Schema-style would be...

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<!-- bean definitions here -->
</beans>
ﬂ The 'xsi:schemalocation' fragment is not actually required, but can be included to

reference a local copy of a schema (which can be useful during development).

The above Spring XML configuration fragment is boilerplate that you can copy and paste (!) and
then plug <bean/> definitions into like you have always done. However, the entire point of switching
over is to take advantage of the new Spring 2.0 XML tags since they make configuration easier. The
section entitled the util schema demonstrates how you can start immediately by using some of the
more common utility tags.

The rest of this chapter is devoted to showing examples of the new Spring XML Schema based
configuration, with at least one example for every new tag. The format follows a before and after
style, with a before snippet of XML showing the old (but still 100% legal and supported) style,
followed immediately by an after example showing the equivalent in the new XML Schema-based
style.

41

6.2.2. the util schema

First up is coverage of the util tags. As the name implies, the util tags deal with common, utility
configuration issues, such as configuring collections, referencing constants, and suchlike.

To use the tags in the util schema, you need to have the following preamble at the top of your
Spring XML configuration file; the text in the snippet below references the correct schema so that
the tags in the util namespace are available to you.

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd"> <!-- bean
definitions here -->

</beans>

<util:constant/>

Before...

<bean id="..." class="...">
<property name="isolation">
<bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
class=
"org.springframework.beans.factory.config.FieldRetrievingFactoryBean" />
</property>
</bean>

The above configuration uses a Spring FactoryBean implementation, the FieldRetrievingFactoryBean,
to set the value of the isolation property on a bean to the value of the
java.sql.Connection.TRANSACTION_SERIALIZABLE constant. This is all well and good, but it is a tad
verbose and (unnecessarily) exposes Spring’s internal plumbing to the end user.

The following XML Schema-based version is more concise and clearly expresses the developer’s
intent ('inject this constant value’), and it just reads better.

n n

<bean id="..." class="...">
<property name="isolation">
<util:constant static-field="java.sql.Connection.TRANSACTION_SERIALIZABLE"/>
</property>
</bean>

42

Setting a bean property or constructor arg from a field value

FieldRetrievingFactoryBean is a FactoryBean which retrieves a static or non-static field value. It is
typically used for retrieving public static final constants, which may then be used to set a property
value or constructor arg for another bean.

Find below an example which shows how a static field is exposed, by using the staticField
property:

<bean id="myField"
class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean">
<property name="staticField" value="java.sql.Connection.TRANSACTION_SERIALIZABLE
"/>
</bean>

There is also a convenience usage form where the static field is specified as the bean name:

<bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
class="org.springframework.beans.factory.config.FieldRetrievingFactoryBean"/>

This does mean that there is no longer any choice in what the bean id is (so any other bean that
refers to it will also have to use this longer name), but this form is very concise to define, and very
convenient to use as an inner bean since the id doesn’t have to be specified for the bean reference:

<bean id="..." class="...">
<property name="isolation">
<bean id="java.sql.Connection.TRANSACTION_SERIALIZABLE"
class=
"org.springframework.beans.factory.config.FieldRetrievingFactoryBean" />
</property>
</bean>

It is also possible to access a non-static (instance) field of another bean, as described in the API
documentation for the FieldRetrievingFactoryBean class.

Injecting enum values into beans as either property or constructor arguments is very easy to do in
Spring, in that you don’t actually have to do anything or know anything about the Spring internals
(or even about classes such as the FieldRetrievingFactoryBean). Let’s look at an example to see how
easy injecting an enum value is; consider this JDK 5 enum:

43

https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/beans/factory/config/FieldRetrievingFactoryBean.html
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/beans/factory/config/FieldRetrievingFactoryBean.html#setStaticField(java.lang.String)
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/beans/factory/config/FieldRetrievingFactoryBean.html

package javax.persistence;
public enum PersistenceContextType {

TRANSACTION,
EXTENDED

Now consider a setter of type PersistenceContextType:

package example;
public class Client {
private PersistenceContextType persistenceContextType;

public void setPersistenceContextType(PersistenceContextType type) {
this.persistenceContextType = type;
}

a. and the corresponding bean definition:

<bean class="example.(Client">

<property name="persistenceContextType" value="TRANSACTION" />
</bean>

This works for classic type-safe emulated enums (on JDK 1.4 and JDK 1.3) as well; Spring will
automatically attempt to match the string property value to a constant on the enum class.

<util:property-path/>

Before...

44

<!-- target bean to be referenced by name -->
<bean id="testBean" class="org.springframework.beans.TestBean" scope="prototype">
<property name="age" value="10"/>
<property name="spouse">
<bean class="org.springframework.beans.TestBean">
<property name="age" value="11"/>
</bean>
</property>
</bean>

<!-- will result in 10, which is the value of property 'age' of bean 'testBean' -->
<bean id="testBean.age" class=
"org.springframework.beans.factory.config.PropertyPathFactoryBean"/>

The above configuration uses a Spring FactoryBean implementation, the PropertyPathFactoryBean, to
create a bean (of type int) called testBean.age that has a value equal to the age property of the
testBean bean.

After...

<!-- target bean to be referenced by name -->
<bean id="testBean" class="org.springframework.beans.TestBean" scope="prototype">
<property name="age" value="10"/>
<property name="spouse">
<bean class="org.springframework.beans.TestBean">
<property name="age" value="11"/>
</bean>
</property>
</bean>
<!-- will result in 10, which is the value of property 'age' of bean 'testBean' -->
<util:property-path id="name" path="testBean.age"/>

The value of the path attribute of the <property-path/> tag follows the form beanName.beanProperty.

Using <util:property-path/> to set a bean property or constructor-argument

PropertyPathFactoryBean is a FactoryBean that evaluates a property path on a given target object. The
target object can be specified directly or via a bean name. This value may then be used in another
bean definition as a property value or constructor argument.

Here’s an example where a path is used against another bean, by name:

45

// target bean to be referenced by name
<bean id="person" class="org.springframework.beans.TestBean" scope="prototype">
<property name="age" value="10"/>
<property name="spouse">
<bean class="org.springframework.beans.TestBean">
<property name="age" value="11"/>
</bean>
</property>
</bean>

// will result in 11, which is the value of property 'spouse.age' of bean 'person'
<bean id="theAge"
class="org.springframework.beans.factory.config.PropertyPathFactoryBean">
<property name="targetBeanName" value="person"/>
<property name="propertyPath" value="spouse.age"/>
</bean>

In this example, a path is evaluated against an inner bean:

<!I-- will result in 12, which is the value of property 'age' of the inner bean -->
<bean id="theAge"
class="org.springframework.beans.factory.config.PropertyPathFactoryBean">
<property name="targetObject">
<bean class="org.springframework.beans.TestBean">
<property name="age" value="12"/>
</bean>
</property>
<property name="propertyPath" value="age"/>
</bean>

There is also a shortcut form, where the bean name is the property path.

1

<!-- will result in 10, which is the value of property 'age
<bean id="person.age"
class="org.springframework.beans.factory.config.PropertyPathFactoryBean"/>

of bean 'person' -->

This form does mean that there is no choice in the name of the bean. Any reference to it will also
have to use the same id, which is the path. Of course, if used as an inner bean, there is no need to
refer to it at all:

46

<bean id="..." class="...
<property name="age">
<bean id="person.age"
class=
"org.springframework.beans.factory.config.PropertyPathFactoryBean"/>
</property>
</bean>

>

The result type may be specifically set in the actual definition. This is not necessary for most use
cases, but can be of use for some. Please see the Javadocs for more info on this feature.

<util:properties/>

Before...

<!-- creates a java.util.Properties instance with values loaded from the supplied
location -->

<bean id="jdbcConfiguration" class=
"org.springframework.beans.factory.config.PropertiesFactoryBean">

<property name="location" value="classpath:com/foo/jdbc-production.properties"/>
</bean>

The above configuration uses a Spring FactoryBean implementation, the PropertiesFactoryBean, to
instantiate a java.util.Properties instance with values loaded from the supplied Resource location).

After...

<!-- creates a java.util.Properties instance with values loaded from the supplied
location -->

<util:properties id="jdbcConfiguration" location="classpath:com/foo/jdbc-
production.properties"/>

<util:list/>

Before...

47

core.pdf#resources

<!-- creates a java.util.List instance with values loaded from the supplied
'sourcelList' -->
<bean id="emails" class="org.springframework.beans.factory.config.ListFactoryBean">
<property name="sourcelList">
<list>
<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>
<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>
</list>
</property>
</bean>

The above configuration uses a Spring FactoryBean implementation, the ListFactoryBean, to create a
java.util.List instance initialized with values taken from the supplied sourcelist.

After...

<!-- creates a java.util.List instance with the supplied values -->
<util:Tist id="emails">
<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>
<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>
</util:list>

You can also explicitly control the exact type of List that will be instantiated and populated via the
use of the list-class attribute on the <util:list/> element. For example, if we really need a
java.util.LinkedList to be instantiated, we could use the following configuration:

<util:Tist id="emails" list-class="java.util.LinkedList">
<value>jackshaftoe@vagabond.org</value>
<value>eliza@thinkingmanscrumpet.org</value>
<value>vanhoek@pirate.org</value>
<value>d'Arcachon@nemesis.org</value>

</util:list>

If no list-class attribute is supplied, a List implementation will be chosen by the container.

<util:map/>

Before...

48

<!-- creates a java.util.Map instance with values loaded from the supplied 'sourceMap’
-->
<bean id="emails" class="org.springframework.beans.factory.config.MapFactoryBean">
<property name="sourceMap">
<map>
<entry key="pechorin" value="pechorin@hero.org"/>
<entry key="raskolnikov" value="raskolnikov@slums.org"/>
<entry key="stavrogin" value="stavrogin@gov.org"/>
<entry key="porfiry" value="porfiry@gov.org"/>
</map>
</property>
</bean>

The above configuration uses a Spring FactoryBean implementation, the MapFactoryBean, to create a
java.util.Map instance initialized with key-value pairs taken from the supplied 'sourceMap’.

After...

<!-- creates a java.util.Map instance with the supplied key-value pairs -->
<util:map id="emails">

<entry key="pechorin" value="pechorin@hero.org"/>

<entry key="raskolnikov" value="raskolnikov@slums.org"/>

<entry key="stavrogin" value="stavrogin@gov.org"/>

<entry key="porfiry" value="porfiry@gov.org"/>
</util:map>

You can also explicitly control the exact type of Map that will be instantiated and populated via the
use of the 'map-class' attribute on the <util:map/> element. For example, if we really need a
java.util.TreeMap to be instantiated, we could use the following configuration:

<util:map id="emails" map-class="java.util.TreeMap">
<entry key="pechorin" value="pechorin@hero.org"/>
<entry key="raskolnikov" value="raskolnikov@slums.org"/>
<entry key="stavrogin" value="stavrogin@gov.org"/>
<entry key="porfiry" value="porfiry@gov.org"/>
</util:map>

If no 'map-class’ attribute is supplied, a Map implementation will be chosen by the container.

<util:set/>

Before...

49

<!-- creates a java.util.Set instance with values loaded from the supplied 'sourceSet'’
-->
<bean id="emails" class="org.springframework.beans.factory.config.SetFactoryBean">
<property name="sourceSet">
<set>
<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>
<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>
</set>
</property>
</bean>

The above configuration uses a Spring FactoryBean implementation, the SetFactoryBean, to create a
java.util.Set instance initialized with values taken from the supplied 'sourceSet"'.

After...

<!-- creates a java.util.Set instance with the supplied values -->

<util:set id="emails">
<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>
<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>

</util:set>

You can also explicitly control the exact type of Set that will be instantiated and populated via the
use of the 'set-class' attribute on the <util:set/> element. For example, if we really need a
java.util.TreeSet to be instantiated, we could use the following configuration:

<util:set id="emails" set-class="java.util.TreeSet">
<value>pechorin@hero.org</value>
<value>raskolnikov@slums.org</value>
<value>stavrogin@gov.org</value>
<value>porfiry@gov.org</value>

</util:set>

If no 'set-class' attribute is supplied, a Set implementation will be chosen by the container.

6.2.3. the jee schema

The jee tags deal with Java EE (Java Enterprise Edition)-related configuration issues, such as
looking up a JNDI object and defining E]B references.

To use the tags in the jee schema, you need to have the following preamble at the top of your Spring
XML configuration file; the text in the following snippet references the correct schema so that the
tags in the jee namespace are available to you.

50

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jee="http://www.springframework.org/schema/jee"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee/spring-jee.xsd"> <!-- bean definitions
here -->

</beans>

<jee:jndi-lookup/> (simple)

Before...

<bean id="dataSource"
class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/MyDataSource"/>
</bean>
<bean id="userDao" class="com.foo.JdbcUserDao">
<!-- Spring will do the cast automatically (as usual) -->
<property name="dataSource" ref="dataSource"/>
</bean>

After...

<jee:jndi-lookup id="dataSource" jndi-name="jdbc/MyDataSource"/>

<bean id="userDao" class="com.foo.JdbcUserDao">
<!-- Spring will do the cast automatically (as usual) -->
<property name="dataSource" ref="dataSource"/>
</bean>

<jee:jndi-lookup/> (with single JNDI environment setting)

Before...

51

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/MyDataSource"/>
<property name="jndiEnvironment">
<props>
<prop key="foo">bar</prop>
</props>
</property>
</bean>

After...

<jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource">
<jee:environment>foo=bar</jee:environment>
</jee:jndi-lookup>

<jee:jndi-lookup/> (with multiple JNDI environment settings)

Before...

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/MyDataSource"/>
<property name="jndiEnvironment">
<props>
<prop key="foo">bar</prop>
<prop key="ping">pong</prop>
</props>
</property>
</bean>

After...

<jee:jndi-lookup id="simple" jndi-name="jdbc/MyDataSource">
<!-- newline-separated, key-value pairs for the environment (standard Properties
format) -->
<jee:environment>
foo=bar
ping=pong
</jee:environment>
</jee:jndi-lookup>

<jee:jndi-lookup/> (complex)

Before...

52

<bean id="simple" class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/MyDataSource"/>
<property name="cache" value="true"/>
<property name="resourceRef" value="true"/>
<property name="lookupOnStartup" value="false"/>
<property name="expectedType" value="com.myapp.DefaultFoo"/>
<property name="proxyInterface" value="com.myapp.Foo"/>

</bean>

After...

<jee:jndi-lookup id="simple"
jndi-name="jdbc/MyDataSource"
cache="true"
resource-ref="true"
lookup-on-startup="false"
expected-type="com.myapp.DefaultFoo"
proxy-interface="com.myapp.Foo"/>

<jee:local-slsh/> (simple)
The <jee:local-slsb/> tag configures a reference to an EJB Stateless SessionBean.
Before...
<bean id="simple"
class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">
<property name="jndiName" value="ejb/RentalServiceBean"/>

<property name="businessInterface" value="com.foo.service.RentalService"/>
</bean>

After...

<jee:local-slsb id="simpleSlsb" jndi-name="ejb/RentalServiceBean"
business-interface="com.foo.service.RentalService"/>

<jee:local-slsb/> (complex)

53

<bean id="complexLocalEjb"
class="org.springframework.ejb.access.LocalStatelessSessionProxyFactoryBean">

<property name="jndiName" value="ejb/RentalServiceBean"/>
<property name="businessInterface" value="com.foo.service.RentalService"/>
<property name="cacheHome" value="true"/>
<property name="1lookupHomeOnStartup" value="true"/>
<property name="resourceRef" value="true"/>

</bean>

After...

<jee:local-slsb id="complexLocalEjb"
jndi-name="ejb/RentalServiceBean"
business-interface="com.foo.service.RentalService"
cache-home="true"
lookup-home-on-startup="true"
resource-ref="true">

<jee:remote-slsh/>

The <jee:remote-slsb/> tag configures a reference to a remote EJB Stateless SessionBean.

Before...

<bean id="complexRemoteEjb"
class=
"org.springframework.ejb.access.SimpleRemoteStatelessSessionProxyFactoryBean">
<property name="jndiName" value="ejb/MyRemoteBean"/>
<property name="businessInterface" value="com.foo.service.RentalService"/>
<property name="cacheHome" value="true"/>
<property name="1lookupHomeOnStartup" value="true"/>
<property name="resourceRef" value="true"/>
<property name="homeInterface" value="com.foo.service.RentalService"/>
<property name="refreshHomeOnConnectFailure" value="true"/>
</bean>

After...

54

<jee:remote-slsb id="complexRemoteEjb"
jndi-name="ejb/MyRemoteBean"
business-interface="com.foo.service.RentalService"
cache-home="true"
lookup-home-on-startup="true"
resource-ref="true"
home-interface="com.foo.service.RentalService"
refresh-home-on-connect-failure="true">

6.2.4. the lang schema

The lang tags deal with exposing objects that have been written in a dynamic language such as
JRuby or Groovy as beans in the Spring container.

These tags (and the dynamic language support) are comprehensively covered in the chapter
entitled Dynamic language support. Please do consult that chapter for full details on this support
and the lang tags themselves.

In the interest of completeness, to use the tags in the lang schema, you need to have the following
preamble at the top of your Spring XML configuration file; the text in the following snippet
references the correct schema so that the tags in the lang namespace are available to you.

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:lang="http://www.springframework.org/schema/lang"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/lang
http://www.springframework.org/schema/lang/spring-lang.xsd"> <!-- bean
definitions here -->

</beans>

6.2.5. the jms schema

The jms tags deal with configuring JMS-related beans such as Spring’s MessageListenerContainers.
These tags are detailed in the section of the JMS chapter entitled JMS namespace support. Please do
consult that chapter for full details on this support and the jms tags themselves.

In the interest of completeness, to use the tags in the jms schema, you need to have the following
preamble at the top of your Spring XML configuration file; the text in the following snippet
references the correct schema so that the tags in the jms namespace are available to you.

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jms="http://www.springframework.org/schema/jms"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/jms
http://www.springframework.org/schema/jms/spring-jms.xsd"> <!-- bean definitions
here -->

</beans>

55

integration.pdf#dynamic-language
integration.pdf#jms-mdp
integration.pdf#jms
integration.pdf#jms-namespace

6.2.6. the tx (transaction) schema

The tx tags deal with configuring all of those beans in Spring’s comprehensive support for
transactions. These tags are covered in the chapter entitled Transaction Management.

You are strongly encouraged to look at the "spring-tx.xsd' file that ships with the
Spring distribution. This file is (of course), the XML Schema for Spring’s

Q transaction configuration, and covers all of the various tags in the tx namespace,
including attribute defaults and suchlike. This file is documented inline, and thus
the information is not repeated here in the interests of adhering to the DRY (Don’t
Repeat Yourself) principle.

In the interest of completeness, to use the tags in the tx schema, you need to have the following
preamble at the top of your Spring XML configuration file; the text in the following snippet
references the correct schema so that the tags in the tx namespace are available to you.

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd"> <!-- bean definitions here
-->

</beans>

Often when using the tags in the tx namespace you will also be using the tags from
the aop namespace (since the declarative transaction support in Spring is

0 implemented using AOP). The above XML snippet contains the relevant lines
needed to reference the aop schema so that the tags in the aop namespace are
available to you.

6.2.7. the aop schema

The aop tags deal with configuring all things AOP in Spring: this includes Spring’s own proxy-based
AOP framework and Spring’s integration with the Aspect] AOP framework. These tags are
comprehensively covered in the chapter entitled Aspect Oriented Programming with Spring.

In the interest of completeness, to use the tags in the aop schema, you need to have the following
preamble at the top of your Spring XML configuration file; the text in the following snippet
references the correct schema so that the tags in the aop namespace are available to you.

56

data-access.pdf#transaction
core.pdf#aop

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop.xsd"> <!-- bean definitions
here -->

</beans>

6.2.8. the context schema

The context tags deal with ApplicationContext configuration that relates to plumbing - that is, not
usually beans that are important to an end-user but rather beans that do a lot of grunt work in
Spring, such as BeanfactoryPostProcessors. The following snippet references the correct schema so
that the tags in the context namespace are available to you.

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd"> <!-- bean
definitions here -->

</beans>

0 The context schema was only introduced in Spring 2.5.

<property-placeholder/>

This element activates the replacement of ${::-} placeholders, resolved against the specified
properties file (as a Spring resource location). This element is a convenience mechanism that sets
up aPropertyPlaceholderConfigurer for you; if you need more control over the
PropertyPlaceholderConfigurer, just define one yourself explicitly.

<annotation-config/>

Activates the Spring infrastructure for various annotations to be detected in bean classes: Spring’s
@Required and @Autowired, as well as JSR 250’s @PostConstruct, @PreDestroy and @Resource (f
available), and JPA’s @PersistenceContext and @PersistenceUnit (if available). Alternatively, you can

57

core.pdf#resources
core.pdf#beans-factory-placeholderconfigurer
core.pdf#beans-required-annotation
core.pdf#beans-annotation-config

choose to activate the individual BeanPostProcessors for those annotations explicitly.

0 This element does not activate processing of Spring’s @Transactional annotation.
Use the <tx:annotation-driven/> element for that purpose.
<component-scan/>

This element is detailed in Annotation-based container configuration.

<load-time-weaver/>

This element is detailed in Load-time weaving with Aspect] in the Spring Framework.

<spring-configured/>

This element is detailed in Using Aspect] to dependency inject domain objects with Spring.

<mbean-export/>

This element is detailed in Configuring annotation based MBean export.

6.2.9. the tool schema

The tool tags are for use when you want to add tooling-specific metadata to your custom
configuration elements. This metadata can then be consumed by tools that are aware of this
metadata, and the tools can then do pretty much whatever they want with it (validation, etc.).

The tool tags are not documented in this release of Spring as they are currently undergoing review.
If you are a third party tool vendor and you would like to contribute to this review process, then do
mail the Spring mailing list. The currently supported tool tags can be found in the file "spring-
tool.xsd" in the 'src/org/springframework/beans/factory/xml' directory of the Spring source
distribution.

6.2.10. the jdbc schema

The jdbc tags allow you to quickly configure an embedded database or initialize an existing data
source. These tags are documented in Embedded database support and Initializing a DataSource
respectively.

To use the tags in the jdbc schema, you need to have the following preamble at the top of your
Spring XML configuration file; the text in the following snippet references the correct schema so
that the tags in the jdbc namespace are available to you.

58

data-access.pdf#transaction-declarative-annotations
data-access.pdf#tx-decl-explained
core.pdf#beans-annotation-config
core.pdf#aop-aj-ltw
core.pdf#aop-atconfigurable
integration.pdf#jmx-context-mbeanexport
data-access.pdf#jdbc-embedded-database-support
data-access.pdf#jdbc-initializing-datasource

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jdbe="http://www.springframework.org/schema/jdbc"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc.xsd"> <!-- bean
definitions here -->

</beans>

6.2.11. the cache schema

The cache tags can be used to enable support for Spring’s @CacheEvict, @CachePut and @Caching
annotations. It it also supports declarative XML-based caching. See Enable caching annotations and
Declarative XML-based caching for details.

To use the tags in the cache schema, you need to have the following preamble at the top of your
Spring XML configuration file; the text in the following snippet references the correct schema so
that the tags in the cache namespace are available to you.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:cache="http://www.springframework.org/schema/cache"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd"> <!-- bean
definitions here -->

</beans>

6.2.12. the beans schema

Last but not least we have the tags in the beans schema. These are the same tags that have been in
Spring since the very dawn of the framework. Examples of the various tags in the beans schema are
not shown here because they are quite comprehensively covered in Dependencies and
configuration in detail (and indeed in that entire chapter)

One thing that is new to the beans tags themselves in Spring 2.0 is the idea of arbitrary bean
metadata. In Spring 2.0 it is now possible to add zero or more key / value pairs to <bean/> XML
definitions. What, if anything, is done with this extra metadata is totally up to your own custom
logic (and so is typically only of use if you are writing your own custom tags as described in the

59

integration.pdf#cache-annotation-enable
integration.pdf#cache-declarative-xml
core.pdf#beans-factory-properties-detailed
core.pdf#beans-factory-properties-detailed
core.pdf#beans

appendix entitled Extensible XML authoring).

Find below an example of the <meta/> tag in the context of a surrounding <bean/> (please note that
without any logic to interpret it the metadata is effectively useless as-is).

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="foo" class="x.y.Foo">
<meta key="cacheName" value="foo"/>
<property name="name" value="Rick"/>

</bean>

</beans>

In the case of the above example, you would assume that there is some logic that will consume the
bean definition and set up some caching infrastructure using the supplied metadata.

60

Chapter 7. Extensible XML authoring

7.1. Introduction

Since version 2.0, Spring has featured a mechanism for schema-based extensions to the basic
Spring XML format for defining and configuring beans. This section is devoted to detailing how you
would go about writing your own custom XML bean definition parsers and integrating such parsers
into the Spring IoC container.

To facilitate the authoring of configuration files using a schema-aware XML editor, Spring’s
extensible XML configuration mechanism is based on XML Schema. If you are not familiar with
Spring’s current XML configuration extensions that come with the standard Spring distribution,
please first read the appendix entitled[xsd-config].

Creating new XML configuration extensions can be done by following these (relatively) simple
steps:
* Authoring an XML schema to describe your custom element(s).
» Coding a custom NamespaceHandler implementation (this is an easy step, don’t worry).
* Coding one or more BeanDefinitionParser implementations (this is where the real work is done).
* Registering the above artifacts with Spring (this too is an easy step).
What follows is a description of each of these steps. For the example, we will create an XML
extension (a custom XML element) that allows us to configure objects of the type SimpleDateFormat

(from the java.text package) in an easy manner. When we are done, we will be able to define bean
definitions of type SimpleDateFormat like this:

<myns:dateformat id="dateFormat"
pattern="yyyy-MM-dd HH:mm"
lenient="true"/>

(Don’t worry about the fact that this example is very simple; much more detailed examples follow
afterwards. The intent in this first simple example is to walk you through the basic steps involved.)

7.2. Authoring the schema

Creating an XML configuration extension for use with Spring’s IoC container starts with authoring
an XML Schema to describe the extension. What follows is the schema we’ll use to configure
SimpleDateFormat objects.

61

<!-- myns.xsd (inside package org/springframework/samples/xml) -->

<?xml version="1.0" encoding="UTF-8"7>

<xsd:schema xmlns="http://www.mycompany.com/schema/myns"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:beans="http://www.springframework.org/schema/beans"
targetNamespace="http://www.mycompany.com/schema/myns"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:import namespace="http://www.springframework.org/schema/beans"/>

<xsd:element name="dateformat">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="beans:identifiedType">
<xsd:attribute name="lenient" type="xsd:boolean"/>
<xsd:attribute name="pattern" type="xsd:string" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:schema>

(The emphasized line contains an extension base for all tags that will be identifiable (meaning they
have an id attribute that will be used as the bean identifier in the container). We are able to use this
attribute because we imported the Spring-provided 'beans' namespace.)

The above schema will be used to configure SimpleDateFormat objects, directly in an XML
application context file using the <myns:dateformat/> element.

<myns:dateformat id="dateFormat"
pattern="yyyy-MM-dd HH:mm"
lenient="true"/>

Note that after we’ve created the infrastructure classes, the above snippet of XML will essentially be
exactly the same as the following XML snippet. In other words, we’re just creating a bean in the
container, identified by the name 'dateFormat' of type SimpleDateFormat, with a couple of properties
set.

<bean id="dateFormat" class="java.text.SimpleDateFormat">
<constructor-arg value="yyyy-HH-dd HH:mm"/>
<property name="lenient" value="true"/>

</bean>

62

The schema-based approach to creating configuration format allows for tight

0 integration with an IDE that has a schema-aware XML editor. Using a properly
authored schema, you can use autocompletion to have a user choose between
several configuration options defined in the enumeration.

7.3. Coding a NamespaceHandler

In addition to the schema, we need a NamespaceHandler that will parse all elements of this specific
namespace Spring encounters while parsing configuration files. The NamespaceHandler should in our
case take care of the parsing of the myns:dateformat element.

The NamespaceHandler interface is pretty simple in that it features just three methods:

* init() - allows for initialization of the NamespaceHandler and will be called by Spring before the
handler is used

BeanDefinition parse(Element, ParserContext) - called when Spring encounters a top-level
element (not nested inside a bean definition or a different namespace). This method can
register bean definitions itself and/or return a bean definition.

BeanDefinitionHolder decorate(Node, BeanDefinitionHolder, ParserContext) - called when
Spring encounters an attribute or nested element of a different namespace. The decoration of
one or more bean definitions is used for example with theout-of-the-box scopes Spring 2.0
supports. We’ll start by highlighting a simple example, without using decoration, after which we
will show decoration in a somewhat more advanced example.

Although it is perfectly possible to code your own NamespaceHandler for the entire namespace (and
hence provide code that parses each and every element in the namespace), it is often the case that
each top-level XML element in a Spring XML configuration file results in a single bean definition (as

in our case, where a single <myns:dateformat/> element results in a single SimpleDateFormat bean

definition). Spring features a number of convenience classes that support this scenario. In this
example, we’ll make use the NamespaceHandlerSupport class:

package org.springframework.samples.xml;
import org.springframework.beans.factory.xml.NamespaceHandlerSupport;
public class MyNamespaceHandler extends NamespaceHandlerSupport {
public void init() {
registerBeanDefinitionParser("dateformat”, new

SimpleDateFormatBeanDefinitionParser());

}

The observant reader will notice that there isn’t actually a whole lot of parsing logic in this class.
Indeed... the NamespaceHandlerSupport class has a built in notion of delegation. It supports the
registration of any number of BeanDefinitionParser instances, to which it will delegate to when it

63

core.pdf#beans-factory-scopes
core.pdf#beans-factory-scopes

needs to parse an element in its namespace. This clean separation of concerns allows a
NamespaceHandler to handle the orchestration of the parsing of all of the custom elements in its
namespace, while delegating to BeanDefinitionParsers to do the grunt work of the XML parsing; this
means that each BeanDefinitionParser will contain just the logic for parsing a single custom
element, as we can see in the next step

7.4. BeanDefinitionParser

A BeanDefinitionParser will be used if the NamespaceHandler encounters an XML element of the type
that has been mapped to the specific bean definition parser (which is 'dateformat' in this case). In
other words, the BeanDefinitionParser is responsible for parsing one distinct top-level XML element
defined in the schema. In the parser, we’ll have access to the XML element (and thus its
subelements too) so that we can parse our custom XML content, as can be seen in the following
example:

package org.springframework.samples.xml;

import org.springframework.beans.factory.support.BeanDefinitionBuilder;

import org.springframework.beans.factory.xml.AbstractSingleBeanDefinitionParser;
import org.springframework.util.StringUtils;

import org.w3c.dom.Element;

import java.text.SimpleDateFormat;

public class SimpleDateFormatBeanDefinitionParser extends
AbstractSingleBeanDefinitionParser { @

protected Class getBeanClass(Element element) {
return SimpleDateFormat.class; @

}

protected void doParse(Element element, BeanDefinitionBuilder bean) {
// this will never be null since the schema explicitly requires that a value
be supplied
String pattern = element.getAttribute("pattern");
bean.addConstructorArg(pattern);

// this however is an optional property

String lenient = element.getAttribute("lenient");

if (StringUtils.hasText(lenient)) {
bean.addPropertyValue("lenient", Boolean.valueOf(lenient));

}

@ We use the Spring-provided AbstractSingleBeanDefinitionParser to handle a lot of the basic
grunt work of creating a single BeanDefinition.

64

@ We supply the AbstractSingleBeanDefinitionParser superclass with the type that our single
BeanDefinition will represent.

In this simple case, this is all that we need to do. The creation of our single BeanDefinition is
handled by the AbstractSingleBeanDefinitionParser superclass, as is the extraction and setting of
the bean definition’s unique identifier.

7.5. Registering the handler and the schema

The coding is finished! All that remains to be done is to somehow make the Spring XML parsing
infrastructure aware of our custom element; we do this by registering our custom namespaceHandler
and custom XSD file in two special purpose properties files. These properties files are both placed in
a 'META-INF' directory in your application, and can, for example, be distributed alongside your
binary classes in a JAR file. The Spring XML parsing infrastructure will automatically pick up your
new extension by consuming these special properties files, the formats of which are detailed below.

7.5.1. 'META-INF/spring.handlers'

The properties file called 'spring.handlers' contains a mapping of XML Schema URIs to namespace
handler classes. So for our example, we need to write the following:

http\://www.mycompany.com/schema/myns=org.springframework.samples.xml.MyNamespaceHandl
er

(The ':' character is a valid delimiter in the Java properties format, and so the ':' character in the
URI needs to be escaped with a backslash.)

The first part (the key) of the key-value pair is the URI associated with your custom namespace
extension, and needs to match exactly the value of the 'targetNamespace' attribute as specified in
your custom XSD schema.

7.5.2. '"META-INF/spring.schemas'

The properties file called 'spring.schemas’ contains a mapping of XML Schema locations (referred
to along with the schema declaration in XML files that use the schema as part of the
'xsi:schemalocation' attribute) to classpath resources. This file is needed to prevent Spring from
absolutely having to use a default EntityResolver that requires Internet access to retrieve the
schema file. If you specify the mapping in this properties file, Spring will search for the schema on
the classpath (in this case "'myns.xsd' in the 'org.springframework.samples.xml' package):

http\://www.mycompany.com/schema/myns/myns.xsd=org/springframework/samples/xml/myns.xs
d

The upshot of this is that you are encouraged to deploy your XSD file(s) right alongside the
NamespaceHandler and BeanDefinitionParser classes on the classpath.

65

7.6. Using a custom extension in your Spring XML
configuration

Using a custom extension that you yourself have implemented is no different from using one of the
'custom' extensions that Spring provides straight out of the box. Find below an example of using the
custom <dateformat/> element developed in the previous steps in a Spring XML configuration file.

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:myns="http://www.mycompany.com/schema/myns"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.mycompany.com/schema/myns
http://www.mycompany.com/schema/myns/myns.xsd">

<!-- as a top-level bean -->
<myns:dateformat id="defaultDateFormat" pattern="yyyy-MM-dd HH:mm" lenient="true

I|/>
<bean id="jobDetailTemplate" abstract="true">
<property name="dateFormat">
<!-- as an inner bean -->
<myns:dateformat pattern="HH:mm MM-dd-yyyy"/>
</property>
</bean>
</beans>

7.7. Meatier examples

Find below some much meatier examples of custom XML extensions.

7.7.1. Nesting custom tags within custom tags

This example illustrates how you might go about writing the various artifacts required to satisfy a
target of the following configuration:

66

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:foo="http://www.foo.com/schema/component”
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.foo.com/schema/component
http://www.foo.com/schema/component/component.xsd">

<foo:component id="bionic-family" name="Bionic-1">
<foo:component name="Mother-1">
<foo:component name="Karate-1"/>
<foo:component name="Sport-1"/>
</foo:component>
<foo:component name="Rock-1"/>
</foo:component>

</beans>

The above configuration actually nests custom extensions within each other. The class that is
actually configured by the above <foo:component/> element is the Component class (shown directly
below). Notice how the Component class does not expose a setter method for the 'components’
property; this makes it hard (or rather impossible) to configure a bean definition for the Component
class using setter injection.

67

package com.foo;

import java.util.Arraylist;
import java.util.List;

public class Component {

private String name;
private List<Component> components = new ArraylList<Component> ();

// mmm, there is no setter method for the 'components'
public void addComponent(Component component) {
this.components.add(component);

}

public List<Component> getComponents() {
return components;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

The typical solution to this issue is to create a custom FactoryBean that exposes a setter property for
the 'components' property.

68

package com.foo;

import org.springframework.beans.factory.FactoryBean;

import java.util.List;

public class ComponentFactoryBean implements FactoryBean<Component> {

private Component parent;
private List<Component> children;

public void setParent(Component parent) {
this.parent = parent;

}

public void setChildren(List<Component> children) {
this.children = children;

}

public Component getObject() throws Exception {
if (this.children != null && this.children.size() > 0) {
for (Component child : children) {
this.parent.addComponent(child);
}
}

return this.parent;

}

public Class<Component> getObjectType() {
return Component.class;

}

public boolean isSingleton() {
return true;

}

This is all very well, and does work nicely, but exposes a lot of Spring plumbing to the end user.
What we are going to do is write a custom extension that hides away all of this Spring plumbing. If
we stick to the steps described previously, we’ll start off by creating the XSD schema to define the
structure of our custom tag.

69

<?xml version="1.0" encoding="UTF-8" standalone="no"?7>

<xsd:schema xmlns="http://www.foo.com/schema/component”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.foo.com/schema/component"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xsd:element name="component">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="component"/>
</xsd:choice>
<xsd:attribute name="id" type="xsd:ID"/>
<xsd:attribute name="name" use="required" type="xsd:string"/>
</xsd:complexType>
</xsd:element>

</xsd:schema>

We’ll then create a custom NamespaceHandler.

package com.foo;
import org.springframework.beans.factory.xml.NamespaceHandlerSupport;
public class ComponentNamespaceHandler extends NamespaceHandlerSupport {

public void init() {
registerBeanDefinitionParser("component”, new ComponentBeanDefinitionParser()

Next up is the custom BeanDefinitionParser. Remember that what we are creating is
BeanDefinition describing a ComponentFactoryBean.

package com.foo;

import org.springframework.beans.factory.config.BeanDefinition;

import org.springframework.beans.factory.support.AbstractBeanDefinition;
import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.support.ManagedlList;

import org.springframework.beans.factory.xml.AbstractBeanDefinitionParser;
import org.springframework.beans.factory.xml.ParserContext;

import org.springframework.util.xml.DomUtils;

import org.w3c.dom.Element;

70

import java.util.List;
public class ComponentBeanDefinitionParser extends AbstractBeanDefinitionParser {

protected AbstractBeanDefinition parselnternal(Element element, ParserContext

parserContext) {
return parseComponentElement(element);

}

private static AbstractBeanDefinition parseComponentElement(Element element) {
BeanDefinitionBuilder factory = BeanDefinitionBuilder.rootBeanDefinition
(ComponentFactoryBean.class);
factory.addPropertyValue("parent", parseComponent(element));

List<Element> childElements = DomUtils.getChildElementsByTagName(element,

"component");
if (childElements != null && childElements.size() > 0) {
parseChildComponents(childElements, factory);

}

return factory.getBeanDefinition();

}

private static BeanDefinition parseComponent(Element element) {
BeanDefinitionBuilder component = BeanDefinitionBuilder.rootBeanDefinition
(Component.class);
component.addPropertyValue("name", element.getAttribute("name"));
return component.getBeanDefinition();

}

private static void parseChildComponents(List<Element> childElements,

BeanDefinitionBuilder factory) {
ManagedList<BeanDefinition> children = new ManagedList<BeanDefinition>

(childElements.size());
for (Element element : childElements) {
children.add(parseComponentElement(element));

}
factory.addPropertyValue("children", children);

Lastly, the various artifacts need to be registered with the Spring XML infrastructure.

in 'META-INF/spring.handlers’
http\://www.foo.com/schema/component=com.foo.ComponentNamespaceHandler

71

in "META-INF/spring.schemas’
http\://www.foo.com/schema/component/component.xsd=com/foo/component.xsd

7.7.2. Custom attributes on 'normal’' elements

Writing your own custom parser and the associated artifacts isn’t hard, but sometimes it is not the
right thing to do. Consider the scenario where you need to add metadata to already existing bean
definitions. In this case you certainly don’t want to have to go off and write your own entire custom
extension; rather you just want to add an additional attribute to the existing bean definition
element.

By way of another example, let’s say that the service class that you are defining a bean definition
for a service object that will (unknown to it) be accessing a clustered JCache, and you want to
ensure that the named JCache instance is eagerly started within the surrounding cluster:

<bean id="checkingAccountService" class="com.foo.DefaultCheckingAccountService"
jcache:cache-name="checking.account">
<!-- other dependencies here... -->
</bean>

What we are going to do here is create another BeanDefinition when the 'jcache:cache-name'
attribute is parsed; this BeanDefinition will then initialize the named JCache for us. We will also
modify the existing BeanDefinition for the 'checkingAccountService' so that it will have a
dependency on this new JCache-initializing BeanDefinition.

package com.foo;
public class JCachelnitializer {
private String name;
public JCacheInitializer(String name) {

this.name = name;

}

public void initialize() {
// lots of JCache API calls to initialize the named cache...
}

Now onto the custom extension. Firstly, the authoring of the XSD schema describing the custom
attribute (quite easy in this case).

72

http://jcp.org/en/jsr/detail?id=107

<?xml version="1.0" encoding="UTF-8" standalone="no"?7>

<xsd:schema xmlns="http://www.foo.com/schema/jcache"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.foo.com/schema/jcache
elementFormDefault="qualified">

<xsd:attribute name="cache-name" type="xsd:string"/>

</xsd:schema>

Next, the associated NamespaceHandler.

package com.foo;
import org.springframework.beans.factory.xml.NamespaceHandlerSupport;
public class JCacheNamespaceHandler extends NamespaceHandlerSupport {

public void init() {
super.registerBeanDefinitionDecoratorForAttribute("cache-name",
new JCacheInitializingBeanDefinitionDecorator());

Next, the parser. Note that in this case, because we are going to be parsing an XML attribute, we
write a BeanDefinitionDecorator rather than a BeanDefinitionParser.

package com.foo;

import org.springframework.beans.factory.config.BeanDefinitionHolder;
import org.springframework.beans.factory.support.AbstractBeanDefinition;
import org.springframework.beans.factory.support.BeanDefinitionBuilder;
import org.springframework.beans.factory.xml.BeanDefinitionDecorator;
import org.springframework.beans.factory.xml.ParserContext;

import org.w3c.dom.Attr;

import org.w3c.dom.Node;

import java.util.Arraylist;
import java.util.Arrays;

import java.util.List;

public class JCacheInitializingBeanDefinitionDecorator implements
BeanDefinitionDecorator {

private static final String[] EMPTY_STRING_ARRAY = new String[0];

73

public BeanDefinitionHolder decorate(Node source, BeanDefinitionHolder holder,
ParserContext ctx) {
String initializerBeanName = registerJCachelInitializer(source, ctx);
createDependencyOnJCacheInitializer(holder, initializerBeanName);
return holder;

}

private void createDependencyOnJCachelnitializer(BeanDefinitionHolder holder,
String initializerBeanName) {
AbstractBeanDefinition definition = ((AbstractBeanDefinition) holder
.getBeanDefinition());
String[] dependsOn = definition.getDependsOn();
if (dependsOn == null) {
dependsOn = new String[]{initializerBeanName};
} else {
List dependencies = new ArraylList(Arrays.asList(dependsOn));
dependencies.add(initializerBeanName);
dependsOn = (String[]) dependencies.toArray(EMPTY_STRING_ARRAY);
}
definition.setDependsOn(dependsOn);
}

private String registerJCachelnitializer(Node source, ParserContext ctx) {
String cacheName = ((Attr) source).getValue();
String beanName = cacheName + "-initializer";
if (lctx.getRegistry().containsBeanDefinition(beanName)) {
BeanDefinitionBuilder initializer = BeanDefinitionBuilder
.rootBeanDefinition(JCachelnitializer.class);
initializer.addConstructorArg(cacheName);
ctx.getRegistry().registerBeanDefinition(beanName, initializer
.getBeanDefinition());
}

return beanName;

Lastly, the various artifacts need to be registered with the Spring XML infrastructure.

in 'META-INF/spring.handlers’
http\://www.foo.com/schema/jcache=com.foo.JCacheNamespaceHandler

in 'META-INF/spring.schemas’
http\://www.foo.com/schema/jcache/jcache.xsd=com/foo/jcache.xsd

74

7.8. Further Resources

Find below links to further resources concerning XML Schema and the extensible XML support
described in this chapter.

e The XML Schema Part 1: Structures Second Edition

» The XML Schema Part 2: Datatypes Second Edition

75

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

Chapter 8. spring JSP Tag Library

8.1. Introduction

One of the view technologies you can use with the Spring Framework is Java Server Pages (JSPs). To
help you implement views using Java Server Pages the Spring Framework provides you with some
tags for evaluating errors, setting themes and outputting internationalized messages.

Please note that the various tags generated by this form tag library are compliant with the XHTML-
1.0-Strict specification and attendant DTD.

This appendix describes the spring.tld tag library.

* The argument tag

* The bind tag

* The escapeBody tag
* The hasBindErrors tag
* The htmlEscape tag
* The message tag

* The nestedPath tag
* The param tag

* The theme tag

* The transform tag

* The url tag

* The eval tag

8.2. The argument tag

Argument tag based on the JSTL fmt:param tag. The purpose is to support arguments inside the
message and theme tags.

Table 1. Attributes

Attribute Required? Runtime Description
Expression?
value false true The value of the argument.

8.3. The bind tag

Provides BindStatus object for the given bind path. The HTML escaping flag participates in a page-
wide or application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape" context-param in
web.xml).

76

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/dtds.html#a_dtd_XHTML-1.0-Strict

Table 2. Attributes

Attribute Required? Runtime
Expression?

htmlEscape false true

ignoreNestedP false true

ath

path true true

8.4. The escapeBody tag

Description

Set HTML escaping for this tag, as boolean value.
Overrides the default HTML escaping setting for
the current page.

Set whether to ignore a nested path, if any.
Default is to not ignore.

The path to the bean or bean property to bind
status information for. For instance
account.name, company.address.zipCode or just
employee. The status object will exported to the
page scope, specifically for this bean or bean

property

Escapes its enclosed body content, applying HTML escaping and/or JavaScript escaping. The HTML
escaping flag participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a

"defaultHtmlEscape" context-param in web.xml).

Table 3. Attributes

Attribute Required? Runtime
Expression?

htmlEscape false true

javaScriptEsca false true

pe

8.5. The eval tag

Description

Set HTML escaping for this tag, as boolean value.
Overrides the default HTML escaping setting for
the current page.

Set JavaScript escaping for this tag, as boolean
value. Default is false.

Evaluates a Spring expression (SpEL) and either prints the result or assigns it to a variable.

Table 4. Attributes

Attribute Required? Runtime
Expression?
expression true true
htmlEscape false true
javaScriptEsca false true

pe

Description

The expression to evaluate.

Set HTML escaping for this tag, as a boolean
value. Overrides the default HTML escaping
setting for the current page.

Set JavaScript escaping for this tag, as a boolean
value. Default is false.

77

Attribute Required? Runtime Description

Expression?
scope false true The scope for the var. 'application’, 'session’,
'request’ and 'page' scopes are supported.
Defaults to page scope. This attribute has no
effect unless the var attribute is also defined.
var false true The name of the variable to export the

evaluation result to. If not specified the
evaluation result is converted to a String and
written as output.

8.6. The hasBindErrors tag

Provides Errors instance in case of bind errors. The HTML escaping flag participates in a page-wide
or application-wide setting (i.e. by HtmlEscapeTag or a "defaultHtmlEscape" context-param in
web.xml).

Table 5. Attributes

Attribute Required? Runtime Description
Expression?
htmlEscape false true Set HTML escaping for this tag, as boolean value.

Overrides the default HTML escaping setting for
the current page.

name true true The name of the bean in the request, that needs
to be inspected for errors. If errors are available
for this bean, they will be bound under the
‘errors' key.

8.7. The htmlEscape tag

Sets default HTML escape value for the current page. Overrides a "defaultHtmlEscape" context-
param in web.xml, if any.

Table 6. Attributes

Attribute Required? Runtime Description

Expression?
defaultHtmlEsc true true Set the default value for HTML escaping, to be
ape put into the current PageContext.

8.8. The message tag

Retrieves the message with the given code, or text if code isn’t resolvable. The HTML escaping flag
participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a
"defaultHtmlEscape" context-param in web.xml).

Table 7. Attributes

78

Attribute Required?

arguments false

argumentSepar false
ator

code false

htmlEscape false

javaScriptEsca false
pe

message false
scope false
text false
var false

Runtime
Expression?

true

true

true

true

true

true

true

true

true

8.9. The nestedPath tag

Description

Set optional message arguments for this tag, as a
(comma-)delimited String (each String argument
can contain JSP EL), an Object array (used as
argument array), or a single Object (used as
single argument).

The separator character to be used for splitting
the arguments string value; defaults to a
‘comma’ ().

The code (key) to use when looking up the

message. If code is not provided, the text
attribute will be used.

Set HTML escaping for this tag, as boolean value.
Overrides the default HTML escaping setting for
the current page.

Set JavaScript escaping for this tag, as boolean
value. Default is false.

A MessageSourceResolvable argument (direct or
through JSP EL). Fits nicely when used in
conjunction with Spring’s own validation error
classes which all implement the
MessageSourceResolvable interface. For
example, this allows you to iterate over all of the
errors in a form, passing each error (using a
runtime expression) as the value of this
'message' attribute, thus effecting the easy
display of such error messages.

The scope to use when exporting the result to a
variable. This attribute is only used when var is
also set. Possible values are page, request,
session and application.

Default text to output when a message for the
given code could not be found. If both text and
code are not set, the tag will output null.

The string to use when binding the result to the
page, request, session or application scope. If not
specified, the result gets outputted to the writer
(i.e. typically directly to the JSP).

Sets a nested path to be used by the bind tag’s path.

Table 8. Attributes

79

Attribute Required? Runtime Description
Expression?

path true true Set the path that this tag should apply. E.g.
'customer’ to allow bind paths like
'address.street’ rather than
'customer.address.street'.

8.10. The param tag

Parameter tag based on the JSTL c:param tag. The sole purpose is to support params inside the url
tag.

Table 9. Attributes

Attribute Required? Runtime Description

Expression?
name true true The name of the parameter.
value false true The value of the parameter.

8.11. The theme tag

Retrieves the theme message with the given code, or text if code isn’t resolvable. The HTML
escaping flag participates in a page-wide or application-wide setting (i.e. by HtmlEscapeTag or a
"defaultHtmlEscape" context-param in web.xml).

Table 10. Attributes

Attribute Required? Runtime Description
Expression?
arguments false true Set optional message arguments for this tag, as a

(comma-)delimited String (each String argument
can contain JSP EL), an Object array (used as
argument array), or a single Object (used as
single argument).

argumentSepar false true The separator character to be used for splitting

ator the arguments string value; defaults to a
‘comma’ (,").

code false true The code (key) to use when looking up the

message. If code is not provided, the text
attribute will be used.

htmlEscape false true Set HTML escaping for this tag, as boolean value.
Overrides the default HTML escaping setting for
the current page.

javaScriptEsca false true Set JavaScript escaping for this tag, as boolean

pe value. Default is false.

message false true A MessageSourceResolvable argument (direct or
through JSP EL).

80

Attribute Required? Runtime

Expression?
scope false true
text false true
var false true

8.12. The transform tag

Description

The scope to use when exporting the result to a
variable. This attribute is only used when var is
also set. Possible values are page, request,
session and application.

Default text to output when a message for the
given code could not be found. If both text and
code are not set, the tag will output null.

The string to use when binding the result to the
page, request, session or application scope. If not
specified, the result gets outputted to the writer
(i.e. typically directly to the JSP).

Provides transformation of variables to Strings, using an appropriate custom PropertyEditor from
BindTag (can only be used inside BindTag). The HTML escaping flag participates in a page-wide or
application-wide setting (i.e. by HtmlEscapeTag or a 'defaultHtmlEscape' context-param in

web.xml).

Table 11. Attributes

Attribute Required? Runtime
Expression?

htmlEscape false true

scope false true

value true true

var false true

8.13. The url tag

Description

Set HTML escaping for this tag, as boolean value.
Overrides the default HTML escaping setting for
the current page.

The scope to use when exported the result to a
variable. This attribute is only used when var is
also set. Possible values are page, request,
session and application.

The value to transform. This is the actual object
you want to have transformed (for instance a
Date). Using the PropertyEditor that is currently
in use by the 'spring:bind' tag.

The string to use when binding the result to the
page, request, session or application scope. If not
specified, the result gets outputted to the writer
(i.e. typically directly to the JSP).

Creates URLs with support for URI template variables, HTML/XML escaping, and Javascript
escaping. Modeled after the JSTL c:url tag with backwards compatibility in mind.

Table 12. Attributes

81

Attribute

value

context

var

scope

htmlEscape

Required?

true

false

false

false

false

javaScriptEsca false

pe

82

Runtime
Expression?

true

true

true

true

true

true

Description

The URL to build. This value can include
template {placeholders} that are replaced with
the URL encoded value of the named parameter.
Parameters must be defined using the param tag
inside the body of this tag.

Specifies a remote application context path. The
default is the current application context path.

The name of the variable to export the URL
value to. If not specified the URL is written as
output.

The scope for the var. 'application’, 'session’,
'request’ and 'page' scopes are supported.
Defaults to page scope. This attribute has no
effect unless the var attribute is also defined.

Set HTML escaping for this tag, as a boolean
value. Overrides the default HTML escaping
setting for the current page.

Set JavaScript escaping for this tag, as a boolean
value. Default is false.

Chapter 9. spring-form JSP Tag Library

9.1. Introduction

One of the view technologies you can use with the Spring Framework is Java Server Pages (JSPs). To
help you implement views using Java Server Pages the Spring Framework provides you with some
tags for evaluating errors, setting themes and outputting internationalized messages.

Please note that the various tags generated by this form tag library are compliant with the XHTML-
1.0-Strict specification and attendant DTD.

This appendix describes the spring-form.tld tag library.

* The button tag

* The checkbox tag

* The checkboxes tag
* The errors tag

* The form tag

* The hidden tag

* The input tag

* The label tag

* The option tag

* The options tag

» The password tag

* The radiobutton tag
* The radiobuttons tag
* The select tag

* The textarea tag

9.2. The button tag

Renders a form field label in an HTML 'button’ tag.

Table 13. Attributes

Attribute Required? Runtime Description
Expression?
disabled false true HTML Optional Attribute. Setting the value of
this attribute to 'true’ will disable the HTML
element.
id false true HTML Standard Attribute
name false true The name attribute for the HTML button tag

83

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/dtds.html#a_dtd_XHTML-1.0-Strict

Attribute

value

Required?

false

Runtime
Expression?

true

9.3. The checkbox tag

Renders an HTML 'input' tag with type 'checkbox'.

Table 14. Attributes

Attribute

accesskey
cssClass

cssErrorcClass

cssStyle
dir
disabled

htmlEscape

id

label

lang

onblur
onchange
onclick
ondblclick
onfocus
onkeydown
onkeypress
onkeyup
onmousedown
onmousemove
onmouseout
onmouseover
onmouseup
path

tabindex

84

Required?

false
false

false

false
false

false

false

false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
true

false

Runtime
Expression?

true
true

true

true
true

true

true

true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true

true

Description

The name attribute for the HTML button tag

Description

HTML Standard Attribute
Equivalent to "class" - HTML Optional Attribute

Equivalent to "class" - HTML Optional Attribute.
Used when the bound field has errors.

Equivalent to "style" - HTML Optional Attribute
HTML Standard Attribute

HTML Optional Attribute. Setting the value of
this attribute to 'true’ will disable the HTML
element.

Enable/disable HTML escaping of rendered
values.

HTML Standard Attribute

Value to be displayed as part of the tag
HTML Standard Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

Path to property for data binding
HTML Standard Attribute

Attribute Required? Runtime Description

Expression?
title false true HTML Standard Attribute
value false true HTML Optional Attribute

9.4. The checkboxes tag

Renders multiple HTML 'input' tags with type 'checkbox'.

Table 15. Attributes

Attribute Required? Runtime Description
Expression?

accesskey false true HTML Standard Attribute

cssClass false true Equivalent to "class" - HTML Optional Attribute

cssErrorClass false true Equivalent to "class" - HTML Optional Attribute.
Used when the bound field has errors.

cssStyle false true Equivalent to "style" - HTML Optional Attribute

delimiter false true Delimiter to use between each 'input' tag with
type 'checkbox'. There is no delimiter by default.

dir false true HTML Standard Attribute

disabled false true HTML Optional Attribute. Setting the value of
this attribute to 'true' will disable the HTML
element.

element false true Specifies the HTML element that is used to

enclose each 'input' tag with type 'checkbox'.
Defaults to 'span'.

htmlEscape false true Enable/disable HTML escaping of rendered
values.

id false true HTML Standard Attribute

itemLabel false true Value to be displayed as part of the 'input' tags
with type 'checkbox’

items true true The Collection, Map or array of objects used to
generate the 'input' tags with type 'checkbox’

itemValue false true Name of the property mapped to 'value'
attribute of the 'input' tags with type 'checkbox’

lang false true HTML Standard Attribute

onblur false true HTML Event Attribute

onchange false true HTML Event Attribute

onclick false true HTML Event Attribute

ondblclick false true HTML Event Attribute

onfocus false true HTML Event Attribute

onkeydown false true HTML Event Attribute

85

Attribute

onkeypress
onkeyup
onmousedown
onmousemove
onmouseout
onmouseover
onmouseup
path

tabindex

title

9.5. The errors tag

Required?

false
false
false
false
false
false
false
true
false

false

Runtime
Expression?

true
true
true
true
true
true
true
true
true

true

Renders field errors in an HTML 'span' tag.

Table 16. Attributes

Attribute

cssClass
cssStyle

delimiter

dir

element

htmlEscape

id

lang

onclick
ondblclick
onkeydown
onkeypress
onkeyup
onmousedown
onmousemove

onmouseout

86

Required?

false
false

false

false

false

false

false
false
false
false
false
false
false
false
false

false

Runtime
Expression?

true
true

true

true

true

true

true
true
true
true
true
true
true
true
true

true

Description

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

Path to property for data binding
HTML Standard Attribute

HTML Standard Attribute

Description

Equivalent to "class" - HTML Optional Attribute
Equivalent to "style" - HTML Optional Attribute

Delimiter for displaying multiple error
messages. Defaults to the br tag.

HTML Standard Attribute

Specifies the HTML element that is used to
render the enclosing errors.

Enable/disable HTML escaping of rendered
values.

HTML Standard Attribute
HTML Standard Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute

Attribute

onmouseover
onmouseup
path
tabindex

title

9.6. The form tag

Required?

false
false
false
false

false

Runtime
Expression?

true
true
true
true

true

Description

HTML Event Attribute

HTML Event Attribute

Path to errors object for data binding
HTML Standard Attribute

HTML Standard Attribute

Renders an HTML 'form' tag and exposes a binding path to inner tags for binding.

Table 17. Attributes

Attribute

acceptCharset

action
cssClass
cssStyle

dir

enctype
htmlEscape

id
lang
method

methodParam

modelAttribute

name

onclick
ondblclick
onkeydown

onkeypress

Required?

false

false
false
false
false
false

false

false
false
false

false

false

false

false
false
false

false

Runtime
Expression?

true

true
true
true
true
true

true

true
true
true

true

true

true

true
true
true

true

Description

Specifies the list of character encodings for input

data that is accepted by the server processing
this form. The value is a space- and/or comma-
delimited list of charset values. The client must
interpret this list as an exclusive-or list, i.e., the
server is able to accept any single character
encoding per entity received.

HTML Required Attribute
Equivalent to "class" - HTML Optional Attribute
Equivalent to "style" - HTML Optional Attribute
HTML Standard Attribute
HTML Optional Attribute

Enable/disable HTML escaping of rendered
values.

HTML Standard Attribute
HTML Standard Attribute
HTML Optional Attribute

The parameter name used for HTTP methods
other then GET and POST. Default is '_method'.

Name of the model attribute under which the
form object is exposed. Defaults to 'command'.

HTML Standard Attribute - added for backwards

compatibility cases

HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute

87

Attribute Required? Runtime
Expression?

onkeyup false true
onmousedown false true
onmousemove false true
onmouseout false true
onmouseover false true
onmouseup false true
onreset false true
onsubmit false true
servletRelative false true
Action

target false true

title false true

9.7. The hidden tag

Description

HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute

Action reference to be appended to the current
servlet path

HTML Optional Attribute
HTML Standard Attribute

Renders an HTML 'input' tag with type 'hidden' using the bound value.

Table 18. Attributes

Attribute Required? Runtime
Expression?

htmlEscape false true

id false true

path true true

9.8. The input tag

Description

Enable/disable HTML escaping of rendered
values.

HTML Standard Attribute
Path to property for data binding

Renders an HTML 'input' tag with type 'text' using the bound value.

Table 19. Attributes

Attribute Required? Runtime
Expression?
accesskey false true
alt false true
autocomplete false true
cssClass false true
cssErrorClass false true
cssStyle false true

88

Description

HTML Standard Attribute

HTML Optional Attribute

Common Optional Attribute

Equivalent to "class" - HTML Optional Attribute

Equivalent to "class" - HTML Optional Attribute.
Used when the bound field has errors.

Equivalent to "style" - HTML Optional Attribute

Attribute
dir false
disabled false

htmlEscape false

id false
lang false
maxlength false
onblur false
onchange false
onclick false

ondblclick false

onfocus false
onkeydown false
onkeypress false
onkeyup false

onmousedown false
onmousemove false
onmouseout false

onmouseover false

onmouseup false
onselect false
path true
readonly false
size false
tabindex false
title false

9.9. The label tag

Renders a form field label in an HTML 'label' tag.

Table 20. Attributes

Required?

Runtime
Expression?

true

true

true

true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true

true

true
true

true

Description

HTML Standard Attribute

HTML Optional Attribute. Setting the value of
this attribute to 'true' will disable the HTML
element.

Enable/disable HTML escaping of rendered
values.

HTML Standard Attribute
HTML Standard Attribute
HTML Optional Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
Path to property for data binding

HTML Optional Attribute. Setting the value of
this attribute to 'true' will make the HTML
element readonly.

HTML Optional Attribute
HTML Standard Attribute
HTML Standard Attribute

89

Attribute

cssClass

cssErrorcClass

cssStyle
dir
for

htmlEscape

id

lang

onclick
ondblclick
onkeydown
onkeypress
onkeyup
onmousedown
onmousemove
onmouseout
onmouseover
onmouseup
path

tabindex

title

Required?

false

false

false
false
false

false

false
false
false
false
false
false
false
false
false
false
false
false
true
false

false

Runtime
Expression?

true

true

true
true
true

true

true
true
true
true
true
true
true
true
true
true
true
true
true
true

true

9.10. The option tag

Description

Equivalent to "class" - HTML Optional Attribute.

Equivalent to "class" - HTML Optional Attribute.
Used only when errors are present.

Equivalent to "style" - HTML Optional Attribute
HTML Standard Attribute
HTML Standard Attribute

Enable/disable HTML escaping of rendered
values.

HTML Standard Attribute
HTML Standard Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
Path to errors object for data binding
HTML Standard Attribute
HTML Standard Attribute

Renders a single HTML 'option'. Sets 'selected' as appropriate based on bound value.

Table 21. Attributes

Attribute

cssClass

cssErrorClass

cssStyle
dir

90

Required?

false

false

false

false

Runtime
Expression?

true

true

true

true

Description

Equivalent to "class" - HTML Optional Attribute

Equivalent to "class" - HTML Optional Attribute.
Used when the bound field has errors.

Equivalent to "style" - HTML Optional Attribute
HTML Standard Attribute

Attribute

disabled

htmlEscape

id

label

lang

onclick
ondblclick
onkeydown
onkeypress
onkeyup
onmousedown
onmousemove
onmouseout
onmouseover
onmouseup
tabindex

title

value

Required?

false

false

false
false
false
false
false
false
false
false
false
false
false
false
false
false
false

true

Runtime
Expression?

true

true

true
true
true
true
true
true
true
true
true
true
true
true
true
true
true

true

9.11. The options tag

Description

HTML Optional Attribute. Setting the value of
this attribute to 'true' will disable the HTML
element.

Enable/disable HTML escaping of rendered
values.

HTML Standard Attribute
HTML Optional Attribute
HTML Standard Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Standard Attribute
HTML Standard Attribute
HTML Optional Attribute

Renders a list of HTML 'option' tags. Sets 'selected’ as appropriate based on bound value.

Table 22. Attributes

Attribute

cssClass

cssErrorClass
cssStyle

dir

disabled

htmlEscape

Required?

false

false

false
false

false

false

Runtime
Expression?

true

true

true
true

true

true

Description

Equivalent to "class" - HTML Optional Attribute

Equivalent to "class" - HTML Optional Attribute.

Used when the bound field has errors.
Equivalent to "style" - HTML Optional Attribute
HTML Standard Attribute

HTML Optional Attribute. Setting the value of
this attribute to 'true' will disable the HTML
element.

Enable/disable HTML escaping of rendered
values.

91

Attribute

id

itemLabel

items

itemValue

lang

onclick
ondblclick
onkeydown
onkeypress
onkeyup
onmousedown
onmousemove
onmouseout
onmouseover
onmouseup
tabindex

title

Required?

false

false

true

false

false
false
false
false
false
false
false
false
false
false
false
false

false

Runtime
Expression?

true

true

true

true

true
true
true
true
true
true
true
true
true
true
true
true

true

9.12. The password tag

Description

HTML Standard Attribute

Name of the property mapped to the inner text
of the 'option' tag

The Collection, Map or array of objects used to
generate the inner 'option' tags

Name of the property mapped to 'value'
attribute of the 'option' tag

HTML Standard Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Standard Attribute
HTML Standard Attribute

Renders an HTML 'input' tag with type 'password' using the bound value.

Table 23. Attributes

Attribute

accesskey

alt
autocomplete
cssClass

cssErrorClass

cssStyle
dir

92

Required?

false
false
false
false

false

false

false

Runtime
Expression?

true
true
true
true

true

true

true

Description

HTML Standard Attribute

HTML Optional Attribute

Common Optional Attribute

Equivalent to "class" - HTML Optional Attribute

Equivalent to "class" - HTML Optional Attribute.
Used when the bound field has errors.

Equivalent to "style" - HTML Optional Attribute
HTML Standard Attribute

Attribute Required? Runtime
Expression?
disabled false true
htmlEscape false true
id false true
lang false true
maxlength false true
onblur false true
onchange false true
onclick false true
ondblclick false true
onfocus false true
onkeydown false true
onkeypress false true
onkeyup false true
onmousedown false true
onmousemove false true
onmouseout false true
onmouseover false true
onmouseup false true
onselect false true
path true true
readonly false true
showPassword false true
size false true
tabindex false true
title false true

9.13. The radiobutton tag

Renders an HTML 'input' tag with type 'radio’.

Table 24. Attributes

Description

HTML Optional Attribute. Setting the value of
this attribute to 'true' will disable the HTML
element.

Enable/disable HTML escaping of rendered
values.

HTML Standard Attribute
HTML Standard Attribute
HTML Optional Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
Path to property for data binding

HTML Optional Attribute. Setting the value of
this attribute to 'true’ will make the HTML
element readonly.

Is the password value to be shown? Defaults to
false.

HTML Optional Attribute
HTML Standard Attribute
HTML Standard Attribute

93

Attribute Required? Runtime
Expression?
accesskey false true
cssClass false true
cssErrorClass false true
cssStyle false true
dir false true
disabled false true
htmlEscape false true
id false true
label false true
lang false true
onblur false true
onchange false true
onclick false true
ondblclick false true
onfocus false true
onkeydown false true
onkeypress false true
onkeyup false true
onmousedown false true
onmousemove false true
onmouseout false true
onmouseover false true
onmouseup false true
path true true
tabindex false true
title false true
value false true

9.14. The radiobuttons tag

Description

HTML Standard Attribute
Equivalent to "class" - HTML Optional Attribute

Equivalent to "class" - HTML Optional Attribute.
Used when the bound field has errors.

Equivalent to "style" - HTML Optional Attribute
HTML Standard Attribute

HTML Optional Attribute. Setting the value of
this attribute to 'true' will disable the HTML
element.

Enable/disable HTML escaping of rendered
values.

HTML Standard Attribute

Value to be displayed as part of the tag
HTML Standard Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

HTML Event Attribute

Path to property for data binding
HTML Standard Attribute

HTML Standard Attribute

HTML Optional Attribute

Renders multiple HTML 'input' tags with type 'radio'.

Table 25. Attributes

94

Attribute

accesskey
cssClass

cssErrorClass

cssStyle

delimiter

dir
disabled

element

htmlEscape

id

itemLabel

items

itemValue

lang

onblur
onchange
onclick
ondblclick
onfocus
onkeydown
onkeypress
onkeyup
onmousedown
onmousemove
onmouseout
onmouseover
onmouseup

path

Required?

false
false

false

false

false

false

false

false

false

false

false

true

false

false
false
false
false
false
false
false
false
false
false
false
false
false
false

true

Runtime
Expression?

true
true

true

true

true

true

true

true

true

true

true

true

true

true
true
true
true
true
true
true
true
true
true
true
true
true
true

true

Description

HTML Standard Attribute
Equivalent to "class" - HTML Optional Attribute

Equivalent to "class" - HTML Optional Attribute.
Used when the bound field has errors.

Equivalent to "style" - HTML Optional Attribute

Delimiter to use between each 'input' tag with
type 'radio'. There is no delimiter by default.

HTML Standard Attribute

HTML Optional Attribute. Setting the value of
this attribute to 'true' will disable the HTML
element.

Specifies the HTML element that is used to
enclose each 'input' tag with type 'radio'.
Defaults to 'span'.

Enable/disable HTML escaping of rendered
values.

HTML Standard Attribute

Value to be displayed as part of the 'input' tags
with type 'radio’

The Collection, Map or array of objects used to
generate the 'input' tags with type 'radio’

Name of the property mapped to 'value'
attribute of the 'input' tags with type 'radio’

HTML Standard Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
Path to property for data binding

95

Attribute

tabindex

title

Required?

false

false

Runtime
Expression?

true

true

9.15. The select tag

Description

HTML Standard Attribute
HTML Standard Attribute

Renders an HTML 'select’ element. Supports databinding to the selected option.

Table 26. Attributes

Attribute

accesskey
cssClass

cssErrorcClass

cssStyle
dir
disabled

htmlEscape

id

itemLabel

items

itemValue

lang
multiple
onblur
onchange
onclick
ondblclick
onfocus
onkeydown
onkeypress
onkeyup

onmousedown

96

Required?

false
false

false

false
false

false

false

false

false

false

false

false
false
false
false
false
false
false
false
false
false

false

Runtime
Expression?

true
true

true

true
true

true

true

true

true

true

true

true
true
true
true
true
true
true
true
true
true

true

Description

HTML Standard Attribute
Equivalent to "class" - HTML Optional Attribute

Equivalent to "class" - HTML Optional Attribute.
Used when the bound field has errors.

Equivalent to "style" - HTML Optional Attribute
HTML Standard Attribute

HTML Optional Attribute. Setting the value of
this attribute to 'true' will disable the HTML
element.

Enable/disable HTML escaping of rendered
values.

HTML Standard Attribute

Name of the property mapped to the inner text
of the 'option' tag

The Collection, Map or array of objects used to
generate the inner 'option' tags

Name of the property mapped to 'value'
attribute of the 'option' tag

HTML Standard Attribute
HTML Optional Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute

Attribute Required? Runtime Description

Expression?

onmousemove false true HTML Event Attribute

onmouseout false true HTML Event Attribute

onmouseover false true HTML Event Attribute

onmouseup false true HTML Event Attribute

path true true Path to property for data binding

size false true HTML Optional Attribute

tabindex false true HTML Standard Attribute

title false true HTML Standard Attribute

9.16. The textarea tag

Renders an HTML 'textarea’.

Table 27. Attributes

Attribute Required? Runtime Description

Expression?

accesskey false true HTML Standard Attribute

cols false true HTML Required Attribute

cssClass false true Equivalent to "class" - HTML Optional Attribute

cssErrorClass false true Equivalent to "class" - HTML Optional Attribute.
Used when the bound field has errors.

cssStyle false true Equivalent to "style" - HTML Optional Attribute

dir false true HTML Standard Attribute

disabled false true HTML Optional Attribute. Setting the value of
this attribute to 'true’ will disable the HTML
element.

htmlEscape false true Enable/disable HTML escaping of rendered
values.

id false true HTML Standard Attribute

lang false true HTML Standard Attribute

onblur false true HTML Event Attribute

onchange false true HTML Event Attribute

onclick false true HTML Event Attribute

ondblclick false true HTML Event Attribute

onfocus false true HTML Event Attribute

onkeydown false true HTML Event Attribute

onkeypress false true HTML Event Attribute

onkeyup false true HTML Event Attribute

Attribute

onmousedown
onmousemove
onmouseout
onmouseover
onmouseup
onselect

path

readonly

rows
tabindex

title

98

Required?

false
false
false
false
false
false
true

false

false
false

false

Runtime
Expression?

true
true
true
true
true
true
true

true

true
true

true

Description

HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
HTML Event Attribute
Path to property for data binding

HTML Optional Attribute. Setting the value of
this attribute to 'true’ will make the HTML
element readonly.

HTML Required Attribute
HTML Standard Attribute
HTML Standard Attribute

	Appendices
	Table of Contents
	Chapter 1. What’s New in the Spring Framework
	Chapter 2. Migrating to Spring Framework 4.3 / 5.0
	Chapter 3. Spring Annotation Programming Model
	Chapter 4. Classic Spring Usage
	4.1. Classic ORM usage
	4.2. JMS Usage

	Chapter 5. Classic Spring AOP Usage
	5.1. Pointcut API in Spring
	5.2. Advice API in Spring
	5.3. Advisor API in Spring
	5.4. Using the ProxyFactoryBean to create AOP proxies
	5.5. Concise proxy definitions
	5.6. Creating AOP proxies programmatically with the ProxyFactory
	5.7. Manipulating advised objects
	5.8. Using the "autoproxy" facility
	5.9. Using TargetSources
	5.10. Defining new Advice types
	5.11. Further resources

	Chapter 6. XML Schema-based configuration
	6.1. Introduction
	6.2. XML Schema-based configuration

	Chapter 7. Extensible XML authoring
	7.1. Introduction
	7.2. Authoring the schema
	7.3. Coding a NamespaceHandler
	7.4. BeanDefinitionParser
	7.5. Registering the handler and the schema
	7.6. Using a custom extension in your Spring XML configuration
	7.7. Meatier examples
	7.8. Further Resources

	Chapter 8. spring JSP Tag Library
	8.1. Introduction
	8.2. The argument tag
	8.3. The bind tag
	8.4. The escapeBody tag
	8.5. The eval tag
	8.6. The hasBindErrors tag
	8.7. The htmlEscape tag
	8.8. The message tag
	8.9. The nestedPath tag
	8.10. The param tag
	8.11. The theme tag
	8.12. The transform tag
	8.13. The url tag

	Chapter 9. spring-form JSP Tag Library
	9.1. Introduction
	9.2. The button tag
	9.3. The checkbox tag
	9.4. The checkboxes tag
	9.5. The errors tag
	9.6. The form tag
	9.7. The hidden tag
	9.8. The input tag
	9.9. The label tag
	9.10. The option tag
	9.11. The options tag
	9.12. The password tag
	9.13. The radiobutton tag
	9.14. The radiobuttons tag
	9.15. The select tag
	9.16. The textarea tag

