Kotlin support

Version 5.0.0.RELEASE

Table of Contents

0 N o U1k wWw N

. Introduction

. Requirements

. Extensions

. Null-safety

. Classes & Interfaces
. Annotations

. Bean definition DSL
. Web

8.1. WebFlux Functional DSL
8.2. Kotlin Script templates

. Spring projects in Kotlin

9.1. Final by default

9.2. Using immutable class instances for persistence
9.3. Injecting dependencies

9.4. Injecting configuration properties

9.5. Annotation array attributes

9.6. Testing

10. Getting started

10.1. start.spring.io
10.2. Choosing the web flavor

11. Resources

11.1. Blog posts
11.2. Examples
11.3. Tutorials
11.4. Issues

N o Uk W N e

10
10
10
12
12
12
13
13
14
15
17
17
17
18
18
18
18
18

Chapter 1. Introduction

Kotlin is a statically-typed language targeting the JVM (and other platforms) which allows writing
concise and elegant code while providing a very good interoperability with existing libraries
written in Java.

Spring Framework 5 introduces first-class support for Kotlin and allows developers to write Spring
+ Kotlin applications almost as if the Spring Framework was a native Kotlin framework.

https://kotlinlang.org
https://kotlinlang.org/docs/reference/java-interop.html

Chapter 2. Requirements

Spring Framework supports Kotlin 1.1+ and requires kotlin-stdlib (or one of its kotlin-stdlib-jre7
/ kotlin-stdlib-jre8 variants) and kotlin-reflect to be present on the classpath. They are provided

by default if one bootstraps a Kotlin project on start.spring.io.

https://bintray.com/bintray/jcenter/org.jetbrains.kotlin%3Akotlin-stdlib
https://bintray.com/bintray/jcenter/org.jetbrains.kotlin%3Akotlin-stdlib-jre7
https://bintray.com/bintray/jcenter/org.jetbrains.kotlin%3Akotlin-stdlib-jre8
https://bintray.com/bintray/jcenter/org.jetbrains.kotlin%3Akotlin-reflect
https://start.spring.io/#!language=kotlin

Chapter 3. Extensions

Kotlin extensions provide the ability to extend existing classes with additional functionality. The
Spring Framework Kotlin APIs make use of these extensions to add new Kotlin specific
conveniences to existing Spring APIs.

Spring Framework KDoc API lists and documents all the Kotlin extensions and DSLs available.

Keep in mind that Kotlin extensions need to be imported to be used. This means
for example that the GenericApplicationContext.registerBean Kotlin extension will

O only be available if import org.springframework.context.support.registerBean is
imported. That said, similar to static imports, an IDE should automatically suggest
the import in most cases.

For example, Kotlin reified type parameters provide a workaround for JVM generics type erasure,
and Spring Framework provides some extensions to take advantage of this feature. This allows for
a better Kotlin API RestTemplate, the new WebClient from Spring WebFlux and for various other

APIs.

0 Other libraries like Reactor and Spring Data also provide Kotlin extensions for
their APIs, thus giving a better Kotlin development experience overall.

To retrieve a list of Foo objects in Java, one would normally write:
Flux<User> users = client.get().retrieve().bodyToFlux(User.class)
Whilst with Kotlin and Spring Framework extensions, one is able to write:

val users = client.get().retrieve().bodyToFlux<User>()
// or (both are equivalent)
val users : Flux<User> = client.get().retrieve().bodyToFlux()

As in Java, users in Kotlin is strongly typed, but Kotlin’s clever type inference allows for a shorter
syntax.

https://kotlinlang.org/docs/reference/extensions.html
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/kdoc-api/spring-framework/
https://kotlinlang.org/docs/reference/inline-functions.html#reified-type-parameters
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html

Chapter 4. Null-safety

One of Kotlin’s key features is null-safety which cleanly deals with null values at compile time
rather than bumping into the famous NullPointerException at runtime. This makes applications
safer through nullability declarations and expressing "value or no value" semantics without paying
the cost of wrappers like Optional. (Kotlin allows using functional constructs with nullable values;
check out this comprehensive guide to Kotlin null-safety.)

Although Java does not allow one to express null-safety in its type-system, Spring Framework now
provides null-safety of the whole Spring Framework API via tooling-friendly annotations declared
in the org.springframework.lang package. By default, types from Java APIs used in Kotlin are
recognized as platform types for which null-checks are relaxed. Kotlin support for JSR 305
annotations + Spring nullability annotations provide null-safety for the whole Spring Framework
API to Kotlin developers, with the advantage of dealing with null related issues at compile time.

0 Libraries like Reactor or Spring Data provide null-safe APIs leveraging this feature.

The JSR 305 checks can be configured by adding the -Xjsr305 compiler flag with the following
options: -Xjsr305={strict|warn|ignore}.

For kotlin versions 1.1.50+, the default behavior is the same to -Xjsr305=warn. The strict value
should be considered experimental (Spring API nullability declaration could evolve even between
minor releases and more checks may be added in the future).

Generic type arguments, varargs and array elements nullability are not supported
0 yet, but should be in an upcoming release, see SPR-15942 for up-to-date
information.

https://kotlinlang.org/docs/reference/null-safety.html
http://www.baeldung.com/kotlin-null-safety
core.pdf#null-safety
https://kotlinlang.org/docs/reference/java-interop.html#null-safety-and-platform-types
https://github.com/Kotlin/KEEP/blob/jsr-305/proposals/jsr-305-custom-nullability-qualifiers.md
https://github.com/Kotlin/KEEP/blob/jsr-305/proposals/jsr-305-custom-nullability-qualifiers.md
https://jira.spring.io/browse/SPR-15942

Chapter 5. Classes & Interfaces

Spring Framework supports various Kotlin constructs like instantiating Kotlin classes via primary
constructors, immutable classes data binding and function optional parameters with default values.

Kotlin parameter names are recognized via a dedicated KotlinReflectionParameterNameDiscoverer
which allows finding interface method parameter names without requiring the Java 8 -parameters
compiler flag enabled during compilation.

Jackson Kotlin module which is required for serializing / deserializing JSON data is automatically
registered when found in the classpath and a warning message will be logged if Jackson and Kotlin
are detected without the Jackson Kotlin module present.

0 As of Spring Boot 2.0, Jackson Kotlin module is automatically provided via the
JSON starter.

https://github.com/FasterXML/jackson-module-kotlin

Chapter 6. Annotations

Spring Framework also takes advantage of Kotlin null-safety to determine if a HTTP parameter is
required without having to explicitly define the required attribute. That means @RequestParam name:
String? will be treated as not required and conversely @RequestParam name: String as being
required. This feature is also supported on the Spring Messaging @Header annotation.

In a similar fashion, Spring bean injection with @Autowired or @Inject uses this information to
determine if a bean is required or not. @Autowired lateinit var foo: Foo implies that a bean of type
Foo must be registered in the application context while @Autowired lateinit var foo: Foo? won’t
raise an error if such bean does not exist.

https://kotlinlang.org/docs/reference/null-safety.html

Chapter 7. Bean definition DSL

Spring Framework 5 introduces a new way to register beans in a functional way using lambdas as
an alternative to XML or JavaConfig (eConfiguration and @Bean). In a nutshell, it makes it possible to
register beans with a lambda that acts as a FactoryBean. This mechanism is very efficient as it does
not require any reflection or CGLIB proxies.

In Java, one may for example write:

GenericApplicationContext context = new GenericApplicationContext();

context.registerBean(Foo.class);

context.registerBean(Bar.class, () -> new
Bar(context.getBean(Foo.class))

)

Whilst in Kotlin with reified type parameters and GenericApplicationContext Kotlin extensions one
can instead simply write:

val context = GenericApplicationContext().apply {
registerBean<Foo>()
registerBean { Bar(it.getBean<Foo>()) }

In order to allow a more declarative approach and cleaner syntax, Spring Framework provides a
Kotlin bean definition DSL It declares an ApplicationContextInitializer via a clean declarative API
which enables one to deal with profiles and Environment for customizing how beans are registered.

https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/kdoc-api/spring-framework/org.springframework.context.support/-bean-definition-dsl/

fun beans() = beans {
bean<UserHandler>()
bean<Routes>()
bean<WebHandler>("webHandler") {
RouterFunctions.toWebHandler(
ref<Routes>().router(),
HandlerStrategies.builder().viewResolver(ref()).build()
)
}
bean("messageSource") {
ReloadableResourceBundleMessageSource().apply {
setBasename("messages"”)
setDefaultEncoding("UTF-8")

Iy
}
bean {
val prefix = "classpath:/templates/"
val suffix = ".mustache"
val loader = MustacheResourceTemplateloader(prefix, suffix)
MustacheViewResolver (Mustache.compiler().withLoader(loader)).apply {
setPrefix(prefix)
setSuffix(suffix)
}
}
profile("foo") {
bean<Foo>()
}

}

In this example, bean<Routes>() is using autowiring by constructor and ref<Routes>() is a shortcut
for applicationContext.getBean(Routes::class.java).

This beans() function can then be used to register beans on the application context.

val context = GenericApplicationContext().apply {
beans().invoke(this)
refresh()

}

O This DSL is programmatic, thus it allows custom registration logic of beans via an
if expression, a for loop or any other Kotlin constructs.

See spring-kotlin-functional beans declaration for a concrete example.

https://github.com/sdeleuze/spring-kotlin-functional/blob/master/src/main/kotlin/functional/Beans.kt

Spring Boot is based on Java Config and does not provide specific support for
functional bean definition yet, but one can experimentally use functional bean
definitions via Spring Boot’s ApplicationContextInitializer support, see this Stack
Overflow answer for more details and up-to-date information.

https://github.com/spring-projects/spring-boot/issues/8115
https://github.com/spring-projects/spring-boot/issues/8115
https://stackoverflow.com/questions/45935931/how-to-use-functional-bean-definition-kotlin-dsl-with-spring-boot-and-spring-w/46033685#46033685
https://stackoverflow.com/questions/45935931/how-to-use-functional-bean-definition-kotlin-dsl-with-spring-boot-and-spring-w/46033685#46033685

Chapter 8. Web

8.1. WebFlux Functional DSL

Spring Framework now comes with a Kotlin routing DSL that allows one to leverage the WebFlux
functional API for writing clean and idiomatic Kotlin code:

router {
accept(TEXT_HTML).nest {
GET("/") { ok().render("index") }
GET("/sse") { ok().render("sse") }
GET("/users", userHandler::findAl1lView)
}
"/api".nest {
accept (APPLICATION_JSON).nest {
GET("/users", userHandler::findAll)
}
accept(TEXT_EVENT_STREAM).nest {
GET("/users", userHandler::stream)

}
}
resources("/**", ClassPathResource("static/"))
}

This DSL is programmatic, thus it allows custom registration logic of beans via an

O if expression, a for loop or any other Kotlin constructs. That can be useful when
routes need to be registered depending on dynamic data (for example, from a
database).

See MiXiT project routes for a concrete example.

8.2. Kotlin Script templates

As of version 4.3, Spring Framework provides a ScriptTemplateView to render templates using
script engines that supports JSR-223. Spring Framework 5 goes even further by extending this
feature to WebFlux and supporting i18n and nested templates.

Kotlin provides similar support and allows the rendering of Kotlin based templates, see this commit
for details.

This enables some interesting use cases like writing type-safe templates using kotlinx.html DSL or
simply using Kotlin multiline String with interpolation.

This can allow one to write Kotlin templates with full autocompletion and refactoring support in a
supported IDE:

10

https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/kdoc-api/spring-framework/org.springframework.web.reactive.function.server/-router-function-dsl/
web-reactive.pdf#webflux-fn
web-reactive.pdf#webflux-fn
https://github.com/mixitconf/mixit/tree/bad6b92bce6193f9b3f696af9d416c276501dbf1/src/main/kotlin/mixit/web/routes
http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/view/script/ScriptTemplateView.html
https://www.jcp.org/en/jsr/detail?id=223
https://jira.spring.io/browse/SPR-15064
https://github.com/spring-projects/spring-framework/commit/badde3a479a53e1dd0777dd1bd5b55cb1021cf9e
https://github.com/Kotlin/kotlinx.html

import io.spring.demo.*

${include("header")}
<h1>${i18n("title")}</h1>

${users.joinToLine{ "<1i>${i18n("user")} ${it.firstname} ${it.lastname}</1i>" }}

${include("footer")}

See kotlin-script-templating example project for more details.

11

https://github.com/sdeleuze/kotlin-script-templating

Chapter 9. Spring projects in Kotlin

This section provides a focus on some specific hints and recommendations worth knowing when
developing Spring projects in Kotlin.

9.1. Final by default

By default, all classes in Kotlin are final. The open modifier on a class is the opposite of Java’s final:
it allows others to inherit from this class. This also applies to member functions, in that they need to
be marked as open to be overridden.

Whilst Kotlin’s JVM-friendly design is generally frictionless with Spring, this specific Kotlin feature
can prevent the application from starting, if this fact is not taken in consideration. This is because
Spring beans are normally proxified with CGLIB - such as @Configuration classes - which need to be
inherited at runtime for technical reasons. The workaround was to add an open keyword on each
class and member functions of Spring beans proxified with CGLIB such as @Configuration classes,
which can quickly become painful and is against Kotlin principle to keep code concise and
predictable.

Fortunately, Kotlin now provides a kotlin-spring plugin, a preconfigured version of kotlin-allopen
plugin that automatically opens classes and their member functions for types annotated or meta-
annotated with one of the following annotations:

« @Component

o @Async

o @Transactional
« @Cacheable

Meta-annotations support means that types annotated with @Configuration, @Controller,
@RestController, @Service or @Repository are automatically opened since these annotations are
meta-annotated with @Component.

start.spring.io enables it by default, so in practice you will be able to write your Kotlin beans
without any additional open keyword, like in Java.

9.2. Using immutable class instances for persistence

In Kotlin, it is very convenient and a best practice to declare read-only properties within the
primary constructor, as in the following example:

class Person(val name: String, val age: Int)

But some persistence technologies like JPA require a default constructor, preventing this kind of
design. Fortunately, there is now a workaround for this "default constructor hell” since Kotlin
provides a kotlin-jpa plugin which generates synthetic no-arg constructor for classes annotated
with JPA annotations.

12

https://discuss.kotlinlang.org/t/classes-final-by-default/166
https://discuss.kotlinlang.org/t/classes-final-by-default/166
https://kotlinlang.org/docs/reference/compiler-plugins.html#kotlin-spring-compiler-plugin
http://start.spring.io/#!language=kotlin
https://stackoverflow.com/questions/32038177/kotlin-with-jpa-default-constructor-hell
https://kotlinlang.org/docs/reference/compiler-plugins.html#kotlin-jpa-compiler-plugin

If you need to leverage this kind of mechanism for other persistence technologies, you can
configure kotlin-noarg plugin.

As of Kay release train, Spring Data supports Kotlin immutable class instances and
should not require kotlin-noarg plugin if the module leverages Spring Data object
mapping (like with MongoDB, Redis, Cassandra, etc.).

9.3. Injecting dependencies

Our recommendation is to try and favor constructor injection with val read-only (and non-nullable
when possible) properties.

@Component

class YourBean(
private val mongoTemplate: MongoTemplate,
private val solrClient: SolrClient

As of Spring Framework 4.3, classes with a single constructor have its parameters
automatically autowired, that’s why there is no need for @Autowired constructor in
the example shown above.

If one really needs to use field injection, use the lateinit var construct, i.e.,

@Component
class YourBean {

@Autowired
lateinit var mongoTemplate: MongoTemplate

@Autowired
lateinit var solrClient: SolrClient

9.4. Injecting configuration properties

In Java, one can inject configuration properties using annotations like @Value("${property}"),
however in Kotlin § is a reserved character that is used for string interpolation.

Therefore, if one wishes to use the @Value annotation in Kotlin, the $ character will need to be
escaped by writing @Value("\${property}").

As an alternative, it is possible to customize the properties placeholder prefix by declaring the
following configuration beans:

13

https://kotlinlang.org/docs/reference/compiler-plugins.html#how-to-use-no-arg-plugin
https://kotlinlang.org/docs/reference/properties.html
https://kotlinlang.org/docs/reference/idioms.html#string-interpolation

@Bean
fun propertyConfigurer() = PropertySourcesPlaceholderConfigurer().apply {
setPlaceholderPrefix("%{")

}

Existing code (like Spring Boot actuators or @LocalServerPort) that uses the ${:*} syntax, can be
customised with configuration beans, like this:

@Bean

fun kotlinPropertyConfigurer() = PropertySourcesPlaceholderConfigurer().apply {
setPlaceholderPrefix("%{")
setIgnoreUnresolvablePlaceholders(true)

}

@Bean
fun defaultPropertyConfigurer() = PropertySourcesPlaceholderConfigurer()

If Spring Boot is being used, then @ConfigurationProperties instead of @Value
annotations can be used, but currently this only works with nullable var

0 properties (which is far from ideal) since immutable classes initialized by
constructors are not yet supported. See these issues about
@ConfigurationProperties binding for immutable POJOs and

@ConfigurationProperties binding on interfaces for more details.

9.5. Annotation array attributes

Kotlin annotations are mostly similar to Java ones, but array attributes - which are extensively used
in Spring - behave differently. As explained in Kotlin documentation unlike other attributes, the
value attribute name can be omitted and when it is an array attribute it is specified as a vararg
parameter

To understand what that means, let’s take @RequestMapping, which is one of the most widely used
Spring annotations as an example. This Java annotation is declared as:

14

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-typesafe-configuration-properties
https://github.com/spring-projects/spring-boot/issues/8762
https://github.com/spring-projects/spring-boot/issues/8762
https://github.com/spring-projects/spring-boot/issues/1254
https://github.com/spring-projects/spring-boot/issues/1254
https://kotlinlang.org/docs/reference/annotations.html

public @interface RequestMapping {

@AliasFor("path")
String[] value() default {};

@AliasFor("value")
String[] path() default {};

RequestMethod[] method() default {};

/] ...

The typical use case for @RequestMapping is to map a handler method to a specific path and method.
In Java, it is possible to specify a single value for the annotation array attribute and it will be
automatically converted to an array.

That’s why one can write @RequestMapping(value = "/foo", method = RequestMethod.GET) or
@RequestMapping(path = "/foo", method = RequestMethod.GET).

However, in Kotlin, one will have to write @RequestMapping("/foo", method =
array0f(RequestMethod.GET)). The variant using path is not recommended as it need to be written
@RequestMapping(path = array0f("/foo"), method = arrayOf(RequestMethod.GET)).

A workaround for this specific method attribute (the most common one) is to use a shortcut
annotation such as @GetMapping or @PostMapping, etc.

9 Remininder: if the @RequestMapping method attribute is not specified, all HTTP
methods will be matched, not only the GET methods.

Improving the syntax and consistency of Kotlin annotation array attributes is discussed in this
Kotlin language design issue.

9.6. Testing

Kotlin allows one to specify meaningful test function names between backticks, and as of JUnit 5
Kotlin test classes can use the @TestInstance(TestInstance.Lifecycle.PER_CLASS) annotation to
enable a single instantiation of test classes which allows the use of @BeforeAll and @AfterAll
annotations on non-static methods, which is a good fit for Kotlin.

It is now possible to change the default behavior to PER_CLASS thanks to a junit-platform.properties
file with a junit.jupiter.testinstance.lifecycle.default = per_class property.

15

https://youtrack.jetbrains.com/issue/KT-11235
https://youtrack.jetbrains.com/issue/KT-11235

16

class IntegrationTests {

val application = Application(8181)
val client = WebClient.create("http://localhost:8181")

@BeforeAll
fun beforeAll() {
application.start()

}

@Test
fun ‘Find all users on HTML page‘() {
client.get().uri("/users")
.accept(TEXT_HTML)
.retrieve()
.bodyToMono<String>()
.test()
.expectNextMatches { it.contains("Foo") }
.verifyComplete()
}

EAfterAll
fun afterAll() {
application.stop()
}
¥

Chapter 10. Getting started

10.1. start.spring.io

The easiest way to start a new Spring Framework 5 project in Kotlin is to create a new Spring Boot 2
project on start.spring.io.

It is also possible to create a standalone WebFlux project as described in this blog post.

10.2. Choosing the web flavor
Spring Framework now comes with 2 different web stacks: Spring MVC and Spring WebFlux.

Spring WebFlux is recommended if one wants to create applications that will deal with latency,
long-lived connections, streaming scenarios or simply if one wants to use the web functional Kotlin
DSL.

For other use cases, especially if you are using blocking technologies like JPA, Spring MVC and its
annotation-based programming model is a perfectly valid and fully supported choice.

17

https://start.spring.io/#!language=kotlin
https://spring.io/blog/2017/08/01/spring-framework-5-kotlin-apis-the-functional-way
web.pdf#mvc
web-reactive.pdf#spring-web-reactive

Chapter 11. Resources

Kotlin language reference

Kotlin Slack (with a dedicated #spring channel)
* Try Kotlin in your browser
* Kotlin blog

* Awesome Kotlin

11.1. Blog posts

* Developing Spring Boot applications with Kotlin
* A Geospatial Messenger with Kotlin, Spring Boot and PostgreSQL
* Introducing Kotlin support in Spring Framework 5.0

» Spring Framework 5 Kotlin APIs, the functional way

11.2. Examples

* spring-boot-kotlin-demo: regular Spring Boot + Spring Data JPA project
* mixit: Spring Boot 2 + WebFlux + Reactive Spring Data MongoDB
* spring-kotlin-functional: standalone WebFlux + functional bean definition DSL

* spring-petclinic-kotlin: Kotlin version of the Spring PetClinic Sample Application

11.3. Tutorials

* Creating a RESTful Web Service with Spring Boot

11.4. Issues

Here is a list of pending issues related to Spring + Kotlin support.

11.4.1. Spring Framework

* Add support for Kotlin coroutines

11.4.2. Spring Boot

* Improve Kotlin support

Allow @ConfigurationProperties binding for immutable POJOs
» Allow @ConfigurationProperties binding on interfaces

» Provide support for Kotlin KClass parameter in SpringApplication.run()

Expose the functional bean registration API via SpringApplication

18

http://kotlinlang.org/docs/reference/
http://slack.kotlinlang.org/
https://try.kotlinlang.org/
https://blog.jetbrains.com/kotlin/
https://kotlin.link/
https://spring.io/blog/2016/02/15/developing-spring-boot-applications-with-kotlin
https://spring.io/blog/2016/03/20/a-geospatial-messenger-with-kotlin-spring-boot-and-postgresql
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/08/01/spring-framework-5-kotlin-apis-the-functional-way
https://github.com/sdeleuze/spring-boot-kotlin-demo
https://github.com/mixitconf/mixit
https://github.com/sdeleuze/spring-kotlin-functional
https://github.com/spring-petclinic/spring-petclinic-kotlin
https://kotlinlang.org/docs/tutorials/spring-boot-restful.html
https://jira.spring.io/browse/SPR-15413
https://github.com/spring-projects/spring-boot/issues/5537
https://github.com/spring-projects/spring-boot/issues/8762
https://github.com/spring-projects/spring-boot/issues/8762
https://github.com/spring-projects/spring-boot/issues/8762
https://github.com/spring-projects/spring-boot/issues/1254
https://github.com/spring-projects/spring-boot/issues/1254
https://github.com/spring-projects/spring-boot/issues/1254
https://github.com/spring-projects/spring-boot/issues/8511
https://github.com/spring-projects/spring-boot/issues/8511
https://github.com/spring-projects/spring-boot/issues/8115
https://github.com/spring-projects/spring-boot/issues/8115

11.4.3. Kotlin

* Parent issue for Spring Framework support

» Support "::foo" as a short-hand syntax for bound callable reference to "this::foo"
» Allow specifying array annotation attribute single value without arrayOf()

» Kotlin requires type inference where Java doesn’t

* Impossible to pass not all SAM argument as function

* Apply JSR 305 meta-annotations to generic type parameters

* Provide a way for libraries to avoid mixing Kotlin 1.0 and 1.1 dependencies

» Support JSR 223 bindings directly via script variables

19

https://youtrack.jetbrains.com/issue/KT-6380
https://youtrack.jetbrains.com/issue/KT-15667
https://youtrack.jetbrains.com/issue/KT-11235
https://youtrack.jetbrains.com/issue/KT-5464
https://youtrack.jetbrains.com/issue/KT-14984
https://youtrack.jetbrains.com/issue/KT-19592
https://youtrack.jetbrains.com/issue/KT-18398
https://youtrack.jetbrains.com/issue/KT-15125

	Kotlin support
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Requirements
	Chapter 3. Extensions
	Chapter 4. Null-safety
	Chapter 5. Classes & Interfaces
	Chapter 6. Annotations
	Chapter 7. Bean definition DSL
	Chapter 8. Web
	8.1. WebFlux Functional DSL
	8.2. Kotlin Script templates

	Chapter 9. Spring projects in Kotlin
	9.1. Final by default
	9.2. Using immutable class instances for persistence
	9.3. Injecting dependencies
	9.4. Injecting configuration properties
	9.5. Annotation array attributes
	9.6. Testing

	Chapter 10. Getting started
	10.1. start.spring.io
	10.2. Choosing the web flavor

	Chapter 11. Resources
	11.1. Blog posts
	11.2. Examples
	11.3. Tutorials
	11.4. Issues

