Web on Servlet Stack

Version 5.0.0.RELEASE

Table of Contents

1. Spring Web MVC 2
1.1. Introduction 2
1.2. The DispatcherServlet 2
1.3. Annotated Controllers 10
1.4. Handler mappings 44
1.5. Resolving views 47
1.6. Using flash attributes 54
1.7. Building URIs 55
1.8. Using locales 59
1.9. Using themes 61
1.10. Multipart (file upload) support 62
1.11. Handling exceptions 66
1.12. Web Security 70
1.13. Convention over configuration support 70
1.14. HTTP caching support 75
1.15. Code-based Servlet container initialization 79
1.16. MVC Java config, XML namespace 82

2. View Technologies 97
2.1. Introduction 97
2.2. Thymeleaf 97
2.3. Groovy Markup Templates 97
2.4. FreeMarker 98
2.5.JSP & JSTL 106
2.6. Script templates 121
2.7. XML Marshalling View 124
2.8. Tiles 124
2.9. XSLT 127
2.10. Document views (PDF/Excel) 130
2.11. Feed Views 134
2.12. JSON Mapping View 135
2.13. XML Mapping View 135

3. CORS Support 137
3.1. Introduction 137
3.2. Controller method CORS configuration 137
3.3. Global CORS configuration 138
3.4. Advanced Customization 140
3.5. Filter based CORS support 140

4. Servlet-based WebSocket Support 142

4.1. Introduction

4.2. WebSocket API

4.3. Sock]JS Fallback Options

4.4. STOMP Over WebSocket Messaging Architecture

142
144
153
159

This part of the documentation covers support for Servlet stack, web
applications built on the Servlet API and deployed to Servlet containers.
Individual chapters include Spring MVC, View Technologies, CORS Support, and
WebSocket Support. For reactive stack, web applications, go to Web on Reactive
Stack.

web-reactive.pdf#spring-web-reactive
web-reactive.pdf#spring-web-reactive

Chapter 1. Spring Web MVC

1.1. Introduction

Spring Web MVC is the original web framework built on the Servlet API and included in the Spring
Framework from the very beginning. The formal name "Spring Web MVC" comes from the name of
its source module spring-webmvc but it is more commonly known as "Spring MVC".

Parallel to Spring Web MVC, Spring Framework 5.0 introduced a reactive stack, web framework
whose name Spring WebFlux is also based on its source module spring-webflux. This section covers
Spring Web MVC. The next section covers Spring WebFlux.

1.2. The DispatcherServlet

Same in Spring WebFlux

Spring MVC, like many other web frameworks, is designed around the front controller pattern
where a central Servlet, the DispatcherServlet, provides a shared algorithm for request processing
while actual work is performed by configurable, delegate components. This model is flexible and
supports diverse workflows.

The DispatcherServlet, as any Servlet, needs to be declared and mapped according to the Servlet
specification using Java configuration or in web.xml. In turn the DispatcherServlet uses Spring
configuration to discover the delegate components it needs for request mapping, view resolution,
exception handling, and more.

Below is an example of the Java configuration that registers and initializes the DispatcherServlet.
This class is auto-detected by the Servlet container (see Code-based, Servlet container initialization):

https://github.com/spring-projects/spring-framework/tree/master/spring-webmvc
https://github.com/spring-projects/spring-framework/tree/master/spring-webflux
web-reactive.pdf#spring-web-reactive
web-reactive.pdf#webflux-dispatcher-handler

public class MyWebApplicationInitializer implements WebApplicationInitializer {

@Override
public void onStartup(ServletContext servletCxt) {

// Load Spring web application configuration

AnnotationConfigWebApplicationContext cxt = new
AnnotationConfigWebApplicationContext();

cxt.register(AppConfig.class);

cxt.refresh();

// Create DispatcherServlet
DispatcherServlet servlet = new DispatcherServlet(cxt);

// Register and map the Servlet

ServletRegistration.Dynamic registration = servletCxt.addServlet("app", servlet);
registration.setlLoadOnStartup(1);

registration.addMapping("/app/*");

In addition to using the ServletContext API directly, you can also extend
AbstractAnnotationConfigDispatcherServletInitializer and override specific
methods (see example under WebApplicationContext Hierarchy).

Below is an example of web.xml configuration to register and initialize the DispatcherServlet:

<web-app>

<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-
class>
</listener>

<context-param>
<param-name>contextConfiglLocation</param-name>
<param-value>/WEB-INF/app-context.xml</param-value>
</context-param>

<servlet>
<servlet-name>app</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<init-param>
<param-name>contextConfiglocation</param-name>
<param-value></param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>app</servlet-name>
<url-pattern>/app/*</url-pattern>

</servlet-mapping>

</web-app>

Spring Boot follows a different initialization sequence. Rather than hooking into
the lifecycle of the Servlet container, Spring Boot uses Spring configuration to

0 bootstrap itself and the embedded Servlet container. Filter and Servlet
declarations are detected in Spring configuration and registered with the Servlet
container. For more details check the Spring Boot docs.

1.2.1. WebApplicationContext Hierarchy

DispatcherServlet expects a WebApplicationContext, an extension of a plain ApplicationContext, for
its own configuration. WebApplicationContext has a link to the ServletContext and Servlet it is
associated with. It is also bound to the ServletContext such that applications can use static methods
on RequestContextUtils to look up the WebApplicationContext if they need access to it.

For many applications having a single WebApplicationContext is simple and sufficient. It is also
possible to have a context hierarchy where one root WebApplicationContext is shared across
multiple DispatcherServlet (or other Servlet) instances, each with its own child
WebApplicationContext configuration. See Additional Capabilities of the ApplicationContext for more
on the context hierarchy feature.

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-embedded-container
core.pdf#context-introduction

The root WebApplicationContext typically contains infrastructure beans such as data repositories
and business services that need to be shared across multiple Servlet instances. Those beans are
effectively inherited and could be overridden (i.e. re-declared) in the Servlet-specific, child
WebApplicationContext which typically contains beans local to the given Servlet:

DispatcherServlet

Servlet WebApplicationContext

(containing controllers, view resolvers,
and other web-related beans)

Controllers HandlerMapping

ViewResolver

Delegates if no bean found

Root WebApplicationContext

(containing middle-tier services, datasources, etc.)

Services Repositories

Below is example configuration with a WebApplicationContext hierarchy:

public class MyWebAppInitializer extends
AbstractAnnotationConfigDispatcherServlietInitializer {

@0verride
protected Class<?>[] getRootConfigClasses() {
return new Class[] { RootConfig.class };

}

@0verride

protected Class<?>[] getServletConfigClasses() {
return new Class[] { App1Config.class };

}

@0verride
protected String[] getServletMappings() {
return new String[] { "/app1/*" };
}
+

And the web.xml equivalent:

<web-app>

<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-
class>
</listener>

<context-param>
<param-name>contextConfiglLocation</param-name>
<param-value>/WEB-INF/root-context.xml</param-value>
</context-param>

<servlet>
<servlet-name>appi</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<init-param>
<param-name>contextConfiglocation</param-name>
<param-value>/WEB-INF/app1-context.xml</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>appi</servlet-name>
<url-pattern>/app1/*</url-pattern>

</servlet-mapping>

</web-app>

1.2.2. Special Bean Types In the WebApplicationContext

Same in Spring WebFlux

The DispatcherServlet delegates to special beans to process requests and render the appropriate
responses. By "special beans" we mean Spring-managed Object instances that implement one of the
framework contracts listed in the table below. Spring MVC provides built-in implementations of
these contracts but you can also customize, extend, or replace them.

Table 1. Special bean types in the WebApplicationContext
Bean type Explanation

HandlerMapping Map a request to a handler along with a list of
HandlerInterceptor's for pre- and post-
processing. The mapping is based on some
criteria the details of which vary by

‘HandlerMapping implementation. The most
popular implementation supports annotated
controllers but other implementations exists as
well.

web-reactive.pdf#webflux-special-bean-types

Bean type Explanation

HandlerAdapter Helps the DispatcherServlet to invoke a handler
mapped to a request regardless of how the
handler is actually invoked. For example,
invoking an annotated controller requires
resolving various annotations. The main
purpose of a HandlerAdapter is to shield the
DispatcherServlet from such details.

HandlerExceptionResolver Strategy to resolve exceptions possibly mapping
them to handlers, or to HTML error views, or
other.

ViewResolver Resolves logical String-based view names

returned from a handler to an actual View to
render to the response with.

LocaleResolver & LocaleContextResolver Resolves the Locale a client is using and possibly
their time zone, in order to be able to offer
internationalized views

ThemeResolver Resolves themes your web application can use,
for example, to offer personalized layouts

MultipartResolver Abstraction for parsing a multi-part request (e.g.
browser form file upload) with the help of some
multipart parsing library.

FlashMapManager Stores and retrieves the "input" and the "output”
FlashMap that can be used to pass attributes from
one request to another, usually across a redirect.

1.2.3. DispatcherServlet Configuration

For each type of special bean, the DispatcherServlet checks for the WebApplicationContext first. If
there are no matching bean types, it falls back on the default types listed in
DispatcherServlet.properties.

Applications can declare the special beans they wish to have. Most applications however will find a
better starting point in the MVC Java config or the MVC XML namespace which provide a higher
level configuration API that in turn make the necessary bean declarations. See MVC Java config,
XML namespace for more details.

0 Spring Boot relies on the MVC Java config to configure Spring MVC and also
provides many extra convenient options on top.

1.2.4. DispatcherServlet Processing Sequence
Same in Spring WebFlux
The DispatcherServlet processes requests as follows:

* The WebApplicationContext is searched for and bound in the request as an attribute that the
controller and other elements in the process can use. It is bound by default under the key

https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/resources/org/springframework/web/servlet/DispatcherServlet.properties
web-reactive.pdf#webflux-dispatcher-handler-sequence

DispatcherServiet.WEB_APPLICATION_CONTEXT_ATTRIBUTE.

* The locale resolver is bound to the request to enable elements in the process to resolve the
locale to use when processing the request (rendering the view, preparing data, and so on). If you
do not need locale resolving, you do not need it.

* The theme resolver is bound to the request to let elements such as views determine which
theme to use. If you do not use themes, you can ignore it.

* If you specify a multipart file resolver, the request is inspected for multiparts; if multiparts are
found, the request is wrapped in a MultipartHttpServletRequest for further processing by other
elements in the process. See Multipart (file upload) support for further information about
multipart handling.

* An appropriate handler is searched for. If a handler is found, the execution chain associated
with the handler (preprocessors, postprocessors, and controllers) is executed in order to
prepare a model or rendering. Or alternatively for annotated controllers, the response may be
rendered (within the HandlerAdapter) instead of returning a view.

* If a model is returned, the view is rendered. If no model is returned, (may be due to a
preprocessor or postprocessor intercepting the request, perhaps for security reasons), no view
is rendered, because the request could already have been fulfilled.

The HandlerExceptionResolver beans declared in the WebApplicationContext are used to resolve
exceptions thrown during request processing. Those exception resolvers allow customizing the
logic to address exceptions. See Handling exceptions for more details.

The Spring DispatcherServlet also supports the return of the last-modification-date, as specified by
the Servlet API. The process of determining the last modification date for a specific request is
straightforward: the DispatcherServlet looks up an appropriate handler mapping and tests whether
the handler that is found implements the LastModified interface. If so, the value of the long
getlLastModified(request) method of the LastModified interface is returned to the client.

You can customize individual DispatcherServlet instances by adding Servlet initialization
parameters (init-param elements) to the Servlet declaration in the web.xml file. See the following
table for the list of supported parameters.

Table 2. DispatcherServlet initialization parameters

Parameter Explanation

contextClass Class that implements WebApplicationContext,
which instantiates the context used by this
Servlet. By default, the XmlWebApplicationContext
is used.

contextConfiglocation String that is passed to the context instance
(specified by contextClass) to indicate where
context(s) can be found. The string consists
potentially of multiple strings (using a comma as
a delimiter) to support multiple contexts. In case
of multiple context locations with beans that are
defined twice, the latest location takes
precedence.

Parameter Explanation

namespace Namespace of the WebApplicationContext.
Defaults to [servlet-name]-servlet.

1.3. Annotated Controllers

Same in Spring WebFlux

Spring MVC provides an annotation-based programming model where @Controller and
@RestController components use annotations to express request mappings, request input, exception
handling, and more. Annotated controllers have flexible method signatures and do not have to
extend base classes nor implement specific interfaces.

public class HelloController {

("/hello")
public String handle(Model model) {
model.addAttribute("message”, "Hello World!");
return "index";

In this particular example the method accepts a Model and returns a view name as a String but
many other options exist and are explained further below in this chapter.

Q Guides and tutorials on spring.io use the annotation-based programming model
described in this section.

1.3.1. Defining a controller with @Controller

Same in Spring WebFlux

You can define controller beans using a standard Spring bean definition in the Servlet’s
WebApplicationContext. The @Controller stereotype allows for auto-detection, aligned with Spring
general support for detecting @Component classes in the classpath and auto-registering bean
definitions for them. It also acts as a stereotype for the annotated class, indicating its role as a web
component.

To enable auto-detection of such @Controller beans, you can add component scanning to your Java
configuration:

10

web-reactive.pdf#webflux-controller
https://spring.io/guides
web-reactive.pdf#webflux-ann-controller

@Configuration
@ComponentScan("org.example.web")
public class WebConfig {

/] ...

The XML configuration equivalent:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<context:component-scan base-package="org.example.web"/>
Q== oo o=

</beans>

@RestController is a composed annotation that is itself annotated with @Controller

0 and EResponseBody indicating a controller whose every method inherits the type-
level @ResponseBody annotation and therefore writes to the response body (vs
model-and-vew rendering).

1.3.2. Mapping Requests With @RequestMapping
Same in Spring WebFlux

The @RequestMapping annotation is used to map requests to controllers methods. It has various
attributes to match by URL, HTTP method, request parameters, headers, and media types. It can be
used at the class-level to express shared mappings or at the method level to narrow down to a
specific endpoint mapping.

There are also HTTP method specific shortcut variants of @RequestMapping:

« @GetMapping

« @PostMapping

o @PutMapping

o @DeleteMapping
« @PatchMapping

11

web-reactive.pdf#webflux-ann-requestmapping

The shortcut variants are composed annotations —themselves annotated with @ERequestMapping.
They are commonly used at the method level. At the class level an @RequestMapping is more useful
for expressing shared mappings.

@RestController
@RequestMapping("/persons")
class PersonController {

@GetMapping("/{id}")
public Person getPerson(@PathVariable Long id) {
/] ...

}

@PostMapping

@ResponseStatus(HttpStatus.CREATED)

public void add(@RequestBody Person person) {
/] ...

}

@Controller and AOP Proxying

In some cases a controller may need to be decorated with an AOP proxy at runtime. One example is
if you choose to have @Transactional annotations directly on the controller. When this is the case,
for controllers specifically, we recommend using class-based proxying. This is typically the default
choice with controllers. However if a controller must implement an interface that is not a Spring
Context callback (e.g. InitializingBean, *Aware, etc), you may need to explicitly configure class-based
proxying. For example with <tx:annotation-driven/>, change to <tx:annotation-driven proxy-
target-class="true"/>.

URI Path Patterns

Same in Spring WebFlux
You can map requests using glob patterns and wildcards:

* ? matches one character
* * matches zero or more characters within a path segment

* ** match zero or more path segments

You can also declare URI variables and access their values with @PathVariable:
@GetMapping("/owners/{ownerId}/pets/{petId}")
public Pet findPet(@PathVariable Long ownerId, @PathVariable Long petId) {

/] ...
}

12

https://github.com/spring-projects/spring-framework/wiki/Spring-Annotation-Programming-Model#composed-annotations
web-reactive.pdf#webflux-ann-requestmapping-uri-templates

URI variables can be declared at the class and method level:

@Controller
@RequestMapping("/owners/{ownerId}")
public class OwnerController {

@GetMapping("/pets/{petId}")

public Pet findPet(@PathVariable Long ownerId, @PathVariable Long petId) {
/] ...

Iy

URI variables are automatically converted to the appropriate type or TypeMismatchException " is
raised. Simple types — int, long, Date, are supported by default and you can register support for any
other data type. See Method Parameters And Type Conversion and Customizing WebDataBinder
initialization.

URI variables can be named explicitly—e.g. @PathVariable("customId"), but you can leave that
detail out if the names are the same and your code is compiled with debugging information or with
the -parameters compiler flag on Java 8.

The syntax {varName:regex} declares a URI variable with a regular expressions with the syntax
{varName:regex} —e.g. given URL "/spring-web-3.0.5 .jar", the below method extracts the name,
version, and file extension:

@GetMapping("/{name:[a-z-]+}-{version:\\d\\.\\d\\.\\d}{ext:\\.[a-z]+}")

public void handle(@PathVariable String version, @PathVariable String ext) {
/] ...

+

URI path patterns can also have embedded ${::-} placeholders that are resolved on startup via
PropertyPlaceHolderConfigurer against local, system, environment, and other property sources. This
can be used for example to parameterize a base URL based on some external configuration.

ﬂ Spring MVC uses the PathMatcher contract and the AntPathMatcher implementation
from spring-core for URI path matching.

Path Pattern Comparison

Same in Spring WebFlux

When multiple patterns match a URL, they must be compared to find the best match. This done via
AntPathMatcher.getPatternComparator(String path) which looks for patterns that more specific.

A pattern is less specific if it has a lower count of URI variables and single wildcards counted as 1
and double wildcards counted as 2. Given an equal score, the longer pattern is chosen. Given the
same score and length, the pattern with more URI variables than wildcards is chosen.

13

web-reactive.pdf#webflux-ann-requestmapping-pattern-comparison

The default mapping pattern /** is excluded from scoring and always sorted last. Also prefix
patterns such as /public/** are considered less specific than other pattern that don’t have double
wildcards.

For the full details see AntPatternComparator in AntPathMatcher and also keep mind that the
PathMatcher implementation used can be customized. See Path Matching in the configuration
section.

Suffix Pattern Matching

By default Spring MVC performs ".*" suffix pattern matching so that a controller mapped to /person
is also implicitly mapped to /person.*. This is used for URL based content negotiation, e.g.
/person.pdf, /person.xml, etc.

Suffix pattern matching was quite helpful when browsers used to send Accept headers that are
hard to interpet consistently. In the present, and for REST services, the Accept header should be the
preferred choice.

Suffix patterns can cause ambiguity and complexity in combination with path parameters, encoded
characters, and URI variables. It also makes it harder to reason about URL-based authorization
rules and security (see Suffix Pattern Matching and RFD).

Suffix pattern matching can be turned off completely or restricted to a set of explicitly registered
path extensions. We strongly recommend using of one those options. See Path Matching and
Requested Content Types. If you need URL based content negotiation consider using query
parameters instead.

Suffix Pattern Matching and RFD

Reflected file download (RFD) attack is similar to XSS in that it relies on request input, e.g. query
parameter, URI variable, being reflected in the response. However instead of inserting JavaScript
into HTML, an RFD attack relies on the browser switching to perform a download and treating the
response as an executable script when double-clicked later.

In Spring MVC @ResponseBody and ResponseEntity methods are at risk because they can render
different content types which clients can request via URL path extensions. Disabling suffix pattern
matching and the use of path extensions for content negotiation lower the risk but are not
sufficient to prevent RFD attacks.

To prevent RFD attacks, prior to rendering the response body Spring MVC adds a Content-
Disposition:inline;filename=f.txt header to suggest a fixed and safe download file. This is done
only if the URL path contains a file extension that is neither whitelisted nor explicitly registered for
content negotiation purposes. However it may potentially have side effects when URLs are typed
directly into a browser.

Many common path extensions are whitelisted by default. Applications with custom
HttpMessageConverter implementations can explicitly register file extensions for content negotiation
to avoid having a Content-Disposition header added for those extensions. See Requested Content

Types.

14

Check CVE-2015-5211 for additional recommendations related to RFD.

Matrix Variables

The URI specification RFC 3986 defines the possibility of including name-value pairs within path
segments. There is no specific term used in the spec. The general "URI path parameters" could be
applied although the more unique "Matrix URIs", originating from an old post by Tim Berners-Lee,
is also frequently used and fairly well known. Within Spring MVC these are referred to as matrix
variables.

nwen

Matrix variables can appear in any path segment, each matrix variable separated with a ";
(semicolon). For example: "/cars;color=red;year=2012". Multiple values may be either "," (comma)
separated "color=red,green,blue” or the variable name may be repeated

"color=red;color=green;color=blue".

If a URL is expected to contain matrix variables, the request mapping pattern must represent them
with a URI template. This ensures the request can be matched correctly regardless of whether
matrix variables are present or not and in what order they are provided.

Below is an example of extracting the matrix variable "q":

// GET /pets/42;q=11;r=22

("/pets/{petld}")

public void findPet(String petId, int q) {
// petld == 42
/7 q =11

}

Since all path segments may contain matrix variables, in some cases you need to be more specific to
identify where the variable is expected to be:

// GET /owners/42;q=11/pets/21;q=22

("/owners/{ownerId}/pets/{petId}")
public void findPet(

(name="q", pathVar="ownerId") int q1,
(name="q", pathVar="petId") int q2) {

// ql == 11
// q2 == 22

A matrix variable may be defined as optional and a default value specified:

15

http://pivotal.io/security/cve-2015-5211
http://tools.ietf.org/html/rfc3986#section-3.3
http://www.w3.org/DesignIssues/MatrixURIs.html

// GET /pets/42

@GetMapping("/pets/{petId}")
public void findPet(@MatrixVariable(required=false, defaultValue="1") int q) {

// q==1

All matrix variables may be obtained in a Map:

// GET /owners/42;q=11;r=12/pets/21;q=22;s=123

@GetMapping("/owners/{ownerId}/pets/{petId}")

public void findPet(
@MatrixVariable MultiValueMap<String, String> matrixVars,
@MatrixVariable(pathVar="petId"") MultiValueMap<String, String> petMatrixVars)

// matrixVars: ["q" : [11,22], "r" : 12, "s" : 23]
// petMatrixVars: ["q" : 22, "s" : 23]

Note that to enable the use of matrix variables, you must set the removeSemicolonContent property of
RequestMappingHandlerMapping to false. By default it is set to true.

16

The MVC Java config and the MVC namespace both provide options for enabling
the use of matrix variables.

If you are using Java config, The Advanced Customizations with MVC Java Config
section describes how the RequestMappingHandlerMapping can be customized.

In the MVC namespace, the <mvc:annotation-driven> element has an enable-matrix-
variables attribute that should be set to true. By default it is set to false.

<?xml version="1.0" encoding="UTF-8"?>
Q <beans xmlns="http://www.springframework.org/schema/beans"

xmlns:mve="http://www.springframework.org/schema/mvc"

xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"

xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc.xsd">

<mvc:annotation-driven enable-matrix-variables="true"/>

</beans>

Consumable Media Types

Same in Spring WebFlux

You can narrow the request mapping based on the Content-Type of the request:
@PostMapping(path = "/pets", consumes = "application/json")

public void addPet(@RequestBody Pet pet) {
/] ...

}

The consumes attribute also supports negation expressions —e.g. !text/plain means any content
type other than "text/plain".

You can declare a shared consumes attribute at the class level. Unlike most other request mapping
attributes however when used at the class level, a method-level consumes attribute will overrides
rather than extend the class level declaration.

Q MediaType provides constants for commonly used media types—e.g.
APPLICATION_JSON_VALUE, APPLICATION_JSON_UTF8_VALUE.

Producible Media Types

Same in Spring WebFlux

17

web-reactive.pdf#webflux-ann-requestmapping-consumes
web-reactive.pdf#webflux-ann-requestmapping-produces

You can narrow the request mapping based on the Accept request header and the list of content
types that a controller method produces:

(path = "/pets/{petId}", produces = "application/json;charset=UTF-
8")

public Pet getPet(String petld) {
/...
¥

The media type can specify a character set. Negated expressions are supported —e.g. !text/plain
means any content type other than "text/plain".

You can declare a shared produces attribute at the class level. Unlike most other request mapping
attributes however when used at the class level, a method-level produces attribute will overrides
rather than extend the class level declaration.

Q MediaType provides constants for commonly used media types—e.g.
APPLICATION_JSON_VALUE, APPLICATION_JSON_UTF8_VALUE.
Request Parameters and Header Values

Same in Spring WebFlux

You can narrow request mappings based on request parameter conditions. You can test for the
presence of a request parameter ("myParam"), for the absence ("!myParam"), or for a specific value
("myParam=myValue"):

(path = "/pets/{petId}", params = "myParam=myValue")
public void findPet(String petId) {
/...
}

You can also use the same with request header conditions:

(path = "/pets", headers = "myHeader=myValue")

public void findPet(String petId) {
/] ...
}
Q You can match Content-Type and Accept with the headers condition but it is better

to use consumes and produces instead.

HTTP HEAD and OPTIONS

Same in Spring WebFlux

18

web-reactive.pdf#webflux-ann-requestmapping-params-and-headers
web-reactive.pdf#webflux-ann-requestmapping-head-options

@GetMapping—and also @RequestMapping(method=HttpMethod.GET), support HTTP HEAD transparently
for request mapping purposes. Controller methods don’t need to change. A response wrapper,
applied in javax.servlet.http.HttpServlet, ensures a "Content-Length" header is set to the number
of bytes written and without actually writing to the response.

@GetMapping—and also @RequestMapping(method=HttpMethod.GET), are implicitly mapped to and also
support HTTP HEAD. An HTTP HEAD request is processed as if it were HTTP GET except but instead
of writing the body, the number of bytes are counted and the "Content-Length" header set.

By default HTTP OPTIONS is handled by setting the "Allow" response header to the list of HTTP
methods listed in all @RequestMapping methods with matching URL patterns.

For a @RequestMapping without HTTP method declarations, the "Allow" header is set to
"GET,HEAD,POST,PUT,PATCH,DELETE,OPTIONS". Controller methods should always declare the supported
HTTP methods for example by using the HTTP method specific variants—@GetMapping,
@PostMapping, etc.

@RequestMapping method can be explicitly mapped to HTTP HEAD and HTTP OPTIONS, but that is not
necessary in the common case.

1.3.3. Defining @RequestMapping methods

Same in Spring WebFlux

@RequestMapping handler methods have a flexible signature and can choose from a range of
supported controller method arguments and return values.

Supported Controller Method Arguments

Same in Spring WebFlux

The table below shows supported controller method arguments. Reactive types are not supported
for any arguments.

JDK 1.8’s java.util.Optional is supported as a method argument in combination with annotations
that have a required attribute—e.g. @RequestParam, @RequestHeader, etc, and is equivalent to
required=false.

Controller method argument Description

WebRequest, NativeWebRequest Generic access to request parameters, request & session
attributes, without direct use of the Servlet API.

javax.servlet.ServletRequest, Choose any specific request or response type —e.g.
javax.servlet.ServletResponse SeryletRequest, HttpServletRequest, or Spring’s MultipartRequest,
MultipartHttpServletRequest.

javax.servlet.http.HttpSession Enforces the presence of a session. As a consequence, such an
argument is never null.
Note: Session access is not thread-safe. Consider setting the
RequestMappingHandlerAdapter's "synchronizeOnSession" flag to
"true" if multiple requests are allowed to access a session
concurrently.

19

web-reactive.pdf#webflux-ann-methods
web-reactive.pdf#webflux-ann-arguments

Controller method argument Description

javax.servlet.http.PushBuilder Servlet 4.0 push builder API for programmatic HTTP/2 resource

java.security.Principal

HttpMethod

java.util.Locale

Java 6+: java.util.TimeZone
Java 8+: java.time.Zoneld

java.io.InputStream,
java.io.Reader

java.io.OutputStream,
java.io.Writer

@PathVariable
@MatrixVariable

©RequestParam

@RequestHeader

©RequestBody

HttpEntity

@RequestPart

java.util.Map,

org.springframework.ui.Model,
org.springframework.ui.ModelMa

p
RedirectAttributes

20

pushes.

Currently authenticated user; possibly a specific Principal
implementation class if known.

The HTTP method of the request.

The current request locale, determined by the most specific
LocaleResolver available, in effect, the configured LocaleResolver
/LocaleContextResolver.

The time zone associated with the current request, as determined
by a LocaleContextResolver.

For access to the raw request body as exposed by the Servlet API.

For access to the raw response body as exposed by the Servlet
APL

For access to URI template variables. See URI Path Patterns.

For access to name-value pairs in URI path segments. See Matrix
Variables.

For access to Servlet request parameters. Parameter values are
converted to the declared method argument type. See Binding
request parameters to method parameters with @RequestParam.

For access to request headers. Header values are converted to the
declared method argument type. See Mapping request header
attributes with the @RequestHeader annotation.

For access to the HTTP request body. Body content is converted to
the declared method argument type using HttpMessageConverters.
See Mapping the request body with the @RequestBody
annotation.

For access to request headers and body. The body is converted
with HttpMessageConverters. See Using HttpEntity.

For access to a part in a "multipart/form-data" request. See
Handling a file upload request from programmatic clients and
Multipart (file upload) support.

For access and updates of the implicit model that is exposed to
the web view.

Specify attributes to use in case of a redirect —i.e. to be
appended to the query string, and/or flash attributes to be stored
temporarily until the request after redirect. See Passing Data To
the Redirect Target and Using flash attributes.

Controller method argument

Command or form object (with
optional @ModelAttribute)

Errors, BindingResult

SessionStatus

UriComponentsBuilder

@SessionAttribute

@RequestAttribute

Description

Command object whose properties to bind to request
parameters — via setters or directly to fields, with customizable
type conversion, depending on @InitBinder methods and/or the
HandlerAdapter configuration (see the webBindingInitializer
property on RequestMappingHandlerAdapter).

Command objects along with their validation results are exposed
as model attributes, by default using the command class name -
e.g. model attribute "orderAddress" for a command object of type
"some.package.OrderAddress". @ModelAttribute can be used to
customize the model attribute name.

Validation results for the command/form object data binding;
this argument must be declared immediately after the
command/form object in the controller method signature.

For marking form processing complete which triggers cleanup of
session attributes declared through a class-level
@SessionAttributes annotation.

For preparing a URL relative to the current request’s host, port,
scheme, context path, and the literal part of the servlet mapping
also taking into account Forwarded and X-Forwarded-* headers.

For access to any session attribute; in contrast to model attributes
stored in the session as a result of a class-level @SessionAttributes
declaration.

For access to request attributes.

Supported Controller Method Return Values

Same in Spring WebFlux

The table below shows supported controller method return values. Reactive types are supported for
all return values, see below for more details.

Controller method return
value

@ResponseBody

HttpEntity,
ResponseEntity

HttpHeaders
String

Description

The return value is converted through HttpMessageConverters and
written to the response. See Mapping the response body with the
@ResponseBody annotation.

The return value specifies the full response including HTTP
headers and body be converted through HttpMessageConverters
and written to the response. See Using HttpEntity.

For returning a response with headers and no body.

A view name to be resolved with ViewResolver's and used
together with the implicit model — determined through
command objects and @ModelAttribute methods. The handler
method may also programmatically enrich the model by
declaring a Model argument (see above).

21

web-reactive.pdf#webflux-ann-return-types

Controller method return Description

value

View A View instance to use for rendering together with the implicit
model — determined through command objects and
@ModelAttribute methods. The handler method may also
programmatically enrich the model by declaring a Model
argument (see above).

java.util.Map, _ Attributes to be added to the implicit model with the view name

org.springframework.ui.Model jmplicitly determined through a RequestToViewNameTranslator.

ModelAndView object The view and model attributes to use, and optionally a response
status.

void For use in methods that declare a ServletResponse or OutputStream

argument and write to the response body; or if the view name is
supposed to be implicitly determined through a
RequestToViewNameTranslator.

Callable<V> Produce any of the above return values asynchronously in a
Spring MVC managed thread.

DeferredResult<V> Produce any of the above return values asynchronously from
any thread — e.g. possibly as a result of some event or callback.

ListenableFuture<V>, Alternative to DeferredResult as a convenience for example when

java.util.concurrent.Completio ap ynderlying service returns one of those.
nStage<V>,

java.util.concurrent.Completab

leFuture<V>

ResponseBodyEmitter, SseEmitter Emit a stream of objects asynchronously to be written to the
response with HttpMessageConverter's; also supported as the body
of a ResponseEntity.

StreamingResponseBody Write to the response OutputStream asynchronously; also
supported as the body of a ResponseEntity.

Reactive types — Reactor, Alternative to ‘DeferredResult with multi-value streams (e.g.

RxJava, or others via Flux, Observable) collected to a List.

ReactiveAdapterRegistry

For streaming scenarios — .e.g. text/event-strean,
application/json+stream, SseEmitter and ResponseBodyEmitter are
used instead, where ServletQOutputStream blocking I/O is
performed on a Spring MVC managed thread and back pressure
applied against the completion of each write.

See Async Requests with Reactive Types.

Any other return type A single model attribute to be added to the implicit model with
the view name implicitly determined through a
RequestToViewNameTranslator; the attribute name may be specified
through a method-level @ModelAttribute or otherwise a name is
selected based on the class name of the return type.

Binding request parameters to method parameters with @RequestParam

Use the @RequestParam annotation to bind request parameters to a method parameter in your

22

controller.

The following code snippet shows the usage:

@Controller
@RequestMapping("/pets")
@SessionAttributes("pet")
public class EditPetForm {

/] ...

@GetMapping
public String setupForm(@RequestParam("petId") int petld,
ModelMap model) {
Pet pet = this.clinic.loadPet(petId);
model.addAttribute("pet", pet);
return "petForm";

/] ...

Parameters using this annotation are required by default, but you can specify that a parameter is
optional by setting @RequestParam's required attribute to false (e.g., @RequestParam(name="1id",
required=false)).

Type conversion is applied automatically if the target method parameter type is not String. See
Method Parameters And Type Conversion.

When an @RequestParam annotation is used on a Map<String, String> or MultiValueMap<String,
String> argument, the map is populated with all request parameters.

Mapping the request body with the @RequestBody annotation

The @RequestBody method parameter annotation indicates that a method parameter should be
bound to the value of the HTTP request body. For example:

@PutMapping("/something")
public void handle(@RequestBody String body, Writer writer) throws IOException {
writer.write(body);

}

You convert the request body to the method argument by using an HttpMessageConverter.
HttpMessageConverter is responsible for converting from the HTTP request message to an object and
converting from an object to the HTTP response body. The RequestMappingHandlerAdapter supports
the @RequestBody annotation with the following default HttpMessageConverters:

* ByteArrayHttpMessageConverter converts byte arrays.

23

* StringHttpMessageConverter converts strings.
* FormHttpMessageConverter converts form data to/from a MultiValueMap<String, String>.

* SourceHttpMessageConverter converts to/from a javax.xml.transform.Source.

For more information on these converters, see Message Converters. Also note that if using the MVC
namespace or the MVC Java config, a wider range of message converters are registered by default.
See Enable the Configuration for more information.

If you intend to read and write XML, you will need to configure the
MarshallingHttpMessageConverter with a specific Marshaller and an Unmarshaller implementation
from the org.springframework.oxm package. The example below shows how to do that directly in
your configuration but if your application is configured through the MVC namespace or the MVC
Java config see Enable the Configuration instead.

<bean class=
"org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter">
<property name="messageConverters">
<util:list id="beanList">
<ref bean="stringHttpMessageConverter"/>
<ref bean="marshallingHttpMessageConverter"/>
</util:list>
</property>
</bean>

<bean id="stringHttpMessageConverter"
class="org.springframework.http.converter.StringHttpMessageConverter"/>

<bean id="marshallingHttpMessageConverter"
class="org.springframework.http.converter.xml.MarshallingHttpMessageConverter

>
<property name="marshaller" ref="castorMarshaller"/>
<property name="unmarshaller" ref="castorMarshaller"/>
</bean>

<bean id="castorMarshaller" class="org.springframework.oxm.castor.CastorMarshaller"/>

An @RequestBody method parameter can be annotated with @Valid, in which case it will be validated
using the configured Validator instance. When using the MVC namespace or the MVC Java config, a
JSR-303 validator is configured automatically assuming a JSR-303 implementation is available on
the classpath.

Just like with @ModelAttribute parameters, an Errors argument can be used to examine the errors. If
such an argument is not declared, a MethodArgumentNotValidException will be raised. The exception
is handled in the DefaultHandlerExceptionResolver, which sends a 400 error back to the client.

0 Also see Enable the Configuration for information on configuring message
converters and a validator through the MVC namespace or the MVC Java config.

24

Mapping the response body with the @ResponseBody annotation

The @ResponseBody annotation is similar to @RequestBody. This annotation can be placed on a method
and indicates that the return type should be written straight to the HTTP response body (and not
placed in a Model, or interpreted as a view name). For example:

("/something")

public String helloWorld() {
return "Hello World";

}

The above example will result in the text Hello World being written to the HTTP response stream.

As with @RequestBody, Spring converts the returned object to a response body by using an
HttpMessageConverter. For more information on these converters, see the previous section and
Message Converters.

Creating REST Controllers with the @RestController annotation

It’s a very common use case to have Controllers implement a REST API, thus serving only JSON,
XML or custom MediaType content. For convenience, instead of annotating all your @RequestMapping
methods with @ResponseBody, you can annotate your controller Class with @RestController.

@RestController is a stereotype annotation that combines @ResponseBody and @Controller. More than
that, it gives more meaning to your Controller and also may carry additional semantics in future
releases of the framework.

As with regular @Controllers, a @RestController may be assisted by @ControllerAdvice or
@RestControllerAdvice beans. See the Advising controllers with @ControllerAdvice and
@RestControllerAdvice section for more details.

Using HttpEntity

The HttpEntity is similar to @RequestBody and @ResponseBody. Besides getting access to the request
and response body, HttpEntity (and the response-specific subclass ResponseEntity) also allows
access to the request and response headers, like so:

25

https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/bind/annotation/RestController.html

@RequestMapping("/something")
public ResponseEntity<String> handle(HttpEntity<byte[]> requestEntity) throws
UnsupportedEncodingException {
String requestHeader = requestEntity.getHeaders().getFirst("MyRequestHeader");
byte[] requestBody = requestEntity.getBody();

// do something with request header and body

HttpHeaders responseHeaders = new HttpHeaders();

responseHeaders.set("MyResponseHeader", "MyValue");

return new ResponseEntity<String>("Hello World", responseHeaders, HttpStatus
.CREATED);

}

The above example gets the value of the MyRequestHeader request header, and reads the body as a
byte array. It adds the MyResponseHeader to the response, writes Hello World to the response stream,
and sets the response status code to 201 (Created).

As with @RequestBody and @ResponseBody, Spring uses HttpMessageConverter to convert from and to
the request and response streams. For more information on these converters, see the previous
section and Message Converters.

Using @ModelAttribute on a method

The @ModelAttribute annotation can be used on methods or on method arguments. This section
explains its usage on methods while the next section explains its usage on method arguments.

An @ModelAttribute on a method indicates the purpose of that method is to add one or more model
attributes. Such methods support the same argument types as @RequestMapping methods but cannot
be mapped directly to requests. Instead @ModelAttribute methods in a controller are invoked before
@RequestMapping methods, within the same controller. A couple of examples:

// Add one attribute
// The return value of the method is added to the model under the name "account"
// You can customize the name via @ModelAttribute("myAccount")

@ModelAttribute
public Account addAccount(@RequestParam String number) {
return accountManager.findAccount(number);

}

// Add multiple attributes

@ModelAttribute

public void populateModel(@RequestParam String number, Model model) {
model.addAttribute(accountManager.findAccount(number));
// add more ...

26

@ModelAttribute methods are used to populate the model with commonly needed attributes for
example to fill a drop-down with states or with pet types, or to retrieve a command object like
Account in order to use it to represent the data on an HTML form. The latter case is further
discussed in the next section.

Note the two styles of @ModelAttribute methods. In the first, the method adds an attribute implicitly
by returning it. In the second, the method accepts a Model and adds any number of model attributes
to it. You can choose between the two styles depending on your needs.

A controller can have any number of @ModelAttribute methods. All such methods are invoked
before @RequestMapping methods of the same controller.

@ModelAttribute methods can also be defined in an @ControllerAdvice-annotated class and such
methods apply to many controllers. See the Advising controllers with @ControllerAdvice and
@RestControllerAdvice section for more details.

What happens when a model attribute name is not explicitly specified? In such
cases a default name is assigned to the model attribute based on its type. For
Q example if the method returns an object of type Account, the default name used is
"account”". You can change that through the value of the @ModelAttribute
annotation. If adding attributes directly to the Model, use the appropriate
overloaded addAttribute(..) method - i.e., with or without an attribute name.

The @ModelAttribute annotation can be used on @RequestMapping methods as well. In that case the
return value of the @RequestMapping method is interpreted as a model attribute rather than as a
view name. The view name is then derived based on view name conventions instead, much like for
methods returning void — see The View - RequestToViewNameTranslator.

Using @ModelAttribute on a method argument

As explained in the previous section @ModelAttribute can be used on methods or on method
arguments. This section explains its usage on method arguments.

An @ModelAttribute on a method argument indicates the argument should be retrieved from the
model. If not present in the model, the argument should be instantiated first and then added to the
model. Once present in the model, the argument’s fields should be populated from all request
parameters that have matching names. This is known as data binding in Spring MVC, a very useful
mechanism that saves you from having to parse each form field individually.

("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(Pet pet) { }

Given the above example where can the Pet instance come from? There are several options:

* It may already be in the model due to use of @SessionAttributes —see Using @SessionAttributes
to store model attributes in the HTTP session between requests.

* It may already be in the model due to an @ModelAttribute method in the same controller —as
explained in the previous section.

27

* It may be retrieved based on a URI template variable and type converter (explained in more
detail below).

It may be instantiated using its default constructor.

An EModelAttribute method is a common way to retrieve an attribute from the database, which may
optionally be stored between requests through the use of @SessionAttributes. In some cases it may
be convenient to retrieve the attribute by using an URI template variable and a type converter.
Here is an example:

("/accounts/{account}")
public String save(("account") Account account) {
/] ...

}

In this example the name of the model attribute (i.e. "account"”) matches the name of a URI template
variable. If you register Converter<String, Account> that can turn the String account value into an
Account instance, then the above example will work without the need for an @ModelAttribute
method.

The next step is data binding. The WebDataBinder class matches request parameter
names —including query string parameters and form fields —to model attribute fields by name.
Matching fields are populated after type conversion (from String to the target field type) has been
applied where necessary. Data binding and validation are covered in Validation. Customizing the
data binding process for a controller level is covered in Customizing WebDataBinder initialization.

As a result of data binding there may be errors such as missing required fields or type conversion
errors. To check for such errors add a BindingResult argument immediately following the
@ModelAttribute argument:

("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(("pet") Pet pet,
BindingResult result) {

if (result.hasErrors()) {

return "petForm";

/] ...

With a BindingResult you can check if errors were found in which case it’s common to render the
same form where the errors can be shown with the help of Spring’s <errors> form tag.

Note that in some cases it may be useful to gain access to an attribute in the model without data
binding. For such cases you may inject the Model into the controller or alternatively use the binding
flag on the annotation:

28

core.pdf#validation

public AccountForm setUpForm() {
return new AccountForm();

}
public Account findAccount(String accountId) {
return accountRepository.findOne(accountId);
}
("update")
public String update(AccountUpdateForm form, BindingResult result,
 (binding=false) Account account) {
/] ...
}

In addition to data binding you can also invoke validation using your own custom validator passing
the same BindingResult that was used to record data binding errors. That allows for data binding
and validation errors to be accumulated in one place and subsequently reported back to the user:

("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(("pet") Pet pet,
BindingResult result) {

new PetValidator().validate(pet, result);

if (result.hasErrors()) {
return "petForm";

}

/] ...

Or you can have validation invoked automatically by adding the JSR-303 @Valid annotation:

("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(("pet") Pet pet,
BindingResult result) {

if (result.hasErrors()) {

return "petForm";

}

/] ...

29

See Bean validation and Spring validation for details on how to configure and use validation.

Using @SessionAttributes to store model attributes in the HTTP session between requests

The type-level @SessionAttributes annotation declares session attributes used by a specific handler.
This will typically list the names of model attributes or types of model attributes which should be
transparently stored in the session or some conversational storage, serving as form-backing beans
between subsequent requests.

The following code snippet shows the usage of this annotation, specifying the model attribute
name:

("/editPet.do")
 ("pet")
public class EditPetForm {
/] ...

Using @SessionAttribute to access pre-existing global session attributes

If you need access to pre-existing session attributes that are managed globally, i.e. outside the
controller (e.g. by a filter), and may or may not be present use the @SessionAttribute annotation on
a method parameter:

(ll/ll)
public String handle(User user) {
/] ...

For use cases that require adding or removing session attributes consider injecting
org.springframework.web.context.request.WebRequest or javax.servlet.http.HttpSession into the
controller method.

For temporary storage of model attributes in the session as part of a controller workflow consider
using SessionAttributes as described in Using @SessionAttributes to store model attributes in the
HTTP session between requests.

Using @RequestAttribute to access request attributes

Similar to @SessionAttribute the @RequestAttribute annotation can be used to access pre-existing
request attributes created by a filter or interceptor:

(ll/ll)
public String handle(Client client) {
/...

}

30

core.pdf#validation-beanvalidation
core.pdf#validation

Working with "application/x-www-form-urlencoded" data

The previous sections covered use of @ModelAttribute to support form submission requests from
browser clients. The same annotation is recommended for use with requests from non-browser
clients as well. However there is one notable difference when it comes to working with HTTP PUT
requests. Browsers can submit form data via HTTP GET or HTTP POST. Non-browser clients can also
submit forms via HTTP PUT. This presents a challenge because the Servlet specification requires the
ServletRequest.getParameter*() family of methods to support form field access only for HTTP POST,
not for HTTP PUT.

To support HTTP PUT and PATCH requests, the spring-web module provides the filter
HttpPutFormContentFilter, which can be configured in web.xml:

<filter>
<filter-name>httpPutFormFilter</filter-name>
<filter-class>org.springframework.web.filter.HttpPutFormContentFilter</filter-
class>
</filter>

<filter-mapping>
<filter-name>httpPutFormFilter</filter-name>
<servlet-name>dispatcherServlet</servlet-name>
</filter-mapping>

<servlet>
<servlet-name>dispatcherServlet</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
</servlet>

The above filter intercepts HTTP PUT and PATCH requests with content type application/x-www-
form-urlencoded, reads the form data from the body of the request, and wraps the ServletRequest in
order to make the form data available through the ServletRequest.getParameter*() family of
methods.

As HttpPutFormContentFilter consumes the body of the request, it should not be

O configured for PUT or PATCH URLs that rely on other converters for application/x-
www-form-urlencoded. This includes @RequestBody MultiValueMap<String, String>
and HttpEntity<MultiValueMap<String, String>>.

Mapping cookie values with the @CookieValue annotation

The @CookieValue annotation allows a method parameter to be bound to the value of an HTTP
cookie.

Let us consider that the following cookie has been received with an http request:

JSESSIONID=415A4AC178C59DACEOB2CICA727CDD84

31

The following code sample demonstrates how to get the value of the JSESSIONID cookie:

("/displayHeaderInfo.do")

public void displayHeaderInfo(("JSESSIONID") String
cookie) {

/...
}

Type conversion is applied automatically if the target method parameter type is not String. See
Method Parameters And Type Conversion.

Mapping request header attributes with the @RequestHeader annotation

The @RequestHeader annotation allows a method parameter to be bound to a request header.

Here is a sample request header:

Host localhost: 8080

Accept text/html,application/xhtml+xml,application/xml;q=0.9
Accept-Language fr,en-gb;q=0.7,en;q=0.3

Accept-Encoding gzip,deflate

Accept-Charset IS0-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive 300

The following code sample demonstrates how to get the value of the Accept-Encoding and Keep-Alive
headers:

("/displayHeaderInfo.do")

public void displayHeaderInfo(("Accept-Encoding")
String encoding,
 ("Keep-Alive") long keepAlive) {
/1. ..
¥

Type conversion is applied automatically if the method parameter is not String. See Method
Parameters And Type Conversion.

When an @RequestHeader annotation is used on a Map<String, String>, MultiValueMap<String,
String>, or HttpHeaders argument, the map is populated with all header values.

Built-in support is available for converting a comma-separated string into an

Q array/collection of strings or other types known to the type conversion system. For
example a method parameter annotated with @RequestHeader ("Accept”) may be of
type String but also String[] or List<String>.

32

Method Parameters And Type Conversion

String-based values extracted from the request including request parameters, path variables,
request headers, and cookie values may need to be converted to the target type of the method
parameter or field (e.g., binding a request parameter to a field in an @ModelAttribute parameter)
they’re bound to. If the target type is not String, Spring automatically converts to the appropriate
type. All simple types such as int, long, Date, etc. are supported. You can further customize the
conversion process through a WebDataBinder (see Customizing WebDataBinder initialization) or by
registering Formatters with the FormattingConversionService (see Spring Field Formatting).

Customizing WebDataBinder initialization

To customize request parameter binding with PropertyEditors through Spring’s WebDataBinder, you
can use @InitBinder-annotated methods within your controller, @InitBinder methods within an
@ControllerAdvice class, or provide a custom WebBindingInitializer. See the Advising controllers
with @ControllerAdvice and @RestControllerAdvice section for more details.

Customizing data binding with @InitBinder

Annotating controller methods with @InitBinder allows you to configure web data binding directly
within your controller class. @InitBinder identifies methods that initialize the WebDataBinder that
will be used to populate command and form object arguments of annotated handler methods.

Such init-binder methods support all arguments that @RequestMapping methods support, except for
command/form objects and corresponding validation result objects. Init-binder methods must not
have a return value. Thus, they are usually declared as void. Typical arguments include
WebDataBinder in combination with WebRequest or java.util.lLocale, allowing code to register
context-specific editors.

The following example demonstrates the use of @InitBinder to configure a CustomDateEditor for all
java.util.Date form properties.

public class MyFormController {

protected void initBinder(WebDataBinder binder) {
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
dateFormat.setlenient(false);
binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat,
false));
}

/] ...

Alternatively, as of Spring 4.2, consider using addCustomFormatter to specify Formatter
implementations instead of PropertyEditor instances. This is particularly useful if you happen to
have a Formatter-based setup in a shared FormattingConversionService as well, with the same

33

core.pdf#format

approach to be reused for controller-specific tweaking of the binding rules.

@Controller
public class MyFormController {

@InitBinder
protected void initBinder(WebDataBinder binder) {
binder.addCustomFormatter(new DateFormatter("yyyy-MM-dd"));

}

VA

Configuring a custom WebBindingInitializer

To externalize data binding initialization, you can provide a custom implementation of the
WebBindingInitializer interface, which you then enable by supplying a custom bean configuration
for an RequestMappingHandlerAdapter, thus overriding the default configuration.

The following example from the PetClinic application shows a configuration using a custom
implementation of the WebBindingInitializer interface,
org.springframework.samples.petclinic.web.ClinicBindingInitializer, which configures
PropertyEditors required by several of the PetClinic controllers.

<bean class=
"org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter">

<property name="cacheSeconds" value="0"/>

<property name="webBindingInitializer">

<bean class=

"org.springframework.samples.petclinic.web.ClinicBindingInitializer"/>

</property>
</bean>

@InitBinder methods can also be defined in an @ControllerAdvice-annotated class in which case they
apply to matching controllers. This provides an alternative to using a WebBindingInitializer. See the
Advising controllers with @ControllerAdvice and @RestControllerAdvice section for more details.

Advising controllers with @ControllerAdvice and @RestControllerAdvice

The @ControllerAdvice annotation is a component annotation allowing implementation classes to be
auto-detected through classpath scanning. It is automatically enabled when using the MVC
namespace or the MVC Java config.

Classes annotated with @ControllerAdvice can contain @ExceptionHandler, @InitBinder, and
@ModelAttribute annotated methods, and these methods will apply to @RequestMapping methods
across all controller hierarchies as opposed to the controller hierarchy within which they are
declared.

34

@RestControllerAdvice is an alternative where @ExceptionHandler methods assume @ResponseBody
semantics by default.

Both @ControllerAdvice and @RestControllerAdvice can target a subset of controllers:

// Target all Controllers annotated with @RestController
@ControllerAdvice(annotations = RestController.class)
public class AnnotationAdvice {}

// Target all Controllers within specific packages
@ControllerAdvice("org.example.controllers")
public class BasePackageAdvice {}

// Target all Controllers assignable to specific classes
@ControllerAdvice(assignableTypes = {ControllerInterface.class, AbstractController
.class})

public class AssignableTypesAdvice {}

Check out the @ControllerAdvice documentation for more details.

Jackson Serialization View Support

It can sometimes be useful to filter contextually the object that will be serialized to the HTTP
response body. In order to provide such capability, Spring MVC has built-in support for rendering
with Jackson’s Serialization Views.

To use it with an @ResponseBody controller method or controller methods that return ResponseEntity,
simply add the @JsonView annotation with a class argument specifying the view class or interface to
be used:

35

https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/bind/annotation/ControllerAdvice.html
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/bind/annotation/ControllerAdvice.html
http://wiki.fasterxml.com/JacksonJsonViews

public class UserController {

("/user")
(User .WithoutPasswordView.class)
public User getUser() {
return new User("eric", "7!jd#h23");
}
}

public class User {

public interface WithoutPasswordView {};
public interface WithPasswordView extends WithoutPasswordView {};

private String username;
private String password;

public User() {
}

public User(String username, String password) {
this.username = username;
this.password = password;

(WithoutPasswordView.class)
public String getUsername() {
return this.username;

}

(WithPasswordView.class)
public String getPassword() {
return this.password;

}

Note that despite @JsonView allowing for more than one class to be specified, the
use on a controller method is only supported with exactly one class argument.
Consider the use of a composite interface if you need to enable multiple views.

For controllers relying on view resolution, simply add the serialization view class to the model:

36

public class UserController extends AbstractController {

("/user")
public String getUser(Model model) {
model.addAttribute("user", new User("eric", "7!jd#h23"));
model.addAttribute(JsonView.class.getName(), User.WithoutPasswordView.class);
return "userView";

Jackson JSONP Support

In order to enable JSONP support for @ResponseBody and ResponseEntity methods, declare an
@ControllerAdvice bean that extends AbstractJsonpResponseBodyAdvice as shown below where the
constructor argument indicates the JSONP query parameter name(s):

public class JsonpAdvice extends AbstractJsonpResponseBodyAdvice {

public JsonpAdvice() {
super ("callback");
}

For controllers relying on view resolution, JSONP is automatically enabled when the request has a
query parameter named jsonp or callback. Those names can be customized through
jsonpParameterNames property.

1.3.4. Asynchronous Request Processing

Spring MVC 3.2 introduced Servlet 3 based asynchronous request processing. Instead of returning a
value, as usual, a controller method can now return a java.util.concurrent.Callable and produce
the return value from a Spring MVC managed thread. Meanwhile the main Servlet container thread
is exited and released and allowed to process other requests. Spring MVC invokes the Callable in a
separate thread with the help of a TaskExecutor and when the Callable returns, the request is
dispatched back to the Servlet container to resume processing using the value returned by the
Callable. Here is an example of such a controller method:

37

http://en.wikipedia.org/wiki/JSONP

public Callable<String> processUpload(final MultipartFile file) {

return new Callable<String>() {
public String call() throws Exception {
/] ...
return "someView";

Another option is for the controller method to return an instance of DeferredResult. In this case the
return value will also be produced from any thread, i.e. one that is not managed by Spring MVC. For
example the result may be produced in response to some external event such as a JMS message, a
scheduled task, and so on. Here is an example of such a controller method:

("/quotes")

public DeferredResult<String> quotes() {
DeferredResult<String> deferredResult = new DeferredResult<String>();
// Save the deferredResult somewhere..
return deferredResult;

// In some other thread...
deferredResult.setResult(data);

This may be difficult to understand without any knowledge of the Servlet 3.0 asynchronous request
processing features. It would certainly help to read up on that. Here are a few basic facts about the
underlying mechanism:

* A ServletRequest can be put in asynchronous mode by calling request.startAsync(). The main
effect of doing so is that the Servlet, as well as any Filters, can exit but the response will remain
open to allow processing to complete later.

e The call to request.startAsync() returns AsyncContext which can be used for further control
over async processing. For example it provides the method dispatch, that is similar to a forward
from the Servlet API except it allows an application to resume request processing on a Servlet
container thread.

* The ServletRequest provides access to the current DispatcherType that can be used to distinguish
between processing the initial request, an async dispatch, a forward, and other dispatcher

types.

With the above in mind, the following is the sequence of events for async request processing with a
Callable:

¢ Controller returns a Callable.

38

» Spring MVC starts asynchronous processing and submits the Callable to a TaskExecutor for
processing in a separate thread.

* The DispatcherServlet and all Filter’s exit the Servlet container thread but the response remains
open.

* The Callable produces a result and Spring MVC dispatches the request back to the Servlet
container to resume processing.

* The DispatcherServlet is invoked again and processing resumes with the asynchronously
produced result from the Callable.

The sequence for DeferredResult is very similar except it’s up to the application to produce the
asynchronous result from any thread:

* Controller returns a DeferredResult and saves it in some in-memory queue or list where it can
be accessed.

* Spring MVC starts async processing.

* The DispatcherServlet and all configured Filter’s exit the request processing thread but the
response remains open.

» The application sets the DeferredResult from some thread and Spring MVC dispatches the
request back to the Servlet container.

* The DispatcherServlet is invoked again and processing resumes with the asynchronously
produced result.

For further background on the motivation for async request processing and when or why to use it
please read this blog post series.

Exception Handling for Async Requests

What happens if a Callable returned from a controller method raises an Exception while being
executed? The short answer is the same as what happens when a controller method raises an
exception. It goes through the regular exception handling mechanism. The longer explanation is
that when a Callable raises an Exception Spring MVC dispatches to the Servlet container with the
Exception as the result and that leads to resume request processing with the Exception instead of a
controller method return value. When using a DeferredResult you have a choice whether to call
setResult or setErrorResult with an Exception instance.

Intercepting Async Requests

A HandlerInterceptor can also implement AsyncHandlerInterceptor in order to implement the
afterConcurrentHandlingStarted callback, which is called instead of postHandle and afterCompletion
when asynchronous processing starts.

A HandlerInterceptor can also register a C(CallableProcessinglnterceptor or a
DeferredResultProcessingInterceptor in order to integrate more deeply with the lifecycle of an
asynchronous request and for example handle a timeout event. See the Javadoc of
AsyncHandlerInterceptor for more details.

The DeferredResult type also provides methods such as onTimeout(Runnable) and

39

https://spring.io/blog/2012/05/07/spring-mvc-3-2-preview-introducing-servlet-3-async-support

onCompletion(Runnable). See the Javadoc of DeferredResult for more details.

When using a Callable you can wrap it with an instance of WebAsyncTask which also provides
registration methods for timeout and completion.

HTTP Streaming

A controller method can use DeferredResult and C(allable to produce its return value
asynchronously and that can be used to implement techniques such as long polling where the
server can push an event to the client as soon as possible.

What if you wanted to push multiple events on a single HTTP response? This is a technique related
to "Long Polling" that is known as "HTTP Streaming". Spring MVC makes this possible through the
ResponseBodyEmitter return value type which can be used to send multiple Objects, instead of one as
is normally the case with @ResponseBody, where each Object sent is written to the response with an
HttpMessageConverter.

Here is an example of that:

("/events")
public ResponseBodyEmitter handle() {
ResponseBodyEmitter emitter = new ResponseBodyEmitter();
// Save the emitter somewhere..
return emitter;

// In some other thread
emitter.send("Hello once");

// and again later on
emitter.send("Hello again");

// and done at some point
emitter.complete();

Note that ResponseBodyEmitter can also be used as the body in a ResponseEntity in order to
customize the status and headers of the response.

HTTP Streaming With Server-Sent Events

SseEmitter is a sub-class of ResponseBodyEmitter providing support for Server-Sent Events. Server-
sent events is a just another variation on the same "HTTP Streaming" technique except events
pushed from the server are formatted according to the W3C Server-Sent Events specification.

Server-Sent Events can be used for their intended purpose, that is to push events from the server to
clients. It is quite easy to do in Spring MVC and requires simply returning a value of type
SseEmitter.

Note however that Internet Explorer does not support Server-Sent Events and that for more
advanced web application messaging scenarios such as online games, collaboration, financial

40

http://spring.io/blog/2012/05/08/spring-mvc-3-2-preview-techniques-for-real-time-updates/
http://www.w3.org/TR/eventsource/

applicatinos, and others it’s better to consider Spring’s WebSocket support that includes Sock]S-
style WebSocket emulation falling back to a very wide range of browsers (including Internet
Explorer) and also higher-level messaging patterns for interacting with clients through a publish-
subscribe model within a more messaging-centric architecture. For further background on this see
the following blog post.

HTTP Streaming Directly To The OutputStream

ResponseBodyEmitter allows sending events by writing Objects to the response through an
HttpMessageConverter. This is probably the most common case, for example when writing JSON data.
However sometimes it is useful to bypass message conversion and write directly to the response
OutputStream for example for a file download. This can be done with the help of the
StreamingResponseBody return value type.

Here is an example of that:

("/download")
public StreamingResponseBody handle() {
return new StreamingResponseBody() {

public void writeTo(OutputStream outputStream) throws IOException {
// write...

}
};

Note that StreamingResponseBody can also be used as the body in a ResponseEntity in order to
customize the status and headers of the response.

Async Requests with Reactive Types

If using the reactive WebClient from spring-webflux, or another client, or a data store with reactive
support, you can return reactive types directly from Spring MVC controller methods.

Spring MVC adapts transparently to the reactive library in use with proper translation of
cardinality —i.e. how many values are expected. This is done with the help of the
ReactiveAdapterRegistry from spring-core which provides pluggable support for reactive and async
types. The registry has built-in support for RxJava but others can be registered.

Return values are handled as follows:
« If the return type has single-value stream semantics such as Reactor Mono or RxJava Single it is

adapted and equivalent to using DeferredResult.

* If the return type has multi-value stream semantics such as Reactor Flux or RxJava Observable /
Flowable and if the media type indicates streaming, e.g. "application/stream+json" or "text/event-
stream”, it is adapted and equivalent to using ResponseBodyEmitter or SseEmitter. You can also
return Flux<ServerSentEvent> or Observable<ServerSentEvent>.

o If the return type has multi-value stream semantics but the media type does not imply

41

http://blog.pivotal.io/pivotal/products/websocket-architecture-in-spring-4-0
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/core/ReactiveAdapterRegistry.html

streaming, e.g. "application/json", it is adapted and equivalent to using DeferredResult<List<?>>,
e.g. JSON array.

Reactive libraries are detected and adapted to a Reactive Streams Publisher through Spring’s
pluggable ReactiveAdapterRegistry which by default supports Reactor 3, RxJava 2, and RxJava 1.
Note that for RxJava 1 you will need to add "io.reactivex:rxjava-reactive-streams" to the classpath.

A common assumption with reactive libraries is to not block the processing thread. The WebClient
with Reactor Netty for example is based on event-loop style handling using a small, fixed number of
threads and those must not be blocked when writing to the ServletResponseQutputStream. Reactive
libraries have operators for that but Spring MVC automatically writes asynchronously so you don’t
need to use them. The underlying TaskExecutor for this must be configured through the MVC Java
config and the MVC namespace as described in the following section which by default is a
SyncTaskExecutor and hence not suitable for production use.

Unlike Spring MVC, Spring WebFlux is built on a non-blocking, reactive foundation
and uses the Servlet 3.1 non-blocking I/O that’s also based on event loop style
processing and hence does not require a thread to absorb the effect of blocking.

Configuring Asynchronous Request Processing

Servlet Container Configuration

For applications configured with a web.xml be sure to update to version 3.0:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
version="3.0">

</web-app>

Asynchronous support must be enabled on the DispatcherServlet through the <async-
supported>true</async-supported> sub-element in web.xml. Additionally any Filter that participates
in asyncrequest processing must be configured to support the ASYNC dispatcher type. It should be
safe to enable the ASYNC dispatcher type for all filters provided with the Spring Framework since
they usually extend OncePerRequestFilter and that has runtime checks for whether the filter needs
to be involved in async dispatches or not.

Below is some example web.xml configuration:

42

https://github.com/ReactiveX/RxJavaReactiveStreams

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
version="3.0">

<filter>
<filter-name>Spring OpenEntityManagerInViewFilter</filter-name>
<filter-class>org.springframework.~.0OpenEntityManagerInViewFilter</filter-
class>
<async-supported>true</async-supported>
</filter>

<filter-mapping>
<filter-name>Spring OpenEntityManagerInViewFilter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>ASYNC</dispatcher>
</filter-mapping>

</web-app>

If using Servlet 3, Java based configuration for example via WebApplicationInitializer, yowll also
need to set the "asyncSupported" flag as well as the ASYNC dispatcher type just like with web.xml. To
simplify all this configuration, consider extending AbstractDispatcherServletInitializer, or better
AbstractAnnotationConfigDispatcherServletInitializer which automatically set those options and
make it very easy to register Filter instances.

Spring MVC Configuration

The MVC Java config and the MVC namespace provide options for configuring asynchronous
request processing. WebMvcConfigurer has the method configureAsyncSupport while <mvc:annotation-
driven> has an <async-support> sub-element.

Those allow you to configure the default timeout value to use for async requests, which if not set
depends on the underlying Servlet container (e.g. 10 seconds on Tomcat). You can also configure an
AsyncTaskExecutor to use for executing Callable instances returned from controller methods. It is
highly recommended to configure this property since by default Spring MVC uses
SimpleAsyncTaskExecutor. The MVC Java config and the MVC namespace also allow you to register
CallableProcessingInterceptor and DeferredResultProcessingInterceptor instances.

If you need to override the default timeout value for a specific DeferredResult, you can do so by
using the appropriate class constructor. Similarly, for a Callable, you can wrap it in a WebAsyncTask
and use the appropriate class constructor to customize the timeout value. The class constructor of
WebAsyncTask also allows providing an AsyncTaskExecutor.

43

1.

3.5. Testing Controllers

The spring-test module offers first class support for testing annotated controllers. See Spring MVC

Te

st Framework.

1.4. Handler mappings

In

previous versions of Spring, users were required to define one or more HandlerMapping beans in

the web application context to map incoming web requests to appropriate handlers. With the
introduction of annotated controllers, you generally don’t need to do that because the
RequestMappingHandlerMapping automatically looks for @RequestMapping annotations on all
@Controller beans. However, do keep in mind that all HandlerMapping classes extending from
AbstractHandlerMapping have the following properties that you can use to customize their behavior:

* interceptors List of interceptors to use. HandlerInterceptors are discussed in Intercepting

requests with a HandlerInterceptor.

» defaultHandler Default handler to use, when this handler mapping does not result in a matching

handler.

» order Based on the value of the order property (see the org.springframework.core.Ordered

interface), Spring sorts all handler mappings available in the context and applies the first
matching handler.

» alwaysUseFullPath If true, Spring uses the full path within the current Servlet context to find an

appropriate handler. If false (the default), the path within the current Servlet mapping is used.
For example, if a Servlet is mapped using /testing/* and the alwaysUseFullPath property is set to
true, /testing/viewPage.html is used, whereas if the property is set to false, /viewPage.html is
used.

* urlDecode Defaults to true, as of Spring 2.5. If you prefer to compare encoded paths, set this flag

to false. However, the HttpServletRequest always exposes the Servlet path in decoded form. Be
aware that the Servlet path will not match when compared with encoded paths so you cannot
use urlDecode=false with prefix-based Servlet mappings and likewise must also set
alwaysUseFullPath=true.

The following example shows how to configure an interceptor:

1.

<beans>
<bean class=
"org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerMapping">
<property name="interceptors">
<bean class="example.MyInterceptor"/>
</property>
</bean>
</beans>

4.1. Intercepting requests with a HandlerInterceptor

Spring’s handler mapping mechanism includes handler interceptors, which are useful when you

44

testing.pdf#spring-mvc-test-framework
testing.pdf#spring-mvc-test-framework

want to apply specific functionality to certain requests, for example, checking for a principal.

Interceptors located in the handler mapping must implement HandlerInterceptor from the
org.springframework.web.servlet package. This interface defines three methods: preHandle(..) is
called before the actual handler is executed; postHandle(..) is called after the handler is executed;
and afterCompletion(..) is called after the complete request has finished. These three methods
should provide enough flexibility to do all kinds of preprocessing and postprocessing.

The preHandle(..) method returns a boolean value. You can use this method to break or continue
the processing of the execution chain. When this method returns true, the handler execution chain
will continue; when it returns false, the DispatcherServlet assumes the interceptor itself has taken
care of requests (and, for example, rendered an appropriate view) and does not continue executing
the other interceptors and the actual handler in the execution chain.

Interceptors can be configured using the interceptors property, which is present on all
HandlerMapping classes extending from AbstractHandlerMapping. This is shown in the example below:

<beans>
<bean id="handlerMapping"
class=
"org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerMapping">
<property name="interceptors">
<list>
<ref bean="officeHoursInterceptor"/>
</list>
</property>
</bean>

<bean id="officeHoursInterceptor"
class="samples.TimeBasedAccessInterceptor">
<property name="openingTime" value="9"/>
<property name="closingTime" value="18"/>
</bean>
</beans>

45

package samples;
public class TimeBasedAccessInterceptor extends HandlerInterceptorAdapter {

private int openingTime;
private int closingTime;

public void setOpeningTime(int openingTime) {
this.openingTime = openingTime;

}

public void setClosingTime(int closingTime) {
this.closingTime = closingTime;

}

public boolean preHandle(HttpServletRequest request, HttpServletResponse response,
Object handler) throws Exception {
Calendar cal = Calendar.getInstance();
int hour = cal.get(HOUR_OF_DAY);
if (openingTime <= hour && hour < closingTime) {
return true;

}
response.sendRedirect("http://host.com/outsideOfficeHours.html");

return false;

Any request handled by this mapping is intercepted by the TimeBasedAccessInterceptor. If the
current time is outside office hours, the user is redirected to a static HTML file that says, for
example, you can only access the website during office hours.

0 When using the RequestMappingHandlerMapping the actual handler is an instance of
HandlerMethod which identifies the specific controller method that will be invoked.

As you can see, the Spring adapter class HandlerInterceptorAdapter makes it easier to extend the
HandlerInterceptor interface.

In the example above, the configured interceptor will apply to all requests handled
with annotated controller methods. If you want to narrow down the URL paths to

Q which an interceptor applies, you can use the MVC namespace or the MVC Java
config, or declare bean instances of type MappedInterceptor to do that. See Enable
the Configuration.

Note that the postHandle method of HandlerInterceptor is not always ideally suited for use with
@ResponseBody and ResponseEntity methods. In such cases an HttpMessageConverter writes to and
commits the response before postHandle is called which makes it impossible to change the response,
for example to add a header. Instead an application can implement ResponseBodyAdvice and either
declare it as an @ControllerAdvice bean or configure it directly on RequestMappingHandlerAdapter.

46

1.5. Resolving views

All MVC frameworks for web applications provide a way to address views. Spring provides view
resolvers, which enable you to render models in a browser without tying you to a specific view
technology. Out of the box, Spring enables you to use JSPs, FreeMarker templates and XSLT views,
for example. See View Technologies for a discussion of how to integrate and use a number of
disparate view technologies.

The two interfaces that are important to the way Spring handles views are ViewResolver and View.
The ViewResolver provides a mapping between view names and actual views. The View interface
addresses the preparation of the request and hands the request over to one of the view
technologies.

1.5.1. Resolving views with the ViewResolver interface

As discussed in Annotated Controllers, all handler methods in the Spring Web MVC controllers must
resolve to a logical view name, either explicitly (e.g., by returning a String, View, or Mode1AndView) or
implicitly (i.e., based on conventions). Views in Spring are addressed by a logical view name and
are resolved by a view resolver. Spring comes with quite a few view resolvers. This table lists most
of them; a couple of examples follow.

Table 3. View resolvers
ViewResolver Description

AbstractCachingViewResolver Abstract view resolver that caches views. Often
views need preparation before they can be used;
extending this view resolver provides caching.

Xm1ViewResolver Implementation of ViewResolver that accepts a
configuration file written in XML with the same
DTD as Spring’s XML bean factories. The default
configuration file is /WEB-INF/views.xmL.

ResourceBundleViewResolver Implementation of ViewResolver that uses bean
definitions in a ResourceBundle, specified by the
bundle base name. Typically you define the
bundle in a properties file, located in the
classpath. The default file name is
views.properties.

UrlBasedViewResolver Simple implementation of the ViewResolver
interface that effects the direct resolution of
logical view names to URLs, without an explicit
mapping definition. This is appropriate if your
logical names match the names of your view
resources in a straightforward manner, without
the need for arbitrary mappings.

47

ViewResolver Description

InternalResourceViewResolver Convenient subclass of Ur1BasedViewResolver
that supports InternalResourceView (in effect,
Servlets and JSPs) and subclasses such as
Jst1View and TilesView. You can specify the view
class for all views generated by this resolver by
using setViewClass(..). See the
Ur1BasedViewResolver javadocs for details.

FreeMarkerViewResolver Convenient subclass of Ur1BasedViewResolver
that supports FreeMarkerView and custom
subclasses of them.

ContentNegotiatingViewResolver Implementation of the ViewResolver interface
that resolves a view based on the request file
name or Accept header. See
ContentNegotiatingViewResolver.

As an example, with JSP as a view technology, you can use the UrlBasedViewResolver. This view
resolver translates a view name to a URL and hands the request over to the RequestDispatcher to
render the view.

<bean id="viewResolver"
class="org.springframework.web.servlet.view.Ur1BasedViewResolver">
<property name="viewClass" value="org.springframework.web.servlet.view.Jst1View"/>
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>
</bean>

When returning test as a logical view name, this view resolver forwards the request to the
RequestDispatcher that will send the request to /WEB-INF/jsp/test.jsp.

When you combine different view technologies in a web application, you can use the
ResourceBundleViewResolver:

<bean id="viewResolver"
class="org.springframework.web.servlet.view.ResourceBundleViewResolver">
<property name="basename" value="views"/>
<property name="defaultParentView" value="parentView"/>
</bean>

The ResourceBundleViewResolver inspects the ResourceBundle identified by the basename, and for
each view it is supposed to resolve, it uses the value of the property [viewname].(class) as the view
class and the value of the property [viewname].url as the view url. Examples can be found in the
next chapter which covers view technologies. As you can see, you can identify a parent view, from
which all views in the properties file "extend". This way you can specify a default view class, for
example.

48

Subclasses of AbstractCachingViewResolver cache view instances that they resolve.
Caching improves performance of certain view technologies. It’s possible to turn
0 off the cache by setting the cache property to false. Furthermore, if you must
refresh a certain view at runtime (for example when a FreeMarker template is
modified), you can use the removeFromCache(String viewName, Locale loc) method.

1.5.2. Chaining ViewResolvers

Spring supports multiple view resolvers. Thus you can chain resolvers and, for example, override
specific views in certain circumstances. You chain view resolvers by adding more than one resolver
to your application context and, if necessary, by setting the order property to specify ordering.
Remember, the higher the order property, the later the view resolver is positioned in the chain.

In the following example, the chain of view resolvers consists of two resolvers, an
InternalResourceViewResolver, which is always automatically positioned as the last resolver in the
chain, and an XmlViewResolver for specifying Excel views. Excel views are not supported by the
InternalResourceViewResolver.

<bean id="jspViewResolver" class=
"org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="viewClass" value="org.springframework.web.servlet.view.Jst1View"/>
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>
</bean>

<bean id="excelViewResolver" class=
"org.springframework.web.servlet.view.XmlViewResolver">
<property name="order" value="1"/>
<property name="location" value="/WEB-INF/views.xml"/>
</bean>

<!I--1in views.xml -->

<beans>
<bean name="report" class="org.springframework.example.ReportExcelView"/>
</beans>

If a specific view resolver does not result in a view, Spring examines the context for other view
resolvers. If additional view resolvers exist, Spring continues to inspect them until a view is
resolved. If no view resolver returns a view, Spring throws a ServletException.

The contract of a view resolver specifies that a view resolver can return null to indicate the view
could not be found. Not all view resolvers do this, however, because in some cases, the resolver
simply cannot detect whether or not the view exists. For example, the InternalResourceViewResolver
uses the RequestDispatcher internally, and dispatching is the only way to figure out if a JSP exists,
but this action can only execute once. The same holds for the FreeMarkerViewResolver and some
others. Check the javadocs of the specific view resolver to see whether it reports non-existing views.
Thus, putting an InternalResourceViewResolver in the chain in a place other than the last results in

49

the chain not being fully inspected, because the InternalResourceViewResolver will always return a
view!

1.5.3. Redirecting to Views

As mentioned previously, a controller typically returns a logical view name, which a view resolver
resolves to a particular view technology. For view technologies such as JSPs that are processed
through the Servlet or JSP engine, this resolution is usually handled through the combination of
InternalResourceViewResolver and InternalResourceView, which issues an internal forward or
include via the Servlet API’s RequestDispatcher.forward(..) method or RequestDispatcher.include()
method. For other view technologies, such as FreeMarker, XSLT, and so on, the view itself writes the
content directly to the response stream.

It is sometimes desirable to issue an HTTP redirect back to the client, before the view is rendered.
This is desirable, for example, when one controller has been called with POST data, and the response
is actually a delegation to another controller (for example on a successful form submission). In this
case, a normal internal forward will mean that the other controller will also see the same POST data,
which is potentially problematic if it can confuse it with other expected data. Another reason to
perform a redirect before displaying the result is to eliminate the possibility of the user submitting
the form data multiple times. In this scenario, the browser will first send an initial POST; it will then
receive a response to redirect to a different URL; and finally the browser will perform a subsequent
GET for the URL named in the redirect response. Thus, from the perspective of the browser, the
current page does not reflect the result of a POST but rather of a GET. The end effect is that there is no
way the user can accidentally re- POST the same data by performing a refresh. The refresh forces a
GET of the result page, not a resend of the initial POST data.

RedirectView

One way to force a redirect as the result of a controller response is for the controller to create and
return an instance of Spring’s RedirectView. In this case, DispatcherServlet does not use the normal
view resolution mechanism. Rather because it has been given the (redirect) view already, the
DispatcherServlet simply instructs the view to do its work. The RedirectView in turn calls
HttpServletResponse.sendRedirect() to send an HTTP redirect to the client browser.

If you use RedirectView and the view is created by the controller itself, it is recommended that you
configure the redirect URL to be injected into the controller so that it is not baked into the
controller but configured in the context along with the view names. The The redirect: prefix
facilitates this decoupling.

Passing Data To the Redirect Target

By default all model attributes are considered to be exposed as URI template variables in the
redirect URL. Of the remaining attributes those that are primitive types or collections/arrays of
primitive types are automatically appended as query parameters.

Appending primitive type attributes as query parameters may be the desired result if a model
instance was prepared specifically for the redirect. However, in annotated controllers the model
may contain additional attributes added for rendering purposes (e.g. drop-down field values). To
avoid the possibility of having such attributes appear in the URL, an @RequestMapping method can

50

declare an argument of type RedirectAttributes and use it to specify the exact attributes to make
available to RedirectView. If the method does redirect, the content of RedirectAttributes is used.
Otherwise the content of the model is used.

The RequestMappingHandlerAdapter provides a flag called "ignoreDefaultModelOnRedirect” that can be
used to indicate the content of the default Model should never be used if a controller method
redirects. Instead the controller method should declare an attribute of type RedirectAttributes or if
it doesn’t do so no attributes should be passed on to RedirectView. Both the MVC namespace and the
MVC Java config keep this flag set to false in order to maintain backwards compatibility. However,
for new applications we recommend setting it to true

Note that URI template variables from the present request are automatically made available when
expanding a redirect URL and do not need to be added explicitly neither through Model nor
RedirectAttributes. For example:

("/files/{path}")
public String upload(...) {
/] ...
return "redirect:files/{path}";

Another way of passing data to the redirect target is via Flash Attributes. Unlike other redirect
attributes, flash attributes are saved in the HTTP session (and hence do not appear in the URL). See
Using flash attributes for more information.

The redirect: prefix

While the use of RedirectView works fine, if the controller itself creates the RedirectView, there is no
avoiding the fact that the controller is aware that a redirection is happening. This is really
suboptimal and couples things too tightly. The controller should not really care about how the
response gets handled. In general it should operate only in terms of view names that have been
injected into it.

The special redirect: prefix allows you to accomplish this. If a view name is returned that has the
prefix redirect:, the UrlBasedViewResolver (and all subclasses) will recognize this as a special
indication that a redirect is needed. The rest of the view name will be treated as the redirect URL.

The net effect is the same as if the controller had returned a RedirectView, but now the controller
itself can simply operate in terms of logical view names. A logical view name such as
redirect:/myapp/some/resource will redirect relative to the current Servlet context, while a name
such as redirect:http://myhost.com/some/arbitrary/path will redirect to an absolute URL.

Note that the controller handler is annotated with the @ResponseStatus, the annotation value takes
precedence over the response status set by RedirectView.

The forward: prefix

It is also possible to use a special forward: prefix for view names that are ultimately resolved by
UrlBasedViewResolver and subclasses. This creates an InternalResourceView (wWhich ultimately does a

51

RequestDispatcher.forward()) around the rest of the view name, which is considered a URL.
Therefore, this prefix is not useful with InternalResourceViewResolver and InternalResourceView (for
JSPs for example). But the prefix can be helpful when you are primarily using another view
technology, but still want to force a forward of a resource to be handled by the Servlet/JSP engine.
(Note that you may also chain multiple view resolvers, instead.)

As with the redirect: prefix, if the view name with the forward: prefix is injected into the
controller, the controller does not detect that anything special is happening in terms of handling
the response.

1.5.4. ContentNegotiatingViewResolver

The ContentNegotiatingViewResolver does not resolve views itself but rather delegates to other view
resolvers, selecting the view that resembles the representation requested by the client. Two
strategies exist for a client to request a representation from the server:

» Use a distinct URI for each resource, typically by using a different file extension in the URI. For
example, the URI http://www.example.com/users/fred.pdf requests a PDF representation of the
user fred, and http://www.example.com/users/fred.xml requests an XML representation.

» Use the same URI for the client to locate the resource, but set the Accept HTTP request header to
list the media types that it wunderstands. For example, an HTTP request for
http://www.example.com/users/fred with an Accept header set to application/pdf requests a PDF
representation of the user fred, while http://www.example.com/users/fred with an Accept header
set to text/xml requests an XML representation. This strategy is known as content negotiation.

One issue with the Accept header is that it is impossible to set it in a web browser
within HTML. For example, in Firefox, it is fixed to:

ﬂ Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%*/*;q=0.8

For this reason it is common to see the use of a distinct URI for each representation
when developing browser based web applications.

To support multiple representations of a resource, Spring provides the
ContentNegotiatingViewResolver to resolve a view based on the file extension or Accept header of the
HTTP request. ContentNegotiatingViewResolver does not perform the view resolution itself but
instead delegates to a list of view resolvers that you specify through the bean property
ViewResolvers.

The ContentNegotiatingViewResolver selects an appropriate View to handle the request by comparing
the request media type(s) with the media type (also known as Content-Type) supported by the View
associated with each of its ViewResolvers. The first View in the list that has a compatible Content-Type
returns the representation to the client. If a compatible view cannot be supplied by the ViewResolver
chain, then the list of views specified through the DefaultViews property will be consulted. This
latter option is appropriate for singleton Views that can render an appropriate representation of the
current resource regardless of the logical view name. The Accept header may include wild cards, for
example text/*, in which case a View whose Content-Type was text/xml is a compatible match.

52

http://www.example.com/users/fred.pdf
http://www.example.com/users/fred.pdf
http://www.example.com/users/fred.pdf
http://www.example.com/users/fred.pdf
http://www.example.com/users/fred.pdf
http://www.example.com/users/fred.xml
http://www.example.com/users/fred.xml
http://www.example.com/users/fred.xml
http://www.example.com/users/fred.xml
http://www.example.com/users/fred.xml
http://en.wikipedia.org/wiki/Internet_media_type
http://www.example.com/users/fred
http://www.example.com/users/fred
http://www.example.com/users/fred
http://www.example.com/users/fred
http://www.example.com/users/fred
http://www.example.com/users/fred
http://www.example.com/users/fred
http://www.example.com/users/fred
http://www.example.com/users/fred
http://www.example.com/users/fred
http://en.wikipedia.org/wiki/Content_negotiation

To support custom resolution of a view based on a file extension, use a ContentNegotiationManager:
see Requested Content Types.

Here is an example configuration of a ContentNegotiatingViewResolver:

<bean class="org.springframework.web.servlet.view.ContentNegotiatingViewResolver">
<property name="viewResolvers">
<list>
<bean class="org.springframework.web.servlet.view.BeanNameViewResolver"/>
<bean class=
"org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>
</bean>
</list>
</property>
<property name="defaultViews">
<list>
<bean class=
"org.springframework.web.servlet.view.json.MappingJackson2]sonView"/>
</list>
</property>
</bean>

<bean id="content" class="com.foo.samples.rest.SampleContentAtomView"/>

The InternalResourceViewResolver handles the translation of view names and JSP pages, while the
BeanNameViewResolver returns a view based on the name of a bean. (See "Resolving views with the
ViewResolver interface" for more details on how Spring looks up and instantiates a view.) In this
example, the content bean is a class that inherits from AbstractAtomFeedView, which returns an Atom
RSS feed. For more information on creating an Atom Feed representation, see the section Atom
Views.

In the above configuration, if a request is made with an .html extension, the view resolver looks for
a view that matches the text/html media type. The InternalResourceViewResolver provides the
matching view for text/html. If the request is made with the file extension .atom, the view resolver
looks for a view that matches the application/atom+xml media type. This view is provided by the
BeanNameViewResolver that maps to the SampleContentAtomView if the view name returned is content. If
the request is made with the file extension .json, the MappingJackson2]sonView instance from the
DefaultViews list will be selected regardless of the view name. Alternatively, client requests can be
made without a file extension but with the Accept header set to the preferred media-type, and the
same resolution of request to views would occur.

If "ContentNegotiatingViewResolver’s list of ViewResolvers is not configured
explicitly, it automatically uses any ViewResolvers defined in the application

context.

The corresponding controller code that returns an Atom RSS feed for a URI of the form

53

http://localhost/content.atom or http://localhost/content with an Accept header of
application/atom+xml is shown below.

public class ContentController {
private List<SampleContent> contentlist = new ArraylList<SampleContent>();

("/content")
public ModelAndView getContent() {
ModelAndView mav = new ModelAndView();
mav.setViewName("content");
mav.addObject("sampleContentList", contentlList);
return mav;

1.6. Using flash attributes

Flash attributes provide a way for one request to store attributes intended for use in another. This
is most commonly needed when redirecting —for example, the Post/Redirect/Get pattern. Flash
attributes are saved temporarily before the redirect (typically in the session) to be made available
to the request after the redirect and removed immediately.

Spring MVC has two main abstractions in support of flash attributes. FlashMap is used to hold flash
attributes while FlashMapManager is used to store, retrieve, and manage FlashMap instances.

Flash attribute support is always "on" and does not need to enabled explicitly although if not used,
it never causes HTTP session creation. On each request there is an "input" FlashMap with attributes
passed from a previous request (if any) and an "output" FlashMap with attributes to save for a
subsequent request. Both FlashMap instances are accessible from anywhere in Spring MVC through
static methods in RequestContextUtils.

Annotated controllers typically do not need to work with FlashMap directly. Instead an
@RequestMapping method can accept an argument of type RedirectAttributes and use it to add flash
attributes for a redirect scenario. Flash attributes added via RedirectAttributes are automatically
propagated to the "output" FlashMap. Similarly, after the redirect, attributes from the "input"
FlashMap are automatically added to the Model of the controller serving the target URL.

54

http://localhost/content.atom
http://localhost/content.atom
http://localhost/content
http://localhost/content

Matching requests to flash attributes

The concept of flash attributes exists in many other Web frameworks and has proven to be
exposed sometimes to concurrency issues. This is because by definition flash attributes are to
be stored until the next request. However the very "next" request may not be the intended
recipient but another asynchronous request (e.g. polling or resource requests) in which case
the flash attributes are removed too early.

To reduce the possibility of such issues, RedirectView automatically "stamps" FlashMap
instances with the path and query parameters of the target redirect URL. In turn the default
FlashMapManager matches that information to incoming requests when looking up the "input”
FlashMap.

This does not eliminate the possibility of a concurrency issue entirely but nevertheless
reduces it greatly with information that is already available in the redirect URL. Therefore
the use of flash attributes is recommended mainly for redirect scenarios .

1.7. Building URIs

Spring MVC provides a mechanism for building and encoding a URI using UriComponentsBuilder and
UriComponents.

For example you can expand and encode a URI template string:

UriComponents uriComponents = UriComponentsBuilder.fromUriString(
"http://example.com/hotels/{hotel}/bookings/{booking}").build();

URI uri = uriComponents.expand("42", "21").encode().toUri();

Note that UriComponents is immutable and the expand() and encode() operations return new
instances if necessary.

You can also expand and encode using individual URI components:

UriComponents uriComponents = UriComponentsBuilder.newInstance()
.scheme("http").host("example.com").path("/hotels/{hotel}/bookings/{booking}"
).build()
.expand("42", "21")
.encode();

In a Servlet environment the ServletUriComponentsBuilder sub-class provides static factory methods
to copy available URL information from a Servlet requests:

55

HttpServletRequest request = ...

// Re-use host, scheme, port, path and query string
// Replace the "accountId" query param

ServletUriComponentsBuilder ucb = ServletUriComponentsBuilder.fromRequest(request)
.replaceQueryParam("accountId", "{id}").build()
.expand("123")
.encode();

Alternatively, you may choose to copy a subset of the available information up to and including the
context path:

// Re-use host, port and context path
// Append "/accounts" to the path

ServletUriComponentsBuilder ucb = ServletUriComponentsBuilder.fromContextPath(request)
.path("/accounts").build()

Or in cases where the DispatcherServlet is mapped by name (e.g. /main/*), you can also have the
literal part of the servlet mapping included:

// Re-use host, port, context path
// Append the literal part of the servlet mapping to the path
// Append "/accounts" to the path

ServletUriComponentsBuilder ucb = ServletUriComponentsBuilder.fromServletMapping
(request)
.path("/accounts").build()

1.7.1. Building URIs to Controllers and methods
Spring MVC also provides a mechanism for building links to controller methods. For example,

given:

@Controller
@RequestMapping("/hotels/{hotel}")
public class BookingController {

@GetMapping("/bookings/{booking}")
public String getBooking(@PathVariable Long booking) {

/] ...
}

56

You can prepare a link by referring to the method by name:

UriComponents uriComponents = MvcUriComponentsBuilder
. fromMethodName (BookingController.class, "getBooking", 271).buildAndExpand(42);

URT uri = uriComponents.encode().toUri();

In the above example we provided actual method argument values, in this case the long value 21, to
be used as a path variable and inserted into the URL. Furthermore, we provided the value 42 in
order to fill in any remaining URI variables such as the "hotel" variable inherited from the type-
level request mapping. If the method had more arguments you can supply null for arguments not
needed for the URL. In general only @PathVariable and @RequestParam arguments are relevant for
constructing the URL.

There are additional ways to use MvcUriComponentsBuilder. For example you can use a technique
akin to mock testing through proxies to avoid referring to the controller method by name (the
example assumes static import of MvcUriComponentsBuilder.on):

UriComponents uriComponents = MvcUriComponentsBuilder
.fromMethodCall(on(BookingController.class).getBooking(21)).buildAndExpand(42);

URT uri = uriComponents.encode().toUri();

The above examples use static methods in MvcUriComponentsBuilder. Internally they rely on
ServletUriComponentsBuilder to prepare a base URL from the scheme, host, port, context path and
servlet path of the current request. This works well in most cases, however sometimes it may be
insufficient. For example you may be outside the context of a request (e.g. a batch process that
prepares links) or perhaps you need to insert a path prefix (e.g. a locale prefix that was removed
from the request path and needs to be re-inserted into links).

For such cases you can use the static "fromXxx" overloaded methods that accept a
UriComponentsBuilder to use base URL. Or you can create an instance of MvcUriComponentsBuilder
with a base URL and then use the instance-based "withXxx" methods. For example:

UriComponentsBuilder base = ServletUriComponentsBuilder.fromCurrentContextPath().path
(Il/enll);

MvcUriComponentsBuilder builder = MvcUriComponentsBuilder.relativeTo(base);
builder.withMethodCall(on(BookingController.class).getBooking(21)).buildAndExpand(42);

URT uri = uriComponents.encode().toUri();

1.7.2. Working with "Forwarded" and "X-Forwarded-*" Headers

As a request goes through proxies such as load balancers the host, port, and scheme may change
presenting a challenge for applications that need to create links to resources since the links should
reflect the host, port, and scheme of the original request as seen from a client perspective.

57

RFC 7239 defines the "Forwarded" HTTP header for proxies to use to provide information about the
original request. There are also other non-standard headers in use such as "X-Forwarded-Host", "X-
Forwarded-Port", and "X-Forwarded-Proto".

Both ServletUriComponentsBuilder and MvcUriComponentsBuilder detect, extract, and use information
from the "Forwarded" header, or from "X-Forwarded-Host", "X-Forwarded-Port", and "X-Forwarded-
Proto" if "Forwarded" is not present, so that the resulting links reflect the original request.

The ForwardedHeaderFilter provides an alternative to do the same once and globally for the entire
application. The filter wraps the request in order to overlay host, port, and scheme information and
also "hides" any forwarded headers for subsequent processing.

Note that there are security considerations when using forwarded headers as explained in Section 8
of RFC 7239. At the application level it is difficult to determine whether forwarded headers can be
trusted or not. This is why the network upstream should be configured correctly to filter out
untrusted forwarded headers from the outside.

Applications that don’t have a proxy and don’t need to use forwarded headers can configure the
ForwardedHeaderFilter to remove and ignore such headers.

1.7.3. Building URIs to Controllers and methods from views

You can also build links to annotated controllers from views such as JSP, Thymeleaf, FreeMarker.
This can be done using the fromMappingName method in MvcUriComponentsBuilder which refers to
mappings by name.

Every @RequestMapping is assigned a default name based on the capital letters of the class and the
full method name. For example, the method getFoo in class FooController is assigned the name
"FC#getFoo". This strategy can be replaced or customized by creating an instance of
HandlerMethodMappingNamingStrategy and plugging it into your RequestMappingHandlerMapping. The
default strategy implementation also looks at the name attribute on @RequestMapping and uses that if
present. That means if the default mapping name assigned conflicts with another (e.g. overloaded
methods) you can assign a name explicitly on the @RequestMapping.

o The assigned request mapping names are logged at TRACE level on startup.

The Spring JSP tag library provides a function called mvcUrl that can be used to prepare links to
controller methods based on this mechanism.

For example given:

("/people/{id}/addresses")
public class PersonAddressController {

("/{country}")
public HttpEntity getAddress(String country) { ... }

You can prepare a link from a JSP as follows:

58

https://tools.ietf.org/html/rfc7239

n_n g

<%@ taglib uri="http://www.springframework.org/tags" prefix="s" %>

Get
Address

The above example relies on the mvcUrl JSP function declared in the Spring tag library (i.e. META-
INF/spring.tld). For more advanced cases (e.g. a custom base URL as explained in the previous
section), it is easy to define your own function, or use a custom tag file, in order to use a specific
instance of MvcUriComponentsBuilder with a custom base URL.

1.8. Using locales

Most parts of Spring’s architecture support internationalization, just as the Spring web MVC
framework does. DispatcherServlet enables you to automatically resolve messages using the client’s
locale. This is done with LocaleResolver objects.

When a request comes in, the DispatcherServlet looks for a locale resolver, and if it finds one it tries
to use it to set the locale. Using the RequestContext.getlLocale() method, you can always retrieve the
locale that was resolved by the locale resolver.

In addition to automatic locale resolution, you can also attach an interceptor to the handler
mapping (see Intercepting requests with a HandlerInterceptor for more information on handler
mapping interceptors) to change the locale under specific circumstances, for example, based on a
parameter in the request.

Locale resolvers and interceptors are defined in the org.springframework.web.servlet.i18n package
and are configured in your application context in the normal way. Here is a selection of the locale
resolvers included in Spring.

1.8.1. Obtaining Time Zone Information

In addition to obtaining the client’s locale, it is often useful to know their time zone. The
LocaleContextResolver interface offers an extension to LocaleResolver that allows resolvers to
provide a richer LocaleContext, which may include time zone information.

When available, the user’s TimeZone can be obtained using the RequestContext.getTimeZone()
method. Time zone information will automatically be used by Date/Time Converter and Formatter
objects registered with Spring’s ConversionService.

1.8.2. AcceptHeaderLocaleResolver

This locale resolver inspects the accept-language header in the request that was sent by the client
(e.g., a web browser). Usually this header field contains the locale of the client’s operating system.
Note that this resolver does not support time zone information.

1.8.3. CookieLocaleResolver

This locale resolver inspects a Cookie that might exist on the client to see if a Locale or TimeZone is

59

specified. If so, it uses the specified details. Using the properties of this locale resolver, you can
specify the name of the cookie as well as the maximum age. Find below an example of defining a
CookielLocaleResolver.

<bean id="localeResolver" class=
"org.springframework.web.servlet.i18n.CookielLocaleResolver">

<property name="cookieName" value="clientlanguage"/>
<!--in seconds. If set to -1, the cookie is not persisted (deleted when browser
shuts down) -->

<property name="cookieMaxAge" value="100000"/>

</bean>

Table 4. CookieLocaleResolver properties

Property Default Description

cookieName classname + The name of the cookie
LOCALE

cookieMaxAge Servlet The maximum time a cookie will stay persistent on the client. If
container -1 is specified, the cookie will not be persisted; it will only be
default available until the client shuts down their browser.

cookiePath / Limits the visibility of the cookie to a certain part of your site.

When cookiePath is specified, the cookie will only be visible to
that path and the paths below it.

1.8.4. SessionLocaleResolver

The SessionLocaleResolver allows you to retrieve Locale and TimeZone from the session that might be
associated with the user’s request. In contrast to CookielLocaleResolver, this strategy stores locally
chosen locale settings in the Servlet container’s HttpSession. As a consequence, those settings are
just temporary for each session and therefore lost when each session terminates.

Note that there is no direct relationship with external session management mechanisms such as the
Spring Session project. This SessionLocaleResolver will simply evaluate and modify corresponding
HttpSession attributes against the current HttpServletRequest.

1.8.5. LocaleChangelnterceptor

You can enable changing of locales by adding the LocaleChangeInterceptor to one of the handler
mappings (see Handler mappings). It will detect a parameter in the request and change the locale. It
calls setLocale() on the LocaleResolver that also exists in the context. The following example shows
that calls to all *.view resources containing a parameter named sitelLanguage will now change the
locale. So, for example, a request for the following URL, http://www.sf.net/home.view?
sitelLanguage=nl will change the site language to Dutch.

60

http://www.sf.net/home.view?siteLanguage=nl
http://www.sf.net/home.view?siteLanguage=nl
http://www.sf.net/home.view?siteLanguage=nl
http://www.sf.net/home.view?siteLanguage=nl
http://www.sf.net/home.view?siteLanguage=nl

<bean id="localeChangeInterceptor"
class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor">
<property name="paramName" value="sitelanqguage"/>
</bean>

<bean id="localeResolver"
class="org.springframework.web.servlet.i18n.CookielLocaleResolver"/>

<bean id="ur1Mapping"
class="org.springframework.web.servlet.handler.SimpleUr1HandlerMapping">
<property name="interceptors">
<list>
<ref bean="localeChangeInterceptor"/>
</list>
</property>
<property name="mappings">
<value>/**/*.view=someController</value>
</property>
</bean>

1.9. Using themes

1.9.1. Overview of themes

You can apply Spring Web MVC framework themes to set the overall look-and-feel of your
application, thereby enhancing user experience. A theme is a collection of static resources, typically
style sheets and images, that affect the visual style of the application.

1.9.2. Defining themes

To use themes in your web application, you must set up an implementation of the
org.springframework.ui.context.ThemeSource interface. The WebApplicationContext interface extends
ThemeSource but delegates its responsibilities to a dedicated implementation. By default the delegate
will be an org.springframework.ui.context.support.ResourceBundleThemeSource implementation that
loads properties files from the root of the classpath. To use a custom ThemeSource implementation or
to configure the base name prefix of the ResourceBundleThemeSource, you can register a bean in the
application context with the reserved name themeSource. The web application context automatically
detects a bean with that name and uses it.

When using the ResourceBundleThemeSource, a theme is defined in a simple properties file. The
properties file lists the resources that make up the theme. Here is an example:

styleSheet=/themes/cool/style.css
background=/themes/cool/img/coolBg. jpg

The keys of the properties are the names that refer to the themed elements from view code. For a
JSP, you typically do this using the spring:theme custom tag, which is very similar to the

61

spring:message tag. The following JSP fragment uses the theme defined in the previous example to
customize the look and feel:

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
<html>

<head>

<link rel="stylesheet" href="<spring:theme code="styleSheet'/>"

type="text/css"/>

</head>

<body style="background=<spring:theme code="'background'/>">

</body>
</html>

By default, the ResourceBundleThemeSource uses an empty base name prefix. As a result, the
properties files are loaded from the root of the classpath. Thus you would put the cool.properties
theme definition in a directory at the root of the classpath, for example, in /WEB-INF/classes. The
ResourceBundleThemeSource uses the standard Java resource bundle loading mechanism, allowing for
full internationalization of themes. For example, we could have a /WEB-
INF/classes/cool_nl.properties that references a special background image with Dutch text on it.

1.9.3. Theme resolvers

After you define themes, as in the preceding section, you decide which theme to use. The
DispatcherServlet will look for a bean named themeResolver to find out which ThemeResolver
implementation to use. A theme resolver works in much the same way as a LocaleResolver. It
detects the theme to use for a particular request and can also alter the request’s theme. The
following theme resolvers are provided by Spring:

Table 5. ThemeResolver implementations
Class Description

FixedThemeResolver Selects a fixed theme, set using the defaultThemeName property.

SessionThemeResolv The theme is maintained in the user’s HTTP session. It only needs to be set
er once for each session, but is not persisted between sessions.

CookieThemeResolve The selected theme is stored in a cookie on the client.
.

Spring also provides a ThemeChangeInterceptor that allows theme changes on every request with a
simple request parameter.

1.10. Multipart (file upload) support

1.10.1. Introduction

Spring’s built-in multipart support handles file uploads in web applications. You enable this
multipart support with pluggable MultipartResolver objects, defined in the
org.springframework.web.multipart package. Spring provides one MultipartResolver implementation

62

for use with Commons FileUpload and another for use with Servlet 3.0 multipart request parsing.

By default, Spring does no multipart handling, because some developers want to handle multiparts
themselves. You enable Spring multipart handling by adding a multipart resolver to the web
application’s context. Each request is inspected to see if it contains a multipart. If no multipart is
found, the request continues as expected. If a multipart is found in the request, the
MultipartResolver that has been declared in your context is used. After that, the multipart attribute
in your request is treated like any other attribute.

1.10.2. Using a MultipartResolver with Commons FileUpload

The following example shows how to use the CommonsMultipartResolver:

<bean id="multipartResolver"
class="org.springframework.web.multipart.commons.CommonsMultipartResolver">

<!-- one of the properties available; the maximum file size in bytes -->
<property name="maxUploadSize" value="100000"/>

</bean>

Of course you also need to put the appropriate jars in your classpath for the multipart resolver to
work. In the case of the CommonsMultipartResolver, you need to use commons-fileupload.jar.

When the Spring DispatcherServlet detects a multi-part request, it activates the resolver that has
been declared in your context and hands over the request. The resolver then wraps the current
HttpServletRequest into a MultipartHttpServletRequest that supports multipart file uploads. Using
the MultipartHttpServletRequest, you can get information about the multiparts contained by this
request and actually get access to the multipart files themselves in your controllers.

1.10.3. Using a MultipartResolver with Servlet 3.0

In order to use Servlet 3.0 based multipart parsing, you need to mark the DispatcherServlet with a
"multipart-config" section in web.xml, or with a javax.servlet.MultipartConfigElement in
programmatic Servlet registration, or in case of a custom Servlet class possibly with a
javax.servlet.annotation.MultipartConfig annotation on your Servlet class. Configuration settings
such as maximum sizes or storage locations need to be applied at that Servlet registration level as
Servlet 3.0 does not allow for those settings to be done from the MultipartResolver.

Once Servlet 3.0 multipart parsing has been enabled in one of the above mentioned ways you can
add the StandardServletMultipartResolver to your Spring configuration:

<bean id="multipartResolver"

class=
"org.springframework.web.multipart.support.StandardServletMultipartResolver">
</bean>

63

http://jakarta.apache.org/commons/fileupload

1.10.4. Handling a file upload in a form

After the MultipartResolver completes its job, the request is processed like any other. First, create a
form with a file input that will allow the user to upload a form. The encoding attribute (
enctype="multipart/form-data") lets the browser know how to encode the form as multipart request:

<html>
<head>
<title>Upload a file please</title>
</head>
<body>
<h1>Please upload a file</h1>
<form method="post" action="/form" enctype="multipart/form-data">
<input type="text" name="name"/>
<input type="file" name="file"/>
<input type="submit"/>
</form>
</body>
</html>

The next step is to create a controller that handles the file upload. This controller is very similar to
a normal annotated @Controller, except that we use MultipartHttpServletRequest or MultipartFile
in the method parameters:

@Controller
public class FileUploadController {

@PostMapping("/form")
public String handleFormUpload(@RequestParam("name") String name,
@RequestParam("file") MultipartFile file) {

if (Mfile.isEmpty()) {
byte[] bytes = file.getBytes();
// store the bytes somewhere
return "redirect:uploadSuccess";

}

return "redirect:uploadFailure”;

Note how the @RequestParam method parameters map to the input elements declared in the form. In
this example, nothing is done with the byte[], but in practice you can save it in a database, store it
on the file system, and so on.

When using Servlet 3.0 multipart parsing you can also use javax.servlet.http.Part for the method
parameter:

64

public class FileUploadController {

("/form")
public String handleFormUpload(("name") String name,
("file") Part file) {

InputStream inputStream = file.getInputStream();
// store bytes from uploaded file somewhere

return "redirect:uploadSuccess";

1.10.5. Handling a file upload request from programmatic clients

Multipart requests can also be submitted from non-browser clients in a RESTful service scenario.
All of the above examples and configuration apply here as well. However, unlike browsers that
typically submit files and simple form fields, a programmatic client can also send more complex
data of a specific content type — for example a multipart request with a file and second part with
JSON formatted data:

POST /someUrl
Content-Type: multipart/mixed

--edt7Tfrdusa7r31NQc79vXuhIIMlatb7PQg7Vp
Content-Disposition: form-data; name="meta-data"
Content-Type: application/json; charset=UTF-8
Content-Transfer-Encoding: 8bit

{

"name": "value"

}
--edt7Tfrdusa7r31NQc79vXuhIIM1atb7PQg7Vp
Content-Disposition: form-data; name="file-data"; filename="file.properties"
Content-Type: text/xml
Content-Transfer-Encoding: 8bit
. File Data ...

You could access the part named "meta-data" with a @RequestParam("meta-data") String metadata
controller method argument. However, you would probably prefer to accept a strongly typed object
initialized from the JSON formatted data in the body of the request part, very similar to the way
@RequestBody converts the body of a non-multipart request to a target object with the help of an
HttpMessageConverter.

You can use the @RequestPart annotation instead of the @RequestParam annotation for this purpose. It
allows you to have the content of a specific multipart passed through an HttpMessageConverter

65

taking into consideration the 'Content-Type' header of the multipart:

("/someUr1")
public String onSubmit(("meta-data") MetaData metadata,
("file-data") MultipartFile file) {

/] ...

Notice how MultipartFile method arguments can be accessed with @RequestParam or with
@RequestPart interchangeably. However, the @RequestPart("meta-data") MetaData method argument
in this case is read as JSON content based on its 'Content-Type' header and converted with the help
of the MappingJackson2HttpMessageConverter.

1.11. Handling exceptions

1.11.1. HandlerExceptionResolver

Spring HandlerExceptionResolver implementations deal with unexpected exceptions that occur
during controller execution. A HandlerExceptionResolver somewhat resembles the exception
mappings you can define in the web application descriptor web.xml. However, they provide a more
flexible way to do so. For example they provide information about which handler was executing
when the exception was thrown. Furthermore, a programmatic way of handling exceptions gives
you more options for responding appropriately before the request is forwarded to another URL (the
same end result as when you use the Servlet specific exception mappings).

Besides implementing the HandlerExceptionResolver interface, which is only a matter of
implementing the resolveException(Exception, Handler) method and returning a ModelAndView, you
may also use the provided SimpleMappingExceptionResolver or create @ExceptionHandler methods.
The SimpleMappingExceptionResolver enables you to take the class name of any exception that might
be thrown and map it to a view name. This is functionally equivalent to the exception mapping
feature from the Servlet API, but it is also possible to implement more finely grained mappings of
exceptions from different handlers. The @ExceptionHandler annotation on the other hand can be
used on methods that should be invoked to handle an exception. Such methods may be defined
locally within an @Controller or may apply to many @Controller classes when defined within an
@ControllerAdvice class. The following sections explain this in more detail.

1.11.2. @ExceptionHandler

The HandlerExceptionResolver interface and the SimpleMappingExceptionResolver implementations
allow you to map Exceptions to specific views declaratively along with some optional Java logic
before forwarding to those views. However, in some cases, especially when relying on
@ResponseBody methods rather than on view resolution, it may be more convenient to directly set the
status of the response and optionally write error content to the body of the response.

You can do that with @ExceptionHandler methods. When declared within a controller such methods

66

apply to exceptions raised by @RequestMapping methods of that controller (or any of its sub-classes).
You can also declare an @ExceptionHandler method within an @ControllerAdvice class in which case
it handles exceptions from @RequestMapping methods from many controllers. Below is an example of
a controller-local @ExceptionHandler method:

public class SimpleController {
// @RequestMapping methods omitted ...

(IOException.class)
public ResponseEntity<String> handleIOException(IOException ex) {
// prepare responseEntity
return responseEntity;

The @ExceptionHandler value can be set to an array of Exception types. If an exception is thrown that
matches one of the types in the list, then the method annotated with the matching
@ExceptionHandler will be invoked. If the annotation value is not set then the exception types listed
as method arguments are used.

Much like standard controller methods annotated with a @RequestMapping annotation, the method
arguments and return values of @ExceptionHandler methods can be flexible. For example, the
HttpServletRequest can be accessed in Servlet environments. The return type can be a String, which
is interpreted as a view name, a ModelAndView object, a ResponseEntity, or you can also add the
@ResponseBody to have the method return value converted with message converters and written to
the response stream.

1.11.3. Handling Standard Spring MVC Exceptions

Spring MVC may raise a number of exceptions while processing a request. The
SimpleMappingExceptionResolver can easily map any exception to a default error view as needed.
However, when working with clients that interpret responses in an automated way you will want
to set specific status code on the response. Depending on the exception raised the status code may
indicate a client error (4xx) or a server error (5xx).

The DefaultHandlerExceptionResolver translates Spring MVC exceptions to specific error status
codes. It is registered by default with the MVC namespace, the MVC Java config, and also by the
DispatcherServlet (i.e. when not using the MVC namespace or Java config). Listed below are some of
the exceptions handled by this resolver and the corresponding status codes:

Exception HTTP Status Code
BindException 400 (Bad Request)
ConversionNotSupportedException 500 (Internal Server Error)
HttpMediaTypeNotAcceptableException 406 (Not Acceptable)

67

Exception HTTP Status Code

HttpMediaTypeNotSupportedException 415 (Unsupported Media Type)
HttpMessageNotReadableException 400 (Bad Request)
HttpMessageNotWritableException 500 (Internal Server Error)
HttpRequestMethodNotSupportedException 405 (Method Not Allowed)
MethodArgumentNotValidException 400 (Bad Request)
MissingPathVariableException 500 (Internal Server Error)
MissingServletRequestParameterException 400 (Bad Request)
MissingServletRequestPartException 400 (Bad Request)
NoHandlerFoundException 404 (Not Found)
NoSuchRequestHandlingMethodException 404 (Not Found)
TypeMismatchException 400 (Bad Request)

The DefaultHandlerExceptionResolver works transparently by setting the status of the response.
However, it stops short of writing any error content to the body of the response while your
application may need to add developer-friendly content to every error response for example when
providing a REST API. You can prepare a ModelAndView and render error content through view
resolution —i.e. by configuring a ContentNegotiatingViewResolver, MappingJackson2]sonView, and so
on. However, you may prefer to use @ExceptionHandler methods instead.

If you prefer to write error content via @ExceptionHandler methods you can extend
ResponseEntityExceptionHandler instead. This is a convenient base for @ControllerAdvice classes
providing an @ExceptionHandler method to handle standard Spring MVC exceptions and return
ResponseEntity. That allows you to customize the response and write error content with message
converters. See the ResponseEntityExceptionHandler javadocs for more details.

1.11.4. REST Controller Exception Handling

An @RestController may use @ExceptionHandler methods that return a ResponseEntity to provide
both a response status and error details in the body of the response. Such methods may also be
added to @ControllerAdvice classes for exception handling across a subset or all controllers.

A common requirement is to include error details in the body of the response. Spring does not
automatically do this (although Spring Boot does) because the representation of error details in the
response body is application specific.

Applications that wish to implement a global exception handling strategy with error details in the
response body should consider extending the abstract base class ResponseEntityExceptionHandler
which provides handling for the exceptions that Spring MVC raises and provides hooks to
customize the response body as well as to handle other exceptions. Simply declare the extension
class as a Spring bean and annotate it with @ControllerAdvice. For more details see See
ResponseEntityExceptionHandler.

68

1.11.5. Annotating Business Exceptions With @ResponseStatus

A business exception can be annotated with @ResponseStatus. When the exception is raised, the
ResponseStatusExceptionResolver handles it by setting the status of the response accordingly. By
default the DispatcherServlet registers the ResponseStatusExceptionResolver and it is available for
use.

1.11.6. Customizing the Default Servlet Container Error Page

When the status of the response is set to an error status code and the body of the response is empty,
Servlet containers commonly render an HTML formatted error page. To customize the default error
page of the container, you can declare an <error-page> element in web.xml. Up until Servlet 3, that
element had to be mapped to a specific status code or exception type. Starting with Servlet 3 an
error page does not need to be mapped, which effectively means the specified location customizes
the default Servlet container error page.

<error-page>
<location>/error</location>
</error-page>

Note that the actual location for the error page can be a JSP page or some other URL within the
container including one handled through an @Controller method:

When writing error information, the status code and the error message set on the
HttpServletResponse can be accessed through request attributes in a controller:

public class ErrorController {
(path = "/error", produces = MediaType.APPLICATION_JSON_UTF8_VALUE)
public Map<String, Object> handle(HttpServletRequest request) {
Map<String, Object> map = new HashMap<String, Object>();
map.put(“status", request.getAttribute("javax.servlet.error.status_code"));

map.put("reason”, request.getAttribute("javax.servlet.error.message"));

return map,

or in a JSP:

69

<%@ page contentType="application/json" pageEncoding="UTF-8"%>
{

status:<%=request.getAttribute("javax.servlet.error.status_code") %>,
reason:<%=request.getAttribute("javax.servlet.error.message") %>

1.12. Web Security

The Spring Security project provides features to protect web applications from malicious exploits.
Check out the reference documentation in the sections on "CSRF protection”, "Security Response
Headers", and also "Spring MVC Integration". Note that using Spring Security to secure the
application is not necessarily required for all features. For example CSRF protection can be added
simply by adding the CsrfFilter and CsrfRequestDataValueProcessor to your configuration. See the
Spring MVC Showcase for an example.

Another option is to use a framework dedicated to Web Security. HDIV is one such framework and
integrates with Spring MVC.

1.13. Convention over configuration support

For a lot of projects, sticking to established conventions and having reasonable defaults is just what
they (the projects) need, and Spring Web MVC now has explicit support for convention over
configuration. What this means is that if you establish a set of naming conventions and suchlike,
you can substantially cut down on the amount of configuration that is required to set up handler
mappings, view resolvers, ModelAndView instances, etc. This is a great boon with regards to rapid
prototyping, and can also lend a degree of (always good-to-have) consistency across a codebase
should you choose to move forward with it into production.

Convention-over-configuration support addresses the three core areas of MVC: models, views, and
controllers.

1.13.1. The Controller ControllerClassNameHandlerMapping

The ControllerClassNameHandlerMapping class is a HandlerMapping implementation that uses a
convention to determine the mapping between request URLs and the Controller instances that are
to handle those requests.

Consider the following simple Controller implementation. Take special notice of the name of the
class.

70

http://projects.spring.io/spring-security/
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#csrf
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#headers
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#headers
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#mvc
https://github.com/spring-projects/spring-mvc-showcase/commit/361adc124c05a8187b84f25e8a57550bb7d9f8e4
http://hdiv.org/

public class ViewShoppingCartController implements Controller {

public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse
response) {
// the implementation is not hugely important for this example...

}

Here is a snippet from the corresponding Spring Web MVC configuration file:

<bean class=
"org.springframework.web.servlet.mvc.support.ControllerClassNameHandlerMapping"/>

<bean id="viewShoppingCart" class="x.y.z.ViewShoppingCartController">
<!-- inject dependencies as required... -->
</bean>

The ControllerClassNameHandlerMapping finds all of the various handler (or Controller) beans
defined in its application context and strips Controller off the name to define its handler mappings.
Thus, ViewShoppingCartController maps to the /viewshoppingcart* request URL.

Let’s look at some more examples so that the central idea becomes immediately familiar. (Notice all
lowercase in the URLS, in contrast to camel-cased Controller class names.)

WelcomeController maps to the /welcome* request URL

HomeController maps to the /home* request URL

* IndexController maps to the /index* request URL

* RegisterController maps to the /register* request URL
In the case of MultiActionController handler classes, the mappings generated are slightly more
complex. The Controller names in the following examples are assumed to be MultiActionController
implementations:

» AdminController maps to the /admin/* request URL

 CatalogController maps to the /catalog/* request URL
If you follow the convention of naming your Controller implementations as xxxController, the

ControllerClassNameHandlerMapping saves you the tedium of defining and maintaining a potentially
looooong SimpleUr1HandlerMapping (or suchlike).

The ControllerClassNameHandlerMapping class extends the AbstractHandlerMapping base class so you
can define HandlerInterceptor instances and everything else just as you would with many other
HandlerMapping implementations.

71

1.13.2. The Model ModelMap (ModelAndView)

The ModelMap class is essentially a glorified Map that can make adding objects that are to be displayed
in (or on) a View adhere to a common naming convention. Consider the following Controller
implementation; notice that objects are added to the ModelAndView without any associated name
specified.

public class DisplayShoppingCartController implements Controller {

public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse
response) {

List cartItems = // get a List of CartItem objects
User user = // get the User doing the shopping

ModelAndView mav = new ModelAndView("displayShoppingCart"); <-- the logical
view name

mav.addObject(cartItems); <-- look ma, no name, just the object
mav.addObject(user); <-- and again ma!

return mav;

The ModelAndView class uses a ModelMap class that is a custom Map implementation that automatically
generates a key for an object when an object is added to it. The strategy for determining the name
for an added object is, in the case of a scalar object such as User, to use the short class name of the
object’s class. The following examples are names that are generated for scalar objects put into a
ModelMap instance.

* An x.y.User instance added will have the name user generated.
* An x.y.Registration instance added will have the name registration generated.

* An x.y.Foo instance added will have the name foo generated.

* A java.util.HashMap instance added will have the name hashMap generated. You probably want to
be explicit about the name in this case because hashMap is less than intuitive.

Adding null will result in an I1legalArgumentException being thrown. If the object (or objects)
that you are adding could be null, then you will also want to be explicit about the name.

72

What, no automatic pluralization?

Spring Web MVC’s convention-over-configuration support does not support automatic
pluralization. That is, you cannot add a List of Person objects to a ModelAndView and have the
generated name be people.

This decision was made after some debate, with the "Principle of Least Surprise" winning out
in the end.

The strategy for generating a name after adding a Set or a List is to peek into the collection, take
the short class name of the first object in the collection, and use that with List appended to the
name. The same applies to arrays although with arrays it is not necessary to peek into the array
contents. A few examples will make the semantics of name generation for collections clearer:

* An x.y.User[] array with zero or more x.y.User elements added will have the name userList
generated.

* An x.y.Foo[] array with zero or more x.y.User elements added will have the name foolist
generated.

* A java.util.ArraylList with one or more x.y.User elements added will have the name userlList
generated.

* A java.util.HashSet with one or more x.y.Foo elements added will have the name foolist
generated.

* An empty java.util.ArraylList will not be added at all (in effect, the addObject(..) call will
essentially be a no-op).

1.13.3. The View - RequestToViewNameTranslator

The RequestToViewNameTranslator interface determines a logical View name when no such logical
view name is explicitly supplied. It has just one implementation, the
DefaultRequestToViewNameTranslator class.

The DefaultRequestToViewNameTranslator maps request URLs to logical view names, as with this
example:

73

public class RegistrationController implements Controller {

public ModelAndView handleRequest(HttpServletRequest request, HttpServletResponse
response) {
// process the request...
ModelAndView mav = new ModelAndView();
// add data as necessary to the model...
return mav;
// notice that no View or logical view name has been set

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<!-- this bean with the well known name generates view names for us -->
<bean id="viewNameTranslator"
class=
"org.springframework.web.servlet.view.DefaultRequestToViewNameTranslator"/>

<bean class="x.y.RegistrationController">
<!-- inject dependencies as necessary -->
</bean>

<!-- maps request URLs to Controller names -->
<bean class=
"org.springframework.web.servlet.mvc.support.ControllerClassNameHandlerMapping"/>

<bean id="viewResolver" class=
"org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>
</bean>

</beans>

Notice how in the implementation of the handleRequest(..) method no View or logical view name is
ever set on the ModelAndView that is returned. The DefaultRequestToViewNameTranslator is tasked with
generating a logical view name from the URL of the request. In the case of the above
RegistrationController, which is used in conjunction with the ControllerClassNameHandlerMapping, a
request URL of http://localhost/registration.html results in a logical view name of registration
being generated by the DefaultRequestToViewNameTranslator. This logical view name is then resolved
into the /WEB-INF/jsp/registration.jsp view by the InternalResourceViewResolver bean.

74

http://localhost/registration.html
http://localhost/registration.html
http://localhost/registration.html

You do not need to define a DefaultRequestToViewNameTranslator bean explicitly. If

Q you like the default settings of the DefaultRequestToViewNameTranslator, you can
rely on the Spring Web MVC DispatcherServlet to instantiate an instance of this
class if one is not explicitly configured.

Of course, if you need to change the default settings, then you do need to configure your own
DefaultRequestToViewNameTranslator bean explicitly. Consult the comprehensive
DefaultRequestToViewNameTranslator javadocs for details on the various properties that can be
configured.

1.14. HTTP caching support

A good HTTP caching strategy can significantly improve the performance of a web application and
the experience of its clients. The 'Cache-Control' HTTP response header is mostly responsible for
this, along with conditional headers such as 'Last-Modified"' and 'ETag".

The 'Cache-Control' HTTP response header advises private caches (e.g. browsers) and public caches
(e.g. proxies) on how they can cache HTTP responses for further reuse.

An ETag (entity tag) is an HTTP response header returned by an HTTP/1.1 compliant web server
used to determine change in content at a given URL. It can be considered to be the more
sophisticated successor to the Last-Modified header. When a server returns a representation with
an ETag header, the client can use this header in subsequent GETs, in an If-None-Match header. If
the content has not changed, the server returns 304: Not Modified.

This section describes the different choices available to configure HTTP caching in a Spring Web
MVC application.

1.14.1. Cache-Control HTTP header

Spring Web MVC supports many use cases and ways to configure "Cache-Control" headers for an
application. While RFC 7234 Section 5.2.2 completely describes that header and its possible
directives, there are several ways to address the most common cases.

Spring Web MVC uses a configuration convention in several of its APIs: setCachePeriod(int
seconds):

* A -1value won’t generate a 'Cache-Control' response header.

* A 0 value will prevent caching using the 'Cache-Control: no-store' directive.

* Ann > 0 value will cache the given response for n seconds using the 'Cache-Control: max-age=n'

directive.

The CacheControl builder class simply describes the available "Cache-Control" directives and makes
it easier to build your own HTTP caching strategy. Once built, a CacheControl instance can then be
accepted as an argument in several Spring Web MVC APIs.

75

http://en.wikipedia.org/wiki/HTTP_ETag
https://tools.ietf.org/html/rfc7234#section-5.2.2
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/http/CacheControl.html

// Cache for an hour - "Cache-Control: max-age=3600"
CacheControl ccCacheOneHour = CacheControl.maxAge(1, TimeUnit.HOURS);

// Prevent caching - "Cache-Control: no-store"
CacheControl ccNoStore = CacheControl.noStore();

// Cache for ten days in public and private caches,

// public caches should not transform the response

// "Cache-Control: max-age=864000, public, no-transform"

CacheControl ccCustom = CacheControl.maxAge(10, TimeUnit.DAYS)
.noTransform().cachePublic();

1.14.2. HTTP caching support for static resources

Static resources should be served with appropriate 'Cache-Control' and conditional headers for
optimal performance. Configuring a ResourceHttpRequestHandler for serving static resources not
only natively writes 'Last-Modified"' headers by reading a file’s metadata, but also 'Cache-Control’
headers if properly configured.

You can set the cachePeriod attribute on a ResourceHttpRequestHandler or use a CacheControl
instance, which supports more specific directives:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride
public void addResourceHandlers(ResourceHandlerRegistry registry) {
registry.addResourceHandler("/resources/**")
.addResourcelLocations("/public-resources/")
.setCacheControl(CacheControl.maxAge(1, TimeUnit.HOURS).cachePublic()

)i
}
}
And in XML:

<mvc:resources mapping="/resources/**" location="/public-resources/">
<mvc:cache-control max-age="3600" cache-public="true"/>
</mvc:iresources>

1.14.3. Support for the Cache-Control, ETag and Last-Modified response

headers in Controllers

Controllers can support 'Cache-Control’, 'ETag', and/or 'If-Modified-Since' HTTP requests; this is

76

indeed recommended if a 'Cache-Control’' header is to be set on the response. This involves
calculating a lastModified long and/or an Etag value for a given request, comparing it against the
'If-Modified-Since' request header value, and potentially returning a response with status code
304 (Not Modified).

As described in Using HttpEntity, controllers can interact with the request/response using
HttpEntity types. Controllers returning ResponseEntity can include HTTP caching information in
responses like this:

@GetMapping("/book/{id}")
public ResponseEntity<Book> showBook(@PathVariable Long id) {

Book book = findBook(id);
String version = book.getVersion();

return ResponseEntity
.0k()
.cacheControl(CacheControl.maxAge(30, TimeUnit.DAYS))
.eTag(version) // lastModified is also available
.body(book);

Doing this will not only include 'ETag' and 'Cache-Control' headers in the response, it will also
convert the response to an HTTP 304 Not Modified response with an empty body if the
conditional headers sent by the client match the caching information set by the Controller.

An @ERequestMapping method may also wish to support the same behavior. This can be achieved as
follows:

@RequestMapping
public String myHandleMethod(WebRequest webRequest, Model model) {

long lastModified = // 1. application-specific calculation

if (request.checkNotModified(lastModified)) {
// 2. shortcut exit - no further processing necessary
return null;

}

// 3. or otherwise further request processing, actually preparing content
model.addAttribute(...);
return "myViewName";

There are two key elements here: calling request.checkNotModified(lastModified) and returning
null. The former sets the appropriate response status and headers before it returns true. The latter,
in combination with the former, causes Spring MVC to do no further processing of the request.

77

Note that there are 3 variants for this:

* request.checkNotModified(lastModified) compares lastModified with the 'If-Modified-Since' or
"If-Unmodified-Since' request header

* request.checkNotModified(eTag) compares eTag with the 'If-None-Match' request header

* request.checkNotModified(eTag, lastModified) does both, meaning that both conditions should
be valid

When receiving conditional 'GET'/'HEAD' requests, checkNotModified will check that the resource has
not been modified and if so, it will result in a HTTP 304 Not Modified response. In case of conditional
"POST'/"PUT'/'DELETE" requests, checkNotModified will check that the resource has not been modified
and if it has been, it will result in a HTTP 409 Precondition Failed response to prevent concurrent
modifications.

1.14.4. Shallow ETag support

Support for ETags is provided by the Servlet filter ShallowEtagHeaderFilter. It is a plain Servlet
Filter, and thus can be used in combination with any web framework. The ShallowEtagHeaderFilter
filter creates so-called shallow ETags (as opposed to deep ETags, more about that later).The filter
caches the content of the rendered JSP (or other content), generates an MD5 hash over that, and
returns that as an ETag header in the response. The next time a client sends a request for the same
resource, it uses that hash as the If-None-Match value. The filter detects this, renders the view again,
and compares the two hashes. If they are equal, a 304 is returned.

Note that this strategy saves network bandwidth but not CPU, as the full response must be
computed for each request. Other strategies at the controller level (described above) can save
network bandwidth and avoid computation.

This filter has a writelleakETag parameter that configures the filter to write Weak ETags, like this:
W/"02a2d595e6ed9a0b24102712b63b134d6", as defined in RFC 7232 Section 2.3.

You configure the ShallowEtagHeaderFilter in web.xml:

78

https://tools.ietf.org/html/rfc7232#section-2.3

<filter>
<filter-name>etagFilter</filter-name>
<filter-class>org.springframework.web.filter.ShallowEtagHeaderFilter</filter-
class>
<!-- Optional parameter that confiqures the filter to write weak ETags
<init-param>
<param-name>wr iteWeakETag</param-name>
<param-value>true</param-value>
</init-param>
-->
</filter>

<filter-mapping>
<filter-name>etagFilter</filter-name>

<servlet-name>petclinic</serviet-name>
</filter-mapping>

Or in Servlet 3.0+ environments,

public class MyWebAppInitializer extends AbstractDispatcherServletInitializer {
/] ...
@0verride
protected Filter[] getServletFilters() {

return new Filter[] { new ShallowEtagHeaderFilter() };
}

See Code-based Servlet container initialization for more details.

1.15. Code-based Servlet container initialization

In a Servlet 3.0+ environment, you have the option of configuring the Servlet container
programmatically as an alternative or in combination with a web.xml file. Below is an example of
registering a DispatcherServlet:

79

import org.springframework.web.WebApplicationInitializer;

public class MyWebApplicationInitializer implements WebApplicationInitializer {

public void onStartup(ServletContext container) {
XmlWebApplicationContext appContext = new XmlWebApplicationContext();
appContext.setConfiglocation("/WEB-INF/spring/dispatcher-config.xml");

ServletRegistration.Dynamic registration = container.addServlet("dispatcher"”,
new DispatcherServlet(appContext));

registration.setlLoadOnStartup(1);

registration.addMapping("/");

WebApplicationInitializer is an interface provided by Spring MVC that ensures your
implementation is detected and automatically used to initialize any Servlet 3 container. An abstract
base class implementation of WebApplicationInitializer named
AbstractDispatcherServletInitializer makes it even easier to register the DispatcherServlet by
simply overriding methods to specify the servlet mapping and the location of the DispatcherServlet
configuration.

This is recommended for applications that use Java-based Spring configuration:

public class MyWebAppInitializer extends
AbstractAnnotationConfigDispatcherServletInitializer {

protected Class<?>[] getRootConfigClasses() {
return null;

}

protected Class<?>[] getServletConfigClasses() {
return new Class[] { MyWebConfig.class };
}

protected String[] getServletMappings() {
return new String[] { "/" };

}

If wusing XML-based Spring configuration, you should extend directly from
AbstractDispatcherServletInitializer:

80

public class MyWebAppInitializer extends AbstractDispatcherServietInitializer {

protected WebApplicationContext createRootApplicationContext() {
return null;

}

protected WebApplicationContext createServletApplicationContext() {
XmlWebApplicationContext cxt = new XmlWebApplicationContext();
cxt.setConfiglLocation("/WEB-INF/spring/dispatcher-config.xml");
return cxt;

protected String[] getServletMappings() {
return new String[] { "/" };

}

AbstractDispatcherServletInitializer also provides a convenient way to add Filter instances and
have them automatically mapped to the DispatcherServlet:

public class MyWebAppInitializer extends AbstractDispatcherServietInitializer {

/] ...

protected Filter[] getServletFilters() {
return new Filter[] { new HiddenHttpMethodFilter(), new
CharacterEncodingFilter() };
}

Each filter is added with a default name based on its concrete type and automatically mapped to
the DispatcherServlet.

The isAsyncSupported protected method of AbstractDispatcherServletInitializer provides a single
place to enable async support on the DispatcherServlet and all filters mapped to it. By default this
flag is set to true.

Finally, if you need to further customize the DispatcherServlet itself, you can override the
createDispatcherServlet method.

81

1.16. MVC Java config, XML namespace

Same in Spring WebFlux

The MVC Java config and the MVC namespace provide default configuration suitable for most
applications along with a configuration API to customize it.

For more advanced customizations, not available in the configuration API, see Advanced Config
Mode and Advanced MVC Namespace.

You do not need to understand the underlying beans created by the MVC Java config and the MVC
namespace but if you want to learn more, see Special Bean Types In the WebApplicationContext
and DispatcherServlet Configuration.

1.16.1. Enable the Configuration
Same in Spring WebFlux

In Java config use the @EnableWebMvc annotation:

@Configuration
@EnableWebMvc

public class WebConfig {
}

In XML use the <mvc:annotation-driven> element:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:mve="http://www.springframework.org/schema/mvc"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc.xsd">

<mvc:annotation-driven/>

</beans>

The above registers a number of Spring MVC infrastructure beans also adapting to dependencies
available on the classpath — for JSON, XML, etc.

1.16.2. Configuration Mechanism

Same in Spring WebFlux

82

web-reactive.pdf#webflux-config
web-reactive.pdf#webflux-config-enable
web-reactive.pdf#webflux-config-customize

In Java config implement WebMvcConfigurer interface:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

// Implement configuration methods...

In XML check attributes and sub-elements of <mvc:annotation-driven/>. You can view the Spring
MVC XML schema or use the code completion feature of your IDE to discover what attributes and
sub-elements are available.

1.16.3. Conversion and Formatting
Same in Spring WebFlux

By default formatters for Number and Date types are installed, including support for the
@NumberFormat and @DateTimeFormat annotations. Full support for the Joda Time formatting library is
also installed if Joda Time is present on the classpath.

In Java config, register custom formatters and converters:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride
public void addFormatters(FormatterRegistry registry) {

/] ...
}

In XML, the same:

83

http://schema.spring.io/mvc/spring-mvc.xsd
http://schema.spring.io/mvc/spring-mvc.xsd
web-reactive.pdf#webflux-config-conversion

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:mve="http://www.springframework.org/schema/mvc"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc.xsd">

<mvc:annotation-driven conversion-service="conversionService"/>

<bean id="conversionService"
class=
"org.springframework.format.support.FormattingConversionServiceFactoryBean">
<property name="converters">
<set>
<bean class="org.example.MyConverter"/>
</set>
</property>
<property name="formatters">
<set>
<bean class="org.example.MyFormatter"/>
<bean class="org.example.MyAnnotationFormatterFactory"/>
</set>
</property>
<property name="formatterRegistrars">
<set>
<bean class="org.example.MyFormatterRegistrar"/>
</set>
</property>
</bean>

</beans>

0 See FormatterRegistrar SPI and the FormattingConversionServiceFactoryBean for
more information on when to use FormatterRegistrars.

1.16.4. Validation
Same in Spring WebFlux

By default if Bean Validation is present on the classpath—e.g. Hibernate Validator, the
LocalValidatorFactoryBean is registered as a global Validator for use with @Valid and Validated on
controller method arguments.

In Java config, you can customize the global Validator instance:

84

core.pdf#format-FormatterRegistrar-SPI
web-reactive.pdf#webflux-config-validation
core.pdf#validation-beanvalidation-overview
core.pdf#validator

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride

public Validator getValidator(); {
/] ...

}

In XML, the same:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:mve="http://www.springframework.org/schema/mvc"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc.xsd">

<mvc:annotation-driven validator="globalValidator"/>

</beans>

Note that you can also register Validator's locally:

@Controller
public class MyController {

@InitBinder

protected void initBinder (WebDataBinder binder) {
binder.addValidators(new FooValidator());

}

If you need to have a LocalValidatorFactoryBean injected somewhere, create a bean
and mark it with @Primary in order to avoid conflict with the one declared in the
MVC config.

1.16.5. Interceptors

In Java config, register interceptors to apply to incoming requests:

85

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride
public void addInterceptors(InterceptorRegistry registry) {
registry.addInterceptor(new Localelnterceptor());
registry.addInterceptor(new ThemeInterceptor()).addPathPatterns("/**")
.excludePathPatterns("/admin/**");
registry.addInterceptor(new SecurityInterceptor()).addPathPatterns("/secure/*
");
}

In XML, the same:

<mvc:interceptors>
<bean class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor"/>
<mvc:interceptor>
<mvc:mapping path="/**"/>
<mvc:exclude-mapping path="/admin/**"/>
<bean class="org.springframework.web.servlet.theme.ThemeChangeInterceptor"/>
</mvc:interceptor>
<mvc:interceptor>
<mvc:mapping path="/secure/*"/>
<bean class="org.example.SecurityInterceptor"/>
</mvc:interceptor>
</mvc:interceptors>

1.16.6. Requested Content Types

Same in Spring WebFlux

You can configure how Spring MVC determines the requested media types from the request—e.g.

Accept header, URL path extension, query parameter, etc.

By default the URL path extension is checked first—with json, xml, rss, and atom registered as
known extensions depending on classpath dependencies, and the "Accept" header is checked

second.

Consider changing those defaults to Accept header only and if you must use URL-based content type
resolution consider the query parameter strategy over the path extensions. See Suffix Pattern

Matching and Suffix Pattern Matching and RFD for more details.

In Java config, customize requested content type resolution:

86

web-reactive.pdf#webflux-config-content-negotiation

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@Override

public void configureContentNegotiation(ContentNegotiationConfigurer configurer) {
configurer.mediaType("json", MediaType.APPLICATION_JSON);

}

In XML, the same:

<mvc:annotation-driven content-negotiation-manager="contentNegotiationManager"/>

<bean id="contentNegotiationManager" class=
"org.springframework.web.accept.ContentNegotiationManagerFactoryBean">
<property name="mediaTypes">
<value>
json=application/json
xml=application/xml
</value>
</property>
</bean>

1.16.7. Message Converters
Same in Spring WebFlux

Customization of HttpMessageConverter can be achieved in Java config by overriding
configureMessageConverters() if you want to replace the default converters created by Spring MVC,
or by overriding extendMessageConverters() if you just want to customize them or add additional
converters to the default ones.

Below is an example that adds Jackson JSON and XML converters with a customized ObjectMapper
instead of default ones:

87

web-reactive.pdf#webflux-config-message-codecs
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/servlet/config/annotation/WebMvcConfigurer.html#configureMessageConverters-java.util.List-
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/servlet/config/annotation/WebMvcConfigurer.html#extendMessageConverters-java.util.List-

@Configuration
@EnableWebMvc
public class WebConfiguration implements WebMvcConfigurer {

@0verride
public void configureMessageConverters(List<HttpMessageConverter<?>> converters) {
Jackson20bjectMapperBuilder builder = new Jackson20bjectMapperBuilder()
.indentOutput(true)
.dateFormat(new SimpleDateFormat("yyyy-MM-dd"))
.modulesToInstall(new ParameterNamesModule());
converters.add(new MappingJackson2HttpMessageConverter(builder.build()));
converters.add(new MappingJackson2XmlHttpMessageConverter(builder.xml().build

O));
}

In this example, Jackson2ObjectMapperBuilder is used to create a common configuration for both
MappingJackson2HttpMessageConverter and MappingJackson2XmlHttpMessageConverter with indentation
enabled, a customized date format and the registration of jackson-module-parameter-names that
adds support for accessing parameter names (feature added in Java 8).

This builder customizes Jackson’s default properties with the following ones:

1. DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES is disabled.
2. MapperFeature.DEFAULT_VIEW_INCLUSION is disabled.

It also automatically registers the following well-known modules if they are detected on the
classpath:

1. jackson-datatype-jdk7: support for Java 7 types like java.nio.file.Path.
2. jackson-datatype-joda: support for Joda-Time types.

3. jackson-datatype-jsr310: support for Java 8 Date & Time API types.

4. jackson-datatype-jdk8: support for other Java 8 types like Optional.

9 Enabling indentation with Jackson XML support requires woodstox-core-asl
dependency in addition to jackson-dataformat-xml one.

Other interesting Jackson modules are available:

1. jackson-datatype-money: support for javax.money types (unofficial module)

2. jackson-datatype-hibernate: support for Hibernate specific types and properties (including lazy-
loading aspects)

It is also possible to do the same in XML:

88

https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/http/converter/json/Jackson2ObjectMapperBuilder.html
https://github.com/FasterXML/jackson-module-parameter-names
http://fasterxml.github.io/jackson-databind/javadoc/2.6/com/fasterxml/jackson/databind/DeserializationFeature.html#FAIL_ON_UNKNOWN_PROPERTIES
http://fasterxml.github.io/jackson-databind/javadoc/2.6/com/fasterxml/jackson/databind/MapperFeature.html#DEFAULT_VIEW_INCLUSION
https://github.com/FasterXML/jackson-datatype-jdk7
https://github.com/FasterXML/jackson-datatype-joda
https://github.com/FasterXML/jackson-datatype-jsr310
https://github.com/FasterXML/jackson-datatype-jdk8
http://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.codehaus.woodstox%22%20AND%20a%3A%22woodstox-core-asl%22
http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22jackson-dataformat-xml%22
https://github.com/zalando/jackson-datatype-money
https://github.com/FasterXML/jackson-datatype-hibernate

<mvc:annotation-driven>
<mvc:message-converters>
<bean class=
"org.springframework.http.converter.json.MappingJackson2HttpMessageConverter">
<property name="objectMapper" ref="objectMapper"/>
</bean>
<bean class=
"org.springframework.http.converter.xml.MappingJackson2XmlHttpMessageConverter">
<property name="objectMapper" ref="xmlMapper"/>
</bean>
</mvc:message-converters>
</mvc:annotation-driven>

<bean id="objectMapper" class=
"org.springframework.http.converter.json.Jackson20bjectMapperFactoryBean"

p:indentOutput="true"

p:simpleDateFormat="yyyy-MM-dd"

p:modulesToInstall="
com.fasterxml.jackson.module.paramnames.ParameterNamesModule"/>

<bean id="xmlMapper" parent="objectMapper" p:createXmlMapper="true"/>

1.16.8. View Controllers

This is a shortcut for defining a ParameterizableViewController that immediately forwards to a view
when invoked. Use it in static cases when there is no Java controller logic to execute before the
view generates the response.

An example of forwarding a request for "/" to a view called "home" in Java:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride
public void addViewControllers(ViewControllerRegistry registry) {
registry.addViewController("/").setViewName("home");

}

And the same in XML use the <mvc:view-controller> element:

<mvc:view-controller path="/" view-name="home"/>

89

1.16.9. View Resolvers
Same in Spring WebFlux
The MVC config simplifies the registration of view resolvers.

The following is a Java config example that configures content negotiation view resolution using
FreeMarker HTML templates and Jackson as a default View for JSON rendering:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@Override

public void configureViewResolvers(ViewResolverRegistry registry) {
registry.enableContentNegotiation(new MappingJackson2JsonView());
registry.jsp();

And the same in XML:

<mvc:view-resolvers>
<mvc:content-negotiation>
<mvc:default-views>
<bean class=
"org.springframework.web.servlet.view.json.MappingJackson2]sonView"/>
</mvc:default-views>
</mvc:content-negotiation>
<mvc:jsp/>
</mvc:view-resolvers>

Note however that FreeMarker, Tiles, Groovy Markup and script templates also require
configuration of the underlying view technology.

The MVC namespace provides dedicated elements. For example with FreeMarker:

90

web-reactive.pdf#webflux-config-view-resolvers

<mvc:view-resolvers>
<mvc:content-negotiation>
<mvc:default-views>
<bean class=
"org.springframework.web.servlet.view.json.Mappinglackson2JsonView"/>
</mvc:default-views>
</mvc:content-negotiation>
<mvc:freemarker cache="false"/>
</mvc:view-resolvers>

<mvc:freemarker-configurer>
<mvc:template-loader-path location="/freemarker"/>
</mvc:freemarker-configurer>

In Java config simply add the respective "Configurer" bean:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride

public void configureViewResolvers(ViewResolverRegistry registry) {
registry.enableContentNegotiation(new MappingJackson2JsonView());
registry.freeMarker().cache(false);

@Bean

public FreeMarkerConfigurer freeMarkerConfigurer() {
FreeMarkerConfigurer configurer = new FreeMarkerConfigurer();
configurer.setTemplatelLoaderPath("/WEB-INF/");
return confiqurer;

1.16.10. Static Resources
Same in Spring WebFlux

This option provides a convenient way to serve static resources from a list of Resource-based
locations.

In the example below, given a request that starts with "/resources”, the relative path is used to find
and serve static resources relative to "/public” under the web application root or on the classpath
under "/static". The resources are served with a 1-year future expiration to ensure maximum use
of the browser cache and a reduction in HTTP requests made by the browser. The Last-Modified
header is also evaluated and if present a 304 status code is returned.

91

web-reactive.pdf#webflux-config-static-resources
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/core/io/Resource.html

In Java config:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride
public void addResourceHandlers(ResourceHandlerRegistry registry) {
registry.addResourceHandler("/resources/**")
.addResourcelocations("/public", "classpath:/static/")
.setCachePeriod(31556926);

In XML:

<mvc:resources mapping="/resources/**"
location="/public, classpath:/static/"
cache-period="31556926" />

See also HTTP caching support for static resources.

The resource handler also supports a chain of ResourceResolver's and ResourceResolver's. which
can be used to create a toolchain for working with optimized resources.

The VersionResourceResolver can be used for versioned resource URLs based on an MD5 hash
computed from the content, a fixed application version, or other. A ContentVersionStrategy (MD5
hash) is a good choice with some notable exceptions such as JavaScript resources used with a
module loader.

For example in Java config;

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride
public void addResourceHandlers(ResourceHandlerRegistry registry) {
registry.addResourceHandler("/resources/**")
.addResourcelLocations("/public/")
.resourceChain(true)
.addResolver(new VersionResourceResolver().addContentVersionStrategy(
")
}

92

https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/servlet/resource/ResourceResolver.html
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/servlet/resource/ResourceTransformer.html

In XML, the same:

<mvc:resources mapping="/resources/**" location="/public/">
<mvc:resource-chain>
<mvc:resource-cache/>
<mvc:resolvers>
<mvc:version-resolver>
<mvc:content-version-strategy patterns="/**"/>
</mvc:version-resolver>
</mvc:resolvers>
</mvc:resource-chain>
</mvc:resources>

You can use ResourceUrlProvider to rewrite URLs and apply the full chain of resolvers and
transformers — e.g. to insert versions. The MVC config provides a ResourceUr1Provider bean so it can
be injected into others. You can also make the rewrite transparent with the
ResourceUrlEncodingFilter for Thymeleaf, JSPs, FreeMarker, and others with URL tags that rely on
HttpServletResponset#iencodeURL.

WebJars is also supported via WebJarsResourceResolver and automatically registered when
"org.webjars:webjars-locator"” is present on the classpath. The resolver can re-write URLs to
include the version of the jar and can also match to incoming URLs without versions—e.g.
"/jquery/jquery.min.js" to "/jquery/1.2.0/jquery.min.js".

1.16.11. "Default” Servlet Handler

This allows for mapping the DispatcherServlet to "/" (thus overriding the mapping of the container’s
default Servlet), while still allowing static resource requests to be handled by the container’s
default Servlet. It configures a DefaultServletHttpRequestHandler with a URL mapping of "/**" and
the lowest priority relative to other URL mappings.

This handler will forward all requests to the default Servlet. Therefore it is important that it
remains last in the order of all other URL HandlerMappings. That will be the case if you use
<mvc:annotation-driven> or alternatively if you are setting up your own customized HandlerMapping
instance be sure to set its order property to a value lower than that of the
DefaultServletHttpRequestHandler, which is Integer.MAX_VALUE.

To enable the feature using the default setup use:

93

http://www.webjars.org/documentation

public class WebConfig implements WebMvcConfigurer {

public void configureDefaultServletHandling(DefaultServletHandlerConfigurer
configurer) {
configurer.enable();

}

Or in XML:
<mvc:default-servlet-handler/>

The caveat to overriding the "/" Servlet mapping is that the RequestDispatcher for the default Servlet
must be retrieved by name rather than by path. The DefaultServletHttpRequestHandler will attempt
to auto-detect the default Servlet for the container at startup time, using a list of known names for
most of the major Servlet containers (including Tomcat, Jetty, GlassFish, JBoss, Resin, WebLogic, and
WebSphere). If the default Servlet has been custom configured with a different name, or if a
different Servlet container is being used where the default Servlet name is unknown, then the
default Servlet’s name must be explicitly provided as in the following example:

public class WebConfig implements WebMvcConfigurer {

public void configureDefaultServletHandling(DefaultServletHandlerConfigurer
configurer) {
configurer.enable("myCustomDefaultServlet");

}

Or in XML:

<mvc:default-servlet-handler default-servlet-name="myCustomDefaultServlet"/>

1.16.12. Path Matching
Same in Spring WebFlux

This allows customizing options related to URL matching and treatment of the URL. For details on

94

web-reactive.pdf#webflux-config-path-matching

the individual options check out the PathMatchConfigurer API.

Example in Java config:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride
public void configurePathMatch(PathMatchConfigurer configurer) {
configurer

.setUseSuffixPatternMatch(true)
.setUseTrailingSlashMatch(false)
.setUseRegisteredSuffixPatternMatch(true)
.setPathMatcher(antPathMatcher())
.setUr1PathHelper (urlPathHelper());

}

@Bean

public UrlPathHelper ur1lPathHelper() {
//...

Iy

@Bean

public PathMatcher antPathMatcher() {
//...

}

In XML, the same:

<mvc:annotation-driven>
<mvc:path-matching

suffix-pattern="true"
trailing-slash="false"
registered-suffixes-only="true"
path-helper="pathHelper"
path-matcher="pathMatcher"/>

</mvc:annotation-driven>

<bean id="pathHelper" class="org.example.app.MyPathHelper"/>
<bean id="pathMatcher" class="org.example.app.MyPathMatcher"/>

1.16.13. Advanced Config Mode
Same in Spring WebFlux

@EnableWebMvc imports DelegatingWebMvcConfiguration that (1) provides default Spring configuration

95

https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/servlet/config/annotation/PathMatchConfigurer.html
web-reactive.pdf#webflux-config-advanced-java

for Spring MVC applications and (2) detects and delegates to WebMvcConfigurer's to customize that
configuration.

For advanced mode, remove @EnableWlebMvc and extend directly from DelegatingWebMvcConfiguration
instead of implementing WebMvcConfigurer:

public class WebConfig extends DelegatingWebMvcConfiguration {

/] ...

You can keep existing methods in WebConfig but you can now also override bean declarations from
the base class and you can still have any number of other WebMvcConfigurer's on the classpath.

1.16.14. Advanced MVC Namespace

The MVC namespace does not have an advanced mode. If you need to customize a property on a
bean that you can’t change otherwise, you can use the BeanPostProcessor lifecycle hook of the
Spring ApplicationContext:

public class MyPostProcessor implements BeanPostProcessor {

public Object postProcessBeforelnitialization(Object bean, String name) throws
BeansException {
/] ...

}

Note that MyPostProcessor needs to be declared as a bean either explicitly in XML or detected
through a <component scan/> declaration.

96

Chapter 2. View Technologies

2.1. Introduction

One of the areas in which Spring excels is in the separation of view technologies from the rest of
the MVC framework. For example, deciding to use Groovy Markup Templates or Thymeleaf in place
of an existing JSP is primarily a matter of configuration. This chapter covers the major view
technologies that work with Spring and touches briefly on how to add new ones. This chapter
assumes you are already familiar with Resolving views which covers the basics of how views in
general are coupled to the MVC framework.

2.2. Thymeleaf

Thymeleaf is a good example of a view technology fitting perfectly in the MVC framework. Support
for this integration is not provided by the Spring team but by the Thymeleaf team itself.

Configuring Thymeleaf for Spring wusually requires a few beans defined, like a
ServletContextTemplateResolver, a SpringTemplateEngine and a ThymeleafViewResolver. Please refer to
the Thymeleaf+Spring documentation section for more details.

2.3. Groovy Markup Templates

The Groovy Markup Template Engine is another view technology, supported by Spring. This
template engine is a template engine primarily aimed at generating XML-like markup (XML,
XHTML, HTMLS, ...), but that can be used to generate any text based content.

This requires Groovy 2.3.1+ on the classpath.

2.3.1. Configuration

Configuring the Groovy Markup Template Engine is quite easy:

97

http://www.thymeleaf.org/
http://www.thymeleaf.org/documentation.html
http://groovy-lang.org/templating.html#_the_markuptemplateengine

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

@0verride
public void configureViewResolvers(ViewResolverRegistry registry) {
registry.groovy();
}

@Bean

public GroovyMarkupConfigurer groovyMarkupConfigurer() {
GroovyMarkupConfigurer configurer = new GroovyMarkupConfigurer();
configurer.setResourceloaderPath("/WEB-INF/");
return confiqurer;

The XML counterpart using the MVC namespace is:

<mvc:annotation-driven/>

<mvc:iview-resolvers>
<mvc:groovy/>
</mve:view-resolvers>

<mvc:groovy-configurer resource-loader-path="/WEB-INF/"/>

2.3.2. Example

Unlike traditional template engines, this one relies on a DSL that uses the builder syntax. Here is a
sample template for an HTML page:

yieldUnescaped '<!DOCTYPE html>'
html(lang:'en') {
head {
meta('http-equiv':'"Content-Type" content="text/html; charset=utf-8"")
title('My page')

}
body {

p('This is an example of HTML contents')
}

2.4. FreeMarker

FreeMarker is a templating language that can be used as a view technology within Spring MVC

98

http://www.freemarker.org

applications. For details on the template language, see the FreeMarker web site.

2.4.1. Dependencies

Your web application will need to include freemarker-2.x.jar in order to work with FreeMarker.
Typically this is included in the WEB-INF/1ib folder where the jars are guaranteed to be found by a
Java EE server and added to the classpath for your application. It is of course assumed that you
already have the spring-webmvc.jar in your 'WEB-INF/1ib" directory too!

2.4.2. Context configuration

A suitable configuration is initialized by adding the relevant configurer bean definition to your '*-
servlet.xml' as shown below:

<!-- freemarker config -->

<bean id="freemarkerConfig" class=

"org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer">
<property name="templatelLoaderPath" value="/WEB-INF/freemarker/"/>

</bean>

<l--
View resolvers can also be configured with ResourceBundles or XML files. If you need
different view resolving based on Locale, you have to use the resource bundle
resolver.
-->
<bean id="viewResolver" class=
"org.springframework.web.servlet.view.freemarker.FreeMarkerViewResolver">
<property name="cache" value="true"/>
<property name="prefix" value=""/>
<property name="suffix" value=".ft1"/>
</bean>

O For non web-apps add a FreeMarkerConfigurationFactoryBean to your application
context definition file.

2.4.3. Creating templates

Your templates need to be stored in the directory specified by the FreeMarkerConfigurer shown
above. If you use the view resolvers highlighted, then the logical view names relate to the template
file names in similar fashion to InternalResourceViewResolver for JSP’s. So if your controller returns
a ModelAndView object containing a view name of "welcome" then the resolver will look for the
/WEB-INF/freemarker/welcome.ftl template.

2.4.4. Advanced FreeMarker configuration

FreeMarker 'Settings' and 'SharedVariables' can be passed directly to the FreeMarker Configuration
object managed by Spring by setting the appropriate bean properties on the FreeMarkerConfigurer
bean. The freemarkerSettings property requires a java.util.Properties object and the

99

http://www.freemarker.org

freemarkerVariables property requires a java.util.Map.

<bean id="freemarkerConfig" class=
"org.springframework.web.servlet.view.freemarker.FreeMarkerConfigurer">
<property name="templateloaderPath" value="/WEB-INF/freemarker/"/>
<property name="freemarkerVariables">
<map>
<entry key="xml_escape" value-ref="fmXmlEscape"/>
</map>
</property>
</bean>

<bean id="fmXmlEscape" class="freemarker.template.utility.XmlEscape"/>

See the FreeMarker documentation for details of settings and variables as they apply to the
Configuration object.

2.4.5. Bind support and form handling

Spring provides a tag library for use in JSP’s that contains (amongst other things) a <spring:bind/>
tag. This tag primarily enables forms to display values from form backing objects and to show the
results of failed validations from a Validator in the web or business tier. Spring also has support for
the same functionality in FreeMarker, with additional convenience macros for generating form
input elements themselves.

The bind macros

A standard set of macros are maintained within the spring-webmvc.jar file for both languages, so
they are always available to a suitably configured application.

Some of the macros defined in the Spring libraries are considered internal (private) but no such
scoping exists in the macro definitions making all macros visible to calling code and user templates.
The following sections concentrate only on the macros you need to be directly calling from within
your templates. If you wish to view the macro code directly, the file is called spring.ftl in the
package org.springframework.web.servlet.view.freemarker.

Simple binding

In your HTML forms (vm / ftl templates) which act as a form view for a Spring MVC controller, you
can use code similar to the following to bind to field values and display error messages for each
input field in similar fashion to the JSP equivalent. Example code is shown below for the personForm
view configured earlier:

100

<!-- freemarker macros have to be imported into a namespace. We strongly
recommend sticking to 'spring' -->

<#import "/spring.ftl" as spring/>

<html>

<form action="" method="POST">

Name:

<@spring.bind "myModelObject.name"/>

<input type="text"
name="${spring.status.expression}"
value="${spring.status.value?html}"/>

<#list spring.status.errorMessages as error> ${error}
 </#list>

<input type="submit" value="submit"/>
</form>

</html>

<@spring.bind> requires a 'path' argument which consists of the name of your command object (it
will be 'command' unless you changed it in your FormController properties) followed by a period
and the name of the field on the command object you wish to bind to. Nested fields can be used too
such as "command.address.street”. The bind macro assumes the default HTML escaping behavior
specified by the ServletContext parameter defaultHtmlEscape in web.xml.

The optional form of the macro called <@spring.bindEscaped> takes a second argument and
explicitly specifies whether HTML escaping should be used in the status error messages or values.
Set to true or false as required. Additional form handling macros simplify the use of HTML escaping
and these macros should be used wherever possible. They are explained in the next section.

Form input generation macros

Additional convenience macros for both languages simplify both binding and form generation
(including validation error display). It is never necessary to use these macros to generate form
input fields, and they can be mixed and matched with simple HTML or calls direct to the spring
bind macros highlighted previously.

The following table of available macros show the VTL and FTL definitions and the parameter list
that each takes.

Table 6. Table of macro definitions

101

macro

<@spring.message code/>

url (prefix a relative URL with the application’s context

root)

<@spring.formInput path, attributes, fieldType/>

formPasswordInput * (standard input field for gathering
passwords. Note that no value will ever be populated in

fields of this type)

<@spring.formTextarea path, attributes/>

formMultiSelect (a list box of options allowing the user to
select 0 or more values)

<@spring.formRadioButtons path, options separator,

attributes/>

102

FTL definition

messageText
(output a string
from a resource
bundle based on
the code
parameter, falling
back to the value
of the default
parameter)

<@spring.url
relativeUrl/>

formHiddenInput
* (hidden input
field for
submitting non-
user input)

<@spring.formPas
swordInput path,
attributes/>

formSingleSelect
(drop down box of
options allowing a
single required
value to be
selected)

<@spring.formMul
tiSelect path,
options,
attributes/>

formCheckboxes
(a set of
checkboxes
allowing 0 or
more values to be
selected)

message (output
a string from a
resource bundle
based on the code
parameter)

<@spring.message
Text code, text/>

formInput
(standard input
field for gathering
user input)

<@spring.formHid
denInput path,
attributes/>

formTextarea
(large text field for
gathering long,
freeform text
input)

<@spring.formSin
gleSelect path,
options,
attributes/>

formRadioButton
s (a set of radio
buttons allowing a
single selection to
be made from the
available choices)

<@spring.formChe
ckboxes path,
options, separator,
attributes/>

macro FTL definition message (output
a string from a
resource bundle
based on the code

parameter)
formCheckbox (a single checkbox) <@spring.formChe showErrors
ckbox path, (simplify display
attributes/> of validation
errors for the
bound field)

* In FTL (FreeMarker), these two macros are not actually required as you can use the normal
formInput macro, specifying ' hidden’ or ' ‘password’ as the value for the ‘fieldType
parameter.

The parameters to any of the above macros have consistent meanings:

* path: the name of the field to bind to (ie "command.name")

» options: a Map of all the available values that can be selected from in the input field. The keys to
the map represent the values that will be POSTed back from the form and bound to the
command object. Map objects stored against the keys are the labels displayed on the form to the
user and may be different from the corresponding values posted back by the form. Usually such
a map is supplied as reference data by the controller. Any Map implementation can be used
depending on required behavior. For strictly sorted maps, a SortedMap such as a TreeMap with a
suitable Comparator may be used and for arbitrary Maps that should return values in insertion
order, use a LinkedHashMap or a LinkedMap from commons-collections.

» separator: where multiple options are available as discreet elements (radio buttons or
checkbozxes), the sequence of characters used to separate each one in the list (ie "
").

« attributes: an additional string of arbitrary tags or text to be included within the HTML tag
itself. This string is echoed literally by the macro. For example, in a textarea field you may
supply attributes as 'rows="5" cols="60" or you could pass style information such as
'style="border:1px solid silver".

* classOrStyle: for the showErrors macro, the name of the CSS class that the span tag wrapping
each error will use. If no information is supplied (or the value is empty) then the errors will be
wrapped in tags.

Examples of the macros are outlined below some in FTL and some in VTL. Where usage differences
exist between the two languages, they are explained in the notes.

Input Fields

The formInput macro takes the path parameter (command.name) and an additional attributes
parameter which is empty in the example above. The macro, along with all other form generation
macros, performs an implicit spring bind on the path parameter. The binding remains valid until a
new bind occurs so the showErrors macro doesn’t need to pass the path parameter again - it simply
operates on whichever field a bind was last created for.

The showErrors macro takes a separator parameter (the characters that will be used to separate

103

multiple errors on a given field) and also accepts a second parameter, this time a class name or
style attribute. Note that FreeMarker is able to specify default values for the attributes parameter.

<@spring.formInput "command.name"/>
<@spring.showErrors "
"/>

Output is shown below of the form fragment generating the name field, and displaying a validation
error after the form was submitted with no value in the field. Validation occurs through Spring’s
Validation framework.

The generated HTML looks like this:

Name:
<input type="text" name="name" value="">

required

The formTextarea macro works the same way as the formInput macro and accepts the same
parameter list. Commonly, the second parameter (attributes) will be used to pass style information
or rows and cols attributes for the textarea.

Selection Fields

Four selection field macros can be used to generate common UI value selection inputs in your
HTML formes.

» formSingleSelect

¢ formMultiSelect

o formRadioButtons

formCheckboxes

Each of the four macros accepts a Map of options containing the value for the form field, and the
label corresponding to that value. The value and the label can be the same.

An example of radio buttons in FTL is below. The form backing object specifies a default value of
'"London' for this field and so no validation is necessary. When the form is rendered, the entire list
of cities to choose from is supplied as reference data in the model under the name 'cityMap'.

Town:
<@spring.formRadioButtons "command.address.town", cityMap, ""/>

This renders a line of radio buttons, one for each value in cityMap using the separator "". No
additional attributes are supplied (the last parameter to the macro is missing). The cityMap uses the

104

same String for each key-value pair in the map. The map’s keys are what the form actually submits
as POSTed request parameters, map values are the labels that the user sees. In the example above,
given a list of three well known cities and a default value in the form backing object, the HTML
would be

Town:

<input type="radio" name="address.town" value="London">London</input>

<input type="radio" name="address.town" value="Paris" checked="checked">Paris</input>
<input type="radio" name="address.town" value="New York">New York</input>

If your application expects to handle cities by internal codes for example, the map of codes would
be created with suitable keys like the example below.

protected Map<String, String> referenceData(HttpServletRequest request) throws
Exception {

Map<String, String> cityMap = new LinkedHashMap<>();

cityMap.put("LDN", "London");

cityMap.put("PRS", "Paris");

cityMap.put("NYC", "New York");

Map<String, String> model = new HashMap<>();
model.put("cityMap", cityMap);
return model;

The code would now produce output where the radio values are the relevant codes but the user still
sees the more user friendly city names.

Town:

<input type="radio" name="address.town" value="LDN">London</input>

<input type="radio" name="address.town" value="PRS" checked="checked">Paris</input>
<input type="radio" name="address.town" value="NYC">New York</input>

HTML escaping and XHTML compliance

Default usage of the form macros above will result in HTML tags that are HTML 4.01 compliant and
that use the default value for HTML escaping defined in your web.xml as used by Spring’s bind
support. In order to make the tags XHTML compliant or to override the default HTML escaping
value, you can specify two variables in your template (or in your model where they will be visible
to your templates). The advantage of specifying them in the templates is that they can be changed to
different values later in the template processing to provide different behavior for different fields in
your form.

To switch to XHTML compliance for your tags, specify a value of 'true' for a model/context variable
named xhtmlCompliant:

105

<#-- for FreeMarker -->
<#fassign xhtmlCompliant = true in spring>

Any tags generated by the Spring macros will now be XHTML compliant after processing this
directive.

In similar fashion, HTML escaping can be specified per field:

<-- until this point, default HTML escaping is used -->

<#tassign htmlEscape = true in spring>
<-- next field will use HTML escaping -->
<@spring.formInput "command.name"/>

<assign htmlEscape = false in spring>
<-- all future fields will be bound with HTML escaping off -->

2.5.JSP & JSTL

Spring provides a couple of out-of-the-box solutions for JSP and JSTL views. Using JSP or JSTL is
done using a normal view resolver defined in the WebApplicationContext. Furthermore, of course
you need to write some JSPs that will actually render the view.

Setting up your application to use JSTL is a common source of error, mainly caused
by confusion over the different servlet spec., JSP and JSTL version numbers, what
they mean and how to declare the taglibs correctly. The article How to Reference

0 and Use JSTL in your Web Application provides a useful guide to the common
pitfalls and how to avoid them. Note that as of Spring 3.0, the minimum supported
servlet version is 2.4 (JSP 2.0 and JSTL 1.1), which reduces the scope for confusion
somewhat.

2.5.1. View resolvers

Just as with any other view technology you’re integrating with Spring, for JSPs you’ll need a view
resolver that will resolve your views. The most commonly used view resolvers when developing
with JSPs are the InternalResourceViewResolver and the ResourceBundleViewResolver. Both are
declared in the WebApplicationContext:

106

http://www.mularien.com/blog/2008/04/24/how-to-reference-and-use-jstl-in-your-web-application/
http://www.mularien.com/blog/2008/04/24/how-to-reference-and-use-jstl-in-your-web-application/

<!-- the ResourceBundleViewResolver -->

<bean id="viewResolver" class=

"org.springframework.web.servlet.view.ResourceBundleViewResolver">
<property name="basename" value="views"/>

</bean>

And a sample properties file is uses (views.properties in WEB-INF/classes):
welcome.(class)=org.springframework.web.servlet.view.Jst1View
welcome.url=/WEB-INF/jsp/welcome.jsp

productlist.(class)=org.springframework.web.servlet.view.Jst1View
productList.url=/WEB-INF/jsp/productlist.jsp

As you can see, the ResourceBundleViewResolver needs a properties file defining the view names
mapped to 1) a class and 2) a URL. With a ResourceBundleViewResolver you can mix different types of
views using only one resolver.

<bean id="viewResolver" class=
"org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="viewClass" value="org.springframework.web.servlet.view.Jst1View"/>
<property name="prefix" value="/WEB-INF/jsp/"/>
<property name="suffix" value=".jsp"/>
</bean>

The InternalResourceBundleViewResolver can be configured for using JSPs as described above. As a
best practice, we strongly encourage placing your JSP files in a directory under the "WEB-INF'
directory, so there can be no direct access by clients.

2.5.2. 'Plain-old’ JSPs versus JSTL

When using the Java Standard Tag Library you must use a special view class, the Jst1View, as JSTL
needs some preparation before things such as the I18N features will work.

2.5.3. Additional tags facilitating development

Spring provides data binding of request parameters to command objects as described in earlier
chapters. To facilitate the development of JSP pages in combination with those data binding
features, Spring provides a few tags that make things even easier. All Spring tags haveHTML
escaping features to enable or disable escaping of characters.

The tag library descriptor (TLD) is included in the spring-webmvc.jar. Further information about the
individual tags can be found in the appendix entitled [spring.tld].

2.5.4. Using Spring’s form tag library

As of version 2.0, Spring provides a comprehensive set of data binding-aware tags for handling
form elements when using JSP and Spring Web MVC. Each tag provides support for the set of

107

attributes of its corresponding HTML tag counterpart, making the tags familiar and intuitive to use.
The tag-generated HTML is HTML 4.01/XHTML 1.0 compliant.

Unlike other form/input tag libraries, Spring’s form tag library is integrated with Spring Web MVC,
giving the tags access to the command object and reference data your controller deals with. As you
will see in the following examples, the form tags make JSPs easier to develop, read and maintain.

Let’s go through the form tags and look at an example of how each tag is used. We have included
generated HTML snippets where certain tags require further commentary.

Configuration

The form tag library comes bundled in spring-webmvc.jar. The library descriptor is called spring-
form.tld.

To use the tags from this library, add the following directive to the top of your JSP page:

<%0 taglib prefix="form" uri="http://www.springframework.org/tags/form" %>

where form is the tag name prefix you want to use for the tags from this library.

The form tag

This tag renders an HTML 'form' tag and exposes a binding path to inner tags for binding. It puts
the command object in the PageContext so that the command object can be accessed by inner tags.
All the other tags in this library are nested tags of the form tag.

Let’s assume we have a domain object called User. It is a JavaBean with properties such as firstName
and lastName. We will use it as the form backing object of our form controller which returns
form.jsp. Below is an example of what form.jsp would look like:

<form:form>

<table>
<tr>
<td>First Name:</td>
<td><form:input path="firstName"/></td>
</tr>
<tr>
<td>Last Name:</td>
<td><form:input path="lastName"/></td>
</tr>
<tr>
<td colspan="2">
<input type="submit" value="Save Changes"/>
</td>
</tr>
</table>

</form:form>

108

The firstName and lastName values are retrieved from the command object placed in the PageContext
by the page controller. Keep reading to see more complex examples of how inner tags are used with
the form tag.

The generated HTML looks like a standard form:

<form method="POST">
<table>
<tr>
<td>First Name:</td>
<td><input name="firstName" type="text" value="Harry"/></td>
</tr>
<tr>
<td>Last Name:</td>
<td><input name="lastName" type="text" value="Potter"/></td>
</tr>
<tr>
<td colspan="2">
<input type="submit" value="Save Changes"/>
</td>
</tr>
</table>
</form>

The preceding JSP assumes that the variable name of the form backing object is 'command'. If you
have put the form backing object into the model under another name (definitely a best practice),
then you can bind the form to the named variable like so:

<form:form modelAttribute="user">
<table>
<tr>
<td>First Name:</td>
<td><form:input path="firstName"/></td>
</tr>
<tr>
<td>Last Name:</td>
<td><form:input path="lastName"/></td>
</tr>
<tr>
<td colspan="2">
<input type="submit" value="Save Changes"/>
</td>
</tr>
</table>
</form:form>

109

The input tag

This tag renders an HTML 'input' tag using the bound value and type='text' by default. For an
example of this tag, see The form tag. Starting with Spring 3.1 you can use other types such HTML5-
specific types like 'email’, 'tel', 'date’, and others.

The checkbox tag

This tag renders an HTML 'input’ tag with type 'checkbox'.

Let’s assume our User has preferences such as newsletter subscription and a list of hobbies. Below
is an example of the Preferences class:

public class Preferences {

private boolean receiveNewsletter;
private String[] interests;
private String favouriteWord;

public boolean isReceiveNewsletter() {
return receiveNewsletter;

}

public void setReceiveNewsletter(boolean receiveNewsletter) {
this.receiveNewsletter = receiveNewsletter;

}

public String[] getInterests() {
return interests;

}

public void setInterests(String[] interests) {
this.interests = interests;

}

public String getFavouriteWord() {
return favouriteWord;

}

public void setFavouriteWord(String favouriteWord) {
this.favouriteWord = favouriteWord;

}

The form. jsp would look like:

110

<form:form>
<table>
<tr>
<td>Subscribe to newsletter?:</td>
<%-- Approach 1: Property is of type java.lang.Boolean --%>
<td><form:checkbox path="preferences.receiveNewsletter"/></td>
</tr>

<tr>
<td>Interests:</td>
<%-- Approach 2: Property is of an array or of type java.util.Collection

<td>
Quidditch: <form:checkbox path="preferences.interests" value=
"Quidditch"/>
Herbology: <form:checkbox path="preferences.interests" value=
"Herbology"/>
Defence Against the Dark Arts: <form:checkbox path=
"preferences.interests" value="Defence Against the Dark Arts"/>
</td>
</tr>

<tr>
<td>Favourite Word:</td>
<%-- Approach 3: Property is of type java.lang.Object --%>
<td>
Magic: <form:checkbox path="preferences.favouriteWord" value="Magic"/>
</td>
</tr>
</table>
</form:form>

There are 3 approaches to the checkbox tag which should meet all your checkbox needs.

* Approach One - When the bound value is of type java.lang.Boolean, the input(checkbox) is
marked as 'checked' if the bound value is true. The value attribute corresponds to the resolved
value of the setValue(Object) value property.

* Approach Two - When the bound value is of type array or java.util.Collection, the
input(checkbox) is marked as 'checked' if the configured setValue(Object) value is present in the
bound Collection.

» Approach Three - For any other bound value type, the input(checkbox) is marked as 'checked' if
the configured setValue(Object) is equal to the bound value.

Note that regardless of the approach, the same HTML structure is generated. Below is an HTML
snippet of some checkboxes:

111

<tr>
<td>Interests:</td>
<td>
Quidditch: <input name="preferences.interests" type="checkbox" value=
"Quidditch"/>
<input type="hidden" value="1" name="_preferences.interests"/>
Herbology: <input name="preferences.interests" type="checkbox" value=
"Herbology"/>
<input type="hidden" value="1" name="_preferences.interests"/>
Defence Against the Dark Arts: <input name="preferences.interests" type=
"checkbox" value="Defence Against the Dark Arts"/>
<input type="hidden" value="1" name="_preferences.interests"/>
</td>
</tr>

What you might not expect to see is the additional hidden field after each checkbox. When a
checkbox in an HTML page is not checked, its value will not be sent to the server as part of the
HTTP request parameters once the form is submitted, so we need a workaround for this quirk in
HTML in order for Spring form data binding to work. The checkbox tag follows the existing Spring
convention of including a hidden parameter prefixed by an underscore ("_") for each checkbox. By
doing this, you are effectively telling Spring that "the checkbox was visible in the form and I want my
object to which the form data will be bound to reflect the state of the checkbox no matter what".

The checkboxes tag

This tag renders multiple HTML 'input’ tags with type 'checkbox'.

Building on the example from the previous checkbox tag section. Sometimes you prefer not to have
to list all the possible hobbies in your JSP page. You would rather provide a list at runtime of the
available options and pass that in to the tag. That is the purpose of the checkboxes tag. You pass in
an Array, a List or a Map containing the available options in the "items" property. Typically the
bound property is a collection so it can hold multiple values selected by the user. Below is an
example of the JSP using this tag:

<form:form>

<table>
<tr>
<td>Interests:</td>
<td>
<%-- Property is of an array or of type java.util.Collection --%>
<form:checkboxes path="preferences.interests" items="${interestlList}
/>
</td>
</tr>
</table>

</form:form>

This example assumes that the "interestList" is a List available as a model attribute containing

112

strings of the values to be selected from. In the case where you use a Map, the map entry key will be
used as the value and the map entry’s value will be used as the label to be displayed. You can also
use a custom object where you can provide the property names for the value using "itemValue" and
the label using "itemLabel".

The radiobutton tag

This tag renders an HTML 'input' tag with type 'radio'.

A typical usage pattern will involve multiple tag instances bound to the same property but with
different values.

<tr>
<td>Sex:</td>
<td>
Male: <form:radiobutton path="sex" value="M"/>

Female: <form:radiobutton path="sex" value="F"/>
</td>
</tr>
The radiobuttons tag

This tag renders multiple HTML 'input' tags with type 'radio’.

Just like the checkboxes tag above, you might want to pass in the available options as a runtime
variable. For this usage you would use the radiobuttons tag. You pass in an Array, a List or a Map
containing the available options in the "items" property. In the case where you use a Map, the map
entry key will be used as the value and the map entry’s value will be used as the label to be
displayed. You can also use a custom object where you can provide the property names for the
value using "itemValue" and the label using "itemLabel".

<tr>

<td>Sex:</td>

<td><form:radiobuttons path="sex" items="${sexOptions}"/></td>
</tr>

The password tag

This tag renders an HTML 'input' tag with type 'password' using the bound value.

<tr>
<td>Password:</td>
<td>
<form:password path="password"/>
</td>
</tr>

113

Please note that by default, the password value is not shown. If you do want the password value to
be shown, then set the value of the 'showPassword' attribute to true, like so.

<tr>
<td>Password:</td>
<td>

<form:password path="password" value="A76525bvHGq" showPassword="true"/>
</td>
</tr>

The select tag

This tag renders an HTML 'select' element. It supports data binding to the selected option as well as
the use of nested option and options tags.

Let’s assume a User has a list of skills.
<tr>

<td>Skills:</td>

<td><form:select path="skills" items="${skills}"/></td>
</tr>

If the User’s skill were in Herbology, the HTML source of the 'Skills' row would look like:

<tr>
<td>Skills:</td>
<td>
<select name="skills" multiple="true">
<option value="Potions">Potions</option>
<option value="Herbology" selected="selected">Herbology</option>
<option value="Quidditch">Quidditch</option>
</select>
</td>
</tr>
The option tag

This tag renders an HTML 'option'. It sets 'selected’ as appropriate based on the bound value.

114

<tr>
<td>House:</td>
<td>
<form:select path="house">
<form:option value="Gryffindor"/>
<form:option value="Hufflepuff"/>
<form:option value="Ravenclaw"/>
<form:option value="Slytherin"/>
</form:select>
</td>
</tr>

If the User’s house was in Gryffindor, the HTML source of the 'House' row would look like:

<tr>
<td>House:</td>
<td>
<select name="house">
<option value="Gryffindor" selected="selected">Gryffindor</option>
<option value="Hufflepuff">Hufflepuff</option>
<option value="Ravenclaw">Ravenclaw</option>
<option value="Slytherin">Slytherin</option>
</select>
</td>
</tr>

The options tag

This tag renders a list of HTML 'option' tags. It sets the 'selected' attribute as appropriate based on
the bound value.

<tr>
<td>Country:</td>
<td>
<form:select path="country">
<form:option value="-" label="--Please Select"/>
<form:options items="${countrylList}" itemValue="code" itemLabel="name"/>
</form:select>
</td>
</tr>

If the User lived in the UK, the HTML source of the 'Country' row would look like:

115

<tr>
<td>Country:</td>
<td>
<select name="country">
<option value="-">--Please Select</option>
<option value="AT">Austria</option>
<option value="UK" selected="selected">United Kingdom</option>
<option value="US">United States</option>
</select>
</td>
</tr>

As the example shows, the combined usage of an option tag with the options tag generates the same
standard HTML, but allows you to explicitly specify a value in the JSP that is for display only (where
it belongs) such as the default string in the example: "-- Please Select".

The items attribute is typically populated with a collection or array of item objects. itemValue and
itemLabel simply refer to bean properties of those item objects, if specified; otherwise, the item
objects themselves will be stringified. Alternatively, you may specify a Map of items, in which case
the map keys are interpreted as option values and the map values correspond to option labels. If
itemValue and/or itemLabel happen to be specified as well, the item value property will apply to the
map key and the item label property will apply to the map value.

The textarea tag

This tag renders an HTML 'textarea’.

<tr>
<td>Notes:</td>
<td><form:textarea path="notes" rows="3" cols="20"/></td>
<td><form:errors path="notes"/></td>

</tr>

The hidden tag

This tag renders an HTML 'input’' tag with type 'hidden' using the bound value. To submit an
unbound hidden value, use the HTML input tag with type 'hidden'.

<form:hidden path="house"/>

If we choose to submit the 'house' value as a hidden one, the HTML would look like:

<input name="house" type="hidden" value="Gryffindor"/>

116

The errors tag

This tag renders field errors in an HTML 'span’ tag. It provides access to the errors created in your
controller or those that were created by any validators associated with your controller.

Let’s assume we want to display all error messages for the firstName and lastName fields once we
submit the form. We have a validator for instances of the User class called UserValidator.

public class UserValidator implements Validator {

public boolean supports(Class candidate) {
return User.class.isAssignableFrom(candidate);

}

public void validate(Object obj, Errors errors) {
ValidationUtils.rejectIfEmptyOrWhitespace(errors, "firstName", "required",
"Field is required.");
ValidationUtils.rejectIfEmptyOrWhitespace(errors, "lastName", "required”,
"Field is required.");

}
}

The form. jsp would look like:

<form:form>
<table>
<tr>
<td>First Name:</td>
<td><form:input path="firstName"/></td>
<%-- Show errors for firstName field --%>
<td><form:errors path="firstName"/></td>
</tr>

<tr>
<td>Last Name:</td>
<td><form:input path="lastName"/></td>
<%-- Show errors for lastName field --%>
<td><form:errors path="lastName"/></td>
</tr>
<tr>
<td colspan="3">
<input type="submit" value="Save Changes"/>
</td>
</tr>
</table>
</form:form>

If we submit a form with empty values in the firstName and lastName fields, this is what the HTML
would look like:

117

<form method="POST">
<table>

<tr>
<td>First Name:</td>
<td><input name="firstName" type="text" value=""/></td>
<%-- Associated errors to firstName field displayed --%>
<td>Field is required.</td>

</tr>

<tr>
<td>Last Name:</td>
<td><input name="lastName" type="text" value=""/></td>
<%-- Associated errors to lastName field displayed --%>
<td>Field is required.</td>

</tr>

<tr>
<td colspan="3">

<input type="submit" value="Save Changes"/>

</td>

</tr>

</table>
</form>

What if we want to display the entire list of errors for a given page? The example below shows that
the errors tag also supports some basic wildcarding functionality.

* path="*"-displays all errors
» path="T1astName" - displays all errors associated with the lastName field

« if path is omitted - object errors only are displayed

The example below will display a list of errors at the top of the page, followed by field-specific
errors next to the fields:

118

<form:form>
<form:errors path="*" cssClass="errorBox"/>
<table>
<tr>
<td>First Name:</td>
<td><form:input path="firstName"/></td>
<td><form:errors path="firstName"/></td>
</tr>
<tr>
<td>Last Name:</td>
<td><form:input path="lastName"/></td>
<td><form:errors path="lastName"/></td>
</tr>
<tr>
<td colspan="3">
<input type="submit" value="Save Changes"/>
</td>
</tr>
</table>
</form:form>

The HTML would look like:

<form method="POST">
Field is required.
Field is
required.
<table>
<tr>
<td>First Name:</td>
<td><input name="firstName" type="text" value=""/></td>
<td>Field is required.</td>
</tr>

<tr>
<td>Last Name:</td>
<td><input name="lastName" type="text" value=""/></td>
<td>Field is required.</td>
</tr>
<tr>
<td colspan="3">
<input type="submit" value="Save Changes"/>
</td>
</tr>
</table>
</form>

119

HTTP Method Conversion

A key principle of REST is the use of the Uniform Interface. This means that all resources (URLs) can
be manipulated using the same four HTTP methods: GET, PUT, POST, and DELETE. For each method,
the HTTP specification defines the exact semantics. For instance, a GET should always be a safe
operation, meaning that is has no side effects, and a PUT or DELETE should be idempotent,
meaning that you can repeat these operations over and over again, but the end result should be the
same. While HTTP defines these four methods, HTML only supports two: GET and POST.
Fortunately, there are two possible workarounds: you can either use JavaScript to do your PUT or
DELETE, or simply do a POST with the 'real' method as an additional parameter (modeled as a
hidden input field in an HTML form). This latter trick is what Spring’s HiddenHttpMethodFilter does.
This filter is a plain Servlet Filter and therefore it can be used in combination with any web
framework (not just Spring MVC). Simply add this filter to your web.xml, and a POST with a hidden
_method parameter will be converted into the corresponding HTTP method request.

To support HTTP method conversion the Spring MVC form tag was updated to support setting the
HTTP method. For example, the following snippet taken from the updated Petclinic sample

<form:form method="delete">
<p class="submit"><input type="submit" value="Delete Pet"/></p>
</form:form>

This will actually perform an HTTP POST, with the 'real' DELETE method hidden behind a request
parameter, to be picked up by the HiddenHttpMethodFilter, as defined in web.xml:

<filter>
<filter-name>httpMethodFilter</filter-name>
<filter-class>org.springframework.web.filter.HiddenHttpMethodFilter</filter-class>
</filter>

<filter-mapping>
<filter-name>httpMethodFilter</filter-name>
<servlet-name>petclinic</servlet-name>
</filter-mapping>

The corresponding @Controller method is shown below:

(method = RequestMethod.DELETE)
public String deletePet(int ownerld, int petld) {
this.clinic.deletePet(petld);
return "redirect:/owners/" + ownerld;

HTMLS Tags

Starting with Spring 3, the Spring form tag library allows entering dynamic attributes, which means
you can enter any HTMLS5 specific attributes.

120

In Spring 3.1, the form input tag supports entering a type attribute other than 'text'. This is intended
to allow rendering new HTML5 specific input types such as 'email’, 'date’, 'range’, and others. Note
that entering type="text' is not required since 'text' is the default type.

2.6. Script templates

It is possible to integrate any templating library running on top of a JSR-223 script engine in web
applications using Spring. The following describes in a broad way how to do this. The script engine
must implement both ScriptEngine and Invocable interfaces.

It has been tested with:

Handlebars running on Nashorn
* Mustache running on Nashorn

* React running on Nashorn

* EJS running on Nashorn

* ERB running on JRuby

» String templates running on Jython

2.6.1. Dependencies

To be able to use script templates integration, you need to have available in your classpath the
script engine:

* Nashorn Javascript engine is provided builtin with Java 8+. Using the latest update release
available is highly recommended.

* Rhino Javascript engine is provided builtin with Java 6 and Java 7. Please notice that using
Rhino is not recommended since it does not support running most template engines.

* JRuby dependency should be added in order to get Ruby support.
* Jython dependency should be added in order to get Python support.
You should also need to add dependencies for your script based template engine. For example, for

Javascript you can use WebJars to add Maven/Gradle dependencies in order to make your
javascript libraries available in the classpath.

2.6.2. How to integrate script based templating

To be able to use script templates, you have to configure it in order to specify various parameters
like the script engine to use, the script files to load and what function should be called to render the
templates. This is done thanks to a ScriptTemplateConfigurer bean and optional script files.

For example, in order to render Mustache templates thanks to the Nashorn Javascript engine
provided with Java 8+, you should declare the following configuration:

121

http://handlebarsjs.com/
http://openjdk.java.net/projects/nashorn/
https://mustache.github.io/
http://openjdk.java.net/projects/nashorn/
http://facebook.github.io/react/
http://openjdk.java.net/projects/nashorn/
http://www.embeddedjs.com/
http://openjdk.java.net/projects/nashorn/
http://www.stuartellis.eu/articles/erb/
http://jruby.org
https://docs.python.org/2/library/string.html#template-strings
http://www.jython.org/
http://openjdk.java.net/projects/nashorn/
http://docs.oracle.com/javase/7/docs/technotes/guides/scripting/programmer_guide/#jsengine
http://jruby.org
http://www.jython.org
http://www.webjars.org/

@Configuration
@EnableWebMvc
public class MustacheConfig implements WebMvcConfigurer {

@Override

public void configureViewResolvers(ViewResolverRegistry registry) {
registry.scriptTemplate();

}

@Bean

public ScriptTemplateConfigurer configurer() {
ScriptTemplateConfigurer configurer = new ScriptTemplateConfigurer();
configurer.setEngineName("nashorn");
configurer.setScripts("mustache.js");
configurer.setRenderObject("Mustache");
configurer.setRenderFunction("render");
return confiqurer;

The XML counterpart using MVC namespace is:

<mvc:annotation-driven/>

<mvc:view-resolvers>
<mvc:script-template/>
</mvc:view-resolvers>

<mvc:script-template-configurer engine-name="nashorn" render-object="Mustache" render-
function="render">

<mvc:script location="mustache.js"/>
</mvc:script-template-configurer>

The controller is exactly what you should expect:

@Controller
public class SampleController {

@RequestMapping
public ModelAndView test() {
ModelAndView mav = new ModelAndView();
mav.addObject("title", "Sample title").addObject("body", "Sample body");
mav.setViewName("template.html");
return mav;

122

And the Mustache template is:

<html>
<head>
<title>{{title}}</title>
</head>
<body>
<p>{{body}}</p>
</body>
</html>

The render function is called with the following parameters:

» String template: the template content
* Map model: the view model

» String url: the template url (since 4.2.2)
Mustache.render () is natively compatible with this signature, so you can call it directly.

If your templating technology requires some customization, you may provide a script that
implements a custom render function. For example, Handlerbars needs to compile templates
before using them, and requires a polyfill in order to emulate some browser facilities not available
in the server-side script engine.

public class MustacheConfig implements WebMvcConfigurer {

public void configureViewResolvers(ViewResolverRegistry registry) {
registry.scriptTemplate();

}

public ScriptTemplateConfigurer configurer() {
ScriptTemplateConfiqgurer configurer = new ScriptTemplateConfigurer();
configurer.setEngineName("nashorn");
configurer.setScripts("polyfill.js", "handlebars.js", "render.js");
configurer.setRenderFunction("render");
configurer.setSharedEngine(false);
return confiqgurer;

123

http://handlebarsjs.com
http://en.wikipedia.org/wiki/Polyfill

Setting the sharedEngine property to false is required when using non thread-safe

0 script engines with templating libraries not designed for concurrency, like
Handlebars or React running on Nashorn for example. In that case, Java 8u60 or
greater is required due to this bug.

polyfill.js only defines the window object needed by Handlebars to run properly:
var window = {};

This basic render.js implementation compiles the template before using it. A production ready
implementation should also store and reused cached templates / pre-compiled templates. This can
be done on the script side, as well as any customization you need (managing template engine
configuration for example).

function render(template, model) {
var compiledTemplate = Handlebars.compile(template);
return compiledTemplate(model);

Check out Spring script templates unit tests (java, resources) for more configuration examples.

2.7. XML Marshalling View

The MarshallingView uses an XML Marshaller defined in the org.springframework.oxm package to
render the response content as XML. The object to be marshalled can be set explicitly using
MarhsallingView's ‘modelKey bean property. Alternatively, the view will iterate over all model
properties and marshal the first type that is supported by the Marshaller. For more information on
the functionality in the org.springframework.oxm package refer to the chapter Marshalling XML
using O/X Mappers.

2.8. Tiles

It is possible to integrate Tiles - just as any other view technology - in web applications using Spring.
The following describes in a broad way how to do this.

O This section focuses on Spring’s support for Tiles v3 in the
org.springframework.web.servlet.view.tiles3 package.

2.8.1. Dependencies

To be able to use Tiles, you have to add a dependency on Tiles version 3.0.1 or higher and its
transitive dependencies to your project.

124

https://bugs.openjdk.java.net/browse/JDK-8076099
https://github.com/spring-projects/spring-framework/tree/master/spring-webmvc/src/test/java/org/springframework/web/servlet/view/script
https://github.com/spring-projects/spring-framework/tree/master/spring-webmvc/src/test/resources/org/springframework/web/servlet/view/script
http://tiles.apache.org/framework/dependency-management.html
http://tiles.apache.org/framework/dependency-management.html

2.8.2. How to integrate Tiles

To be able to use Tiles, you have to configure it using files containing definitions (for basic
information on definitions and other Tiles concepts, please have a look at http://tiles.apache.org). In
Spring this is done using the TilesConfigurer. Have a look at the following piece of example
ApplicationContext configuration:

<bean id="tilesConfigurer" class=
"org.springframework.web.servlet.view.tiles3.TilesConfigurer">
<property name="definitions">
<list>
<value>/WEB-INF/defs/general.xml</value>
<value>/WEB-INF/defs/widgets.xml</value>
<value>/WEB-INF/defs/administrator.xml</value>
<value>/WEB-INF/defs/customer.xml</value>
<value>/WEB-INF/defs/templates.xml</value>
</list>
</property>
</bean>

As you can see, there are five files containing definitions, which are all located in the 'WEB-
INF/defs' directory. At initialization of the WebApplicationContext, the files will be loaded and the
definitions factory will be initialized. After that has been done, the Tiles includes in the definition
files can be used as views within your Spring web application. To be able to use the views you have
to have a ViewResolver just as with any other view technology used with Spring. Below you can find
two possibilities, the UrlBasedViewResolver and the ResourceBundleViewResolver.

You can specify locale specific Tiles definitions by adding an underscore and then the locale. For
example:

<bean id="tilesConfigurer" class=
"org.springframework.web.servlet.view.tiles3.TilesConfigurer">
<property name="definitions">
<list>
<value>/WEB-INF/defs/tiles.xml</value>
<value>/WEB-INF/defs/tiles_fr_FR.xml</value>
</list>
</property>
</bean>

With this configuration, tiles_fr_FR.xml will be used for requests with the fr_FR locale, and
tiles.xml will be used by default.

O Since underscores are used to indicate locales, it is recommended to avoid using
them otherwise in the file names for Tiles definitions.

125

http://tiles.apache.org

UrlBasedViewResolver

The UrlBasedViewResolver instantiates the given viewClass for each view it has to resolve.

<bean id="viewResolver" class=
"org.springframework.web.servlet.view.Ur1BasedViewResolver">

<property name="viewClass" value=
"org.springframework.web.servlet.view.tiles3.TilesView"/>
</bean>

ResourceBundleViewResolver

The ResourceBundleViewResolver has to be provided with a property file containing viewnames and
viewclasses the resolver can use:

<bean id="viewResolver" class=

"org.springframework.web.servlet.view.ResourceBundleViewResolver">
<property name="basename" value="views"/>

</bean>

welcomeView. (class)=org.springframework.web.servlet.view.tiles3.TilesView
welcomeView.url=welcome (this is the name of a Tiles definition)

vetsView.(class)=org.springframework.web.servlet.view.tiles3.TilesView
vetsView.url=vetsView (again, this is the name of a Tiles definition)

findOwnersForm. (class)=org.springframework.web.servlet.view.Jst1View
findOwnersForm.ur1l=/WEB-INF/jsp/findOwners.jsp

As you can see, when using the ResourceBundleViewResolver, you can easily mix different view
technologies.

Note that the TilesView class supports JSTL (the JSP Standard Tag Library) out of the box.

SimpleSpringPreparerFactory and SpringBeanPreparerFactory

As an advanced feature, Spring also supports two special Tiles PreparerFactory implementations.
Check out the Tiles documentation for details on how to use ViewPreparer references in your Tiles
definition files.

Specify SimpleSpringPreparerFactory to autowire ViewPreparer instances based on specified
preparer classes, applying Spring’s container callbacks as well as applying configured Spring
BeanPostProcessors. If Spring’s context-wide annotation-config has been activated, annotations in
ViewPreparer classes will be automatically detected and applied. Note that this expects preparer
classes in the Tiles definition files, just like the default PreparerFactory does.

126

Specify SpringBeanPreparerFactory to operate on specified preparer names instead of classes,
obtaining the corresponding Spring bean from the DispatcherServlet’s application context. The full
bean creation process will be in the control of the Spring application context in this case, allowing
for the use of explicit dependency injection configuration, scoped beans etc. Note that you need to
define one Spring bean definition per preparer name (as used in your Tiles definitions).

<bean id="tilesConfigurer" class=
"org.springframework.web.servlet.view.tiles3.TilesConfigurer">
<property name="definitions">
<list>
<value>/WEB-INF/defs/general.xml</value>
<value>/WEB-INF/defs/widgets.xml</value>
<value>/WEB-INF/defs/administrator.xml</value>
<value>/WEB-INF/defs/customer.xml</value>
<value>/WEB-INF/defs/templates.xml</value>

</list>
</property>
<!-- resolving preparer names as Spring bean definition names -->
<property name="preparerFactoryClass"
value=

"org.springframework.web.servlet.view.tiles3.SpringBeanPreparerFactory"/>

</bean>

2.9. XSLT

XSLT is a transformation language for XML and is popular as a view technology within web
applications. XSLT can be a good choice as a view technology if your application naturally deals
with XML, or if your model can easily be converted to XML. The following section shows how to
produce an XML document as model data and have it transformed with XSLT in a Spring Web MVC
application.

2.9.1. My First Words

This example is a trivial Spring application that creates a list of words in the Controller and adds
them to the model map. The map is returned along with the view name of our XSLT view. See
Annotated Controllers for details of Spring Web MVC’s Controller interface. The XSLT Controller
will turn the list of words into a simple XML document ready for transformation.

Bean definitions

Configuration is standard for a simple Spring application. The MVC configuration has to define a
XsltViewResolver bean and regular MVC annotation configuration.

127

public class WebConfig implements WebMvcConfigurer {

public XsltViewResolver xsltViewResolver() {
XsltViewResolver viewResolver = new XsltViewResolver();
viewResolver.setPrefix("/WEB-INF/xs1/");
viewResolver.setSuffix(".xslt");
return viewResolver;

And we need a Controller that encapsulates our word generation logic.

Standard MVC controller code

The controller logic is encapsulated in a @Controller class, with the handler method being defined

like so...

public class XsltController {

(ll/ll)
public String home(Model model) throws Exception {

Document document = DocumentBuilderFactory.newInstance().newDocumentBuilder()

.newDocument();
Element root = document.createElement("wordList");

List<String> words = Arrays.asList("Hello", "Spring", "Framework");
for (String word : words) {
Element wordNode = document.createElement("word");
Text textNode = document.createTextNode(word);
wordNode.appendChild(textNode);
root.appendChild(wordNode);

}

model.addAttribute("wordList", root);
return "home";

So far we’ve only created a DOM document and added it to the Model map. Note that you can also
load an XML file as a Resource and use it instead of a custom DOM document.

128

Of course, there are software packages available that will automatically 'domify' an object graph,
but within Spring, you have complete flexibility to create the DOM from your model in any way you
choose. This prevents the transformation of XML playing too great a part in the structure of your
model data which is a danger when using tools to manage the domification process.

Next, XsltViewResolver will resolve the "home" XSLT template file and merge the DOM document
into it to generate our view.

Document transformation

Finally, the XsltViewResolver will resolve the "home" XSLT template file and merge the DOM
document into it to generate our view. As shown in the XsltViewResolver configuration, XSLT
templates live in the war file in the '"WEB-INF/xs1' directory and end with a "xs1t" file extension.

<?xml version="1.0" encoding="utf-8"7?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="html" omit-xml-declaration="yes"/>

<xsl:template match="/">
<html>
<head><title>Hello!</title></head>
<body>
<h1>My First Words</h1>

<xsl:apply-templates/>

</body>
</html>
</xsl:template>

<xsl:template match="word">
<xsl:value-of select="."/></1i>

</xsl:template>

</xsl:stylesheet>

This is rendered as:

129

<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Hello!</title>
</head>
<body>
<h1>My First Words</h1>

Hello</1i>
<1i>Spring</1i>
Framework</11>

</body>
</html>

2.10. Document views (PDF/Excel)

2.10.1. Introduction

Returning an HTML page isn’t always the best way for the user to view the model output, and
Spring makes it simple to generate a PDF document or an Excel spreadsheet dynamically from the
model data. The document is the view and will be streamed from the server with the correct
content type to (hopefully) enable the client PC to run their spreadsheet or PDF viewer application
in response.

In order to use Excel views, you need to add the 'poi' library to your classpath, and for PDF
generation, the iText library.

2.10.2. Configuration and setup

Document based views are handled in an almost identical fashion to XSLT views, and the following
sections build upon the previous one by demonstrating how the same controller used in the XSLT
example is invoked to render the same model as both a PDF document and an Excel spreadsheet
(which can also be viewed or manipulated in Open Office).

Document view definitions

First, let’s amend the views.properties file (or xml equivalent) and add a simple view definition for
both document types. The entire file now looks like this with the XSLT view shown from earlier:

home. (class)=xs1t.HomePage
home.stylesheetLocation=/WEB-INF/xs1/home.xs1t
home.root=words

x1.(class)=excel.HomePage

pdf.(class)=pdf.HomePage

130

If you want to start with a template spreadsheet or a fillable PDF form to add your model data to,
specify the location as the 'url’ property in the view definition

Controller code

The controller code we’ll use remains exactly the same from the XSLT example earlier other than to
change the name of the view to use. Of course, you could be clever and have this selected based on
a URL parameter or some other logic - proof that Spring really is very good at decoupling the views
from the controllers!

Subclassing for Excel views

Exactly as we did for the XSLT example, we’ll subclass suitable abstract classes in order to
implement custom behavior in generating our output documents. For Excel, this involves writing a
subclass of org.springframework.web.servlet.view.document.AbstractExcelView (for Excel files
generated by POI) or org.springframework.web.servlet.view.document.AbstractJExcelView (for
JExcelApi-generated Excel files) and implementing the buildExcelDocument() method.

Here’s the complete listing for our POI Excel view which displays the word list from the model map
in consecutive rows of the first column of a new spreadsheet:

131

package excel;
// imports omitted for brevity
public class HomePage extends AbstractExcelView {

protected void buildExcelDocument(Map model, HSSFWorkbook wb, HttpServletRequest
req,
HttpServletResponse resp) throws Exception {

HSSFSheet sheet;
HSSFRow sheetRow;
HSSFCell cell;

// Go to the first sheet

// getSheetAt: only if wb is created from an existing document
// sheet = wb.getSheetAt(0);

sheet = wb.createSheet("Spring");
sheet.setDefaultColumnWidth((short) 12);

// write a text at A1l
cell = getCell(sheet, 0, 0);
setText(cell, "Spring-Excel test");

List words = (List) model.get("wordList");
for (int i=0; i < words.size(); i++) {

cell = getCell(sheet, 2+i, 0);
setText(cell, (String) words.get(i));

And the following is a view generating the same Excel file, now using JExcelApi:

132

package excel;
// imports omitted for brevity
public class HomePage extends AbstractJExcelView {

protected void buildExcelDocument(Map model, WritableWorkbook wb,
HttpServletRequest request, HttpServletResponse response) throws Exception

{
WritableSheet sheet = wb.createSheet("Spring", 0);
sheet.addCell(new Label(®, @, "Spring-Excel test"));
List words = (List) model.get("wordList");
for (int i = 0; i < words.size(); i++) {

sheet.addCell(new Label(2+i, 0, (String) words.get(i)));
}
}
}

Note the differences between the APIs. We’ve found that the JExcelApi is somewhat more intuitive,
and furthermore, JExcelApi has slightly better image-handling capabilities. There have been
memory problems with large Excel files when using JExcelApi however.

If you now amend the controller such that it returns x1 as the name of the view (return new
ModelAndView("x1", map);) and run your application again, you should find that the Excel
spreadsheet is created and downloaded automatically when you request the same page as before.

Subclassing for PDF views

The PDF version of the word list is even simpler. This time, the class extends
org.springframework.web.servlet.view.document.AbstractPdfView and implements the
buildPdfDocument () method as follows:

133

package pdf;
// imports omitted for brevity
public class PDFPage extends AbstractPdfView {

protected void buildPdfDocument(Map model, Document doc, PdfWriter writer,
HttpServletRequest req, HttpServletResponse resp) throws Exception {
List words = (List) model.get("wordList");
for (int i=0; i<words.size(); i++) {
doc.add(new Paragraph((String) words.get(i)));
}

Once again, amend the controller to return the pdf view with return new ModelAndView("pdf", map);,
and reload the URL in your application. This time a PDF document should appear listing each of the
words in the model map.

2.11. Feed Views

Both AbstractAtomFeedView and AbstractRssFeedView inherit from the base class AbstractFeedView
and are used to provide Atom and RSS Feed views respectfully. They are based on java.net’s ROME
project and are located in the package org.springframework.web.servlet.view.feed.

AbstractAtomFeedView requires you to implement the buildFeedEntries() method and optionally
override the buildFeedMetadata() method (the default implementation is empty), as shown below.

public class SampleContentAtomView extends AbstractAtomFeedView {

protected void buildFeedMetadata(Map<String, Object> model,
Feed feed, HttpServletRequest request) {
// implementation omitted

protected List<Entry> buildFeedEntries(Map<String, Object> model,
HttpServlietRequest request, HttpServletResponse response) throws Exception

// implementation omitted

Similar requirements apply for implementing AbstractRssFeedView, as shown below.

134

https://rome.dev.java.net

public class SampleContentAtomView extends AbstractRssFeedView {

protected void buildFeedMetadata(Map<String, Object> model,
Channel feed, HttpServletRequest request) {
// implementation omitted

protected List<Item> buildFeedItems(Map<String, Object> model,
HttpServletRequest request, HttpServletResponse response) throws Exception

// implementation omitted

The buildFeedItems() and buildFeedEntires() methods pass in the HTTP request in case you need to
access the Locale. The HTTP response is passed in only for the setting of cookies or other HTTP
headers. The feed will automatically be written to the response object after the method returns.

For an example of creating an Atom view please refer to Alef Arendsen’s Spring Team Blog entry.

2.12. JSON Mapping View

The MappingJackson2]sonView uses the Jackson library’s ObjectMapper to render the response content
as JSON. By default, the entire contents of the model map (with the exception of framework-specific
classes) will be encoded as JSON. For cases where the contents of the map need to be filtered, users
may specify a specific set of model attributes to encode via the RenderedAttributes property. The
extractValueFromSingleKeyModel property may also be used to have the value in single-key models
extracted and serialized directly rather than as a map of model attributes.

JSON mapping can be customized as needed through the use of Jackson’s provided annotations.
When further control is needed, a custom ObjectMapper can be injected through the ObjectMapper
property for cases where custom JSON serializers/deserializers need to be provided for specific

types.

JSONP is supported and automatically enabled when the request has a query parameter named
jsonp or callback. The JSONP query parameter name(s) could be customized through the
jsonpParameterNames property.

2.13. XML Mapping View

The MappingJackson2XmlView uses the Jackson XML extension's XmlMapper to render the response
content as XML. If the model contains multiples entries, the object to be serialized should be set
explicitly using the mode1lKey bean property. If the model contains a single entry, it will be serialized
automatically.

135

https://spring.io/blog/2009/03/16/adding-an-atom-view-to-an-application-using-spring-s-rest-support
http://en.wikipedia.org/wiki/JSONP
https://github.com/FasterXML/jackson-dataformat-xml

XML mapping can be customized as needed through the use of JAXB or Jackson’s provided
annotations. When further control is needed, a custom XmlMapper can be injected through the

ObjectMapper property for cases where custom XML serializers/deserializers need to be provided for
specific types.

136

Chapter 3. CORS Support

3.1. Introduction

For security reasons, browsers prohibit AJAX calls to resources residing outside the current origin.
For example, as you’re checking your bank account in one tab, you could have the evil.com website
open in another tab. The scripts from evil.com should not be able to make AJAX requests to your
bank API (e.g., withdrawing money from your account!) using your credentials.

Cross-origin resource sharing (CORS) is a W3C specification implemented by most browsers that
allows you to specify in a flexible way what kind of cross domain requests are authorized, instead
of using some less secured and less powerful hacks like IFRAME or JSONP.

As of Spring Framework 4.2, CORS is supported out of the box. CORS requests (including preflight
ones with an OPTIONS method) are automatically dispatched to the various registered
HandlerMappings. They handle CORS preflight requests and intercept CORS simple and actual
requests thanks to a CorsProcessor implementation (DefaultCorsProcessor by default) in order to
add the relevant CORS response headers (like Access-Control-Allow-Origin) based on the CORS
configuration you have provided.

Since CORS requests are automatically dispatched, you do not need to change the
DispatcherServlet dispatchOptionsRequest init parameter value; using its default
value (false) is the recommended approach.

3.2. Controller method CORS configuration

You can add an @CrossOrigin annotation to your @RequestMapping annotated handler method in
order to enable CORS on it. By default @CrossOrigin allows all origins and the HTTP methods
specified in the @RequestMapping annotation:

("/account™)
public class AccountController {

("7{id}")
public Account retrieve(Long id) {
/] ...
}
(method = RequestMethod.DELETE, path = "/{id}")
public void remove(Long id) {
/] ...
}

137

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://www.w3.org/TR/cors/
http://caniuse.com/#feat=cors
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/FrameworkServlet.java#L906
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/FrameworkServlet.java#L906
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/FrameworkServlet.java#L906
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/FrameworkServlet.java#L906
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/cors/CorsProcessor.html
https://github.com/spring-projects/spring-framework/blob/master/spring-web/src/main/java/org/springframework/web/cors/DefaultCorsProcessor.java
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/bind/annotation/CrossOrigin.html

It is also possible to enable CORS for the whole controller:

(origins = "http://domain2.com", maxAge = 3600)

("/account")
public class AccountController {

("/{id}")
public Account retrieve(Long id) {
/] ...
}
(method = RequestMethod.DELETE, path = "/{id}")
public void remove(Long id) {
/] ...
}

In the above example CORS support is enabled for both the retrieve() and the remove() handler
methods, and you can also see how you can customize the CORS configuration using @Cross0Origin
attributes.

You can even use both controller-level and method-level CORS configurations; Spring will then
combine attributes from both annotations to create merged CORS configuration.

(maxAge = 3600)

("/account")
public class AccountController {

("http://domain2.com")

("/{id}")
public Account retrieve(Long id) {

/] ...
}

(method = RequestMethod.DELETE, path = "/{id}")

public void remove(Long id) {

/] ...
}

3.3. Global CORS configuration

In addition to fine-grained, annotation-based configuration you’ll probably want to define some
global CORS configuration as well. This is similar to using filters but can be declared within Spring
MVC and combined with fine-grained @CrossOrigin configuration. By default all origins and GET,
HEAD, and POST methods are allowed.

138

3.3.1. JavaConfig

Enabling CORS for the whole application is as simple as:

public class WebConfig implements WebMvcConfigurer {

public void addCorsMappings(CorsRegistry registry) {
registry.addMapping("/**");
}

You can easily change any properties, as well as only apply this CORS configuration to a specific
path pattern:

public class WebConfig implements WebMvcConfigurer {

public void addCorsMappings(CorsRegistry registry) {
registry.addMapping("/api/**")
.allowedOrigins("http://domain2.com")
.allowedMethods("PUT", "DELETE")
.allowedHeaders("header1", "header2", "header3")
.exposedHeaders("header1", "header2")
.allowCredentials(false).maxAge(3600);

3.3.2. XML namespace

The following minimal XML configuration enables CORS for the /** path pattern with the same
default properties as with the aforementioned JavaConfig examples:

<mvc:cors>
<mvc:mapping path="/**" />
</mvc:cors>

It is also possible to declare several CORS mappings with customized properties:

139

<mvc:cors>

<mvc:mapping path="/api/**"
allowed-origins="http://domain1.com, http://domain2.com"
allowed-methods="GET, PUT"
allowed-headers="header1, header2, header3"
exposed-headers="header1, header2" allow-credentials="false'
max-age="123" />

<mvc:mapping path="/resources/**"
allowed-origins="http://domain1.com" />

</mvc:cors>

3.4. Advanced Customization

CorsConfiguration allows you to specify how the CORS requests should be processed: allowed
origins, headers, methods, etc. It can be provided in various ways:

» AbstractHandlerMapping#isetCorsConfiguration() allows to specify a Map with several
CorsConfiguration instances mapped to path patterns like /api/**.

* Subclasses can provide their own CorsConfiguration by overriding the
AbstractHandlerMapping#getCorsConfiguration(Object, HttpServletRequest) method.

* Handlers can implement the CorsConfigurationSource interface (like ResourceHttpRequestHandler
now does) in order to provide a CorsConfiguration instance for each request.

3.5. Filter based CORS support

In order to support CORS with filter-based security frameworks like Spring Security, or with other
libraries that do not support natively CORS, Spring Framework also provides a CorsFilter. Instead
of using @CrossOrigin or WebMvcConfigurer#addCorsMappings(CorsRegistry), you need to register a
custom filter defined like bellow:

140

https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/cors/CorsConfiguration.html
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/servlet/handler/AbstractHandlerMapping.html#setCorsConfiguration-java.util.Map-
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/cors/CorsConfiguration.html
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/cors/CorsConfigurationSource.html
https://github.com/spring-projects/spring-framework/blob/master/spring-webmvc/src/main/java/org/springframework/web/servlet/resource/ResourceHttpRequestHandler.java
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/cors/CorsConfiguration.html
http://projects.spring.io/spring-security/
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/filter/CorsFilter.html

import org.springframework.web.cors.CorsConfiguration;
import org.springframework.web.cors.Ur1BasedCorsConfigurationSource;
import org.springframework.web.filter.CorsFilter;

public class MyCorsFilter extends CorsFilter {

public MyCorsFilter() {
super (configurationSource());

}

private static UrlBasedCorsConfigurationSource configurationSource() {
CorsConfiguration config = new CorsConfiguration();
config.setAllowCredentials(true);
config.addAllowedOrigin("http://domainl.com");
config.addAllowedHeader ("*");
config.addAllowedMethod("*");
Ur1BasedCorsConfigurationSource source = new UrlBasedCorsConfigurationSource(

source.registerCorsConfiguration("/**", config);
return source;

You need to ensure that CorsFilter is ordered before the other filters, see this blog post about how
to configure Spring Boot accordingly.

141

https://spring.io/blog/2015/06/08/cors-support-in-spring-framework#filter-based-cors-support

Chapter 4. Servlet-based WebSocket Support

This part of the reference documentation covers Spring Framework’s support for WebSocket-style
messaging in web applications including use of STOMP as an application level WebSocket sub-
protocol.

Introduction establishes a frame of mind in which to think about WebSocket, covering adoption
challenges, design considerations, and thoughts on when it is a good fit.

WebSocket API reviews the Spring WebSocket API on the server-side, while Sock]S Fallback Options
explains the Sock]S protocol and shows how to configure and use it.

Overview of STOMP introduces the STOMP messaging protocol. Enable STOMP over WebSocket
demonstrates how to configure STOMP support in Spring. Annotation Message Handling and the
following sections explain how to write annotated message handling methods, send messages,
choose message broker options, as well as work with the special "user" destinations. Finally, Testing
Annotated Controller Methods lists three approaches to testing STOMP/WebSocket applications.

4.1. Introduction

The WebSocket protocol RFC 6455 defines an important new capability for web applications: full-
duplex, two-way communication between client and server. It is an exciting new capability on the
heels of a long history of techniques to make the web more interactive including Java Applets,
XMLHttpRequest, Adobe Flash, ActiveXObject, various Comet techniques, server-sent events, and
others.

A proper introduction to the WebSocket protocol is beyond the scope of this document. At a
minimum however it’s important to understand that HTTP is used only for the initial handshake,
which relies on a mechanism built into HTTP to request a protocol upgrade (or in this case a
protocol switch) to which the server can respond with HTTP status 101 (switching protocols) if it
agrees. Assuming the handshake succeeds the TCP socket underlying the HTTP upgrade request
remains open and both client and server can use it to send messages to each other.

Spring Framework 4 includes a new spring-websocket module with comprehensive WebSocket
support. It is compatible with the Java WebSocket API standard (JSR-356) and also provides
additional value-add as explained in the rest of the introduction.

4.1.1. WebSocket Fallback Options

An important challenge to adoption is the lack of support for WebSocket in some browsers. Notably
the first Internet Explorer version to support WebSocket is version 10 (see http://caniuse.com/
websockets for support by browser versions). Furthermore, some restrictive proxies may be
configured in ways that either preclude the attempt to do an HTTP upgrade or otherwise break
connection after some time because it has remained opened for too long. A good overview on this
topic from Peter Lubbers is available in the InfoQ article "How HTML5 Web Sockets Interact With
Proxy Servers".

Therefore to build a WebSocket application today, fallback options are required in order to simulate

142

http://tools.ietf.org/html/rfc6455
http://jcp.org/en/jsr/detail?id=356
http://caniuse.com/websockets
http://caniuse.com/websockets
http://www.infoq.com/articles/Web-Sockets-Proxy-Servers
http://www.infoq.com/articles/Web-Sockets-Proxy-Servers

the WebSocket API where necessary. The Spring Framework provides such transparent fallback
options based on the Sock]S protocol. These options can be enabled through configuration and do
not require modifying the application otherwise.

4.1.2. A Messaging Architecture

Aside from short-to-midterm adoption challenges, using WebSocket brings up important design
considerations that are important to recognize early on, especially in contrast to what we know
about building web applications today.

Today REST is a widely accepted, understood, and supported architecture for building web
applications. It is an architecture that relies on having many URLs (nouns), a handful of HTTP
methods (verbs), and other principles such as using hypermedia (links), remaining stateless, etc.

By contrast a WebSocket application may use a single URL only for the initial HTTP handshake. All
messages thereafter share and flow on the same TCP connection. This points to an entirely
different, asynchronous, event-driven, messaging architecture. One that is much closer to
traditional messaging applications (e.g. JMS, AMQP).

Spring Framework 4 includes a new spring-messaging module with key abstractions from the
Spring Integration project such as Message, MessageChannel, MessageHandler, and others that can serve
as a foundation for such a messaging architecture. The module also includes a set of annotations
for mapping messages to methods, similar to the Spring MVC annotation based programming
model.

4.1.3. Sub-Protocol Support in WebSocket

WebSocket does imply a messaging architecture but does not mandate the use of any specific
messaging protocol. It is a very thin layer over TCP that transforms a stream of bytes into a stream
of messages (either text or binary) and not much more. It is up to applications to interpret the
meaning of a message.

Unlike HTTP, which is an application-level protocol, in the WebSocket protocol there is simply not
enough information in an incoming message for a framework or container to know how to route it
or process it. Therefore WebSocket is arguably too low level for anything but a very trivial
application. It can be done, but it will likely lead to creating a framework on top. This is comparable
to how most web applications today are written using a web framework rather than the Servlet API
alone.

For this reason the WebSocket RFC defines the use of sub-protocols. During the handshake, the
client and server can use the header Sec-WebSocket-Protocol to agree on a sub-protocol, i.e. a higher,
application-level protocol to use. The use of a sub-protocol is not required, but even if not used,
applications will still need to choose a message format that both the client and server can
understand. That format can be custom, framework-specific, or a standard messaging protocol.

The Spring Framework provides support for using STOMP—a simple, messaging protocol
originally created for use in scripting languages with frames inspired by HTTP. STOMP is widely
supported and well suited for use over WebSocket and over the web.

143

https://github.com/sockjs/sockjs-protocol
http://projects.spring.io/spring-integration/
http://tools.ietf.org/html/rfc6455#section-1.9
http://stomp.github.io/stomp-specification-1.2.html#Abstract

4.1.4. Should I Use WebSocket?

With all the design considerations surrounding the use of WebSocket, it is reasonable to ask, "When
is it appropriate to use?".

The best fit for WebSocket is in web applications where the client and server need to exchange
events at high frequency and with low latency. Prime candidates include, but are not limited to,
applications in finance, games, collaboration, and others. Such applications are both very sensitive
to time delays and also need to exchange a wide variety of messages at a high frequency.

For other application types, however, this may not be the case. For example, a news or social feed
that shows breaking news as it becomes available may be perfectly okay with simple polling once
every few minutes. Here latency is important, but it is acceptable if the news takes a few minutes to
appear.

Even in cases where latency is crucial, if the volume of messages is relatively low (e.g. monitoring
network failures) the use of long polling should be considered as a relatively simple alternative that
works reliably and is comparable in terms of efficiency (again assuming the volume of messages is
relatively low).

It is the combination of both low latency and high frequency of messages that can make the use of
the WebSocket protocol critical. Even in such applications, the choice remains whether all client-
server communication should be done through WebSocket messages as opposed to using HTTP and
REST. The answer is going to vary by application; however, it is likely that some functionality may
be exposed over both WebSocket and as a REST API in order to provide clients with alternatives.
Furthermore, a REST API call may need to broadcast a message to interested clients connected via
WebSocket.

The Spring Framework allows @Controller and @RestController classes to have both HTTP request
handling and WebSocket message handling methods. Furthermore, a Spring MVC request handling
method, or any application method for that matter, can easily broadcast a message to all interested
WebSocket clients or to a specific user.

4.2. WebSocket API

The Spring Framework provides a WebSocket API designed to adapt to various WebSocket engines.
Currently the list includes WebSocket runtimes such as Tomcat 7.0.47+, Jetty 9.1+, GlassFish 4.1+,
WebLogic 12.1.3+, and Undertow 1.0+ (and WildFly 8.0+). Additional support may be added as more
WebSocket runtimes become available.

144

https://spring.io/blog/2012/05/08/spring-mvc-3-2-preview-techniques-for-real-time-updates

As explained in the introduction, direct use of a WebSocket API is too low level for

applications — until assumptions are made about the format of a message there is

little a framework can do to interpret messages or route them via annotations.

This is why applications should consider using a sub-protocol and Spring’s STOMP
9 over WebSocket support.

When using a higher level protocol, the details of the WebSocket API become less
relevant, much like the details of TCP communication are not exposed to
applications when using HTTP. Nevertheless this section covers the details of using
WebSocket directly.

4.2.1. Create and Configure a WebSocketHandler
Creating a WebSocket server is as simple as implementing WebSocketHandler or more likely

extending either TextWebSocketHandler or BinaryWebSocketHandler:

import org.springframework.web.socket.WebSocketHandler;
import org.springframework.web.socket.WebSocketSession;
import org.springframework.web.socket.TextMessage;

public class MyHandler extends TextWebSocketHandler {

public void handleTextMessage(WebSocketSession session, TextMessage message) {
/] ...

}

There is dedicated WebSocket Java-config and XML namespace support for mapping the above
WebSocket handler to a specific URL:

145

import org.springframework.web.socket.config.annotation.EnableWebSocket;
import org.springframework.web.socket.config.annotation.WebSocketConfiqurer;
import org.springframework.web.socket.config.annotation.WebSocketHandlerRegistry;

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

@Override

public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry.addHandler (myHandler(), "/myHandler");

}

@Bean
public WebSocketHandler myHandler() {
return new MyHandler();

}

XML configuration equivalent:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
http://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:handlers>
<websocket:mapping path="/myHandler" handler="myHandler"/>
</websocket:handlers>

<bean id="myHandler" class="org.springframework.samples.MyHandler"/>

</beans>

The above is for use in Spring MVC applications and should be included in the configuration of a
DispatcherServlet. However, Spring’s WebSocket support does not depend on Spring MVC. It is
relatively simple to integrate a WebSocketHandler into other HTTP serving environments with the
help of WebSocketHttpRequestHandler.

4.2.2. Customizing the WebSocket Handshake

The easiest way to customize the initial HTTP WebSocket handshake request is through a
HandshakeInterceptor, which exposes "before" and "after" the handshake methods. Such an

146

https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/socket/server/support/WebSocketHttpRequestHandler.html

interceptor can be used to preclude the handshake or to make any attributes available to the
WebSocketSession. For example, there is a built-in interceptor for passing HTTP session attributes to
the WebSocket session:

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

@0verride
public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry.addHandler (new MyHandler(), "/myHandler")
.addInterceptors(new HttpSessionHandshakeInterceptor());

And the XML configuration equivalent:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
http://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:handlers>
<websocket:mapping path="/myHandler" handler="myHandler"/>
<websocket:handshake-interceptors>
<bean class=

"org.springframework.web.socket.server.support.HttpSessionHandshakeInterceptor"/>
</websocket:handshake-interceptors>
</websocket:handlers>

<bean id="myHandler" class="org.springframework.samples.MyHandler"/>

</beans>

A more advanced option is to extend the DefaultHandshakeHandler that performs the steps of the
WebSocket handshake, including validating the client origin, negotiating a sub-protocol, and others.
An application may also need to use this option if it needs to configure a custom
RequestUpgradeStrategy in order to adapt to a WebSocket server engine and version that is not yet
supported (also see Deployment Considerations for more on this subject). Both the Java-config and
XML namespace make it possible to configure a custom HandshakeHandler.

147

4.2.3. WebSocketHandler Decoration

Spring provides a WebSocketHandlerDecorator base class that can be used to decorate a
WebSocketHandler with additional behavior. Logging and exception handling implementations are
provided and added by default when using the WebSocket Java-config or XML namespace. The
ExceptionWebSocketHandlerDecorator catches all uncaught exceptions arising from any
WebSocketHandler method and closes the WebSocket session with status 1011 that indicates a
server error.

4.2.4. Deployment Considerations

The Spring WebSocket API is easy to integrate into a Spring MVC application where the
DispatcherServlet serves both HTTP WebSocket handshake as well as other HTTP requests. It is also
easy to integrate into other HTTP processing scenarios by invoking WebSocketHttpRequestHandler.
This is convenient and easy to understand. However, special considerations apply with regards to
JSR-356 runtimes.

The Java WebSocket API (JSR-356) provides two deployment mechanisms. The first involves a
Servlet container classpath scan (Servlet 3 feature) at startup; and the other is a registration API to
use at Servlet container initialization. Neither of these mechanism makes it possible to use a single
"front controller" for all HTTP processing —including WebSocket handshake and all other HTTP
requests — such as Spring MVC’s DispatcherServlet.

This is a significant limitation of JSR-356 that Spring’s WebSocket support addresses by providing a
server-specific RequestUpgradeStrategy even when running in a JSR-356 runtime.

A request to overcome the above limitation in the Java WebSocket API has been
created and can be followed at WEBSOCKET _SPEC-211. Also note that Tomcat and

0 Jetty already provide native API alternatives that makes it easy to overcome the
limitation. We are hopeful that more servers will follow their example regardless
of when it is addressed in the Java WebSocket API.

A secondary consideration is that Servlet containers with JSR-356 support are expected to perform
a ServletContainerInitializer (SCI) scan that can slow down application startup, in some cases
dramatically. If a significant impact is observed after an upgrade to a Servlet container version with
JSR-356 support, it should be possible to selectively enable or disable web fragments (and SCI
scanning) through the use of the <absolute-ordering /> element in web.xml:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
version="3.0">

<absolute-ordering/>

</web-app>

148

https://java.net/jira/browse/WEBSOCKET_SPEC-211

You can then selectively enable web fragments by name, such as Spring’s own
SpringServletContainerInitializer that provides support for the Servlet 3 Java initialization API, if
required:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
version="3.0">

<absolute-ordering>
<name>spring_web</name>
</absolute-ordering>

</web-app>

4.2.5. Configuring the WebSocket Engine

Each underlying WebSocket engine exposes configuration properties that control runtime
characteristics such as the size of message buffer sizes, idle timeout, and others.

For Tomcat, WildFly, and GlassFish add a ServletServerContainerFactoryBean to your WebSocket
Java config:

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

@Bean
public ServletServerContainerFactoryBean createWebSocketContainer() {
ServletServerContainerFactoryBean container = new
ServletServerContainerFactoryBean();
container.setMaxTextMessageBufferSize(8192);
container.setMaxBinaryMessageBufferSize(8192);
return container;

or WebSocket XML namespace:

149

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
http://www.springframework.org/schema/websocket/spring-websocket.xsd">

<bean class="org.springframework...ServletServerContainerFactoryBean">
<property name="maxTextMessageBufferSize" value="8192"/>
<property name="maxBinaryMessageBufferSize" value="8192"/>

</bean>

</beans>

For client side WebSocket configuration, you should use
0 WebSocketContainerFactoryBean (XML) or
ContainerProvider.getWebSocketContainer() (Java config).

For Jetty, yowll need to supply a pre-configured Jetty WebSocketServerFactory and plug that into
Spring’s DefaultHandshakeHandler through your WebSocket Java config:

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

@0verride
public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry.addHandler (echoWebSocketHandler(),
"/echo").setHandshakeHandler (handshakeHandler());
}

@Bean
public DefaultHandshakeHandler handshakeHandler() {

WebSocketPolicy policy = new WebSocketPolicy(WebSocketBehavior.SERVER);
policy.setInputBufferSize(8192);
policy.setIdleTimeout(600000);

return new DefaultHandshakeHandler (
new JettyRequestUpgradeStrategy(new WebSocketServerFactory(policy)));

or WebSocket XML namespace:

150

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
http://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:handlers>
<websocket:mapping path="/echo" handler="echoHandler"/>
<websocket:handshake-handler ref="handshakeHandler"/>
</websocket:handlers>

<bean id="handshakeHandler" class="org.springframework...DefaultHandshakeHandler">
<constructor-arg ref="upgradeStrategy"/>
</bean>

<bean id="upgradeStrategy" class=
"org.springframework...JettyRequestUpgradeStrategy">
<constructor-arg ref="serverFactory"/>
</bean>

<bean id="serverFactory" class="org.eclipse.jetty...WebSocketServerFactory">
<constructor-arg>
<bean class="org.eclipse.jetty...WebSocketPolicy">
<constructor-arg value="SERVER"/>
<property name="1inputBufferSize" value="8092"/>
<property name="idleTimeout" value="600000"/>
</bean>
</constructor-arg>
</bean>

</beans>

4.2.6. Configuring allowed origins

As of Spring Framework 4.1.5, the default behavior for WebSocket and SocK]S is to accept only same
origin requests. It is also possible to allow all or a specified list of origins. This check is mostly
designed for browser clients. There is nothing preventing other types of clients from modifying the
Origin header value (see RFC 6454: The Web Origin Concept for more details).

The 3 possible behaviors are:

» Allow only same origin requests (default): in this mode, when Sock]S is enabled, the Iframe
HTTP response header X-Frame-Options is set to SAMEORIGIN, and JSONP transport is disabled
since it does not allow to check the origin of a request. As a consequence, IE6 and IE7 are not
supported when this mode is enabled.

* Allow a specified list of origins: each provided allowed origin must start with http:// or

151

https://tools.ietf.org/html/rfc6454

https://. In this mode, when Sock]JS is enabled, both IFrame and JSONP based transports are
disabled. As a consequence, IE6 through IE9 are not supported when this mode is enabled.

* Allow all origins: to enable this mode, you should provide * as the allowed origin value. In this
mode, all transports are available.

WebSocket and Sock]S allowed origins can be configured as shown bellow:

import org.springframework.web.socket.config.annotation.EnableWebSocket;
import org.springframework.web.socket.config.annotation.WebSocketConfigurer;
import org.springframework.web.socket.config.annotation.WebSocketHandlerRegistry;

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

@0verride
public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry.addHandler (myHandler(), "/myHandler").setAllowedOrigins(
"http://mydomain.com");
}

@Bean
public WebSocketHandler myHandler() {
return new MyHandler();

}

XML configuration equivalent:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
http://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:handlers allowed-origins="http://mydomain.com">
<websocket:mapping path="/myHandler" handler="myHandler" />
</websocket:handlers>

<bean id="myHandler" class="org.springframework.samples.MyHandler"/>

</beans>

152

4.3. Sock]S Fallback Options

As explained in the introduction, WebSocket is not supported in all browsers yet and may be
precluded by restrictive network proxies. This is why Spring provides fallback options that emulate
the WebSocket API as close as possible based on the Sock]S protocol (version 0.3.3).

4.3.1. Overview of Sock]JS

The goal of Sock]S is to let applications use a WebSocket API but fall back to non-WebSocket
alternatives when necessary at runtime, i.e. without the need to change application code.

SockK]JS consists of:

* The Sock]S protocol defined in the form of executable narrated tests.
» The Sock]S JavaScript client - a client library for use in browsers.

* Sock]S server implementations including one in the Spring Framework spring-websocket
module.

* Asof4.1 spring-websocket also provides a SocK]S Java client.

Sock]JS is designed for use in browsers. It goes to great lengths to support a wide range of browser
versions using a variety of techniques. For the full list of Sock]S transport types and browsers see
the Sock]S client page. Transports fall in 3 general categories: WebSocket, HTTP Streaming, and
HTTP Long Polling. For an overview of these categories see this blog post.

The SocK]S client begins by sending "GET /info" to obtain basic information from the server. After
that it must decide what transport to use. If possible WebSocket is used. If not, in most browsers
there is at least one HTTP streaming option and if not then HTTP (long) polling is used.

All transport requests have the following URL structure:
http://host:port/myApp/myEndpoint/{server-id}/{session-id}/{transport}

» {server-id} - useful for routing requests in a cluster but not used otherwise.

» {session-id} - correlates HTTP requests belonging to a Sock]S session.

» {transport} - indicates the transport type, e.g. "websocket", "xhr-streaming", etc.

The WebSocket transport needs only a single HTTP request to do the WebSocket handshake. All
messages thereafter are exchanged on that socket.

HTTP transports require more requests. Ajax/XHR streaming for example relies on one long-
running request for server-to-client messages and additional HTTP POST requests for client-to-
server messages. Long polling is similar except it ends the current request after each server-to-
client send.

Sock]JS adds minimal message framing. For example the server sends the letter o ("open" frame)
initially, messages are sent as a['messagel”,"message2"] (JSON-encoded array), the letter h
("heartbeat" frame) if no messages flow for 25 seconds by default, and the letter c ("close" frame) to

153

https://github.com/sockjs/sockjs-protocol
https://github.com/sockjs/sockjs-protocol
http://sockjs.github.io/sockjs-protocol/sockjs-protocol-0.3.3.html
https://github.com/sockjs/sockjs-client/
https://github.com/sockjs/sockjs-client/
https://spring.io/blog/2012/05/08/spring-mvc-3-2-preview-techniques-for-real-time-updates/

close the session.

To learn more, run an example in a browser and watch the HTTP requests. The Sock]S client allows
fixing the list of transports so it is possible to see each transport one at a time. The Sock]S client also
provides a debug flag which enables helpful messages in the browser console. On the server side
enable TRACE logging for org.springframework.web.socket. For even more detail refer to the Sock]S
protocol narrated test.

4.3.2. Enable SocKk]JS

SockK]JS is easy to enable through Java configuration:

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

@0verride

public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry.addHandler (myHandler(), "/myHandler").withSockJS();

}

@Bean
public WebSocketHandler myHandler() {
return new MyHandler();

}

and the XML configuration equivalent:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
http://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:handlers>
<websocket:mapping path="/myHandler" handler="myHandler"/>
<websocket:sockjs/>

</websocket:handlers>

<bean id="myHandler" class="org.springframework.samples.MyHandler"/>

</beans>

154

http://sockjs.github.io/sockjs-protocol/sockjs-protocol-0.3.3.html

The above is for use in Spring MVC applications and should be included in the configuration of a
DispatcherServlet. However, Spring’s WebSocket and Sock]S support does not depend on Spring
MVC. It is relatively simple to integrate into other HTTP serving environments with the help of
SockJsHttpRequestHandler.

On the browser side, applications can use the sockjs-client (version 1.0.x) that emulates the W3C
WebSocket API and communicates with the server to select the best transport option depending on
the browser it’s running in. Review the sockjs-client page and the list of transport types supported
by browser. The client also provides several configuration options, for example, to specify which
transports to include.

4.3.3. HTTP Streaming in IE 8, 9: Ajax/XHR vs IFrame

Internet Explorer 8 and 9 are and will remain common for some time. They are a key reason for
having Sock]JS. This section covers important considerations about running in those browsers.

The Sock]S client supports Ajax/XHR streaming in IE 8 and 9 via Microsoft’s XDomainRequest. That
works across domains but does not support sending cookies. Cookies are very often essential for
Java applications. However since the Sock]S client can be used with many server types (not just
Java ones), it needs to know whether cookies matter. If so the Sock]JS client prefers Ajax/XHR for
streaming or otherwise it relies on a iframe-based technique.

The very first "/info" request from the Sock]S client is a request for information that can influence
the client’s choice of transports. One of those details is whether the server application relies on
cookies, e.g. for authentication purposes or clustering with sticky sessions. Spring’s Sock]S support
includes a property called sessionCookieNeeded. It is enabled by default since most Java applications
rely on the JSESSIONID cookie. If your application does not need it, you can turn off this option and
the Sock]S client should choose xdr-streaming in IE 8 and 9.

If you do use an iframe-based transport, and in any case, it is good to know that browsers can be
instructed to block the use of IFrames on a given page by setting the HTTP response header X-
Frame-Options to DENY, SAMEORIGIN, or ALLOW-FROM <origin>. This is used to prevent clickjacking.

Spring Security 3.2+ provides support for setting X-Frame-Options on every

response. By default the Spring Security Java config sets it to DENY. In 3.2 the Spring

Security XML namespace does not set that header by default but may be
0 configured to do so, and in the future it may set it by default.

See Section 7.1. "Default Security Headers" of the Spring Security documentation
for details on how to configure the setting of the X-Frame-Options header. You may
also check or watch SEC-2501 for additional background.

If your application adds the X-Frame-Options response header (as it should!) and relies on an iframe-
based transport, you will need to set the header value to SAMEORIGIN or ALLOW-FROM <origin>. Along
with that the Spring Sock]JS support also needs to know the location of the Sock]JS client because it is
loaded from the iframe. By default the iframe is set to download the Sock]S client from a CDN
location. It is a good idea to configure this option to a URL from the same origin as the application.

In Java config this can be done as shown below. The XML namespace provides a similar option via

155

https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/web/socket/sockjs/support/SockJsHttpRequestHandler.html
https://github.com/sockjs/sockjs-client/
https://github.com/sockjs/sockjs-client/
http://blogs.msdn.com/b/ieinternals/archive/2010/05/13/xdomainrequest-restrictions-limitations-and-workarounds.aspx
https://www.owasp.org/index.php/Clickjacking
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#headers
https://jira.spring.io/browse/SEC-2501

the <websocket:sockjs> element:

public class WebSocketConfig implements WebSocketConfigurer {

public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/portfolio").withSockJS()
.setClientLibraryUr1("http://localhost:8080/myapp/js/sockjs-client.js

During initial development, do enable the Sock]S client devel mode that prevents
the browser from caching SocKk]JS requests (like the iframe) that would otherwise
be cached. For details on how to enable it see the Sock]JS client page.

4.3.4. Heartbeat Messages

The Sock]JS protocol requires servers to send heartbeat messages to preclude proxies from
concluding a connection is hung. The Spring Sock]JS configuration has a property called
heartbeatTime that can be used to customize the frequency. By default a heartbeat is sent after 25
seconds assuming no other messages were sent on that connection. This 25 seconds value is in line
with the following IETF recommendation for public Internet applications.

9 When using STOMP over WebSocket/Sock]S, if the STOMP client and server
negotiate heartbeats to be exchanged, the Sock]S heartbeats are disabled.

The Spring Sock]S support also allows configuring the TaskScheduler to use for scheduling
heartbeats tasks. The task scheduler is backed by a thread pool with default settings based on the
number of available processors. Applications should consider customizing the settings according to
their specific needs.

4.3.5. Servlet 3 Async Requests

HTTP streaming and HTTP long polling Sock]S transports require a connection to remain open
longer than usual. For an overview of these techniques see this blog post.

In Servlet containers this is done through Servlet 3 async support that allows exiting the Servlet
container thread processing a request and continuing to write to the response from another thread.

A specific issue is that the Servlet API does not provide notifications for a client that has gone away,
see SERVLET_SPEC-44. However, Servlet containers raise an exception on subsequent attempts to
write to the response. Since Spring’s Sock]S Service supports sever-sent heartbeats (every 25

156

https://github.com/sockjs/sockjs-client/
http://tools.ietf.org/html/rfc6202
https://spring.io/blog/2012/05/08/spring-mvc-3-2-preview-techniques-for-real-time-updates/
https://java.net/jira/browse/SERVLET_SPEC-44

seconds by default), that means a client disconnect is usually detected within that time period or
earlier if messages are sent more frequently.

As a result network IO failures may occur simply because a client has
disconnected, which can fill the log with unnecessary stack traces. Spring makes a

0 best effort to identify such network failures that represent client disconnects
(specific to each server) and log a minimal message using the dedicated log
category DISCONNECTED_CLIENT_LOG_CATEGORY defined in AbstractSockJsSession. If you
need to see the stack traces, set that log category to TRACE.

4.3.6. CORS Headers for Sock]S

If you allow cross-origin requests (see Configuring allowed origins), the Sock]S protocol uses CORS
for cross-domain support in the XHR streaming and polling transports. Therefore CORS headers are
added automatically unless the presence of CORS headers in the response is detected. So if an
application is already configured to provide CORS support, e.g. through a Servlet Filter, Spring’s
SockJsService will skip this part.

It is also possible to disable the addition of these CORS headers via the suppressCors property in
Spring’s SockJsService.

The following is the list of headers and values expected by Sock]S:

* "Access-Control-Allow-0Origin" - initialized from the value of the "Origin" request header.
* "Access-Control-Allow-Credentials" - always set to true.
» "Access-Control-Request-Headers" - initialized from values from the equivalent request header.

* "Access-Control-Allow-Methods" - the HTTP methods a transport supports (see TransportType
enum).

» "Access-Control-Max-Age" - set to 31536000 (1 year).

For the exact implementation see addCorsHeaders in AbstractSockJsService as well as the
TransportType enum in the source code.

Alternatively if the CORS configuration allows it consider excluding URLs with the Sock]S endpoint
prefix thus letting Spring’s SockJsService handle it.

4.3.7. SocK]JS Client

A Sock]S Java client is provided in order to connect to remote Sock]JS endpoints without using a
browser. This can be especially useful when there is a need for bidirectional communication
between 2 servers over a public network, i.e. where network proxies may preclude the use of the
WebSocket protocol. A Sock]S Java client is also very useful for testing purposes, for example to
simulate a large number of concurrent users.

The Sock]S Java client supports the "websocket", "xhr-streaming"”, and "xhr-polling" transports. The
remaining ones only make sense for use in a browser.

The WebSocketTransport can be configured with:

157

* StandardWebSocketClient in a JSR-356 runtime

» JettyWebSocketClient using the Jetty 9+ native WebSocket API

* Any implementation of Spring’s WebSocketClient
An XhrTransport by definition supports both "xhr-streaming" and "xhr-polling" since from a client
perspective there is no difference other than in the URL used to connect to the server. At present
there are two implementations:

* RestTemplateXhrTransport uses Spring’s RestTemplate for HTTP requests.

» JettyXhrTransport uses Jetty’s HttpClient for HTTP requests.

The example below shows how to create a SocKk]JS client and connect to a Sock]S endpoint:

List<Transport> transports = new ArraylList<>(2);
transports.add(new WebSocketTransport(new StandardWebSocketClient()));
transports.add(new RestTemplateXhrTransport());

SockJsClient sockJsClient = new SockJsClient(transports);
sockJsClient.doHandshake(new MyWebSocketHandler(), "ws://example.com:8080/sockjs");

Sock]JS uses JSON formatted arrays for messages. By default Jackson 2 is used and
needs to be on the classpath. Alternatively you can configure a custom
implementation of SockJsMessageCodec and configure it on the SockJsClient.

To use the SockJsClient for simulating a large number of concurrent users you will need to

configure the underlying HTTP client (for XHR transports) to allow a sufficient number of
connections and threads. For example with Jetty:

HttpClient jettyHttpClient = new HttpClient();
jettyHttpClient.setMaxConnectionsPerDestination(1000);
jettyHttpClient.setExecutor(new QueuedThreadPool(1000));

Consider also customizing these server-side Sock]JS related properties (see Javadoc for details):

158

public class WebSocketConfig extends WebSocketMessageBrokerConfigurationSupport {

public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/sockjs").withSock]S()
.setStreamBytesLimit(512 * 1024)
.setHttpMessageCacheSize(1000)
.setDisconnectDelay(30 * 1000);

/] ...

4.4. STOMP Over WebSocket Messaging Architecture

The WebSocket protocol defines two types of messages, text and binary, but their content is
undefined. It’s expected that the client and server may agree on using a sub-protocol (i.e. a higher-
level protocol) to define message semantics. While the use of a sub-protocol with WebSocket is
completely optional either way client and server will need to agree on some kind of protocol to help
interpret messages.

4.4.1. Overview of STOMP

STOMP is a simple text-oriented messaging protocol that was originally created for scripting
languages such as Ruby, Python, and Perl to connect to enterprise message brokers. It is designed to
address a subset of commonly used messaging patterns. STOMP can be used over any reliable 2-
way streaming network protocol such as TCP and WebSocket. Although STOMP is a text-oriented
protocol, the payload of messages can be either text or binary.

STOMP is a frame based protocol whose frames are modeled on HTTP. The structure of a STOMP
frame:

COMMAND
header1:valuel
header?:value?

Body” @

Clients can use the SEND or SUBSCRIBE commands to send or subscribe for messages along with a
"destination" header that describes what the message is about and who should receive it. This
enables a simple publish-subscribe mechanism that can be used to send messages through the
broker to other connected clients or to send messages to the server to request that some work be
performed.

When using Spring’s STOMP support, the Spring WebSocket application acts as the STOMP broker to

159

http://stomp.github.io/stomp-specification-1.2.html#Abstract

clients. Messages are routed to @Controller message-handling methods or to a simple, in-memory
broker that keeps track of subscriptions and broadcasts messages to subscribed users. You can also
configure Spring to work with a dedicated STOMP broker (e.g. RabbitMQ, ActiveMQ, etc) for the
actual broadcasting of messages. In that case Spring maintains TCP connections to the broker,
relays messages to it, and also passes messages from it down to connected WebSocket clients. Thus
Spring web applications can rely on unified HTTP-based security, common validation, and a
familiar programming model message-handling work.

Here is an example of a client subscribing to receive stock quotes which the server may emit
periodically e.g. via a scheduled task sending messages through a SimpMessagingTemplate to the
broker:

SUBSCRIBE
id:sub-1
destination:/topic/price.stock.*

e

Here is an example of a client sending a trade request, which the server may handle through an
@MessageMapping method and later on, after the execution, broadcast a trade confirmation message
and details down to the client:

SEND

destination:/queue/trade
content-type:application/json
content-length:44

{"action":"BUY", "ticker":"MMM","shares", 44}"@

The meaning of a destination is intentionally left opaque in the STOMP spec. It can be any string,
and it’s entirely up to STOMP servers to define the semantics and the syntax of the destinations that
they support. It is very common, however, for destinations to be path-like strings where "/topic/.."
implies publish-subscribe (one-to-many) and "/queuve/" implies point-to-point (one-to-one) message
exchanges.

STOMP servers can use the MESSAGE command to broadcast messages to all subscribers. Here is an

example of a server sending a stock quote to a subscribed client:

MESSAGE

message-id:nxahk1f6-1
subscription:sub-1
destination:/topic/price.stock.MMM

{"ticker":"MMM","price":129.45}"@

It is important to know that a server cannot send unsolicited messages. All messages from a server

160

must be in response to a specific client subscription, and the "subscription-id" header of the server
message must match the "id" header of the client subscription.

The above overview is intended to provide the most basic understanding of the STOMP protocol. It
is recommended to review the protocol specification in full.

The benefits of using STOMP as a WebSocket sub-protocol:

* No need to invent a custom message format

* Use existing stomp.js client in the browser

* Ability to route messages to based on destination

* Option to use full-fledged message broker such as RabbitMQ, ActiveMQ, etc. for broadcasting
Most importantly the use of STOMP (vs plain WebSocket) enables the Spring Framework to provide

a programming model for application-level use in the same way that Spring MVC provides a
programming model based on HTTP.

4.4.2. Enable STOMP over WebSocket

The Spring Framework provides support for using STOMP over WebSocket through the spring-
messaging and spring-websocket modules. Here is an example of exposing a STOMP
WebSocket/Sock]S endpoint at the URL path /portfolio where messages whose destination starts
with "/app" are routed to message-handling methods (i.e. application work) and messages whose
destinations start with "/topic" or "/queue" will be routed to the message broker (i.e. broadcasting to
other connected clients):

import org.springframework.web.socket.config.annotation.EnableWebSocketMessageBroker;
import org.springframework.web.socket.config.annotation.StompEndpointRegistry;

public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/portfolio").withSockJS();

}
public void configureMessageBroker(MessageBrokerRegistry config) {
config.setApplicationDestinationPrefixes("/app");
config.enableSimpleBroker("/topic", "/queue");
}
}
and in XML:

161

http://stomp.github.io/stomp-specification-1.2.html
https://github.com/jmesnil/stomp-websocket

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
http://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:message-broker application-destination-prefix="/app">
<websocket:stomp-endpoint path="/portfolio">
<websocket:sockjs/>
</websocket:stomp-endpoint>
<websocket:simple-broker prefix="/topic, /queue"/>
</websocket:message-broker>

</beans>

The "/app" prefix is arbitrary. You can pick any prefix. It’s simply meant to
differentiate messages to be routed to message-handling methods to do application
work vs messages to be routed to the broker to broadcast to subscribed clients.

The "/topic" and "/queue" prefixes depend on the broker in use. In the case of the
simple, in-memory broker the prefixes do not have any special meaning; it’s

0 merely a convention that indicates how the destination is used (pub-sub targetting
many subscribers or point-to-point messages typically targeting an individual
recipient). In the case of using a dedicated broker, most brokers use "/topic" as a
prefix for destinations with pub-sub semantics and "/queue" for destinations with
point-to-point semantics. Check the STOMP page of the broker to see the
destination semantics it supports.

On the browser side, a client might connect as follows using stomp.js and the sockjs-client:

var socket = new Sock]S("/spring-websocket-portfolio/portfolio");
var stompClient = Stomp.over(socket);

stompClient.connect({}, function(frame) {

}

Or if connecting via WebSocket (without Sock]S):

var socket = new WebSocket("/spring-websocket-portfolio/portfolio”);
var stompClient = Stomp.over(socket);

stompClient.connect({}, function(frame) {

}

162

https://github.com/jmesnil/stomp-websocket
https://github.com/sockjs/sockjs-client

Note that the stompClient above does not need to specify login and passcode headers. Even if it did,
they would be ignored, or rather overridden, on the server side. See the sections Connections To
Full-Featured Broker and Authentication for more information on authentication.

4.4.3. Flow of Messages

When a STOMP endpoint is configured, the Spring application acts as the STOMP broker to
connected clients. This section provides a big picture overview of how messages flow within the
application.

The spring-messaging module provides the foundation for asynchronous message processing. It
contains a number of abstractions that originated in the Spring Integration project and are
intended for use as building blocks in messaging applications:

* Message — a message with headers and a payload.

* MessageHandler —a contract for handling a message.

* MessageChannel —a contract for sending a message enabling loose coupling between senders
and receivers.

» SubscribableChannel — extends MessageChannel and sends messages to registered MessageHandler
subscribers.

* ExecutorSubscribableChannel —a concrete implementation of SubscribableChannel that can
deliver messages asynchronously via a thread pool.

The @EnableWebSocketMessageBroker Java config and the <websocket:message-broker> XML config both
assemble a concrete message flow. Below is a diagram of the part of the setup when using the
simple, in-memory broker:

SENP - impAnnotationMethod
destination:/app/a MessageHandler

SEND
destination:/topic/a —F@

WebSocket client messages

SimpleBroker
M ~Handler

MESSAGE

MESSAGE (responsei)
destination:/topic/a (chamnel \

The above setup that includes 3 message channels:

* "clientInboundChannel” for messages from WebSocket clients.
» "clientOutboundChannel” for messages to WebSocket clients.

* "brokerChannel" for messages to the broker from within the application.

The same three channels are also used with a dedicated broker except here a "broker relay” takes

163

https://spring.io/spring-integration
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/messaging/Message.html
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/messaging/MessageHandler.html
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/messaging/MessageChannel.html
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/messaging/SubscribableChannel.html
https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/messaging/support/ExecutorSubscribableChannel.html

the place of the simple broker:

SEND SimpAnnotationMethod
destination:/app/a *app" MessageHandler
SEND
destination:/topic/a |— C’heqa“nen:ﬂ ,.

4

StompBrokerRelay

MessageHandler

WebSocket client messages

MESSAGE “
MESSAGE response C ST;%}LP{P ” C:_______,.
destination:/topic/a channel y Message

Broker

Messages on the "clientInboundChannel” can flow to annotated methods for application handling
(e.g. a stock trade execution request) or can be forwarded to the broker (e.g. client subscribing for
stock quotes). The STOMP destination is used for simple prefix-based routing. For example the
"/lapp" prefix could route messages to annotated methods while the "/topic" and "/queue" prefixes
could route messages to the broker.

When a message-handling annotated method has a return type, its return value is sent as the
payload of a Spring Message to the "brokerChannel”. The broker in turn broadcasts the message to
clients. Sending a message to a destination can also be done from anywhere in the application with
the help of a messaging template. For example, an HTTP POST handling method can broadcast a
message to connected clients, or a service component may periodically broadcast stock quotes.

Below is a simple example to illustrate the flow of messages:

164

public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/portfolio");
}

public void configureMessageBroker(MessageBrokerRegistry registry) {
registry.setApplicationDestinationPrefixes("/app");
registry.enableSimpleBroker("/topic");

public class GreetingController {

("/greeting") {
public String handle(String greeting) {
return "[" + getTimestamp() + ": " + greeting;

}

The following explains the message flow for the above example:

» WebSocket clients connect to the WebSocket endpoint at "/portfolio".

» Subscriptions to "/topic/greeting" pass through the "clientinboundChannel” and are forwarded
to the broker.

* Greetings sent to "/app/greeting" pass through the "clientinboundChannel" and are forwarded to
the GreetingController. The controller adds the current time, and the return value is passed
through the "brokerChannel" as a message to "/topic/greeting” (destination is selected based on a
convention but can be overridden via @SendTo).

* The broker in turn broadcasts messages to subscribers, and they pass through the
"clientOutboundChannel™.

The next section provides more details on annotated methods including the kinds of arguments and
return values supported.

4.4.4. Annotation Message Handling

The @MessageMapping annotation is supported on methods of @Controller classes. It can be used for
mapping methods to message destinations and can also be combined with the type-level
@MessageMapping for expressing shared mappings across all annotated methods within a controller.

165

By default destination mappings are treated as Ant-style, slash-separated, path patterns, e.g. "/foo*",
"/foo/**". etc. They can also contain template variables, e.g. "/foo/{id}" that can then be referenced
via @DestinationVariable-annotated method arguments.

9 Applications can also use dot-separated destinations (vs slash). See Using Dot as
Separator in @MessageMapping Destinations.

The following method arguments are supported for @MessageMapping methods:

* Message method argument to get access to the complete message being processed.

* @Payload-annotated argument for access to the payload of a message, converted with a
org.springframework.messaging.converter.MessageConverter. The presence of the annotation is
not required since it is assumed by default. Payload method arguments annotated with
validation annotations (like @Validated) will be subject to JSR-303 validation.

* @Header-annotated arguments for access to a specific header value along with type conversion
using an org.springframework.core.convert.converter.Converter if necessary.

» @Headers-annotated method argument that must also be assignable to java.util.Map for access to
all headers in the message.

* MessageHeaders method argument for getting access to a map of all headers.

* MessageHeaderAccessor, SimpMessageHeaderAccessor, or StompHeaderAccessor for access to headers
via typed accessor methods.

» @DestinationVariable-annotated arguments for access to template variables extracted from the
message destination. Values will be converted to the declared method argument type as
necessary.

* java.security.Principal method arguments reflecting the user logged in at the time of the
WebSocket HTTP handshake.

A return value from an @MessageMapping method will be converted with a
org.springframework.messaging.converter.MessageConverter and used as the body of a new message
that is then sent, by default, to the "brokerChannel” with the same destination as the client message
but using the prefix "/topic" by default. An @SendTo message level annotation can be used to specify
any other destination instead. It can also be set a class-level to share a common destination.

A response message may also be provided asynchronously via a ListenableFuture or
CompletableFuture/CompletionStage return type signature, analogous to deferred results in an MVC
handler method.

A @SubscribeMapping annotation can be used to map subscription requests to @Controller methods. It
is supported on the method level, but can also be combined with a type level @MessageMapping
annotation that expresses shared mappings across all message handling methods within the same
controller.

By default the return value from an @SubscribeMapping method is sent as a message directly back to
the connected client and does not pass through the broker. This is useful for implementing request-
reply message interactions; for example, to fetch application data when the application UI is being
initialized. Or alternatively an @SubscribeMapping method can be annotated with @SendTo in which

166

case the resulting message is sent to the "brokerChannel” using the specified target destination.

In some cases a controller may need to be decorated with an AOP proxy at
runtime. One example is if you choose to have @Transactional annotations directly
on the controller. When this is the case, for controllers specifically, we recommend

0 using class-based proxying. This is typically the default choice with controllers.
However if a controller must implement an interface that is not a Spring Context
callback (e.g. InitializingBean, *Aware, etc), you may need to explicitly configure
class-based proxying. For example with <tx:annotation-driven />, change to
<tx:annotation-driven proxy-target-class="true" />.

4.4.5. Sending Messages

What if you want to send messages to connected clients from any part of the application? Any
application component can send messages to the "brokerChannel”. The easiest way to do that is to
have a SimpMessagingTemplate injected, and use it to send messages. Typically it should be easy to
have it injected by type, for example:

public class GreetingController {

private SimpMessagingTemplate template;

public GreetingController(SimpMessagingTemplate template) {
this.template = template;
}

(path="/greetings", method=POST)
public void greet(String greeting) {
String text = "[" + getTimestamp() + "]:" + greeting;
this.template.convertAndSend("/topic/greetings”, text);

But it can also be qualified by its name "brokerMessagingTemplate" if another bean of the same
type exists.

4.4.6. Simple Broker

The built-in, simple message broker handles subscription requests from clients, stores them in
memory, and broadcasts messages to connected clients with matching destinations. The broker
supports path-like destinations, including subscriptions to Ant-style destination patterns.

0 Applications can also use dot-separated destinations (vs slash). See Using Dot as
Separator in @MessageMapping Destinations.

167

4.4.7. Full-Featured Broker

The simple broker is great for getting started but supports only a subset of STOMP commands (e.g.
no acks, receipts, etc.), relies on a simple message sending loop, and is not suitable for clustering. As
an alternative, applications can upgrade to using a full-featured message broker.

Check the STOMP documentation for your message broker of choice (e.g. RabbitMQ, ActiveMQ, etc.),
install the broker, and run it with STOMP support enabled. Then enable the STOMP broker relay in
the Spring configuration instead of the simple broker.

Below is example configuration that enables a full-featured broker:

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

@0verride

public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/portfolio").withSockJS();

}

@Override

public void configureMessageBroker(MessageBrokerRegistry registry) {
registry.enableStompBrokerRelay("/topic", "/queue");
registry.setApplicationDestinationPrefixes("/app");

XML configuration equivalent:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
http://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:message-broker application-destination-prefix="/app">
<websocket:stomp-endpoint path="/portfolio" />
<websocket:sockjs/>
</websocket:stomp-endpoint>
<websocket:stomp-broker-relay prefix="/topic,/queue" />
</websocket:message-broker>

</beans>

168

http://www.rabbitmq.com/stomp.html
http://activemq.apache.org/stomp.html

The "STOMP broker relay" in the above configuration is a Spring MessageHandler that handles
messages by forwarding them to an external message broker. To do so it establishes TCP
connections to the broker, forwards all messages to it, and then forwards all messages received
from the broker to clients through their WebSocket sessions. Essentially it acts as a "relay" that
forwards messages in both directions.

0 Please org.projectreactor:reactor-net and io.netty:netty-all dependencies to
your project for TCP connection management.

Furthermore, application components (e.g. HTTP request handling methods, business services, etc.)
can also send messages to the broker relay, as described in Sending Messages, in order to broadcast
messages to subscribed WebSocket clients.

In effect, the broker relay enables robust and scalable message broadcasting.

4.4.8. Connections To Full-Featured Broker

A STOMP broker relay maintains a single "system" TCP connection to the broker. This connection is
used for messages originating from the server-side application only, not for receiving messages. You
can configure the STOMP credentials for this connection, i.e. the STOMP frame login and passcode
headers. This is exposed in both the XML namespace and the Java config as the systemLogin
/systemPasscode properties with default values guest/guest.

The STOMP broker relay also creates a separate TCP connection for every connected WebSocket
client. You can configure the STOMP credentials to use for all TCP connections created on behalf of
clients. This is exposed in both the XML namespace and the Java config as the clientlLogin
/clientPasscode properties with default values guest/guest.

The STOMP broker relay always sets the login and passcode headers on every
CONNECT frame that it forwards to the broker on behalf of clients. Therefore
0 WebSocket clients need not set those headers; they will be ignored. As the
following section explains, instead WebSocket clients should rely on HTTP
authentication to protect the WebSocket endpoint and establish the client identity.

The STOMP broker relay also sends and receives heartbeats to and from the message broker over
the "system" TCP connection. You can configure the intervals for sending and receiving heartbeats
(10 seconds each by default). If connectivity to the broker is lost, the broker relay will continue to
try to reconnect, every 5 seconds, until it succeeds.

A Spring bean can implement ApplicationlListener<BrokerAvailabilityEvent> in

0 order to receive notifications when the "system" connection to the broker is lost
and re-established. For example a Stock Quote service broadcasting stock quotes
can stop trying to send messages when there is no active "system" connection.

The STOMP broker relay can also be configured with a virtualHost property. The value of this
property will be set as the host header of every CONNECT frame and may be useful for example in a
cloud environment where the actual host to which the TCP connection is established is different
from the host providing the cloud-based STOMP service.

169

https://docs.spring.io/spring-framework/docs/5.0.0.RELEASE/javadoc-api/org/springframework/messaging/MessageHandler.html

4.4.9. Using Dot as Separator in @MessageMapping Destinations

Although slash-separated path patterns are familiar to web developers, in messaging it is common
to use a "." as the separator, for example in the names of topics, queues, exchanges, etc.
Applications can also switch to using "." (dot) instead of "/* (slash) as the separator in
@MessageMapping mappings by configuring a custom AntPathMatcher.

In Java config:

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig extends AbstractWebSocketMessageBrokerConfigurer {

/1.

@0verride

public void configureMessageBroker(MessageBrokerRegistry registry) {
registry.enableStompBrokerRelay("/queuve/", "/topic/");
registry.setApplicationDestinationPrefixes("/app");
registry.setPathMatcher(new AntPathMatcher("."));

}

In XML config:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
http://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:message-broker application-destination-prefix="/app" path-matcher=
"pathMatcher">
<websocket:stomp-endpoint path="/stomp" />
<websocket:simple-broker prefix="/topic, /queue"/>
</websocket:message-broker>

<bean id="pathMatcher" class="org.springframework.util.AntPathMatcher">
<constructor-arg index="0" value="." />

</bean>

</beans>

And below is a simple example to illustrate a controller with "." separator:

170

(llfooll)
public class FooController {

("bar.{baz}")
public void handleBaz(String baz) {
by

If the application prefix is set to "/app" then the foo method is effectively mapped to
"/app/foo.bar.{baz}".

4.4.10. Authentication

Every STOMP over WebSocket messaging session begins with an HTTP request—that can be a
request to upgrade to WebSockets (i.e. a WebSocket handshake) or in the case of Sock]JS fallbacks a
series of Sock]S HTTP transport requests.

Web applications already have authentication and authorization in place to secure HTTP requests.
Typically a user is authenticated via Spring Security using some mechanism such as a login page,
HTTP basic authentication, or other. The security context for the authenticated user is saved in the
HTTP session and is associated with subsequent requests in the same cookie-based session.

Therefore for a WebSocket handshake, or for Sock]S HTTP transport requests, typically there will
already be an authenticated user accessible via HttpServletRequest#getUserPrincipal(). Spring
automatically associates that user with a WebSocket or Sock]S session created for them and
subsequently with all STOMP messages transported over that session through a user header.

In short there is nothing special a typical web application needs to do above and beyond what it
already does for security. The user is authenticated at the HTTP request level with a security
context maintained through a cookie-based HTTP session which is then associated with WebSocket
or Sock]S sessions created for that user and results in a user header stamped on every Message
flowing through the application.

Note that the STOMP protocol does have a "login" and "passcode" headers on the CONNECT frame.
Those were originally designed for and are still needed for example for STOMP over TCP. However
for STOMP over WebSocket by default Spring ignores authorization headers at the STOMP protocol
level and assumes the user is already authenticated at the HTTP transport level and expects that the
WebSocket or SocK]JS session contain the authenticated user.

Spring Security provides WebSocket sub-protocol authorization that uses a

9 Channellnterceptor to authorize messages based on the user header in them. Also
Spring Session provides a WebSocket integration that ensures the user HTTP
session does not expire when the WebSocket session is still active.

171

https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#websocket
http://docs.spring.io/spring-session/docs/current/reference/html5/#websocket

4.4.11. Token-based Authentication

Spring Security OAuth provides support for token based security including JSON Web Token (JWT).
This can be used as the authentication mechanism in Web applications including STOMP over
WebSocket interactions just as described in the previous section, i.e. maintaining identity through a
cookie-based session.

At the same time cookie-based sessions are not always the best fit for example in applications that
don’t wish to maintain a server-side session at all or in mobile applications where it’s common to
use headers for authentication.

The WebSocket protocol RFC 6455 "doesn’t prescribe any particular way that servers can
authenticate clients during the WebSocket handshake." In practice however browser clients can
only use standard authentication headers (i.e. basic HTTP authentication) or cookies and cannot for
example provide custom headers. Likewise the Sock]S JavaScript client does not provide a way to
send HTTP headers with Sock]S transport requests, see sockjs-client issue 196. Instead it does allow
sending query parameters that can be used to send a token but that has its own drawbacks, for
example as the token may be inadvertently logged with the URL in server logs.

The above limitations are for browser-based clients and do not apply to the Spring
Java-based STOMP client which does support sending headers with both
WebSocket and SocK]S requests.

Therefore applications that wish to avoid the use of cookies may not have any good alternatives for
authentication at the HTTP protocol level. Instead of using cookies they may prefer to authenticate
with headers at the STOMP messaging protocol level There are 2 simple steps to doing that:

1. Use the STOMP client to pass authentication header(s) at connect time.

2. Process the authentication header(s) with a ChannelInterceptor.

Below is the example server-side configuration to register a custom authentication interceptor.
Note that an interceptor only needs to authenticate and set the user header on the CONNECT

Message. Spring will note and save the authenticated user and associate it with subsequent STOMP
messages on the same session:

172

https://github.com/spring-projects/spring-security-oauth
https://tools.ietf.org/html/rfc6455#section-10.5
https://github.com/sockjs/sockjs-client/issues/196

public class MyConfig extends AbstractWebSocketMessageBrokerConfigurer {

public void configureClientInboundChannel(ChannelRegistration registration) {
registration.setInterceptors(new ChannelInterceptorAdapter() {

public Message<?> preSend(Message<?> message, MessageChannel channel) {

StompHeaderAccessor accessor =
MessageHeaderAccessor.getAccessor(message, StompHeaderAccessor.class);

if (StompCommand.CONNECT.equals(accessor.getCommand())) {
Authentication user = ... ; // access authentication header(s)
accessor.setUser(user);

return message;

1)

Also note that when using Spring Security’s authorization for messages, at present you will need to
ensure that the authentication ChannelInterceptor config is ordered ahead of Spring Security’s. This
is best done by declaring the custom interceptor in its own sub-class of
AbstractWebSocketMessageBrokerConfigurer marked with @0rder (Ordered.HIGHEST_PRECEDENCE + 99).

4.4.12. User Destinations

An application can send messages targeting a specific user, and Spring’s STOMP support recognizes
destinations prefixed with "/user/" for this purpose. For example, a client might subscribe to the
destination "/user/queue/position-updates”. This destination will be handled by the
UserDestinationMessageHandler and transformed into a destination unique to the user session, e.g.
"/queue/position-updates-user123". This provides the convenience of subscribing to a generically
named destination while at the same time ensuring no collisions with other users subscribing to the
same destination so that each user can receive unique stock position updates.

On the sending side messages can be sent to a destination such as
"/user/{username}/queue/position-updates”, which in turn will be translated by the
UserDestinationMessageHandler into one or more destinations, one for each session associated with
the user. This allows any component within the application to send messages targeting a specific
user without necessarily knowing anything more than their name and the generic destination. This
is also supported through an annotation as well as a messaging template.

For example, a message-handling method can send messages to the user associated with the
message being handled through the @SendToUser annotation (also supported on the class-level to

173

share a common destination):

public class PortfolioController {

("/trade")
("/queue/position-updates")
public TradeResult executeTrade(Trade trade, Principal principal) {
/] ...
return tradeResult;

If the user has more than one session, by default all of the sessions subscribed to the given
destination are targeted. However sometimes, it may be necessary to target only the session that
sent the message being handled. This can be done by setting the broadcast attribute to false, for
example:

public class MyController {

("/action")
public void handleAction() throws Exception{
// raise MyBusinessException here

}

(destinations="/queue/errors", broadcast=false)
public ApplicationError handleException(MyBusinessException exception) {
/] ...
return appError;

While user destinations generally imply an authenticated user, it isn’t required
strictly. A WebSocket session that is not associated with an authenticated user can

ﬂ subscribe to a user destination. In such cases the @SendToUser annotation will
behave exactly the same as with broadcast=false, i.e. targeting only the session
that sent the message being handled.

It is also possible to send a message to user destinations from any application component by

injecting the SimpMessagingTemplate created by the Java config or XML namespace, for example (the
bean name is "brokerMessagingTemplate" if required for qualification with @Qualifier):

174

public class TradeServiceImpl implements TradeService {

private final SimpMessagingTemplate messagingTemplate;

public TradeServiceImpl(SimpMessagingTemplate messagingTemplate) {
this.messagingTemplate = messagingTemplate;

}
/] ...

public void afterTradeExecuted(Trade trade) {
this.messagingTemplate.convertAndSendToUser (
trade.getUserName(), "/queue/position-updates”, trade.getResult());

When using user destinations with an external message broker, check the broker
documentation on how to manage inactive queues, so that when the user session is
over, all unique user queues are removed. For example, RabbitMQ creates auto-

9 delete queues when destinations like /exchange/amq.direct/position-updates are
used. So in that case the client could subscribe to
/user/exchange/amq.direct/position-updates. Similarly, ActiveMQ has
configuration options for purging inactive destinations.

In a multi-application server scenario a user destination may remain unresolved because the user
is connected to a different server. In such cases you can configure a destination to broadcast
unresolved messages to so that other servers have a chance to try. This can be done through the
userDestinationBroadcast property of the MessageBrokerRegistry in Java config and the user-
destination-broadcast attribute of the message-broker element in XML.

4.4.13. Listening To ApplicationContext Events and Intercepting Messages

Several ApplicationContext events (listed below) are published and can be received by
implementing Spring’s ApplicationListener interface.

* BrokerAvailabilityEvent —indicates when the broker becomes available/unavailable. While the
"simple" broker becomes available immediately on startup and remains so while the
application is running, the STOMP "broker relay" may lose its connection to the full featured
broker, for example if the broker is restarted. The broker relay has reconnect logic and will re-
establish the "system" connection to the broker when it comes back, hence this event is
published whenever the state changes from connected to disconnected and vice versa.
Components using the SimpMessagingTemplate should subscribe to this event and avoid sending
messages at times when the broker is not available. In any case they should be prepared to
handle MessageDeliveryException when sending a message.

* SessionConnectEvent — published when a new STOMP CONNECT is received indicating the start

175

http://activemq.apache.org/delete-inactive-destinations.html

of a new client session. The event contains the message representing the connect including the
session id, user information (if any), and any custom headers the client may have sent. This is
useful for tracking client sessions. Components subscribed to this event can wrap the contained
message using SimpMessageHeaderAccessor or StompMessageHeaderAccessor.

» SessionConnectedEvent — published shortly after a SessionConnectEvent when the broker has sent
a STOMP CONNECTED frame in response to the CONNECT. At this point the STOMP session can
be considered fully established.

* SessionSubscribeEvent — published when a new STOMP SUBSCRIBE is received.
» SessionUnsubscribeEvent — published when a new STOMP UNSUBSCRIBE is received.

» SessionDisconnectEvent — published when a STOMP session ends. The DISCONNECT may have
been sent from the client, or it may also be automatically generated when the WebSocket
session is closed. In some cases this event may be published more than once per session.
Components should be idempotent with regard to multiple disconnect events.

When using a full-featured broker, the STOMP "broker relay" automatically
reconnects the "system" connection in case the broker becomes temporarily

9 unavailable. Client connections however are not automatically reconnected.
Assuming heartbeats are enabled, the client will typically notice the broker is not
responding within 10 seconds. Clients need to implement their own reconnect
logic.

Furthermore, an application can directly intercept every incoming and outgoing message by
registering a ChannelInterceptor on the respective message channel. For example to intercept
inbound messages:

public class WebSocketConfig extends AbstractWebSocketMessageBrokerConfigurer {

public void configureClientInboundChannel(ChannelRegistration registration) {
registration.setInterceptors(new MyChannelInterceptor());

}
}

A custom Channellnterceptor can extend the empty method base class ChannelInterceptorAdapter
and use StompHeaderAccessor or SimpMessageHeaderAccessor to access information about the message.

176

public class MyChannelInterceptor extends ChannellnterceptorAdapter {

public Message<?> preSend(Message<?> message, MessageChannel channel) {
StompHeaderAccessor accessor = StompHeaderAccessor.wrap(message);
StompCommand command = accessor.getStompCommand();
/] ...
return message,

}
}

4.4.14. STOMP Client
Spring provides a STOMP over WebSocket client and a STOMP over TCP client.

To begin create and configure WebSocketStompClient:

WebSocketClient webSocketClient = new StandardWebSocketClient();
WebSocketStompClient stompClient = new WebSocketStompClient(webSocketClient);
stompClient.setMessageConverter(new StringMessageConverter());
stompClient.setTaskScheduler(taskScheduler); // for heartbeats

In the above example StandardWebSocketClient could be replaced with SockJsClient since that is also
an implementation of WebSocketClient. The SockJsClient can use WebSocket or HTTP-based
transport as a fallback. For more details see Sock]JS Client.

Next establish a connection and provide a handler for the STOMP session:

String url = "ws://127.0.0.1:8080/endpoint";
StompSessionHandler sessionHandler = new MyStompSessionHandler();
stompClient.connect(url, sessionHandler);

When the session is ready for use the handler is notified:

public class MyStompSessionHandler extends StompSessionHandlerAdapter {

public void afterConnected(StompSession session, StompHeaders connectedHeaders) {
/] ...

}

Once the session is established any payload can be sent and that will be serialized with the
configured MessageConverter:

177

session.send("/topic/foo", "payload");

You can also subscribe to destinations. The subscribe methods require a handler for messages on
the subscription and return a Subscription handle that can be used to unsubscribe. For each
received message the handler can specify the target Object type the payload should be deserialized
to:

session.subscribe("/topic/foo", new StompFrameHandler() {

public Type getPayloadType(StompHeaders headers) {
return String.class;

}

public void handleFrame(StompHeaders headers, Object payload) {
/] ...
}

b

To enable STOMP heartbeat configure WebSocketStompClient with a TaskScheduler and optionally
customize the heartbeat intervals, 10 seconds for write inactivity which causes a heartbeat to be
sent and 10 seconds for read inactivity which closes the connection.

When using WebSocketStompClient for performance tests to simulate thousands of

ﬂ clients from the same machine consider turning off heartbeats since each
connection schedules its own heartbeat tasks and that’s not optimized for a a large
number of clients running on the same machine.

The STOMP protocol also supports receipts where the client must add a "receipt" header to which
the server responds with a RECEIPT frame after the send or subscribe are processed. To support
this the StompSession offers setAutoReceipt(boolean) that causes a "receipt" header to be added on
every subsequent send or subscribe. Alternatively you can also manually add a "receipt" header to
the StompHeaders. Both send and subscribe return an instance of Receiptable that can be used to
register for receipt success and failure callbacks. For this feature the client must be configured with
a TaskScheduler and the amount of time before a receipt expires (15 seconds by default).

Note that StompSessionHandler itself is a StompFrameHandler which allows it to handle ERROR frames
in addition to the handleException callback for exceptions from the handling of messages, and
handleTransportError for transport-level errors including ConnectionLostException.

4.4.15. WebSocket Scope

Each WebSocket session has a map of attributes. The map is attached as a header to inbound client
messages and may be accessed from a controller method, for example:

178

@Controller
public class MyController {

@MessageMapping("/action")

public void handle(SimpMessageHeaderAccessor headerAccessor) {
Map<String, Object> attrs = headerAccessor.getSessionAttributes();
/] ...

It is also possible to declare a Spring-managed bean in the websocket scope. WebSocket-scoped
beans can be injected into controllers and any channel interceptors registered on the
"clientinboundChannel". Those are typically singletons and live longer than any individual
WebSocket session. Therefore you will need to use a scope proxy mode for WebSocket-scoped
beans:

@Component
@Scope(scopeName = "websocket", proxyMode = ScopedProxyMode.TARGET_CLASS)
public class MyBean {

@PostConstruct
public void init() {
// Invoked after dependencies injected

}
/] ...

@PreDestroy
public void destroy() {
// Invoked when the WebSocket session ends

}
}

@Controller
public class MyController {

private final MyBean myBean;

@Autowired
public MyController(MyBean myBean) {
this.myBean = myBean;

}

@MessageMapping("/action")
public void handle() {
// this.myBean from the current WebSocket session

}

179

As with any custom scope, Spring initializes a new MyBean instance the first time it is accessed from
the controller and stores the instance in the WebSocket session attributes. The same instance is
returned subsequently until the session ends. WebSocket-scoped beans will have all Spring lifecycle
methods invoked as shown in the examples above.

4.4.16. Configuration and Performance

There is no silver bullet when it comes to performance. Many factors may affect it including the
size of messages, the volume, whether application methods perform work that requires blocking, as
well as external factors such as network speed and others. The goal of this section is to provide an
overview of the available configuration options along with some thoughts on how to reason about
scaling.

In a messaging application messages are passed through channels for asynchronous executions
backed by thread pools. Configuring such an application requires good knowledge of the channels
and the flow of messages. Therefore it is recommended to review Flow of Messages.

The obvious place to start is to configure the thread pools backing the "clientInboundChannel” and
the "clientOutboundChannel". By default both are configured at twice the number of available
processors.

If the handling of messages in annotated methods is mainly CPU bound then the number of threads
for the "clientInboundChannel" should remain close to the number of processors. If the work they do
is more I0 bound and requires blocking or waiting on a database or other external system then the
thread pool size will need to be increased.

ThreadPoolExecutor has 3 important properties. Those are the core and the max
thread pool size as well as the capacity for the queue to store tasks for which there
are no available threads.

A common point of confusion is that configuring the core pool size (e.g. 10) and
ﬂ max pool size (e.g. 20) results in a thread pool with 10 to 20 threads. In fact if the

capacity is left at its default value of Integer. MAX_VALUE then the thread pool will

never increase beyond the core pool size since all additional tasks will be queued.

Please review the Javadoc of ThreadPoolExecutor to learn how these properties
work and understand the various queuing strategies.

On the "clientOutboundChannel"” side it is all about sending messages to WebSocket clients. If clients
are on a fast network then the number of threads should remain close to the number of available
processors. If they are slow or on low bandwidth they will take longer to consume messages and
put a burden on the thread pool. Therefore increasing the thread pool size will be necessary.

While the workload for the "clientinboundChannel" is possible to predict — after all it is based on
what the application does —how to configure the "clientOutboundChannel" is harder as it is based
on factors beyond the control of the application. For this reason there are two additional properties
related to the sending of messages. Those are the "sendTimeLimit" and the "sendBufferSizeLimit".
Those are used to configure how long a send is allowed to take and how much data can be buffered
when sending messages to a client.

180

The general idea is that at any given time only a single thread may be used to send to a client. All
additional messages meanwhile get buffered and you can use these properties to decide how long
sending a message is allowed to take and how much data can be buffered in the mean time. Please
review the Javadoc and documentation of the XML schema for this configuration for important
additional details.

Here is example configuration:

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

@0verride
public void configureWebSocketTransport(WebSocketTransportRegistration
registration) {
registration.setSendTimeLimit(15 * 1000).setSendBufferSizeLimit(512 * 1024);

}

/] ...

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
http://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket :message-broker>
<websocket:transport send-timeout="15000" send-buffer-size="524288" />
Sl=o o, ==

</websocket:message-broker>

</beans>

The WebSocket transport configuration shown above can also be used to configure the maximum
allowed size for incoming STOMP messages. Although in theory a WebSocket message can be
almost unlimited in size, in practice WebSocket servers impose limits — for example, 8K on Tomcat
and 64K on Jetty. For this reason STOMP clients such as stomp.js split larger STOMP messages at 16K
boundaries and send them as multiple WebSocket messages thus requiring the server to buffer and
re-assemble.

Spring’s STOMP over WebSocket support does this so applications can configure the maximum size
for STOMP messages irrespective of WebSocket server specific message sizes. Do keep in mind that
the WebSocket message size will be automatically adjusted if necessary to ensure they can carry

181

16K WebSocket messages at a minimum.

Here is example configuration:

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig implements WebSocketMessageBrokerConfigurer {

@0verride
public void configureWebSocketTransport(WebSocketTransportRegistration
registration) {
registration.setMessageSizelLimit(128 * 1024);
}

/] ...

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:websocket="http://www.springframework.org/schema/websocket"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/websocket
http://www.springframework.org/schema/websocket/spring-websocket.xsd">

<websocket:message-broker>
<websocket:transport message-size="131072" />
C=e o ==

</websocket:message-broker>

</beans>

An important point about scaling is using multiple application instances. Currently it is not possible
to do that with the simple broker. However when using a full-featured broker such as RabbitMQ,
each application instance connects to the broker and messages broadcast from one application
instance can be broadcast through the broker to WebSocket clients connected through any other
application instances.

4.4.17. Runtime Monitoring

When wusing @EnableWebSocketMessageBroker or <websocket:message-broker> key infrastructure
components automatically gather stats and counters that provide important insight into the
internal state of the application. The configuration also declares a bean of type
WebSocketMessageBrokerStats that gathers all available information in one place and by default logs
it at INFO level once every 30 minutes. This bean can be exported to JMX through Spring’s
MBeanExporter for viewing at runtime, for example through JDK’s jconsole. Below is a summary of

182

the available information.

Client WebSocket Sessions
Current

indicates how many client sessions there are currently with the count further broken down
by WebSocket vs HTTP streaming and polling Sock]JS sessions.

Total

indicates how many total sessions have been established.

Abnormally Closed
Connect Failures

these are sessions that got established but were closed after not having received any
messages within 60 seconds. This is usually an indication of proxy or network issues.

Send Limit Exceeded

sessions closed after exceeding the configured send timeout or the send buffer limits
which can occur with slow clients (see previous section).

Transport Errors

sessions closed after a transport error such as failure to read or write to a WebSocket
connection or HTTP request/response.

STOMP Frames

the total number of CONNECT, CONNECTED, and DISCONNECT frames processed indicating
how many clients connected on the STOMP level. Note that the DISCONNECT count may be
lower when sessions get closed abnormally or when clients close without sending a
DISCONNECT frame.

STOMP Broker Relay
TCP Connections

indicates how many TCP connections on behalf of client WebSocket sessions are established
to the broker. This should be equal to the number of client WebSocket sessions + 1 additional
shared "system" connection for sending messages from within the application.

STOMP Frames

the total number of CONNECT, CONNECTED, and DISCONNECT frames forwarded to or
received from the broker on behalf of clients. Note that a DISCONNECT frame is sent to the
broker regardless of how the client WebSocket session was closed. Therefore a lower
DISCONNECT frame count is an indication that the broker is pro-actively closing connections,
may be because of a heartbeat that didn’t arrive in time, an invalid input frame, or other.

Client Inbound Channel

stats from thread pool backing the "clientinboundChannel" providing insight into the health of
incoming message processing. Tasks queueing up here is an indication the application may be
too slow to handle messages. If there I/O bound tasks (e.g. slow database query, HTTP request to
3rd party REST API, etc) consider increasing the thread pool size.

183

Client Outbound Channel

stats from the thread pool backing the "clientOutboundChannel" providing insight into the
health of broadcasting messages to clients. Tasks queueing up here is an indication clients are
too slow to consume messages. One way to address this is to increase the thread pool size to
accommodate the number of concurrent slow clients expected. Another option is to reduce the
send timeout and send buffer size limits (see the previous section).

Sock]S Task Scheduler

stats from thread pool of the Sock]S task scheduler which is used to send heartbeats. Note that
when heartbeats are negotiated on the STOMP level the Sock]S heartbeats are disabled.

4.4.18. Testing Annotated Controller Methods

There are two main approaches to testing applications using Spring’s STOMP over WebSocket
support. The first is to write server-side tests verifying the functionality of controllers and their
annotated message handling methods. The second is to write full end-to-end tests that involve
running a client and a server.

The two approaches are not mutually exclusive. On the contrary each has a place in an overall test
strategy. Server-side tests are more focused and easier to write and maintain. End-to-end
integration tests on the other hand are more complete and test much more, but they’re also more
involved to write and maintain.

The simplest form of server-side tests is to write controller unit tests. However this is not useful
enough since much of what a controller does depends on its annotations. Pure unit tests simply
can’t test that.

Ideally controllers under test should be invoked as they are at runtime, much like the approach to
testing controllers handling HTTP requests using the Spring MVC Test framework. i.e. without
running a Servlet container but relying on the Spring Framework to invoke the annotated
controllers. Just like with Spring MVC Test here there are two two possible alternatives, either using
a "context-based" or "standalone" setup:

1. Load the actual Spring configuration with the help of the Spring TestContext framework, inject
"clientinboundChannel" as a test field, and use it to send messages to be handled by controller
methods.

2. Manually set up the minimum Spring framework infrastructure required to invoke controllers
(namely the SimpAnnotationMethodMessageHandler) and pass messages for controllers directly to
it.

Both of these setup scenarios are demonstrated in the tests for the stock portfolio sample
application.

The second approach is to create end-to-end integration tests. For that you will need to run a
WebSocket server in embedded mode and connect to it as a WebSocket client sending WebSocket
messages containing STOMP frames. The tests for the stock portfolio sample application also
demonstrates this approach using Tomcat as the embedded WebSocket server and a simple STOMP
client for test purposes.

184

https://github.com/rstoyanchev/spring-websocket-portfolio/tree/master/src/test/java/org/springframework/samples/portfolio/web
https://github.com/rstoyanchev/spring-websocket-portfolio/tree/master/src/test/java/org/springframework/samples/portfolio/web

	Web on Servlet Stack
	Table of Contents
	Chapter 1. Spring Web MVC
	1.1. Introduction
	1.2. The DispatcherServlet
	1.3. Annotated Controllers
	1.4. Handler mappings
	1.5. Resolving views
	1.6. Using flash attributes
	1.7. Building URIs
	1.8. Using locales
	1.9. Using themes
	1.10. Multipart (file upload) support
	1.11. Handling exceptions
	1.12. Web Security
	1.13. Convention over configuration support
	1.14. HTTP caching support
	1.15. Code-based Servlet container initialization
	1.16. MVC Java config, XML namespace

	Chapter 2. View Technologies
	2.1. Introduction
	2.2. Thymeleaf
	2.3. Groovy Markup Templates
	2.4. FreeMarker
	2.5. JSP & JSTL
	2.6. Script templates
	2.7. XML Marshalling View
	2.8. Tiles
	2.9. XSLT
	2.10. Document views (PDF/Excel)
	2.11. Feed Views
	2.12. JSON Mapping View
	2.13. XML Mapping View

	Chapter 3. CORS Support
	3.1. Introduction
	3.2. Controller method CORS configuration
	3.3. Global CORS configuration
	3.4. Advanced Customization
	3.5. Filter based CORS support

	Chapter 4. Servlet-based WebSocket Support
	4.1. Introduction
	4.2. WebSocket API
	4.3. SockJS Fallback Options
	4.4. STOMP Over WebSocket Messaging Architecture

