Web on Servlet Stack

Version 5.3.27

Table of Contents

1. Spring Web MVC
1.1. DispatcherServlet

1.1.1. Context Hierarchy
1.1.2. Special Bean Types
1.1.3. Web MVC Config
1.1.4. Servlet Config
1.1.5. Processing
1.1.6. Path Matching
1.1.7. Interception
1.1.8. Exceptions
Chain of Resolvers
Container Error Page
1.1.9. View Resolution
Handling
Redirecting
Forwarding
Content Negotiation
1.1.10. Locale
Time Zone
Header Resolver
Cookie Resolver
Session Resolver
Locale Interceptor
1.1.11. Themes
Defining a theme
Resolving Themes
1.1.12. Multipart Resolver
Apache Commons FileUpload
Servlet 3.0
1.1.13. Logging
Sensitive Data

1.2. Filters

1.2.1. Form Data

1.2.2. Forwarded Headers
1.2.3. Shallow ETag

1.2.4. CORS

1.3. Annotated Controllers

1.3.1. Declaration

© 00 J b DN D

12
14
15
15
16
16
17
18
19
19
19
20
20
20
20
21
21
22
22
23
23
24
24
25
25
27
27
27
28
28
28
29

AOP PrOXIeS . .o 30

1.3.2. Request Mapping.o 31
URI patterns 32
Pattern COMPAriSOI i 34
Suffix Match 35
Suffix Match and RFED 35
Consumable Media TYPeS 36
Producible Media Types 36
Parameters, headers. 37
HTTP HEAD, OPTIONS . . . e 38
Custom ANNOTAtIONSo 38
Explicit Registrations 39

1.3.3. Handler Methods 40
Method ArgUMENTS. 40
Return Values. 43
Type CONVEISION 44
Matrix Variables 45
OReQUESTPAram . . . o . 48
ORequestHEadEr 50
COOKTEVALUE . . o oo 51
@ModelAttribute 52
@SessionAttributes 55
@SessionAttribute 57
ORequestAtEribUte 58
Redirect Attributes 58
Flash Attributes 59
MUltipart . . 60
OReqUESTBOAY . . . oo 64
HU BNty . 65
ORESPONSEBOAY 65
ReSPONSEENTITYo 66
Jackson JSON . ..o 67

1.3.4. Model 70

1.3.5. DataBinder . .. oo 72
Model Design 74

1.3.6. EXCEPLIONS.o 76
Method ArgUMENTS. 78
Return Values. 79
REST API XCEePLIONS.o 80

1.3.7. Controller AAVICE 81

1.4. Functional ENdpoints 82

1.4.1. Overview 82

1.4.2. HandlerFunction 84
ServerRequest 84
ServerResponse 85
Handler Classes 87
Validation 90

1.4.3. RouterFunction 92
Predicates 93
Routes 93
Nested Routes 94

1.4.4. Running a Server 96

1.4.5. Filtering Handler Functions 98

1.5. URI Links 101

1.5.1. UriComponents 101

1.5.2. UriBuilder 103

1.5.3. URI Encoding 104

1.5.4. Relative Servlet Requests 107

1.5.5. Links to Controllers 109

1.5.6. Links in Views 111

1.6. Asynchronous Requests 112

1.6.1. DeferredResult 113

1.6.2. Callable 113

1.6.3. Processing 114
Exception Handling 115
Interception 115
Compared to WebFlux 116

1.6.4. HTTP Streaming 116
Objects 116
SSE 117
Raw Data 118

1.6.5. Reactive Types 119

1.6.6. Disconnects 120

1.6.7. Configuration 120
Servlet Container 120
Spring MVC 120

1.7. CORS 121

1.7.1. Introduction 121

1.7.2. Processing 121

1.7.3. @CrossOrigin 122

1.7.4. Global Configuration 125

Java Configuration 126

XML Configuration
1.7.5. CORS Filter
1.8. Web Security
1.9. HTTP Caching
1.9.1. CacheControl
1.9.2. Controllers
1.9.3. Static Resources
1.9.4. ETag Filter
1.10. View Technologies
1.10.1. Thymeleaf
1.10.2. FreeMarker
View Configuration
FreeMarker Configuration
Form Handling
1.10.3. Groovy Markup
Configuration
Example
1.10.4. Script Views
Requirements
Script Templates
1.10.5. JSP and JSTL
View Resolvers
JSPs versus JSTL
Spring’s JSP Tag Library
Spring’s form tag library
1.10.6. Tiles
Dependencies
Configuration
1.10.7. RSS and Atom
1.10.8. PDF and Excel
Introduction to Document Views
PDF Views
Excel Views
1.10.9. Jackson
Jackson-based JSON MVC Views
Jackson-based XML Views
1.10.10. XML Marshalling
1.10.11. XSLT Views
Beans
Controller

Transformation

127
127
128
129
129
130
132
132
132
133
133
133
135
136
141
141
143
143
144
144
148
148
148
148
149
163
164
164
166
168
168
168
169
169
169
170
170
170
170
171
173

1.11. MVC Config 174

1.11.1. Enable MVC Configuration 174
1.11.2. MVC Config API 175
1.11.3. Type Conversion 176
1.11.4. Validation 178
1.11.5. Interceptors 180
1.11.6. Content Types 181
1.11.7. Message Converters 182
1.11.8. View Controllers 184
1.11.9. View Resolvers 185
1.11.10. Static Resources 188
1.11.11. Default Servlet 191
1.11.12. Path Matching 192
1.11.13. Advanced Java Config 194
1.11.14. Advanced XML Config 194
1.12. HTTP/2 195
2. REST Clients 196
2.1. RestTemplate 196
2.2.WebClient 196
3. Testing 197
4. WebSockets 198
4.1. Introduction to WebSocket 198
4.1.1. HTTP Versus WebSocket 199
4.1.2. When to Use WebSockets 199
4.2. WebSocket API 200
4.2.1. WebSocketHandler 200
4.2.2. WebSocket Handshake 202
4.2.3. Deployment 203
4.2.4. Server Configuration 204
4.2.5. Allowed Origins 207
4.3. Sock]S Fallback 209
4.3.1. Overview 209
4.3.2. Enabling Sock]JS 210
4.3.3.IE8and 9 212
4.3.4. Heartbeats 213
4.3.5. Client Disconnects 213
4.3.6. Sock]S and CORS 214
4.3.7. SockJsClient 214
4.4. STOMP 216
4.4.1. Overview 216

4.4.2. Benefits 218

4.4.3. Enable STOMP
4.4.4. WebSocket Server
4.4.5. Flow of Messages
4.4.6. Annotated Controllers
@MessageMapping
@SubscribeMapping
@MessageExceptionHandler
4.4.7. Sending Messages
4.4.8. Simple Broker
4.4.9. External Broker
4.4.10. Connecting to a Broker
4.4.11. Dots as Separators
4.4.12. Authentication
4.4.13. Token Authentication
4.4.14. Authorization
4.4.15. User Destinations
4.4.16. Order of Messages
4.4.17. Events
4.4.18. Interception
4.4.19. STOMP Client
4.4.20. WebSocket Scope
4.4.21. Performance
4.4.22. Monitoring
4.4.23. Testing
5. Other Web Frameworks
5.1. Common Configuration
5.2.]JSF
5.2.1. Spring Bean Resolver
5.2.2. Using FacesContextUtils
5.3. Apache Struts 2.x
5.4. Apache Tapestry 5.X

5.5. Further Resources

218
220
221
224
224
225
226
227
228
228
230
231
233
233
234
235
237
238
239
240
241
243
245
247
249
249
250
250
251
251
251
252

This part of the documentation covers support for Servlet-stack web
applications built on the Servlet API and deployed to Servlet containers.
Individual chapters include Spring MVC, View Technologies, CORS Support, and
WebSocket Support. For reactive-stack web applications, see Web on Reactive
Stack.

web-reactive.pdf#spring-web-reactive
web-reactive.pdf#spring-web-reactive

Chapter 1. Spring Web MVC

Spring Web MVC is the original web framework built on the Servlet API and has been included in
the Spring Framework from the very beginning. The formal name, "Spring Web MVC," comes from
the name of its source module (spring-webmvc), but it is more commonly known as "Spring MVC".

Parallel to Spring Web MVC, Spring Framework 5.0 introduced a reactive-stack web framework
whose name, "Spring WebFlux," is also based on its source module (spring-webflux). This chapter
covers Spring Web MVC. The next chapter covers Spring WebFlux.

For baseline information and compatibility with Servlet container and Java EE version ranges, see
the Spring Framework Wiki.

1.1. DispatcherServlet
WebFlux

Spring MVC, as many other web frameworks, is designed around the front controller pattern where
a central Servlet, the DispatcherServlet, provides a shared algorithm for request processing, while
actual work is performed by configurable delegate components. This model is flexible and supports
diverse workflows.

The DispatcherServlet, as any Servlet, needs to be declared and mapped according to the Servlet
specification by using Java configuration or in web.xml. In turn, the DispatcherServlet uses Spring
configuration to discover the delegate components it needs for request mapping, view resolution,
exception handling, and more.

The following example of the Java configuration registers and initializes the DispatcherServlet,
which is auto-detected by the Servlet container (see Servlet Config):

https://github.com/spring-projects/spring-framework/tree/main/spring-webmvc
https://github.com/spring-projects/spring-framework/tree/main/spring-webflux
web-reactive.pdf#spring-web-reactive
https://github.com/spring-projects/spring-framework/wiki/Spring-Framework-Versions
web-reactive.pdf#webflux-dispatcher-handler

Java

public class MyWebApplicationInitializer implements WebApplicationInitializer {

@0verride
public void onStartup(ServletContext servletContext) {

// Load Spring web application configuration

AnnotationConfigWebApplicationContext context = new
AnnotationConfigWebApplicationContext();

context.register (AppConfig.class);

// Create and register the DispatcherServlet

DispatcherServlet servlet = new DispatcherServlet(context);

ServletRegistration.Dynamic registration = servletContext.addServlet("app",
servlet);

registration.setlLoadOnStartup(1);

registration.addMapping("/app/*");

Kotlin

class MyWebApplicationInitializer : WebApplicationInitializer {
override fun onStartup(servletContext: ServletContext) {

// Load Spring web application configuration
val context = AnnotationConfigWebApplicationContext()
context.register(AppConfig::class.java)

// Create and register the DispatcherServlet

val servlet = DispatcherServlet(context)

val registration = servletContext.addServliet("app", servlet)
registration.setLoadOnStartup(1)
registration.addMapping("/app/*")

In addition to using the ServletContext API directly, you can also extend
o AbstractAnnotationConfigDispatcherServletInitializer and override specific
methods (see the example under Context Hierarchy).

For programmatic use cases, a GenericWebApplicationContext can be used as an
o alternative to AnnotationConfigWebApplicationContext. See the
GenericWebApplicationContext javadoc for details.

The following example of web.xml configuration registers and initializes the DispatcherServlet:

https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/web/context/support/GenericWebApplicationContext.html

<web-app>

<listener>
<listener-
class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

<context-param>
<param-name>contextConfiglLocation</param-name>
<param-value>/WEB-INF/app-context.xml</param-value>
</context-param>

<servlet>
<servlet-name>app</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-
class>
<init-param>
<param-name>contextConfiglLocation</param-name>
<param-value></param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>app</servlet-name>
<url-pattern>/app/*</url-pattern>
</servlet-mapping>

</web-app>

Spring Boot follows a different initialization sequence. Rather than hooking into
the lifecycle of the Servlet container, Spring Boot uses Spring configuration to

o bootstrap itself and the embedded Servlet container. Filter and Servlet
declarations are detected in Spring configuration and registered with the Servlet
container. For more details, see the Spring Boot documentation.

1.1.1. Context Hierarchy

DispatcherServlet expects a WebApplicationContext (an extension of a plain ApplicationContext) for
its own configuration. WebApplicationContext has a link to the ServletContext and the Servlet with
which it is associated. It is also bound to the ServletContext such that applications can use static
methods on RequestContextUtils to look up the WebApplicationContext if they need access to it.

For many applications, having a single WebApplicationContext is simple and suffices. It is also
possible to have a context hierarchy where one root WebApplicationContext is shared across
multiple DispatcherServlet (or other Servlet) instances, each with its own child
WebApplicationContext configuration. See Additional Capabilities of the ApplicationContext for more
on the context hierarchy feature.

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-embedded-container
core.pdf#context-introduction
core.pdf#context-introduction

The root WebApplicationContext typically contains infrastructure beans, such as data repositories
and business services that need to be shared across multiple Servlet instances. Those beans are
effectively inherited and can be overridden (that is, re-declared) in the Servlet-specific child
WebApplicationContext, which typically contains beans local to the given Servlet. The following
image shows this relationship:

DispatcherServiet

Servlet WebApplicationContext

(containing controllers, view resolvers,
and other web-related beans)

Controllers HandlerMapping

ViewResolver

Delegates if no bean found

Root WebApplicationContext

(containing middle-tier services, datasources, etc.)

Services Repositories

The following example configures a WebApplicationContext hierarchy:

Java

public class MyWebAppInitializer extends
AbstractAnnotationConfigDispatcherServlietInitializer {

@0verride
protected Class<?>[] getRootConfigClasses() {
return new Class<?>[] { RootConfig.class };

}

@0verride

protected Class<?>[] getServletConfigClasses() {
return new Class<?>[] { App1Config.class };

}

@0verride

protected String[] getServletMappings() {
return new String[] { "/app1/*" };

}

Kotlin

class MyWebAppInitializer : AbstractAnnotationConfigDispatcherServletInitializer() {

override fun getRootConfigClasses(): Array<Class<*>> {
return array0f(RootConfig::class.java)

}

override fun getServletConfigClasses(): Array<Class<*>> {
return arrayOf(App1Config::class.java)
}

override fun getServletMappings(): Array<String> {
return arrayOf("/app1/*")
}

If an application context hierarchy is not required, applications can return all
configuration through getRootConfigClasses() and null from
getServletConfigClasses().

The following example shows the web.xml equivalent:

<web-app>

<listener>
<listener-
class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>

<context-param>
<param-name>contextConfiglLocation</param-name>
<param-value>/WEB-INF/root-context.xml</param-value>
</context-param>

<servlet>
<servlet-name>app1</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-
class>
<init-param>
<param-name>contextConfiglLocation</param-name>
<param-value>/WEB-INF/app1-context.xml</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>app1</servlet-name>
<url-pattern>/app1/*</url-pattern>
</servlet-mapping>

</web-app>
@ If an application context hierarchy is not required, applications may configure a
- “root” context only and leave the contextConfiglocation Servlet parameter empty.

1.1.2. Special Bean Types

WebFlux

The DispatcherServlet delegates to special beans to process requests and render the appropriate
responses. By “special beans” we mean Spring-managed Object instances that implement
framework contracts. Those usually come with built-in contracts, but you can customize their
properties and extend or replace them.

The following table lists the special beans detected by the DispatcherServlet:

web-reactive.pdf#webflux-special-bean-types

Bean type Explanation

HandlerMapping Map a request to a handler along with a list of interceptors for
pre- and post-processing. The mapping is based on some criteria,
the details of which vary by HandlerMapping implementation.

The two main HandlerMapping implementations are
RequestMappingHandlerMapping (which supports @RequestMapping
annotated methods) and SimpleUr1lHandlerMapping (which
maintains explicit registrations of URI path patterns to handlers).

HandlerAdapter Help the DispatcherServlet to invoke a handler mapped to a
request, regardless of how the handler is actually invoked. For
example, invoking an annotated controller requires resolving
annotations. The main purpose of a HandlerAdapter is to shield
the DispatcherServlet from such details.

HandlerExceptionResolver Strategy to resolve exceptions, possibly mapping them to
handlers, to HTML error views, or other targets. See Exceptions.

ViewResolver Resolve logical String-based view names returned from a
handler to an actual View with which to render to the response.
See View Resolution and View Technologies.

LocaleResolver, Resolve the Locale a client is using and possibly their time zone,
LocaleContextResolver in order to be able to offer internationalized views. See Locale.
ThemeResolver Resolve themes your web application can use — for example, to

offer personalized layouts. See Themes.

MultipartResolver Abstraction for parsing a multi-part request (for example,
browser form file upload) with the help of some multipart
parsing library. See Multipart Resolver.

FlashMapManager Store and retrieve the “input” and the “output” FlashMap that can
be used to pass attributes from one request to another, usually
across a redirect. See Flash Attributes.

1.1.3. Web MVC Config

WebFlux

Applications can declare the infrastructure beans listed in Special Bean Types that are required to
process requests. The DispatcherServlet checks the WebApplicationContext for each special bean. If
there are no matching bean types, it falls back on the default types listed in
DispatcherServlet.properties.

In most cases, the MVC Config is the best starting point. It declares the required beans in either Java
or XML and provides a higher-level configuration callback API to customize it.

o Spring Boot relies on the MVC Java configuration to configure Spring MVC and
provides many extra convenient options.

web-reactive.pdf#webflux-framework-config
https://github.com/spring-projects/spring-framework/tree/main/spring-webmvc/src/main/resources/org/springframework/web/servlet/DispatcherServlet.properties

1.1.4. Servlet Config

In a Servlet 3.0+ environment, you have the option of configuring the Servlet container
programmatically as an alternative or in combination with a web.xml file. The following example
registers a DispatcherServlet:

Java
import org.springframework.web.WebApplicationInitializer;
public class MyWebApplicationInitializer implements WebApplicationInitializer {

@0verride

public void onStartup(ServletContext container) {
XmlWebApplicationContext appContext = new XmlWebApplicationContext();
appContext.setConfiglLocation("/WEB-INF/spring/dispatcher-config.xml");

ServletRegistration.Dynamic registration = container.addServlet("dispatcher"”,
new DispatcherServlet(appContext));

registration.setlLoadOnStartup(1);

registration.addMapping("/");

Kotlin
import org.springframework.web.WebApplicationInitializer
class MyWebApplicationInitializer : WebApplicationInitializer {

override fun onStartup(container: ServletContext) {
val appContext = XmlWebApplicationContext()
appContext.setConfiglLocation("/WEB-INF/spring/dispatcher-config.xml")

val registration = container.addServlet("dispatcher",
DispatcherServlet(appContext))

registration.setlLoadOnStartup(1)

registration.addMapping("/")

WebApplicationInitializer is an interface provided by Spring MVC that ensures your
implementation is detected and automatically used to initialize any Servlet 3 container. An abstract
base class implementation of WebApplicationInitializer named
AbstractDispatcherServletInitializer makes it even easier to register the DispatcherServlet by
overriding methods to specify the servlet mapping and the location of the DispatcherServlet
configuration.

This is recommended for applications that use Java-based Spring configuration, as the following

example shows:

Java

public class MyWebAppInitializer extends
AbstractAnnotationConfigDispatcherServlietInitializer {

@0verride
protected Class<?>[] getRootConfigClasses() {
return null;

}

@0verride
protected Class<?>[] getServletConfigClasses() {
return new Class<?>[] { MyWebConfig.class };

}

@0verride

protected String[] getServletMappings() {
return new String[] { "/" };

}

Kotlin

class MyWebAppInitializer : AbstractAnnotationConfigDispatcherServletInitializer() {

override fun getRootConfigClasses(): Array<Class<*>>? {
return null

}

override fun getServletConfigClasses(): Array<Class<*>>? {
return arrayOf(MyWebConfig::class.java)
}

override fun getServletMappings(): Array<String> {
return array0f("/")

}

If you wuse XML-based Spring configuration, you should extend directly from
AbstractDispatcherServletInitializer, as the following example shows:

10

Java
public class MyWebAppInitializer extends AbstractDispatcherServletInitializer {

@0verride
protected WebApplicationContext createRootApplicationContext() {
return null;

}

@0verride

protected WebApplicationContext createServlietApplicationContext() {
XmlWebApplicationContext cxt = new XmlWebApplicationContext();
cxt.setConfiglocation("/WEB-INF/spring/dispatcher-config.xml");
return cxt;

}

@0verride

protected String[] getServletMappings() {
return new String[] { "/" };

}

Kotlin
class MyWebAppInitializer : AbstractDispatcherServletInitializer() {

override fun createRootApplicationContext(): WebApplicationContext? {
return null

}

override fun createServletApplicationContext(): WebApplicationContext {
return XmlWebApplicationContext().apply {
setConfiglocation("/WEB-INF/spring/dispatcher-config.xml")
}
}

override fun getServletMappings(): Array<String> {
return array0f("/")
}

AbstractDispatcherServletInitializer also provides a convenient way to add Filter instances and
have them be automatically mapped to the DispatcherServlet, as the following example shows:

11

Java
public class MyWebAppInitializer extends AbstractDispatcherServletInitializer {
/] ...

@0verride
protected Filter[] getServletFilters() {
return new Filter[] {
new HiddenHttpMethodFilter(), new CharacterEncodingFilter() };

Kotlin
class MyWebAppInitializer : AbstractDispatcherServletInitializer() {
/] ...

override fun getServletFilters(): Array<Filter> {
return arrayOf(HiddenHttpMethodFilter(), CharacterEncodingFilter())

}

Each filter is added with a default name based on its concrete type and automatically mapped to
the DispatcherServlet.

The isAsyncSupported protected method of AbstractDispatcherServletInitializer provides a single
place to enable async support on the DispatcherServlet and all filters mapped to it. By default, this
flag is set to true.

Finally, if you need to further customize the DispatcherServlet itself, you can override the
createDispatcherServlet method.

1.1.5. Processing

WebFlux
The DispatcherServlet processes requests as follows:

* The WebApplicationContext is searched for and bound in the request as an attribute that the
controller and other elements in the process can use. It is bound by default under the
DispatcherServlet.WEB_APPLICATION_CONTEXT_ATTRIBUTE key.

* The locale resolver is bound to the request to let elements in the process resolve the locale to
use when processing the request (rendering the view, preparing data, and so on). If you do not
need locale resolving, you do not need the locale resolver.

* The theme resolver is bound to the request to let elements such as views determine which
theme to use. If you do not use themes, you can ignore it.

12

web-reactive.pdf#webflux-dispatcher-handler-sequence

* If you specify a multipart file resolver, the request is inspected for multiparts. If multiparts are
found, the request is wrapped in a MultipartHttpServletRequest for further processing by other
elements in the process. See Multipart Resolver for further information about multipart

handling.

* An appropriate handler is searched for. If a handler is found, the execution chain associated
with the handler (preprocessors, postprocessors, and controllers) is run to prepare a model for
rendering. Alternatively, for annotated controllers, the response can be rendered (within the

HandlerAdapter) instead of returning a view.

* If a model is returned, the view is rendered. If no model is returned (maybe due to a
preprocessor or postprocessor intercepting the request, perhaps for security reasons), no view
is rendered, because the request could already have been fulfilled.

The HandlerExceptionResolver beans declared in the WebApplicationContext are used to resolve
exceptions thrown during request processing. Those exception resolvers allow customizing the
logic to address exceptions. See Exceptions for more details.

For HTTP caching support, handlers can use the checkNotModified methods of WebRequest, along with
further options for annotated controllers as described in HTTP Caching for Controllers.

You can customize individual DispatcherServlet instances by adding Servlet initialization
parameters (init-param elements) to the Servlet declaration in the web.xml file. The following table

lists the supported parameters:

Table 1. DispatcherServlet initialization parameters

Parameter

context(Class

contextConfiglocation

namespace

Explanation

Class that implements
ConfigurableWebApplicationContext, to be
instantiated and locally configured by this
Servlet. By default, XmLWebApplicationContext is
used.

String that is passed to the context instance
(specified by contextClass) to indicate where
contexts can be found. The string consists
potentially of multiple strings (using a comma as
a delimiter) to support multiple contexts. In the
case of multiple context locations with beans
that are defined twice, the latest location takes
precedence.

Namespace of the WebApplicationContext.
Defaults to [servlet-name]-servlet.

13

Parameter Explanation

throwExceptionIfNoHandlerFound Whether to throw a NoHandlerFoundException
when no handler was found for a request. The
exception can then be caught with a
HandlerExceptionResolver (for example, by using
an @ExceptionHandler controller method) and
handled as any others.

By default, this is set to false, in which case the
DispatcherServlet sets the response status to 404
(NOT_FOUND) without raising an exception.

Note that, if default servlet handling is also
configured, unresolved requests are always
forwarded to the default servlet and a 404 is
never raised.

1.1.6. Path Matching

The Servlet API exposes the full request path as requestURI and further sub-divides it into
contextPath, servletPath, and pathInfo whose values vary depending on how a Servlet is mapped.
From these inputs, Spring MVC needs to determine the lookup path to use for handler mapping,
which is the path within the mapping of the DispatcherServlet itself, excluding the contextPath and
any servletMapping prefix, if present.

The servletPath and pathInfo are decoded and that makes them impossible to compare directly to
the full requestURI in order to derive the lookupPath and that makes it necessary to decode the
requestURI. However this introduces its own issues because the path may contain encoded reserved
characters such as "/" or ;" that can in turn alter the structure of the path after they are decoded
which can also lead to security issues. In addition, Servlet containers may normalize the
servletPath to varying degrees which makes it further impossible to perform startsWith

comparisons against the requestURI.

This is why it is best to avoid reliance on the servletPath which comes with the prefix-based
servletPath mapping type. If the DispatcherServlet is mapped as the default Servlet with "/" or
otherwise without a prefix with "/*" and the Servlet container is 4.0+ then Spring MVC is able to
detect the Servlet mapping type and avoid use of the servletPath and pathInfo altogether. On a 3.1
Servlet container, assuming the same Servlet mapping types, the equivalent can be achieved by
providing a UrlPathHelper with alwaysUseFullPath=true via Path Matching in the MVC config.

Fortunately the default Servlet mapping "/" is a good choice. However, there is still an issue in that
the requestURI needs to be decoded to make it possible to compare to controller mappings. This is
again undesirable because of the potential to decode reserved characters that alter the path
structure. If such characters are not expected, then you can reject them (like the Spring Security
HTTP firewall), or you can configure UrlPathHelper with urlDecode=false but controller mappings
will need to match to the encoded path which may not always work well. Furthermore, sometimes
the DispatcherServlet needs to share the URL space with another Servlet and may need to be
mapped by prefix.

14

The above issues can be addressed more comprehensively by switching from PathMatcher to the
parsed PathPattern available in 5.3 or higher, see Pattern Comparison. Unlike AntPathMatcher which
needs either the lookup path decoded or the controller mapping encoded, a parsed PathPattern
matches to a parsed representation of the path called RequestPath, one path segment at a time. This
allows decoding and sanitizing path segment values individually without the risk of altering the
structure of the path. Parsed PathPattern also supports the use of servletPath prefix mapping as
long as the prefix is kept simple and does not have any characters that need to be encoded.

1.1.7. Interception

All HandlerMapping implementations support handler interceptors that are useful when you want to
apply specific functionality to certain requests — for example, checking for a principal. Interceptors
must implement HandlerInterceptor from the org.springframework.web.servlet package with three
methods that should provide enough flexibility to do all kinds of pre-processing and post-
processing:

» preHandle(..): Before the actual handler is run

* postHandle(..): After the handler is run

» afterCompletion(..): After the complete request has finished
The preHandle(..) method returns a boolean value. You can use this method to break or continue
the processing of the execution chain. When this method returns true, the handler execution chain
continues. When it returns false, the DispatcherServlet assumes the interceptor itself has taken care

of requests (and, for example, rendered an appropriate view) and does not continue executing the
other interceptors and the actual handler in the execution chain.

See Interceptors in the section on MVC configuration for examples of how to configure interceptors.
You can also register them directly by using setters on individual HandlerMapping implementations.

postHandle method is less useful with @ResponseBody and ResponseEntity methods for which the
response is written and committed within the HandlerAdapter and before postHandle. That means it
is too late to make any changes to the response, such as adding an extra header. For such scenarios,
you can implement ResponseBodyAdvice and either declare it as an Controller Advice bean or
configure it directly on RequestMappingHandlerAdapter.

1.1.8. Exceptions

WebFlux

If an exception occurs during request mapping or is thrown from a request handler (such as a
@Controller), the DispatcherServlet delegates to a chain of HandlerExceptionResolver beans to
resolve the exception and provide alternative handling, which is typically an error response.

The following table lists the available HandlerExceptionResolver implementations:

Table 2. HandlerExceptionResolver implementations

15

web-reactive.pdf#webflux-dispatcher-exceptions

HandlerExceptionResolver Description

SimpleMappingExceptionResolver A mapping between exception class names and error view
names. Useful for rendering error pages in a browser
application.

DefaultHandlerExceptionResolve Resolves exceptions raised by Spring MVC and maps them to
r HTTP status codes. See also alternative
ResponseEntityExceptionHandler and REST API exceptions.

ResponseStatusExceptionResolve Resolves exceptions with the @ResponseStatus annotation and
: maps them to HTTP status codes based on the value in the
annotation.

ExceptionHandlerExceptionResol Resolves exceptions by invoking an @ExceptionHandler method in
ver a @Controller or a @ControllerAdvice class. See
@ExceptionHandler methods.

Chain of Resolvers

You can form an exception resolver chain by declaring multiple HandlerExceptionResolver beans in
your Spring configuration and setting their order properties as needed. The higher the order
property, the later the exception resolver is positioned.

The contract of HandlerExceptionResolver specifies that it can return:

* a ModelAndView that points to an error view.
* An empty ModelAndView if the exception was handled within the resolver.

* null if the exception remains unresolved, for subsequent resolvers to try, and, if the exception
remains at the end, it is allowed to bubble up to the Servlet container.

The MVC Config automatically declares built-in resolvers for default Spring MVC exceptions, for
@ResponseStatus annotated exceptions, and for support of @ExceptionHandler methods. You can
customize that list or replace it.

Container Error Page

If an exception remains unresolved by any HandlerExceptionResolver and is, therefore, left to
propagate or if the response status is set to an error status (that is, 4xx, 5xx), Servlet containers can
render a default error page in HTML. To customize the default error page of the container, you can
declare an error page mapping in web.xml. The following example shows how to do so:

<error-page>
<location>/error</location>
</error-page>

Given the preceding example, when an exception bubbles up or the response has an error status,
the Servlet container makes an ERROR dispatch within the container to the configured URL (for
example, /error). This is then processed by the DispatcherServlet, possibly mapping it to a
@Controller, which could be implemented to return an error view name with a model or to render a

16

https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/web/servlet/mvc/support/DefaultHandlerExceptionResolver.html
https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/web/servlet/mvc/support/DefaultHandlerExceptionResolver.html

JSON response, as the following example shows:

Java

@RestController
public class ErrorController {

@RequestMapping(path = "/error")

public Map<String, Object> handle(HttpServletRequest request) {
Map<String, Object> map = new HashMap<String, Object>();
map.put("status", request.getAttribute("javax.servlet.error.status_code"));
map.put("reason", request.getAttribute("javax.servlet.error.message"));
return map;

Kotlin

@RestController
class ErrorController {

@RequestMapping(path = ["/error"])

fun handle(request: HttpServletRequest): Map<String, Any> {
val map = HashMap<String, Any>()
map["status"] = request.qgetAttribute("javax.servlet.error.status_code")
map["reason"] = request.getAttribute("javax.servlet.error.message")

return map
}
}
(r) The Servlet API does not provide a way to create error page mappings in Java. You
- can, however, use both a WebApplicationInitializer and a minimal web.xml.

1.1.9. View Resolution

WebFlux

Spring MVC defines the ViewResolver and View interfaces that let you render models in a browser
without tying you to a specific view technology. ViewResolver provides a mapping between view
names and actual views. View addresses the preparation of data before handing over to a specific
view technology.

The following table provides more details on the ViewResolver hierarchy:

Table 3. ViewResolver implementations

17

web-reactive.pdf#webflux-viewresolution

ViewResolver Description

AbstractCachingViewResolver Subclasses of AbstractCachingViewResolver cache
view instances that they resolve. Caching
improves performance of certain view
technologies. You can turn off the cache by
setting the cache property to false. Furthermore,
if you must refresh a certain view at runtime
(for example, when a FreeMarker template is
modified), you can use the
removeFromCache(String viewName, Locale loc)
method.

UrlBasedViewResolver Simple implementation of the ViewResolver
interface that effects the direct resolution of
logical view names to URLs without an explicit
mapping definition. This is appropriate if your
logical names match the names of your view
resources in a straightforward manner, without
the need for arbitrary mappings.

InternalResourceViewResolver Convenient subclass of Ur1BasedViewResolver
that supports InternalResourceView (in effect,
Servlets and JSPs) and subclasses such as
Jst1View and TilesView. You can specify the view
class for all views generated by this resolver by
using setViewClass(..). See the
UrlBasedViewResolver javadoc for details.

FreeMarkerViewResolver Convenient subclass of Ur1BasedViewResolver
that supports FreeMarkerView and custom
subclasses of them.

ContentNegotiatingViewResolver Implementation of the ViewResolver interface
that resolves a view based on the request file
name or Accept header. See Content Negotiation.

BeanNameViewResolver Implementation of the ViewResolver interface
that interprets a view name as a bean name in
the current application context. This is a very
flexible variant which allows for mixing and
matching different view types based on distinct
view names. Each such View can be defined as a
bean e.g. in XML or in configuration classes.

Handling

WebFlux

You can chain view resolvers by declaring more than one resolver bean and, if necessary, by setting
the order property to specify ordering. Remember, the higher the order property, the later the view
resolver is positioned in the chain.

18

https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/web/reactive/result/view/UrlBasedViewResolver.html
web-reactive.pdf#webflux-viewresolution-handling

The contract of a ViewResolver specifies that it can return null to indicate that the view could not be
found. However, in the case of JSPs and InternalResourceViewResolver, the only way to figure out if
a JSP exists is to perform a dispatch through RequestDispatcher. Therefore, you must always
configure an InternalResourceViewResolver to be last in the overall order of view resolvers.

Configuring view resolution is as simple as adding ViewResolver beans to your Spring configuration.
The MVC Config provides a dedicated configuration API for View Resolvers and for adding logic-less
View Controllers which are useful for HTML template rendering without controller logic.

Redirecting

WebFlux

The special redirect: prefix in a view name lets you perform a redirect. The Ur1BasedViewResolver
(and its subclasses) recognize this as an instruction that a redirect is needed. The rest of the view
name is the redirect URL.

The net effect is the same as if the controller had returned a RedirectView, but now the controller
itself can operate in terms of logical view names. A logical view name (such as
redirect:/myapp/some/resource) redirects relative to the current Servlet context, while a name such
as redirect:https://myhost.com/some/arbitrary/path redirects to an absolute URL.

Note that, if a controller method is annotated with the @ResponseStatus, the annotation value takes
precedence over the response status set by RedirectView.

Forwarding

You can also use a special forward: prefix for view names that are ultimately resolved by
UrlBasedViewResolver and subclasses. This creates an InternalResourceView, which does a
RequestDispatcher.forward(). Therefore, this prefix is not useful with InternalResourceViewResolver
and InternalResourceView (for JSPs), but it can be helpful if you use another view technology but
still want to force a forward of a resource to be handled by the Servlet/JSP engine. Note that you
may also chain multiple view resolvers, instead.

Content Negotiation

WebFlux

ContentNegotiatingViewResolver does not resolve views itself but rather delegates to other view
resolvers and selects the view that resembles the representation requested by the client. The
representation can be determined from the Accept header or from a query parameter (for example,
"/path?format=pdf").

The ContentNegotiatingViewResolver selects an appropriate View to handle the request by comparing
the request media types with the media type (also known as Content-Type) supported by the View
associated with each of its ViewResolvers. The first View in the list that has a compatible Content-Type
returns the representation to the client. If a compatible view cannot be supplied by the ViewResolver
chain, the list of views specified through the DefaultViews property is consulted. This latter option is
appropriate for singleton Views that can render an appropriate representation of the current
resource regardless of the logical view name. The Accept header can include wildcards (for example

19

web-reactive.pdf#webflux-redirecting-redirect-prefix
web-reactive.pdf#webflux-multiple-representations
https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/web/servlet/view/ContentNegotiatingViewResolver.html

text/*), in which case a View whose Content-Type is text/xml is a compatible match.

See View Resolvers under MVC Config for configuration details.

1.1.10. Locale

Most parts of Spring’s architecture support internationalization, as the Spring web MVC framework
does. DispatcherServlet lets you automatically resolve messages by using the client’s locale. This is
done with LocaleResolver objects.

When a request comes in, the DispatcherServlet looks for a locale resolver and, if it finds one, it
tries to use it to set the locale. By using the RequestContext.getlLocale() method, you can always
retrieve the locale that was resolved by the locale resolver.

In addition to automatic locale resolution, you can also attach an interceptor to the handler
mapping (see Interception for more information on handler mapping interceptors) to change the
locale under specific circumstances (for example, based on a parameter in the request).

Locale resolvers and interceptors are defined in the org.springframework.web.servlet.i18n package
and are configured in your application context in the normal way. The following selection of locale
resolvers is included in Spring.

* Time Zone

* Header Resolver

* Cookie Resolver

e Session Resolver

Locale Interceptor

Time Zone

In addition to obtaining the client’s locale, it is often useful to know its time zone. The
LocaleContextResolver interface offers an extension to LocaleResolver that lets resolvers provide a
richer LocaleContext, which may include time zone information.

When available, the user’s TimeZone can be obtained by using the RequestContext.getTimeZone()
method. Time zone information is automatically used by any Date/Time Converter and Formatter
objects that are registered with Spring’s ConversionService.

Header Resolver

This locale resolver inspects the accept-language header in the request that was sent by the client
(for example, a web browser). Usually, this header field contains the locale of the client’s operating
system. Note that this resolver does not support time zone information.

Cookie Resolver

This locale resolver inspects a Cookie that might exist on the client to see if a Locale or TimeZone is
specified. If so, it uses the specified details. By using the properties of this locale resolver, you can
specify the name of the cookie as well as the maximum age. The following example defines a

20

CookielLocaleResolver:

<bean id="localeResolver"
class="org.springframework.web.servlet.i18n.CookielLocaleResolver">

<property name="cookieName" value="clientlanguage"/>
<!-- in seconds. If set to -1, the cookie is not persisted (deleted when browser
shuts down) -->

<property name="cookieMaxAge" value="100000"/>

</bean>

The following table describes the properties CookielLocaleResolver:

Table 4. CookieLocaleResolver properties

Property Default Description

cookieName classname + The name of the cookie
LOCALE

cookieMaxAge Servlet The maximum time a cookie persists on the client. If -1 is
container specified, the cookie will not be persisted. It is available only
default until the client shuts down the browser.

cookiePath / Limits the visibility of the cookie to a certain part of your site.

When cookiePath is specified, the cookie is visible only to that
path and the paths below it.

Session Resolver

The SessionLocaleResolver lets you retrieve Locale and TimeZone from the session that might be
associated with the user’s request. In contrast to CookielLocaleResolver, this strategy stores locally
chosen locale settings in the Servlet container’s HttpSession. As a consequence, those settings are
temporary for each session and are, therefore, lost when each session ends.

Note that there is no direct relationship with external session management mechanisms, such as
the Spring Session project. This SessionLocaleResolver evaluates and modifies the corresponding
HttpSession attributes against the current HttpServletRequest.

Locale Interceptor

You can enable changing of locales by adding the LocaleChangeInterceptor to one of the
HandlerMapping definitions. It detects a parameter in the request and changes the locale accordingly,
calling the setlLocale method on the LocaleResolver in the dispatcher’s application context. The next
example shows that calls to all *.view resources that contain a parameter named sitelLanguage now
changes the locale. So, for example, a request for the URL, https://www.sf.net/home.view?
sitelanguage=n1l, changes the site language to Dutch. The following example shows how to intercept
the locale:

21

https://www.sf.net/home.view?siteLanguage=nl
https://www.sf.net/home.view?siteLanguage=nl

<bean id="localeChangeInterceptor"
class="org.springframework.web.servlet.i18n.LocaleChangeInterceptor">
<property name="paramName" value="sitelanguage"/>
</bean>

<bean id="localeResolver"
class="org.springframework.web.servlet.i18n.CookielLocaleResolver"/>

<bean id="ur1Mapping"
class="org.springframework.web.servlet.handler.SimpleUr1HandlerMapping">
<property name="interceptors">
<list>
<ref bean="localeChangeInterceptor"/>
</list>
</property>
<property name="mappings">
<value>/**/*.view=someController</value>
</property>
</bean>

1.1.11. Themes

You can apply Spring Web MVC framework themes to set the overall look-and-feel of your
application, thereby enhancing user experience. A theme is a collection of static resources, typically
style sheets and images, that affect the visual style of the application.

Defining a theme

To use themes in your web application, you must set up an implementation of the
org.springframework.ui.context.ThemeSource interface. The WebApplicationContext interface extends
ThemeSource but delegates its responsibilities to a dedicated implementation. By default, the delegate
is an org.springframework.ui.context.support.ResourceBundleThemeSource implementation that loads
properties files from the root of the classpath. To use a custom ThemeSource implementation or to
configure the base name prefix of the ResourceBundleThemeSource, you can register a bean in the
application context with the reserved name, themeSource. The web application context
automatically detects a bean with that name and uses it.

When you use the ResourceBundleThemeSource, a theme is defined in a simple properties file. The
properties file lists the resources that make up the theme, as the following example shows:

styleSheet=/themes/cool/style.css
background=/themes/cool/img/coolBg. jpg

The keys of the properties are the names that refer to the themed elements from view code. For a
JSP, you typically do this using the spring:theme custom tag, which is very similar to the
spring:message tag. The following JSP fragment uses the theme defined in the previous example to
customize the look and feel

22

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags"%>
<html>
<head>
<link rel="stylesheet" href="<spring:theme code="'styleSheet'/>
type="text/css"/>
</head>
<body style="background=<spring:theme code='background'/>">

</body>
</html>

By default, the ResourceBundleThemeSource uses an empty base name prefix. As a result, the
properties files are loaded from the root of the classpath. Thus, you would put the cool.properties
theme definition in a directory at the root of the classpath (for example, in /WEB-INF/classes). The
ResourceBundleThemeSource uses the standard Java resource bundle loading mechanism, allowing for
full internationalization of themes. For example, we could have a /WEB-
INF/classes/cool_nl.properties that references a special background image with Dutch text on it.

Resolving Themes

After you define themes, as described in the preceding section, you decide which theme to use. The
DispatcherServlet looks for a bean named themeResolver to find out which ThemeResolver
implementation to use. A theme resolver works in much the same way as a LocaleResolver. It
detects the theme to use for a particular request and can also alter the request’s theme. The
following table describes the theme resolvers provided by Spring:

Table 5. ThemeResolver implementations
Class Description

FixedThemeResolver Selects a fixed theme, set by using the defaultThemeName property.

SessionThemeResolv The theme is maintained in the user’s HTTP session. It needs to be set only
er once for each session but is not persisted between sessions.

CookieThemeResolve The selected theme is stored in a cookie on the client.
.

Spring also provides a ThemeChangeInterceptor that lets theme changes on every request with a
simple request parameter.

1.1.12. Multipart Resolver

WebFlux

MultipartResolver from the org.springframework.web.multipart package is a strategy for parsing
multipart requests including file uploads. There is one implementation based on Commons
FileUpload and another based on Servlet 3.0 multipart request parsing.

To enable multipart handling, you need to declare a MultipartResolver bean in your
DispatcherServlet Spring configuration with a name of multipartResolver. The DispatcherServlet

23

web-reactive.pdf#webflux-multipart
https://commons.apache.org/proper/commons-fileupload
https://commons.apache.org/proper/commons-fileupload

detects it and applies it to the incoming request. When a POST with a content type of
multipart/form-data is received, the resolver parses the content wraps the current
HttpServletRequest as a MultipartHttpServletRequest to provide access to resolved files in addition
to exposing parts as request parameters.

Apache Commons FileUpload

To use Apache Commons FileUpload, you can configure a bean of type CommonsMultipartResolver
with a name of multipartResolver. You also need to have the commons-fileupload jar as a dependency
on your classpath.

This resolver variant delegates to a local library within the application, providing maximum
portability across Servlet containers. As an alternative, consider standard Servlet multipart
resolution through the container’s own parser as discussed below.

Commons FileUpload traditionally applies to POST requests only but accepts any
o multipart/ content type. See the CommonsMultipartResolver javadoc for details and
configuration options.

Servlet 3.0

Servlet 3.0 multipart parsing needs to be enabled through Servlet container configuration. To do so:

* InJava, set a MultipartConfigElement on the Servlet registration.

e Inweb.xml, add a "<multipart-config>" section to the servlet declaration.
The following example shows how to set a MultipartConfigElement on the Servlet registration:

Java

public class AppInitializer extends
AbstractAnnotationConfigDispatcherServlietInitializer {

/] ...

@0verride
protected void customizeRegistration(ServletRegistration.Dynamic registration) {

// Optionally also set maxFileSize, maxRequestSize, fileSizeThreshold
registration.setMultipartConfig(new MultipartConfigElement("/tmp"));

24

https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/web/multipart/commons/CommonsMultipartResolver.html

Kotlin
class AppInitializer : AbstractAnnotationConfigDispatcherServletInitializer() {
/] ...
override fun customizeRegistration(registration: ServletRegistration.Dynamic) {

// Optionally also set maxFileSize, maxRequestSize, fileSizeThreshold
registration.setMultipartConfig(MultipartConfigElement("/tmp"))

Once the Servlet 3.0 configuration is in place, you can add a bean of type
StandardServletMultipartResolver with a name of multipartResolver.

This resolver variant uses your Servlet container’s multipart parser as-is,
potentially exposing the application to container implementation differences. By
o default, it will try to parse any multipart/ content type with any HTTP method but
this may not be supported across all Servlet -containers. See the
StandardServletMultipartResolver javadoc for details and configuration options.

1.1.13. Logging

WebFlux

DEBUG-level logging in Spring MVC is designed to be compact, minimal, and human-friendly. It
focuses on high-value bits of information that are useful over and over again versus others that are
useful only when debugging a specific issue.

TRACE-level logging generally follows the same principles as DEBUG (and, for example, also should
not be a fire hose) but can be used for debugging any issue. In addition, some log messages may
show a different level of detail at TRACE versus DEBUG.

Good logging comes from the experience of using the logs. If you spot anything that does not meet
the stated goals, please let us know.

Sensitive Data
WebFlux

DEBUG and TRACE logging may log sensitive information. This is why request parameters and
headers are masked by default and their logging in full must be enabled explicitly through the
enableLoggingRequestDetails property on DispatcherServlet.

The following example shows how to do so by using Java configuration:

25

https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/web/multipart/support/StandardServletMultipartResolver.html
web-reactive.pdf#webflux-logging
web-reactive.pdf#webflux-logging-sensitive-data

Java

public class MyInitializer
extends AbstractAnnotationConfigDispatcherServletInitializer {

@0verride

protected Class<?>[] getRootConfigClasses() {
return ... ;

}

@0verride

protected Class<?>[] getServletConfigClasses() {
return ... ;

}

@0verride

protected String[] getServletMappings() {
return ... ;

}

@0verride

protected void customizeRegistration(ServletRegistration.Dynamic registration) {
registration.setInitParameter("enableLoggingRequestDetails", "true");

}

Kotlin

class MyInitializer : AbstractAnnotationConfigDispatcherServletInitializer() {

override fun getRootConfigClasses(): Array<Class<*>>? {
return ...

}

override fun getServletConfigClasses(): Array<Class<*>>7? {
return ...

}

override fun getServletMappings(): Array<String> {
return ...

}

override fun customizeRegistration(registration: ServletRegistration.Dynamic) {
registration.setInitParameter("enableLoggingRequestDetails", "true")

}

26

1.2. Filters

WebFlux
The spring-web module provides some useful filters:

e Form Data

Forwarded Headers

Shallow ETag

CORS

1.2.1. Form Data

Browsers can submit form data only through HTTP GET or HTTP POST but non-browser clients can
also use HTTP PUT, PATCH, and DELETE. The Servlet API requires ServletRequest.getParameter*()
methods to support form field access only for HTTP POST.

The spring-web module provides FormContentFilter to intercept HTTP PUT, PATCH, and DELETE
requests with a content type of application/x-www-form-urlencoded, read the form data from the
body of the request, and wrap the ServletRequest to make the form data available through the
ServletRequest.getParameter*() family of methods.

1.2.2. Forwarded Headers

WebFlux

As a request goes through proxies (such as load balancers) the host, port, and scheme may change,
and that makes it a challenge to create links that point to the correct host, port, and scheme from a
client perspective.

RFC 7239 defines the Forwarded HTTP header that proxies can use to provide information about the
original request. There are other non-standard headers, too, including X-Forwarded-Host, X-
Forwarded-Port, X-Forwarded-Proto, X-Forwarded-Ss1, and X-Forwarded-Prefix.

ForwardedHeaderFilter is a Servlet filter that modifies the request in order to a) change the host,
port, and scheme based on Forwarded headers, and b) to remove those headers to eliminate further
impact. The filter relies on wrapping the request, and therefore it must be ordered ahead of other
filters, such as RequestContextFilter, that should work with the modified and not the original
request.

There are security considerations for forwarded headers since an application cannot know if the
headers were added by a proxy, as intended, or by a malicious client. This is why a proxy at the
boundary of trust should be configured to remove untrusted Forwarded headers that come from the
outside. You can also configure the ForwardedHeaderFilter with removeOnly=true, in which case it
removes but does not use the headers.

In order to support asynchronous requests and error dispatches this filter should be mapped with
DispatcherType.ASYNC and also DispatcherType.ERROR. If wusing Spring Framework’s
AbstractAnnotationConfigDispatcherServletInitializer (see Servlet Config) all filters are

27

web-reactive.pdf#webflux-filters
web-reactive.pdf#webflux-forwarded-headers
https://tools.ietf.org/html/rfc7239

automatically registered for all dispatch types. However if registering the filter via web.xml or in
Spring Boot via a FilterRegistrationBean be sure to include DispatcherType.ASYNC and
DispatcherType.ERROR in addition to DispatcherType.REQUEST.

1.2.3. Shallow ETag

The ShallowEtagHeaderFilter filter creates a “shallow” ETag by caching the content written to the
response and computing an MD5 hash from it. The next time a client sends, it does the same, but it
also compares the computed value against the If-None-Match request header and, if the two are
equal, returns a 304 (NOT_MODIFIED).

This strategy saves network bandwidth but not CPU, as the full response must be computed for each
request. Other strategies at the controller level, described earlier, can avoid the computation. See
HTTP Caching.

This filter has a writeWleakETag parameter that configures the filter to write weak ETags similar to
the following: W/"02a2d595e6ed9a0b24f027f2b63b134d6" (as defined in RFC 7232 Section 2.3).

In order to support asynchronous requests this filter must be mapped with DispatcherType.ASYNC so
that the filter can delay and successfully generate an ETag to the end of the last async dispatch. If
using Spring Framework’s AbstractAnnotationConfigDispatcherServletInitializer (see Servlet
Config) all filters are automatically registered for all dispatch types. However if registering the filter
via web.xml or in Spring Boot via a FilterRegistrationBean be sure to include DispatcherType.ASYNC.

1.2.4. CORS

WebFlux

Spring MVC provides fine-grained support for CORS configuration through annotations on
controllers. However, when used with Spring Security, we advise relying on the built-in CorsFilter
that must be ordered ahead of Spring Security’s chain of filters.

See the sections on CORS and the CORS Filter for more details.

1.3. Annotated Controllers
WebFlux

Spring MVC provides an annotation-based programming model where @Controller and
@RestController components use annotations to express request mappings, request input, exception
handling, and more. Annotated controllers have flexible method signatures and do not have to
extend base classes nor implement specific interfaces. The following example shows a controller
defined by annotations:

28

https://tools.ietf.org/html/rfc7232#section-2.3
web-reactive.pdf#webflux-filters-cors
web-reactive.pdf#webflux-controller

Java

@Controller
public class HelloController {

@GetMapping("/hello")

public String handle(Model model) {
model.addAttribute("message”, "Hello World!");
return "index";

Kotlin
import org.springframework.ui.set

@Controller
class HelloController {

@GetMapping("/hello")

fun handle(model: Model): String {
model["message"] = "Hello World!"
return "index"

In the preceding example, the method accepts a Model and returns a view name as a String, but
many other options exist and are explained later in this chapter.

(r) Guides and tutorials on spring.io use the annotation-based programming model
- described in this section.

1.3.1. Declaration

WebFlux

You can define controller beans by using a standard Spring bean definition in the Servlet’s
WebApplicationContext. The @Controller stereotype allows for auto-detection, aligned with Spring
general support for detecting @Component classes in the classpath and auto-registering bean
definitions for them. It also acts as a stereotype for the annotated class, indicating its role as a web
component.

To enable auto-detection of such @Controller beans, you can add component scanning to your Java
configuration, as the following example shows:

29

https://spring.io/guides
web-reactive.pdf#webflux-ann-controller

Java

@Configuration
@ComponentScan("org.example.web")
public class WebConfig {

/] ...

Kotlin

@Configuration
@ComponentScan("org.example.web")
class WebConfig {

/] ...

The following example shows the XML configuration equivalent of the preceding example:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd">

<context:component-scan base-package="org.example.web"/>
== o ==d

</beans>

@RestController is a composed annotation that is itself meta-annotated with @Controller and
@ResponseBody to indicate a controller whose every method inherits the type-level @ResponseBody
annotation and, therefore, writes directly to the response body versus view resolution and
rendering with an HTML template.

AOP Proxies

In some cases, you may need to decorate a controller with an AOP proxy at runtime. One example is
if you choose to have @Transactional annotations directly on the controller. When this is the case,
for controllers specifically, we recommend using class-based proxying. This is typically the default
choice with controllers. However, if a controller must implement an interface that is not a Spring

30

core.pdf#beans-meta-annotations

Context callback (such as InitializingBean, *Aware, and others), you may need to explicitly configure
class-based proxying. For example, with <tx:annotation-driven/>you can change to <tx:annotation-
driven proxy-target-class="true"/>, and with @EnableTransactionManagement you can change to
@EnableTransactionManagement(proxyTargetClass = true).

1.3.2. Request Mapping

WebFlux

You can use the @RequestMapping annotation to map requests to controllers methods. It has various
attributes to match by URL, HTTP method, request parameters, headers, and media types. You can
use it at the class level to express shared mappings or at the method level to narrow down to a
specific endpoint mapping.

There are also HTTP method specific shortcut variants of @RequestMapping:

* @GetMapping

* @PostMapping

* @PutMapping

» @DeleteMapping
* @PatchMapping

The shortcuts are Custom Annotations that are provided because, arguably, most controller
methods should be mapped to a specific HTTP method versus using @RequestMapping, which, by
default, matches to all HTTP methods. A @RequestMapping is still needed at the class level to express
shared mappings.

The following example has type and method level mappings:

Java

@RestController
@RequestMapping("/persons")
class PersonController {

@GetMapping("/{id}")

public Person getPerson(@PathVariable Long id) {
/] ...

}

@PostMapping

@ResponseStatus(HttpStatus.CREATED)

public void add(@RequestBody Person person) {
/] ...

}

31

web-reactive.pdf#webflux-ann-requestmapping

Kotlin

@RestController
@RequestMapping("/persons")
class PersonController {

@GetMapping("/{id}")

fun getPerson(@PathVariable id: Long): Person {
/] ...

}

@PostMapping
@ResponseStatus(HttpStatus.CREATED)
fun add(@RequestBody person: Person) {

/] ...
}
}
URI patterns
WebFlux

@RequestMapping methods can be mapped using URL patterns. There are two alternatives:

» PathPattern—a pre-parsed pattern matched against the URL path also pre-parsed as
PathContainer. Designed for web use, this solution deals effectively with encoding and path
parameters, and matches efficiently.

* AntPathMatcher —match String patterns against a String path. This is the original solution also
used in Spring configuration to select resources on the classpath, on the filesystem, and other
locations. It is less efficient and the String path input is a challenge for dealing effectively with
encoding and other issues with URLs.

PathPattern is the recommended solution for web applications and it is the only choice in Spring
WebFlux. Prior to version 5.3, AntPathMatcher was the only choice in Spring MVC and continues to
be the default. However PathPattern can be enabled in the MVC config.

PathPattern supports the same pattern syntax as AntPathMatcher. In addition it also supports the
capturing pattern, e.g. {*spring}, for matching 0 or more path segments at the end of a path.
PathPattern also restricts the use of ** for matching multiple path segments such that it’s only
allowed at the end of a pattern. This eliminates many cases of ambiguity when choosing the best
matching pattern for a given request. For full pattern syntax please refer to PathPattern and
AntPathMatcher.

Some example patterns:

» "/resources/ima?e.png" - match one character in a path segment
» "/resources/*.png" - match zero or more characters in a path segment

* "/resources/**" - match multiple path segments

32

web-reactive.pdf#webflux-ann-requestmapping-uri-templates
https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/web/util/pattern/PathPattern.html
https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/util/AntPathMatcher.html

» "/projects/{project}/versions" - match a path segment and capture it as a variable

» "/projects/{project:[a-z]+}/versions" - match and capture a variable with a regex
Captured URI variables can be accessed with @PathVariable. For example:

Java

@GetMapping("/owners/{ownerId}/pets/{petId}")
public Pet findPet(@PathVariable Long ownerId, @PathVariable Long petId) {

/] ...
}

Kotlin

@GetMapping("/owners/{ownerId}/pets/{petId}")

fun findPet(@PathVariable ownerId: Long, @PathVariable petId: Long): Pet {
/] ...

}

You can declare URI variables at the class and method levels, as the following example shows:

Java

@Controller
©RequestMapping("/owners/{ownerId}")
public class OwnerController {

@GetMapping("/pets/{petId}")
public Pet findPet(@PathVariable Long ownerId, @PathVariable Long petId) {

/] ...
}
}
Kotlin
@Controller

@RequestMapping("/owners/{ownerId}")
class OwnerController {

@GetMapping("/pets/{petId}")

fun findPet(@PathVariable ownerId: Long, @PathVariable petId: Long): Pet {
/] ...

}

URI variables are automatically converted to the appropriate type, or TypeMismatchException is
raised. Simple types (int, long, Date, and so on) are supported by default and you can register
support for any other data type. See Type Conversion and DataBinder.

33

You can explicitly name URI variables (for example, @PathVariable("customId")), but you can leave
that detail out if the names are the same and your code is compiled with debugging information or
with the -parameters compiler flag on Java 8.

The syntax {varName:regex} declares a URI variable with a regular expression that has syntax of
{varName:regex}. For example, given URL "/spring-web-3.0.5.jar", the following method extracts
the name, version, and file extension:

Java

@GetMapping("/{name:[a-z-]+}-{version:\\d\\.\\d\\.\\d}{ext:\\.[a-z]+}")
public void handle(@PathVariable String name, @PathVariable String version,
@PathVariable String ext) {

/] ...
}

Kotlin

@GetMapping("/{name:[a-z-]+}-{version:\\d\\.\\d\\.\\d}{ext:\\.[a-z]+}")
fun handle(@PathVariable name: String, @PathVariable version: String, @PathVariable
ext: String) {
/] ...
}

URI path patterns can also have embedded ${---} placeholders that are resolved on startup by using
PropertySourcesPlaceholderConfigurer against local, system, environment, and other property
sources. You can use this, for example, to parameterize a base URL based on some external
configuration.

Pattern Comparison

WebFlux

When multiple patterns match a URL, the best match must be selected. This is done with one of the
following depending on whether use of parsed PathPattern is enabled for use or not:

* PathPattern.SPECIFICITY_COMPARATOR

* AntPathMatcher.getPatternComparator(String path)
Both help to sort patterns with more specific ones on top. A pattern is less specific if it has a lower
count of URI variables (counted as 1), single wildcards (counted as 1), and double wildcards

(counted as 2). Given an equal score, the longer pattern is chosen. Given the same score and length,
the pattern with more URI variables than wildcards is chosen.

The default mapping pattern (/**) is excluded from scoring and always sorted last. Also, prefix
patterns (such as /public/**) are considered less specific than other pattern that do not have double
wildcards.

For the full details, follow the above links to the pattern Comparators.

34

web-reactive.pdf#webflux-ann-requestmapping-pattern-comparison
https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/web/util/pattern/PathPattern.html#SPECIFICITY_COMPARATOR
https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/util/AntPathMatcher.html#getPatternComparator-java.lang.String-

Suffix Match

Starting in 5.3, by default Spring MVC no longer performs .* suffix pattern matching where a
controller mapped to /person is also implicitly mapped to /person.*. As a consequence path
extensions are no longer used to interpret the requested content type for the response — for
example, /person.pdf, /person.xml, and so on.

Using file extensions in this way was necessary when browsers used to send Accept headers that
were hard to interpret consistently. At present, that is no longer a necessity and using the Accept
header should be the preferred choice.

Over time, the use of file name extensions has proven problematic in a variety of ways. It can cause
ambiguity when overlain with the use of URI variables, path parameters, and URI encoding.
Reasoning about URL-based authorization and security (see next section for more details) also
becomes more difficult.

To completely disable the use of path extensions in versions prior to 5.3, set the following:

» useSuffixPatternMatching(false), see PathMatchConfigurer

» favorPathExtension(false), see ContentNegotiationConfigurer

Having a way to request content types other than through the "Accept” header can still be useful,
e.g. when typing a URL in a browser. A safe alternative to path extensions is to use the query
parameter strategy. If you must use file extensions, consider restricting them to a list of explicitly
registered extensions through the mediaTypes property of ContentNegotiationConfigurer.

Suffix Match and RFD

A reflected file download (RFD) attack is similar to XSS in that it relies on request input (for
example, a query parameter and a URI variable) being reflected in the response. However, instead
of inserting JavaScript into HTML, an RFD attack relies on the browser switching to perform a
download and treating the response as an executable script when double-clicked later.

In Spring MVC, @ResponseBody and ResponseEntity methods are at risk, because they can render
different content types, which clients can request through URL path extensions. Disabling suffix
pattern matching and using path extensions for content negotiation lower the risk but are not
sufficient to prevent RFD attacks.

To prevent RFD attacks, prior to rendering the response body, Spring MVC adds a Content-
Disposition:inline;filename=f.txt header to suggest a fixed and safe download file. This is done
only if the URL path contains a file extension that is neither allowed as safe nor explicitly registered
for content negotiation. However, it can potentially have side effects when URLs are typed directly
into a browser.

Many common path extensions are allowed as safe by default. Applications with custom
HttpMessageConverter implementations can explicitly register file extensions for content negotiation
to avoid having a Content-Disposition header added for those extensions. See Content Types.

See CVE-2015-5211 for additional recommendations related to RFD.

35

https://pivotal.io/security/cve-2015-5211

Consumable Media Types

WebFlux

You can narrow the request mapping based on the Content-Type of the request, as the following
example shows:

Java

@PostMapping(path = "/pets", consumes = "application/json") @
public void addPet(@RequestBody Pet pet) {

/...
}

@ Using a consumes attribute to narrow the mapping by the content type.

Kotlin

@PostMapping("/pets", consumes = ["application/json"]) @
fun addPet(@RequestBody pet: Pet) {

/...
}

@ Using a consumes attribute to narrow the mapping by the content type.

The consumes attribute also supports negation expressions — for example, !text/plain means any
content type other than text/plain.

You can declare a shared consumes attribute at the class level. Unlike most other request-mapping
attributes, however, when used at the class level, a method-level consumes attribute overrides rather
than extends the class-level declaration.

(r) MediaType provides constants for commonly used media types, such as
- APPLICATION_JSON_VALUE and APPLICATION_XML_VALUE.

Producible Media Types

WebFlux

You can narrow the request mapping based on the Accept request header and the list of content
types that a controller method produces, as the following example shows:

Java

@GetMapping(path = "/pets/{petId}", produces = "application/json") @
@ResponseBody
public Pet getPet(@PathVariable String petId) {
/] ...
}

@ Using a produces attribute to narrow the mapping by the content type.

36

web-reactive.pdf#webflux-ann-requestmapping-consumes
web-reactive.pdf#webflux-ann-requestmapping-produces

Kotlin

@GetMapping("/pets/{petId}", produces = ["application/json"]) @®
@ResponseBody
fun getPet(@PathVariable petId: String): Pet {
/] ...
}

@ Using a produces attribute to narrow the mapping by the content type.

The media type can specify a character set. Negated expressions are supported —for example,
I'text/plain means any content type other than "text/plain”.

You can declare a shared produces attribute at the class level. Unlike most other request-mapping
attributes, however, when used at the class level, a method-level produces attribute overrides rather
than extends the class-level declaration.

(r) MediaType provides constants for commonly used media types, such as
- APPLICATION_JSON_VALUE and APPLICATION_XML_VALUE.

Parameters, headers

WebFlux

You can narrow request mappings based on request parameter conditions. You can test for the
presence of a request parameter (myParam), for the absence of one (!myParam), or for a specific value
(myParam=myValue). The following example shows how to test for a specific value:

Java

@GetMapping(path = "/pets/{petId}", params = "myParam=myValue") ®
public void findPet(@PathVariable String petld) {

/] ...
¥

@ Testing whether myParam equals myValue.

Kotlin

@GetMapping("/pets/{petId}", params = ["myParam=myValue"]) @®
fun findPet(@PathVariable petId: String) {

/...
}

@ Testing whether myParam equals myValue.

You can also use the same with request header conditions, as the following example shows:

37

web-reactive.pdf#webflux-ann-requestmapping-params-and-headers

Java

@GetMapping(path = "/pets/{petId}", headers = "myHeader=myValue") @
public void findPet(@PathVariable String petId) {

/] ...
}

@ Testing whether myHeader equals myValue.

Kotlin

@GetMapping("/pets/{petId}", headers = ["myHeader=myValue"]) @
fun findPet(@PathVariable petld: String) {

/] ...
}
@ You can match Content-Type and Accept with the headers condition, but it is better
- to use consumes and produces instead.

HTTP HEAD, OPTIONS

WebFlux

@GetMapping (and @RequestMapping(method=HttpMethod.GET)) support HTTP HEAD transparently for
request mapping. Controller methods do not need to change. A response wrapper, applied in
javax.servlet.http.HttpServlet, ensures a Content-Length header is set to the number of bytes
written (without actually writing to the response).

@GetMapping (and @RequestMapping(method=HttpMethod.GET)) are implicitly mapped to and support
HTTP HEAD. An HTTP HEAD request is processed as if it were HTTP GET except that, instead of
writing the body, the number of bytes are counted and the Content-Length header is set.

By default, HTTP OPTIONS is handled by setting the Allow response header to the list of HTTP
methods listed in all @RequestMapping methods that have matching URL patterns.

For a @RequestMapping without HTTP method declarations, the Allow header is set to
GET,HEAD,POST,PUT, PATCH,DELETE,OPTIONS. Controller methods should always declare the supported
HTTP methods (for example, by using the HTTP method specific variants: @GetMapping, @PostMapping,
and others).

You can explicitly map the @RequestMapping method to HTTP HEAD and HTTP OPTIONS, but that is
not necessary in the common case.

Custom Annotations
WebFlux

Spring MVC supports the use of composed annotations for request mapping. Those are annotations
that are themselves meta-annotated with @RequestMapping and composed to redeclare a subset (or
all) of the @RequestMapping attributes with a narrower, more specific purpose.

38

web-reactive.pdf#webflux-ann-requestmapping-head-options
web-reactive.pdf#mvc-ann-requestmapping-head-options
core.pdf#beans-meta-annotations

@GetMapping, @PostMapping, @PutMapping, @DeleteMapping, and @PatchMapping are examples of composed
annotations. They are provided because, arguably, most controller methods should be mapped to a
specific HTTP method versus using @RequestMapping, which, by default, matches to all HTTP
methods. If you need an example of composed annotations, look at how those are declared.

Spring MVC also supports custom request-mapping attributes with custom request-matching logic.
This is a more advanced option that requires subclassing RequestMappingHandlerMapping and
overriding the getCustomMethodCondition method, where you can check the custom attribute and
return your own RequestCondition.

Explicit Registrations

WebFlux

You can programmatically register handler methods, which you can use for dynamic registrations
or for advanced cases, such as different instances of the same handler under different URLs. The
following example registers a handler method:

Java

@Configuration
public class MyConfig {

@Autowired
public void setHandlerMapping(RequestMappingHandlerMapping mapping, UserHandler
handler) @
throws NoSuchMethodException {

RequestMappingInfo info = RequestMappingInfo
.paths("/user/{id}").methods(RequestMethod.GET).build(); @

Method method = UserHandler.class.getMethod("getUser", Long.class); ®

mapping.registerMapping(info, handler, method); @

@ Inject the target handler and the handler mapping for controllers.
@ Prepare the request mapping meta data.

® Get the handler method.

@ Add the registration.

39

web-reactive.pdf#webflux-ann-requestmapping-registration

Kotlin

@Configuration
class MyConfig {

@Autowired
fun setHandlerMapping(mapping: RequestMappingHandlerMapping, handler: UserHandler)

{®
val info =
RequestMappingInfo.paths("/user/{id}").methods(RequestMethod.GET).build() @
val method = UserHandler::class.java.getMethod("getUser", Long::class.java) ®
mapping.registerMapping(info, handler, method) @

@ Inject the target handler and the handler mapping for controllers.
@ Prepare the request mapping meta data.

® Get the handler method.

@ Add the registration.

1.3.3. Handler Methods

WebFlux

@RequestMapping handler methods have a flexible signature and can choose from a range of
supported controller method arguments and return values.

Method Arguments

WebFlux

The next table describes the supported controller method arguments. Reactive types are not
supported for any arguments.

JDK 8’s java.util.Optional is supported as a method argument in combination with annotations
that have a required attribute (for example, ORequestParam, @RequestHeader, and others) and is
equivalent to required=false.

Controller method argument Description

WebRequest, NativeWebRequest Generic access to request parameters and request and session
attributes, without direct use of the Servlet API.

javax.servlet.ServletRequest, Choose any specific request or response type — for example,
javax.servlet.ServletResponse SeryletRequest, HttpServletRequest, or Spring’s MultipartRequest,
MultipartHttpServletRequest.

40

web-reactive.pdf#webflux-ann-methods
web-reactive.pdf#webflux-ann-arguments

Controller method argument

javax.servlet.http.HttpSession

javax.servlet.http.PushBuilder

java.security.Principal

HttpMethod

java.util.Locale

java.util.TimeZone +
java.time.Zoneld

java.io.InputStream,
java.io.Reader

java.io.OutputStream,
java.io.Writer

@PathVariable
@MatrixVariable

@RequestParam

@RequestHeader

Description

Enforces the presence of a session. As a consequence, such an
argument is never null. Note that session access is not thread-
safe. Consider setting the RequestMappingHandlerAdapter instance’s
synchronizeOnSession flag to true if multiple requests are allowed
to concurrently access a session.

Servlet 4.0 push builder API for programmatic HTTP/2 resource
pushes. Note that, per the Servlet specification, the injected
PushBuilder instance can be null if the client does not support
that HTTP/2 feature.

Currently authenticated user — possibly a specific Principal
implementation class if known.

Note that this argument is not resolved eagerly, if it is annotated
in order to allow a custom resolver to resolve it before falling
back on default resolution via
HttpServletRequest#getUserPrincipal. For example, the Spring
Security Authentication implements Principal and would be
injected as such via HttpServletRequest#igetUserPrincipal, unless
it is also annotated with @AuthenticationPrincipal in which case
it is resolved by a custom Spring Security resolver through
Authentication#getPrincipal.

The HTTP method of the request.

The current request locale, determined by the most specific
LocaleResolver available (in effect, the configured LocaleResolver
or LocaleContextResolver).

The time zone associated with the current request, as determined
by a LocaleContextResolver.

For access to the raw request body as exposed by the Servlet API.

For access to the raw response body as exposed by the Servlet
APIL.

For access to URI template variables. See URI patterns.

For access to name-value pairs in URI path segments. See Matrix
Variables.

For access to the Servlet request parameters, including multipart
files. Parameter values are converted to the declared method
argument type. See @RequestParam as well as Multipart.

Note that use of @RequestParam is optional for simple parameter
values. See “Any other argument”, at the end of this table.

For access to request headers. Header values are converted to the
declared method argument type. See @RequestHeader.

41

Controller method argument

@CookieValue

@RequestBody

HttpEntity

@RequestPart

java.util.Map,

org.springframework.ui.Model,
org.springframework.ui.ModelMa

p
RedirectAttributes

@ModelAttribute

Errors, BindingResult

SessionStatus + class-level
@SessionAttributes

UriComponentsBuilder

@SessionAttribute

@RequestAttribute

42

Description

For access to cookies. Cookies values are converted to the
declared method argument type. See @CookieValue.

For access to the HTTP request body. Body content is converted to
the declared method argument type by using
HttpMessageConverter implementations. See @RequestBody.

For access to request headers and body. The body is converted
with an HttpMessageConverter. See HttpEntity.

For access to a part in a multipart/form-data request, converting
the part’s body with an HttpMessageConverter. See Multipart.

For access to the model that is used in HTML controllers and
exposed to templates as part of view rendering.

Specify attributes to use in case of a redirect (that is, to be
appended to the query string) and flash attributes to be stored
temporarily until the request after redirect. See Redirect
Attributes and Flash Attributes.

For access to an existing attribute in the model (instantiated if
not present) with data binding and validation applied. See
@ModelAttribute as well as Model and DataBinder.

Note that use of @ModelAttribute is optional (for example, to set
its attributes). See “Any other argument” at the end of this table.

For access to errors from validation and data binding for a
command object (that is, a @ModelAttribute argument) or errors
from the validation of a @RequestBody or @RequestPart arguments.
You must declare an Errors, or BindingResult argument
immediately after the validated method argument.

For marking form processing complete, which triggers cleanup of
session attributes declared through a class-level
@SessionAttributes annotation. See @SessionAttributes for more
details.

For preparing a URL relative to the current request’s host, port,
scheme, context path, and the literal part of the servlet mapping.
See URI Links.

For access to any session attribute, in contrast to model attributes
stored in the session as a result of a class-level @SessionAttributes
declaration. See @SessionAttribute for more details.

For access to request attributes. See @RequestAttribute for more
details.

Controller method argument Description

Any other argument

Return Values

WebFlux

If a method argument is not matched to any of the earlier values
in this table and it is a simple type (as determined by
BeanUtils#isSimpleProperty), it is resolved as a @RequestParam.
Otherwise, it is resolved as a @ModelAttribute.

The next table describes the supported controller method return values. Reactive types are

supported for all return values.

Controller method return
value

@ResponseBody

HttpEntity,

ResponseEntity

HttpHeaders

String

View

java.util.Map,
org.springframework.ui.Model

@ModelAttribute

ModelAndView object

Description

The return value is converted through HttpMessageConverter
implementations and written to the response. See @ResponseBody.

The return value that specifies the full response (including HTTP
headers and body) is to be converted through
HttpMessageConverter implementations and written to the
response. See ResponseEntity.

For returning a response with headers and no body.

A view name to be resolved with ViewResolver implementations
and used together with the implicit model — determined through
command objects and @ModelAttribute methods. The handler
method can also programmatically enrich the model by declaring
a Model argument (see Explicit Registrations).

A View instance to use for rendering together with the implicit
model — determined through command objects and
@ModelAttribute methods. The handler method can also
programmatically enrich the model by declaring a Model
argument (see Explicit Registrations).

Attributes to be added to the implicit model, with the view name
implicitly determined through a RequestToViewNameTranslator.

An attribute to be added to the model, with the view name
implicitly determined through a RequestToViewNameTranslator.

Note that @ModelAttribute is optional. See "Any other return
value" at the end of this table.

The view and model attributes to use and, optionally, a response
status.

43

https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web-reactive.pdf#webflux-ann-return-types

Controller method return Description

value

void A method with a void return type (or null return value) is
considered to have fully handled the response if it also has a
ServletResponse, an QutputStream argument, or an
@ResponseStatus annotation. The same is also true if the
controller has made a positive ETag or lastModified timestamp
check (see Controllers for details).
If none of the above is true, a void return type can also indicate
“no response body” for REST controllers or a default view name
selection for HTML controllers.

DeferredResult<V> Produce any of the preceding return values asynchronously from
any thread — for example, as a result of some event or callback.
See Asynchronous Requests and DeferredResult.

Callable<V> Produce any of the above return values asynchronously in a
Spring MVC-managed thread. See Asynchronous Requests and
Callable.

ListenableFuture<V>, Alternative to DeferredResult, as a convenience (for example,

java.util.concurrent.Completio when an underlying service returns one of those).

nStage<V>,

java.util.concurrent.Completab

leFuture<V>

ResponseBodyEmitter, SseEmitter Emit a stream of objects asynchronously to be written to the
response with HttpMessageConverter implementations. Also
supported as the body of a ResponseEntity. See Asynchronous
Requests and HTTP Streaming.

StreamingResponseBody Write to the response OutputStream asynchronously. Also
supported as the body of a ResponseEntity. See Asynchronous
Requests and HTTP Streaming.

Reactor and other reactive A single value type, e.g. Mono, is comparable to returning

types registered via DeferredResult. A multi-value type, e.g. Flux, may be treated as a

ReactiveAdapterRegistry stream depending on the requested media type, e.g. "text/event-
stream", "application/json+stream”, or otherwise is collected to a

List and rendered as a single value. See Asynchronous Requests
and Reactive Types.

Other return values If a return value remains unresolved in any other way, it is
treated as a model attribute, unless it is a simple type as
determined by BeanUtils#isSimpleProperty, in which case it
remains unresolved.

Type Conversion

WebFlux

44

https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web-reactive.pdf#webflux-ann-typeconversion

Some annotated controller method arguments that represent String-based request input (such as
@RequestParam, @RequestHeader, @PathVariable, @MatrixVariable, and @CookieValue) can require type
conversion if the argument is declared as something other than String.

For such cases, type conversion is automatically applied based on the configured converters. By
default, simple types (int, long, Date, and others) are supported. You can customize type conversion
through a WebDataBinder (see DataBinder) or by registering Formatters with the
FormattingConversionService. See Spring Field Formatting.

A practical issue in type conversion is the treatment of an empty String source value. Such a value
is treated as missing if it becomes null as a result of type conversion. This can be the case for Long,
UUID, and other target types. If you want to allow null to be injected, either use the required flag on
the argument annotation, or declare the argument as @Nullable.

As of 5.3, non-null arguments will be enforced even after type conversion. If your

handler method intends to accept a null value as well, either declare your

argument as @Nullable or mark it as required=false in the corresponding

@RequestParam, etc. annotation. This is a best practice and the recommended
o solution for regressions encountered in a 5.3 upgrade.

Alternatively, you may specifically handle e.g. the resulting
MissingPathVariableException in the case of a required @PathVariable. A null value
after conversion will be treated like an empty original value, so the corresponding
Missing---Exception variants will be thrown.

Matrix Variables

WebFlux

RFC 3986 discusses name-value pairs in path segments. In Spring MVC, we refer to those as “matrix
variables” based on an “old post” by Tim Berners-Lee, but they can be also be referred to as URI
path parameters.

Matrix variables can appear in any path segment, with each variable separated by a semicolon and
multiple values separated by comma (for example, /cars;color=red,green;year=2012). Multiple
values can also be specified through repeated variable names (for example,
color=red;color=green;color=blue).

If a URL is expected to contain matrix variables, the request mapping for a controller method must
use a URI variable to mask that variable content and ensure the request can be matched
successfully independent of matrix variable order and presence. The following example uses a
matrix variable:

45

core.pdf#format
web-reactive.pdf#webflux-ann-matrix-variables
https://tools.ietf.org/html/rfc3986#section-3.3
https://www.w3.org/DesignIssues/MatrixURIs.html

Java
// GET /pets/42;q=11;r=22

@GetMapping("/pets/{petld}")
public void findPet(@PathVariable String petId, @MatrixVariable int q) {

// petld == 42
/7 q==1

Kotlin
// GET /pets/42;q=11;r=22

@GetMapping("/pets/{petld}")
fun findPet(@PathVariable petId: String, @MatrixVariable q: Int) {

// petld == 42
/7 q==11

Given that all path segments may contain matrix variables, you may sometimes need to
disambiguate which path variable the matrix variable is expected to be in. The following example
shows how to do so:

Java
// GET /owners/42;q=11/pets/21;q=22
@GetMapping("/owners/{ownerId}/pets/{petId}")
public void findPet(
@MatrixVariable(name="q", pathVar="ownerId") int q1,
@MatrixVariable(name="q", pathVar="petId") int q2) {

/7 q1 == 11
// q2 == 22

46

Kotlin
// GET /owners/42;q=11/pets/21;q=22

@GetMapping("/owners/{ownerId}/pets/{petId}")

fun findPet(
@MatrixVariable(name = "q", pathVar = "ownerId") q1: Int,
@MatrixVariable(name = "q", pathVar = "petId") q2: Int) {

/7 q1 == 11
// q2 == 122

A matrix variable may be defined as optional and a default value specified, as the following
example shows:

Java
// GET /pets/42

@GetMapping("/pets/{petId}")
public void findPet(@MatrixVariable(required=false, defaultValue="1") int q) {

// q ==

Kotlin
// GET /pets/42

@GetMapping("/pets/{petId}")
fun findPet(@MatrixVariable(required = false, defaultValue = "1") q: Int) {

//q::

To get all matrix variables, you can use a MultiValueMap, as the following example shows:

47

Java
// GET /owners/42;q=11;r=12/pets/21;q=22;5=23

@GetMapping("/owners/{ownerId}/pets/{petId}")

public void findPet(
@MatrixVariable MultiValueMap<String, String> matrixVars,
@MatrixVariable(pathVar="petId") MultiValueMap<String, String> petMatrixVars)

{
// matrixVars: ["q" : [11,22], "r" : 12, "s" : 23]
// petMatrixVars: ["q" : 22, "s" : 23]
}
Kotlin

// GET /owners/42;q=11;r=12/pets/21;q=22;5=23

©GetMapping("/owners/{ownerId}/pets/{petId}")

fun findPet(
@MatrixVariable matrixVars: MultiValueMap<String, String>,
@MatrixVariable(pathVar="petId") petMatrixVars: MultiValueMap<String, String>)

// matrixVars: ["q" : [11,22], "r" : 12, "s" : 23]
// petMatrixVars: ["q" : 22, "s" : 23]

Note that you need to enable the use of matrix variables. In the MVC Java configuration, you need
to set a UrlPathHelper with removeSemicolonContent=false through Path Matching. In the MVC XML
namespace, you can set <mvc:annotation-driven enable-matrix-variables="true"/>.

@RequestParam

WebFlux

You can use the @RequestParam annotation to bind Servlet request parameters (that is, query
parameters or form data) to a method argument in a controller.

The following example shows how to do so:

48

web-reactive.pdf#webflux-ann-requestparam

Java

@Controller
@RequestMapping("/pets")
public class EditPetForm {

/] ...

@GetMapping

public String setupForm(@RequestParam("petId") int petId, Model model) { @
Pet pet = this.clinic.loadPet(petId);
model.addAttribute("pet", pet);
return "petForm";

I wo

@ Using @RequestParam to bind petId.

Kotlin
import org.springframework.ui.set

@Controller
@RequestMapping("/pets")
class EditPetForm {

/...

@GetMapping

fun setupForm(@RequestParam("petId") petId: Int, model: Model): String { @
val pet = this.clinic.loadPet(petId);
model["pet"] = pet
return "petForm"

I woo

@ Using @RequestParam to bind petId.

By default, method parameters that use this annotation are required, but you can specify that a
method parameter is optional by setting the @RequestParam annotation’s required flag to false or by
declaring the argument with an java.util.Optional wrapper.

Type conversion is automatically applied if the target method parameter type is not String. See
Type Conversion.

49

Declaring the argument type as an array or list allows for resolving multiple parameter values for
the same parameter name.

When an @RequestParam annotation is declared as a Map<String, String> or MultiValueMap<String,
String>, without a parameter name specified in the annotation, then the map is populated with the
request parameter values for each given parameter name.

Note that use of @RequestParam is optional (for example, to set its attributes). By default, any
argument that is a simple value type (as determined by BeanUtils#isSimpleProperty) and is not
resolved by any other argument resolver, is treated as if it were annotated with @RequestParam.

@RequestHeader

WebFlux

You can use the @RequestHeader annotation to bind a request header to a method argument in a
controller.

Consider the following request, with headers:

Host localhost:8080

Accept text/html,application/xhtml+xml,application/xml;q=0.9
Accept-Language fr,en-gb;q=0.7,en;q=0.3

Accept-Encoding gzip,deflate

Accept-Charset IS0-8859-1,utf-8;q=0.7,%*;q=0.7

Keep-Alive 300

The following example gets the value of the Accept-Encoding and Keep-Alive headers:

Java

@GetMapping("/demo")
public void handle(
@RequestHeader ("Accept-Encoding") String encoding, @
@RequestHeader ("Keep-Alive") long keepAlive) { @
//...

@ Get the value of the Accept-Encoding header.
@ Get the value of the Keep-Alive header.

Kotlin

@GetMapping("/demo")
fun handle(
@RequestHeader ("Accept-Encoding") encoding: String, @
@RequestHeader ("Keep-Alive") keepAlive: Long) { @
/...

50

https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web-reactive.pdf#webflux-ann-requestheader

@ Get the value of the Accept-Encoding header.

@ Get the value of the Keep-Alive header.

If the target method parameter type is not String, type conversion is automatically applied. See
Type Conversion.

When an @RequestHeader annotation is used on a Map<String, String>, MultiValueMap<String,
String>, or HttpHeaders argument, the map is populated with all header values.

Built-in support is available for converting a comma-separated string into an array
(r) or collection of strings or other types known to the type conversion system. For
- example, a method parameter annotated with @RequestHeader("Accept") can be of
type String but also String[] or List<String>.

@CookieValue
WebFlux

You can use the @CookieValue annotation to bind the value of an HTTP cookie to a method argument
in a controller.

Consider a request with the following cookie:
JSESSIONID=415A4AC178C59DACEOB2CICA727CDD84

The following example shows how to get the cookie value:

Java

@GetMapping("/demo")

public void handle(@CookieValue("JSESSIONID") String cookie) { @
//...

}

@ Get the value of the JSESSIONID cookie.

Kotlin

@GetMapping("/demo")

fun handle(@CookieValue("JSESSIONID") cookie: String) { @
//...

}

@ Get the value of the JSESSIONID cookie.

If the target method parameter type is not String, type conversion is applied automatically. See
Type Conversion.

31

web-reactive.pdf#webflux-ann-cookievalue

@ModelAttribute

WebFlux

You can use the @ModelAttribute annotation on a method argument to access an attribute from the
model or have it be instantiated if not present. The model attribute is also overlain with values
from HTTP Servlet request parameters whose names match to field names. This is referred to as
data binding, and it saves you from having to deal with parsing and converting individual query
parameters and form fields. The following example shows how to do so:

Java

@PostMapping("/owners/{ownerId}/pets/{petld}/edit")

public String processSubmit(@ModelAttribute Pet pet) {
// method logic...

}

Kotlin

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")

fun processSubmit(@ModelAttribute pet: Pet): String {
// method logic...

}

The Pet instance above is sourced in one of the following ways:

* Retrieved from the model where it may have been added by a @ModelAttribute method.

e Retrieved from the HTTP session if the model attribute was listed in the class-level
@SessionAttributes annotation.

* Obtained through a Converter where the model attribute name matches the name of a request
value such as a path variable or a request parameter (see next example).

* Instantiated using its default constructor.

* Instantiated through a “primary constructor” with arguments that match to Servlet request
parameters. Argument names are determined through JavaBeans @ConstructorProperties or
through runtime-retained parameter names in the bytecode.

One alternative to using a @ModelAttribute method to supply it or relying on the framework to
create the model attribute, is to have a Converter<String, T> to provide the instance. This is applied
when the model attribute name matches to the name of a request value such as a path variable or a
request parameter, and there is a Converter from String to the model attribute type. In the
following example, the model attribute name is account which matches the URI path variable
account, and there is a registered Converter<String, Account> which could load the Account from a
data store:

32

web-reactive.pdf#webflux-ann-modelattrib-method-args

Java

@PutMapping("/accounts/{account}")
public String save(@ModelAttribute("account") Account account) {
/] ...

}

Kotlin

@PutMapping("/accounts/{account}")

fun save(@ModelAttribute("account") account: Account): String {
/] ...

}

After the model attribute instance is obtained, data binding is applied. The WebDataBinder class
matches Servlet request parameter names (query parameters and form fields) to field names on the
target Object. Matching fields are populated after type conversion is applied, where necessary. For
more on data binding (and validation), see Validation. For more on customizing data binding, see
DataBinder.

Data binding can result in errors. By default, a BindException is raised. However, to check for such
errors in the controller method, you can add a BindingResult argument immediately next to the
@ModelAttribute, as the following example shows:

Java

@PostMapping("/owners/{ownerId}/pets/{petld}/edit")
public String processSubmit(@ModelAttribute("pet") Pet pet, BindingResult result) { @
if (result.hasErrors()) {
return "petForm";

}
/] ...

® Adding a BindingResult next to the @ModelAttribute.

Kotlin

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
fun processSubmit(@ModelAttribute("pet") pet: Pet, result: BindingResult): String { @
if (result.hasErrors()) {
return "petForm"

}
I woo

@ Adding a BindingResult next to the @ModelAttribute.

In some cases, you may want access to a model attribute without data binding. For such cases, you

33

core.pdf#validation

can inject the Model into the controller and access it directly or, alternatively, set
@ModelAttribute(binding=false), as the following example shows:

Java

@ModelAttribute
public AccountForm setUpForm() {
return new AccountForm();

}

@ModelAttribute
public Account findAccount(@PathVariable String accountId) {
return accountRepository.findOne(accountId);

}

@PostMapping("update")
public String update(@Valid AccountForm form, BindingResult result,
@ModelAttribute(binding=false) Account account) { @
/] ...

@ Setting @ModelAttribute(binding=false).

Kotlin

@ModelAttribute
fun setUpForm(): AccountForm {
return AccountForm()

}

@ModelAttribute
fun findAccount(@PathVariable accountId: String): Account {
return accountRepository.findOne(accountId)

}

@PostMapping("update")
fun update(@Valid form: AccountForm, result: BindingResult,
@ModelAttribute(binding = false) account: Account): String { @
/] ...

@ Setting @ModelAttribute(binding=false).

You can automatically apply validation after data binding by adding the javax.validation.Valid
annotation or Spring’s @V/alidated annotation (Bean Validation and Spring validation). The following
example shows how to do so:

54

core.pdf#validation-beanvalidation
core.pdf#validation

Java

@PostMapping("/owners/{ownerId}/pets/{petld}/edit")
public String processSubmit(@Valid @ModelAttribute("pet") Pet pet, BindingResult

result) { @
if (result.hasErrors()) {
return "petForm";

}
I woo

@ Validate the Pet instance.

Kotlin

@PostMapping("/owners/{ownerId}/pets/{petld}/edit")
fun processSubmit(@Valid @ModelAttribute("pet") pet: Pet, result: BindingResult):
String { @®
if (result.hasErrors()) {
return "petForm"

}
I wo

Note that using @ModelAttribute is optional (for example, to set its attributes). By default, any
argument that is not a simple value type (as determined by BeanUtils#isSimpleProperty) and is not
resolved by any other argument resolver is treated as if it were annotated with @ModelAttribute.

@SessionAttributes

WebFlux
@SessionAttributes is used to store model attributes in the HTTP Servlet session between requests.
It is a type-level annotation that declares the session attributes used by a specific controller. This

typically lists the names of model attributes or types of model attributes that should be
transparently stored in the session for subsequent requests to access.

The following example uses the @SessionAttributes annotation:

Java

@Controller

@SessionAttributes("pet") @

public class EditPetForm {
/] ...

}

@ Using the @SessionAttributes annotation.

55

https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web-reactive.pdf#webflux-ann-sessionattributes

Kotlin

@Controller
@SessionAttributes("pet") @
class EditPetForm {

/] ...
}

@ Using the @SessionAttributes annotation.

On the first request, when a model attribute with the name, pet, is added to the model, it is
automatically promoted to and saved in the HTTP Servlet session. It remains there until another
controller method uses a SessionStatus method argument to clear the storage, as the following
example shows:

Java

@Controller
@SessionAttributes("pet") @
public class EditPetForm {

/] ...

@PostMapping("/pets/{id}")
public String handle(Pet pet, BindingResult errors, SessionStatus status) {
if (errors.hasErrors) {
/] ...

}
status.setComplete(); @
/] ...

@ Storing the Pet value in the Servlet session.

@ Clearing the Pet value from the Servlet session.

36

Kotlin

@Controller
@SessionAttributes("pet") @
class EditPetForm {

/] ...

@PostMapping("/pets/{id}")
fun handle(pet: Pet, errors: BindingResult, status: SessionStatus): String {
if (errors.hasErrors()) {
/AT

}
status.setComplete() @

/] ...

@ Storing the Pet value in the Servlet session.

@ Clearing the Pet value from the Servlet session.

@SessionAttribute
WebFlux
If you need access to pre-existing session attributes that are managed globally (that is, outside the

controller —for example, by a filter) and may or may not be present, you can use the
@SessionAttribute annotation on a method parameter, as the following example shows:

Java

@RequestMapping("/")

public String handle(@SessionAttribute User user) { @
/] ...

}

@ Using a @SessionAttribute annotation.

Kotlin

@RequestMapping("/")

fun handle(@SessionAttribute user: User): String { @
/] ...

}

For use cases that require adding or removing session attributes, consider injecting
org.springframework.web.context.request.WebRequest or javax.servlet.http.HttpSession into the
controller method.

For temporary storage of model attributes in the session as part of a controller workflow, consider

57

web-reactive.pdf#webflux-ann-sessionattribute

using @SessionAttributes as described in @SessionAttributes.

@RequestAttribute

WebFlux

Similar to @SessionAttribute, you can use the @RequestAttribute annotations to access pre-existing
request attributes created earlier (for example, by a Servlet Filter or HandlerInterceptor):

Java

@GetMapping("/")

public String handle(@RequestAttribute Client client) { @
/] ...

}

@ Using the @RequestAttribute annotation.

Kotlin

@GetMapping("/")

fun handle(@RequestAttribute client: Client): String { @
/] ...

}

@ Using the @RequestAttribute annotation.

Redirect Attributes

By default, all model attributes are considered to be exposed as URI template variables in the
redirect URL. Of the remaining attributes, those that are primitive types or collections or arrays of
primitive types are automatically appended as query parameters.

Appending primitive type attributes as query parameters can be the desired result if a model
instance was prepared specifically for the redirect. However, in annotated controllers, the model
can contain additional attributes added for rendering purposes (for example, drop-down field
values). To avoid the possibility of having such attributes appear in the URL, a @RequestMapping
method can declare an argument of type RedirectAttributes and use it to specify the exact
attributes to make available to RedirectView. If the method does redirect, the content of
RedirectAttributes is used. Otherwise, the content of the model is used.

The RequestMappingHandlerAdapter provides a flag called ignoreDefaultModelOnRedirect, which you
can use to indicate that the content of the default Model should never be used if a controller method
redirects. Instead, the controller method should declare an attribute of type RedirectAttributes or,
if it does not do so, no attributes should be passed on to RedirectView. Both the MVC namespace and
the MVC Java configuration keep this flag set to false, to maintain backwards compatibility.
However, for new applications, we recommend setting it to true.

Note that URI template variables from the present request are automatically made available when
expanding a redirect URL, and you don’t need to explicitly add them through Model or
RedirectAttributes. The following example shows how to define a redirect:

38

web-reactive.pdf#webflux-ann-requestattrib

Java

@PostMapping("/files/{path}")
public String upload(...) {

/] ...

return "redirect:files/{path}";

Kotlin

@PostMapping("/files/{path}")
fun upload(...): String {
/] ...
return "redirect:files/{path}"

Another way of passing data to the redirect target is by using flash attributes. Unlike other redirect
attributes, flash attributes are saved in the HTTP session (and, hence, do not appear in the URL). See
Flash Attributes for more information.

Flash Attributes

Flash attributes provide a way for one request to store attributes that are intended for use in
another. This is most commonly needed when redirecting —for example, the Post-Redirect-Get
pattern. Flash attributes are saved temporarily before the redirect (typically in the session) to be
made available to the request after the redirect and are removed immediately.

Spring MVC has two main abstractions in support of flash attributes. FlashMap is used to hold flash
attributes, while FlashMapManager is used to store, retrieve, and manage FlashMap instances.

Flash attribute support is always “on” and does not need to be enabled explicitly. However, if not
used, it never causes HTTP session creation. On each request, there is an “input” FlashMap with
attributes passed from a previous request (if any) and an “output” FlashMap with attributes to save
for a subsequent request. Both FlashMap instances are accessible from anywhere in Spring MVC
through static methods in RequestContextUtils.

Annotated controllers typically do not need to work with FlashMap directly. Instead, a
@RequestMapping method can accept an argument of type RedirectAttributes and use it to add flash
attributes for a redirect scenario. Flash attributes added through RedirectAttributes are
automatically propagated to the “output” FlashMap. Similarly, after the redirect, attributes from the
“input” FlashMap are automatically added to the Model of the controller that serves the target URL.

39

Matching requests to flash attributes

The concept of flash attributes exists in many other web frameworks and has proven to
sometimes be exposed to concurrency issues. This is because, by definition, flash attributes
are to be stored until the next request. However the very “next” request may not be the
intended recipient but another asynchronous request (for example, polling or resource
requests), in which case the flash attributes are removed too early.

To reduce the possibility of such issues, RedirectView automatically “stamps” FlashMap
instances with the path and query parameters of the target redirect URL. In turn, the default
FlashMapManager matches that information to incoming requests when it looks up the “input”
FlashMap.

This does not entirely eliminate the possibility of a concurrency issue but reduces it greatly
with information that is already available in the redirect URL. Therefore, we recommend that
you use flash attributes mainly for redirect scenarios.

Multipart

WebFlux

After a MultipartResolver has been enabled, the content of POST requests with multipart/form-data
is parsed and accessible as regular request parameters. The following example accesses one regular
form field and one uploaded file:

Java

@Controller
public class FileUploadController {

@PostMapping("/form")
public String handleFormUpload(@RequestParam("name") String name,
@RequestParam("file") MultipartFile file) {

if (1file.isEmpty()) {
byte[] bytes = file.getBytes();
// store the bytes somewhere
return "redirect:uploadSuccess";

}

return "redirect:uploadFailure”;

60

web-reactive.pdf#webflux-multipart-forms

Kotlin

@Controller
class FileUploadController {

@PostMapping("/form")
fun handleFormUpload(@RequestParam("name") name: String,
©RequestParam("file") file: MultipartFile): String {

if (!file.isEmpty) {
val bytes = file.bytes
// store the bytes somewhere
return "redirect:uploadSuccess"

}

return "redirect:uploadFailure"

Declaring the argument type as a List<MultipartFile> allows for resolving multiple files for the
same parameter name.

When the @RequestParam annotation is declared as a Map<String, MultipartFile> or
MultiValueMap<String, MultipartFile>, without a parameter name specified in the annotation, then
the map is populated with the multipart files for each given parameter name.

o With Servlet 3.0 multipart parsing, you may also declare javax.servlet.http.Part
instead of Spring’s MultipartFile, as a method argument or collection value type.

You can also use multipart content as part of data binding to a command object. For example, the

form field and file from the preceding example could be fields on a form object, as the following
example shows:

61

Java
class MyForm {
private String name;
private MultipartFile file;

I woo
}

@Controller
public class FileUploadController {

@PostMapping("/form")
public String handleFormUpload(MyForm form, BindingResult errors) {
if (!form.getFile().isEmpty()) {
byte[] bytes = form.getFile().qgetBytes();
// store the bytes somewhere
return "redirect:uploadSuccess”;

}

return "redirect:uploadFailure”;

Kotlin
class MyForm(val name: String, val file: MultipartFile, ...)

@Controller
class FileUploadController {

@PostMapping("/form")
fun handleFormUpload(form: MyForm, errors: BindingResult): String {
if (!form.file.isEmpty) {
val bytes = form.file.bytes
// store the bytes somewhere
return "redirect:uploadSuccess”

}

return "redirect:uploadFailure"

Multipart requests can also be submitted from non-browser clients in a RESTful service scenario.
The following example shows a file with JSON:

62

POST /someUr1
Content-Type: multipart/mixed

--edt7Tfrdusa7r31NQc79vXuhIIM1atb7PQqg7Vp
Content-Disposition: form-data; name="meta-data"
Content-Type: application/json; charset=UTF-8
Content-Transfer-Encoding: 8bit

{

"name": "value"

}
--edt7Tfrdusa7r31NQc79vXuhIIM1atb7PQg7Vp
Content-Disposition: form-data; name="file-data"; filename="file.properties"
Content-Type: text/xml
Content-Transfer-Encoding: 8bit
. File Data ...

You can access the "meta-data" part with @RequestParam as a String but you’ll probably want it
deserialized from JSON (similar to @RequestBody). Use the @RequestPart annotation to access a
multipart after converting it with an HttpMessageConverter:

Java

@PostMapping("/")
public String handle(@RequestPart("meta-data") MetaData metadata,
@RequestPart("file-data") MultipartFile file) {
/] ...

Kotlin

@PostMapping("/")
fun handle(@RequestPart("meta-data") metadata: MetaData,
@RequestPart("file-data") file: MultipartFile): String {
/...

You can use @RequestPart in combination with javax.validation.Valid or use Spring’s @Validated
annotation, both of which cause Standard Bean Validation to be applied. By default, validation
errors cause a MethodArgumentNotValidException, which is turned into a 400 (BAD_REQUEST)
response. Alternatively, you can handle validation errors locally within the controller through an
Errors or BindingResult argument, as the following example shows:

63

integration.pdf#rest-message-conversion

Java

@PostMapping("/")
public String handle(@Valid @RequestPart("meta-data") MetaData metadata,
BindingResult result) {
/] ...

Kotlin

@PostMapping("/")
fun handle(@Valid @RequestPart("meta-data") metadata: MetaData,
result: BindingResult): String {
/] ...

@RequestBody

WebFlux

You can use the @RequestBody annotation to have the request body read and deserialized into an
Object through an HttpMessageConverter. The following example uses a @RequestBody argument:

Java

@PostMapping("/accounts")

public void handle(@RequestBody Account account) {
/] ...

}

Kotlin

@PostMapping("/accounts")

fun handle(@RequestBody account: Account) {
/...

¥

You can use the Message Converters option of the MVC Config to configure or customize message
conversion.

You can use @RequestBody in combination with javax.validation.Valid or Spring’s @Validated
annotation, both of which cause Standard Bean Validation to be applied. By default, validation
errors cause a MethodArgumentNotValidException, which is turned into a 400 (BAD_REQUEST)
response. Alternatively, you can handle validation errors locally within the controller through an
Errors or BindingResult argument, as the following example shows:

64

web-reactive.pdf#webflux-ann-requestbody
integration.pdf#rest-message-conversion

Java

@PostMapping("/accounts")
public void handle(@Valid @RequestBody Account account, BindingResult result) {
/] ...

}

Kotlin

@PostMapping("/accounts")
fun handle(@Valid @RequestBody account: Account, result: BindingResult) {
/] ...

}

HttpEntity
WebFlux

HttpEntity is more or less identical to using @RequestBody but is based on a container object that
exposes request headers and body. The following listing shows an example:

Java

@PostMapping("/accounts")

public void handle(HttpEntity<Account> entity) {
/...

¥

Kotlin

@PostMapping("/accounts")

fun handle(entity: HttpEntity<Account>) {
/...

}

@ResponseBody
WebFlux

You can use the @ResponseBody annotation on a method to have the return serialized to the response
body through an HttpMessageConverter. The following listing shows an example:

Java

@GetMapping("/accounts/{id}")
@ResponseBody
public Account handle() {
/] ...
}

65

web-reactive.pdf#webflux-ann-httpentity
web-reactive.pdf#webflux-ann-responsebody
integration.pdf#rest-message-conversion

Kotlin

@GetMapping("/accounts/{id}")
@ResponseBody
fun handle(): Account {
/] ...
+

@ResponseBody is also supported at the class level, in which case it is inherited by all controller
methods. This is the effect of @RestController, which is nothing more than a meta-annotation
marked with @Controller and @ResponseBody.

You can use @ResponseBody with reactive types. See Asynchronous Requests and Reactive Types for
more details.

You can use the Message Converters option of the MVC Config to configure or customize message
conversion.

You can combine @ResponseBody methods with JSON serialization views. See Jackson JSON for
details.

ResponseEntity

WebFlux
ResponseEntity is like @ResponseBody but with status and headers. For example:

Java

@GetMapping("/something")
public ResponseEntity<String> handle() {
String body = ... ;
String etag = ... ;
return ResponseEntity.ok().eTag(etag).body(body);

Kotlin

@GetMapping("/something")
fun handle(): ResponseEntity<String> {
val body = ...
val etag = ...
return ResponseEntity.ok().eTag(etag).build(body)

Spring MVC supports using a single value reactive type to produce the ResponseEntity
asynchronously, and/or single and multi-value reactive types for the body. This allows the following
types of async responses:

* ResponseEntity<Mono<T>> or ResponseEntity<Flux<T>> make the response status and headers

66

web-reactive.pdf#webflux-ann-responseentity

known immediately while the body is provided asynchronously at a later point. Use Mono if the
body consists of 0..1 values or Flux if it can produce multiple values.

* Mono<ResponseEntity<T>> provides all three—response status, headers, and body,
asynchronously at a later point. This allows the response status and headers to vary depending
on the outcome of asynchronous request handling.

Jackson JSON
Spring offers support for the Jackson JSON library.

JSON Views

WebFlux
Spring MVC provides built-in support for Jackson’s Serialization Views, which allow rendering only

a subset of all fields in an Object. To use it with @ResponseBody or ResponseEntity controller methods,

you can use Jackson’s @JsonView annotation to activate a serialization view class, as the following
example shows:

67

web-reactive.pdf#webflux-ann-jsonview
https://www.baeldung.com/jackson-json-view-annotation

Java

@RestController
public class UserController {

@GetMapping("/user")
@JsonView(User.WithoutPasswordView.class)
public User getUser() {
return new User("eric", "7!jd#h23");
}
}

public class User {

public interface WithoutPasswordView {};

public interface WithPasswordView extends WithoutPasswordView {};

private String username;
private String password;

public User() {
}

public User(String username, String password) {
this.username = username;
this.password = password;

}

@JsonView(WithoutPasswordView.class)
public String getUsername() {
return this.username;

}

@JsonView(WithPasswordView.class)
public String getPassword() {
return this.password;

}

68

Kotlin

@RestController
class UserController {

@GetMapping("/user")
@JsonView(User.WithoutPasswordView: :class)
fun getUser() = User("eric", "7!jd#h23")

}

class User(
@JsonView(WithoutPasswordView::class) val username: String,
@JsonView(WithPasswordView::class) val password: String) {

interface WithoutPasswordView
interface WithPasswordView : WithoutPasswordView

@JsonView allows an array of view classes, but you can specify only one per
controller method. If you need to activate multiple views, you can use a composite
interface.

If you want to do the above programmatically, instead of declaring an @JsonView annotation, wrap
the return value with MappingJacksonValue and use it to supply the serialization view:

Java

@RestController
public class UserController {

@GetMapping("/user")

public MappinglacksonValue getUser() {
User user = new User("eric", "7!jd#h23");
MappingJacksonValue value = new MappingJacksonValue(user);
value.setSerializationView(User.WithoutPasswordView.class);
return value;

69

Kotlin

@RestController
class UserController {

@GetMapping("/user")

fun getUser(): MappingJlacksonValue {
val value = MappingJacksonValue(User("eric", "7!jd#h23"))
value.serializationView = User.WithoutPasswordView::class.java
return value

For controllers that rely on view resolution, you can add the serialization view class to the model,
as the following example shows:

Java

@Controller
public class UserController extends AbstractController {

@GetMapping("/user")

public String getUser(Model model) {
model.addAttribute("user", new User("eric", "7!jd#h23"));
model.addAttribute(JsonView.class.getName(), User.WithoutPasswordView.class);
return "userView";

Kotlin
import org.springframework.ui.set

@Controller
class UserController : AbstractController() {

@GetMapping("/user")

fun getUser(model: Model): String {
model["user"] = User("eric", "7!jd#h23")
model[JsonView::class.qualifiedName] = User.WithoutPasswordView::class.java
return "userView"

1.3.4. Model

WebFlux

You can use the @ModelAttribute annotation:

70

web-reactive.pdf#webflux-ann-modelattrib-methods

* On a method argument in @RequestMapping methods to create or access an Object from the model
and to bind it to the request through a WebDataBinder.

* As a method-level annotation in @Controller or @ControllerAdvice classes that help to initialize
the model prior to any @RequestMapping method invocation.

* On a @RequestMapping method to mark its return value is a model attribute.

This section discusses @ModelAttribute methods — the second item in the preceding list. A controller
can have any number of @ModelAttribute methods. All such methods are invoked before
@RequestMapping methods in the same controller. A @ModelAttribute method can also be shared
across controllers through @ControllerAdvice. See the section on Controller Advice for more details.

@ModelAttribute methods have flexible method signatures. They support many of the same
arguments as @RequestMapping methods, except for @ModelAttribute itself or anything related to the
request body.

The following example shows a @ModelAttribute method:

Java

@ModelAttribute

public void populateModel(@RequestParam String number, Model model) {
model.addAttribute(accountRepository.findAccount(number));
// add more ...

Kotlin

@ModelAttribute

fun populateModel(@RequestParam number: String, model: Model) {
model.addAttribute(accountRepository.findAccount(number))
// add more ...

The following example adds only one attribute:

Java

@ModelAttribute
public Account addAccount(@RequestParam String number) {
return accountRepository.findAccount(number);

}

71

Kotlin

@ModelAttribute

fun addAccount(@RequestParam number: String): Account {
return accountRepository.findAccount(number)

}

When a name is not explicitly specified, a default name is chosen based on the

o Object type, as explained in the javadoc for Conventions. You can always assign an
explicit name by using the overloaded addAttribute method or through the name
attribute on @ModelAttribute (for a return value).

You can also use @ModelAttribute as a method-level annotation on @RequestMapping methods, in
which case the return value of the @RequestMapping method is interpreted as a model attribute. This
is typically not required, as it is the default behavior in HTML controllers, unless the return value is
a String that would otherwise be interpreted as a view name. @ModelAttribute can also customize
the model attribute name, as the following example shows:

Java

@GetMapping("/accounts/{id}")
@ModelAttribute("myAccount")
public Account handle() {

/] ...

return account;

Kotlin

@GetMapping("/accounts/{id}")
@ModelAttribute("myAccount")
fun handle(): Account {

/] ...

return account

1.3.5. DataBinder

WebFlux

@Controller or @ControllerAdvice classes can have @InitBinder methods that initialize instances of
WebDataBinder, and those, in turn, can:

* Bind request parameters (that is, form or query data) to a model object.

* Convert String-based request values (such as request parameters, path variables, headers,
cookies, and others) to the target type of controller method arguments.

* Format model object values as String values when rendering HTML forms.

72

https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/core/Conventions.html
web-reactive.pdf#webflux-ann-initbinder

@InitBinder methods can register controller-specific java.beans.PropertyEditor or Spring Converter
and Formatter components. In addition, you can use the MVC config to register Converter and
Formatter types in a globally shared FormattingConversionService.

@InitBinder methods support many of the same arguments that @RequestMapping methods do, except
for @ModelAttribute (command object) arguments. Typically, they are declared with a WebDataBinder
argument (for registrations) and a void return value. The following listing shows an example:

Java

@Controller
public class FormController {

@InitBinder @M
public void initBinder(WebDataBinder binder) {
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
dateFormat.setlenient(false);
binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat,
false));
Iy

/] ...

@ Defining an @InitBinder method.

Kotlin

@Controller
class FormController {

@InitBinder @M
fun initBinder(binder: WebDataBinder) {
val dateFormat = SimpleDateFormat("yyyy-MM-dd")
dateFormat.islLenient = false
binder.registerCustomEditor(Date::class.java, CustomDateEditor(dateFormat,
false))

/] ...

@ Defining an @InitBinder method.

Alternatively, when you use a Formatter-based setup through a shared FormattingConversionService,
you can re-use the same approach and register controller-specific Formatter implementations, as
the following example shows:

73

Java

@Controller
public class FormController {

@InitBinder @
protected void initBinder (WebDataBinder binder) {
binder.addCustomFormatter (new DateFormatter("yyyy-MM-dd"));

}

/] ...

® Defining an @InitBinder method on a custom formatter.

Kotlin

@Controller
class FormController {

@InitBinder @

protected fun initBinder(binder: WebDataBinder) {
binder.addCustomFormatter(DateFormatter("yyyy-MM-dd"))

}

/] ...

@ Defining an @InitBinder method on a custom formatter.

Model Design

WebFlux

In the context of web applications, data binding involves the binding of HTTP request parameters
(that is, form data or query parameters) to properties in a model object and its nested objects.

Only public properties following the JavaBeans naming conventions are exposed for data binding
— for example, public String getFirstName() and public void setFirstName(String) methods for a
firstName property.

(r) The model object, and its nested object graph, is also sometimes referred to as a
- command object, form-backing object, or POJO (Plain Old Java Object).

By default, Spring permits binding to all public properties in the model object graph. This means
you need to carefully consider what public properties the model has, since a client could target any
public property path, even some that are not expected to be targeted for a given use case.

For example, given an HTTP form data endpoint, a malicious client could supply values for
properties that exist in the model object graph but are not part of the HTML form presented in the

74

web-reactive.pdf#webflux-ann-initbinder-model-design
https://www.oracle.com/java/technologies/javase/javabeans-spec.html

browser. This could lead to data being set on the model object and any of its nested objects, that is
not expected to be updated.

The recommended approach is to use a dedicated model object that exposes only properties that are
relevant for the form submission. For example, on a form for changing a user’s email address, the
model object should declare a minimum set of properties such as in the following ChangeEmailForm.

public class ChangeEmailForm {

private String oldEmailAddress;
private String newEmailAddress;

public void setOldEmailAddress(String oldEmailAddress) {
this.oldEmailAddress = oldEmailAddress;
}

public String getOldEmailAddress() {
return this.oldEmailAddress;

}

public void setNewEmailAddress(String newEmailAddress) {
this.newEmailAddress = newEmailAddress;

}

public String getNewEmailAddress() {
return this.newEmailAddress;

}

If you cannot or do not want to use a dedicated model object for each data binding use case, you
must limit the properties that are allowed for data binding. Ideally, you can achieve this by
registering allowed field patterns via the setAllowedFields() method on WebDataBinder.

For example, to register allowed field patterns in your application, you can implement an
@InitBinder method in a @Controller or @ControllerAdvice component as shown below:

@Controller
public class ChangeEmailController {

@InitBinder
void initBinder(WebDataBinder binder) {

binder.setAllowedFields("oldEmailAddress", "newEmailAddress");
}

// @RequestMapping methods, etc.

75

In addition to registering allowed patterns, it is also possible to register disallowed field patterns via
the setDisallowedFields() method in DataBinder and its subclasses. Please note, however, that an
"allow list" is safer than a "deny list". Consequently, setAllowedFields() should be favored over
setDisallowedFields().

Note that matching against allowed field patterns is case-sensitive; whereas, matching against
disallowed field patterns is case-insensitive. In addition, a field matching a disallowed pattern will
not be accepted even if it also happens to match a pattern in the allowed list.

It is extremely important to properly configure allowed and disallowed field
patterns when exposing your domain model directly for data binding purposes.
g Otherwise, it is a big security risk.

Furthermore, it is strongly recommended that you do not use types from your
domain model such as JPA or Hibernate entities as the model object in data
binding scenarios.

1.3.6. Exceptions

WebFlux

@Controller and @ControllerAdvice classes can have @ExceptionHandler methods to handle
exceptions from controller methods, as the following example shows:

Java

@Controller
public class SimpleController {

/] ...
@ExceptionHandler
public ResponseEntity<String> handle(IOException ex) {

/e
}

Kotlin

@Controller
class SimpleController {

/] ...

@ExceptionHandler

fun handle(ex: IOException): ResponseEntity<String> {
/] ...

}

76

web-reactive.pdf#webflux-ann-controller-exceptions

The exception may match against a top-level exception being propagated (e.g. a direct I0Exception
being thrown) or against a nested cause within a wrapper exception (e.g. an I0Exception wrapped
inside an IllegalStateException). As of 5.3, this can match at arbitrary cause levels, whereas
previously only an immediate cause was considered.

For matching exception types, preferably declare the target exception as a method argument, as the
preceding example shows. When multiple exception methods match, a root exception match is
generally preferred to a cause exception match. More specifically, the ExceptionDepthComparator is
used to sort exceptions based on their depth from the thrown exception type.

Alternatively, the annotation declaration may narrow the exception types to match, as the following
example shows:

Java

@ExceptionHandler ({FileSystemException.class, RemoteException.class})
public ResponseEntity<String> handle(IOException ex) {

/] ...
+

Kotlin

@ExceptionHandler (FileSystemException::class, RemoteException::class)
fun handle(ex: IOException): ResponseEntity<String> {

/] ...
}

You can even use a list of specific exception types with a very generic argument signature, as the
following example shows:

Java

@ExceptionHandler ({FileSystemException.class, RemoteException.class})
public ResponseEntity<String> handle(Exception ex) {

/] ...
}

Kotlin

@ExceptionHandler (FileSystemException::class, RemoteException::class)
fun handle(ex: Exception): ResponseEntity<String> {

/...
}

77

The distinction between root and cause exception matching can be surprising.

In the IOException variant shown earlier, the method is typically called with the

actual FileSystemException or RemoteException instance as the argument, since both

of them extend from IOException. However, if any such matching exception is

propagated within a wrapper exception which is itself an I0Exception, the passed-
o in exception instance is that wrapper exception.

The behavior is even simpler in the handle(Exception) variant. This is always
invoked with the wrapper exception in a wrapping scenario, with the actually
matching exception to be found through ex.getCause() in that case. The passed-in
exception is the actual FileSystemException or RemoteException instance only when
these are thrown as top-level exceptions.

We generally recommend that you be as specific as possible in the argument signature, reducing
the potential for mismatches between root and cause exception types. Consider breaking a multi-
matching method into individual @ExceptionHandler methods, each matching a single specific
exception type through its signature.

In a multi-eControllerAdvice arrangement, we recommend declaring your primary root exception
mappings on a @ControllerAdvice prioritized with a corresponding order. While a root exception
match is preferred to a cause, this is defined among the methods of a given controller or
@ControllerAdvice class. This means a cause match on a higher-priority @ControllerAdvice bean is
preferred to any match (for example, root) on a lower-priority @ControllerAdvice bean.

Last but not least, an @ExceptionHandler method implementation can choose to back out of dealing
with a given exception instance by rethrowing it in its original form. This is useful in scenarios
where you are interested only in root-level matches or in matches within a specific context that
cannot be statically determined. A rethrown exception is propagated through the remaining
resolution chain, as though the given @ExceptionHandler method would not have matched in the
first place.

Support for @ExceptionHandler methods in Spring MVC is built on the DispatcherServlet level,
HandlerExceptionResolver mechanism.

Method Arguments

@ExceptionHandler methods support the following arguments:

Method argument Description

Exception type For access to the raised exception.

HandlerMethod For access to the controller method that raised the exception.
WebRequest, NativeWebRequest Generic access to request parameters and request and session

attributes without direct use of the Servlet API.

javax.servlet.ServletRequest, Choose any specific request or response type (for example,
javax.servlet.ServletResponse SeryletRequest or HttpServletRequest or Spring’s
MultipartRequest or MultipartHttpServletRequest).

78

Method argument

javax.servlet.http.HttpSession

java.security.Principal

HttpMethod

java.util.Locale

java.util.TimeZone,
java.time.Zoneld

java.io.OutputStream,
java.io.Writer

java.util.Map,

org.springframework.ui.Model,
org.springframework.ui.ModelMa

P
RedirectAttributes

@SessionAttribute

©RequestAttribute

Return Values

Description

Enforces the presence of a session. As a consequence, such an
argument is never null.

Note that session access is not thread-safe. Consider setting the
RequestMappingHandlerAdapter instance’s synchronizeOnSession
flag to true if multiple requests are allowed to access a session
concurrently.

Currently authenticated user — possibly a specific Principal
implementation class if known.

The HTTP method of the request.

The current request locale, determined by the most specific
LocaleResolver available —in effect, the configured
LocaleResolver or LocaleContextResolver.

The time zone associated with the current request, as determined
by a LocaleContextResolver.

For access to the raw response body, as exposed by the Servlet
API.

For access to the model for an error response. Always empty.

Specify attributes to use in case of a redirect — (that is to be
appended to the query string) and flash attributes to be stored
temporarily until the request after the redirect. See Redirect
Attributes and Flash Attributes.

For access to any session attribute, in contrast to model attributes
stored in the session as a result of a class-level @SessionAttributes
declaration. See @SessionAttribute for more details.

For access to request attributes. See @RequestAttribute for more
details.

@ExceptionHandler methods support the following return values:

Return value

@ResponseBody

HttpEntity,
ResponseEntity

Description

The return value is converted through HttpMessageConverter
instances and written to the response. See @ResponseBody.

The return value specifies that the full response (including the
HTTP headers and the body) be converted through
HttpMessageConverter instances and written to the response. See
ResponseEntity.

79

Return value Description

String A view name to be resolved with VienResolver implementations
and used together with the implicit model — determined through
command objects and @ModelAttribute methods. The handler
method can also programmatically enrich the model by declaring
a Model argument (described earlier).

View A View instance to use for rendering together with the implicit
model — determined through command objects and
@ModelAttribute methods. The handler method may also
programmatically enrich the model by declaring a Model
argument (descried earlier).

java.util.Map, Attributes to be added to the implicit model with the view name
org.springframework.ui.Model jmplicitly determined through a RequestToViewNameTranslator.

@ModelAttribute An attribute to be added to the model with the view name
implicitly determined through a RequestToViewNameTranslator.

Note that @ModelAttribute is optional. See “Any other return
value” at the end of this table.

Mode1AndView object The view and model attributes to use and, optionally, a response
status.
void A method with a void return type (or null return value) is

considered to have fully handled the response if it also has a
ServletResponse an QutputStream argument, or a @ResponseStatus
annotation. The same is also true if the controller has made a
positive ETag or lastModified timestamp check (see Controllers
for details).

If none of the above is true, a void return type can also indicate
“no response body” for REST controllers or default view name
selection for HTML controllers.

Any other return value If a return value is not matched to any of the above and is not a
simple type (as determined by BeanUtils#isSimpleProperty), by
default, it is treated as a model attribute to be added to the
model. If it is a simple type, it remains unresolved.

REST API exceptions

WebFlux

A common requirement for REST services is to include error details in the body of the response.
The Spring Framework does not automatically do this because the representation of error details in
the response body is application-specific. However, a @RestController may use @ExceptionHandler
methods with a ResponseEntity return value to set the status and the body of the response. Such
methods can also be declared in @ControllerAdvice classes to apply them globally.

80

https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web-reactive.pdf#webflux-ann-rest-exceptions

Applications that implement global exception handling with error details in the response body
should consider extending ResponseEntityExceptionHandler, which provides handling for exceptions
that Spring MVC raises and provides hooks to customize the response body. To make use of this,
create a subclass of ResponseEntityExceptionHandler, annotate it with @ControllerAdvice, override
the necessary methods, and declare it as a Spring bean.

1.3.7. Controller Advice

WebFlux

@ExceptionHandler, @InitBinder, and @ModelAttribute methods apply only to the @Controller class, or
class hierarchy, in which they are declared. If, instead, they are declared in an @ControllerAdvice or
@RestControllerAdvice class, then they apply to any controller. Moreover, as of 5.3,
@ExceptionHandler methods in @ControllerAdvice can be used to handle exceptions from any
@Controller or any other handler.

@ControllerAdvice is meta-annotated with @Component and therefore can be registered as a Spring
bean through component scanning. @ERestControllerAdvice is meta-annotated with
@ControllerAdvice and @ResponseBody, and that means @ExceptionHandler methods will have their
return value rendered via response body message conversion, rather than via HTML views.

On startup, RequestMappingHandlerMapping and ExceptionHandlerExceptionResolver detect controller
advice beans and apply them at runtime. Global @ExceptionHandler methods, from an
@ControllerAdvice, are applied after local ones, from the @Controller. By contrast, global
@ModelAttribute and @InitBinder methods are applied before local ones.

The @ControllerAdvice annotation has attributes that let you narrow the set of controllers and
handlers that they apply to. For example:

Java

// Target all Controllers annotated with @RestController
@ControllerAdvice(annotations = RestController.class)
public class ExampleAdvicel {}

// Target all Controllers within specific packages
@ControllerAdvice("org.example.controllers")
public class ExampleAdvice2 {}

// Target all Controllers assignable to specific classes
@ControllerAdvice(assignableTypes = {ControllerInterface.class,
AbstractController.class})

public class ExampleAdvice3 {}

81

https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/web/servlet/mvc/method/annotation/ResponseEntityExceptionHandler.html
web-reactive.pdf#webflux-ann-controller-advice
core.pdf#beans-java-instantiating-container-scan

Kotlin

// Target all Controllers annotated with @RestController
@ControllerAdvice(annotations = [RestController::class])
class ExampleAdvicel

// Target all Controllers within specific packages
@ControllerAdvice("org.example.controllers")
class ExampleAdvice2

// Target all Controllers assignable to specific classes
@ControllerAdvice(assignableTypes = [ControllerInterface::class,
AbstractController::class])

class ExampleAdvice3

The selectors in the preceding example are evaluated at runtime and may negatively impact
performance if used extensively. See the @ControllerAdvice javadoc for more details.

1.4. Functional Endpoints
WebFlux

Spring Web MVC includes WebMvec.fn, a lightweight functional programming model in which
functions are used to route and handle requests and contracts are designed for immutability. It is
an alternative to the annotation-based programming model but otherwise runs on the same
DispatcherServlet.

1.4.1. Overview

WebFlux

In WebMvec.fn, an HTTP request is handled with a HandlerFunction: a function that takes
ServerRequest and returns a ServerResponse. Both the request and the response object have
immutable contracts that offer JDK 8-friendly access to the HTTP request and response.
HandlerFunction is the equivalent of the body of a @RequestMapping method in the annotation-based
programming model.

Incoming requests are routed to a handler function with a RouterFunction: a function that takes
ServerRequest and returns an optional HandlerFunction (i.e. Optional<HandlerFunction>). When the
router function matches, a handler function is returned; otherwise an empty Optional.
RouterFunction is the equivalent of a @RequestMapping annotation, but with the major difference that
router functions provide not just data, but also behavior.

RouterFunctions.route() provides a router builder that facilitates the creation of routers, as the
following example shows:

82

https://docs.spring.io/spring-framework/docs/5.3.27/javadoc-api/org/springframework/web/bind/annotation/ControllerAdvice.html
web-reactive.pdf#webflux-fn
web-reactive.pdf#webflux-fn-overview

Java

import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.servlet.function.RequestPredicates.*;
import static org.springframework.web.servlet.function.RouterFunctions.route;

PersonRepository repository = ...
PersonHandler handler = new PersonHandler(repository);

RouterFunction<ServerResponse> route = route()
.GET("/person/{id}", accept(APPLICATION_JSON), handler::getPerson)
.GET("/person", accept(APPLICATION_JSON), handler::listPeople)
.POST("/person", handler::createPerson)
.build();

public class PersonHandler {
/] ...

public ServerResponse listPeople(ServerRequest request) {
/] ...
}

public ServerResponse createPerson(ServerRequest request) {
/] ...
}

public ServerResponse getPerson(ServerRequest request) {
/] ...
}

83

Kotlin
import org.springframework.web.servlet.function.router

val repository: PersonRepository = ...
val handler = PersonHandler(repository)

val route = router { @
accept(APPLICATION_JSON).nest {
GET("/person/{id}", handler::getPerson)
GET("/person", handler::listPeople)
}

POST("/person”, handler::createPerson)

class PersonHandler(private val repository: PersonRepository) {
/] ...

fun listPeople(request: ServerRequest): ServerResponse {
/] ...
}

fun createPerson(request: ServerRequest): ServerResponse {
/] ...
}

fun getPerson(request: ServerRequest): ServerResponse {
/] ...
}

@ Create router using the router DSL.

If you register the RouterFunction as a bean, for instance by exposing it in a @Configuration class, it
will be auto-detected by the servlet, as explained in Running a Server.

1.4.2. HandlerFunction

WebFlux

ServerRequest and ServerResponse are immutable interfaces that offer JDK 8-friendly access to the
HTTP request and response, including headers, body, method, and status code.

ServerRequest

ServerRequest provides access to the HTTP method, URI, headers, and query parameters, while
access to the body is provided through the body methods.

The following example extracts the request body to a String:

84

web-reactive.pdf#webflux-fn-handler-functions

Java

String string = request.body(String.class);

Kotlin

val string = request.body<String>()

The following example extracts the body to a List<Person>, where Person objects are decoded from a
serialized form, such as JSON or XML.:

Java

List<Person> people = request.body(new ParameterizedTypeReference<List<Person>>() {});

Kotlin

val people = request.body<Person>()

The following example shows how to access parameters:

Java

MultiValueMap<String, String> params = request.params();

Kotlin

val map = request.params()

ServerResponse

ServerResponse provides access to the HTTP response and, since it is immutable, you can use a build
method to create it. You can use the builder to set the response status, to add response headers, or
to provide a body. The following example creates a 200 (OK) response with JSON content:

Java

Person person = ...
ServerResponse.ok().contentType(MediaType.APPLICATION_JSON).body(person);

Kotlin

val person: Person = ...
ServerResponse.ok().contentType(MediaType.APPLICATION_JSON).body(person)

The following example shows how to build a 201 (CREATED) response with a Location header and

85

no body:

Java

URI location = ...
ServerResponse.created(location).build();

Kotlin

val location: URI = ...
ServerResponse.created(location).build()

You can also use an asynchronous result as the body, in the form of a CompletableFuture, Publisher,
or any other type supported by the ReactiveAdapterRegistry. For instance:

Java

Mono<Person> person = webClient.get().retrieve().bodyToMono(Person.class);
ServerResponse.ok().contentType(MediaType.APPLICATION_JSON).body(person);

Kotlin

val person = webClient.get().retrieve().awaitBody<Person>()
ServerResponse.ok().contentType(MediaType.APPLICATION_JSON).body(person)

If not just the body, but also the status or headers are based on an asynchronous type, you can use
the static async method on ServerResponse, which accepts CompletableFuture<ServerResponse>,
Publisher<ServerResponse>, or any other asynchronous type supported by the
ReactiveAdapterRegistry. For instance:

Java

Mono<ServerResponse> asyncResponse =
webClient.get().retrieve().bodyToMono(Person.class)

.map(p -> ServerResponse.ok().header("Name", p.name()).body(p));
ServerResponse.async(asyncResponse);

Server-Sent Events can be provided via the static sse method on ServerResponse. The builder
provided by that method allows you to send Strings, or other objects as JSON. For example:

86

https://www.w3.org/TR/eventsource/

Java

public RouterFunction<ServerResponse> sse() {
return route(GET("/sse"), request -> ServerResponse.sse(sseBuilder -> {
// Save the sseBuilder object somewhere..
1)
¥

// In some other thread, sending a String
sseBuilder.send("Hello world");

// Or an object, which will be transformed into JSON
Person person = ...
sseBuilder.send(person);

// Customize the event by using the other methods
sseBuilder.id("42")

.event("sse event")

.data(person);

// and done at some point
sseBuilder.complete();

Kotlin

fun sse(): RouterFunction<ServerResponse> = router {
GET("/sse") { request -> ServerResponse.sse { sseBuilder ->
// Save the sseBuilder object somewhere..
}
}

// In some other thread, sending a String
sseBuilder.send("Hello world")

// Or an object, which will be transformed into JSON
val person = ...
sseBuilder.send(person)

// Customize the event by using the other methods
sseBuilder.id("42")

.event("sse event")

.data(person)

// and done at some point
sseBuilder.complete()

Handler Classes

We can write a handler function as a lambda, as the following example shows:

Java

HandlerFunction<ServerResponse> helloWorld =
request -> ServerResponse.ok().body("Hello World");

Kotlin

val helloWorld: (ServerRequest) -> ServerResponse =
{ ServerResponse.ok().body("Hello World") }

That is convenient, but in an application we need multiple functions, and multiple inline lambda’s
can get messy. Therefore, it is useful to group related handler functions together into a handler
class, which has a similar role as @Controller in an annotation-based application. For example, the
following class exposes a reactive Person repository:

88

Java

import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.server.ServerResponse.ok;

public class PersonHandler {
private final PersonRepository repository;

public PersonHandler(PersonRepository repository) {
this.repository = repository;

}

public ServerResponse listPeople(ServerRequest request) { @
List<Person> people = repository.allPeople();
return ok().contentType(APPLICATION_JSON).body(people);
}

public ServerResponse createPerson(ServerRequest request) throws Exception { @
Person person = request.body(Person.class);
repository.savePerson(person);
return ok().build();

}

public ServerResponse getPerson(ServerRequest request) { ®
int personld = Integer.parselnt(request.pathVariable("id"));
Person person = repository.getPerson(personld);
if (person != null) {
return ok().contentType(APPLICATION_JSON).body(person);

}
else {

return ServerResponse.notFound().build();
}

@ listPeople is a handler function that returns all Person objects found in the repository as JSON.
@ createPerson is a handler function that stores a new Person contained in the request body.

® getPerson is a handler function that returns a single person, identified by the id path variable.
We retrieve that Person from the repository and create a JSON response, if it is found. If it is not
found, we return a 404 Not Found response.

89

Kotlin

class PersonHandler(private val repository: PersonRepository) {

fun listPeople(request: ServerRequest): ServerResponse { @
val people: List<Person> = repository.allPeople()
return ok().contentType(APPLICATION_JSON).body(people);

fun createPerson(request: ServerRequest): ServerResponse { @
val person = request.body<Person>()
repository.savePerson(person)
return ok().build()

}

fun getPerson(request: ServerRequest): ServerResponse { ®
val personld = request.pathVariable("id").toInt()
return repository.getPerson(personld)?.let {
ok().contentType(APPLICATION_JSON).body(it) }
?7: ServerResponse.notFound().build()

@ listPeople is a handler function that returns all Person objects found in the repository as JSON.
@ createPerson is a handler function that stores a new Person contained in the request body.

® getPerson is a handler function that returns a single person, identified by the id path variable.
We retrieve that Person from the repository and create a JSON response, if it is found. If it is not
found, we return a 404 Not Found response.

Validation

A functional endpoint can use Spring’s validation facilities to apply validation to the request body.
For example, given a custom Spring Validator implementation for a Person:

90

core.pdf#validation
core.pdf#validation

Java
public class PersonHandler {
private final Validator validator = new PersonValidator(); @®
/] ...

public ServerResponse createPerson(ServerRequest request) {
Person person = request.body(Person.class);
validate(person); @
repository.savePerson(person);
retu