Web on Reactive Stack

Version 5.3.7

Table of Contents

1. Spring WebFlux

1.1. Overview

1.1.1. Define “Reactive”
1.1.2. Reactive API

1.1.3. Programming Models

1.1.4. Applicability

1.1.5. Servers

1.1.6. Performance

1.1.7. Concurrency Model

1.2. Reactive Core

1.2.1. HttpHandler
1.2.2. WebHandler API
Special bean types
Form Data
Multipart Data
Forwarded Headers
1.2.3. Filters
CORS
1.2.4. Exceptions
1.2.5. Codecs
Jackson JSON
Form Data
Multipart
Limits
Streaming
DataBuffer
1.2.6. Logging
Log Id
Sensitive Data
Appenders
Custom codecs

1.3. DispatcherHandler

1.3.1. Special Bean Types
1.3.2. WebFlux Config
1.3.3. Processing

1.3.4. Result Handling
1.3.5. Exceptions

1.3.6. View Resolution

N o U gk Wy NN

N DN DN DN DN DN === === R R R R R R R R
N = = =B O O© W 00 0 N N9 09 o o0 o U U b b W W WD NN DN = O

Handling 22

RedireCting 23
Content Negotiation 23
1.4. Annotated Controllers. 23
140, ECoNtroLLer . oo 24
1.4.2. Request MapPing.o 25
URI Patterns o 26
Pattern COMPAriSOIo 29
Consumable Media TYPeS 29
Producible Media Types 30
Parameters and Headers. 30
HTTP HEAD, OPTIONS . . . e 31
Custom ANNOTAtIONSo 32
Explicit Registrations 32
1.4.3. Handler Methods 34
Method ArgUMENTS. o 34
Return Values. 36
Type CONVEISION 37
Matrix Variables 37
OReQUESTPAram . . . o 40
ORequestHEadEr o 42
COOKTEVALUE . . oo 43
@ModelAttribute 44
@SessionAttributes 47
@SessionAttribute 48
ORequestAtEribUte 49
Multipart CONtent 50
OReqUESTBOAY . . . oo 53
HEEpENt ity . o 54
ORESPONSEBOAY 55
RespONSeENt ity ..o 56
Jackson JSON . ..o 56
144 Model . oo 58
1.4.5. DataBinder . ..o oo 61
1.4.6. Managing EXCEePtionS. 63
REST API XCePLIONS.o 64
1.4.7. Controller AAVICE 64
1.5. Functional ENdpoints 65
151 OVEIVIEW . « ..o 65
1.5.2. HandlerFUuncCtion. 67

ServerRequest e 68

ServerResponse
Handler Classes
Validation
1.5.3. RouterFunction
Predicates
Routes
Nested Routes
1.5.4. Running a Server
1.5.5. Filtering Handler Functions
1.6. URI Links
1.6.1. UriComponents
1.6.2. UriBuilder
1.6.3. URI Encoding
1.7. CORS
1.7.1. Introduction
1.7.2. Processing
1.7.3. @CrossOrigin
1.7.4. Global Configuration
1.7.5. CORS WebFilter
1.8. Web Security
1.9. View Technologies
1.9.1. Thymeleaf
1.9.2. FreeMarker
View Configuration
FreeMarker Configuration
Form Handling
1.9.3. Script Views
Requirements
Script Templates
1.9.4. JSON and XML
1.10. HTTP Caching
1.10.1. CacheControl
1.10.2. Controllers
1.10.3. Static Resources
1.11. WebFlux Config
1.11.1. Enabling WebFlux Config
1.11.2. WebFlux config API
1.11.3. Conversion, formatting
1.11.4. Validation
1.11.5. Content Type Resolvers
1.11.6. HTTP message codecs

69
70
72
74
75
75
76
78
80
83
83
85
86
89
89
90
90
93
95
96
97
97
97
97
98
99
100
101
101
104
104
105
105
107
108
108
108
109
111
112
113

1.11.7. View Resolvers
1.11.8. Static Resources
1.11.9. Path Matching
1.11.10. WebSocketService
1.11.11. Advanced Configuration Mode
1.12. HTTP/2
2. WebClient
2.1. Configuration
2.1.1. MaxInMemorySize
2.1.2. Reactor Netty
Resources
Timeouts
2.1.3. Jetty
2.1.4. HttpComponents
2.2. retrieve()
2.3. Exchange
2.4. Request Body
2.4.1. Form Data
2.4.2. Multipart Data
2.5. Filters
2.6. Attributes
2.7. Context
2.8. Synchronous Use
2.9. Testing
3. WebSockets
3.1. Introduction to WebSocket
3.1.1. HTTP Versus WebSocket
3.1.2. When to Use WebSockets
3.2. WebSocket API
3.2.1. Server
3.2.2. WebSocketHandler
3.2.3. DataBuffer
3.2.4. Handshake
3.2.5. Server Configation
3.2.6. CORS
3.2.7. Client
4. Testing
5. RSocket
5.1. Overview
5.1.1. The Protocol

5.1.2. Java Implementation

114
117
119
120
121
122
123
123
124
125
125
127
129
130
131
133
134
136
137
138
141
142
143
144
145
145
146
146
146
147
149
153
153
154
155
155
156
157
157
157
158

5.1.3. Spring Support
5.2. RSocketRequester
5.2.1. Client Requester
Connection Setup
Strategies
Client Responders
Advanced
5.2.2. Server Requester
5.2.3. Requests
5.3. Annotated Responders
5.3.1. Server Responders
5.3.2. Client Responders
5.3.3. @MessageMapping
5.3.4. @ConnectMapping
5.4. MetadataExtractor

6. Reactive Libraries

159
159
159
160
160
161
163
163
164
166
166
168
168
170
170
173

This part of the documentation covers support for reactive-stack web
applications built on a Reactive Streams API to run on non-blocking servers,
such as Netty, Undertow, and Servlet 3.1+ containers. Individual chapters cover
the Spring WebFlux framework, the reactive WebClient, support for testing, and
reactive libraries. For Servlet-stack web applications, see Web on Servlet Stack.

https://www.reactive-streams.org/
webflux.pdf#webflux
web.pdf#spring-web

Chapter 1. Spring WebFlux

The original web framework included in the Spring Framework, Spring Web MVC, was purpose-
built for the Servlet API and Servlet containers. The reactive-stack web framework, Spring
WebFlux, was added later in version 5.0. It is fully non-blocking, supports Reactive Streams back
pressure, and runs on such servers as Netty, Undertow, and Servlet 3.1+ containers.

Both web frameworks mirror the names of their source modules ({spring-framework-main-
code}/spring-webmvc[spring-webmvc] and {spring-framework-main-code}/spring-webflux[spring-
webflux]) and co-exist side by side in the Spring Framework. Each module is optional. Applications
can use one or the other module or, in some cases, both — for example, Spring MVC controllers with
the reactive WebClient.

1.1. Overview

Why was Spring WebFlux created?

Part of the answer is the need for a non-blocking web stack to handle concurrency with a small
number of threads and scale with fewer hardware resources. Servlet 3.1 did provide an API for
non-blocking I/0. However, using it leads away from the rest of the Servlet API, where contracts are
synchronous (Filter, Servlet) or blocking (getParameter, getPart). This was the motivation for a new
common API to serve as a foundation across any non-blocking runtime. That is important because
of servers (such as Netty) that are well-established in the async, non-blocking space.

The other part of the answer is functional programming. Much as the addition of annotations in
Java 5 created opportunities (such as annotated REST controllers or unit tests), the addition of
lambda expressions in Java 8 created opportunities for functional APIs in Java. This is a boon for
non-blocking applications and continuation-style APIs (as popularized by CompletableFuture and
ReactiveX) that allow declarative composition of asynchronous logic. At the programming-model
level, Java 8 enabled Spring WebFlux to offer functional web endpoints alongside annotated
controllers.

1.1.1. Define “Reactive”
We touched on “non-blocking” and “functional” but what does reactive mean?

The term, “reactive,” refers to programming models that are built around reacting to
change —network components reacting to I/O events, UI controllers reacting to mouse events, and
others. In that sense, non-blocking is reactive, because, instead of being blocked, we are now in the
mode of reacting to notifications as operations complete or data becomes available.

There is also another important mechanism that we on the Spring team associate with “reactive”
and that is non-blocking back pressure. In synchronous, imperative code, blocking calls serve as a
natural form of back pressure that forces the caller to wait. In non-blocking code, it becomes
important to control the rate of events so that a fast producer does not overwhelm its destination.

Reactive Streams is a small spec (also adopted in Java 9) that defines the interaction between
asynchronous components with back pressure. For example a data repository (acting as Publisher)

https://www.reactive-streams.org/
http://reactivex.io/
https://github.com/reactive-streams/reactive-streams-jvm/blob/master/README.md#specification
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Flow.html
https://www.reactive-streams.org/reactive-streams-1.0.1-javadoc/org/reactivestreams/Publisher.html

can produce data that an HTTP server (acting as Subscriber) can then write to the response. The
main purpose of Reactive Streams is to let the subscriber control how quickly or how slowly the
publisher produces data.

Common question: what if a publisher cannot slow down?

o The purpose of Reactive Streams is only to establish the mechanism and a
boundary. If a publisher cannot slow down, it has to decide whether to buffer,
drop, or fail.

1.1.2. Reactive API

Reactive Streams plays an important role for interoperability. It is of interest to libraries and
infrastructure components but less useful as an application API, because it is too low-level.
Applications need a higher-level and richer, functional API to compose async logic — similar to the
Java 8 Stream API but not only for collections. This is the role that reactive libraries play.

Reactor is the reactive library of choice for Spring WebFlux. It provides the Mono and Flux API types
to work on data sequences of 0..1 (Mono) and 0..N (Flux) through a rich set of operators aligned with
the ReactiveX vocabulary of operators. Reactor is a Reactive Streams library and, therefore, all of its
operators support non-blocking back pressure. Reactor has a strong focus on server-side Java. It is
developed in close collaboration with Spring.

WebFlux requires Reactor as a core dependency but it is interoperable with other reactive libraries
via Reactive Streams. As a general rule, a WebFlux API accepts a plain Publisher as input, adapts it
to a Reactor type internally, uses that, and returns either a Flux or a Mono as output. So, you can pass
any Publisher as input and you can apply operations on the output, but you need to adapt the
output for use with another reactive library. Whenever feasible (for example, annotated
controllers), WebFlux adapts transparently to the use of RxJava or another reactive library. See
Reactive Libraries for more details.

In addition to Reactive APIs, WebFlux can also be used with Coroutines APIs in
Kotlin which provides a more imperative style of programming. The following
Kotlin code samples will be provided with Coroutines APISs.

1.1.3. Programming Models

The spring-web module contains the reactive foundation that underlies Spring WebFlux, including
HTTP abstractions, Reactive Streams adapters for supported servers, codecs, and a core WebHandler
API comparable to the Servlet API but with non-blocking contracts.

On that foundation, Spring WebFlux provides a choice of two programming models:

» Annotated Controllers: Consistent with Spring MVC and based on the same annotations from the
spring-web module. Both Spring MVC and WebFlux controllers support reactive (Reactor and
RxJava) return types, and, as a result, it is not easy to tell them apart. One notable difference is
that WebFlux also supports reactive @RequestBody arguments.

» Functional Endpoints: Lambda-based, lightweight, and functional programming model. You can
think of this as a small library or a set of utilities that an application can use to route and handle

https://www.reactive-streams.org/reactive-streams-1.0.1-javadoc/org/reactivestreams/Subscriber.html
https://github.com/reactor/reactor
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
http://reactivex.io/documentation/operators.html
languages.pdf#coroutines

requests. The big difference with annotated controllers is that the application is in charge of
request handling from start to finish versus declaring intent through annotations and being
called back.

1.1.4. Applicability
Spring MVC or WebFlux?

A natural question to ask but one that sets up an unsound dichotomy. Actually, both work together
to expand the range of available options. The two are designed for continuity and consistency with
each other, they are available side by side, and feedback from each side benefits both sides. The
following diagram shows how the two relate, what they have in common, and what each supports
uniquely:

Spring MVC Spring WebFlux

Imperative logic, @Controller Functional endpoints
simple to write
and debug Reactive clients Event loop
concurrency model
JDBC, JPA, Tomcat, Jetty,
blocking deps Undertow Netty

We suggest that you consider the following specific points:

* If you have a Spring MVC application that works fine, there is no need to change. Imperative
programming is the easiest way to write, understand, and debug code. You have maximum
choice of libraries, since, historically, most are blocking.

» If you are already shopping for a non-blocking web stack, Spring WebFlux offers the same
execution model benefits as others in this space and also provides a choice of servers (Netty,
Tomcat, Jetty, Undertow, and Servlet 3.1+ containers), a choice of programming models
(annotated controllers and functional web endpoints), and a choice of reactive libraries
(Reactor, RxJava, or other).

 If you are interested in a lightweight, functional web framework for use with Java 8 lambdas or
Kotlin, you can use the Spring WebFlux functional web endpoints. That can also be a good
choice for smaller applications or microservices with less complex requirements that can
benefit from greater transparency and control.

* In a microservice architecture, you can have a mix of applications with either Spring MVC or

Spring WebFlux controllers or with Spring WebFlux functional endpoints. Having support for
the same annotation-based programming model in both frameworks makes it easier to re-use
knowledge while also selecting the right tool for the right job.

* A simple way to evaluate an application is to check its dependencies. If you have blocking
persistence APIs (JPA, JDBC) or networking APIs to use, Spring MVC is the best choice for
common architectures at least. It is technically feasible with both Reactor and RxJava to
perform blocking calls on a separate thread but you would not be making the most of a non-
blocking web stack.

 If you have a Spring MVC application with calls to remote services, try the reactive WebClient.
You can return reactive types (Reactor, RxJava, or other) directly from Spring MVC controller
methods. The greater the latency per call or the interdependency among calls, the more
dramatic the benefits. Spring MVC controllers can call other reactive components too.

* If you have a large team, keep in mind the steep learning curve in the shift to non-blocking,
functional, and declarative programming. A practical way to start without a full switch is to use
the reactive WebClient. Beyond that, start small and measure the benefits. We expect that, for a
wide range of applications, the shift is unnecessary. If you are unsure what benefits to look for,
start by learning about how non-blocking I/O works (for example, concurrency on single-
threaded Node.js) and its effects.

1.1.5. Servers

Spring WebFlux is supported on Tomcat, Jetty, Servlet 3.1+ containers, as well as on non-Servlet
runtimes such as Netty and Undertow. All servers are adapted to a low-level, common API so that
higher-level programming models can be supported across servers.

Spring WebFlux does not have built-in support to start or stop a server. However, it is easy to
assemble an application from Spring configuration and WebFlux infrastructure and run it with a
few lines of code.

Spring Boot has a WebFlux starter that automates these steps. By default, the starter uses Netty, but
it is easy to switch to Tomcat, Jetty, or Undertow by changing your Maven or Gradle dependencies.
Spring Boot defaults to Netty, because it is more widely used in the asynchronous, non-blocking
space and lets a client and a server share resources.

Tomcat and Jetty can be used with both Spring MVC and WebFlux. Keep in mind, however, that the
way they are used is very different. Spring MVC relies on Servlet blocking I/O and lets applications
use the Servlet API directly if they need to. Spring WebFlux relies on Servlet 3.1 non-blocking I/O
and uses the Servlet API behind a low-level adapter. It is not exposed for direct use.

For Undertow, Spring WebFlux uses Undertow APIs directly without the Servlet API.

1.1.6. Performance

Performance has many characteristics and meanings. Reactive and non-blocking generally do not
make applications run faster. They can, in some cases, (for example, if using the WebClient to run
remote calls in parallel). On the whole, it requires more work to do things the non-blocking way
and that can slightly increase the required processing time.

The key expected benefit of reactive and non-blocking is the ability to scale with a small, fixed
number of threads and less memory. That makes applications more resilient under load, because
they scale in a more predictable way. In order to observe those benefits, however, you need to have
some latency (including a mix of slow and unpredictable network I/0). That is where the reactive
stack begins to show its strengths, and the differences can be dramatic.

1.1.7. Concurrency Model

Both Spring MVC and Spring WebFlux support annotated controllers, but there is a key difference
in the concurrency model and the default assumptions for blocking and threads.

In Spring MVC (and servlet applications in general), it is assumed that applications can block the
current thread, (for example, for remote calls). For this reason, servlet containers use a large thread
pool to absorb potential blocking during request handling.

In Spring WebFlux (and non-blocking servers in general), it is assumed that applications do not
block. Therefore, non-blocking servers use a small, fixed-size thread pool (event loop workers) to
handle requests.

“To scale” and “small number of threads” may sound contradictory but to never
@ block the current thread (and rely on callbacks instead) means that you do not
- need extra threads, as there are no blocking calls to absorb.

Invoking a Blocking API

What if you do need to use a blocking library? Both Reactor and RxJava provide the publishOn
operator to continue processing on a different thread. That means there is an easy escape hatch.
Keep in mind, however, that blocking APIs are not a good fit for this concurrency model.

Mutable State

In Reactor and RxJava, you declare logic through operators. At runtime, a reactive pipeline is
formed where data is processed sequentially, in distinct stages. A key benefit of this is that it frees
applications from having to protect mutable state because application code within that pipeline is
never invoked concurrently.

Threading Model

What threads should you expect to see on a server running with Spring WebFlux?

* On a “vanilla” Spring WebFlux server (for example, no data access nor other optional
dependencies), you can expect one thread for the server and several others for request
processing (typically as many as the number of CPU cores). Servlet containers, however, may
start with more threads (for example, 10 on Tomcat), in support of both servlet (blocking) I/O
and servlet 3.1 (non-blocking) I/O usage.

» The reactive WebClient operates in event loop style. So you can see a small, fixed number of
processing threads related to that (for example, reactor-http-nio- with the Reactor Netty
connector). However, if Reactor Netty is used for both client and server, the two share event
loop resources by default.

* Reactor and RxJava provide thread pool abstractions, called schedulers, to use with the
publishOn operator that is used to switch processing to a different thread pool. The schedulers

have names that suggest a specific concurrency strategy —for example, “parallel” (for CPU-
bound work with a limited number of threads) or “elastic” (for I/O-bound work with a large
number of threads). If you see such threads, it means some code is using a specific thread pool
Scheduler strategy.

» Data access libraries and other third party dependencies can also create and use threads of
their own.

Configuring

The Spring Framework does not provide support for starting and stopping servers. To configure the
threading model for a server, you need to use server-specific configuration APIs, or, if you use
Spring Boot, check the Spring Boot configuration options for each server. You can configure the
WebClient directly. For all other libraries, see their respective documentation.

1.2. Reactive Core

The spring-web module contains the following foundational support for reactive web applications:

» For server request processing there are two levels of support.

o HttpHandler: Basic contract for HTTP request handling with non-blocking I/O and Reactive
Streams back pressure, along with adapters for Reactor Netty, Undertow, Tomcat, Jetty, and
any Servlet 3.1+ container.

o WebHandler API: Slightly higher level, general-purpose web API for request handling, on top
of which concrete programming models such as annotated controllers and functional
endpoints are built.

 For the client side, there is a basic ClientHttpConnector contract to perform HTTP requests with
non-blocking I/0 and Reactive Streams back pressure, along with adapters for Reactor Netty,
reactive Jetty HttpClient and Apache HttpComponents. The higher level WebClient used in
applications builds on this basic contract.

 For client and server, codecs for serialization and deserialization of HTTP request and response
content.

1.2.1. HttpHandler

HttpHandler is a simple contract with a single method to handle a request and a response. It is
intentionally minimal, and its main and only purpose is to be a minimal abstraction over different
HTTP server APIs.

The following table describes the supported server APIs:

Server name Server API used Reactive Streams support
Netty Netty API Reactor Netty
Undertow Undertow API spring-web: Undertow to Reactive

Streams bridge

https://github.com/reactor/reactor-netty
https://github.com/jetty-project/jetty-reactive-httpclient
https://hc.apache.org/
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/http/server/reactive/HttpHandler.html
https://github.com/reactor/reactor-netty

Server name Server API used Reactive Streams support

Tomcat Servlet 3.1 non-blocking I/O; Tomcat spring-web: Servlet 3.1 non-blocking
API to read and write ByteBuffers vs I/O to Reactive Streams bridge
bytel]
Jetty Servlet 3.1 non-blocking I/0; Jetty API spring-web: Servlet 3.1 non-blocking
to write ByteBuffers vs byte[] I/O to Reactive Streams bridge
Servlet 3.1 Servlet 3.1 non-blocking I/O spring-web: Servlet 3.1 non-blocking
container I/0 to Reactive Streams bridge

The following table describes server dependencies (also see supported versions):

Server name Group id Artifact name

Reactor Netty io.projectreactor.netty reactor-netty

Undertow io.undertow undertow-core

Tomcat org.apache.tomcat.embed tomcat-embed-core
Jetty org.eclipse.jetty jetty-server, jetty-servlet

The code snippets below show using the HttpHandler adapters with each server API:
Reactor Netty

Java

HttpHandler handler = ...
ReactorHttpHandlerAdapter adapter = new ReactorHttpHandlerAdapter(handler);
HttpServer.create().host(host).port(port).handle(adapter).bind().block();

Kotlin

val handler: HttpHandler = ...
val adapter = ReactorHttpHandlerAdapter(handler)
HttpServer.create().host(host).port(port).handle(adapter).bind().block()

Undertow

Java

HttpHandler handler = ...

UndertowHttpHandlerAdapter adapter = new UndertowHttpHandlerAdapter(handler);
Undertow server = Undertow.builder().addHttpListener(port,

host).setHandler (adapter).build();

server.start();

https://github.com/spring-projects/spring-framework/wiki/What%27s-New-in-the-Spring-Framework

Kotlin

val handler: HttpHandler = ...

val adapter = UndertowHttpHandlerAdapter(handler)

val server = Undertow.builder().addHttpListener(port,
host).setHandler(adapter).build()

server.start()

Tomcat

Java

HttpHandler handler = ...
Servlet servlet = new TomcatHttpHandlerAdapter(handler);

Tomcat server = new Tomcat();

File base = new File(System.getProperty("java.io.tmpdir"));

Context rootContext = server.addContext("", base.getAbsolutePath());
Tomcat.addServlet(rootContext, "main", servlet);
rootContext.addServletMappingDecoded("/", "main");
server.setHost(host);

server.setPort(port);

server.start();

Kotlin

val handler: HttpHandler = ...
val servlet = TomcatHttpHandlerAdapter(handler)

val server = Tomcat()

val base = File(System.getProperty("java.io.tmpdir"))

val rootContext = server.addContext("", base.absolutePath)
Tomcat.addServlet(rootContext, "main", servlet)
rootContext.addServletMappingDecoded("/", "main")
server.host = host

server.setPort(port)

server.start()

Jetty

Java

HttpHandler handler = ...
Servlet servlet = new JettyHttpHandlerAdapter(handler);

Server server = new Server();

ServletContextHandler contextHandler = new ServletContextHandler(server, "");
contextHandler.addServlet(new ServletHolder(servlet), "/");
contextHandler.start();

ServerConnector connector = new ServerConnector(server);
connector.setHost(host);

connector.setPort(port);

server.addConnector(connector);

server.start();

Kotlin

val handler: HttpHandler = ...
val servlet = JettyHttpHandlerAdapter(handler)

val server = Server()

val contextHandler = ServletContextHandler(server, "")
contextHandler.addServlet(ServletHolder(servlet), "/")
contextHandler.start();

val connector = ServerConnector(server)
connector.host = host

connector.port = port
server.addConnector (connector)
server.start()

Servlet 3.1+ Container

To deploy as a WAR to any Servlet 3.1+ container, you can extend and include
AbstractReactiveWebInitializer in the WAR. That «class wraps an HttpHandler with
ServletHttpHandlerAdapter and registers that as a Servlet.

1.2.2. WebHandler API

The org.springframework.web.server package builds on the HttpHandler contract to provide a
general-purpose web API for processing requests through a chain of multiple WebExceptionHandler,
multiple WebFilter, and a single WebHandler component. The chain can be put together with
WebHttpHandlerBuilder by simply pointing to a Spring ApplicationContext where components are
auto-detected, and/or by registering components with the builder.

While HttpHandler has a simple goal to abstract the use of different HTTP servers, the WebHandler API
aims to provide a broader set of features commonly used in web applications such as:

10

https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/web/server/adapter/AbstractReactiveWebInitializer.html
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/web/server/WebExceptionHandler.html
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/web/server/WebFilter.html
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/web/server/WebHandler.html

e User session with attributes.

* Request attributes.

* Resolved Locale or Principal for the request.

» Access to parsed and cached form data.

e and more..

Special bean types

Abstractions for multipart data.

The table below lists the components that WebHttpHandlerBuilder can auto-detect in a Spring

ApplicationContext, or that can be registered directly with it:

Bean name

<any>

<any>

webHandler

webSessionManager

serverCodecConfigurer

localeContextResolver

forwardedHeaderTransfo
rmer

Bean type Count
WebExceptionHandler 0.N

WebFilter 0.N
WebHandler 1
WebSessionManager 0.1

ServerCodecConfigurer (.1

LocaleContextResolver 0.1

ForwardedHeaderTransfo (.1
rmer

Description

Provide handling for exceptions
from the chain of WebFilter
instances and the target WebHandler.
For more details, see Exceptions.

Apply interception style logic to
before and after the rest of the filter
chain and the target WebHandler. For
more details, see Filters.

The handler for the request.

The manager for WebSession
instances exposed through a
method on ServerWebExchange.
DefaultWebSessionManager by default.

For access to HttpMessageReader
instances for parsing form data and
multipart data that is then exposed
through methods on
ServerlWebExchange.
ServerCodecConfigurer.create() by
default.

The resolver for LocaleContext
exposed through a method on
ServerWebExchange.
AcceptHeaderLocaleContextResolver
by default.

For processing forwarded type
headers, either by extracting and
removing them or by removing
them only. Not used by default.

11

Form Data

ServerlWebExchange exposes the following method for accessing form data:

Java

Mono<MultiValueMap<String, String>> getFormData();

Kotlin

suspend fun getFormData(): MultiValueMap<String, String>

The DefaultServerWebExchange uses the configured HttpMessageReader to parse form data
(application/x-www-form-urlencoded) into a MultiValueMap. By default, FormHttpMessageReader is
configured for use by the ServerCodecConfigurer bean (see the Web Handler API).

Multipart Data

Web MVC
ServerlWlebExchange exposes the following method for accessing multipart data:

Java

Mono<MultiValueMap<String, Part>> getMultipartData();

Kotlin

suspend fun getMultipartData(): MultiValueMap<String, Part>

The DefaultServerWebExchange uses the configured HttpMessageReader<MultiValueMap<String, Part>>
to parse multipart/form-data content into a MultiValueMap. By default, this is the
DefaultPartHttpMessageReader, which does not have any third-party dependencies. Alternatively, the
SynchronossPartHttpMessageReader can be used, which is based on the Synchronoss NIO Multipart
library. Both are configured through the ServerCodecConfigurer bean (see the Web Handler API).

To parse multipart data in streaming fashion, you can use the Flux<Part> returned from an
HttpMessageReader<Part> instead. For example, in an annotated controller, use of @RequestPart
implies Map-like access to individual parts by name and, hence, requires parsing multipart data in
full. By contrast, you can use @RequestBody to decode the content to Flux<Part> without collecting to
a MultiValueMap.

Forwarded Headers
Web MVC

As a request goes through proxies (such as load balancers), the host, port, and scheme may change.
That makes it a challenge, from a client perspective, to create links that point to the correct host,
port, and scheme.

12

web.pdf#mvc-multipart
https://github.com/synchronoss/nio-multipart
web.pdf#filters-forwarded-headers

RFC 7239 defines the Forwarded HTTP header that proxies can use to provide information about the
original request. There are other non-standard headers, too, including X-Forwarded-Host, X-
Forwarded-Port, X-Forwarded-Proto, X-Forwarded-Ss1, and X-Forwarded-Prefix.

ForwardedHeaderTransformer is a component that modifies the host, port, and scheme of the request,
based on forwarded headers, and then removes those headers. If you declare it as a bean with the
name forwardedHeaderTransformer, it will be detected and used.

There are security considerations for forwarded headers, since an application cannot know if the
headers were added by a proxy, as intended, or by a malicious client. This is why a proxy at the
boundary of trust should be configured to remove untrusted forwarded traffic coming from the
outside. You can also configure the ForwardedHeaderTransformer with removeOnly=true, in which case
it removes but does not use the headers.

In 5.1 ForwardedHeaderFilter ~was deprecated and superceded by

o ForwardedHeaderTransformer so forwarded headers can be processed earlier, before
the exchange is created. If the filter is configured anyway, it is taken out of the list
of filters, and ForwardedHeaderTransformer is used instead.

1.2.3. Filters

Web MVC

In the WebHandler API, you can use a WebFilter to apply interception-style logic before and after the
rest of the processing chain of filters and the target WebHandler. When using the WebFlux Config,
registering a WebFilter is as simple as declaring it as a Spring bean and (optionally) expressing
precedence by using @0rder on the bean declaration or by implementing Ordered.

CORS
Web MVC

Spring WebFlux provides fine-grained support for CORS configuration through annotations on
controllers. However, when you use it with Spring Security, we advise relying on the built-in
CorsFilter, which must be ordered ahead of Spring Security’s chain of filters.

See the section on CORS and the webflux-cors.pdf for more details.

1.2.4. Exceptions

Web MVC

In the WebHandler API, you can use a WebExceptionHandler to handle exceptions from the chain of
WebFilter instances and the target WebHandler. When using the WebFlux Config, registering a
WebExceptionHandler is as simple as declaring it as a Spring bean and (optionally) expressing
precedence by using @0rder on the bean declaration or by implementing Ordered.

The following table describes the available WebExceptionHandler implementations:

13

https://tools.ietf.org/html/rfc7239
web.pdf#filters
web.pdf#filters-cors
webflux-cors.pdf#webflux-cors-webfilter
web.pdf#mvc-ann-customer-servlet-container-error-page

Exception Handler Description

ResponseStatusExceptionHandler Pprovides handling for exceptions of type ResponseStatusException
by setting the response to the HTTP status code of the exception.

WebFluxResponseStatusException Extension of ResponseStatusExceptionHandler that can also
Handler determine the HTTP status code of a @ResponseStatus annotation
on any exception.

This handler is declared in the WebFlux Config.

1.2.5. Codecs

Web MVC

The spring-web and spring-core modules provide support for serializing and deserializing byte
content to and from higher level objects through non-blocking I/O with Reactive Streams back
pressure. The following describes this support:

* Encoder and Decoder are low level contracts to encode and decode content independent of HTTP.

» HttpMessageReader and HttpMessageWriter are contracts to encode and decode HTTP message
content.

* An Encoder can be wrapped with EncoderHttpMessageliriter to adapt it for use in a web
application, while a Decoder can be wrapped with DecoderHttpMessageReader.

» DataBuffer abstracts different byte buffer representations (e.g. Netty ByteBuf,
java.nio.ByteBuffer, etc.) and is what all codecs work on. See Data Buffers and Codecs in the
"Spring Core" section for more on this topic.

The spring-core module provides byte[], ByteBuffer, DataBuffer, Resource, and String encoder and
decoder implementations. The spring-web module provides Jackson JSON, Jackson Smile, JAXB2,
Protocol Buffers and other encoders and decoders along with web-only HTTP message reader and
writer implementations for form data, multipart content, server-sent events, and others.

(lientCodecConfigurer and ServerCodecConfigurer are typically used to configure and customize the
codecs to use in an application. See the section on configuring HTTP message codecs.

Jackson JSON

JSON and binary JSON (Smile) are both supported when the Jackson library is present.
The Jackson2Decoder works as follows:
 Jackson’s asynchronous, non-blocking parser is used to aggregate a stream of byte chunks into
TokenBuffer's each representing a JSON object.
* Each TokenBuffer is passed to Jackson’s ObjectMapper to create a higher level object.
* When decoding to a single-value publisher (e.g. Mono), there is one TokenBuffer.

* When decoding to a multi-value publisher (e.g. Flux), each TokenBuffer is passed to the
ObjectMapper as soon as enough bytes are received for a fully formed object. The input content

14

https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/web/server/ResponseStatusException.html
integration.pdf#rest-message-conversion
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/core/codec/Encoder.html
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/core/codec/Decoder.html
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/http/codec/HttpMessageReader.html
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/http/codec/HttpMessageWriter.html
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/core/io/buffer/DataBuffer.html
core.pdf#databuffers
https://github.com/FasterXML/smile-format-specification

can be a JSON array, or any line-delimited JSON format such as NDJSON, JSON Lines, or JSON
Text Sequences.

The Jackson2Encoder works as follows:

 For a single value publisher (e.g. Mono), simply serialize it through the ObjectMapper.

* For a multi-value publisher with application/json, by default collect the values with
Flux#tcollectTolist() and then serialize the resulting collection.

* For a multi-value publisher with a streaming media type such as application/x-ndjson or
application/stream+x-jackson-smile, encode, write, and flush each value individually using a
line-delimited JSON format. Other streaming media types may be registered with the encoder.

» For SSE the Jackson2Encoder is invoked per event and the output is flushed to ensure delivery
without delay.

By default both Jackson2Encoder and Jackson2Decoder do not support elements of
type String. Instead the default assumption is that a string or a sequence of strings

o represent serialized JSON content, to be rendered by the CharSequenceEncoder. If
what you need is to render a JSON array from Flux<String>, use
Flux#collectTolist() and encode a Mono<List<String>>.

Form Data

FormHttpMessageReader and FormHttpMessageWriter support decoding and encoding application/x-
www-form-urlencoded content.

On the server side where form content often needs to be accessed from multiple places,
ServerlWlebExchange provides a dedicated getFormData() method that parses the content through
FormHttpMessageReader and then caches the result for repeated access. See Form Data in the
WebHandler API section.

Once getFormData() is used, the original raw content can no longer be read from the request body.
For this reason, applications are expected to go through ServerWebExchange consistently for access to
the cached form data versus reading from the raw request body.

Multipart

MultipartHttpMessageReader and MultipartHttpMessageWriter support decoding and encoding
"multipart/form-data” content. In turn MultipartHttpMessageReader delegates to another
HttpMessageReader for the actual parsing to a Flux<Part> and then simply collects the parts into a
MultiValueMap. By default, the DefaultPartHttpMessageReader is used, but this can be changed
through the ServerCodecConfigurer. For more information about the DefaultPartHttpMessageReader,
refer to to the javadoc of DefaultPartHttpMessageReader.

On the server side where multipart form content may need to be accessed from multiple places,
ServerWebExchange provides a dedicated getMultipartData() method that parses the content through
MultipartHttpMessageReader and then caches the result for repeated access. See Multipart Data in
the WebHandler API section.

15

https://en.wikipedia.org/wiki/JSON_streaming
https://en.wikipedia.org/wiki/JSON_streaming
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/http/codec/multipart/DefaultPartHttpMessageReader.html
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/http/codec/multipart/DefaultPartHttpMessageReader.html

Once getMultipartData() is used, the original raw content can no longer be read from the request
body. For this reason applications have to consistently use getMultipartData() for repeated, map-
like access to parts, or otherwise rely on the SynchronossPartHttpMessageReader for a one-time access
to Flux<Part>.

Limits

Decoder and HttpMessageReader implementations that buffer some or all of the input stream can be
configured with a limit on the maximum number of bytes to buffer in memory. In some cases
buffering occurs because input is aggregated and represented as a single object — for example, a
controller method with @RequestBody byte[], x-www-form-urlencoded data, and so on. Buffering can
also occur with streaming, when splitting the input stream — for example, delimited text, a stream
of JSON objects, and so on. For those streaming cases, the limit applies to the number of bytes
associated with one object in the stream.

To configure buffer sizes, you can check if a given Decoder or HttpMessageReader exposes a
maxInMemorySize property and if so the Javadoc will have details about default values. On the server
side, ServerCodecConfigurer provides a single place from where to set all codecs, see HTTP message
codecs. On the client side, the limit for all codecs can be changed in WebClient.Builder.

For Multipart parsing the maxInMemorySize property limits the size of non-file parts. For file parts, it
determines the threshold at which the part is written to disk. For file parts written to disk, there is
an additional maxDiskUsagePerPart property to limit the amount of disk space per part. There is also
a maxParts property to limit the overall number of parts in a multipart request. To configure all
three in WebFlux, youw’ll need to supply a pre-configured instance of MultipartHttpMessageReader to
ServerCodecConfigurer.

Streaming

Web MVC

When streaming to the HTTP response (for example, text/event-stream, application/x-ndjson), it is
important to send data periodically, in order to reliably detect a disconnected client sooner rather
than later. Such a send could be a comment-only, empty SSE event or any other "no-op" data that
would effectively serve as a heartbeat.

DataBuffer

DataBuffer is the representation for a byte buffer in WebFlux. The Spring Core part of this reference
has more on that in the section on Data Buffers and Codecs. The key point to understand is that on
some servers like Netty, byte buffers are pooled and reference counted, and must be released when
consumed to avoid memory leaks.

WebFlux applications generally do not need to be concerned with such issues, unless they consume
or produce data buffers directly, as opposed to relying on codecs to convert to and from higher
level objects, or unless they choose to create custom codecs. For such cases please review the
information in Data Buffers and Codecs, especially the section on Using DataBuffer.

16

web.pdf#mvc-ann-async-http-streaming
core.pdf#databuffers
core.pdf#databuffers
core.pdf#databuffers-using

1.2.6. Logging

Web MVC

DEBUG level logging in Spring WebFlux is designed to be compact, minimal, and human-friendly. It
focuses on high value bits of information that are useful over and over again vs others that are
useful only when debugging a specific issue.

TRACE level logging generally follows the same principles as DEBUG (and for example also should not
be a firehose) but can be used for debugging any issue. In addition, some log messages may show a
different level of detail at TRACE vs DEBUG.

Good logging comes from the experience of using the logs. If you spot anything that does not meet
the stated goals, please let us know.

Log Id

In WebFlux, a single request can be run over multiple threads and the thread ID is not useful for
correlating log messages that belong to a specific request. This is why WebFlux log messages are
prefixed with a request-specific ID by default.

On the server side, the log ID is stored in the ServerWebExchange attribute (LOG_ID_ATTRIBUTE), while a
fully formatted prefix based on that ID is available from ServerWebExchange#getLogPrefix(). On the
WebClient side, the log ID is stored in the ClientRequest attribute (L0G_ID_ATTRIBUTE) ,while a fully
formatted prefix is available from ClientRequest#logPrefix().

Sensitive Data
Web MVC

DEBUG and TRACE logging can log sensitive information. This is why form parameters and headers are
masked by default and you must explicitly enable their logging in full.

The following example shows how to do so for server-side requests:

Java

@Configuration
@EnableWebFlux
class MyConfig implements WebFluxConfigurer {

@Override
public void configureHttpMessageCodecs(ServerCodecConfigurer configurer) {
configurer.defaultCodecs().enableLoggingRequestDetails(true);

}

17

web.pdf#mvc-logging
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/web/server/ServerWebExchange.html#LOG_ID_ATTRIBUTE
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/web/reactive/function/client/ClientRequest.html#LOG_ID_ATTRIBUTE
web.pdf#mvc-logging-sensitive-data

Kotlin

@Configuration
@EnableWebFlux
class MyConfig : WebFluxConfigurer {

override fun configureHttpMessageCodecs(confiqgurer: ServerCodecConfigurer) {
configurer.defaultCodecs().enableLoggingRequestDetails(true)

}

The following example shows how to do so for client-side requests:

Java

Consumer<ClientCodecConfigurer> consumer = configurer ->
configurer.defaultCodecs().enableLoggingRequestDetails(true);

WebClient webClient = WebClient.builder()
.exchangeStrategies(strategies -> strategies.codecs(consumer))
.build();

Kotlin

val consumer: (ClientCodecConfigurer) -> Unit = { configqurer ->
configurer.defaultCodecs().enableLoggingRequestDetails(true) }

val webClient = WebClient.builder()
.exchangeStrategies({ strategies -> strategies.codecs(consumer) })
.build()

Appenders

Logging libraries such as SLF4] and Log4] 2 provide asynchronous loggers that avoid blocking.
While those have their own drawbacks such as potentially dropping messages that could not be
queued for logging, they are the best available options currently for use in a reactive, non-blocking
application.

Custom codecs

Applications can register custom codecs for supporting additional media types, or specific
behaviors that are not supported by the default codecs.

Some configuration options expressed by developers are enforced on default codecs. Custom codecs
might want to get a chance to align with those preferences, like enforcing buffering limits or
logging sensitive data.

The following example shows how to do so for client-side requests:

18

Java

WebClient webClient = WebClient.builder()
.codecs(configurer -> {
CustomDecoder decoder = new CustomDecoder();
configurer.customCodecs().registerWithDefaultConfig(decoder);

1))
.build();

Kotlin

val webClient = WebClient.builder()
.codecs({ configurer ->
val decoder = CustomDecoder ()
configurer.customCodecs().registerWithDefaultConfig(decoder)

1))
.build()

1.3. DispatcherHandler

Web MVC

Spring WebFlux, similarly to Spring MVC, is designed around the front controller pattern, where a
central WebHandler, the DispatcherHandler, provides a shared algorithm for request processing, while
actual work is performed by configurable, delegate components. This model is flexible and supports
diverse workflows.

DispatcherHandler discovers the delegate components it needs from Spring configuration. It is also
designed to be a Spring bean itself and implements ApplicationContextAware for access to the
context in which it runs. If DispatcherHandler is declared with a bean name of webHandler, it is, in
turn, discovered by WebHttpHandlerBuilder, which puts together a request-processing chain, as
described in WebHandler API.

Spring configuration in a WebFlux application typically contains:

* DispatcherHandler with the bean name webHandler

WebFilter and WebExceptionHandler beans
* DispatcherHandler special beans

e Others

The configuration is given to WebHttpHandlerBuilder to build the processing chain, as the following
example shows:

Java

ApplicationContext context = ...
HttpHandler handler = WebHttpHandlerBuilder.applicationContext(context).build();

19

web.pdf#mvc-servlet
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/web/server/adapter/WebHttpHandlerBuilder.html

Kotlin

val context: ApplicationContext = ...
val handler = WebHttpHandlerBuilder.applicationContext(context).build()

The resulting HttpHandler is ready for use with a server adapter.

1.3.1. Special Bean Types

Web MVC

The DispatcherHandler delegates to special beans to process requests and render the appropriate
responses. By “special beans,” we mean Spring-managed Object instances that implement WebFlux
framework contracts. Those usually come with built-in contracts, but you can customize their
properties, extend them, or replace them.

The following table lists the special beans detected by the DispatcherHandler. Note that there are
also some other beans detected at a lower level (see Special bean types in the Web Handler API).

Bean type
HandlerMapping

HandlerAdapter

HandlerResultHandler

1.3.2. WebFlux Config

Web MVC

Explanation

Map a request to a handler. The mapping is based on some
criteria, the details of which vary by HandlerMapping
implementation — annotated controllers, simple URL pattern
mappings, and others.

The main HandlerMapping implementations are
RequestMappingHandlerMapping for @RequestMapping annotated
methods, RouterFunctionMapping for functional endpoint routes,
and SimpleUr1HandlerMapping for explicit registrations of URI path
patterns and WebHandler instances.

Help the DispatcherHandler to invoke a handler mapped to a
request regardless of how the handler is actually invoked. For
example, invoking an annotated controller requires resolving
annotations. The main purpose of a HandlerAdapter is to shield
the DispatcherHandler from such details.

Process the result from the handler invocation and finalize the
response. See Result Handling.

Applications can declare the infrastructure beans (listed under Web Handler API and
DispatcherHandler) that are required to process requests. However, in most cases, the WebFlux
Config is the best starting point. It declares the required beans and provides a higher-level
configuration callback API to customize it.

20

web.pdf#mvc-servlet-special-bean-types
web.pdf#mvc-servlet-config

o Spring Boot relies on the WebFlux config to configure Spring WebFlux and also
provides many extra convenient options.

1.3.3. Processing

Web MVC
DispatcherHandler processes requests as follows:

* Each HandlerMapping is asked to find a matching handler, and the first match is used.

« If a handler is found, it is run through an appropriate HandlerAdapter, which exposes the return
value from the execution as HandlerResult.

* The HandlerResult is given to an appropriate HandlerResultHandler to complete processing by
writing to the response directly or by using a view to render.

1.3.4. Result Handling

The return value from the invocation of a handler, through a HandlerAdapter, is wrapped as a
HandlerResult, along with some additional context, and passed to the first HandlerResultHandler that
claims support for it. The following table shows the available HandlerResultHandler
implementations, all of which are declared in the WebFlux Config:

Result Handler Type Return Values Default Order
ResponseEntityResultHa ResponseEntity, typically from @Controller 0

ndler instances.

ServerResponseResultHa ServerResponse, typically from functional 0

ndler endpoints.

ResponseBodyResultHand Handle return values from @ResponseBody 100

ler

methods or @RestController classes.

ViewResolutionResultHa CharSequenCQ, V'iew, Model, Map, Rendering, or any Integer .MAX_VALUE
ndler other Object is treated as a model attribute.

See also View Resolution.

1.3.5. Exceptions

Web MVC

The HandlerResult returned from a HandlerAdapter can expose a function for error handling based
on some handler-specific mechanism. This error function is called if:

* The handler (for example, @Controller) invocation fails.

* The handling of the handler return value through a HandlerResultHandler fails.

The error function can change the response (for example, to an error status), as long as an error
signal occurs before the reactive type returned from the handler produces any data items.

21

web.pdf#mvc-servlet-sequence
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/web/reactive/result/view/View.html
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/ui/Model.html
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/web/reactive/result/view/Rendering.html
web.pdf#mvc-exceptionhandlers

This is how @ExceptionHandler methods in @Controller classes are supported. By contrast, support
for the same in Spring MVC is built on a HandlerExceptionResolver. This generally should not matter.
However, keep in mind that, in WebFlux, you cannot use a @ControllerAdvice to handle exceptions
that occur before a handler is chosen.

See also Managing Exceptions in the “Annotated Controller” section or Exceptions in the
WebHandler API section.

1.3.6. View Resolution

Web MVC

View resolution enables rendering to a browser with an HTML template and a model without tying
you to a specific view technology. In Spring WebFlux, view resolution is supported through a
dedicated HandlerResultHandler that uses ViewResolver instances to map a String (representing a
logical view name) to a View instance. The View is then used to render the response.

Handling

Web MVC

The HandlerResult passed into ViewResolutionResultHandler contains the return value from the
handler and the model that contains attributes added during request handling. The return value is
processed as one of the following:

* String, CharSequence: A logical view name to be resolved to a View through the list of configured
ViewResolver implementations.

* void: Select a default view name based on the request path, minus the leading and trailing slash,
and resolve it to a View. The same also happens when a view name was not provided (for
example, model attribute was returned) or an async return value (for example, Mono completed
empty).

* Rendering: API for view resolution scenarios. Explore the options in your IDE with code
completion.

* Model, Map: Extra model attributes to be added to the model for the request.

* Any other: Any other return value (except for simple types, as determined by
BeanUtils#isSimpleProperty) is treated as a model attribute to be added to the model. The
attribute name is derived from the class name by using conventions, unless a handler method
@ModelAttribute annotation is present.

The model can contain asynchronous, reactive types (for example, from Reactor or RxJava). Prior to
rendering, AbstractView resolves such model attributes into concrete values and updates the model.
Single-value reactive types are resolved to a single value or no value (if empty), while multi-value
reactive types (for example, Flux<T>) are collected and resolved to List<T>.

To configure view resolution is as simple as adding a ViewResolutionResultHandler bean to your
Spring configuration. WebFlux Config provides a dedicated configuration API for view resolution.

See View Technologies for more on the view technologies integrated with Spring WebFlux.

22

web.pdf#mvc-viewresolver
web.pdf#mvc-handling
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/web/reactive/result/view/Rendering.html
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/core/Conventions.html

Redirecting

Web MVC

The special redirect: prefix in a view name lets you perform a redirect. The Ur1BasedViewResolver
(and sub-classes) recognize this as an instruction that a redirect is needed. The rest of the view
name is the redirect URL.

The net effect is the same as if the controller had returned a RedirectView or
Rendering.redirectTo("abc").build(), but now the controller itself can operate in terms of logical
view names. A view name such as redirect:/some/resource is relative to the current application,
while a view name such as redirect:https://example.com/arbitrary/path redirects to an absolute
URL.

Content Negotiation

Web MVC

ViewResolutionResultHandler supports content negotiation. It compares the request media types
with the media types supported by each selected View. The first View that supports the requested
media type(s) is used.

In order to support media types such as JSON and XML, Spring WebFlux provides
HttpMessageWriterView, which is a special View that renders through an HttpMessageWriter.
Typically, you would configure these as default views through the WebFlux Configuration. Default
views are always selected and used if they match the requested media type.

1.4. Annotated Controllers
Web MVC

Spring WebFlux provides an annotation-based programming model, where @Controller and
@RestController components use annotations to express request mappings, request input, handle
exceptions, and more. Annotated controllers have flexible method signatures and do not have to
extend base classes nor implement specific interfaces.

The following listing shows a basic example:

Java

@RestController
public class HelloController {

@GetMapping("/hello")
public String handle() {
return "Hello WebFlux";

}

23

web.pdf#mvc-redirecting-redirect-prefix
web.pdf#mvc-multiple-representations
web.pdf#mvc-controller

Kotlin

@RestController
class HelloController {

@GetMapping("/hello")
fun handle() = "Hello WebFlux"

In the preceding example, the method returns a String to be written to the response body.

1.4.1. @Controller

Web MVC

You can define controller beans by using a standard Spring bean definition. The @Controller
stereotype allows for auto-detection and is aligned with Spring general support for detecting
@Component classes in the classpath and auto-registering bean definitions for them. It also acts as a
stereotype for the annotated class, indicating its role as a web component.

To enable auto-detection of such @Controller beans, you can add component scanning to your Java
configuration, as the following example shows:

Java

@Configuration
@ComponentScan("org.example.web") @
public class WebConfig {

/] ...

@ Scan the org.example.web package.

Kotlin

@Configuration
@ComponentScan("org.example.web") @
class WebConfig {

/] ...

@ Scan the org.example.web package.

@RestController is a composed annotation that is itself meta-annotated with @Controller and
@ResponseBody, indicating a controller whose every method inherits the type-level @ResponseBody
annotation and, therefore, writes directly to the response body versus view resolution and
rendering with an HTML template.

24

web.pdf#mvc-ann-controller
core.pdf#beans-meta-annotations

1.4.2. Request Mapping

Web MVC

The @RequestMapping annotation is used to map requests to controllers methods. It has various
attributes to match by URL, HTTP method, request parameters, headers, and media types. You can
use it at the class level to express shared mappings or at the method level to narrow down to a
specific endpoint mapping.

There are also HTTP method specific shortcut variants of @RequestMapping:

* @GetMapping

* @PostMapping

* @PutMapping

* @DeleteMapping
» @PatchMapping

The preceding annotations are Custom Annotations that are provided because, arguably, most
controller methods should be mapped to a specific HTTP method versus using @RequestMapping,
which, by default, matches to all HTTP methods. At the same time, a @RequestMapping is still needed
at the class level to express shared mappings.

The following example uses type and method level mappings:

Java

@RestController
@RequestMapping("/persons")
class PersonController {

@GetMapping("/{id}")

public Person getPerson(@PathVariable Long id) {
/] ...

}

@PostMapping

@ResponseStatus(HttpStatus.CREATED)

public void add(@RequestBody Person person) {
/] ...

}

25

web.pdf#mvc-ann-requestmapping

Kotlin

@RestController
©RequestMapping(

"/persons")

class PersonController {

@GetMapping("/{id}")
fun getPerson(@PathVariable id: Long): Person {

7 o
}

@PostMapping

@ResponseStatus(HttpStatus.CREATED)
fun add(@RequestBody person: Person) {

/] ...
}
}
URI Patterns
Web MVC

You can map requests by using glob patterns and wildcards:

Pattern

?

**

{name}

{name:[a-z]+}

26

Description Example

Matches one character "/pages/t?st.html" matches "/pages/test.html"
and "/pages/t3st.html"

Matches zero or more "/resources/*.png" matches

characters within a path "/resources/file.png"

segment

"/projects/*/versions" matches

"/projects/spring/versions" but does not match
"/projects/spring/boot/versions"

Matches zero or more path "/resources/**" matches "/resources/file.png"
segments until the end of and "/resources/images/file.png"
the path
"/resources/**/file.png" is invalid as ** is only
allowed at the end of the path.

Matches a path segment and "/projects/{project}/versions" matches
captures it as a variable "/projects/spring/versions" and captures
named "name" project=spring

Matches the regexp "[a-z]+" "/projects/{project:[a-z]+}/versions" matches

as a path variable named "/projects/spring/versions" but not
"name" "/projects/spring1/versions”

web.pdf#mvc-ann-requestmapping-uri-templates

Pattern Description Example

{*path} Matches zero or more path "/resources/{*file}" matches
segments until the end of "/resources/images/file.png" and captures
the path and captures it asa file=images/file.png
variable named "path”

Captured URI variables can be accessed with @PathVariable, as the following example shows:

Java

@GetMapping("/owners/{ownerId}/pets/{petId}")

public Pet findPet(@PathVariable Long ownerId, @PathVariable Long petId) {
/] ...

}

Kotlin

@GetMapping("/owners/{ownerId}/pets/{petId}")

fun findPet(@PathVariable ownerId: Long, @PathVariable petId: Long): Pet {
/] ...

}

You can declare URI variables at the class and method levels, as the following example shows:

Java

@Controller
@RequestMapping("/owners/{ownerId}") @
public class OwnerController {

@GetMapping("/pets/{petId}") @

public Pet findPet(@PathVariable Long ownerId, @PathVariable Long petId) {
/] ...

}

@ Class-level URI mapping.
@ Method-level URI mapping.

27

Kotlin

@Controller
@RequestMapping("/owners/{ownerId}") @
class OwnerController {

@GetMapping("/pets/{petId}") @

fun findPet(@PathVariable ownerId: Long, @PathVariable petId: Long): Pet {
/] ...

}

@ Class-level URI mapping.
@ Method-level URI mapping.

URI variables are automatically converted to the appropriate type or a TypeMismatchException is
raised. Simple types (int, long, Date, and so on) are supported by default and you can register
support for any other data type. See Type Conversion and DataBinder.

URI variables can be named explicitly (for example, @PathVariable("customId")), but you can leave
that detail out if the names are the same and you compile your code with debugging information or
with the -parameters compiler flag on Java 8.

The syntax {*varName} declares a URI variable that matches zero or more remaining path segments.
For example /resources/{*path} matches all files under /resources/, and the "path" variable
captures the complete relative path.

The syntax {varName:regex} declares a URI variable with a regular expression that has the syntax:
{varName:regex}. For example, given a URL of /spring-web-3.0.5.jar, the following method extracts
the name, version, and file extension:

Java

@GetMapping("/{name:[a-z-]+}-{version:\\d\\.\\d\\.\\d}{ext:\\.[a-z]+}")

public void handle(@PathVariable String version, @PathVariable String ext) {
/] ...

}

Kotlin

@GetMapping("/{name:[a-z-]+}-{version:\\d\\.\\d\\.\\d}{ext:\\.[a-z]+}")

fun handle(@PathVariable version: String, @PathVariable ext: String) {
/] ...

+

URI path patterns can also have embedded ${::-} placeholders that are resolved on startup through
PropertyPlaceHolderConfigurer against local, system, environment, and other property sources. You
ca use this to, for example, parameterize a base URL based on some external configuration.

28

Spring WebFlux uses PathPattern and the PathPatternParser for URI path matching

o support. Both classes are located in spring-web and are expressly designed for use
with HTTP URL paths in web applications where a large number of URI path
patterns are matched at runtime.

Spring WebFlux does not support suffix pattern matching — unlike Spring MVC, where a mapping
such as /person also matches to /person.*. For URL-based content negotiation, if needed, we
recommend using a query parameter, which is simpler, more explicit, and less vulnerable to URL
path based exploits.

Pattern Comparison

Web MVC

When multiple patterns match a URL, they must be compared to find the best match. This is done
with PathPattern.SPECIFICITY_COMPARATOR, which looks for patterns that are more specific.

For every pattern, a score is computed, based on the number of URI variables and wildcards, where
a URI variable scores lower than a wildcard. A pattern with a lower total score wins. If two patterns
have the same score, the longer is chosen.

Catch-all patterns (for example, **, {*varName}) are excluded from the scoring and are always sorted
last instead. If two patterns are both catch-all, the longer is chosen.

Consumable Media Types
Web MVC

You can narrow the request mapping based on the Content-Type of the request, as the following
example shows:

Java

@PostMapping(path = "/pets", consumes = "application/json")
public void addPet(@RequestBody Pet pet) {

/] ...
}

Kotlin

@PostMapping("/pets", consumes = ["application/json"])
fun addPet(@RequestBody pet: Pet) {

/] ...
b

The consumes attribute also supports negation expressions — for example, !text/plain means any
content type other than text/plain.

You can declare a shared consumes attribute at the class level. Unlike most other request mapping

29

web.pdf#mvc-ann-requestmapping-pattern-comparison
web.pdf#mvc-ann-requestmapping-consumes

attributes, however, when used at the class level, a method-level consumes attribute overrides rather
than extends the class-level declaration.

(r) MediaType provides constants for commonly used media types—for example,
- APPLICATION_JSON_VALUE and APPLICATION_XML_VALUE.

Producible Media Types

Web MVC

You can narrow the request mapping based on the Accept request header and the list of content
types that a controller method produces, as the following example shows:

Java

@GetMapping(path = "/pets/{petId}", produces = "application/json")
@ResponseBody
public Pet getPet(@PathVariable String petId) {
/...
}

Kotlin

@GetMapping("/pets/{petId}", produces = ["application/json"])
@ResponseBody
fun getPet(@PathVariable String petId): Pet {
/] ...
}

The media type can specify a character set. Negated expressions are supported —for example,
I'text/plain means any content type other than text/plain.

You can declare a shared produces attribute at the class level. Unlike most other request mapping
attributes, however, when used at the class level, a method-level produces attribute overrides rather
than extend the class level declaration.

(r) MediaType provides constants for commonly used media types—e.g.
- APPLICATION_JSON_VALUE, APPLICATION_XML_VALUE.

Parameters and Headers

Web MVC

You can narrow request mappings based on query parameter conditions. You can test for the
presence of a query parameter (myParam), for its absence (!myParam), or for a specific value
(myParam=myValue). The following examples tests for a parameter with a value:

30

web.pdf#mvc-ann-requestmapping-produces
web.pdf#mvc-ann-requestmapping-params-and-headers

Java

@GetMapping(path = "/pets/{petId}", params = "myParam=myValue") @
public void findPet(@PathVariable String petId) {

/] ...
}

@ Check that myParam equals myValue.

Kotlin

@GetMapping("/pets/{petId}", params = ["myParam=myValue"]) @®
fun findPet(@PathVariable petld: String) {

/] ...
¥

® Check that myParam equals myValue.
You can also use the same with request header conditions, as the follwing example shows:

Java

@GetMapping(path = "/pets", headers = "myHeader=myValue") @
public void findPet(@PathVariable String petId) {

/...
¥

@ Check that myHeader equals myValue.

Kotlin

@GetMapping("/pets", headers = ["myHeader=myValue"]) ®
fun findPet(@PathVariable petId: String) {

/...
}

@ Check that myHeader equals myValue.

HTTP HEAD, OPTIONS

Web MVC

@GetMapping and @RequestMapping(method=HttpMethod.GET) support HTTP HEAD transparently for
request mapping purposes. Controller methods need not change. A response wrapper, applied in
the HttpHandler server adapter, ensures a Content-Length header is set to the number of bytes
written without actually writing to the response.

By default, HTTP OPTIONS is handled by setting the Allow response header to the list of HTTP
methods listed in all @RequestMapping methods with matching URL patterns.

For a @RequestMapping without HTTP method declarations, the Allow header is set to

31

web.pdf#mvc-ann-requestmapping-head-options

GET,HEAD,POST,PUT, PATCH,DELETE,OPTIONS. Controller methods should always declare the supported
HTTP methods (for example, by using the HTTP method specific variants— @GetMapping,
@PostMapping, and others).

You can explicitly map a @RequestMapping method to HTTP HEAD and HTTP OPTIONS, but that is not
necessary in the common case.

Custom Annotations

Web MVC

Spring WebFlux supports the use of composed annotations for request mapping. Those are
annotations that are themselves meta-annotated with @RequestMapping and composed to redeclare a
subset (or all) of the @RequestMapping attributes with a narrower, more specific purpose.

@GetMapping, @PostMapping, @PutMapping, @DeleteMapping, and @PatchMapping are examples of composed
annotations. They are provided, because, arguably, most controller methods should be mapped to a
specific HTTP method versus using @RequestMapping, which, by default, matches to all HTTP
methods. If you need an example of composed annotations, look at how those are declared.

Spring WebFlux also supports custom request mapping attributes with custom request matching
logic. This is a more advanced option that requires sub-classing RequestMappingHandlerMapping and
overriding the getCustomMethodCondition method, where you can check the custom attribute and
return your own RequestCondition.

Explicit Registrations
Web MVC

You can programmatically register Handler methods, which can be used for dynamic registrations
or for advanced cases, such as different instances of the same handler under different URLs. The
following example shows how to do so:

32

web.pdf#mvc-ann-requestmapping-composed
core.pdf#beans-meta-annotations
web.pdf#mvc-ann-requestmapping-registration

Java

@Configuration
public class MyConfig {

@Autowired

public void setHandlerMapping(RequestMappingHandlerMapping mapping, UserHandler
handler) @
throws NoSuchMethodException {

RequestMappingInfo info = RequestMappingInfo
.paths("/user/{id}").methods(RequestMethod.GET).build(); @

Method method = UserHandler.class.getMethod("getUser", Long.class); ®

mapping.registerMapping(info, handler, method); @

@ Inject target handlers and the handler mapping for controllers.
@ Prepare the request mapping metadata.

® Get the handler method.

@ Add the registration.

Kotlin

@Configuration
class MyConfig {

@Autowired
fun setHandlerMapping(mapping: RequestMappingHandlerMapping, handler: UserHandler)

{®

val info =
RequestMappingInfo.paths("/user/{id}").methods(RequestMethod.GET).build() @

val method = UserHandler::class.java.getMethod("getUser", Long::class.java) ®

mapping.registerMapping(info, handler, method) @

@ Inject target handlers and the handler mapping for controllers.
@ Prepare the request mapping metadata.

® Get the handler method.

@ Add the registration.

33

1.4.3. Handler Methods

Web MVC

@RequestMapping handler methods have a flexible signature and can choose from a range of
supported controller method arguments and return values.

Method Arguments

Web MVC
The following table shows the supported controller method arguments.

Reactive types (Reactor, RxJava, or other) are supported on arguments that require blocking I/O (for
example, reading the request body) to be resolved. This is marked in the Description column.
Reactive types are not expected on arguments that do not require blocking.

JDK 1.8’s java.util.Optional is supported as a method argument in combination with annotations
that have a required attribute (for example, @RequestParam, @RequestHeader, and others) and is
equivalent to required=false.

Controller method argument Description

ServerllebExchange Access to the full ServerWlebExchange — container for the HTTP
request and response, request and session attributes,
checkNotModified methods, and others.

ServerHttpRequest, Access to the HTTP request or response.
ServerHttpResponse
WebSession Access to the session. This does not force the start of a new

session unless attributes are added. Supports reactive types.

java.security.Principal The currently authenticated user — possibly a specific Principal
implementation class if known. Supports reactive types.

org.springframework.http.HttpM The HTTP method of the request.

ethod

java.util.locale The current request locale, determined by the most specific
LocaleResolver available —in effect, the configured
LocaleResolver/LocaleContextResolver.

java.util.TimeZone + The time zone associated with the current request, as determined

java.time.Zoneld by a LocaleContextResolver.

@PathVariable For access to URI template variables. See URI Patterns.

@MatrixVariable For access to name-value pairs in URI path segments. See Matrix

Variables.

34

web.pdf#mvc-ann-methods
web.pdf#mvc-ann-arguments

Controller method argument

@RequestParam

@RequestHeader

@CookieValue

@RequestBody

HttpEntity

@RequestPart

java.util.Map,
org.springframework.ui.Model,

and
org.springframework.ui.ModelMa

p.
@ModelAttribute

Errors, BindingResult

SessionStatus + class-level
@SessionAttributes

UriComponentsBuilder

Description

For access to Servlet request parameters. Parameter values are
converted to the declared method argument type. See
@RequestParam.

Note that use of @RequestParam is optional — for example, to set its
attributes. See “Any other argument” later in this table.

For access to request headers. Header values are converted to the
declared method argument type. See @RequestHeader.

For access to cookies. Cookie values are converted to the declared
method argument type. See @CookieValue.

For access to the HTTP request body. Body content is converted to
the declared method argument type by using HttpMessageReader
instances. Supports reactive types. See @RequestBody.

For access to request headers and body. The body is converted
with HttpMessageReader instances. Supports reactive types. See
HttpEntity.

For access to a part in a multipart/form-data request. Supports
reactive types. See Multipart Content and Multipart Data.

For access to the model that is used in HTML controllers and is
exposed to templates as part of view rendering.

For access to an existing attribute in the model (instantiated if
not present) with data binding and validation applied. See
@ModelAttribute as well as Model and DataBinder.

Note that use of @ModelAttribute is optional — for example, to set
its attributes. See “Any other argument” later in this table.

For access to errors from validation and data binding for a
command object, i.e. a @ModelAttribute argument. An Errors, or
BindingResult argument must be declared immediately after the
validated method argument.

For marking form processing complete, which triggers cleanup of
session attributes declared through a class-level
@SessionAttributes annotation. See @SessionAttributes for more
details.

For preparing a URL relative to the current request’s host, port,
scheme, and context path. See URI Links.

35

Controller method argument

@SessionAttribute

@RequestAttribute

Any other argument

Return Values

Web MVC

Description

For access to any session attribute — in contrast to model
attributes stored in the session as a result of a class-level
@SessionAttributes declaration. See @SessionAttribute for more
details.

For access to request attributes. See @RequestAttribute for more
details.

If a method argument is not matched to any of the above, it is, by
default, resolved as a @RequestParam if it is a simple type, as
determined by BeanUtils#isSimpleProperty, or as a
@ModelAttribute, otherwise.

The following table shows the supported controller method return values. Note that reactive types
from libraries such as Reactor, RxJava, or other are generally supported for all return values.

Controller method return
value

@ResponseBody

HttpEntity,
ResponseEntity

HttpHeaders

String

View

java.util.Map,
org.springframework.ui.Model

@ModelAttribute

36

Description

The return value is encoded through HttpMessageliriter instances
and written to the response. See @ResponseBody.

The return value specifies the full response, including HTTP
headers, and the body is encoded through HttpMessageWriter
instances and written to the response. See ResponseEntity.

For returning a response with headers and no body.

A view name to be resolved with ViewResolver instances and used
together with the implicit model — determined through
command objects and @ModelAttribute methods. The handler
method can also programmatically enrich the model by declaring
a Model argument (described earlier).

A View instance to use for rendering together with the implicit
model — determined through command objects and
@ModelAttribute methods. The handler method can also
programmatically enrich the model by declaring a Model
argument (described earlier).

Attributes to be added to the implicit model, with the view name
implicitly determined based on the request path.

An attribute to be added to the model, with the view name
implicitly determined based on the request path.

Note that @ModelAttribute is optional. See “Any other return
value” later in this table.

https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web.pdf#mvc-ann-return-types

Controller method return Description
value

Rendering An API for model and view rendering scenarios.

void A method with a void, possibly asynchronous (for example,
Mono<Void>), return type (or a null return value) is considered to
have fully handled the response if it also has a
ServerHttpResponse, a ServerllebExchange argument, or an
@ResponseStatus annotation. The same is also true if the
controller has made a positive ETag or lastModified timestamp
check. // TODO: See Controllers for details.

If none of the above is true, a void return type can also indicate
“no response body” for REST controllers or default view name
selection for HTML controllers.

Flux<ServerSentEvent>, Emit server-sent events. The ServerSentEvent wrapper can be

Observable<ServerSentEvent>, or omitted when only data needs to be written (however,

other reactive type text/event-stream must be requested or declared in the mapping
through the produces attribute).

Any other return value If a return value is not matched to any of the above, it is, by
default, treated as a view name, if it is String or void (default
view name selection applies), or as a model attribute to be added
to the model, unless it is a simple type, as determined by
BeanUtils#isSimpleProperty, in which case it remains
unresolved.

Type Conversion

Web MVC

Some annotated controller method arguments that represent String-based request input (for
example, @RequestParam, @RequestHeader, @PathVariable, @MatrixVariable, and @CookieValue) can
require type conversion if the argument is declared as something other than String.

For such cases, type conversion is automatically applied based on the configured converters. By
default, simple types (such as int, long, Date, and others) are supported. Type conversion can be
customized through a WebDataBinder (see DataBinder) or by registering Formatters with the
FormattingConversionService (see Spring Field Formatting).

A practical issue in type conversion is the treatment of an empty String source value. Such a value
is treated as missing if it becomes null as a result of type conversion. This can be the case for Long,
UUID, and other target types. If you want to allow null to be injected, either use the required flag on
the argument annotation, or declare the argument as @Nullable.

Matrix Variables

Web MVC

RFC 3986 discusses name-value pairs in path segments. In Spring WebFlux, we refer to those as

37

https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web.pdf#mvc-ann-typeconversion
core.pdf#format
web.pdf#mvc-ann-matrix-variables
https://tools.ietf.org/html/rfc3986#section-3.3

“matrix variables” based on an “old post” by Tim Berners-Lee, but they can be also be referred to as
URI path parameters.

Matrix variables can appear in any path segment, with each variable separated by a semicolon and
multiple values separated by commas — for example, "/cars;color=red,green;year=2012". Multiple
values can also be specified through repeated variable names—for example,
"color=red;color=green;color=blue".

Unlike Spring MVC, in WebFlux, the presence or absence of matrix variables in a URL does not
affect request mappings. In other words, you are not required to use a URI variable to mask
variable content. That said, if you want to access matrix variables from a controller method, you
need to add a URI variable to the path segment where matrix variables are expected. The following
example shows how to do so:

Java
// GET /pets/42;q=11;r=22

@GetMapping("/pets/{petld}")
public void findPet(@PathVariable String petId, @MatrixVariable int q) {

// petld == 42
/7 q==1

Kotlin
// GET /pets/42;q=11,;r=22

@GetMapping("/pets/{petId}")
fun findPet(@PathVariable petId: String, @MatrixVariable q: Int) {

// petld == 42
/7 q==1

Given that all path segments can contain matrix variables, you may sometimes need to
disambiguate which path variable the matrix variable is expected to be in, as the following
example shows:

38

https://www.w3.org/DesignIssues/MatrixURIs.html

Java
// GET /owners/42;q=11/pets/21;q=22

@GetMapping("/owners/{ownerId}/pets/{petId}")

public void findPet(
@MatrixVariable(name="q", pathVar="ownerId") int q1,
@MatrixVariable(name="q", pathVar="petId") int q2) {

/7 q1 == 11
// q2 == 122

Kotlin

@GetMapping("/owners/{ownerId}/pets/{petId}")
fun findPet(

@MatrixVariable(name = "q", pathVar = "ownerId") q1: Int,
@MatrixVariable(name = "q", pathVar = "petId") q2: Int) {
/7 q1 == 11
// q2 == 22

You can define a matrix variable may be defined as optional and specify a default value as the
following example shows:

Java
// GET /pets/42

@GetMapping("/pets/{petId}")
public void findPet(@MatrixVariable(required=false, defaultValue="1") int q) {

// q==1

Kotlin
// GET /pets/42

@GetMapping("/pets/{petId}")
fun findPet(@MatrixVariable(required = false, defaultValue = "1") q: Int) {

/] q==1

To get all matrix variables, use a MultiValueMap, as the following example shows:

39

Java
// GET /owners/42;q=11;r=12/pets/21;q=22;5=23

@GetMapping("/owners/{ownerId}/pets/{petId}")

public void findPet(
@MatrixVariable MultiValueMap<String, String> matrixVars,
@MatrixVariable(pathVar="petId") MultiValueMap<String, String> petMatrixVars)

{
// matrixVars: ["q" : [11,22], "r" : 12, "s" : 23]
// petMatrixVars: ["q" : 22, "s" : 23]
}
Kotlin

// GET /owners/42;q=11;r=12/pets/21;q=22;5=23

©GetMapping("/owners/{ownerId}/pets/{petId}")

fun findPet(
@MatrixVariable matrixVars: MultiValueMap<String, String>,
@MatrixVariable(pathVar="petId") petMatrixVars: MultiValueMap<String, String>)

{
// matrixVars: ["q" : [11,22], "r" : 12, "s" : 23]
// petMatrixVars: ["q" : 22, "s" : 23]
}
@RequestParam
Web MVC

You can use the @RequestParam annotation to bind query parameters to a method argument in a
controller. The following code snippet shows the usage:

40

web.pdf#mvc-ann-requestparam

Java

@Controller
@RequestMapping("/pets")
public class EditPetForm {

/] ...

@GetMapping

public String setupForm(@RequestParam("petId") int petId, Model model) { @
Pet pet = this.clinic.loadPet(petId);
model.addAttribute("pet", pet);
return "petForm";

I wo

® Using @RequestParam.

Kotlin
import org.springframework.ui.set

@Controller
@RequestMapping("/pets")
class EditPetForm {

/] ...

@GetMapping

fun setupForm(@RequestParam("petId") petId: Int, model: Model): String { @®
val pet = clinic.loadPet(petId)
model["pet"] = pet
return "petForm"

}
/] ...
¥
® Using @RequestParam.

The Servlet API “request parameter” concept conflates query parameters, form
data, and multiparts into one. However, in WebFlux, each is accessed individually
(;) through ServerWebExchange. While @RequestParam binds to query parameters only,
et you can use data binding to apply query parameters, form data, and multiparts to
a command object.

Method parameters that use the @RequestParam annotation are required by default, but you can
specify that a method parameter is optional by setting the required flag of a @RequestParam to false

41

or by declaring the argument with a java.util.Optional wrapper.

Type conversion is applied automatically if the target method parameter type is not String. See
Type Conversion.

When a @RequestParam annotation is declared on a Map<String, String> or MultiValueMap<String,
String> argument, the map is populated with all query parameters.

Note that use of @ERequestParam is optional —for example, to set its attributes. By default, any
argument that is a simple value type (as determined by BeanUtils#isSimpleProperty) and is not
resolved by any other argument resolver is treated as if it were annotated with @RequestParam.

@RequestHeader

Web MVC

You can use the @RequestHeader annotation to bind a request header to a method argument in a
controller.

The following example shows a request with headers:

Host localhost:8080

Accept text/html,application/xhtml+xml,application/xml;q=0.9
Accept-Language fr,en-gb;q=0.7,en;q=0.3

Accept-Encoding gzip,deflate

Accept-Charset IS0-8859-1,utf-8;q=0.7,%*;q=0.7

Keep-Alive 300

The following example gets the value of the Accept-Encoding and Keep-Alive headers:

Java

@GetMapping("/demo")
public void handle(
@RequestHeader ("Accept-Encoding") String encoding, @
@RequestHeader ("Keep-Alive") long keepAlive) { @
//...

@ Get the value of the Accept-Encoging header.
@ Get the value of the Keep-Alive header.

42

https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-
web.pdf#mvc-ann-requestheader

Kotlin

@GetMapping("/demo")
fun handle(
@RequestHeader ("Accept-Encoding") encoding: String, ®
@RequestHeader ("Keep-Alive") keepAlive: Long) { @
//...

@ Get the value of the Accept-Encoging header.
@ Get the value of the Keep-Alive header.

Type conversion is applied automatically if the target method parameter type is not String. See
Type Conversion.

When a @RequestHeader annotation is used on a Map<String, String>, MultiValueMap<String, String>,
or HttpHeaders argument, the map is populated with all header values.

Built-in support is available for converting a comma-separated string into an array

(r) or collection of strings or other types known to the type conversion system. For

- example, a method parameter annotated with @RequestHeader ("Accept”) may be of
type String but also of String[] or List<String>.

@CookieValue
Web MVC

You can use the @CookieValue annotation to bind the value of an HTTP cookie to a method argument
in a controller.

The following example shows a request with a cookie:
JSESSIONID=415A4AC178C59DACE@B2CICA727CDD84

The following code sample demonstrates how to get the cookie value:

Java
@GetMapping("/demo")
public void handle(@CookieValue("JSESSIONID") String cookie) { @

/7. ..
}

@ Get the cookie value.

43

web.pdf#mvc-ann-cookievalue

Kotlin

@GetMapping("/demo")

fun handle(@CookieValue("JSESSIONID") cookie: String) { @
//...

}

@ Get the cookie value.

Type conversion is applied automatically if the target method parameter type is not String. See
Type Conversion.

@ModelAttribute

Web MVC

You can use the @ModelAttribute annotation on a method argument to access an attribute from the
model or have it instantiated if not present. The model attribute is also overlaid with the values of
query parameters and form fields whose names match to field names. This is referred to as data
binding, and it saves you from having to deal with parsing and converting individual query
parameters and form fields. The following example binds an instance of Pet:

Java

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(@ModelAttribute Pet pet) { } @

@ Bind an instance of Pet.

Kotlin

@PostMapping("/owners/{ownerId}/pets/{petld}/edit")
fun processSubmit(@ModelAttribute pet: Pet): String { } @

@ Bind an instance of Pet.
The Pet instance in the preceding example is resolved as follows:

* From the model if already added through Model.

From the HTTP session through @SessionAttributes.
* From the invocation of a default constructor.

* From the invocation of a “primary constructor” with arguments that match query parameters
or form fields. Argument names are determined through JavaBeans @ConstructorProperties or
through runtime-retained parameter names in the bytecode.

After the model attribute instance is obtained, data binding is applied. The WebExchangeDataBinder
class matches names of query parameters and form fields to field names on the target Object.
Matching fields are populated after type conversion is applied where necessary. For more on data
binding (and validation), see Validation. For more on customizing data binding, see DataBinder.

44

web.pdf#mvc-ann-modelattrib-method-args
core.pdf#validation

Data binding can result in errors. By default, a WebExchangeBindException is raised, but, to check for
such errors in the controller method, you can add a BindingResult argument immediately next to
the @ModelAttribute, as the following example shows:

Java

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(@ModelAttribute("pet") Pet pet, BindingResult result) { @
if (result.hasErrors()) {
return "petForm";

}
/] ...

@ Adding a BindingResult.

Kotlin

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
fun processSubmit(@ModelAttribute("pet") pet: Pet, result: BindingResult): String { @
if (result.hasErrors()) {
return "petForm"

}
/...

@ Adding a BindingResult.

You can automatically apply validation after data binding by adding the javax.validation.Valid
annotation or Spring’s @Validated annotation (see also Bean Validation and Spring validation). The
following example uses the @Valid annotation:

Java

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public String processSubmit(@Valid @ModelAttribute("pet") Pet pet, BindingResult

result) { @
if (result.hasErrors()) {
return "petForm";

}
/] ...

@ Using @Valid on a model attribute argument.

45

core.pdf#validation-beanvalidation
core.pdf#validation

Kotlin

@PostMapping("/owners/{ownerId}/pets/{petld}/edit")
fun processSubmit(@Valid @ModelAttribute("pet") pet: Pet, result: BindingResult):
String { @
if (result.hasErrors()) {
return "petForm"

}
I woo

@ Using @Valid on a model attribute argument.

Spring WebFlux, unlike Spring MVC, supports reactive types in the model —for example,
Mono<Account> or io.reactivex.Single<Account>. You can declare a @ModelAttribute argument with or
without a reactive type wrapper, and it will be resolved accordingly, to the actual value if necessary.
However, note that, to use a BindingResult argument, you must declare the @ModelAttribute
argument before it without a reactive type wrapper, as shown earlier. Alternatively, you can handle
any errors through the reactive type, as the following example shows:

Java

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
public Mono<String> processSubmit(@Valid @ModelAttribute("pet") Mono<Pet> petMono) {
return petMono
.flatMap(pet -> {

/] ...
})
.onErrorResume(ex -> {
/] ...
1)
}
Kotlin

@PostMapping("/owners/{ownerId}/pets/{petId}/edit")
fun processSubmit(@Valid @ModelAttribute("pet") petMono: Mono<Pet>): Mono<String> {
return petMono
.flatMap { pet ->

/] ...

}

.onErrorResume{ ex ->
/] ...

+

Note that use of @ModelAttribute is optional —for example, to set its attributes. By default, any
argument that is not a simple value type(as determined by BeanUtils#isSimpleProperty) and is not
resolved by any other argument resolver is treated as if it were annotated with @ModelAttribute.

46

https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/beans/BeanUtils.html#isSimpleProperty-java.lang.Class-

@SessionAttributes

Web MVC

@SessionAttributes is used to store model attributes in the WebSession between requests. It is a type-
level annotation that declares session attributes used by a specific controller. This typically lists the
names of model attributes or types of model attributes that should be transparently stored in the
session for subsequent requests to access.

Consider the following example:

Java

@Controller

@SessionAttributes("pet") @

public class EditPetForm {
/] ...

}

@ Using the @SessionAttributes annotation.

Kotlin

@Controller
@SessionAttributes("pet") @
class EditPetForm {

/] ...

@ Using the @SessionAttributes annotation.

On the first request, when a model attribute with the name, pet, is added to the model, it is
automatically promoted to and saved in the WebSession. It remains there until another controller
method uses a SessionStatus method argument to clear the storage, as the following example
shows:

47

web.pdf#mvc-ann-sessionattributes

Java

@Controller
@SessionAttributes("pet") @
public class EditPetForm {

/] ...
@PostMapping("/pets/{id}")

public String handle(Pet pet, BindingResult errors, SessionStatus status) { @
if (errors.hasErrors()) {

!/ ...

}
status.setComplete();
!/ ...

}

@ Using the @SessionAttributes annotation.

@ Using a SessionStatus variable.

Kotlin

@Controller
@SessionAttributes("pet") @
class EditPetForm {

/...

@PostMapping("/pets/{id}")
fun handle(pet: Pet, errors: BindingResult, status: SessionStatus): String { @
if (errors.hasErrors()) {
/] ...

}
status.setComplete()

/] ...

@ Using the @SessionAttributes annotation.

@ Using a SessionStatus variable.

@SessionAttribute

Web MVC

If you need access to pre-existing session attributes that are managed globally (that is, outside the
controller —for example, by a filter) and may or may not be present, you can use the
@SessionAttribute annotation on a method parameter, as the following example shows:

48

web.pdf#mvc-ann-sessionattribute

Java

@GetMapping("/")

public String handle(@SessionAttribute User user) { @
/] ...

}

@ Using @SessionAttribute.

Kotlin

@GetMapping("/")

fun handle(@SessionAttribute user: User): String { @
/] ...

}

® Using @SessionAttribute.

For use cases that require adding or removing session attributes, consider injecting WebSession into
the controller method.

For temporary storage of model attributes in the session as part of a controller workflow, consider
using SessionAttributes, as described in @SessionAttributes.

@RequestAttribute

Web MVC

Similarly to @SessionAttribute, you can use the @RequestAttribute annotation to access pre-existing
request attributes created earlier (for example, by a WebFilter), as the following example shows:

Java

@GetMapping("/")

public String handle(@RequestAttribute Client client) { @
/] ...

}

@ Using @RequestAttribute.

Kotlin
@GetMapping("/")
fun handle(@RequestAttribute client: Client): String { @
/] ...
}

@ Using @RequestAttribute.

49

web.pdf#mvc-ann-requestattrib

Multipart Content

Web MVC

As explained in Multipart Data, ServerWlebExchange provides access to multipart content. The best
way to handle a file upload form (for example, from a browser) in a controller is through data
binding to a command object, as the following example shows:

Java
class MyForm {
private String name;
private MultipartFile file;
/..

}

@Controller
public class FileUploadController {

@PostMapping("/form")

public String handleFormUpload(MyForm form, BindingResult errors) {
/] ...

}

Kotlin

class MyForm(
val name: String,
val file: MultipartFile)

@Controller
class FileUploadController {

@PostMapping("/form")

fun handleFormUpload(form: MyForm, errors: BindingResult): String {
/] ...

}

You can also submit multipart requests from non-browser clients in a RESTful service scenario. The
following example uses a file along with JSON:

50

web.pdf#mvc-multipart-forms

POST /someUr1
Content-Type: multipart/mixed

--edt7Tfrdusa7r31NQc79vXuhIIM1atb7PQqg7Vp
Content-Disposition: form-data; name="meta-data
Content-Type: application/json; charset=UTF-8
Content-Transfer-Encoding: 8bit

{

"name": "value"

}
--edt7Tfrdusa7r31NQc79vXuhIIM1atb7PQg7Vp

Content-Disposition: form-data; name="file-data"; filename="file.properties"
Content-Type: text/xml
Content-Transfer-Encoding: 8bit

. File Data ...

You can access individual parts with @RequestPart, as the following example shows:

Java

@PostMapping("/")
public String handle(@RequestPart("meta-data") Part metadata, @
@RequestPart("file-data") FilePart file) { @
// ...

@ Using @RequestPart to get the metadata.
@ Using @RequestPart to get the file.

Kotlin

@PostMapping("/")
fun handle(@RequestPart("meta-data") Part metadata, @
@RequestPart("file-data") FilePart file): String { @
/] ...

@ Using @RequestPart to get the metadata.
@ Using @RequestPart to get the file.

To deserialize the raw part content (for example, to JSON —similar to @RequestBody), you can
declare a concrete target Object, instead of Part, as the following example shows:

31

Java

@PostMapping("/")

public String handle(@RequestPart("meta-data") MetaData metadata) { @
/] ...

}

@ Using @RequestPart to get the metadata.

Kotlin

@PostMapping("/")

fun handle(@RequestPart("meta-data") metadata: MetaData): String { @
/] ...

}

@ Using @RequestPart to get the metadata.

You can use @RequestPart in combination with javax.validation.Valid or Spring’s @Validated
annotation, which causes Standard Bean Validation to be applied. Validation errors lead to a
WebExchangeBindException that results in a 400 (BAD_REQUEST) response. The exception contains a
BindingResult with the error details and can also be handled in the controller method by declaring
the argument with an async wrapper and then using error related operators:

Java

@PostMapping("/")
public String handle(@Valid @RequestPart("meta-data") Mono<MetaData> metadata) {
// use one of the onError* operators...

}

Kotlin

@PostMapping("/")

fun handle(@Valid @RequestPart("meta-data") metadata: MetaData): String {
UETE

}

To access all multipart data as a MultiValueMap, you can use @RequestBody, as the following example
shows:

Java
@PostMapping("/")
public String handle(@RequestBody Mono<MultiValueMap<String, Part>> parts) { @

I wo
}

@ Using @RequestBody.

32

Kotlin

@PostMapping("/")

fun handle(@RequestBody parts: MultiValueMap<String, Part>): String { @
/...

}

@ Using @RequestBody.

To access multipart data sequentially, in streaming fashion, you can use @RequestBody with
Flux<Part> (or Flow<Part> in Kotlin) instead, as the following example shows:

Java

@PostMapping("/")

public String handle(@RequestBody Flux<Part> parts) { @
/...

}

@ Using @RequestBody.

Kotlin

@PostMapping("/")

fun handle(@RequestBody parts: Flow<Part>): String { @
/] ...

}

@ Using @RequestBody.

@RequestBody
Web MVC

You can use the @RequestBody annotation to have the request body read and deserialized into an
Object through an HttpMessageReader. The following example uses a @RequestBody argument:

Java

@PostMapping("/accounts")

public void handle(@RequestBody Account account) {
/] ...

}

Kotlin

@PostMapping("/accounts")

fun handle(@RequestBody account: Account) {
/] ...

}

33

web.pdf#mvc-ann-requestbody

Unlike Spring MVC, in WebFlux, the @RequestBody method argument supports reactive types and
fully non-blocking reading and (client-to-server) streaming.

Java

@PostMapping("/accounts")

public void handle(@RequestBody Mono<Account> account) {
/] ...

+

Kotlin

@PostMapping("/accounts")

fun handle(@RequestBody accounts: Flow<Account>) {
/] ...

}

You can use the HTTP message codecs option of the WebFlux Config to configure or customize
message readers.

You can use @RequestBody in combination with javax.validation.Valid or Spring’s @Validated
annotation, which causes Standard Bean Validation to be applied. Validation errors cause a
WebExchangeBindException, which results in a 400 (BAD_REQUEST) response. The exception contains
a BindingResult with error details and can be handled in the controller method by declaring the
argument with an async wrapper and then using error related operators:

Java

@PostMapping("/accounts")
public void handle(@Valid @RequestBody Mono<Account> account) {
// use one of the onError* operators...

}

Kotlin

@PostMapping("/accounts")

fun handle(@Valid @RequestBody account: Mono<Account>) {
/] ...

}

HttpEntity

Web MVC

HttpEntity is more or less identical to using @RequestBody but is based on a container object that
exposes request headers and the body. The following example uses an HttpEntity:

54

web.pdf#mvc-ann-httpentity

Java

@PostMapping("/accounts")

public void handle(HttpEntity<Account> entity) {
/] ...

}

Kotlin

@PostMapping("/accounts")

fun handle(entity: HttpEntity<Account>) {
/...

}

@ResponseBody

Web MVC

You can use the @ResponseBody annotation on a method to have the return serialized to the response
body through an HttpMessageWriter. The following example shows how to do so:

Java

@GetMapping("/accounts/{id}")
@ResponseBody
public Account handle() {
/] ...
}

Kotlin

@GetMapping("/accounts/{id}")
@ResponseBody
fun handle(): Account {
/] ...
}

@ResponseBody is also supported at the class level, in which case it is inherited by all controller
methods. This is the effect of @RestController, which is nothing more than a meta-annotation
marked with @Controller and @ResponseBody.

@ResponseBody supports reactive types, which means you can return Reactor or RxJava types and
have the asynchronous values they produce rendered to the response. For additional details, see
Streaming and JSON rendering.

You can combine @ResponseBody methods with JSON serialization views. See Jackson JSON for
details.

You can use the HTTP message codecs option of the WebFlux Config to configure or customize

55

web.pdf#mvc-ann-responsebody

message writing.

ResponseEntity

Web MVC

ResponseEntity is like @ResponseBody but with status and headers. For example:

Java

@GetMapping("/something")
public ResponseEntity<String> handle() {
String body = ... ;
String etag = ... ;
return ResponseEntity.ok().eTag(etag).build(body);

Kotlin

@GetMapping("/something")
fun handle(): ResponseEntity<String> {
val body: String = ...
val etag: String = ...
return ResponseEntity.ok().eTag(etag).build(body)

WebFlux supports using a single value reactive type to produce the ResponseEntity asynchronously,
and/or single and multi-value reactive types for the body. This allows a variety of async responses
with ResponseEntity as follows:

* ResponseEntity<Mono<T>> or ResponseEntity<Flux<T>> make the response status and headers
known immediately while the body is provided asynchronously at a later point. Use Mono if the
body consists of 0..1 values or Flux if it can produce multiple values.

* Mono<ResponseEntity<T>> provides all three—response status, headers, and body,
asynchronously at a later point. This allows the response status and headers to vary depending
on the outcome of asynchronous request handling.

* Mono<ResponseEntity<Mono<T>>> or Mono<ResponseEntity<Flux<T>>> are yet another possible, albeit
less common alternative. They provide the response status and headers asynchronously first
and then the response body, also asynchronously, second.

Jackson JSON
Spring offers support for the Jackson JSON library.

JSON Views

Web MVC

Spring WebFlux provides built-in support for Jackson’s Serialization Views, which allows rendering
only a subset of all fields in an Object. To use it with @ResponseBody or ResponseEntity controller

36

web.pdf#mvc-ann-responseentity
web.pdf#mvc-ann-jackson
https://www.baeldung.com/jackson-json-view-annotation

methods, you can use Jackson’s @JsonView annotation to activate a serialization view class, as the
following example shows:

Java

@RestController
public class UserController {

@GetMapping("/user")
@JsonView(User.WithoutPasswordView.class)
public User getUser() {
return new User("eric", "7!jd#h23");
}
+

public class User {

public interface WithoutPasswordView {};
public interface WithPasswordView extends WithoutPasswordView {};

private String username;
private String password;

public User() {
}

public User(String username, String password) {
this.username = username;
this.password = password;

}

@JsonView(WithoutPasswordView.class)
public String getUsername() {
return this.username;

}

@JsonView(WithPasswordView.class)
public String getPassword() {
return this.password;

}

57

Kotlin

@RestController
class UserController {

@GetMapping("/user")
@JsonView(User.WithoutPasswordView: :class)
fun getUser(): User {

return User("eric", "7!jd#h23")

}

class User(
@JsonView(WithoutPasswordView::class) val username: String,
@JsonView(WithPasswordView::class) val password: String
) {
interface WithoutPasswordView
interface WithPasswordView : WithoutPasswordView

}
@JsonView allows an array of view classes but you can only specify only one per
o controller method. Use a composite interface if you need to activate multiple
views.
1.4.4. Model
Web MVC

You can use the @ModelAttribute annotation:
* On a method argument in @RequestMapping methods to create or access an Object from the model
and to bind it to the request through a WebDataBinder.

* As a method-level annotation in @Controller or @ControllerAdvice classes, helping to initialize
the model prior to any @RequestMapping method invocation.

* On a @RequestMapping method to mark its return value as a model attribute.
This section discusses @ModelAttribute methods, or the second item from the preceding list. A
controller can have any number of @ModelAttribute methods. All such methods are invoked before

@RequestMapping methods in the same controller. A @ModelAttribute method can also be shared
across controllers through @ControllerAdvice. See the section on Controller Advice for more details.

@ModelAttribute methods have flexible method signatures. They support many of the same
arguments as @RequestMapping methods (except for @ModelAttribute itself and anything related to the
request body).

The following example uses a @ModelAttribute method:

38

web.pdf#mvc-ann-modelattrib-methods

Java

@ModelAttribute

public void populateModel(@RequestParam String number, Model model) {
model.addAttribute(accountRepository.findAccount(number));
// add more ...

Kotlin

@ModelAttribute

fun populateModel(@RequestParam number: String, model: Model) {
model.addAttribute(accountRepository.findAccount(number))
// add more ...

The following example adds one attribute only:

Java

@ModelAttribute
public Account addAccount(@RequestParam String number) {
return accountRepository.findAccount(number);

}

Kotlin

@ModelAttribute
fun addAccount(@RequestParam number: String): Account {
return accountRepository.findAccount(number);

}

When a name is not explicitly specified, a default name is chosen based on the

o type, as explained in the javadoc for Conventions. You can always assign an explicit
name by using the overloaded addAttribute method or through the name attribute
on @ModelAttribute (for a return value).

Spring WebFlux, unlike Spring MVC, explicitly supports reactive types in the model (for example,
Mono<Account> or io.reactivex.Single<Account>). Such asynchronous model attributes can be
transparently resolved (and the model updated) to their actual values at the time of @RequestMapping
invocation, provided a @ModelAttribute argument is declared without a wrapper, as the following
example shows:

39

https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/core/Conventions.html

Java

@ModelAttribute

public void addAccount(@RequestParam String number) {
Mono<Account> accountMono = accountRepository.findAccount(number);
model.addAttribute("account", accountMono);

}

@PostMapping("/accounts")

public String handle(@ModelAttribute Account account, BindingResult errors) {
/] ...

}

Kotlin

In

import org.springframework.ui.set

@ModelAttribute

fun addAccount(@RequestParam number: String) {
val accountMono: Mono<Account> = accountRepository.findAccount(number)
model["account"] = accountMono

}

@PostMapping("/accounts")

fun handle(@ModelAttribute account: Account, errors: BindingResult): String {
/] ...

}

addition, any model attributes that have a reactive type wrapper are resolved to their actual

values (and the model updated) just prior to view rendering.

You can also use @ModelAttribute as a method-level annotation on @RequestMapping methods, in
which case the return value of the @RequestMapping method is interpreted as a model attribute. This
typically not required, as it is the default behavior in HTML controllers, unless the return value is
String that would otherwise be interpreted as a view name. @ModelAttribute can also help to

is
a

customize the model attribute name, as the following example shows:

Java

60

@GetMapping("/accounts/{id}")
@ModelAttribute("myAccount")
public Account handle() {

/] ...

return account;

Kotlin

@GetMapping("/accounts/{id}")
@ModelAttribute("myAccount”)
fun handle(): Account {

/] ...

return account

1.4.5. DataBinder

Web MVC

@Controller or @ControllerAdvice classes can have @InitBinder methods, to initialize instances of
WebDataBinder. Those, in turn, are used to:

* Bind request parameters (that is, form data or query) to a model object.

* Convert String-based request values (such as request parameters, path variables, headers,
cookies, and others) to the target type of controller method arguments.

» Format model object values as String values when rendering HTML forms.

@InitBinder methods can register controller-specific java.beans.PropertyEditor or Spring Converter
and Formatter components. In addition, you can use the WebFlux Java configuration to register
Converter and Formatter types in a globally shared FormattingConversionService.

@InitBinder methods support many of the same arguments that @RequestMapping methods do, except
for @ModelAttribute (command object) arguments. Typically, they are declared with a WebDataBinder
argument, for registrations, and a void return value. The following example uses the @InitBinder
annotation:

Java

@Controller
public class FormController {

@InitBinder @M
public void initBinder(WebDataBinder binder) {
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
dateFormat.setlenient(false);
binder.registerCustomEditor(Date.class, new CustomDateEditor(dateFormat,
false));
}

I woo

@ Using the @InitBinder annotation.

61

web.pdf#mvc-ann-initbinder

Kotlin

@Controller
class FormController {

@InitBinder @

fun initBinder(binder: WebDataBinder) {
val dateFormat = SimpleDateFormat("yyyy-MM-dd")
dateFormat.isLenient = false

binder.registerCustomEditor(Date::class.java, CustomDateEditor(dateFormat,

false))

}

/] ...
+

Alternatively, when using a Formatter-based setup through a shared FormattingConversionService,

you could re-use the same approach and register controller-specific Formatter instances, as the
following example shows:

Java

@Controller
public class FormController {

@InitBinder
protected void initBinder(WebDataBinder binder) {

binder.addCustomFormatter (new DateFormatter("yyyy-MM-dd")); @®
}

/] ...

@ Adding a custom formatter (a DateFormatter, in this case).

Kotlin

@Controller
class FormController {

@InitBinder

fun initBinder(binder: WebDataBinder) {
binder.addCustomFormatter (DateFormatter("yyyy-MM-dd")) @®

}

I woo

@ Adding a custom formatter (a DateFormatter, in this case).

62

1.4.6. Managing Exceptions

Web MVC

@Controller and @ControllerAdvice classes can have @ExceptionHandler methods to handle
exceptions from controller methods. The following example includes such a handler method:

Java

@Controller
public class SimpleController {

/...

@ExceptionHandler @M

public ResponseEntity<String> handle(IOException ex) {
/] ...

}

@ Declaring an @ExceptionHandler.

Kotlin

@Controller
class SimpleController {

I wo

@ExceptionHandler @

fun handle(ex: IOException): ResponseEntity<String> {
/] ...

}

@ Declaring an @ExceptionHandler.

The exception can match against a top-level exception being propagated (that is, a direct
I0Exception being thrown) or against the immediate cause within a top-level wrapper exception
(for example, an I0Exception wrapped inside an I1legalStateException).

For matching exception types, preferably declare the target exception as a method argument, as
shown in the preceding example. Alternatively, the annotation declaration can narrow the
exception types to match. We generally recommend being as specific as possible in the argument
signature and to declare your primary root exception mappings on a @ControllerAdvice prioritized
with a corresponding order. See the MVC section for details.

An @ExceptionHandler method in WebFlux supports the same method arguments

and return values as a @RequestMapping method, with the exception of request
body- and @ModelAttribute-related method arguments.

63

web.pdf#mvc-ann-exceptionhandler
web.pdf#mvc-ann-exceptionhandler

Support for eExceptionHandler methods in Spring WebFlux is provided by the HandlerAdapter for
@RequestMapping methods. See DispatcherHandler for more detail.

REST API exceptions

Web MVC

A common requirement for REST services is to include error details in the body of the response.
The Spring Framework does not automatically do so, because the representation of error details in
the response body is application-specific. However, a @RestController can use @ExceptionHandler
methods with a ResponseEntity return value to set the status and the body of the response. Such
methods can also be declared in @ControllerAdvice classes to apply them globally.

Note that Spring WebFlux does not have an equivalent for the Spring MVC

o ResponseEntityExceptionHandler, because WebFlux raises only
ResponseStatusException (or subclasses thereof), and those do not need to be
translated to an HTTP status code.

1.4.7. Controller Advice

Web MVC

Typically, the @ExceptionHandler, @InitBinder, and @ModelAttribute methods apply within the
@Controller class (or class hierarchy) in which they are declared. If you want such methods to apply
more globally (across controllers), you can declare them in a class annotated with
@ControllerAdvice or @RestControllerAdvice.

@ControllerAdvice is annotated with @Component, which means that such classes can be registered as
Spring beans through component scanning. @RestControllerAdvice is a composed annotation that is
annotated with both @ControllerAdvice and @ResponseBody, which essentially means
@ExceptionHandler methods are rendered to the response body through message conversion (versus
view resolution or template rendering).

On startup, the infrastructure classes for @RequestMapping and @ExceptionHandler methods detect
Spring beans annotated with @ControllerAdvice and then apply their methods at runtime. Global
@ExceptionHandler methods (from a @ControllerAdvice) are applied after local ones (from the
@Controller). By contrast, global @ModelAttribute and @InitBinder methods are applied before local
ones.

By default, @ControllerAdvice methods apply to every request (that is, all controllers), but you can
narrow that down to a subset of controllers by using attributes on the annotation, as the following
example shows:

64

web.pdf#mvc-ann-rest-exceptions
web.pdf#mvc-ann-controller-advice
core.pdf#beans-java-instantiating-container-scan

Java

// Target all Controllers annotated with @RestController
@ControllerAdvice(annotations = RestController.class)
public class ExampleAdvicel {}

// Target all Controllers within specific packages
@ControllerAdvice("org.example.controllers")
public class ExampleAdvice2 {}

// Target all Controllers assignable to specific classes
@ControllerAdvice(assignableTypes = {ControllerInterface.class,
AbstractController.class})

public class ExampleAdvice3 {}

Kotlin

// Target all Controllers annotated with @RestController
@ControllerAdvice(annotations = [RestController::class])
public class ExampleAdvicel {}

// Target all Controllers within specific packages
@ControllerAdvice("org.example.controllers")
public class ExampleAdvice2 {}

// Target all Controllers assignable to specific classes
@ControllerAdvice(assignableTypes = [ControllerInterface::class,
AbstractController::class])

public class ExampleAdvice3 {}

The selectors in the preceding example are evaluated at runtime and may negatively impact
performance if used extensively. See the @ControllerAdvice javadoc for more details.

1.5. Functional Endpoints
Web MVC

Spring WebFlux includes WebFlux.fn, a lightweight functional programming model in which
functions are used to route and handle requests and contracts are designed for immutability. It is
an alternative to the annotation-based programming model but otherwise runs on the same
Reactive Core foundation.

1.5.1. Overview

Web MVC

In WebFlux.fn, an HTTP request is handled with a HandlerFunction: a function that takes
ServerRequest and returns a delayed ServerResponse (i.e. Mono<ServerResponse>). Both the request and
the response object have immutable contracts that offer JDK 8-friendly access to the HTTP request

65

https://docs.spring.io/spring-framework/docs/5.3.7/javadoc-api/org/springframework/web/bind/annotation/ControllerAdvice.html
web.pdf#webmvc-fn
web.pdf#webmvc-fn-overview

and response. HandlerFunction is the equivalent of the body of a @RequestMapping method in the
annotation-based programming model.

Incoming requests are routed to a handler function with a RouterFunction: a function that takes
ServerRequest and returns a delayed HandlerFunction (i.e. Mono<HandlerFunction>). When the router
function matches, a handler function is returned; otherwise an empty Mono. RouterFunction is the
equivalent of a @RequestMapping annotation, but with the major difference that router functions
provide not just data, but also behavior.

RouterFunctions.route() provides a router builder that facilitates the creation of routers, as the
following example shows:

Java

import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.server.RequestPredicates.?*;
import static org.springframework.web.reactive.function.server.RouterFunctions.route;

PersonRepository repository = ...
PersonHandler handler = new PersonHandler(repository);

RouterFunction<ServerResponse> route = route()
.GET("/person/{id}", accept(APPLICATION_JSON), handler::getPerson)
.GET("/person", accept(APPLICATION_JSON), handler::listPeople)
.POST("/person", handler::createPerson)
.build();

public class PersonHandler {
/] ...

public Mono<ServerResponse> listPeople(ServerRequest request) {
/] ...
}

public Mono<ServerResponse> createPerson(ServerRequest request) {
/] ...
}

public Mono<ServerResponse> getPerson(ServerRequest request) {
/] ...
}

66

Kotlin

val repository: PersonRepository = ...
val handler = PersonHandler(repository)

val route = coRouter { @
accept (APPLICATION_JSON).nest {
GET("/person/{id}", handler::getPerson)
GET("/person", handler::listPeople)

}

POST("/person", handler::createPerson)

class PersonHandler(private val repository: PersonRepository) {
/] ...

suspend fun listPeople(request: ServerRequest): ServerResponse {
/] ...
}

suspend fun createPerson(request: ServerRequest): ServerResponse {
/] e
}

suspend fun getPerson(request: ServerRequest): ServerResponse {
/] ...
}

@ Create router using Coroutines router DSL, a Reactive alternative is also available via router { }.

One way to run a RouterFunction is to turn it into an HttpHandler and install it through one of the
built-in server adapters:

* RouterFunctions.toHttpHandler (RouterFunction)

* RouterFunctions.toHttpHandler (RouterFunction, HandlerStrategies)

Most applications can run through the WebFlux Java configuration, see Running a Server.

1.5.2. HandlerFunction

Web MVC

ServerRequest and ServerResponse are immutable interfaces that offer JDK 8-friendly access to the
HTTP request and response. Both request and response provide Reactive Streams back pressure
against the body streams. The request body is represented with a Reactor Flux or Mono. The response
body is represented with any Reactive Streams Publisher, including Flux and Mono. For more on that,
see Reactive Libraries.

67

web.pdf#webmvc-fn-handler-functions
https://www.reactive-streams.org

ServerRequest

ServerRequest provides access to the HTTP method, URI, headers, and query parameters, while
access to the body is provided through the body methods.

The following example extracts the request body to a Mono<String>:

Java

Mono<String> string = request.bodyToMono(String.class);

Kotlin

val string = request.awaitBody<String>()

The following example extracts the body to a Flux<Person> (or a Flow<Person> in Kotlin), where
Person objects are decoded from someserialized form, such as JSON or XML:

Java

Flux<Person> people = request.bodyToFlux(Person.class);

Kotlin

val people = request.bodyToFlow<Person>()

The preceding examples are shortcuts that use the more general
ServerRequest.body(BodyExtractor), which accepts the BodyExtractor functional strategy interface.
The utility class BodyExtractors provides access to a number of instances. For example, the
preceding examples can also be written as follows:

Java

Mono<String> string
Flux<Person> people

request.body(BodyExtractors.toMono(String.class));
request.body(BodyExtractors.toFlux(Person.class));

Kotlin

val string
val people

request.body(BodyExtractors.toMono(String::class.java)).awaitSingle()
request.body(BodyExtractors.toFlux(Person::class.java)).asFlow()

The following example shows how to access form data:

Java

Mono<MultiValueMap<String, String> map = request.formData();

68

Kotlin

val map = request.awaitFormData()

The following example shows how to access multipart data as a map:

Java

Mono<MultiValueMap<String, Part> map = request.multipartData();

Kotlin

val map = request.awaitMultipartData()

The following example shows how to access multiparts, one at a time, in streaming fashion:

Java

Flux<Part> parts = request.body(BodyExtractors.toParts());

Kotlin

val parts = request.body(BodyExtractors.toParts()).asFlow()

ServerResponse

ServerResponse provides access to the HTTP response and, since it is immutable, you can use a build
method to create it. You can use the builder to set the response status, to add response headers, or
to provide a body. The following example creates a 200 (OK) response with JSON content:

Java
Mono<Person> person = ...

ServerResponse.ok().contentType(MediaType.APPLICATION_JSON).body(person,
Person.class);

Kotlin

val person: Person = ...
ServerResponse.ok().contentType(MediaType.APPLICATION_JSON).bodyValue(person)

The following example shows how to build a 201 (CREATED) response with a Location header and
no body:

69

Java

URI location = ...
ServerResponse.created(location).build();

Kotlin

val location: URI = ...
ServerResponse.created(location).build()

Depending on the codec used, it is possible to pass hint parameters to customize how the body is
serialized or deserialized. For example, to specify a Jackson JSON view:

Java

ServerResponse.ok().hint(Jackson2CodecSupport.JSON_VIEW_HINT,
MyJacksonView.class).body(...);

Kotlin

ServerResponse.ok().hint(Jackson2CodecSupport.JSON_VIEW_HINT,
MyJacksonView: :class.java).body(...)

Handler Classes
We can write a handler function as a lambda, as the following example shows:

Java

HandlerFunction<ServerResponse> helloWorld =
request -> ServerResponse.ok().bodyValue("Hello World");

Kotlin

val helloWorld = HandlerFunction<ServerResponse> {
ServerResponse.ok().bodyValue("Hello World") }

That is convenient, but in an application we need multiple functions, and multiple inline lambda’s
can get messy. Therefore, it is useful to group related handler functions together into a handler
class, which has a similar role as @Controller in an annotation-based application. For example, the
following class exposes a reactive Person repository:

70

https://www.baeldung.com/jackson-json-view-annotation

Java

import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.server.ServerResponse.ok;

public class PersonHandler {
private final PersonRepository repository;

public PersonHandler(PersonRepository repository) {
this.repository = repository;

}

public Mono<ServerResponse> listPeople(ServerRequest request) { @
Flux<Person> people = repository.allPeople();
return ok().contentType(APPLICATION_JSON).body(people, Person.class);
}

public Mono<ServerResponse> createPerson(ServerRequest request) { @
Mono<Person> person = request.bodyToMono(Person.class);
return ok().build(repository.savePerson(person));

}

public Mono<ServerResponse> getPerson(ServerRequest request) { ®
int personld = Integer.valueOf(request.pathVariable("id"));
return repository.getPerson(personld)
.flatMap(person -> ok().contentType(APPLICATION_JSON).bodyValue(person))
.switchIfEmpty(ServerResponse.notFound().build());

@ listPeople is a handler function that returns all Person objects found in the repository as JSON.

@ createPerson is a handler function that stores a new Person contained in the request body. Note
that PersonRepository.savePerson(Person) re