Spring Framework Documentation

Rod Johnson, Juergen Hoeller, Keith Donald, Colin Sampaleanu, Rob Harrop,
Thomas Risberg, Alef Arendsen, Darren Davison, Dmitriy Kopylenko, Mark
Pollack, Thierry Templier, Erwin Vervaet, Portia Tung, Ben Hale, Adrian Colyer,
John Lewis, Costin Leau, Mark Fisher, Sam Brannen, Ramnivas Laddad, Arjen
Poutsma, Chris Beams, Tareq Abedrabbo, Andy Clement, Dave Syer, Oliver
Gierke, Rossen Stoyanchev, Phillip Webb, Rob Winch, Brian Clozel, Stephane
Nicoll, Sebastien Deleuze, Jay Bryant, Mark Paluch

Version 6.0.6

Table of Contents

1. Legal
2. Spring Framework Overview
2.1. What We Mean by "Spring"
2.2. History of Spring and the Spring Framework
2.3. Design Philosophy
2.4. Feedback and Contributions
2.5. Getting Started
3. Core Technologies
3.1. The IoC Container
3.1.1. Introduction to the Spring IoC Container and Beans
3.1.2. Container Overview
Configuration Metadata
Instantiating a Container
Using the Container
3.1.3. Bean Overview
Naming Beans
Instantiating Beans
3.1.4. Dependencies
Dependency Injection
Dependencies and Configuration in Detail
Using depends-on
Lazy-initialized Beans
Autowiring Collaborators
Method Injection
3.1.5. Bean Scopes
The Singleton Scope
The Prototype Scope
Singleton Beans with Prototype-bean Dependencies
Request, Session, Application, and WebSocket Scopes
Custom Scopes
3.1.6. Customizing the Nature of a Bean
Lifecycle Callbacks
ApplicationContextAware and BeanNameAware
Other Aware Interfaces
3.1.7. Bean Definition Inheritance
3.1.8. Container Extension Points
Customizing Beans by Using a BeanPostProcessor

Customizing Configuration Metadata with a BeanFactoryPostProcessor

© 00 I O O O U1 U b W W W N

0 00 00 N g o o o Ul Ul Uyl R WN N R R R
Ul Rk R © 00 1 00 00 U1 00 00 ~J O U1 N Ul W w NN SO N

Customizing Instantiation Logic with a FactoryBean 89

3.1.9. Annotation-based Container Configuration 89
Using @Autowired 91
Fine-tuning Annotation-based Autowiring with @Primary 99
Fine-tuning Annotation-based Autowiring with Qualifiers 101
Using Generics as Autowiring Qualifiers 111
Using CustomAutowireConfigurer 113
Injection with @Resource 114
Using @Value 116
Using @PostConstruct and @PreDestroy 120

3.1.10. Classpath Scanning and Managed Components 122
@Component and Further Stereotype Annotations 122
Using Meta-annotations and Composed Annotations 122
Automatically Detecting Classes and Registering Bean Definitions 125
Using Filters to Customize Scanning 127
Defining Bean Metadata within Components 129
Naming Autodetected Components 133
Providing a Scope for Autodetected Components 135
Providing Qualifier Metadata with Annotations 137
Generating an Index of Candidate Components 138

3.1.11. Using JSR 330 Standard Annotations 139
Dependency Injection with @Inject and @Named 140
@Named and @ManagedBean: Standard Equivalents to the @Component Annotation 143
Limitations of JSR-330 Standard Annotations 145

3.1.12. Java-based Container Configuration 146
Basic Concepts: @Bean and @Configuration 147
Instantiating the Spring Container by Using AnnotationConfigApplicationContext 148
Using the @Bean Annotation 153
Using the @Configuration annotation 164
Composing Java-based Configurations 169

3.1.13. Environment Abstraction 186
Bean Definition Profiles 186
PropertySource Abstraction 195
Using @PropertySource 197
Placeholder Resolution in Statements 199

3.1.14. Registering a LoadTimeWeaver 200

3.1.15. Additional Capabilities of the ApplicationContext 201
Internationalization using MessageSource 201
Standard and Custom Events 205
Convenient Access to Low-level Resources 215

Application Startup Tracking 216

Convenient ApplicationContext Instantiation for Web Applications 217

Deploying a Spring ApplicationContext as a Jakarta EE RAR File 218
3.1.16. The BeanFactory API 218
BeanFactory or ApplicationContext? 219
3.2. Resources 221
3.2.1. Introduction 222
3.2.2. The Resource Interface 222
3.2.3. Built-in Resource Implementations 224
UrlResource 224
(lassPathResource 225
FileSystemResource 225
PathResource 225
ServletContextResource 225
InputStreamResource 225
ByteArrayResource 226
3.2.4. The ResourcelLoader Interface 226
3.2.5. The ResourcePatternResolver Interface 228
3.2.6. The ResourcelLoaderAware Interface 228
3.2.7. Resources as Dependencies 229
3.2.8. Application Contexts and Resource Paths 232
Constructing Application Contexts 232
Wildcards in Application Context Constructor Resource Paths 233
FileSystemResource Caveats 236
3.3. Validation, Data Binding, and Type Conversion 238
3.3.1. Validation by Using Spring’s Validator Interface 239
3.3.2. Resolving Codes to Error Messages 242
3.3.3. Bean Manipulation and the BeanWrapper 243
Setting and Getting Basic and Nested Properties 243
Built-in PropertyEditor Implementations 246
3.3.4. Spring Type Conversion 254
Converter SPI 254
Using ConverterFactory 255
Using GenericConverter 256
The ConversionService API 257
Configuring a ConversionService 258
Using a ConversionService Programmatically 259
3.3.5. Spring Field Formatting 260
The Formatter SPI 261
Annotation-driven Formatting 263
The FormatterRegistry SPI 266

The FormatterRegistrar SPI 267

Configuring Formatting in Spring MVC 267

3.3.6. Configuring a Global Date and Time Format 268
3.3.7.Java Bean Validation 270
Overview of Bean Validation 270
Configuring a Bean Validation Provider 271
Configuring a DataBinder 275
Spring MVC 3 Validation 276
3.4. Spring Expression Language (SpEL) 276
3.4.1. Evaluation 277
Understanding EvaluationContext 281
Parser Configuration 282
SpEL Compilation 284
3.4.2. Expressions in Bean Definitions 286
XML Configuration 286
Annotation Configuration 287
3.4.3. Language Reference 290
Literal Expressions 291
Properties, Arrays, Lists, Maps, and Indexers 292
Inline Lists 294
Inline Maps 295
Array Construction 295
Methods 296
Operators 297
Types 304
Constructors 304
Variables 305
Functions 307
Bean References 308
Ternary Operator (If-Then-Else) 309
The Elvis Operator 310
Safe Navigation Operator 312
Collection Selection 312
Collection Projection 313
Expression templating 314
3.4.4. Classes Used in the Examples 315
3.5. Aspect Oriented Programming with Spring 320
3.5.1. AOP Concepts 321
3.5.2. Spring AOP Capabilities and Goals 322
3.5.3. AOP Proxies 323
3.5.4. @Aspect] support 324

Enabling @Aspect] Support 324

Declaring an Aspect 325

Declaring a Pointcut 326
Declaring Advice 336
Introductions 353
Aspect Instantiation Models 354
An AOP Example 355
3.5.5. Schema-based AOP Support 358
Declaring an Aspect 359
Declaring a Pointcut 359
Declaring Advice 362
Introductions 370
Aspect Instantiation Models 372
Advisors 372
An AOP Schema Example 372
3.5.6. Choosing which AOP Declaration Style to Use 376
Spring AOP or Full Aspect]? 376
@Aspect] or XML for Spring AOP? 376
3.5.7. Mixing Aspect Types 377
3.5.8. Proxying Mechanisms 378
Understanding AOP Proxies 378
3.5.9. Programmatic Creation of @Aspect] Proxies 383
3.5.10. Using Aspect] with Spring Applications 383
Using Aspect] to Dependency Inject Domain Objects with Spring 384
Other Spring aspects for Aspect] 388
Configuring Aspect] Aspects by Using Spring IoC 389
Load-time Weaving with Aspect] in the Spring Framework 390
3.5.11. Further Resources 401
3.6. Spring AOP APIs 401
3.6.1. Pointcut API in Spring 401
Concepts 401
Operations on Pointcuts 402
Aspect] Expression Pointcuts 402
Convenience Pointcut Implementations 403
Pointcut Superclasses 404
Custom Pointcuts 405
3.6.2. Advice API in Spring 405
Advice Lifecycles 405
Advice Types in Spring 406
3.6.3. The Advisor API in Spring 416
3.6.4. Using the ProxyFactoryBean to Create AOP Proxies 416

Basics 416

JavaBean Properties 417

JDK- and CGLIB-based proxies 418
Proxying Interfaces 419
Proxying Classes 421
Using “Global” Advisors 422
3.6.5. Concise Proxy Definitions 422
3.6.6. Creating AOP Proxies Programmatically with the ProxyFactory 424
3.6.7. Manipulating Advised Objects 424
3.6.8. Using the "auto-proxy" facility 427
Auto-proxy Bean Definitions 428
3.6.9. Using TargetSource Implementations 429
Hot-swappable Target Sources 430
Pooling Target Sources 431
Prototype Target Sources 432
ThreadlLocal Target Sources 433
3.6.10. Defining New Advice Types 433
3.7. Null-safety 434
3.7.1. Use cases 434
3.7.2.JSR-305 meta-annotations 434
3.8. Data Buffers and Codecs 435
3.8.1. DataBufferFactory 435
3.8.2. DataBuffer 435
3.8.3. PooledDataBuffer 435
3.8.4. DataBufferUtils 436
3.8.5. Codecs 436
3.8.6. Using DataBuffer 436
3.9. Logging 438
3.10. Ahead of Time Optimizations 438
3.10.1. Introduction to Ahead of Time Optimizations 438
3.10.2. AOT engine overview 439
3.10.3. Refresh for AOT Processing 440
3.10.4. Bean Factory Initialization AOT Contributions 440
Bean Registration AOT Contributions 441
3.10.5. Runtime Hints 444
@ImportRuntimeHints 444
@Reflective 446
@RegisterReflectionForBinding 446
Testing Runtime Hints 446
3.11. Appendix 450
3.11.1. XML Schemas 450

The util Schema 450

The aop Schema
The context Schema
The Beans Schema
3.11.2. XML Schema Authoring
Authoring the Schema
Coding a NamespaceHandler
Using BeanDefinitionParser
Registering the Handler and the Schema
Using a Custom Extension in Your Spring XML Configuration
More Detailed Examples
3.11.3. Application Startup Steps
4. Testing
4.1. Introduction to Spring Testing
4.2. Unit Testing
4.2.1. Mock Objects
Environment
JNDI
Servlet API
Spring Web Reactive
4.2.2. Unit Testing Support Classes
General Testing Utilities
Spring MVC Testing Utilities
4.3. Integration Testing
4.3.1. Goals of Integration Testing
Context Management and Caching
Dependency Injection of Test Fixtures
Transaction Management
Support Classes for Integration Testing
4.4. JDBC Testing Support
4.4.1. JdbcTestUtils
4.4.2. Embedded Databases
4.5. Spring TestContext Framework
4.5.1. Key Abstractions
TestContext
TestContextManager
TestExecutionListener
Context Loaders
4.5.2. Bootstrapping the TestContext Framework
4.5.3. TestExecutionListener Configuration
Registering TestExecutionListener Implementations

Automatic Discovery of Default TestExecutionListener Implementations

459
459
461
461
462
464
465
467
468
469
483
485
485
485
485
485
486
486
486
487
487
487
488
488
489
489
490
490
490
491
491
491
492
492
492
492
492
493
494
494
495

Ordering TestExecutionListener Implementations
Merging TestExecutionListener Implementations
4.5.4. Application Events
4.5.5. Test Execution Events
Exception Handling
Asynchronous Listeners
4.5.6. Context Management
Context Configuration with XML resources
Context Configuration with Groovy Scripts
Context Configuration with Component Classes
Mixing XML, Groovy Scripts, and Component Classes
Context Configuration with Context Initializers
Context Configuration Inheritance
Context Configuration with Environment Profiles
Context Configuration with Test Property Sources
Context Configuration with Dynamic Property Sources
Loading a WebApplicationContext
Working with Web Mocks
Context Caching
Context Hierarchies
4.5.7. Dependency Injection of Test Fixtures
4.5.8. Testing Request- and Session-scoped Beans
4.5.9. Transaction Management
Test-managed Transactions
Enabling and Disabling Transactions
Transaction Rollback and Commit Behavior
Programmatic Transaction Management
Running Code Outside of a Transaction
Configuring a Transaction Manager
Demonstration of All Transaction-related Annotations
4.5.10. Executing SQL Scripts
Executing SQL scripts programmatically
Executing SQL scripts declaratively with @Sql
4.5.11. Parallel Test Execution
4.5.12. TestContext Framework Support Classes
Spring JUnit 4 Runner
Spring JUnit 4 Rules
JUnit 4 Support Classes
SpringExtension for JUnit Jupiter
TestNG Support Classes
4.5.13. Ahead of Time Support for Tests

495
496
497
499
500
501
501
503
505
507
510
511
512
515
525
530
532
535
537
539
544
548
552
552
553
556
557
558
559
559
566
566
568
574
575
575
576
377
578
586
587

4.6. WebTestClient 588

4.6.1. Setup 588
Bind to Controller 588
Bind to ApplicationContext 589
Bind to Router Function 591
Bind to Server 591
Client Config 592

4.6.2. Writing Tests 592
No Content 594
JSON Content 595
Streaming Responses 596
MockMvc Assertions 597

4.7. MockMvc 598

4.7.1. Overview 599

4.7.2. Static Imports 599

4.7.3. Setup Choices 599

4.7.4. Setup Features 603

4.7.5. Performing Requests 603

4.7.6. Defining Expectations 606

4.7.7. Async Requests 610

4.7.8. Streaming Responses 611

4.7.9. Filter Registrations 612

4.7.10. MockMvc vs End-to-End Tests 612

4.7.11. Further Examples 613

4.7.12. HtmlUnit Integration 613
Why HtmlUnit Integration? 614
MockMvc and HtmlUnit 617
MockMvc and WebDriver 622
MockMvc and Geb 631

4.8. Testing Client Applications 633
4.8.1. Static Imports 637
4.8.2. Further Examples of Client-side REST Tests 637

4.9. Appendix 637

4.9.1. Annotations 637
Standard Annotation Support 637
Spring Testing Annotations 638
Spring JUnit 4 Testing Annotations 657
Spring JUnit Jupiter Testing Annotations 660
Meta-Annotation Support for Testing 666

4.9.2. Further Resources 672

5. Data Access 673

5.1. Transaction Management
5.1.1. Advantages of the Spring Framework’s Transaction Support Model
Global Transactions
Local Transactions
Spring Framework’s Consistent Programming Model
5.1.2. Understanding the Spring Framework Transaction Abstraction
Hibernate Transaction Setup
5.1.3. Synchronizing Resources with Transactions
High-level Synchronization Approach
Low-level Synchronization Approach
TransactionAwareDataSourceProxy
5.1.4. Declarative Transaction Management
Understanding the Spring Framework’s Declarative Transaction Implementation
Example of Declarative Transaction Implementation
Rolling Back a Declarative Transaction
Configuring Different Transactional Semantics for Different Beans
<tx:advice/> Settings
Using @Transactional
Transaction Propagation
Advising Transactional Operations
Using @Transactional with Aspect]
5.1.5. Programmatic Transaction Management
Using the TransactionTemplate
Using the TransactionalOperator
Using the TransactionManager
5.1.6. Choosing Between Programmatic and Declarative Transaction Management
5.1.7. Transaction-bound Events
5.1.8. Application server-specific integration
IBM WebSphere
Oracle WebLogic Server
5.1.9. Solutions to Common Problems
Using the Wrong Transaction Manager for a Specific DataSource
5.1.10. Further Resources
5.2. DAO Support
5.2.1. Consistent Exception Hierarchy
5.2.2. Annotations Used to Configure DAO or Repository Classes
5.3. Data Access with J]DBC
5.3.1. Choosing an Approach for JDBC Database Access
5.3.2. Package Hierarchy

5.3.3. Using the JDBC Core Classes to Control Basic JDBC Processing and Error Handling

Using JdbcTemplate

673
673
674
674
674
675
679
681
681
681
682
682
683
684
693
696
699
700
715
716
722
723
723
727
730
731
732
733
733
733
734
734
734
734
734
735
738
738
739
740
740

Using NamedParameterJdbcTemplate 748

Using SQLExceptionTranslator 751
Running Statements 754
Running Queries 755
Updating the Database 757
Retrieving Auto-generated Keys 757
5.3.4. Controlling Database Connections 758
Using DataSource 758
Using DataSourceUtils 760
Implementing SmartDataSource 760
Extending AbstractDataSource 761
Using SingleConnectionDataSource 761
Using DriverManagerDataSource 761
Using TransactionAwareDataSourceProxy 761
Using DataSourceTransactionManager 762
5.3.5. JDBC Batch Operations 762
Basic Batch Operations with JdbcTemplate 762
Batch Operations with a List of Objects 764
Batch Operations with Multiple Batches 767
5.3.6. Simplifying JDBC Operations with the SimpleJdbc Classes 769
Inserting Data by Using SimpleJdbcInsert 769
Retrieving Auto-generated Keys by Using SimpleJdbcInsert 770
Specifying Columns for a SimpleJdbcInsert 772
Using SqlParameterSource to Provide Parameter Values 773
Calling a Stored Procedure with SimpleJdbcCall 774
Explicitly Declaring Parameters to Use for a SimpleJdbcCall 778
How to Define SqlParameters 779
Calling a Stored Function by Using SimpleJdbcCall 780
Returning a ResultSet or REF Cursor from a SimpleJdbcCall 781
5.3.7. Modeling JDBC Operations as Java Objects 783
Understanding SqlQuery 783
Using MappingSqlQuery 784
Using SqlUpdate 785
Using StoredProcedure 787
5.3.8. Common Problems with Parameter and Data Value Handling 795
Providing SQL Type Information for Parameters 795
Handling BLOB and CLOB objects 796
Passing in Lists of Values for IN Clause 799
Handling Complex Types for Stored Procedure Calls 800
5.3.9. Embedded Database Support 802

Why Use an Embedded Database? 802

Creating an Embedded Database by Using Spring XML
Creating an Embedded Database Programmatically
Selecting the Embedded Database Type
Testing Data Access Logic with an Embedded Database
Generating Unique Names for Embedded Databases
Extending the Embedded Database Support
5.3.10. Initializing a DataSource
Initializing a Database by Using Spring XML
5.4. Data Access with R2DBC
5.4.1. Package Hierarchy
5.4.2. Using the R2DBC Core Classes to Control Basic R2ZDBC Processing and Error Handling
Using Database(lient
5.4.3. Retrieving Auto-generated Keys
5.4.4. Controlling Database Connections
Using ConnectionFactory
Using ConnectionFactoryUtils
Using SingleConnectionFactory
Using TransactionAwareConnectionFactoryProxy
Using R2dbcTransactionManager
5.5. Object Relational Mapping (ORM) Data Access
5.5.1. Introduction to ORM with Spring
5.5.2. General ORM Integration Considerations
Resource and Transaction Management
Exception Translation
5.5.3. Hibernate
SessionFactory Setup in a Spring Container
Implementing DAOs Based on the Plain Hibernate API
Declarative Transaction Demarcation
Programmatic Transaction Demarcation
Transaction Management Strategies
Comparing Container-managed and Locally Defined Resources
Spurious Application Server Warnings with Hibernate
5.5.4.JPA
Three Options for JPA Setup in a Spring Environment
Implementing DAOs Based on JPA: EntityManagerFactory and EntityManager
Spring-driven JPA transactions
Understanding JpaDialect and JpaVendorAdapter
Setting up JPA with JTA Transaction Management
Native Hibernate Setup and Native Hibernate Transactions for JPA Interaction
5.6. Marshalling XML by Using Object-XML Mappers

5.6.1. Introduction

802
803
804
805
807
808
808
808
810
811
811
811
820
821
821
821
822
822
822
822
823
824
824
825
826
826
828
830
831
833
834
834
836
836
841
845
845
846
846
847
847

Ease of configuration. 847

Consistent Interfaces 847
Consistent Exception Hierarchy 847
5.6.2. Marshaller and Unmarshaller 848
Understanding Marshaller 848
Understanding Unmarshaller 848
Understanding XmlMappingException. 849
5.6.3. Using Marshaller and Unmarshaller. i 850
5.6.4. XML Configuration Namespace. it 853
5.6.5. JAX B . 853
Using Jaxb2Marshaller 853
5.6.6. JIBX . 855
Using JibxMarshaller 855
S.6.7. XSTr@aIIL.o 856
Using XStreamMarshaller 856
5.7 APPENAIX 857
5.7.1. XML Schemas.o 857
The tx Schema 857
The jdbc Schema 858

6. Web on Servlet Stack. 860
6.1. Spring Web MV C 860
6.1.1. DispatcherServiet 860
Context Hierarchy. 862
Special Bean Types 865
Web MVC Config 866
Serviet Config. 867
PrOCeSSING. oo 870
Path Matching 872
INtercePlion 873
EXCEPUIONS . . . 873
View Resolution. 875
Locale. .. e 878
Themes ... 880
Multipart ResolVer 881
LOgGING . . . 883
6.1.2. FIlterS. . . o 885
Form Data. 885
Forwarded Headers 885
Shallow ETag 886
CORS . e 886

Declaration.o 887

Request Mappingo 889
Handler Methods 899
MoOdel . 929
DataBinder 931
EXCEPUIONS . . . 935
Controller AAVICE 940
6.1.4. Functional ENApoints. 941
OVEIVIEW. . . o 941
HandlerFUunCtion. 943
RouterFUNCtION . . o 951
RUunning a Server 955
Filtering Handler Functions. 957
6.1.5. URL LINKS. 960
UriCOmMPONENtSo 960
UriBuilder. 962
URLENCOAINGo 963
Relative Servlet Requests 966
Links to Controllers 968
LINKS IN VIEWS . . .o 970
6.1.6. Asynchronous Requests 971
DeferredResult o 972
Callable. . oo 972
PrOCeSSINE. oo 973
HTTP Streamingo 975
Reactive Ty Peso 978
Context Propagation. 978
DISCONINECES. «o 979
Configuration. 979
6.1.7. CORS . . . 980
INtroducCtion. 980
PrOCeSSING. oo 980
OCroSSOMTgin . oo 981
Global Configuration 984
CORS Filtero 986
6.1.8. ErrOr ReSpONSes 987
ReNAer . . 988
Non-Standard Fields. 988
Internationalization. 988
Client Handlingo 990

6.1.9. Web SeCUrity 990

6.1.10. HTTP Caching
CacheControl
Controllers
Static Resources
ETag Filter

6.1.11. View Technologies
Thymeleaf
FreeMarker
Groovy Markup
Script Views
JSP and JSTL
RSS and Atom
PDF and Excel
Jackson
XML Marshalling
XSLT Views

6.1.12. MVC Config
Enable MVC Configuration
MVC Config API
Type Conversion
Validation
Interceptors
Content Types
Message Converters
View Controllers
View Resolvers
Static Resources
Default Servlet
Path Matching
Advanced Java Config
Advanced XML Config

6.1.13. HTTP/2

6.2. REST Clients

6.2.1. RestTemplate

6.2.2. WebClient

6.2.3. HTTP Interface

6.3. Testing
6.4. WebSockets

6.4.1. Introduction to WebSocket

HTTP Versus WebSocket
When to Use WebSockets

990

991

992

993

994

994

994

994
1002
1004
1009
1025
1026
1028
1028
1029
1032
1033
1033
1034
1036
1038
1039
1040
1042
1043
1046
1049
1050
1051
1052
1053
1053
1053
1053
1054
1054
1054
1055
1056
1056

6.4.2. WebSocket API 1056

WebSocketHandler 1057
WebSocket Handshake 1058
Deployment 1059
Server Configuration 1061
Allowed Origins 1063
6.4.3. Sock]JS Fallback 1065
Overview 1065
Enabling Sock]S 1066
IE8 and 9 1067
Heartbeats 1068
Client Disconnects 1069
Sock]S and CORS 1069
SockJsClient 1070
6.4.4. STOMP 1071
Overview 1071
Benefits 1073
Enable STOMP 1073
WebSocket Server 1075
Flow of Messages 1076
Annotated Controllers 1079
Sending Messages 1082
Simple Broker 1083
External Broker 1083
Connecting to a Broker 1085
Dots as Separators 1086
Authentication 1088
Token Authentication 1088
Authorization 1089
User Destinations 1090
Order of Messages 1092
Events 1093
Interception 1094
STOMP Client 1095
WebSocket Scope 1096
Performance 1098
Monitoring 1100
Testing 1102
6.5. Other Web Frameworks 1103
6.5.1. Common Configuration 1103

6.5.2. JSF 1104

Spring Bean ResOlver. 1105

Using FacesContextUtils 1105
6.5.3. Apache Struts. 1105
6.5.4. Apache Tapestry 1105
6.5.5. Further Resources 1106

7. Web on Reactive Stack 1107
7.1.Spring WebFIUX 1107
T LA OVEIVIEW ..o 1107

Define “ReactiVe” 1107

Reactive APL 1108

Programming Models 1108

Applicability. 1109

STV, . . 1110

Performance 1111

Concurrency Model o 1111
7.1.2.Reactive COTE oo 1112

HEtpHaNd e . o 1112

WebHandler APT 1115

FIlerS. 1118

EXCEPUIONS . . . o 1118

COAEBCS 1119

LOZGING . . . 1121
7.1.3. DispatcherHandler 1124

Special Bean Types. 1125

WebFlux Config. 1125

PrOCeSSING.o 1126

Result Handling. 1126

EXCEPUIONS . . . o 1126

View Resolution 1127
7.1.4. Annotated Controllers. 1128

OCONE IOl er. o 1129

Request Mappingo 1130

Handler Methods 1139

Mode L. . o 1165

DataBinder. .. o 1168

EXCEPUIONS . . . o 1171

Controller AQVICE 1173
7.1.5. Functional Endpoints 1174

OVEIVIEW . . oot 1174

HandlerFUnCtion. 1176

ROUtErFUNCETON . . o 1184

Running a Server 1188

Filtering Handler Functions 1190
7.1.6. URI Links 1193
UriComponents 1193
UriBuilder 1195
URI Encoding 1196
7.1.7. CORS 1199
Introduction 1199
Processing 1200
@CrossOrigin 1200
Global Configuration 1203
CORS WebFilter 1205
7.1.8. Error Responses 1206
Render 1207
Non-Standard Fields 1207
Internationalization 1208
Client Handling 1209
7.1.9. Web Security 1209
7.1.10. HTTP Caching 1209
CacheControl 1209
Controllers 1210
Static Resources 1212
7.1.11. View Technologies 1213
Thymeleaf 1213
FreeMarker 1213
Script Views 1216
JSON and XML 1220
7.1.12. WebFlux Config 1220
Enabling WebFlux Config 1221
WebFlux config API 1221
Conversion, formatting 1222
Validation 1223
Content Type Resolvers 1225
HTTP message codecs 1226
View Resolvers 1227
Static Resources 1230
Path Matching 1232
WebSocketService 1233
Advanced Configuration Mode 1234
7.1.13. HTTP/2 1235

7.2. WebClient 1235

7.2.1. Configuration
MaxInMemorySize
Reactor Netty
JDK HttpClient
Jetty
HttpComponents

7.2.2. retrieve()

7.2.3. Exchange

7.2.4. Request Body
Form Data
Multipart Data

7.2.5. Filters

7.2.6. Attributes

7.2.7. Context

7.2.8. Synchronous Use

7.2.9. Testing

7.3. HTTP Interface Client
7.4. WebSockets

7.4.1. Introduction to WebSocket

HTTP Versus WebSocket
When to Use WebSockets

7.4.2. WebSocket API
Server
WebSocketHandler
DataBuffer
Handshake
Server Configuration
CORS
Client

7.5. Testing
7.6. RSocket

7.6.1. Overview
The Protocol
Java Implementation
Spring Support

7.6.2. RSocketRequester
Client Requester
Server Requester
Requests

7.6.3. Annotated Responders

Server Responders

1235
1237
1237
1242
1242
1244
1244
1246
1247
1249
1250
1252
1255
1256
1256
1258
1258
1258
1259
1259
1260
1260
1260
1262
1267
1267
1267
1268
1269
1269
1270
1270
1270
1271
1272
1272
1272
1276
1277
1279
1279

Client Responders
@MessageMapping
@ConnectMapping
7.6.4. MetadataExtractor
7.6.5. RSocket Interface
Method Parameters
Return Values
7.7. Reactive Libraries
8. Integration
8.1. REST Clients
8.1.1. WebClient
8.1.2. RestTemplate
Initialization
Body
Jackson JSON Views
Multipart
8.1.3. HTTP Interface
Method Parameters
Return Values
Exception Handling
8.2. JMS (Java Message Service)
8.2.1. Using Spring JMS
Using JmsTemplate
Connections
Destination Management
Message Listener Containers
Transaction Management
8.2.2. Sending a Message
Using Message Converters
Using SessionCallback and ProducerCallback
8.2.3. Receiving a Message
Synchronous Reception
Asynchronous reception: Message-Driven POJOs
Using the SessionAwareMessagelistener Interface
Using MessagelistenerAdapter
Processing Messages Within Transactions
8.2.4. Support for JCA Message Endpoints
8.2.5. Annotation-driven Listener Endpoints
Enable Listener Endpoint Annotations
Programmatic Endpoint Registration

Annotated Endpoint Method Signature

1281
1281
1283
1283
1285
1286
1286
1286
1288
1288
1288
1288
1289
1291
1293
1293
1294
1295
1296
1297
1297
1298
1298
1299
1300
1301
1303
1304
1305
1306
1306
1306
1306
1307
1308
1310
1311
1313
1314
1314
1315

Response Management
8.2.6. JMS Namespace Support
8.3. JMX
8.3.1. Exporting Your Beans to JMX
Creating an MBeanServer
Reusing an Existing MBeanServer
Lazily Initialized MBeans
Automatic Registration of MBeans
Controlling the Registration Behavior
8.3.2. Controlling the Management Interface of Your Beans
Using the MBeanInfoAssembler Interface
Using Source-level Metadata: Java Annotations
Source-level Metadata Types
Using the AutodetectCapableMBeanInfoAssembler Interface
Defining Management Interfaces by Using Java Interfaces
Using MethodNameBasedMBeanInfoAssembler
8.3.3. Controlling ObjectName Instances for Your Beans
Reading ObjectName Instances from Properties
Using MetadataNamingStrategy
Configuring Annotation-based MBean Export
8.3.4. Using JSR-160 Connectors
Server-side Connectors
Client-side Connectors
JMX over Hessian or SOAP
8.3.5. Accessing MBeans through Proxies
8.3.6. Notifications
Registering Listeners for Notifications
Publishing Notifications
8.3.7. Further Resources
8.4. Email
8.4.1. Usage
Basic MailSender and SimpleMailMessage Usage
Using JavaMailSender and MimeMessagePreparator
8.4.2. Using the JavaMail MimeMessageHelper
Sending Attachments and Inline Resources
Creating Email Content by Using a Templating Library
8.5. Task Execution and Scheduling
8.5.1. The Spring TaskExecutor Abstraction
TaskExecutor Types
Using a TaskExecutor
8.5.2. The Spring TaskScheduler Abstraction

1316
1318
1323
1323
1325
1326
1327
1327
1328
1329
1329
1329
1332
1333
1334
1336
1336
1337
1337
1338
1339
1339
1340
1341
1341
1342
1342
1347
1348
1349
1349
1350
1351
1353
1353
1354
1355
1355
1355
1356
1357

Trigger Interface 1357

Trigger Implementations 1358
TaskScheduler implementations 1358
8.5.3. Annotation Support for Scheduling and Asynchronous Execution 1359
Enable Scheduling Annotations 1359
The @Scheduled annotation 1360
The @Async annotation 1361
Executor Qualification with @Async 1363
Exception Management with @Async 1364
8.5.4. The task Namespace 1364
The 'scheduler' Element 1364
The executor Element 1364
The 'scheduled-tasks' Element 1366
8.5.5. Cron Expressions 1367
Macros 1368
8.5.6. Using the Quartz Scheduler 1369
Using the JobDetailFactoryBean 1369
Using the MethodInvokingJobDetailFactoryBean 1370
Wiring up Jobs by Using Triggers and SchedulerFactoryBean 1371
8.6. Cache Abstraction 1372
8.6.1. Understanding the Cache Abstraction 1372
8.6.2. Declarative Annotation-based Caching 1374
The @Cacheable Annotation 1374
The @CachePut Annotation 1380
The @CacheEvict annotation 1380
The @Caching Annotation 1381
The @CacheConfig annotation 1381
Enabling Caching Annotations 1382
Using Custom Annotations 1384
8.6.3. JCache (JSR-107) Annotations 1385
Feature Summary 1386
Enabling JSR-107 Support 1387
8.6.4. Declarative XML-based Caching 1387
8.6.5. Configuring the Cache Storage 1388
JDK ConcurrentMap-based Cache 1389
Ehcache-based Cache 1389
Caffeine Cache 1389
GemFire-based Cache 1390
JSR-107 Cache 1390
Dealing with Caches without a Backing Store 1390

8.6.6. Plugging-in Different Back-end Caches 1391

8.6.7. How can I Set the TTL/TTI/Eviction policy/XXX feature? 1391

8.7. Observability Support 1391
8.7.1. Micrometer Observation concepts 1392
8.7.2. Configuring Observations 1392

Using custom Observation conventions 1392
8.7.3. HTTP Server instrumentation 1396
Servlet applications 1397
Reactive applications 1399
8.7.4. HTTP Client instrumentation 1401
RestTemplate 1401
WebClient 1402

8.8. Appendix 1403

8.8.1. XML Schemas 1403

The jee Schema 1403

The jms Schema 1407

Using <context:mbean-export/> 1408

The cache Schema 1408

9. Language Support 1409

9.1. Kotlin 1409
9.1.1. Requirements 1409
9.1.2. Extensions 1409
9.1.3. Null-safety 1410
9.1.4. Classes and Interfaces 1411
9.1.5. Annotations 1411
9.1.6. Bean Definition DSL 1411
9.1.7. Web 1414

Router DSL 1414
MockMvc DSL 1414
Kotlin Script Templates 1415
Kotlin multiplatform serialization 1416
9.1.8. Coroutines 1416
Dependencies 1417
How Reactive translates to Coroutines? 1417
Controllers 1418
WebFlux.fn 1419
Transactions 1420
9.1.9. Spring Projects in Kotlin 1421
Final by Default 1421
Using Immutable Class Instances for Persistence 1422
Injecting Dependencies 1423

Injecting Configuration Properties 1424

Checked Exceptions
Annotation Array Attributes
Testing
9.1.10. Getting Started
start.spring.io
Choosing the Web Flavor
9.1.11. Resources
Examples
Issues
9.2. Apache Groovy
9.3. Dynamic Language Support
9.3.1. A First Example
9.3.2. Defining Beans that Are Backed by Dynamic Languages
Common Concepts
Groovy Beans
BeanShell Beans
9.3.3. Scenarios
Scripted Spring MVC Controllers
Scripted Validators
9.3.4. Additional Details
AOP — Advising Scripted Beans
Scoping
The 1ang XML schema
9.3.5. Further Resources
10. Appendix
10.1. Spring Properties

1424
1424
1425
1427
1427
1427
1428
1428
1428
1429
1429
1429
1431
1431
1436
1439
1440
1441
1442
1442
1443
1443
1443
1444
1445
1445

o This documentation is also available in HTML format.

https://docs.spring.io/spring-framework/docs/6.0.6/reference/html/index.html

Chapter 1. Legal

Copyright © 2002 - 2023 VMware, Inc. All Rights Reserved.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Chapter 2. Spring Framework Overview

Spring makes it easy to create Java enterprise applications. It provides everything you need to
embrace the Java language in an enterprise environment, with support for Groovy and Kotlin as
alternative languages on the JVM, and with the flexibility to create many kinds of architectures
depending on an application’s needs. As of Spring Framework 6.0, Spring requires Java 17+.

Spring supports a wide range of application scenarios. In a large enterprise, applications often exist
for a long time and have to run on a JDK and application server whose upgrade cycle is beyond
developer control. Others may run as a single jar with the server embedded, possibly in a cloud
environment. Yet others may be standalone applications (such as batch or integration workloads)
that do not need a server.

Spring is open source. It has a large and active community that provides continuous feedback based
on a diverse range of real-world use cases. This has helped Spring to successfully evolve over a very
long time.

2.1. What We Mean by "Spring"

The term "Spring" means different things in different contexts. It can be used to refer to the Spring
Framework project itself, which is where it all started. Over time, other Spring projects have been
built on top of the Spring Framework. Most often, when people say "Spring", they mean the entire
family of projects. This reference documentation focuses on the foundation: the Spring Framework
itself.

The Spring Framework is divided into modules. Applications can choose which modules they need.
At the heart are the modules of the core container, including a configuration model and a
dependency injection mechanism. Beyond that, the Spring Framework provides foundational
support for different application architectures, including messaging, transactional data and
persistence, and web. It also includes the Servlet-based Spring MVC web framework and, in
parallel, the Spring WebFlux reactive web framework.

A note about modules: Spring’s framework jars allow for deployment to JDK 9’s module path
("Jigsaw"). For use in Jigsaw-enabled applications, the Spring Framework 5 jars come with
"Automatic-Module-Name" manifest entries which define stable language-level module names
("spring.core", "spring.context", etc.) independent from jar artifact names (the jars follow the same
naming pattern with "-" instead of ".", e.g. "spring-core" and "spring-context"). Of course, Spring’s

framework jars keep working fine on the classpath on both JDK 8 and 9+.

2.2. History of Spring and the Spring Framework

Spring came into being in 2003 as a response to the complexity of the early J2EE specifications.
While some consider Java EE and its modern-day successor Jakarta EE to be in competition with
Spring, they are in fact complementary. The Spring programming model does not embrace the
Jakarta EE platform specification; rather, it integrates with carefully selected individual
specifications from the traditional EE umbrella:

» Servlet API (JSR 340)

https://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition
https://jcp.org/en/jsr/detail?id=340

WebSocket API (JSR 356)

* Concurrency Utilities (JSR 236)

JSON Binding API (JSR 367)
* Bean Validation (JSR 303)

« JPA (JSR 338)

* JMS (JSR 914)

» as well as JTA/JCA setups for transaction coordination, if necessary.

The Spring Framework also supports the Dependency Injection (JSR 330) and Common Annotations
(JSR 250) specifications, which application developers may choose to use instead of the Spring-
specific mechanisms provided by the Spring Framework. Originally, those were based on common
javax packages.

As of Spring Framework 6.0, Spring has been upgraded to the Jakarta EE 9 level (e.g. Servlet 5.0+,
JPA 3.0+), based on the jakarta namespace instead of the traditional javax packages. With EE 9 as
the minimum and EE 10 supported already, Spring is prepared to provide out-of-the-box support
for the further evolution of the Jakarta EE APIs. Spring Framework 6.0 is fully compatible with
Tomcat 10.1, Jetty 11 and Undertow 2.3 as web servers, and also with Hibernate ORM 6.1.

Over time, the role of Java/Jakarta EE in application development has evolved. In the early days of
J2EE and Spring, applications were created to be deployed to an application server. Today, with the
help of Spring Boot, applications are created in a devops- and cloud-friendly way, with the Servlet
container embedded and trivial to change. As of Spring Framework 5, a WebFlux application does
not even use the Servlet API directly and can run on servers (such as Netty) that are not Servlet
containers.

Spring continues to innovate and to evolve. Beyond the Spring Framework, there are other projects,
such as Spring Boot, Spring Security, Spring Data, Spring Cloud, Spring Batch, among others. It’s
important to remember that each project has its own source code repository, issue tracker, and
release cadence. See spring.io/projects for the complete list of Spring projects.

2.3. Design Philosophy

When you learn about a framework, it’s important to know not only what it does but what
principles it follows. Here are the guiding principles of the Spring Framework:

* Provide choice at every level. Spring lets you defer design decisions as late as possible. For
example, you can switch persistence providers through configuration without changing your
code. The same is true for many other infrastructure concerns and integration with third-party
APIs.

* Accommodate diverse perspectives. Spring embraces flexibility and is not opinionated about
how things should be done. It supports a wide range of application needs with different
perspectives.

* Maintain strong backward compatibility. Spring’s evolution has been carefully managed to
force few breaking changes between versions. Spring supports a carefully chosen range of J]DK

https://www.jcp.org/en/jsr/detail?id=356
https://www.jcp.org/en/jsr/detail?id=236
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=303
https://jcp.org/en/jsr/detail?id=338
https://jcp.org/en/jsr/detail?id=914
https://www.jcp.org/en/jsr/detail?id=330
https://jcp.org/en/jsr/detail?id=250
https://spring.io/projects

versions and third-party libraries to facilitate maintenance of applications and libraries that
depend on Spring.

* Care about API design. The Spring team puts a lot of thought and time into making APIs that are
intuitive and that hold up across many versions and many years.

* Set high standards for code quality. The Spring Framework puts a strong emphasis on
meaningful, current, and accurate javadoc. It is one of very few projects that can claim clean
code structure with no circular dependencies between packages.

2.4. Feedback and Contributions

For how-to questions or diagnosing or debugging issues, we suggest using Stack Overflow. Click
here for a list of the suggested tags to use on Stack Overflow. If you’re fairly certain that there is a
problem in the Spring Framework or would like to suggest a feature, please use the GitHub Issues.

If you have a solution in mind or a suggested fix, you can submit a pull request on Github.
However, please keep in mind that, for all but the most trivial issues, we expect a ticket to be filed
in the issue tracker, where discussions take place and leave a record for future reference.

For more details see the guidelines at the CONTRIBUTING, top-level project page.

2.5. Getting Started

If you are just getting started with Spring, you may want to begin using the Spring Framework by
creating a Spring Boot-based application. Spring Boot provides a quick (and opinionated) way to
create a production-ready Spring-based application. It is based on the Spring Framework, favors
convention over configuration, and is designed to get you up and running as quickly as possible.

You can use start.spring.io to generate a basic project or follow one of the "Getting Started" guides,
such as Getting Started Building a RESTful Web Service. As well as being easier to digest, these
guides are very task focused, and most of them are based on Spring Boot. They also cover other
projects from the Spring portfolio that you might want to consider when solving a particular
problem.

https://stackoverflow.com/questions/tagged/spring+or+spring-mvc+or+spring-aop+or+spring-jdbc+or+spring-r2dbc+or+spring-transactions+or+spring-annotations+or+spring-jms+or+spring-el+or+spring-test+or+spring+or+spring-orm+or+spring-jmx+or+spring-cache+or+spring-webflux+or+spring-rsocket?tab=Newest
https://github.com/spring-projects/spring-framework/issues
https://github.com/spring-projects/spring-framework
https://github.com/spring-projects/spring-framework/tree/main/CONTRIBUTING.md
https://projects.spring.io/spring-boot/
https://start.spring.io/
https://spring.io/guides
https://spring.io/guides/gs/rest-service/

Chapter 3. Core Technologies

This part of the reference documentation covers all the technologies that are absolutely integral to
the Spring Framework.

Foremost amongst these is the Spring Framework’s Inversion of Control (IoC) container. A thorough
treatment of the Spring Framework’s IoC container is closely followed by comprehensive coverage
of Spring’s Aspect-Oriented Programming (AOP) technologies. The Spring Framework has its own
AOP framework, which is conceptually easy to understand and which successfully addresses the
80% sweet spot of AOP requirements in Java enterprise programming.

Coverage of Spring’s integration with Aspect] (currently the richest—in terms of features— and
certainly most mature AOP implementation in the Java enterprise space) is also provided.

AOT processing can be used to optimize your application ahead-of-time. It is typically used for
native image deployment using GraalVM.

3.1. The IoC Container

This chapter covers Spring’s Inversion of Control (IoC) container.

3.1.1. Introduction to the Spring IoC Container and Beans

This chapter covers the Spring Framework implementation of the Inversion of Control (IoC)
principle. IoC is also known as dependency injection (DI). It is a process whereby objects define
their dependencies (that is, the other objects they work with) only through constructor arguments,
arguments to a factory method, or properties that are set on the object instance after it is
constructed or returned from a factory method. The container then injects those dependencies
when it creates the bean. This process is fundamentally the inverse (hence the name, Inversion of
Control) of the bean itself controlling the instantiation or location of its dependencies by using
direct construction of classes or a mechanism such as the Service Locator pattern.

The org.springframework.beans and org.springframework.context packages are the basis for Spring
Framework’s IoC container. The BeanFactory interface provides an advanced configuration
mechanism capable of managing any type of object. ApplicationContext is a sub-interface of
BeanFactory. It adds:

* Easier integration with Spring’s AOP features

* Message resource handling (for use in internationalization)

* Event publication

* Application-layer specific contexts such as the WebApplicationContext for use in web

applications.

In short, the BeanFactory provides the configuration framework and basic functionality, and the
ApplicationContext adds more enterprise-specific functionality. The ApplicationContext is a
complete superset of the BeanFactory and is used exclusively in this chapter in descriptions of
Spring’s IoC container. For more information on using the BeanFactory instead of the

https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/beans/factory/BeanFactory.html
https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/context/ApplicationContext.html

ApplicationContext, see the section covering the BeanFactory API.

In Spring, the objects that form the backbone of your application and that are managed by the
Spring IoC container are called beans. A bean is an object that is instantiated, assembled, and
managed by a Spring IoC container. Otherwise, a bean is simply one of many objects in your
application. Beans, and the dependencies among them, are reflected in the configuration metadata
used by a container.

3.1.2. Container Overview

The org.springframework.context.ApplicationContext interface represents the Spring IoC container
and is responsible for instantiating, configuring, and assembling the beans. The container gets its
instructions on what objects to instantiate, configure, and assemble by reading configuration
metadata. The configuration metadata is represented in XML, Java annotations, or Java code. It lets
you express the objects that compose your application and the rich interdependencies between
those objects.

Several implementations of the ApplicationContext interface are supplied with Spring. In stand-
alone applications, it is common to create an instance of ClassPathXmlApplicationContext or
FileSystemXmlApplicationContext. While XML has been the traditional format for defining
configuration metadata, you can instruct the container to use Java annotations or code as the
metadata format by providing a small amount of XML configuration to declaratively enable support
for these additional metadata formats.

In most application scenarios, explicit user code is not required to instantiate one or more
instances of a Spring IoC container. For example, in a web application scenario, a simple eight (or
so) lines of boilerplate web descriptor XML in the web.xml file of the application typically suffices
(see Convenient ApplicationContext Instantiation for Web Applications). If you use the Spring Tools
for Eclipse (an Eclipse-powered development environment), you can easily create this boilerplate
configuration with a few mouse clicks or keystrokes.

The following diagram shows a high-level view of how Spring works. Your application classes are
combined with configuration metadata so that, after the ApplicationContext is created and
initialized, you have a fully configured and executable system or application.

https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/context/support/ClassPathXmlApplicationContext.html
https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/context/support/FileSystemXmlApplicationContext.html
https://spring.io/tools
https://spring.io/tools

Your Business Objects (POJOs)

» The Sprin
Configuration Cnntapinerg
Metadata
roduces

Fully configurer

Ready for Use

Figure 1. The Spring IoC container

Configuration Metadata

As the preceding diagram shows, the Spring IoC container consumes a form of configuration
metadata. This configuration metadata represents how you, as an application developer, tell the
Spring container to instantiate, configure, and assemble the objects in your application.

Configuration metadata is traditionally supplied in a simple and intuitive XML format, which is
what most of this chapter uses to convey key concepts and features of the Spring IoC container.

XML-based metadata is not the only allowed form of configuration metadata. The

o Spring IoC container itself is totally decoupled from the format in which this
configuration metadata is actually written. These days, many developers choose
Java-based configuration for their Spring applications.

For information about using other forms of metadata with the Spring container, see:

* Annotation-based configuration: define beans using annotation-based configuration metadata.

* Java-based configuration: define beans external to your application classes by using Java rather
than XML files. To use these features, see the @Configuration, @Bean, @Import, and @DependsOn
annotations.

Spring configuration consists of at least one and typically more than one bean definition that the
container must manage. XML-based configuration metadata configures these beans as <bean/>
elements inside a top-level <beans/> element. Java configuration typically uses @Bean-annotated
methods within a @Configuration class.

These bean definitions correspond to the actual objects that make up your application. Typically,
you define service layer objects, persistence layer objects such as repositories or data access objects
(DAOs), presentation objects such as Web controllers, infrastructure objects such as a JPA
EntityManagerFactory, JMS queues, and so forth. Typically, one does not configure fine-grained
domain objects in the container, because it is usually the responsibility of repositories and business
logic to create and load domain objects.

https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/context/annotation/Configuration.html
https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/context/annotation/Bean.html
https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/context/annotation/Import.html
https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/context/annotation/DependsOn.html

The following example shows the basic structure of XML-based configuration metadata:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="..." class="..."> ® @

<!-- collaborators and configuration for this bean go here -->
</bean>
<bean id="..." class="...">

<!-- collaborators and configuration for this bean go here -->
</bean>

<!-- more bean definitions go here -->

</beans>
@ The 1id attribute is a string that identifies the individual bean definition.
@ The class attribute defines the type of the bean and uses the fully qualified class name.

The value of the id attribute can be used to refer to collaborating objects. The XML for referring to
collaborating objects is not shown in this example. See Dependencies for more information.

Instantiating a Container

The location path or paths supplied to an ApplicationContext constructor are resource strings that
let the container load configuration metadata from a variety of external resources, such as the local
file system, the Java CLASSPATH, and so on.

Java

ApplicationContext context = new ClassPathXmlApplicationContext("services.xml",
"daos.xml");

Kotlin

val context = ClassPathXmlApplicationContext("services.xml", "daos.xml")

After you learn about Spring’s IoC container, you may want to know more about
Spring’s Resource abstraction (as described in Resources), which provides a

o convenient mechanism for reading an InputStream from locations defined in a
URI syntax. In particular, Resource paths are used to construct applications
contexts, as described in Application Contexts and Resource Paths.

The following example shows the service layer objects (services.xml) configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<!-- services -->

<bean id="petStore"
class="org.springframework.samples.jpetstore.services.PetStoreServiceImpl">
<property name="accountDao" ref="accountDao"/>
<property name="1itemDao" ref="1itemDao"/>
<!-- additional collaborators and configuration for this bean go here -->
</bean>

<!-- more bean definitions for services go here -->

</beans>
The following example shows the data access objects daos.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="accountDao"
class="org.springframework.samples.jpetstore.dao.jpa.JpaAccountDao">
<!-- additional collaborators and configuration for this bean go here -->
</bean>

<bean id="1itemDao"
class="org.springframework.samples.jpetstore.dao.jpa.JpaltemDao">
<!-- additional collaborators and configuration for this bean go here -->
</bean>

<!-- more bean definitions for data access objects go here -->

</beans>

In the preceding example, the service layer consists of the PetStoreServiceImpl class and two data
access objects of the types JpaAccountDao and JpaltemDao (based on the JPA Object-Relational
Mapping standard). The property name element refers to the name of the JavaBean property, and the
ref element refers to the name of another bean definition. This linkage between id and ref
elements expresses the dependency between collaborating objects. For details of configuring an
object’s dependencies, see Dependencies.

10

Composing XML-based Configuration Metadata

It can be useful to have bean definitions span multiple XML files. Often, each individual XML
configuration file represents a logical layer or module in your architecture.

You can use the application context constructor to load bean definitions from all these XML
fragments. This constructor takes multiple Resource locations, as was shown in the previous section.
Alternatively, use one or more occurrences of the <import/> element to load bean definitions from
another file or files. The following example shows how to do so:

<beans>
<import resource="services.xml"/>
<import resource="resources/messageSource.xml"/>
<import resource="/resources/themeSource.xml"/>

<bean id="bean1" class="..."/>
<bean id="bean2" class="..."/>
</beans>

In the preceding example, external bean definitions are loaded from three files: services.xml,
messageSource.xml, and themeSource.xml. All location paths are relative to the definition file doing
the importing, so services.xml must be in the same directory or classpath location as the file doing
the importing, while messageSource.xml and themeSource.xml must be in a resources location below
the location of the importing file. As you can see, a leading slash is ignored. However, given that
these paths are relative, it is better form not to use the slash at all. The contents of the files being
imported, including the top level <beans/> element, must be valid XML bean definitions, according
to the Spring Schema.

It is possible, but not recommended, to reference files in parent directories using a

relative "../" path. Doing so creates a dependency on a file that is outside the

current application. In particular, this reference is not recommended for

classpath: URLs (for example, classpath:../services.xml), where the runtime

resolution process chooses the “nearest” classpath root and then looks into its

parent directory. Classpath configuration changes may lead to the choice of a
o different, incorrect directory.

You can always use fully qualified resource locations instead of relative paths: for
example, file:C:/config/services.xml or classpath:/config/services.xml.
However, be aware that you are coupling your application’s configuration to
specific absolute locations. It is generally preferable to keep an indirection for such
absolute locations — for example, through "${...}" placeholders that are resolved
against JVM system properties at runtime.

The namespace itself provides the import directive feature. Further configuration features beyond

plain bean definitions are available in a selection of XML namespaces provided by Spring — for
example, the context and util namespaces.

11

The Groovy Bean Definition DSL

As a further example for externalized configuration metadata, bean definitions can also be
expressed in Spring’s Groovy Bean Definition DSL, as known from the Grails framework. Typically,
such configuration live in a ".groovy" file with the structure shown in the following example:

beans {
dataSource(BasicDataSource) {
driverClassName = "org.hsqldb.jdbcDriver"
url = "jdbc:hsqldb:mem:grailsDB"
username = "sa"
password = ""
settings = [mynew:"setting"]

}

sessionFactory(SessionFactory) {
dataSource = dataSource

}
myService(MyService) {
nestedBean = { AnotherBean bean ->
dataSource = dataSource

This configuration style is largely equivalent to XML bean definitions and even supports Spring’s
XML configuration namespaces. It also allows for importing XML bean definition files through an
importBeans directive.

Using the Container

The ApplicationContext is the interface for an advanced factory capable of maintaining a registry of
different beans and their dependencies. By using the method T getBean(String name, C(lass<T>
requiredType), you can retrieve instances of your beans.

The ApplicationContext lets you read bean definitions and access them, as the following example
shows:

Java
// create and configure beans
ApplicationContext context = new ClassPathXmlApplicationContext("services.xml",

"daos.xml");

// retrieve configured instance
PetStoreService service = context.getBean("petStore", PetStoreService.class);

// use configured instance
List<String> userlList = service.getUsernamelist();

12

Kotlin
import org.springframework.beans.factory.getBean

// create and configure beans
val context = ClassPathXmlApplicationContext("services.xml", "daos.xml")

// retrieve confiqured instance
val service = context.getBean<PetStoreService>("petStore")

// use configured instance
var userList = service.getUsernamelist()

With Groovy configuration, bootstrapping looks very similar. It has a different context
implementation class which is Groovy-aware (but also understands XML bean definitions). The
following example shows Groovy configuration:

Java

ApplicationContext context = new GenericGroovyApplicationContext("services.groovy",
"daos.groovy");

Kotlin

val context = GenericGroovyApplicationContext("services.groovy", "daos.groovy")

The most flexible variant is GenericApplicationContext in combination with reader delegates — for
example, with Xm1BeanDefinitionReader for XML files, as the following example shows:

Java
GenericApplicationContext context = new GenericApplicationContext();

new XmlBeanDefinitionReader(context).loadBeanDefinitions("services.xml", "daos.xml");
context.refresh();

Kotlin

val context = GenericApplicationContext()
XmlBeanDefinitionReader(context).loadBeanDefinitions("services.xml", "daos.xml")
context.refresh()

You can also use the GroovyBeanDefinitionReader for Groovy files, as the following example shows:

13

Java

GenericApplicationContext context = new GenericApplicationContext();

new GroovyBeanDefinitionReader(context).loadBeanDefinitions("services.groovy",
"daos.groovy");

context.refresh();

Kotlin

val context = GenericApplicationContext()
GroovyBeanDefinitionReader(context).loadBeanDefinitions("services.groovy",
"daos.groovy")

context.refresh()

You can mix and match such reader delegates on the same ApplicationContext, reading bean
definitions from diverse configuration sources.

You can then use getBean to retrieve instances of your beans. The ApplicationContext interface has a
few other methods for retrieving beans, but, ideally, your application code should never use them.
Indeed, your application code should have no calls to the getBean() method at all and thus have no
dependency on Spring APIs at all. For example, Spring’s integration with web frameworks provides
dependency injection for various web framework components such as controllers and JSF-managed
beans, letting you declare a dependency on a specific bean through metadata (such as an
autowiring annotation).

3.1.3. Bean Overview

A Spring IoC container manages one or more beans. These beans are created with the configuration
metadata that you supply to the container (for example, in the form of XML <bean/> definitions).

Within the container itself, these bean definitions are represented as BeanDefinition objects, which
contain (among other information) the following metadata:

* A package-qualified class name: typically, the actual implementation class of the bean being
defined.

* Bean behavioral configuration elements, which state how the bean should behave in the
container (scope, lifecycle callbacks, and so forth).

» References to other beans that are needed for the bean to do its work. These references are also
called collaborators or dependencies.

* Other configuration settings to set in the newly created object —for example, the size limit of
the pool or the number of connections to use in a bean that manages a connection pool.

This metadata translates to a set of properties that make up each bean definition. The following
table describes these properties:

Table 1. The bean definition

14

Property Explained in...

Class Instantiating Beans
Name Naming Beans

Scope Bean Scopes

Constructor arguments Dependency Injection
Properties Dependency Injection
Autowiring mode Autowiring Collaborators
Lazy initialization mode Lazy-initialized Beans
Initialization method Initialization Callbacks
Destruction method Destruction Callbacks

In addition to bean definitions that contain information on how to create a specific bean, the
ApplicationContext implementations also permit the registration of existing objects that are created
outside the container (by users). This is done by accessing the ApplicationContext’s BeanFactory
through the getBeanFactory() method, which returns the DefaultlListableBeanFactory
implementation. DefaultlListableBeanFactory supports this registration through the
registerSingleton(..) and registerBeanDefinition(..) methods. However, typical applications
work solely with beans defined through regular bean definition metadata.

Bean metadata and manually supplied singleton instances need to be registered as
early as possible, in order for the container to properly reason about them during
autowiring and other introspection steps. While overriding existing metadata and

o existing singleton instances is supported to some degree, the registration of new
beans at runtime (concurrently with live access to the factory) is not officially
supported and may lead to concurrent access exceptions, inconsistent state in the
bean container, or both.

Naming Beans

Every bean has one or more identifiers. These identifiers must be unique within the container that
hosts the bean. A bean usually has only one identifier. However, if it requires more than one, the
extra ones can be considered aliases.

In XML-based configuration metadata, you use the id attribute, the name attribute, or both to specify
bean identifiers. The id attribute lets you specify exactly one id. Conventionally, these names are
alphanumeric (‘'myBean’, 'someService', etc.), but they can contain special characters as well. If you
want to introduce other aliases for the bean, you can also specify them in the name attribute,
separated by a comma (,), semicolon (;), or white space. Although the id attribute is defined as an
xsd:string type, bean id uniqueness is enforced by the container, though not by XML parsers.

You are not required to supply a name or an id for a bean. If you do not supply a name or id explicitly,
the container generates a unique name for that bean. However, if you want to refer to that bean by
name, through the use of the ref element or a Service Locator style lookup, you must provide a
name. Motivations for not supplying a name are related to using inner beans and autowiring
collaborators.

15

Bean Naming Conventions

The convention is to use the standard Java convention for instance field names when naming
beans. That is, bean names start with a lowercase letter and are camel-cased from there.
Examples of such names include accountManager, accountService, userDao, loginController, and
so forth.

Naming beans consistently makes your configuration easier to read and understand. Also, if
you use Spring AOP, it helps a lot when applying advice to a set of beans related by name.

With component scanning in the classpath, Spring generates bean names for
unnamed components, following the rules described earlier: essentially, taking the
simple class name and turning its initial character to lower-case. However, in the

o (unusual) special case when there is more than one character and both the first
and second characters are upper case, the original casing gets preserved. These are
the same rules as defined by java.beans.Introspector.decapitalize (which Spring
uses here).

Aliasing a Bean outside the Bean Definition

In a bean definition itself, you can supply more than one name for the bean, by using a
combination of up to one name specified by the id attribute and any number of other names in the
name attribute. These names can be equivalent aliases to the same bean and are useful for some
situations, such as letting each component in an application refer to a common dependency by
using a bean name that is specific to that component itself.

Specifying all aliases where the bean is actually defined is not always adequate, however. It is
sometimes desirable to introduce an alias for a bean that is defined elsewhere. This is commonly
the case in large systems where configuration is split amongst each subsystem, with each
subsystem having its own set of object definitions. In XML-based configuration metadata, you can
use the <alias/> element to accomplish this. The following example shows how to do so:

<alias name="fromName" alias="toName"/>

In this case, a bean (in the same container) named fromName may also, after the use of this alias
definition, be referred to as toName.

For example, the configuration metadata for subsystem A may refer to a DataSource by the name of
subsystemA-dataSource. The configuration metadata for subsystem B may refer to a DataSource by
the name of subsystemB-dataSource. When composing the main application that uses both these
subsystems, the main application refers to the DataSource by the name of myApp-dataSource. To have
all three names refer to the same object, you can add the following alias definitions to the
configuration metadata:

16

<alias name="myApp-dataSource" alias="subsystemA-dataSource"/>
<alias name="myApp-dataSource" alias="subsystemB-dataSource"/>

Now each component and the main application can refer to the dataSource through a name that is
unique and guaranteed not to clash with any other definition (effectively creating a namespace),
yet they refer to the same bean.

Java-configuration

If you use Java Configuration, the @Bean annotation can be used to provide aliases. See Using
the @Bean Annotation for details.

Instantiating Beans

A bean definition is essentially a recipe for creating one or more objects. The container looks at the
recipe for a named bean when asked and uses the configuration metadata encapsulated by that
bean definition to create (or acquire) an actual object.

If you use XML-based configuration metadata, you specify the type (or class) of object that is to be
instantiated in the class attribute of the <bean/> element. This class attribute (which, internally, is a
(lass property on a BeanDefinition instance) is usually mandatory. (For exceptions, see
Instantiation by Using an Instance Factory Method and Bean Definition Inheritance.) You can use
the Class property in one of two ways:

» Typically, to specify the bean class to be constructed in the case where the container itself
directly creates the bean by calling its constructor reflectively, somewhat equivalent to Java
code with the new operator.

* To specify the actual class containing the static factory method that is invoked to create the
object, in the less common case where the container invokes a static factory method on a class
to create the bean. The object type returned from the invocation of the static factory method
may be the same class or another class entirely.

Nested class names

If you want to configure a bean definition for a nested class, you may use either the binary
name or the source name of the nested class.

For example, if you have a class called SomeThing in the com.example package, and this
SomeThing class has a static nested class called OtherThing, they can be separated by a dollar
sign ($) or a dot (.). So the value of the class attribute in a bean definition would be
com.example.SomeThing$0therThing or com.example.SomeThing.0therThing.

Instantiation with a Constructor

When you create a bean by the constructor approach, all normal classes are usable by and
compatible with Spring. That is, the class being developed does not need to implement any specific

17

interfaces or to be coded in a specific fashion. Simply specifying the bean class should suffice.
However, depending on what type of IoC you use for that specific bean, you may need a default
(empty) constructor.

The Spring IoC container can manage virtually any class you want it to manage. It is not limited to
managing true JavaBeans. Most Spring users prefer actual JavaBeans with only a default (no-
argument) constructor and appropriate setters and getters modeled after the properties in the
container. You can also have more exotic non-bean-style classes in your container. If, for example,
you need to use a legacy connection pool that absolutely does not adhere to the JavaBean
specification, Spring can manage it as well.

With XML-based configuration metadata you can specify your bean class as follows:

<bean id="exampleBean" class="examples.ExampleBean"/>

<bean name="anotherExample" class="examples.ExampleBeanTwo"/>

For details about the mechanism for supplying arguments to the constructor (if required) and
setting object instance properties after the object is constructed, see Injecting Dependencies.

Instantiation with a Static Factory Method

When defining a bean that you create with a static factory method, use the class attribute to specify
the class that contains the static factory method and an attribute named factory-method to specify
the name of the factory method itself. You should be able to call this method (with optional
arguments, as described later) and return a live object, which subsequently is treated as if it had
been created through a constructor. One use for such a bean definition is to call static factories in
legacy code.

The following bean definition specifies that the bean will be created by calling a factory method.
The definition does not specify the type (class) of the returned object, but rather the class
containing the factory method. In this example, the createInstance() method must be a static
method. The following example shows how to specify a factory method:

<bean id="clientService"
class="examples.ClientService"
factory-method="createInstance"/>

The following example shows a class that would work with the preceding bean definition:

18

Java

public class ClientService {
private static ClientService clientService = new ClientService();
private ClientService() {}

public static ClientService createlnstance() {
return clientService;

}

Kotlin

class ClientService private constructor() {
companion object {
private val clientService = ClientService()
@JvmStatic
fun createlnstance() = clientService

For details about the mechanism for supplying (optional) arguments to the factory method and
setting object instance properties after the object is returned from the factory, see Dependencies
and Configuration in Detail.

Instantiation by Using an Instance Factory Method

Similar to instantiation through a static factory method, instantiation with an instance factory
method invokes a non-static method of an existing bean from the container to create a new bean.
To use this mechanism, leave the class attribute empty and, in the factory-bean attribute, specify
the name of a bean in the current (or parent or ancestor) container that contains the instance
method that is to be invoked to create the object. Set the name of the factory method itself with the
factory-method attribute. The following example shows how to configure such a bean:

<!-- the factory bean, which contains a method called createlnstance() -->
<bean id="servicelocator" class="examples.DefaultServicelocator">

<!-- inject any dependencies required by this locator bean -->
</bean>

<!-- the bean to be created via the factory bean -->
<bean id="clientService"

factory-bean="servicelLocator"
factory-method="createClientServicelnstance"/>

The following example shows the corresponding class:

19

Java
public class DefaultServicelocator {
private static ClientService clientService = new ClientServiceImpl();

public ClientService createClientServiceInstance() {
return clientService;

}

Kotlin

class DefaultServicelocator {
companion object {
private val clientService = ClientServiceImpl()
}
fun createClientServiceInstance(): ClientService {
return clientService

}

One factory class can also hold more than one factory method, as the following example shows:

<bean id="servicelocator" class="examples.DefaultServicelocator">
<!-- inject any dependencies required by this locator bean -->
</bean>

<bean id="clientService"
factory-bean="servicelLocator"
factory-method="createClientServiceInstance"/>
<bean id="accountService"

factory-bean="servicelLocator"
factory-method="createAccountServicelInstance"/>

The following example shows the corresponding class:

20

Java
public class DefaultServicelocator {
private static ClientService clientService = new ClientServiceImpl();
private static AccountService accountService = new AccountServiceImpl();

public ClientService createClientServiceInstance() {
return clientService;

}

public AccountService createAccountServiceInstance() {
return accountService;

}

Kotlin

class DefaultServicelocator {
companion object {
private val clientService = ClientServiceImpl()
private val accountService = AccountServiceImpl()

fun createClientServiceInstance(): ClientService {
return clientService

fun createAccountServiceInstance(): AccountService {
return accountService

This approach shows that the factory bean itself can be managed and configured through
dependency injection (DI). See Dependencies and Configuration in Detail.

In Spring documentation, "factory bean" refers to a bean that is configured in the

o Spring container and that creates objects through an instance or static factory
method. By contrast, FactoryBean (notice the capitalization) refers to a Spring-
specific FactoryBean implementation class.

Determining a Bean’s Runtime Type

The runtime type of a specific bean is non-trivial to determine. A specified class in the bean
metadata definition is just an initial class reference, potentially combined with a declared factory
method or being a FactoryBean class which may lead to a different runtime type of the bean, or not
being set at all in case of an instance-level factory method (which is resolved via the specified
factory-bean name instead). Additionally, AOP proxying may wrap a bean instance with an

21

interface-based proxy with limited exposure of the target bean’s actual type (just its implemented
interfaces).

The recommended way to find out about the actual runtime type of a particular bean is a
BeanFactory.getType call for the specified bean name. This takes all of the above cases into account
and returns the type of object that a BeanFactory.getBean call is going to return for the same bean
name.

3.1.4. Dependencies

A typical enterprise application does not consist of a single object (or bean in the Spring parlance).
Even the simplest application has a few objects that work together to present what the end-user
sees as a coherent application. This next section explains how you go from defining a number of
bean definitions that stand alone to a fully realized application where objects collaborate to achieve
a goal.

Dependency Injection

Dependency injection (DI) is a process whereby objects define their dependencies (that is, the other
objects with which they work) only through constructor arguments, arguments to a factory method,
or properties that are set on the object instance after it is constructed or returned from a factory
method. The container then injects those dependencies when it creates the bean. This process is
fundamentally the inverse (hence the name, Inversion of Control) of the bean itself controlling the
instantiation or location of its dependencies on its own by using direct construction of classes or the
Service Locator pattern.

Code is cleaner with the DI principle, and decoupling is more effective when objects are provided
with their dependencies. The object does not look up its dependencies and does not know the
location or class of the dependencies. As a result, your classes become easier to test, particularly
when the dependencies are on interfaces or abstract base classes, which allow for stub or mock
implementations to be used in unit tests.

DI exists in two major variants: Constructor-based dependency injection and Setter-based
dependency injection.

Constructor-based Dependency Injection

Constructor-based DI is accomplished by the container invoking a constructor with a number of
arguments, each representing a dependency. Calling a static factory method with specific
arguments to construct the bean is nearly equivalent, and this discussion treats arguments to a
constructor and to a static factory method similarly. The following example shows a class that can
only be dependency-injected with constructor injection:

22

Java
public class SimpleMovielister {

// the SimpleMovielister has a dependency on a MovieFinder
private final MovieFinder movieFinder;

// a constructor so that the Spring container can inject a MovieFinder
public SimpleMovielister(MovieFinder movieFinder) {
this.movieFinder = movieFinder;

}

// business logic that actually uses the injected MovieFinder is omitted...

Kotlin

// a constructor so that the Spring container can inject a MovieFinder
class SimpleMovielister(private val movieFinder: MovieFinder) {
// business logic that actually uses the injected MovieFinder is omitted...

}

Notice that there is nothing special about this class. It is a POJO that has no dependencies on
container specific interfaces, base classes, or annotations.

Constructor Argument Resolution

Constructor argument resolution matching occurs by using the argument’s type. If no potential
ambiguity exists in the constructor arguments of a bean definition, the order in which the
constructor arguments are defined in a bean definition is the order in which those arguments are
supplied to the appropriate constructor when the bean is being instantiated. Consider the following
class:

Java
package x.y;
public class ThingOne {
public ThingOne(ThingTwo thingTwo, ThingThree thingThree) {

/] ...
}

23

Kotlin
package x.y

class ThingOne(thingTwo: ThingTwo, thingThree: ThingThree)

Assuming that the ThingTwo and ThingThree classes are not related by inheritance, no potential
ambiguity exists. Thus, the following configuration works fine, and you do not need to specify the
constructor argument indexes or types explicitly in the <constructor-arg/> element.

<beans>
<bean id="beanOne" class="x.y.ThingOne">
<constructor-arg ref="beanTwo"/>
<constructor-arg ref="beanThree"/>
</bean>

<bean id="beanTwo" class="x.y.ThingTwo"/>

<bean id="beanThree" class="x.y.ThingThree"/>
</beans>

When another bean is referenced, the type is known, and matching can occur (as was the case with
the preceding example). When a simple type is used, such as <value>true</value>, Spring cannot

determine the type of the value, and so cannot match by type without help. Consider the following
class:

Java
package examples;
public class ExampleBean {

// Number of years to calculate the Ultimate Answer
private final int years;

// The Answer to Life, the Universe, and Everything
private final String ultimateAnswer;

public ExampleBean(int years, String ultimateAnswer) {

this.years = years;
this.ultimateAnswer = ultimateAnswer;

24

Kotlin
package examples

class ExampleBean(
private val years: Int, // Number of years to calculate the Ultimate Answer
private val ultimateAnswer: String // The Answer to Life, the Universe, and
Everything
)

Constructor argument type matching

In the preceding scenario, the container can use type matching with simple types if you explicitly
specify the type of the constructor argument by using the type attribute, as the following example
shows:

<bean id="exampleBean" class="examples.ExampleBean">
<constructor-arg type="int" value="7500000"/>
<constructor-arg type="java.lang.String" value="42"/>
</bean>

Constructor argument index

You can use the index attribute to specify explicitly the index of constructor arguments, as the
following example shows:

<bean id="exampleBean" class="examples.ExampleBean">
<constructor-arg index="0" value="7500000"/>
<constructor-arg index="1" value="42"/>

</bean>

In addition to resolving the ambiguity of multiple simple values, specifying an index resolves
ambiguity where a constructor has two arguments of the same type.

0 The index is 0-based.

Constructor argument name

You can also use the constructor parameter name for value disambiguation, as the following
example shows:

<bean id="exampleBean" class="examples.ExampleBean">
<constructor-arg name="years" value="7500000"/>
<constructor-arg name="ultimateAnswer" value="42"/>
</bean>

Keep in mind that, to make this work out of the box, your code must be compiled with the debug
flag enabled so that Spring can look up the parameter name from the constructor. If you cannot or

25

do not want to compile your code with the debug flag, you can use the @ConstructorProperties JDK
annotation to explicitly name your constructor arguments. The sample class would then have to
look as follows:

Java
package examples;
public class ExampleBean {
// Fields omitted

@ConstructorProperties({"years", "ultimateAnswer"})
public ExampleBean(int years, String ultimateAnswer) {
this.years = years;
this.ultimateAnswer = ultimateAnswer;

Kotlin
package examples

class ExampleBean
@ConstructorProperties("years", "ultimateAnswer")
constructor(val years: Int, val ultimateAnswer: String)

Setter-based Dependency Injection

Setter-based DI is accomplished by the container calling setter methods on your beans after
invoking a no-argument constructor or a no-argument static factory method to instantiate your
bean.

The following example shows a class that can only be dependency-injected by using pure setter
injection. This class is conventional Java. It is a POJO that has no dependencies on container specific
interfaces, base classes, or annotations.

26

https://download.oracle.com/javase/8/docs/api/java/beans/ConstructorProperties.html

Java
public class SimpleMovielister {

// the SimpleMovielister has a dependency on the MovieFinder
private MovieFinder movieFinder;

// a setter method so that the Spring container can inject a MovieFinder
public void setMovieFinder(MovieFinder movieFinder) {
this.movieFinder = movieFinder;

}

// business logic that actually uses the injected MovieFinder is omitted...

Kotlin
class SimpleMovielister {

// a late-initialized property so that the Spring container can inject a
MovieFinder
lateinit var movieFinder: MovieFinder

// business logic that actually uses the injected MovieFinder is omitted...

The ApplicationContext supports constructor-based and setter-based DI for the beans it manages. It
also supports setter-based DI after some dependencies have already been injected through the
constructor approach. You configure the dependencies in the form of a BeanDefinition, which you
use in conjunction with PropertyEditor instances to convert properties from one format to another.
However, most Spring users do not work with these classes directly (that is, programmatically) but
rather with XML bean definitions, annotated components (that is, classes annotated with @Component,
@Controller, and so forth), or @Bean methods in Java-based @Configuration classes. These sources are
then converted internally into instances of BeanDefinition and used to load an entire Spring IoC
container instance.

27

Constructor-based or setter-based DI?

Since you can mix constructor-based and setter-based DI, it is a good rule of thumb to use
constructors for mandatory dependencies and setter methods or configuration methods for
optional dependencies. Note that use of the @Autowired annotation on a setter method can
be used to make the property be a required dependency; however, constructor injection with
programmatic validation of arguments is preferable.

The Spring team generally advocates constructor injection, as it lets you implement
application components as immutable objects and ensures that required dependencies are
not null. Furthermore, constructor-injected components are always returned to the client
(calling) code in a fully initialized state. As a side note, a large number of constructor
arguments is a bad code smell, implying that the class likely has too many responsibilities and
should be refactored to better address proper separation of concerns.

Setter injection should primarily only be used for optional dependencies that can be assigned
reasonable default values within the class. Otherwise, not-null checks must be performed
everywhere the code uses the dependency. One benefit of setter injection is that setter
methods make objects of that class amenable to reconfiguration or re-injection later.
Management through JMX MBeans is therefore a compelling use case for setter injection.

Use the DI style that makes the most sense for a particular class. Sometimes, when dealing
with third-party classes for which you do not have the source, the choice is made for you. For
example, if a third-party class does not expose any setter methods, then constructor injection
may be the only available form of DI.

Dependency Resolution Process

The container performs bean dependency resolution as follows:

* The ApplicationContext is created and initialized with configuration metadata that describes all
the beans. Configuration metadata can be specified by XML, Java code, or annotations.

» For each bean, its dependencies are expressed in the form of properties, constructor arguments,
or arguments to the static-factory method (if you use that instead of a normal constructor).
These dependencies are provided to the bean, when the bean is actually created.

» Each property or constructor argument is an actual definition of the value to set, or a reference
to another bean in the container.

* Each property or constructor argument that is a value is converted from its specified format to
the actual type of that property or constructor argument. By default, Spring can convert a value
supplied in string format to all built-in types, such as int, long, String, boolean, and so forth.

The Spring container validates the configuration of each bean as the container is created. However,
the bean properties themselves are not set until the bean is actually created. Beans that are
singleton-scoped and set to be pre-instantiated (the default) are created when the container is
created. Scopes are defined in Bean Scopes. Otherwise, the bean is created only when it is
requested. Creation of a bean potentially causes a graph of beans to be created, as the bean’s
dependencies and its dependencies' dependencies (and so on) are created and assigned. Note that

28

resolution mismatches among those dependencies may show up late —that is, on first creation of
the affected bean.

Circular dependencies

If you use predominantly constructor injection, it is possible to create an unresolvable
circular dependency scenario.

For example: Class A requires an instance of class B through constructor injection, and class B
requires an instance of class A through constructor injection. If you configure beans for
classes A and B to be injected into each other, the Spring IoC container detects this circular
reference at runtime, and throws a BeanCurrentlyInCreationException.

One possible solution is to edit the source code of some classes to be configured by setters
rather than constructors. Alternatively, avoid constructor injection and use setter injection
only. In other words, although it is not recommended, you can configure circular
dependencies with setter injection.

Unlike the typical case (with no circular dependencies), a circular dependency between bean
A and bean B forces one of the beans to be injected into the other prior to being fully
initialized itself (a classic chicken-and-egg scenario).

You can generally trust Spring to do the right thing. It detects configuration problems, such as
references to non-existent beans and circular dependencies, at container load-time. Spring sets
properties and resolves dependencies as late as possible, when the bean is actually created. This
means that a Spring container that has loaded correctly can later generate an exception when you
request an object if there is a problem creating that object or one of its dependencies— for
example, the bean throws an exception as a result of a missing or invalid property. This potentially
delayed visibility of some configuration issues is why ApplicationContext implementations by
default pre-instantiate singleton beans. At the cost of some upfront time and memory to create
these beans before they are actually needed, you discover configuration issues when the
ApplicationContext is created, not later. You can still override this default behavior so that singleton
beans initialize lazily, rather than being eagerly pre-instantiated.

If no circular dependencies exist, when one or more collaborating beans are being injected into a
dependent bean, each collaborating bean is totally configured prior to being injected into the
dependent bean. This means that, if bean A has a dependency on bean B, the Spring IoC container
completely configures bean B prior to invoking the setter method on bean A. In other words, the
bean is instantiated (if it is not a pre-instantiated singleton), its dependencies are set, and the
relevant lifecycle methods (such as a configured init method or the InitializingBean callback
method) are invoked.

Examples of Dependency Injection

The following example uses XML-based configuration metadata for setter-based DI. A small part of
a Spring XML configuration file specifies some bean definitions as follows:

29

<bean id="exampleBean" class="examples.ExampleBean">
<!-- setter injection using the nested ref element -->
<property name="beanOne">
<ref bean="anotherExampleBean"/>
</property>

<!-- setter injection using the neater ref attribute -->
<property name="beanTwo" ref="yetAnotherBean"/>
<property name="integerProperty" value="1"/>

</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>

The following example shows the corresponding ExampleBean class:

Java
public class ExampleBean {
private AnotherBean beanOne;
private YetAnotherBean beanTwo;
private int i;

public void setBeanOne(AnotherBean beanOne) {
this.beanOne = beanOne;

}

public void setBeanTwo(YetAnotherBean beanTwo) {
this.beanTwo = beanTwo;

}
public void setIntegerProperty(int i) {
this.i = i;
}
}
Kotlin

class ExampleBean {
lateinit var beanOne: AnotherBean
lateinit var beanTwo: YetAnotherBean
var i: Int = 0

In the preceding example, setters are declared to match against the properties specified in the XML

30

file. The following example uses constructor-based DI:

<bean id="exampleBean" class="examples.ExampleBean">
<!-- constructor injection using the nested ref element -->
<constructor-arg>
<ref bean="anotherExampleBean"/>
</constructor-arg>

<!-- constructor injection using the neater ref attribute -->
<constructor-arg ref="yetAnotherBean"/>

<constructor-arg type="int" value="1"/>
</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>

The following example shows the corresponding ExampleBean class:

Java
public class ExampleBean {
private AnotherBean beanOne;
private YetAnotherBean beanTwo;
private int 1i;

public ExampleBean(
AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) {

this.beanOne = anotherBean;
this.beanTwo = yetAnotherBean;
this.i = 1;
}
}
Kotlin

class ExampleBean(
private val beanOne: AnotherBean,
private val beanTwo: YetAnotherBean,
private val i: Int)

The constructor arguments specified in the bean definition are used as arguments to the
constructor of the ExampleBean.

Now consider a variant of this example, where, instead of using a constructor, Spring is told to call
a static factory method to return an instance of the object:

31

<bean id="exampleBean" class="examples.ExampleBean" factory-method="createInstance">
<constructor-arg ref="anotherExampleBean"/>
<constructor-arg ref="yetAnotherBean"/>
<constructor-arg value="1"/>

</bean>

<bean id="anotherExampleBean" class="examples.AnotherBean"/>
<bean id="yetAnotherBean" class="examples.YetAnotherBean"/>

The following example shows the corresponding ExampleBean class:

Java
public class ExampleBean {

// a private constructor
private ExampleBean(...) {

}

// a static factory method; the arguments to this method can be
// considered the dependencies of the bean that is returned,
// regardless of how those arguments are actually used.
public static ExampleBean createlnstance (
AnotherBean anotherBean, YetAnotherBean yetAnotherBean, int i) {

ExampleBean eb = new ExampleBean (...);
// some other operations...
return eb;

Kotlin

class ExampleBean private constructor() {
companion object {
// a static factory method; the arguments to this method can be
// considered the dependencies of the bean that is returned,
// regardless of how those arguments are actually used.
@JvmStatic
fun createlnstance(anotherBean: AnotherBean, yetAnotherBean: YetAnotherBean,
i: Int): ExampleBean {
val eb = ExampleBean (...)
// some other operations...
return eb

32

Arguments to the static factory method are supplied by <constructor-arg/> elements, exactly the
same as if a constructor had actually been used. The type of the class being returned by the factory
method does not have to be of the same type as the class that contains the static factory method
(although, in this example, it is). An instance (non-static) factory method can be used in an
essentially identical fashion (aside from the use of the factory-bean attribute instead of the class
attribute), so we do not discuss those details here.

Dependencies and Configuration in Detail

As mentioned in the previous section, you can define bean properties and constructor arguments as
references to other managed beans (collaborators) or as values defined inline. Spring’s XML-based
configuration metadata supports sub-element types within its <property/> and <constructor-arg/>
elements for this purpose.

Straight Values (Primitives, Strings, and so on)

The value attribute of the <property/> element specifies a property or constructor argument as a
human-readable string representation. Spring’s conversion service is used to convert these values
from a String to the actual type of the property or argument. The following example shows various
values being set:

<bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">

<!-- results in a setDriverClassName(String) call -->

<property name="driverClassName" value="com.mysql.jdbc.Driver"/>

<property name="url" value="jdbc:mysql://localhost:3306/mydb"/>

<property name="username" value="root"/>

<property name="password" value="misterkaoli"/>
</bean>

The following example uses the p-namespace for even more succinct XML configuration:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">
<bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource"

destroy-method="close"

p:driverClassName="com.mysql.jdbc.Driver"

p:url="jdbc:mysql://localhost:3306/mydb"

p:username="root"

p:password="misterkaoli"/>

</beans>

The preceding XML is more succinct. However, typos are discovered at runtime rather than design

33

time, unless you use an IDE (such as Intelli] IDEA or the Spring Tools for Eclipse) that supports
automatic property completion when you create bean definitions. Such IDE assistance is highly
recommended.

You can also configure a java.util.Properties instance, as follows:

<bean id="mappings"
class="org.springframework.context.support.PropertySourcesPlaceholderConfigurer">

<!-- typed as a java.util.Properties -->
<property name="properties">
<value>
jdbc.driver.className=com.mysql.jdbc.Driver
jdbc.url=jdbc:mysql://localhost:3306/mydb
</value>
</property>
</bean>

The Spring container converts the text inside the <value/> element into a java.util.Properties
instance by using the JavaBeans PropertyEditor mechanism. This is a nice shortcut, and is one of a
few places where the Spring team do favor the use of the nested <value/> element over the value
attribute style.

The idref element

The idref element is simply an error-proof way to pass the id (a string value - not a reference) of
another bean in the container to a <constructor-arg/> or <property/> element. The following
example shows how to use it:

<bean id="theTargetBean" class="..."/>

<bean id="theClientBean" class="...">
<property name="targetName">
<idref bean="theTargetBean"/>
</property>
</bean>

The preceding bean definition snippet is exactly equivalent (at runtime) to the following snippet:

<bean id="theTargetBean" class="..." />

<bean id="client" class="...">
<property name="targetName" value="theTargetBean"/>
</bean>

The first form is preferable to the second, because using the idref tag lets the container validate at
deployment time that the referenced, named bean actually exists. In the second variation, no

34

https://www.jetbrains.com/idea/
https://spring.io/tools

validation is performed on the value that is passed to the targetName property of the client bean.
Typos are only discovered (with most likely fatal results) when the client bean is actually
instantiated. If the client bean is a prototype bean, this typo and the resulting exception may only
be discovered long after the container is deployed.

The local attribute on the idref element is no longer supported in the 4.0 beans

o XSD, since it does not provide value over a regular bean reference any more.
Change your existing idref local references to idref bean when upgrading to the
4.0 schema.

A common place (at least in versions earlier than Spring 2.0) where the <idref/> element brings
value is in the configuration of AOP interceptors in a ProxyFactoryBean bean definition. Using
<idref/> elements when you specify the interceptor names prevents you from misspelling an
interceptor ID.

References to Other Beans (Collaborators)

The ref element is the final element inside a <constructor-arg/> or <property/> definition element.
Here, you set the value of the specified property of a bean to be a reference to another bean (a
collaborator) managed by the container. The referenced bean is a dependency of the bean whose
property is to be set, and it is initialized on demand as needed before the property is set. (If the
collaborator is a singleton bean, it may already be initialized by the container.) All references are
ultimately a reference to another object. Scoping and validation depend on whether you specify the
ID or name of the other object through the bean or parent attribute.

Specifying the target bean through the bean attribute of the <ref/> tag is the most general form and
allows creation of a reference to any bean in the same container or parent container, regardless of
whether it is in the same XML file. The value of the bean attribute may be the same as the id
attribute of the target bean or be the same as one of the values in the name attribute of the target
bean. The following example shows how to use a ref element:

<ref bean="someBean"/>

Specifying the target bean through the parent attribute creates a reference to a bean that is in a
parent container of the current container. The value of the parent attribute may be the same as
either the id attribute of the target bean or one of the values in the name attribute of the target bean.
The target bean must be in a parent container of the current one. You should use this bean
reference variant mainly when you have a hierarchy of containers and you want to wrap an
existing bean in a parent container with a proxy that has the same name as the parent bean. The
following pair of listings shows how to use the parent attribute:

<!-- 1in the parent context -->

<bean id="accountService" class="com.something.SimpleAccountService">
<!-- insert dependencies as required here -->

</bean>

35

<!-- 1in the child (descendant) context -->
<bean id="accountService" <!-- bean name is the same as the parent bean -->
class="org.springframework.aop.framework.ProxyFactoryBean">
<property name="target">
<ref parent="accountService"/> <!-- notice how we refer to the parent bean -->
</property>
<!-- insert other configuration and dependencies as required here -->
</bean>

The local attribute on the ref element is no longer supported in the 4.0 beans XSD,
o since it does not provide value over a regular bean reference any more. Change
your existing ref local references to ref bean when upgrading to the 4.0 schema.

Inner Beans

A <bean/> element inside the <property/> or <constructor-arg/> elements defines an inner bean, as
the following example shows:

<bean id="outer" class="...">
<!-- instead of using a reference to a target bean, simply define the target bean
inline -->
<property name="target">
<bean class="com.example.Person"> <!-- this is the inner bean -->
<property name="name" value="Fiona Apple"/>
<property name="age" value="25"/>
</bean>
</property>
</bean>

An inner bean definition does not require a defined ID or name. If specified, the container does not
use such a value as an identifier. The container also ignores the scope flag on creation, because
inner beans are always anonymous and are always created with the outer bean. It is not possible to
access inner beans independently or to inject them into collaborating beans other than into the
enclosing bean.

As a corner case, it is possible to receive destruction callbacks from a custom scope — for example,
for a request-scoped inner bean contained within a singleton bean. The creation of the inner bean
instance is tied to its containing bean, but destruction callbacks let it participate in the request
scope’s lifecycle. This is not a common scenario. Inner beans typically simply share their containing
bean’s scope.

Collections

The <list/>, <set/>, <map/>, and <props/> elements set the properties and arguments of the Java
Collection types List, Set, Map, and Properties, respectively. The following example shows how to
use them:

36

<bean id="moreComplexObject" class="example.ComplexObject">
<!-- results in a setAdminEmails(java.util.Properties) call -->
<property name="adminEmails">
<props>
<prop key="administrator">administrator@example.org</prop>
<prop key="support">support@example.org</prop>
<prop key="development">development@example.org</prop>
</props>
</property>
<!-- results in a setSomelist(java.util.List) call -->
<property name="someList">
<list>
<value>a list element followed by a reference</value>
<ref bean="myDataSource" />
</list>
</property>
<!-- results in a setSomeMap(java.util.Map) call -->
<property name="someMap">
<map>
<entry key="an entry" value="just some string"/>
<entry key="a ref" value-ref="myDataSource"/>
</map>
</property>
<!-- results in a setSomeSet(java.util.Set) call -->
<property name="someSet">
<set>
<value>just some string</value>
<ref bean="myDataSource" />
</set>
</property>
</bean>

The value of a map key or value, or a set value, can also be any of the following elements:

bean | ref | idref | 1list | set | map | props | value | null

Collection Merging

The Spring container also supports merging collections. An application developer can define a
parent <list/>, <map/>, <set/> or <props/> element and have child <1list/>, <map/>, <set/> or <props/>
elements inherit and override values from the parent collection. That is, the child collection’s
values are the result of merging the elements of the parent and child collections, with the child’s
collection elements overriding values specified in the parent collection.

This section on merging discusses the parent-child bean mechanism. Readers unfamiliar with
parent and child bean definitions may wish to read the relevant section before continuing.

The following example demonstrates collection merging:

37

<beans>
<bean id="parent" abstract="true" class="example.ComplexObject">
<property name="adminEmails">
<props>
<prop key="administrator">administrator@example.com</prop>
<prop key="support">support@example.com</prop>
</props>
</property>
</bean>
<bean id="child" parent="parent">
<property name="adminEmails">
<!-- the merge is specified on the child collection definition -->
<props merge="true">
<prop key="sales">sales@example.com</prop>
<prop key="support">support@example.co.uk</prop>
</props>
</property>
</bean>
<beans>

Notice the use of the merge=true attribute on the <props/> element of the adminEmails property of the
child bean definition. When the child bean is resolved and instantiated by the container, the
resulting instance has an adminEmails Properties collection that contains the result of merging the
child’s adminEmails collection with the parent’s adminEmails collection. The following listing shows
the result:

administrator=administrator@example.com
sales=sales@example.com
support=support@example.co.uk

The child Properties collection’s value set inherits all property elements from the parent <props/>,
and the child’s value for the support value overrides the value in the parent collection.

This merging behavior applies similarly to the <list/>, <map/>, and <set/> collection types. In the
specific case of the <list/> element, the semantics associated with the List collection type (that is,
the notion of an ordered collection of values) is maintained. The parent’s values precede all of the
child list’s values. In the case of the Map, Set, and Properties collection types, no ordering exists.
Hence, no ordering semantics are in effect for the collection types that underlie the associated Map,
Set, and Properties implementation types that the container uses internally.

Limitations of Collection Merging

You cannot merge different collection types (such as a Map and a List). If you do attempt to do so, an
appropriate Exception is thrown. The merge attribute must be specified on the lower, inherited, child
definition. Specifying the merge attribute on a parent collection definition is redundant and does not
result in the desired merging.

38

Strongly-typed collection

Thanks to Java’s support for generic types, you can use strongly typed collections. That is, it is
possible to declare a Collection type such that it can only contain (for example) String elements. If
you use Spring to dependency-inject a strongly-typed Collection into a bean, you can take
advantage of Spring’s type-conversion support such that the elements of your strongly-typed
Collection instances are converted to the appropriate type prior to being added to the Collection.
The following Java class and bean definition show how to do so:

Java
public class SomeClass {
private Map<String, Float> accounts;

public void setAccounts(Map<String, Float> accounts) {
this.accounts = accounts;

}

Kotlin

class SomeClass {
lateinit var accounts: Map<String, Float>

}
<beans>
<bean id="something" class="x.y.SomeClass">
<property name="accounts">
<map>
<entry key="one" value="9.99"/>
<entry key="two" value="2.75"/>
<entry key="six" value="3.99"/>
</map>
</property>
</bean>
</beans>

When the accounts property of the something bean is prepared for injection, the generics
information about the element type of the strongly-typed Map<String, Float> is available by
reflection. Thus, Spring’s type conversion infrastructure recognizes the various value elements as
being of type Float, and the string values (9.99, 2.75, and 3.99) are converted into an actual Float

type.
Null and Empty String Values

Spring treats empty arguments for properties and the like as empty Strings. The following XML-
based configuration metadata snippet sets the email property to the empty String value ("").

39

<bean ClaSS:HExampleBeann>
<property name="email" value=""/>
</bean>

The preceding example is equivalent to the following Java code:

Java

exampleBean.setEmail("");

Kotlin

exampleBean.email =

The <null/> element handles null values. The following listing shows an example:

<bean class="ExampleBean">
<property name="email">
<null/>
</property>
</bean>

The preceding configuration is equivalent to the following Java code:

Java

exampleBean.setEmail(null);

Kotlin

exampleBean.email = null

XML Shortcut with the p-namespace

The p-namespace lets you use the bean element’s attributes (instead of nested <property/> elements)
to describe your property values collaborating beans, or both.

Spring supports extensible configuration formats with namespaces, which are based on an XML
Schema definition. The beans configuration format discussed in this chapter is defined in an XML
Schema document. However, the p-namespace is not defined in an XSD file and exists only in the
core of Spring.

The following example shows two XML snippets (the first uses standard XML format and the
second uses the p-namespace) that resolve to the same result:

40

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean name="classic" class="com.example.ExampleBean">
<property name="email" value="someone@somewhere.com"/>
</bean>

<bean name="p-namespace" class="com.example.ExampleBean"
p:email="someone@somewhere.com"/>
</beans>

The example shows an attribute in the p-namespace called email in the bean definition. This tells
Spring to include a property declaration. As previously mentioned, the p-namespace does not have
a schema definition, so you can set the name of the attribute to the property name.

This next example includes two more bean definitions that both have a reference to another bean:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean name="john-classic" class="com.example.Person">
<property name="name" value="John Doe"/>
<property name="spouse" ref="jane"/>

</bean>

<bean name="john-modern"
class="com.example.Person"
p:name="John Doe"
p:spouse-ref="jane"/>

<bean name="jane" class="com.example.Person">
<property name="name" value="Jane Doe"/>
</bean>
</beans>

This example includes not only a property value using the p-namespace but also uses a special
format to declare property references. Whereas the first bean definition uses <property
name="spouse" ref="jane"/> to create a reference from bean john to bean jane, the second bean
definition uses p:spouse-ref="jane" as an attribute to do the exact same thing. In this case, spouse is
the property name, whereas the -ref part indicates that this is not a straight value but rather a
reference to another bean.

41

The p-namespace is not as flexible as the standard XML format. For example, the
format for declaring property references clashes with properties that end in Ref,
o whereas the standard XML format does not. We recommend that you choose your
approach carefully and communicate this to your team members to avoid
producing XML documents that use all three approaches at the same time.

XML Shortcut with the c-namespace

Similar to the XML Shortcut with the p-namespace, the c-namespace, introduced in Spring 3.1,
allows inlined attributes for configuring the constructor arguments rather then nested constructor-
arg elements.

The following example uses the c: namespace to do the same thing as the from Constructor-based
Dependency Injection:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:c="http://www.springframework.org/schema/c"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="beanTwo" class="x.y.ThingTwo"/>
<bean id="beanThree" class="x.y.ThingThree"/>

<!-- traditional declaration with optional argument names -->

<bean id="beanOne" class="x.y.ThingOne">
<constructor-arg name="thingTwo" ref="beanTwo"/>
<constructor-arg name="thingThree" ref="beanThree"/>
<constructor-arg name="email" value="something@somewhere.com"/>

</bean>

<!-- c-namespace declaration with argument names -->
<bean id="beanOne" class="x.y.ThingOne" c:thingTwo-ref="beanTwo"
c:thingThree-ref="beanThree" c:email="something@somewhere.com"/>

</beans>

The c: namespace uses the same conventions as the p: one (a trailing -ref for bean references) for
setting the constructor arguments by their names. Similarly, it needs to be declared in the XML file
even though it is not defined in an XSD schema (it exists inside the Spring core).

For the rare cases where the constructor argument names are not available (usually if the bytecode
was compiled without debugging information), you can use fallback to the argument indexes, as
follows:

42

<!-- c-namespace index declaration -->
<bean id="beanOne" class="x.y.ThingOne" c:_0-ref="beanTwo" c:_1-ref="beanThree"
c:_2="something@somewhere.com"/>

Due to the XML grammar, the index notation requires the presence of the leading
_, as XML attribute names cannot start with a number (even though some IDEs

o allow it). A corresponding index notation is also available for <constructor-arg>
elements but not commonly used since the plain order of declaration is usually
sufficient there.

In practice, the constructor resolution mechanism is quite efficient in matching arguments, so
unless you really need to, we recommend using the name notation throughout your configuration.

Compound Property Names

You can use compound or nested property names when you set bean properties, as long as all
components of the path except the final property name are not null. Consider the following bean
definition:

<bean id="something" class="things.ThingOne">
<property name="fred.bob.sammy" value="123" />
</bean>

The something bean has a fred property, which has a bob property, which has a sammy property, and
that final sammy property is being set to a value of 123. In order for this to work, the fred property of
something and the bob property of fred must not be null after the bean is constructed. Otherwise, a
NullPointerException is thrown.

Using depends-on

If a bean is a dependency of another bean, that usually means that one bean is set as a property of
another. Typically you accomplish this with the <ref/> element in XML-based configuration
metadata. However, sometimes dependencies between beans are less direct. An example is when a
static initializer in a class needs to be triggered, such as for database driver registration. The
depends-on attribute can explicitly force one or more beans to be initialized before the bean using
this element is initialized. The following example uses the depends-on attribute to express a
dependency on a single bean:

<bean id="beanOne" class="ExampleBean" depends-on="manager"/>
<bean id="manager" class="ManagerBean" />

To express a dependency on multiple beans, supply a list of bean names as the value of the depends-
on attribute (commas, whitespace, and semicolons are valid delimiters):

43

<bean id="beanOne" class="ExampleBean" depends-on="manager,accountDao">
<property name="manager" ref="manager" />
</bean>

<bean id="manager" class="ManagerBean" />
<bean id="accountDao" class="x.y.jdbc.JdbcAccountDao" />

The depends-on attribute can specify both an initialization-time dependency and, in
the case of singleton beans only, a corresponding destruction-time dependency.

o Dependent beans that define a depends-on relationship with a given bean are
destroyed first, prior to the given bean itself being destroyed. Thus, depends-on can
also control shutdown order.

Lazy-initialized Beans

By default, ApplicationContext implementations eagerly create and configure all singleton beans as
part of the initialization process. Generally, this pre-instantiation is desirable, because errors in the
configuration or surrounding environment are discovered immediately, as opposed to hours or
even days later. When this behavior is not desirable, you can prevent pre-instantiation of a
singleton bean by marking the bean definition as being lazy-initialized. A lazy-initialized bean tells
the IoC container to create a bean instance when it is first requested, rather than at startup.

In XML, this behavior is controlled by the lazy-init attribute on the <bean/> element, as the
following example shows:

<bean id="lazy" class="com.something.ExpensiveToCreateBean" lazy-init="true"/>
<bean name="not.lazy" class="com.something.AnotherBean"/>

When the preceding configuration is consumed by an ApplicationContext, the lazy bean is not
eagerly pre-instantiated when the ApplicationContext starts, whereas the not.lazy bean is eagerly
pre-instantiated.

However, when a lazy-initialized bean is a dependency of a singleton bean that is not lazy-
initialized, the ApplicationContext creates the lazy-initialized bean at startup, because it must
satisfy the singleton’s dependencies. The lazy-initialized bean is injected into a singleton bean
elsewhere that is not lazy-initialized.

You can also control lazy-initialization at the container level by using the default-lazy-init
attribute on the <beans/> element, as the following example shows:

<beans default-lazy-init="true">
<!-- no beans will be pre-instantiated... -->
</beans>

44

Autowiring Collaborators

The Spring container can autowire relationships between collaborating beans. You can let Spring
resolve collaborators (other beans) automatically for your bean by inspecting the contents of the
ApplicationContext. Autowiring has the following advantages:

* Autowiring can significantly reduce the need to specify properties or constructor arguments.
(Other mechanisms such as a bean template discussed elsewhere in this chapter are also
valuable in this regard.)

* Autowiring can update a configuration as your objects evolve. For example, if you need to add a
dependency to a class, that dependency can be satisfied automatically without you needing to
modify the configuration. Thus autowiring can be especially useful during development,
without negating the option of switching to explicit wiring when the code base becomes more
stable.

When using XML-based configuration metadata (see Dependency Injection), you can specify the
autowire mode for a bean definition with the autowire attribute of the <bean/> element. The
autowiring functionality has four modes. You specify autowiring per bean and can thus choose
which ones to autowire. The following table describes the four autowiring modes:

Table 2. Autowiring modes
Mode Explanation

no (Default) No autowiring. Bean references must be defined by ref elements.
Changing the default setting is not recommended for larger deployments,
because specifying collaborators explicitly gives greater control and clarity. To
some extent, it documents the structure of a system.

byName Autowiring by property name. Spring looks for a bean with the same name as
the property that needs to be autowired. For example, if a bean definition is
set to autowire by name and it contains a master property (that is, it has a
setMaster(..) method), Spring looks for a bean definition named master and
uses it to set the property.

byType Lets a property be autowired if exactly one bean of the property type exists in
the container. If more than one exists, a fatal exception is thrown, which
indicates that you may not use byType autowiring for that bean. If there are no
matching beans, nothing happens (the property is not set).

constructor Analogous to byType but applies to constructor arguments. If there is not
exactly one bean of the constructor argument type in the container, a fatal
error is raised.

With byType or constructor autowiring mode, you can wire arrays and typed collections. In such
cases, all autowire candidates within the container that match the expected type are provided to
satisfy the dependency. You can autowire strongly-typed Map instances if the expected key type is
String. An autowired Map instance’s values consist of all bean instances that match the expected
type, and the Map instance’s keys contain the corresponding bean names.

45

Limitations and Disadvantages of Autowiring

Autowiring works best when it is used consistently across a project. If autowiring is not used in
general, it might be confusing to developers to use it to wire only one or two bean definitions.

Consider the limitations and disadvantages of autowiring:

» Explicit dependencies in property and constructor-arg settings always override autowiring. You
cannot autowire simple properties such as primitives, Strings, and Classes (and arrays of such
simple properties). This limitation is by-design.

* Autowiring is less exact than explicit wiring. Although, as noted in the earlier table, Spring is
careful to avoid guessing in case of ambiguity that might have unexpected results. The
relationships between your Spring-managed objects are no longer documented explicitly.

* Wiring information may not be available to tools that may generate documentation from a
Spring container.

* Multiple bean definitions within the container may match the type specified by the setter
method or constructor argument to be autowired. For arrays, collections, or Map instances, this is
not necessarily a problem. However, for dependencies that expect a single value, this ambiguity
is not arbitrarily resolved. If no unique bean definition is available, an exception is thrown.

In the latter scenario, you have several options:

* Abandon autowiring in favor of explicit wiring.

* Avoid autowiring for a bean definition by setting its autowire-candidate attributes to false, as
described in the next section.

* Designate a single bean definition as the primary candidate by setting the primary attribute of its
<bean/> element to true.

* Implement the more fine-grained control available with annotation-based configuration, as
described in Annotation-based Container Configuration.

Excluding a Bean from Autowiring

On a per-bean basis, you can exclude a bean from autowiring. In Spring’s XML format, set the
autowire-candidate attribute of the <bean/> element to false. The container makes that specific bean
definition unavailable to the autowiring infrastructure (including annotation style configurations
such as @Autowired).

The autowire-candidate attribute is designed to only affect type-based autowiring.

o It does not affect explicit references by name, which get resolved even if the
specified bean is not marked as an autowire candidate. As a consequence,
autowiring by name nevertheless injects a bean if the name matches.

You can also limit autowire candidates based on pattern-matching against bean names. The top-
level <beans/> element accepts one or more patterns within its default-autowire-candidates
attribute. For example, to limit autowire candidate status to any bean whose name ends with
Repository, provide a value of *Repository. To provide multiple patterns, define them in a comma-
separated list. An explicit value of true or false for a bean definition’s autowire-candidate attribute

46

always takes precedence. For such beans, the pattern matching rules do not apply.

These techniques are useful for beans that you never want to be injected into other beans by
autowiring. It does not mean that an excluded bean cannot itself be configured by using
autowiring. Rather, the bean itself is not a candidate for autowiring other beans.

Method Injection

In most application scenarios, most beans in the container are singletons. When a singleton bean
needs to collaborate with another singleton bean or a non-singleton bean needs to collaborate with
another non-singleton bean, you typically handle the dependency by defining one bean as a
property of the other. A problem arises when the bean lifecycles are different. Suppose singleton
bean A needs to use non-singleton (prototype) bean B, perhaps on each method invocation on A.
The container creates the singleton bean A only once, and thus only gets one opportunity to set the
properties. The container cannot provide bean A with a new instance of bean B every time one is
needed.

A solution is to forego some inversion of control. You can make bean A aware of the container by
implementing the ApplicationContextAware interface, and by making a getBean("B") call to the
container ask for (a typically new) bean B instance every time bean A needs it. The following
example shows this approach:

47

Java
package fiona.apple;

// Spring-API imports

import org.springframework.beans.BeansException;

import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;

/**

* A class that uses a stateful Command-style class to perform

* some processing.

*/

public class CommandManager implements ApplicationContextAware {

private ApplicationContext applicationContext;

public Object process(Map commandState) {
// grab a new instance of the appropriate Command
Command command = createCommand();
// set the state on the (hopefully brand new) Command instance
command.setState(commandState);
return command.execute();

}

protected Command createCommand() {
// notice the Spring API dependency!
return this.applicationContext.getBean("command", Command.class);

}

public void setApplicationContext(
ApplicationContext applicationContext) throws BeansException {
this.applicationContext = applicationContext;

48

Kotlin
package fiona.apple

// Spring-API imports
import org.springframework.context.ApplicationContext
import org.springframework.context.ApplicationContextAware

// A class that uses a stateful Command-style class to perform
// some processing.
class CommandManager : ApplicationContextAware {

private lateinit var applicationContext: ApplicationContext

fun process(commandState: Map<*, *>): Any {
// grab a new instance of the appropriate Command
val command = createCommand()
// set the state on the (hopefully brand new) Command instance
command.state = commandState
return command.execute()

}

// notice the Spring API dependency!
protected fun createCommand() =
applicationContext.getBean("command", Command::class.java)

override fun setApplicationContext(applicationContext: ApplicationContext) {
this.applicationContext = applicationContext

}

The preceding is not desirable, because the business code is aware of and coupled to the Spring
Framework. Method Injection, a somewhat advanced feature of the Spring IoC container, lets you
handle this use case cleanly.

You can read more about the motivation for Method Injection in this blog entry.

Lookup Method Injection

Lookup method injection is the ability of the container to override methods on container-managed
beans and return the lookup result for another named bean in the container. The lookup typically
involves a prototype bean, as in the scenario described in the preceding section. The Spring
Framework implements this method injection by using bytecode generation from the CGLIB library
to dynamically generate a subclass that overrides the method.

49

https://spring.io/blog/2004/08/06/method-injection/

 For this dynamic subclassing to work, the class that the Spring bean container
subclasses cannot be final, and the method to be overridden cannot be final,
either.

» Unit-testing a class that has an abstract method requires you to subclass the
class yourself and to supply a stub implementation of the abstract method.

o * Concrete methods are also necessary for component scanning, which requires
concrete classes to pick up.

* A further key limitation is that lookup methods do not work with factory
methods and in particular not with @Bean methods in configuration classes,
since, in that case, the container is not in charge of creating the instance and
therefore cannot create a runtime-generated subclass on the fly.

In the case of the CommandManager class in the previous code snippet, the Spring container
dynamically overrides the implementation of the createCommand() method. The CommandManager class
does not have any Spring dependencies, as the reworked example shows:

Java

package fiona.apple;

// no more Spring imports!

public abstract class CommandManager {

public Object process(Object commandState) {

// grab a new instance of the appropriate Command interface
Command command = createCommand();
// set the state on the (hopefully brand new) Command instance

command.setState(commandState);
return command.execute();

// okay... but where is the implementation of this method?
protected abstract Command createCommand();

50

Kotlin
package fiona.apple
// no more Spring imports!
abstract class CommandManager {

fun process(commandState: Any): Any {
// grab a new instance of the appropriate Command interface
val command = createCommand()
// set the state on the (hopefully brand new) Command instance
command.state = commandState
return command.execute()

}

// okay... but where is the implementation of this method?
protected abstract fun createCommand(): Command

In the client class that contains the method to be injected (the CommandManager in this case), the
method to be injected requires a signature of the following form:

<public|protected> [abstract] <return-type> theMethodName(no-arguments);

If the method is abstract, the dynamically-generated subclass implements the method. Otherwise,
the dynamically-generated subclass overrides the concrete method defined in the original class.
Consider the following example:

<!-- 3 stateful bean deployed as a prototype (non-singleton) -->

<bean id="myCommand" class="fiona.apple.AsyncCommand" scope="prototype">
<!-- inject dependencies here as required -->

</bean>

<!-- commandProcessor uses statefulCommandHelper -->

<bean id="commandManager" class="fiona.apple.CommandManager">
<lookup-method name="createCommand" bean="myCommand"/>

</bean>

The bean identified as commandManager calls its own createCommand() method whenever it needs a
new instance of the myCommand bean. You must be careful to deploy the myCommand bean as a prototype
if that is actually what is needed. If it is a singleton, the same instance of the myCommand bean is
returned each time.

Alternatively, within the annotation-based component model, you can declare a lookup method
through the @Lookup annotation, as the following example shows:

31

Java
public abstract class CommandManager {

public Object process(Object commandState) {
Command command = createCommand();
command.setState(commandState);
return command.execute();

}

@Lookup("myCommand")
protected abstract Command createCommand();

Kotlin
abstract class CommandManager {

fun process(commandState: Any): Any {
val command = createCommand()
command.state = commandState
return command.execute()

}

@Lookup("myCommand")
protected abstract fun createCommand(): Command

Or, more idiomatically, you can rely on the target bean getting resolved against the declared return
type of the lookup method:

Java
public abstract class CommandManager {

public Object process(Object commandState) {
Command command = createCommand();
command.setState(commandState);
return command.execute();

}

@Lookup
protected abstract Command createCommand();

32

Kotlin
abstract class CommandManager {

fun process(commandState: Any): Any {
val command = createCommand()
command.state = commandState
return command.execute()

@Lookup
protected abstract fun createCommand(): Command

Note that you should typically declare such annotated lookup methods with a concrete stub
implementation, in order for them to be compatible with Spring’s component scanning rules where
abstract classes get ignored by default. This limitation does not apply to explicitly registered or
explicitly imported bean classes.

Another way of accessing differently scoped target beans is an ObjectFactory/
(r') Provider injection point. See Scoped Beans as Dependencies.

d You may also find the ServicelocatorFactoryBean (in the

org.springframework.beans.factory.config package) to be useful.

Arbitrary Method Replacement

A less useful form of method injection than lookup method injection is the ability to replace
arbitrary methods in a managed bean with another method implementation. You can safely skip
the rest of this section until you actually need this functionality.

With XML-based configuration metadata, you can use the replaced-method element to replace an
existing method implementation with another, for a deployed bean. Consider the following class,
which has a method called computeValue that we want to override:

Java
public class MyValueCalculator {

public String computeValue(String input) {
// some real code...

}

// some other methods...

33

Kotlin
class MyValueCalculator {

fun computeValue(input: String): String {
// some real code...

}

// some other methods...

A class that implements the org.springframework.beans.factory.support.MethodReplacer interface
provides the new method definition, as the following example shows:

Java

/**

* meant to be used to override the existing computeValue(String)
* implementation in MyValueCalculator

*/

public class ReplacementComputeValue implements MethodReplacer {

public Object reimplement(Object o, Method m, Object[] args) throws Throwable {
// get the input value, work with it, and return a computed result
String input = (String) args[0];

return ...;

Kotlin

/**

* meant to be used to override the existing computeValue(String)
* implementation in MyValueCalculator
*/
class ReplacementComputeValue : MethodReplacer {
override fun reimplement(obj: Any, method: Method, args: Array<out Any>): Any {
// get the input value, work with it, and return a computed result

val input = args[@] as String;

return ...;

The bean definition to deploy the original class and specify the method override would resemble
the following example:

54

<bean id="myValueCalculator" class="x.y.z.MyValueCalculator">
<!-- arbitrary method replacement -->
<replaced-method name="computeValue" replacer="replacementComputeValue">
<arg-type>String</arg-type>
</replaced-method>
</bean>

<bean id="replacementComputeValue" class="a.b.c.ReplacementComputeValue"/>

You can use one or more <arg-type/> elements within the <replaced-method/> element to indicate
the method signature of the method being overridden. The signature for the arguments is
necessary only if the method is overloaded and multiple variants exist within the class. For
convenience, the type string for an argument may be a substring of the fully qualified type name.
For example, the following all match java.lang.String:

java.lang.String
String
Str

Because the number of arguments is often enough to distinguish between each possible choice, this
shortcut can save a lot of typing, by letting you type only the shortest string that matches an
argument type.

3.1.5. Bean Scopes

When you create a bean definition, you create a recipe for creating actual instances of the class
defined by that bean definition. The idea that a bean definition is a recipe is important, because it
means that, as with a class, you can create many object instances from a single recipe.

You can control not only the various dependencies and configuration values that are to be plugged
into an object that is created from a particular bean definition but also control the scope of the
objects created from a particular bean definition. This approach is powerful and flexible, because
you can choose the scope of the objects you create through configuration instead of having to bake
in the scope of an object at the Java class level. Beans can be defined to be deployed in one of a
number of scopes. The Spring Framework supports six scopes, four of which are available only if
you use a web-aware ApplicationContext. You can also create a custom scope.

The following table describes the supported scopes:

Table 3. Bean scopes
Scope Description

singleton (Default) Scopes a single bean definition to a single object instance for each
Spring IoC container.

prototype Scopes a single bean definition to any number of object instances.

55

Scope Description

request Scopes a single bean definition to the lifecycle of a single HTTP request. That
is, each HTTP request has its own instance of a bean created off the back of a
single bean definition. Only valid in the context of a web-aware Spring
ApplicationContext.

session Scopes a single bean definition to the lifecycle of an HTTP Session. Only valid
in the context of a web-aware Spring ApplicationContext.

application Scopes a single bean definition to the lifecycle of a ServletContext. Only valid
in the context of a web-aware Spring ApplicationContext.

websocket Scopes a single bean definition to the lifecycle of a WebSocket. Only valid in the
context of a web-aware Spring ApplicationContext.

A thread scope is available but is not registered by default. For more information,
6 see the documentation for SimpleThreadScope. For instructions on how to register
this or any other custom scope, see Using a Custom Scope.

The Singleton Scope

Only one shared instance of a singleton bean is managed, and all requests for beans with an ID or
IDs that match that bean definition result in that one specific bean instance being returned by the
Spring container.

To put it another way, when you define a bean definition and it is scoped as a singleton, the Spring
IoC container creates exactly one instance of the object defined by that bean definition. This single
instance is stored in a cache of such singleton beans, and all subsequent requests and references
for that named bean return the cached object. The following image shows how the singleton scope
works:

Only one instance is ever created...

<bean id="accountDac” class="..." />

... and this same shared instance is injected into each collaborating object

Spring’s concept of a singleton bean differs from the singleton pattern as defined in the Gang of
Four (GoF) patterns book. The GoF singleton hard-codes the scope of an object such that one and

36

https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/context/support/SimpleThreadScope.html

only one instance of a particular class is created per ClassLoader. The scope of the Spring singleton
is best described as being per-container and per-bean. This means that, if you define one bean for a
particular class in a single Spring container, the Spring container creates one and only one instance
of the class defined by that bean definition. The singleton scope is the default scope in Spring. To
define a bean as a singleton in XML, you can define a bean as shown in the following example:

<bean id="accountService" class="com.something.DefaultAccountService"/>

<!-- the following is equivalent, though redundant (singleton scope is the default)
-->

<bean id="accountService" class="com.something.DefaultAccountService"
scope="singleton"/>

The Prototype Scope

The non-singleton prototype scope of bean deployment results in the creation of a new bean
instance every time a request for that specific bean is made. That is, the bean is injected into
another bean or you request it through a getBean() method call on the container. As a rule, you
should use the prototype scope for all stateful beans and the singleton scope for stateless beans.

The following diagram illustrates the Spring prototype scope:

A brand new bean instance is created...

<bean id="accountDao® class=".__"
scope="prototype" />
‘ @

... each and every time the prototype is referenced by collaborating beans

(A data access object (DAO) is not typically configured as a prototype, because a typical DAO does
not hold any conversational state. It was easier for us to reuse the core of the singleton diagram.)

The following example defines a bean as a prototype in XML:

<bean id="accountService" class="com.something.DefaultAccountService"
scope="prototype"/>

In contrast to the other scopes, Spring does not manage the complete lifecycle of a prototype bean.

57

The container instantiates, configures, and otherwise assembles a prototype object and hands it to
the client, with no further record of that prototype instance. Thus, although initialization lifecycle
callback methods are called on all objects regardless of scope, in the case of prototypes, configured
destruction lifecycle callbacks are not called. The client code must clean up prototype-scoped
objects and release expensive resources that the prototype beans hold. To get the Spring container
to release resources held by prototype-scoped beans, try using a custom bean post-processor, which
holds a reference to beans that need to be cleaned up.

In some respects, the Spring container’s role in regard to a prototype-scoped bean is a replacement
for the Java new operator. All lifecycle management past that point must be handled by the client.
(For details on the lifecycle of a bean in the Spring container, see Lifecycle Callbacks.)

Singleton Beans with Prototype-bean Dependencies

When you use singleton-scoped beans with dependencies on prototype beans, be aware that
dependencies are resolved at instantiation time. Thus, if you dependency-inject a prototype-scoped
bean into a singleton-scoped bean, a new prototype bean is instantiated and then dependency-
injected into the singleton bean. The prototype instance is the sole instance that is ever supplied to
the singleton-scoped bean.

However, suppose you want the singleton-scoped bean to acquire a new instance of the prototype-
scoped bean repeatedly at runtime. You cannot dependency-inject a prototype-scoped bean into
your singleton bean, because that injection occurs only once, when the Spring container
instantiates the singleton bean and resolves and injects its dependencies. If you need a new
instance of a prototype bean at runtime more than once, see Method Injection.

Request, Session, Application, and WebSocket Scopes

The request, session, application, and websocket scopes are available only if you use a web-aware
Spring ApplicationContext implementation (such as XmlWebApplicationContext). If you use these
scopes with regular Spring IoC containers, such as the (lassPathXmlApplicationContext, an
I1legalStateException that complains about an unknown bean scope is thrown.

Initial Web Configuration

To support the scoping of beans at the request, session, application, and websocket levels (web-
scoped beans), some minor initial configuration is required before you define your beans. (This
initial setup is not required for the standard scopes: singleton and prototype.)

How you accomplish this initial setup depends on your particular Servlet environment.

If you access scoped beans within Spring Web MVC, in effect, within a request that is processed by
the Spring DispatcherServlet, no special setup is necessary. DispatcherServlet already exposes all
relevant state.

If you use a Servlet web container, with requests processed outside of Spring’s DispatcherServlet
(for example, when using JSF), you need to register the
org.springframework.web.context.request.RequestContextListener ServletRequestlListener. This can
be done programmatically by using the WebApplicationInitializer interface. Alternatively, add the
following declaration to your web application’s web. xml file:

38

<web-app>

<listener>
<listener-class>
org.springframework.web.context.request.RequestContextListener
</listener-class>
</listener>

</web-app>

Alternatively, if there are issues with your listener setup, consider using Spring’s
RequestContextFilter. The filter mapping depends on the surrounding web application
configuration, so you have to change it as appropriate. The following listing shows the filter part of
a web application:

<web-app>

<filter>
<filter-name>requestContextFilter</filter-name>
<filter-class>org.springframework.web.filter.RequestContextFilter</filter-

class>

</filter>

<filter-mapping>
<filter-name>requestContextFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

</web-app>

DispatcherServlet, RequestContextListener, and RequestContextFilter all do exactly the same thing,
namely bind the HTTP request object to the Thread that is servicing that request. This makes beans
that are request- and session-scoped available further down the call chain.

Request scope

Consider the following XML configuration for a bean definition:
<bean id="loginAction" class="com.something.LoginAction" scope="request"/>

The Spring container creates a new instance of the LoginAction bean by using the loginAction bean
definition for each and every HTTP request. That is, the loginAction bean is scoped at the HTTP
request level. You can change the internal state of the instance that is created as much as you want,
because other instances created from the same loginAction bean definition do not see these
changes in state. They are particular to an individual request. When the request completes
processing, the bean that is scoped to the request is discarded.

When using annotation-driven components or Java configuration, the @RequestScope annotation can

39

be used to assign a component to the request scope. The following example shows how to do so:

Java

@RequestScope

@Component

public class LoginAction {
/] ...

Kotlin

@RequestScope

@Component

class LoginAction {
/] ...

Session Scope

Consider the following XML configuration for a bean definition:

<bean id="userPreferences" class="com.something.UserPreferences" scope="session"/>

The Spring container creates a new instance of the UserPreferences bean by using the
userPreferences bean definition for the lifetime of a single HTTP Session. In other words, the
userPreferences bean is effectively scoped at the HTTP Session level. As with request-scoped beans,
you can change the internal state of the instance that is created as much as you want, knowing that
other HTTP Session instances that are also using instances created from the same userPreferences
bean definition do not see these changes in state, because they are particular to an individual HTTP
Session. When the HTTP Session is eventually discarded, the bean that is scoped to that particular
HTTP Session is also discarded.

When using annotation-driven components or Java configuration, you can use the @SessionScope
annotation to assign a component to the session scope.

Java

@SessionScope

@Component

public class UserPreferences {
/] ...

60

Kotlin

@SessionScope

@Component

class UserPreferences {
/] ...

Application Scope

Consider the following XML configuration for a bean definition:

<bean id="appPreferences" class="com.something.AppPreferences" scope="application"/>

The Spring container creates a new instance of the AppPreferences bean by using the appPreferences
bean definition once for the entire web application. That is, the appPreferences bean is scoped at the
ServletContext level and stored as a regular ServletContext attribute. This is somewhat similar to a
Spring singleton bean but differs in two important ways: It is a singleton per ServletContext, not per
Spring ApplicationContext (for which there may be several in any given web application), and it is
actually exposed and therefore visible as a ServletContext attribute.

When using annotation-driven components or Java configuration, you can wuse the
@ApplicationScope annotation to assign a component to the application scope. The following
example shows how to do so:

Java

@ApplicationScope

@Component

public class AppPreferences {
/] ...

}

Kotlin

@ApplicationScope

@Component

class AppPreferences {
/..

}

WebSocket Scope

WebSocket scope is associated with the lifecycle of a WebSocket session and applies to STOMP over
WebSocket applications, see WebSocket scope for more details.

61

Scoped Beans as Dependencies

The Spring IoC container manages not only the instantiation of your objects (beans), but also the
wiring up of collaborators (or dependencies). If you want to inject (for example) an HTTP request-
scoped bean into another bean of a longer-lived scope, you may choose to inject an AOP proxy in

place of the scoped bean. That is, you need to inject a proxy object that exposes the same public

interface as the scoped object but that can also retrieve the real target object from the relevant

scope (such as an HTTP request) and delegate method calls onto the real object.

You may also use <aop:scoped-proxy/> between beans that are scoped as singleton,
with the reference then going through an intermediate proxy that is serializable
and therefore able to re-obtain the target singleton bean on deserialization.

When declaring <aop:scoped-proxy/> against a bean of scope prototype, every
method call on the shared proxy leads to the creation of a new target instance to
which the call is then being forwarded.

Also, scoped proxies are not the only way to access beans from shorter scopes in a
lifecycle-safe fashion. You may also declare your injection point (that is, the
constructor or setter argument or autowired field) as ObjectFactory<MyTargetBean>,
allowing for a getObject() call to retrieve the current instance on demand every
time it is needed — without holding on to the instance or storing it separately.

As an extended variant, you may declare ObjectProvider<MyTargetBean> which
delivers several additional access variants, including getIfAvailable and
getIfUnique.

The JSR-330 variant of this is called Provider and is wused with a
Provider<MyTargetBean> declaration and a corresponding get() call for every
retrieval attempt. See here for more details on JSR-330 overall.

The configuration in the following example is only one line, but it is important to understand the
“why” as well as the “how” behind it:

62

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop
https://www.springframework.org/schema/aop/spring-aop.xsd">

<!-- an HTTP Session-scoped bean exposed as a proxy -->

<bean id="userPreferences" class="com.something.UserPreferences" scope="session">
<!-- instructs the container to proxy the surrounding bean -->
<aop:scoped-proxy/> @

</bean>

<!-- 3 singleton-scoped bean injected with a proxy to the above bean -->
<bean id="userService" class="com.something.SimpleUserService">
<!-- a reference to the proxied userPreferences bean -->
<property name="userPreferences" ref="userPreferences"/>
</bean>
</beans>

@ The line that defines the proxy.

To create such a proxy, you insert a child <aop:scoped-proxy/> element into a scoped bean definition
(see Choosing the Type of Proxy to Create and XML Schema-based configuration). Why do
definitions of beans scoped at the request, session and custom-scope levels require the <aop:scoped-
proxy/> element? Consider the following singleton bean definition and contrast it with what you
need to define for the aforementioned scopes (note that the following userPreferences bean
definition as it stands is incomplete):

<bean id="userPreferences" class="com.something.UserPreferences" scope="session"/>

<bean id="userManager" class="com.something.UserManager">
<property name="userPreferences" ref="userPreferences"/>
</bean>

In the preceding example, the singleton bean (userManager) is injected with a reference to the HTTP
Session-scoped bean (userPreferences). The salient point here is that the userManager bean is a
singleton: it is instantiated exactly once per container, and its dependencies (in this case only one,
the userPreferences bean) are also injected only once. This means that the userManager bean
operates only on the exact same userPreferences object (that is, the one with which it was originally
injected).

This is not the behavior you want when injecting a shorter-lived scoped bean into a longer-lived
scoped bean (for example, injecting an HTTP Session-scoped collaborating bean as a dependency
into singleton bean). Rather, you need a single userManager object, and, for the lifetime of an HTTP
Session, you need a userPreferences object that is specific to the HTTP Session. Thus, the container

63

creates an object that exposes the exact same public interface as the UserPreferences class (ideally
an object that is a UserPreferences instance), which can fetch the real UserPreferences object from
the scoping mechanism (HTTP request, Session, and so forth). The container injects this proxy
object into the userManager bean, which is unaware that this UserPreferences reference is a proxy. In
this example, when a UserManager instance invokes a method on the dependency-injected
UserPreferences object, it is actually invoking a method on the proxy. The proxy then fetches the
real UserPreferences object from (in this case) the HTTP Session and delegates the method
invocation onto the retrieved real UserPreferences object.

Thus, you need the following (correct and complete) configuration when injecting request- and
session-scoped beans into collaborating objects, as the following example shows:

<bean id="userPreferences" class="com.something.UserPreferences" scope="session">
<aop:scoped-proxy/>
</bean>

<bean id="userManager" class="com.something.UserManager">
<property name="userPreferences" ref="userPreferences"/>
</bean>

Choosing the Type of Proxy to Create

By default, when the Spring container creates a proxy for a bean that is marked up with the
<aop:scoped-proxy/> element, a CGLIB-based class proxy is created.

o CGLIB proxies intercept only public method calls! Do not call non-public methods
on such a proxy. They are not delegated to the actual scoped target object.

Alternatively, you can configure the Spring container to create standard JDK interface-based
proxies for such scoped beans, by specifying false for the value of the proxy-target-class attribute
of the <aop:scoped-proxy/> element. Using JDK interface-based proxies means that you do not need
additional libraries in your application classpath to affect such proxying. However, it also means
that the class of the scoped bean must implement at least one interface and that all collaborators
into which the scoped bean is injected must reference the bean through one of its interfaces. The
following example shows a proxy based on an interface:

<!-- DefaultUserPreferences implements the UserPreferences interface -->

<bean id="userPreferences" class="com.stuff.DefaultUserPreferences" scope="session">
<aop:scoped-proxy proxy-target-class="false"/>

</bean>

<bean id="userManager" class="com.stuff.UserManager">

<property name="userPreferences" ref="userPreferences"/>
</bean>

For more detailed information about choosing class-based or interface-based proxying, see
Proxying Mechanisms.

64

Custom Scopes

The bean scoping mechanism is extensible. You can define your own scopes or even redefine
existing scopes, although the latter is considered bad practice and you cannot override the built-in
singleton and prototype scopes.

Creating a Custom Scope

To integrate your custom scopes into the Spring container, you need to implement the
org.springframework.beans.factory.config.Scope interface, which is described in this section. For an
idea of how to implement your own scopes, see the Scope implementations that are supplied with
the Spring Framework itself and the Scope javadoc, which explains the methods you need to
implement in more detail.

The Scope interface has four methods to get objects from the scope, remove them from the scope,
and let them be destroyed.

The session scope implementation, for example, returns the session-scoped bean (if it does not
exist, the method returns a new instance of the bean, after having bound it to the session for future
reference). The following method returns the object from the underlying scope:

Java

Object get(String name, ObjectFactory<?> objectFactory)

Kotlin

fun get(name: String, objectFactory: ObjectFactory<*>): Any

The session scope implementation, for example, removes the session-scoped bean from the
underlying session. The object should be returned, but you can return null if the object with the
specified name is not found. The following method removes the object from the underlying scope:

Java

Object remove(String name)

Kotlin

fun remove(name: String): Any

The following method registers a callback that the scope should invoke when it is destroyed or
when the specified object in the scope is destroyed:

Java

void registerDestructionCallback(String name, Runnable destructionCallback)

65

https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/beans/factory/config/Scope.html

Kotlin

fun registerDestructionCallback(name: String, destructionCallback: Runnable)

See the javadoc or a Spring scope implementation for more information on destruction callbacks.
The following method obtains the conversation identifier for the underlying scope:

Java

String getConversationId()

Kotlin

fun getConversationId(): String

This identifier is different for each scope. For a session scoped implementation, this identifier can
be the session identifier.

Using a Custom Scope

After you write and test one or more custom Scope implementations, you need to make the Spring
container aware of your new scopes. The following method is the central method to register a new
Scope with the Spring container:

Java

void registerScope(String scopeName, Scope scope);

Kotlin

fun registerScope(scopeName: String, scope: Scope)

This method is declared on the ConfigurableBeanFactory interface, which is available through the
BeanFactory property on most of the concrete ApplicationContext implementations that ship with
Spring.

The first argument to the registerScope(..) method is the unique name associated with a scope.
Examples of such names in the Spring container itself are singleton and prototype. The second
argument to the registerScope(..) method is an actual instance of the custom Scope
implementation that you wish to register and use.

Suppose that you write your custom Scope implementation, and then register it as shown in the
next example.

66

https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/beans/factory/config/Scope.html#registerDestructionCallback

The next example uses SimpleThreadScope, which is included with Spring but is not
registered by default. The instructions would be the same for your own custom
Scope implementations.

Java

Scope threadScope = new SimpleThreadScope();
beanFactory.registerScope("thread", threadScope);

Kotlin

val threadScope = SimpleThreadScope()
beanFactory.registerScope("thread", threadScope)

You can then create bean definitions that adhere to the scoping rules of your custom Scope, as
follows:

<bean id="..." class="..." scope="thread">

With a custom Scope implementation, you are not limited to programmatic registration of the scope.
You can also do the Scope registration declaratively, by using the CustomScopeConfigurer class, as the
following example shows:

67

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aop="http://www.springframework.org/schema/aop"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/aop
https://www.springframework.org/schema/aop/spring-aop.xsd">

<bean class="org.springframework.beans.factory.config.CustomScopeConfigurer">
<property name="scopes">
<map>
<entry key="thread">
<bean
class="org.springframework.context.support.SimpleThreadScope"/>
</entry>
</map>
</property>
</bean>

<bean id="thing2" class="x.y.Thing2" scope="thread">
<property name="name" value="Rick"/>
<aop:scoped-proxy/>

</bean>

<bean id="thing1" class="x.y.Thing1">
<property name="thing2" ref="thing2"/>

</bean>
</beans>
When you place <aop:scoped-proxy/> within a <bean> declaration for a FactoryBean
o implementation, it is the factory bean itself that is scoped, not the object returned

from getObject().

3.1.6. Customizing the Nature of a Bean

The Spring Framework provides a number of interfaces you can use to customize the nature of a
bean. This section groups them as follows:

* Lifecycle Callbacks
* ApplicationContextAware and BeanNameAware

¢ Other Aware Interfaces

Lifecycle Callbacks

To interact with the container’s management of the bean lifecycle, you can implement the Spring
InitializingBean and DisposableBean interfaces. The container calls afterPropertiesSet() for the

68

former and destroy() for the latter to let the bean perform certain actions upon initialization and
destruction of your beans.

The JSR-250 @PostConstruct and @PreDestroy annotations are generally considered

best practice for receiving lifecycle callbacks in a modern Spring application. Using

these annotations means that your beans are not coupled to Spring-specific
(;) interfaces. For details, see Using @PostConstruct and @PreDestroy.

If you do not want to use the JSR-250 annotations but you still want to remove
coupling, consider init-method and destroy-method bean definition metadata.

Internally, the Spring Framework uses BeanPostProcessor implementations to process any callback
interfaces it can find and call the appropriate methods. If you need custom features or other
lifecycle behavior Spring does not by default offer, you can implement a BeanPostProcessor yourself.
For more information, see Container Extension Points.

In addition to the initialization and destruction callbacks, Spring-managed objects may also
implement the Lifecycle interface so that those objects can participate in the startup and shutdown
process, as driven by the container’s own lifecycle.

The lifecycle callback interfaces are described in this section.

Initialization Callbacks

The org.springframework.beans.factory.InitializingBean interface lets a bean perform
initialization work after the container has set all necessary properties on the bean. The
InitializingBean interface specifies a single method:

void afterPropertiesSet() throws Exception;

We recommend that you do not use the InitializingBean interface, because it unnecessarily couples
the code to Spring. Alternatively, we suggest using the @PostConstruct annotation or specifying a
PO]JO initialization method. In the case of XML-based configuration metadata, you can use the init-
method attribute to specify the name of the method that has a void no-argument signature. With
Java configuration, you can use the initMethod attribute of @Bean. See Receiving Lifecycle Callbacks.
Consider the following example:

<bean id="exampleInitBean" class="examples.ExampleBean" init-method="init"/>

Java
public class ExampleBean {

public void init() {
// do some initialization work

69

Kotlin

class ExampleBean {

fun init() {
// do some initialization work

}

The preceding example has almost exactly the same effect as the following example (which consists
of two listings):

<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>

Java
public class AnotherExampleBean implements InitializingBean {

@0verride
public void afterPropertiesSet() {
// do some initialization work

}

Kotlin
class AnotherExampleBean : InitializingBean {

override fun afterPropertiesSet() {
// do some initialization work

}

However, the first of the two preceding examples does not couple the code to Spring.

Destruction Callbacks

Implementing the org.springframework.beans.factory.DisposableBean interface lets a bean get a
callback when the container that contains it is destroyed. The DisposableBean interface specifies a
single method:

void destroy() throws Exception;

We recommend that you do not use the DisposableBean callback interface, because it unnecessarily
couples the code to Spring. Alternatively, we suggest using the @PreDestroy annotation or specifying
a generic method that is supported by bean definitions. With XML-based configuration metadata,
you can use the destroy-method attribute on the <bean/>. With Java configuration, you can use the

70

destroyMethod attribute of @Bean. See Receiving Lifecycle Callbacks. Consider the following
definition:

<bean id="exampleInitBean" class="examples.ExampleBean" destroy-method="cleanup"/>

Java
public class ExampleBean {
public void cleanup() {

// do some destruction work (like releasing pooled connections)

}

Kotlin
class ExampleBean {
fun cleanup() {

// do some destruction work (like releasing pooled connections)

}

The preceding definition has almost exactly the same effect as the following definition:

<bean id="exampleInitBean" class="examples.AnotherExampleBean"/>

Java
public class AnotherExampleBean implements DisposableBean {
@lverride

public void destroy() {
// do some destruction work (like releasing pooled connections)

}

Kotlin
class AnotherExampleBean : DisposableBean {

override fun destroy() {
// do some destruction work (like releasing pooled connections)

}

71

However, the first of the two preceding definitions does not couple the code to Spring.

You can assign the destroy-method attribute of a <bean> element a special (inferred)
value, which instructs Spring to automatically detect a public close or shutdown
method on the specific bean class. (Any class that implements

(r') java.lang.AutoCloseable or java.io.(Closeable would therefore match.) You can

- also set this special (inferred) value on the default-destroy-method attribute of a
<beans> element to apply this behavior to an entire set of beans (see Default
Initialization and Destroy Methods). Note that this is the default behavior with Java
configuration.

Default Initialization and Destroy Methods

When you write initialization and destroy method callbacks that do not use the Spring-specific
InitializingBean and DisposableBean callback interfaces, you typically write methods with names
such as init(), initialize(), dispose(), and so on. Ideally, the names of such lifecycle callback
methods are standardized across a project so that all developers use the same method names and
ensure consistency.

You can configure the Spring container to “look” for named initialization and destroy callback
method names on every bean. This means that you, as an application developer, can write your
application classes and use an initialization callback called init(), without having to configure an
init-method="init" attribute with each bean definition. The Spring IoC container calls that method
when the bean is created (and in accordance with the standard lifecycle callback contract described
previously). This feature also enforces a consistent naming convention for initialization and destroy
method callbacks.

Suppose that your initialization callback methods are named init() and your destroy callback
methods are named destroy(). Your class then resembles the class in the following example:

Java
public class DefaultBlogService implements BlogService {
private BlogDao blogDao;

public void setBlogDao(BlogDao blogDao) {
this.blogDao = blogDao;
}

// this is (unsurprisingly) the initialization callback method
public void init() {
if (this.blogDao == null) {
throw new I1legalStateException("The [blogDao] property must be set.");
}

72

Kotlin
class DefaultBlogService : BlogService {
private var blogDao: BlogDao? = null

// this is (unsurprisingly) the initialization callback method
fun init() {
if (blogDao == null) {
throw I1legalStateException("The [blogDao] property must be set.")
}

You could then use that class in a bean resembling the following:

<beans default-init-method="1init">

<bean id="blogService" class="com.something.DefaultBlogService">
<property name="blogDao" ref="blogDao" />
</bean>

</beans>

The presence of the default-init-method attribute on the top-level <beans/> element attribute causes
the Spring IoC container to recognize a method called init on the bean class as the initialization
method callback. When a bean is created and assembled, if the bean class has such a method, it is
invoked at the appropriate time.

You can configure destroy method callbacks similarly (in XML, that is) by using the default-
destroy-method attribute on the top-level <beans/> element.

Where existing bean classes already have callback methods that are named at variance with the
convention, you can override the default by specifying (in XML, that is) the method name by using
the init-method and destroy-method attributes of the <bean/> itself.

The Spring container guarantees that a configured initialization callback is called immediately after
a bean is supplied with all dependencies. Thus, the initialization callback is called on the raw bean
reference, which means that AOP interceptors and so forth are not yet applied to the bean. A target
bean is fully created first and then an AOP proxy (for example) with its interceptor chain is applied.
If the target bean and the proxy are defined separately, your code can even interact with the raw
target bean, bypassing the proxy. Hence, it would be inconsistent to apply the interceptors to the
init method, because doing so would couple the lifecycle of the target bean to its proxy or
interceptors and leave strange semantics when your code interacts directly with the raw target
bean.

73

Combining Lifecycle Mechanisms

As of Spring 2.5, you have three options for controlling bean lifecycle behavior:

* The InitializingBean and DisposableBean callback interfaces
e Custom init() and destroy() methods

* The @PostConstruct and @PreDestroy annotations. You can combine these mechanisms to control
a given bean.

If multiple lifecycle mechanisms are configured for a bean and each mechanism is
configured with a different method name, then each configured method is run in

o the order listed after this note. However, if the same method name is
configured — for example, init() for an initialization method — for more than one
of these lifecycle mechanisms, that method is run once, as explained in the
preceding section.

Multiple lifecycle mechanisms configured for the same bean, with different initialization methods,
are called as follows:

1. Methods annotated with @PostConstruct
2. afterPropertiesSet() as defined by the InitializingBean callback interface

3. A custom configured init() method
Destroy methods are called in the same order:

1. Methods annotated with @PreDestroy
2. destroy() as defined by the DisposableBean callback interface

3. A custom configured destroy() method

Startup and Shutdown Callbacks

The Lifecycle interface defines the essential methods for any object that has its own lifecycle
requirements (such as starting and stopping some background process):

public interface Lifecycle {
void start();
void stop();

boolean isRunning();

Any Spring-managed object may implement the Lifecycle interface. Then, when the
ApplicationContext itself receives start and stop signals (for example, for a stop/restart scenario at
runtime), it cascades those calls to all Lifecycle implementations defined within that context. It
does this by delegating to a LifecycleProcessor, shown in the following listing:

74

public interface LifecycleProcessor extends Lifecycle {
void onRefresh();

void onClose();

Notice that the LifecycleProcessor is itself an extension of the Lifecycle interface. It also adds two
other methods for reacting to the context being refreshed and closed.

Note that the regular org.springframework.context.Lifecycle interface is a plain

contract for explicit start and stop notifications and does not imply auto-startup at

context refresh time. For fine-grained control over auto-startup of a specific bean

(including startup phases), consider implementing
O org.springframework.context.SmartLifecycle instead.

Also, please note that stop notifications are not guaranteed to come before
destruction. On regular shutdown, all Lifecycle beans first receive a stop
notification before the general destruction callbacks are being propagated.
However, on hot refresh during a context’s lifetime or on stopped refresh
attempts, only destroy methods are called.

The order of startup and shutdown invocations can be important. If a “depends-on” relationship
exists between any two objects, the dependent side starts after its dependency, and it stops before
its dependency. However, at times, the direct dependencies are unknown. You may only know that
objects of a certain type should start prior to objects of another type. In those cases, the
SmartLifecycle interface defines another option, namely the getPhase() method as defined on its
super-interface, Phased. The following listing shows the definition of the Phased interface:

public interface Phased {

int getPhase();

The following listing shows the definition of the SmartLifecycle interface:

public interface SmartLifecycle extends Lifecycle, Phased {
boolean isAutoStartup();

void stop(Runnable callback);

When starting, the objects with the lowest phase start first. When stopping, the reverse order is
followed. Therefore, an object that implements SmartLifecycle and whose getPhase() method
returns Integer.MIN_VALUE would be among the first to start and the last to stop. At the other end of

75

the spectrum, a phase value of Integer.MAX_VALUE would indicate that the object should be started
last and stopped first (likely because it depends on other processes to be running). When
considering the phase value, it is also important to know that the default phase for any “normal”
Lifecycle object that does not implement SmartLifecycle is 0. Therefore, any negative phase value
indicates that an object should start before those standard components (and stop after them). The
reverse is true for any positive phase value.

The stop method defined by SmartLifecycle accepts a callback. Any implementation must invoke
that callback’s run() method after that implementation’s shutdown process is complete. That
enables asynchronous shutdown where necessary, since the default implementation of the
LifecycleProcessor interface, DefaultLifecycleProcessor, waits up to its timeout value for the group
of objects within each phase to invoke that callback. The default per-phase timeout is 30 seconds.
You can override the default lifecycle processor instance by defining a bean named
lifecycleProcessor within the context. If you want only to modify the timeout, defining the
following would suffice:

<bean id="1lifecycleProcessor"
class="org.springframework.context.support.DefaultlLifecycleProcessor">
<!-- timeout value in milliseconds -->
<property name="timeoutPerShutdownPhase" value="10000"/>
</bean>

As mentioned earlier, the LifecycleProcessor interface defines callback methods for the refreshing
and closing of the context as well. The latter drives the shutdown process as if stop() had been
called explicitly, but it happens when the context is closing. The 'refresh' callback, on the other
hand, enables another feature of SmartLifecycle beans. When the context is refreshed (after all
objects have been instantiated and initialized), that callback is invoked. At that point, the default
lifecycle processor checks the boolean value returned by each SmartlLifecycle object’s
isAutoStartup() method. If true, that object is started at that point rather than waiting for an
explicit invocation of the context’s or its own start() method (unlike the context refresh, the
context start does not happen automatically for a standard context implementation). The phase
value and any “depends-on” relationships determine the startup order as described earlier.

Shutting Down the Spring IoC Container Gracefully in Non-Web Applications

This section applies only to non-web applications. Spring’s web-based
0 ApplicationContext implementations already have code in place to gracefully shut
down the Spring IoC container when the relevant web application is shut down.

If you use Spring’s IoC container in a non-web application environment (for example, in a rich
client desktop environment), register a shutdown hook with the JVM. Doing so ensures a graceful
shutdown and calls the relevant destroy methods on your singleton beans so that all resources are
released. You must still configure and implement these destroy callbacks correctly.

To register a shutdown hook, call the registerShutdownHook() method that is declared on the
ConfigurableApplicationContext interface, as the following example shows:

76

Java

import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public final class Boot {
public static void main(final String[] args) throws Exception {
ConfigurableApplicationContext ctx = new

ClassPathXmlApplicationContext("beans.xml");

// add a shutdown hook for the above context...
ctx.registerShutdownHook();

// app runs here...

// main method exits, hook is called prior to the app shutting down...

Kotlin

import org.springframework.context.support.ClassPathXmlApplicationContext

fun main() {
val ctx = ClassPathXmlApplicationContext("beans.xml")

// add a shutdown hook for the above context...
ctx.registerShutdownHook()

// app runs here...

// main method exits, hook is called prior to the app shutting down...

ApplicationContextAware and BeanNameAware

When an ApplicationContext creates an object instance that implements the
org.springframework.context.ApplicationContextAware interface, the instance is provided with a
reference to that ApplicationContext. The following listing shows the definition of the
ApplicationContextAware interface:

public interface ApplicationContextAware {
void setApplicationContext(ApplicationContext applicationContext) throws

BeansException;

}

77

Thus, beans can programmatically manipulate the ApplicationContext that created them, through
the ApplicationContext interface or by casting the reference to a known subclass of this interface
(such as ConfigurableApplicationContext, which exposes additional functionality). One use would be
the programmatic retrieval of other beans. Sometimes this capability is useful. However, in general,
you should avoid it, because it couples the code to Spring and does not follow the Inversion of
Control style, where collaborators are provided to beans as properties. Other methods of the
ApplicationContext provide access to file resources, publishing application events, and accessing a
MessageSource. These additional features are described in Additional Capabilities of the
ApplicationContext.

Autowiring is another alternative to obtain a reference to the ApplicationContext. The traditional
constructor and byType autowiring modes (as described in Autowiring Collaborators) can provide a
dependency of type ApplicationContext for a constructor argument or a setter method parameter,
respectively. For more flexibility, including the ability to autowire fields and multiple parameter
methods, use the annotation-based autowiring features. If you do, the ApplicationContext is
autowired into a field, constructor argument, or method parameter that expects the
ApplicationContext type if the field, constructor, or method in question carries the @Autowired
annotation. For more information, see Using @Autowired.

When an ApplicationContext creates a class that implements the
org.springframework.beans.factory.BeanNameAware interface, the class is provided with a reference to
the name defined in its associated object definition. The following listing shows the definition of the
BeanNameAware interface:

public interface BeanNameAware {

void setBeanName(String name) throws BeansException;

The callback is invoked after population of normal bean properties but before an initialization
callback such as InitializingBean.afterPropertiesSet() or a custom init-method.

Other Aware Interfaces

Besides ApplicationContextAware and BeanNameAware (discussed earlier), Spring offers a wide range of
Aware callback interfaces that let beans indicate to the container that they require a certain
infrastructure dependency. As a general rule, the name indicates the dependency type. The
following table summarizes the most important Aware interfaces:

Table 4. Aware interfaces

Name Injected Dependency Explained in...
ApplicationContextAware Declaring ApplicationContext. ApplicationContextAware and
BeanNameAware

ApplicationEventPublisherAware Event publisher of the enclosing Additional Capabilities of the
ApplicationContext. ApplicationContext

78

Name Injected Dependency Explained in...

BeanClassLoaderAware Class loader used to load the Instantiating Beans
bean classes.

BeanFactoryAware Declaring BeanFactory. The BeanFactory API
BeanNameAware Name of the declaring bean. ApplicationContextAware and
BeanNameAware
LoadTimeWeaverAware Defined weaver for processing Load-time Weaving with
class definition at load time. Aspect] in the Spring
Framework
MessageSourceAware Configured strategy for Additional Capabilities of the
resolving messages (with ApplicationContext

support for parameterization
and internationalization).

NotificationPublisherAware Spring JMX notification Notifications
publisher.
ResourceloaderAware Configured loader for low-level Resources

access to resources.

ServletConfigAware Current ServletConfig the Spring MVC
container runs in. Valid only in
a web-aware Spring
ApplicationContext.

ServletContextAware Current ServletContext the Spring MVC
container runs in. Valid only in
a web-aware Spring
ApplicationContext.

Note again that using these interfaces ties your code to the Spring API and does not follow the
Inversion of Control style. As a result, we recommend them for infrastructure beans that require
programmatic access to the container.

3.1.7. Bean Definition Inheritance

A bean definition can contain a lot of configuration information, including constructor arguments,
property values, and container-specific information, such as the initialization method, a static
factory method name, and so on. A child bean definition inherits configuration data from a parent
definition. The child definition can override some values or add others as needed. Using parent and
child bean definitions can save a lot of typing. Effectively, this is a form of templating.

If you work with an ApplicationContext interface programmatically, child bean definitions are
represented by the ChildBeanDefinition class. Most users do not work with them on this level.
Instead, they configure bean definitions declaratively in a class such as the
ClassPathXmlApplicationContext. When you use XML-based configuration metadata, you can
indicate a child bean definition by using the parent attribute, specifying the parent bean as the
value of this attribute. The following example shows how to do so:

79

<bean id="inheritedTestBean" abstract="true"
class="org.springframework.beans.TestBean">
<property name="name" value="parent"/>
<property name="age" value="1"/>
</bean>

<bean id="inheritsWithDifferentClass"
class="org.springframework.beans.DerivedTestBean"
parent="inheritedTestBean" init-method="initialize"> @
<property name="name" value="override"/>
<!-- the age property value of 1 will be inherited from parent -->
</bean>

@ Note the parent attribute.

A child bean definition uses the bean class from the parent definition if none is specified but can
also override it. In the latter case, the child bean class must be compatible with the parent (that is, it
must accept the parent’s property values).

A child bean definition inherits scope, constructor argument values, property values, and method
overrides from the parent, with the option to add new values. Any scope, initialization method,
destroy method, or static factory method settings that you specify override the corresponding
parent settings.

The remaining settings are always taken from the child definition: depends on, autowire mode,
dependency check, singleton, and lazy init.

The preceding example explicitly marks the parent bean definition as abstract by using the
abstract attribute. If the parent definition does not specify a class, explicitly marking the parent
bean definition as abstract is required, as the following example shows:

<bean id="1inheritedTestBeanWithout(lass" abstract="true">
<property name="name" value="parent"/>
<property name="age" value="1"/>

</bean>

<bean id="1inheritsWithClass" class="org.springframework.beans.DerivedTestBean"
parent="1inheritedTestBeanWithoutClass" init-method="initialize">
<property name="name" value="override"/>
<!-- age will inherit the value of 1 from the parent bean definition-->
</bean>

The parent bean cannot be instantiated on its own because it is incomplete, and it is also explicitly
marked as abstract. When a definition is abstract, it is usable only as a pure template bean
definition that serves as a parent definition for child definitions. Trying to use such an abstract
parent bean on its own, by referring to it as a ref property of another bean or doing an explicit
getBean() call with the parent bean ID returns an error. Similarly, the container’s internal
prelnstantiateSingletons() method ignores bean definitions that are defined as abstract.

80

ApplicationContext pre-instantiates all singletons by default. Therefore, it is
important (at least for singleton beans) that if you have a (parent) bean definition

o which you intend to use only as a template, and this definition specifies a class,
you must make sure to set the abstract attribute to true, otherwise the application
context will actually (attempt to) pre-instantiate the abstract bean.

3.1.8. Container Extension Points

Typically, an application developer does not need to subclass ApplicationContext implementation
classes. Instead, the Spring IoC container can be extended by plugging in implementations of
special integration interfaces. The next few sections describe these integration interfaces.

Customizing Beans by Using a BeanPostProcessor

The BeanPostProcessor interface defines callback methods that you can implement to provide your
own (or override the container’s default) instantiation logic, dependency resolution logic, and so
forth. If you want to implement some custom logic after the Spring container finishes instantiating,
configuring, and initializing a bean, you can plug in one or more custom BeanPostProcessor
implementations.

You can configure multiple BeanPostProcessor instances, and you can control the order in which
these BeanPostProcessor instances run by setting the order property. You can set this property only if
the BeanPostProcessor implements the Ordered interface. If you write your own BeanPostProcessor,
you should consider implementing the Ordered interface, too. For further details, see the javadoc of
the BeanPostProcessor and Ordered interfaces. See also the note on programmatic registration of
BeanPostProcessor instances.

BeanPostProcessor instances operate on bean (or object) instances. That is, the
Spring IoC container instantiates a bean instance and then BeanPostProcessor
instances do their work.

BeanPostProcessor instances are scoped per-container. This is relevant only if you
use container hierarchies. If you define a BeanPostProcessor in one container, it

o post-processes only the beans in that container. In other words, beans that are
defined in one container are not post-processed by a BeanPostProcessor defined in
another container, even if both containers are part of the same hierarchy.

To change the actual bean definition (that is, the blueprint that defines the bean),
you instead need to use a BeanFactoryPostProcessor, as described in Customizing
Configuration Metadata with a BeanFactoryPostProcessor.

The org.springframework.beans.factory.config.BeanPostProcessor interface consists of exactly two
callback methods. When such a class is registered as a post-processor with the container, for each
bean instance that is created by the container, the post-processor gets a callback from the container
both before container initialization methods (such as InitializingBean.afterPropertiesSet() or any
declared init method) are called, and after any bean initialization callbacks. The post-processor
can take any action with the bean instance, including ignoring the callback completely. A bean post-
processor typically checks for callback interfaces, or it may wrap a bean with a proxy. Some Spring

81

https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/beans/factory/config/BeanPostProcessor.html
https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/core/Ordered.html

AOP infrastructure classes are implemented as bean post-processors in order to provide proxy-
wrapping logic.

An ApplicationContext automatically detects any beans that are defined in the configuration
metadata that implement the BeanPostProcessor interface. The ApplicationContext registers these
beans as post-processors so that they can be called later, upon bean creation. Bean post-processors
can be deployed in the container in the same fashion as any other beans.

Note that, when declaring a BeanPostProcessor by using an @Bean factory method on a configuration
class, the return type of the factory method should be the implementation class itself or at least the
org.springframework.beans.factory.config.BeanPostProcessor interface, clearly indicating the post-
processor nature of that bean. Otherwise, the ApplicationContext cannot autodetect it by type
before fully creating it. Since a BeanPostProcessor needs to be instantiated early in order to apply to
the initialization of other beans in the context, this early type detection is critical.

Programmatically registering BeanPostProcessor instances

While the recommended approach for BeanPostProcessor registration is through
ApplicationContext auto-detection (as described earlier), you can register them
programmatically against a ConfigurableBeanFactory by wusing the
addBeanPostProcessor method. This can be useful when you need to evaluate
o conditional logic before registration or even for copying bean post processors
across contexts in a hierarchy. Note, however, that BeanPostProcessor instances
added programmatically do not respect the Ordered interface. Here, it is the order
of registration that dictates the order of execution. Note also that
BeanPostProcessor instances registered programmatically are always processed
before those registered through auto-detection, regardless of any explicit ordering.

BeanPostProcessor instances and AOP auto-proxying

Classes that implement the BeanPostProcessor interface are special and are treated
differently by the container. All BeanPostProcessor instances and beans that they
directly reference are instantiated on startup, as part of the special startup phase
of the ApplicationContext. Next, all BeanPostProcessor instances are registered in a
sorted fashion and applied to all further beans in the container. Because AOP auto-
proxying is implemented as a BeanPostProcessor itself, neither BeanPostProcessor
instances nor the beans they directly reference are eligible for auto-proxying and,
thus, do not have aspects woven into them.

0 For any such bean, you should see an informational log message: Bean someBean is
not eligible for getting processed by all BeanPostProcessor interfaces (for

example: not eligible for auto-proxying).

If you have beans wired into your BeanPostProcessor by using autowiring or
@Resource (which may fall back to autowiring), Spring might access unexpected
beans when searching for type-matching dependency candidates and, therefore,
make them ineligible for auto-proxying or other kinds of bean post-processing. For
example, if you have a dependency annotated with @Resource where the field or
setter name does not directly correspond to the declared name of a bean and no
name attribute is used, Spring accesses other beans for matching them by type.

82

The following examples show how to write, register, and use BeanPostProcessor instances in an
ApplicationContext.

Example: Hello World, BeanPostProcessor-style

This first example illustrates basic usage. The example shows a custom BeanPostProcessor
implementation that invokes the toString() method of each bean as it is created by the container
and prints the resulting string to the system console.

The following listing shows the custom BeanPostProcessor implementation class definition:
Java
package scripting;
import org.springframework.beans.factory.config.BeanPostProcessor;
public class InstantiationTracingBeanPostProcessor implements BeanPostProcessor {
// simply return the instantiated bean as-is

public Object postProcessBeforelnitialization(Object bean, String beanName) {
return bean; // we could potentially return any object reference here...

}

public Object postProcessAfterInitialization(Object bean, String beanName) {
System.out.println("Bean '" + beanName + created : " + bean.toString());
return bean;

Kotlin
package scripting
import org.springframework.beans.factory.config.BeanPostProcessor
class InstantiationTracingBeanPostProcessor : BeanPostProcessor {
// simply return the instantiated bean as-is
override fun postProcessBeforeInitialization(bean: Any, beanName: String): Any? {

return bean // we could potentially return any object reference here...

}

override fun postProcessAfterInitialization(bean: Any, beanName: String): Any? {
println("Bean '$beanName' created : $bean")
return bean

The following beans element uses the InstantiationTracingBeanPostProcessor:

83

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:lang="http://www.springframework.org/schema/1lang"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/lang
https://www.springframework.org/schema/lang/spring-lang.xsd">

<lang:groovy id="messenger"
script-
source="classpath:org/springframework/scripting/groovy/Messenger.groovy">
<lang:property name="message" value="Fiona Apple Is Just So Dreamy."/>
</lang:groovy>

<ll==

when the above bean (messenger) is instantiated, this custom
BeanPostProcessor implementation will output the fact to the system console
-->

<bean class="scripting.InstantiationTracingBeanPostProcessor"/>

</beans>

Notice how the InstantiationTracingBeanPostProcessor is merely defined. It does not even have a
name, and, because it is a bean, it can be dependency-injected as you would any other bean. (The
preceding configuration also defines a bean that is backed by a Groovy script. The Spring dynamic
language support is detailed in the chapter entitled Dynamic Language Support.)

The following Java application runs the preceding code and configuration:

Java

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import org.springframework.scripting.Messenger;

public final class Boot {

public static void main(final String[] args) throws Exception {
ApplicationContext ctx = new
ClassPathXmlApplicationContext("scripting/beans.xml");
Messenger messenger = ctx.getBean("messenger", Messenger.class);
System.out.println(messenger);

84

Kotlin
import org.springframework.beans.factory.getBean

fun main() {
val ctx = ClassPathXmlApplicationContext("scripting/beans.xml")
val messenger = ctx.getBean<Messenger>("messenger")
println(messenger)

The output of the preceding application resembles the following:

Bean 'messenger' created : org.springframework.scripting.groovy.GroovyMessenger@272961
org.springframework.scripting.groovy.GroovyMessenger@272961

Example: The AutowiredAnnotationBeanPostProcessor

Using callback interfaces or annotations in conjunction with a custom BeanPostProcessor
implementation is a common means of extending the Spring IoC container. An example is Spring’s
AutowiredAnnotationBeanPostProcessor —a BeanPostProcessor implementation that ships with the
Spring distribution and autowires annotated fields, setter methods, and arbitrary config methods.

Customizing Configuration Metadata with a BeanFactoryPostProcessor

The next extension point that we look at is the
org.springframework.beans.factory.config.BeanFactoryPostProcessor. The semantics of this
interface are similar to those of the BeanPostProcessor, with one major difference:
BeanFactoryPostProcessor operates on the bean configuration metadata. That is, the Spring IoC
container lets a BeanFactoryPostProcessor read the configuration metadata and potentially change it
before the container instantiates any beans other than BeanFactoryPostProcessor instances.

You can configure multiple BeanFactoryPostProcessor instances, and you can control the order in
which these BeanFactoryPostProcessor instances run by setting the order property. However, you
can only set this property if the BeanFactoryPostProcessor implements the Ordered interface. If you
write your own BeanFactoryPostProcessor, you should consider implementing the Ordered interface,
too. See the javadoc of the BeanFactoryPostProcessor and Ordered interfaces for more details.

85

https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/beans/factory/config/BeanFactoryPostProcessor.html
https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/core/Ordered.html

If you want to change the actual bean instances (that is, the objects that are
created from the configuration metadata), then you instead need to use a
BeanPostProcessor (described earlier in Customizing Beans by Using a
BeanPostProcessor). While it is technically possible to work with bean instances
within a BeanFactoryPostProcessor (for example, by using BeanFactory.getBean()),
doing so causes premature bean instantiation, violating the standard container
lifecycle. This may cause negative side effects, such as bypassing bean post
0 processing.

Also, BeanFactoryPostProcessor instances are scoped per-container. This is only
relevant if you use container hierarchies. If you define a BeanFactoryPostProcessor
in one container, it is applied only to the bean definitions in that container. Bean
definitions in one container are not post-processed by BeanFactoryPostProcessor
instances in another container, even if both containers are part of the same
hierarchy.

A bean factory post-processor is automatically run when it is declared inside an ApplicationContext,
in order to apply changes to the configuration metadata that define the container. Spring includes a
number of predefined bean factory post-processors, such as PropertyOverrideConfigurer and
PropertySourcesPlaceholderConfigurer. You can also use a custom BeanFactoryPostProcessor — for
example, to register custom property editors.

An ApplicationContext automatically detects any beans that are deployed into it that implement the
BeanFactoryPostProcessor interface. It uses these beans as bean factory post-processors, at the
appropriate time. You can deploy these post-processor beans as you would any other bean.

As with BeanPostProcessors , you typically do not want to configure
BeanFactoryPostProcessors for lazy initialization. If no other bean references a

o Bean(Factory)PostProcessor, that post-processor will not get instantiated at all.
Thus, marking it for lazy initialization will be ignored, and the
Bean(Factory)PostProcessor will be instantiated eagerly even if you set the default-
lazy-init attribute to true on the declaration of your <beans /> element.

Example: The Class Name Substitution PropertySourcesPlaceholderConfigurer

You can use the PropertySourcesPlaceholderConfigurer to externalize property values from a bean
definition in a separate file by using the standard Java Properties format. Doing so enables the
person deploying an application to customize environment-specific properties, such as database
URLs and passwords, without the complexity or risk of modifying the main XML definition file or
files for the container.

Consider the following XML-based configuration metadata fragment, where a DataSource with
placeholder values is defined:

86

<bean
class="org.springframework.context.support.PropertySourcesPlaceholderConfigurer">

<property name="locations" value="classpath:com/something/jdbc.properties”/>
</bean>

<bean id="dataSource" destroy-method="close"
class="org.apache.commons.dbcp.BasicDataSource">
<property name="driverClassName" value="${jdbc.driverClassName}"/>
<property name="ur1" value="${jdbc.ur1}"/>
<property name="username" value="${jdbc.username}"/>
<property name="password" value="${jdbc.password}"/>
</bean>

The example shows properties configured from an external Properties file. At runtime, a
PropertySourcesPlaceholderConfigurer is applied to the metadata that replaces some properties of
the DataSource. The values to replace are specified as placeholders of the form ${property-name},
which follows the Ant and log4j and JSP EL style.

The actual values come from another file in the standard Java Properties format:

jdbc.driverClassName=org.hsqldb.jdbcDriver
jdbc.url=jdbc:hsqldb:hsql://production:9002
jdbc.username=sa

jdbc.password=root

Therefore, the ${jdbc.username} string is replaced at runtime with the value, 'sa’, and the same
applies for other placeholder values that match keys in the properties file. The
PropertySourcesPlaceholderConfigurer checks for placeholders in most properties and attributes of a
bean definition. Furthermore, you can customize the placeholder prefix and suffix.

With the context namespace introduced in Spring 2.5, you can configure property placeholders
with a dedicated configuration element. You can provide one or more locations as a comma-
separated list in the location attribute, as the following example shows:

<context:property-placeholder location="classpath:com/something/jdbc.properties"/>

The PropertySourcesPlaceholderConfigurer not only looks for properties in the Properties file you
specify. By default, if it cannot find a property in the specified properties files, it checks against
Spring Environment properties and regular Java System properties.

87

You can use the PropertySourcesPlaceholderConfigurer to substitute class names,
which is sometimes useful when you have to pick a particular implementation
class at runtime. The following example shows how to do so:

<bean
class="org.springframework.beans.factory.config.PropertySourcesPlacehol
derConfigurer">
<property name="locations">
<value>classpath:com/something/strategy.properties</value>

- </property>
O <property name="properties">

<value>custom.strategy.class=com.something.DefaultStrategy</value>

</property>
</bean>

<bean id="serviceStrategy" class="${custom.strategy.class}"/>

If the class cannot be resolved at runtime to a valid class, resolution of the bean
fails when it is about to be created, which is during the preInstantiateSingletons()
phase of an ApplicationContext for a non-lazy-init bean.

Example: The PropertyOverrideConfigurer

The PropertyOverrideConfigurer, another bean factory post-processor, resembles the
PropertySourcesPlaceholderConfigurer, but unlike the latter, the original definitions can have
default values or no values at all for bean properties. If an overriding Properties file does not have
an entry for a certain bean property, the default context definition is used.

Note that the bean definition is not aware of being overridden, so it is not immediately obvious
from the XML definition file that the override configurer is being used. In case of multiple
PropertyOverrideConfigurer instances that define different values for the same bean property, the
last one wins, due to the overriding mechanism.

Properties file configuration lines take the following format:
beanName.property=value
The following listing shows an example of the format:

dataSource.driverClassName=com.mysql.jdbc.Driver
dataSource.url=jdbc:mysql:mydb

This example file can be used with a container definition that contains a bean called dataSource that
has driver and url properties.

Compound property names are also supported, as long as every component of the path except the

88

final property being overridden is already non-null (presumably initialized by the constructors). In
the following example, the sammy property of the bob property of the fred property of the tom bean is
set to the scalar value 123:

tom. fred.bob.sammy=123

Specified override values are always literal values. They are not translated into
bean references. This convention also applies when the original value in the XML
bean definition specifies a bean reference.

With the context namespace introduced in Spring 2.5, it is possible to configure property overriding
with a dedicated configuration element, as the following example shows:

<context:property-override location="classpath:override.properties"/>

Customizing Instantiation Logic with a FactoryBean

You can implement the org.springframework.beans.factory.FactoryBean interface for objects that are
themselves factories.

The FactoryBean interface is a point of pluggability into the Spring IoC container’s instantiation
logic. If you have complex initialization code that is better expressed in Java as opposed to a
(potentially) verbose amount of XML, you can create your own FactoryBean, write the complex
initialization inside that class, and then plug your custom FactoryBean into the container.

The FactoryBean<T> interface provides three methods:
* T getObject(): Returns an instance of the object this factory creates. The instance can possibly

be shared, depending on whether this factory returns singletons or prototypes.

* boolean isSingleton(): Returns true if this FactoryBean returns singletons or false otherwise.
The default implementation of this method returns true.

* (lass<?> getObjectType(): Returns the object type returned by the getObject() method or null if
the type is not known in advance.

The FactoryBean concept and interface are used in a number of places within the Spring
Framework. More than 50 implementations of the FactoryBean interface ship with Spring itself.

When you need to ask a container for an actual FactoryBean instance itself instead of the bean it
produces, prefix the bean’s id with the ampersand symbol (& when calling the getBean() method of
the ApplicationContext. So, for a given FactoryBean with an id of myBean, invoking getBean("myBean")
on the container returns the product of the FactoryBean, whereas invoking getBean("&myBean")
returns the FactoryBean instance itself.

3.1.9. Annotation-based Container Configuration

89

Are annotations better than XML for configuring Spring?

The introduction of annotation-based configuration raised the question of whether this
approach is “better” than XML. The short answer is “it depends.” The long answer is that each
approach has its pros and cons, and, usually, it is up to the developer to decide which strategy
suits them better. Due to the way they are defined, annotations provide a lot of context in
their declaration, leading to shorter and more concise configuration. However, XML excels at
wiring up components without touching their source code or recompiling them. Some
developers prefer having the wiring close to the source while others argue that annotated
classes are no longer POJOs and, furthermore, that the configuration becomes decentralized
and harder to control.

No matter the choice, Spring can accommodate both styles and even mix them together. It is
worth pointing out that through its JavaConfig option, Spring lets annotations be used in a
non-invasive way, without touching the target components' source code and that, in terms of
tooling, all configuration styles are supported by Spring Tools for Eclipse, Visual Studio Code,
and Theia.

An alternative to XML setup is provided by annotation-based configuration, which relies on
bytecode metadata for wiring up components instead of XML declarations. Instead of using XML to
describe a bean wiring, the developer moves the configuration into the component class itself by
using annotations on the relevant class, method, or field declaration. As mentioned in Example: The
AutowiredAnnotationBeanPostProcessor, using a BeanPostProcessor in conjunction with annotations is
a common means of extending the Spring IoC container. For example, the @Autowired annotation
provides the same capabilities as described in Autowiring Collaborators but with more fine-grained
control and wider applicability. In addition, Spring provides support for JSR-250 annotations, such
as @PostConstruct and @PreDestroy, as well as support for JSR-330 (Dependency Injection for Java)
annotations contained in the jakarta.inject package such as @Inject and @Named. Details about those
annotations can be found in the relevant section.

Annotation injection is performed before XML injection. Thus, the XML
o configuration overrides the annotations for properties wired through both
approaches.

As always, you can register the post-processors as individual bean definitions, but they can also be

implicitly registered by including the following tag in an XML-based Spring configuration (notice
the inclusion of the context namespace):

90

https://spring.io/tools

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
https://www.springframework.org/schema/context/spring-context.xsd">

<context:annotation-config/>

</beans>

The <context:annotation-config/> element implicitly registers the following post-processors:

* ConfigurationClassPostProcessor

AutowiredAnnotationBeanPostProcessor
¢ CommonAnnotationBeanPostProcessor
* PersistenceAnnotationBeanPostProcessor

e EventlListenerMethodProcessor

<context:annotation-config/> only looks for annotations on beans in the same
application context in which it is defined. This means that, if you put
<context:annotation-config/> in a WebApplicationContext for a DispatcherServlet, it
only checks for @Autowired beans in your controllers, and not your services. See
The DispatcherServlet for more information.

Using @Autowired
o JSR 330’s @Inject annotation can be used in place of Spring’s @Autowired annotation
in the examples included in this section. See here for more details.

You can apply the @Autowired annotation to constructors, as the following example shows:

91

https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/context/annotation/ConfigurationClassPostProcessor.html
https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/beans/factory/annotation/AutowiredAnnotationBeanPostProcessor.html
https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/context/annotation/CommonAnnotationBeanPostProcessor.html
https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/orm/jpa/support/PersistenceAnnotationBeanPostProcessor.html
https://docs.spring.io/spring-framework/docs/6.0.6/javadoc-api/org/springframework/context/event/EventListenerMethodProcessor.html

Java
public class MovieRecommender {
private final CustomerPreferenceDao customerPreferenceDao;
@Autowired

public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) {
this.customerPreferenceDao = customerPreferenceDao;

/...

Kotlin

class MovieRecommender @Autowired constructor(
private val customerPreferenceDao: CustomerPreferenceDao)

As of Spring Framework 4.3, an @Autowired annotation on such a constructor is no
longer necessary if the target bean defines only one constructor to begin with.

o However, if several constructors are available and there is no primary/default
constructor, at least one of the constructors must be annotated with @Autowired in
order to instruct the container which one to use. See the discussion on constructor
resolution for details.

You can also apply the @Autowired annotation to traditional setter methods, as the following
example shows:

Java
public class SimpleMovielister {
private MovieFinder movieFinder;
@Autowired

public void setMovieFinder(MovieFinder movieFinder) {
this.movieFinder = movieFinder;

/] ...

92

Kotlin
class SimpleMovielister {

@set:Autowired
lateinit var movieFinder: MovieFinder

/] ...

You can also apply the annotation to methods with arbitrary names and multiple arguments, as the

following example shows:
Java
public class MovieRecommender {
private MovieCatalog movieCatalog;
private CustomerPreferenceDao customerPreferenceDao;
@Autowired
public void prepare(MovieCatalog movieCatalog,
CustomerPreferenceDao customerPreferenceDao) {

this.movieCatalog = movieCatalog;
this.customerPreferenceDao = customerPreferenceDao;

/] ...

Kotlin
class MovieRecommender {
private lateinit var movieCatalog: MovieCatalog
private lateinit var customerPreferenceDao: CustomerPreferenceDao
@Autowired
fun prepare(movieCatalog: MovieCatalog,
customerPreferenceDao: CustomerPreferenceDao) {

this.movieCatalog = movieCatalog
this.customerPreferenceDao = customerPreferenceDao

/] ...

93

You can apply @Autowired to fields as well and even mix it with constructors, as the following
example shows:

Java
public class MovieRecommender {
private final CustomerPreferenceDao customerPreferenceDao;

@Autowired
private MovieCatalog movieCatalog;

@Autowired

public MovieRecommender(CustomerPreferenceDao customerPreferenceDao) {
this.customerPreferenceDao = customerPreferenceDao;

}

I woo

Kotlin

class MovieRecommender @Autowired constructor(
private val customerPreferenceDao: CustomerPreferenceDao) {

@Autowired
private lateinit var movieCatalog: MovieCatalog

/...
}

Make sure that your target components (for example, MovieCatalog or
CustomerPreferenceDao) are consistently declared by the type that you use for your
@Autowired-annotated injection points. Otherwise, injection may fail due to a "no
type match found" error at runtime.

(,') For XML-defined beans or component classes found via classpath scanning, the

w container usually knows the concrete type up front. However, for @Bean factory

methods, you need to make sure that the declared return type is sufficiently
expressive. For components that implement several interfaces or for components
potentially referred to by their implementation type, consider declaring the most
specific return type on your factory method (at least as specific as required by the
injection points referring to your bean).

You can also instruct Spring to provide all beans of a particular type from the ApplicationContext by

adding the @Autowired annotation to a field or method that expects an array of that type, as the
following example shows:

94

Java
public class MovieRecommender {

@Autowired
private MovieCatalog[] movieCatalogs;

/] ...

Kotlin
class MovieRecommender {

@Autowired
private lateinit var movieCatalogs: Array<MovieCatalog>

/] ...

The same applies for typed collections, as the following example shows:
Java
public class MovieRecommender {
private Set<MovieCatalog> movieCatalogs;
@Autowired

public void setMovieCatalogs(Set<MovieCatalog> movieCatalogs) {
this.movieCatalogs = movieCatalogs;

}

/] ...

Kotlin
class MovieRecommender {

@Autowired
lateinit var movieCatalogs: Set<Movie(Catalog>

/...

95

Your target beans can implement the org.springframework.core.Ordered interface
or use the @0rder or standard @Priority annotation if you want items in the array
or list to be sorted in a specific order. Otherwise, their order follows the
registration order of the corresponding target bean definitions in the container.

You can declare the @0rder annotation at the target class level and on @Bean
methods, potentially for individual bean definitions (in case of multiple definitions

(r) that use the same bean class). @0rder values may influence priorities at injection

- points, but be aware that they do not influence singleton startup order, which is an
orthogonal concern determined by dependency relationships and @DependsOn
declarations.

Note that the standard jakarta.annotation.Priority annotation is not available at
the @Bean level, since it cannot be declared on methods. Its semantics can be
modeled through @0rder values in combination with @Primary on a single bean for
each type.

Even typed Map instances can be autowired as long as the expected key type is String. The map
values contain all beans of the expected type, and the keys contain the corresponding bean names,
as the following example shows:

Java
public class MovieRecommender {
private Map<String, MovieCatalog> movieCatalogs;
@Autowired
public void setMovieCatalogs(Map<String, MovieCatalog> movieCatalogs) {

this.movieCatalogs = movieCatalogs;

}

/] ...

Kotlin
class MovieRecommender {

@Autowired
lateinit var movieCatalogs: Map<String, MovieCatalog>

I woo

By default, autowiring fails when no matching candidate beans are available for a given injection
point. In the case of a declared array, collection, or map, at least one matching element is expected.

The default behavior is to treat annotated methods and fields as indicating required dependencies.

96

You can change this behavior as demonstrated in the following example, enabling the framework to
skip a non-satisfiable injection point through marking it as non-required (i.e., by setting the
required attribute in @Autowired to false):

Java
public class SimpleMovielister {
private MovieFinder movieFinder;
@Autowired(required = false)

public void setMovieFinder(MovieFinder movieFinder) {
this.movieFinder = movieFinder;

/] ...

Kotlin
class SimpleMovielister {

@Autowired(required = false)
var movieFinder: MovieFinder? = null

/..
}
A non-required method will not be called at all if its dependency (or one of its
dependencies, in case of multiple arguments) is not available. A non-required field
will not get populated at all in such cases, leaving its default value in place.
o In other words, setting the required attribute to false indicates that the

corresponding property is optional for autowiring purposes, and the property will
be ignored if it cannot be autowired. This allows properties to be assigned default
values that can be optionally overridden via dependency injection.

Injected constructor and factory method arguments are a special case since the required attribute
in @Autowired has a somewhat different meaning due to Spring’s constructor resolution algorithm
that may potentially deal with multiple constructors. Constructor and factory method arguments
are effectively required by default but with a few special rules in a single-constructor scenario,
such as multi-element injection points (arrays, collections, maps) resolving to empty instances if no
matching beans are available. This allows for a common implementation pattern where all
dependencies can be declared in a unique multi-argument constructor — for example, declared as
a single public constructor without an @Autowired annotation.

97

Only one constructor of any given bean class may declare @Autowired with the
required attribute set to true, indicating the constructor to autowire when used as
a Spring bean. As a consequence, if the required attribute is left at its default value
true, only a single constructor may be annotated with @Autowired. If multiple
constructors declare the annotation, they will all have to declare required=false in
order to be considered as candidates for autowiring (analogous to

e autowire=constructor in XML). The constructor with the greatest number of
dependencies that can be satisfied by matching beans in the Spring container will
be chosen. If none of the candidates can be satisfied, then a primary/default
constructor (if present) will be used. Similarly, if a class declares multiple
constructors but none of them is annotated with @Autowired, then a
primary/default constructor (if present) will be used. If a class only declares a
single constructor to begin with, it will always be used, even if not annotated. Note
that an annotated constructor does not have to be public.

Alternatively, you can express the non-required nature of a particular dependency through Java 8’s
java.util.Optional, as the following example shows:

public class SimpleMovielister {

@Autowired
public void setMovieFinder(Optional<MovieFinder> movieFinder) {

}

As of Spring Framework 5.0, you can also use a @Nullable annotation (of any kind in any
package — for example, javax.annotation.Nullable from JSR-305) or just leverage Kotlin built-in
null-safety support:

Java
public class SimpleMovielister {

@Autowired
public void setMovieFinder(@Nullable MovieFinder movieFinder) {

}

98

Kotlin
class SimpleMovielister {

@Autowired
var movieFinder: MovieFinder? = null

/] ...

You can also use @Autowired for interfaces that are well-known resolvable dependencies:
BeanFactory, ApplicationContext, Environment, Resourceloader, ApplicationEventPublisher, and
MessageSource. These interfaces and their extended interfaces, such as
ConfigurableApplicationContext or ResourcePatternResolver, are automatically resolved, with no
special setup necessary. The following example autowires an ApplicationContext object:

Java
public class MovieRecommender {

@Autowired
private ApplicationContext context;

public MovieRecommender() {

}

/] ...

Kotlin
class MovieRecommender {

@Autowired
lateinit var context: ApplicationContext

/..
}
The @Autowired, @Inject, @Value, and @Resource annotations are handled by Spring
BeanPostProcessor implementations. This means that you cannot apply these
o annotations within your own BeanPostProcessor or BeanFactoryPostProcessor types
(if any). These types must be 'wired up' explicitly by using XML or a Spring @Bean
method.

Fine-tuning Annotation-based Autowiring with @Primary

Because autowiring by type may lead to multiple candidates, it is often necessary to have more

99

control over the selection process. One way to accomplish this is with Spring’s @Primary annotation.
@Primary indicates that a particular bean should be given preference when multiple beans are
candidates to be autowired to a single-valued dependency. If exactly one primary bean exists
among the candid