sPRING

net

1.0.0 M1

Copyright © 2010 Costin Leau , Mark Pollack

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that
each copy contains this Copyright Notice, whether distributed in print or electronically.

I gL [F Tox o o I PP PPPPPPPPRRPN 1
[1. REFErenCe DOCUMENTALIONcciiiuirieeiiiiiiee ettt e e ettt ee e s st e e s st ee s sssbeeee e ssbe e e e e snbbeeeesasseeeeeasbeeeesannneeeeans 2
1. Bootstrapping GemFire through the Spring CONTAINESuuuuuuiimiiiiii e 3
1.1. Configuring the GEMFITe CaCEcoiiiiiiiiiee e 3

1.2. Configuring & GEMFITE REJIONccoiiuiiiieiiiiiie ettt 4

1.2.1. Configuring update interest for client REJIONcoccvveeiiiiiee e, 5

2. Working With the GEMFITE APISeeeeiie e e e e e eaa s 7
2.1, EXCEPLION tranSlalioncc.uviiiiiiieeei et ee e s et e e e e e a e e e st e e e e e e e araaes 7

3. SaMPle APPHICALIONScco e 8

O B (= 1= 01U] (=SS PP P PP PPPPPPPPURRPN 8

10 22 o T o YA o o SRR 9

3.2.1. Compiling, starting and stopping the sample ..o, 9

3.2.2. USING the SAMPIE ..o 9

[T1. OLNEI RESOUICTESeeiiiiiiiiie ettt ettt e st e e ettt e e e ettt e e s e s st e e e e e anbe e e e e anbte e e e eanbbeeeeesbeeeesanneeeeeanns 11
A, USEFUL LINKS <.ttt oottt e e e e e ettt e e e e e e e e e s ntbbeeeeeaeeessanntbaneaaeaeeeaaans 12

Spring GemFire (1.0.0 M1) ii

Preface

Spring GemFire Integration focuses on integrating Spring Framework's powerful, non-invasive programming
model and concepts with Gemstone's GemFire Enterprise Fabric, providing easier configuration, use and high-
level abstractions. This document assumes the reader is already has a basic familiarity with the Spring.NET
Framework and GemFire concepts and APIs.

While every effort has been made to ensure that this documentation is comprehensive and there are no errors,
neverthel ess some topics might require more explanation and some typos might have crept in. If you do spot any
mistakes or even more serious errors and you can spare afew cycles during lunch, please do bring the error to the
attention of the Spring GemFire Integration team by raising an issue. Thank you.

Spring GemFire (1.0.0 M1) i

https://jira.springframework.org/browse/SGFNET

Part |. Introduction

This document is the reference guide for Spring GemFire project (SGF). It explains the relationship between
Spring framework and GemFire Enterprise Fabric (GEF) 6.0.x, defines the basic concepts and semantics of the
integration and how these can be used effectively.

Spring GemFire (1.0.0 M1) 1

Part Il. Reference Documentation

Document structure

This part of the reference documentation explains the core functionality offered by Spring GemFire integration.

Chapter 1, Bootstrapping GemFire through the Soring container describes the configuration support provided
for bootstrapping, initializing and accessing a GemFire cache or region.

Chapter 2, Working with the GemFire APIs explains the integration between GemFire API and the various "data"
features available in Spring, such as exception trandation.

Chapter 3, Sample Applications describes the samples provided with the distribution for showcasing the various
features available in Spring GemFire.

Spring GemFire (1.0.0 M1) 2

Chapter 1. Bootstrapping GemFire
through the Spring container

One of the first tasks when using GemFire and Spring is to configure the data grid using dependency injection
via the Spring container. While this is possible out of the box, the configuration tends to be verbose and only
address basic cases. To address this problem, the Spring GemFire project provides several classes that enable the
configuration of distributed caches or regions to support a variety of scenarios with minimal effort.

Note

The M2 release of Spring GemFire will include Spring namespaces that will make it even easier to
create and configure the cache and specific region types (e.g. replicated, partitioned, etc.).

1.1. Configuring the GemFire Cache

In order to use the GemFire Fabric, one needsto either create anew Cache or connect to an existing one. Asof the
current version of GemFire (6.0.x) there can be only one opened cache per application. In most cases the cache
is created once and then all other consumers connect to it.

In its simplest form, a cache can be defined in oneline:

<obj ect nanme="defaul t-cache" type="Spring. Data. GenFire. CacheFact oryObj ect, Spring.Data. GenFire"/>

Here, the default-cache will try to connect to an existing cache and, in case one does not exist, create alocal client
cache. Since no additional properties were specified the created cache uses the default cache configuration.

The name of the cache will be the name of the Spring objectd definition unless you specify a different name
using the NameVaueCollection property described next. Note, you can specify the name of the underlying
DistributedSystem that will be created with the property bDi st ri but edSyst enNare

Especially in environments with opened caches, this basic configuration can go along way. For scenarios where
the cache needs to be configured, the user can pass in areference the GemFire configuration file:

<obj ect name="cache-wi th-xm " type="Spring. Data. GenFi re. CacheFact oryObj ect, Spring. Data. GenFire">
<property nanme="CacheXm " val ue="cache. xm "/ >
</ obj ect >

In this example, if the cache needs to be created, it will use the file named cache. xn located in the runtime
directory.

In addition to referencing an external configuration file one can specify GemFire settings directly through .NET
name value properties. This can be quite handy when just afew settings need to be changed:

<obj ect nanme="cache-wi th-props" type="Spring. Data. GenFire. CacheFactoryObj ect, Spring.Data. GenFire">
<property nanme="Properties">
<name- val ues>
<add key="1og-1evel" val ue="warning"/>
</ name- val ues>
</ property>
</ obj ect >

The 'name’ property is used to set the name of the Cache object. For a complete list of properties refer to the
GemFire reference documentation.

Spring GemFire (1.0.0 M1) 3

http://community.gemstone.com/display/gemfire/Integrating+GemFire+with+the+Spring+IoC+Container

Bootstrapping GemFire through the Spring container

Spring object definitions support property replacement through the use of variable replacement. The following
configuration allows you to externalize the properties from the Spring configuration file which is a best practice.
The Spring configuration file is usually an embedded assembly resource so as to prevent accidental changes
in production. There are seven locations supported out of the box in Spring.NET where you can place your
externalized configuration data and can be extended to support your own locations. In the following example the
configuration flues would come from a name-value configuration section in App/Web.config

<obj ect name="cache-wi t h-props" type="Spring. Data. GenFire. CacheFact oryObj ect, Spring.Data. GenFire">
<property nanme="Properties">
<nane- val ues>
<add key="name" val ue="St ockCache"/>
<add key="|og-Ilevel" val ue="${cache.log-Ievel }"/>
</ name- val ues>
</ property>
</ obj ect >

<obj ect type="Spring. Objects. Factory. Config. Vari abl ePl acehol der Confi gurer, Spring. Core">
<property nanme="Vari abl eSour ces" >
<list>
<obj ect type="Spring. Objects. Factory. Config. ConfigSectionVari abl eSource, Spring. Core">
<property name="Secti onNames" val ue="CacheConfiguration" />
</ obj ect >
</list>
</ property>
</ obj ect >

The CacheConfiguration section in App.config would then look like the following

<configuration>
<configSecti ons>
<section name="CacheConfiguration" type="System Confi gurati on. NameVal ueSecti onHandl er"/ >
</ configSections>

<CacheConfi gurati on>
<add key="cache. | og-1evel" val ue="warning"/>
</ CacheConfi guration>

</ configuration>

It isworth pointing out again, that the cache settings apply only if the cache needsto be created, there is no opened
cache in existence otherwise the existing cache will be used and the configuration will smply be discarded.

1.2. Configuring a GemFire Region

Once the Cache is configured, one needs to configure one or more Regions to interact with the data fabric. In
a similar manner to the CacheFactoryObject, the RegionFactoryObject allows existing Regions to retrieved or,
in case they don't exist, created using various settings. One can specify the Region name, whether it will be
destroyed on shutdown (thereby acting as atemporary cache), the associated Cachel oaders, Cachel isteners and
CacheWriters and if needed, the RegionAttributes for full customization.

Let us start with asimple region declaration, named basic using a nested cache declaration:

<obj ect name="basic" type="Spring. Data. GenFire. Regi onFact oryObj ect, Spring.Data. GenFire">
<property Nanme="Cache">
<obj ect type="Spring. Data. GenFire. CacheFactoryObj ect, Spring.Data. GenFire"/>
</ property>
</ obj ect >

By default the region nameisthe name of the object definition unless explicitly specified using the Nane property.

Spring GemFire (1.0.0 M1) 4

http://www.springframework.net/doc-latest/reference/html/objects.html#objects-variablesource

Bootstrapping GemFire through the Spring container

It isworth pointing out, that for the vast majority of cases configuring the cache loader, listener and writer through
the Spring container is preferred since the same instances can be reused across multiple regions and additionally,
the instances themselves can benefit from the container's rich feature set:

<obj ect nane="baseRegi on" abstract="true">

<property nanme="Endpoi nts" val ue="1ocal host: 40404"/ >

<property nanme="Cache" ref="Cache"/> <!-- definition not shown here -->
</ obj ect >

<obj ect name="listeners" type="Spring. Data. GenFire. Regi onFact oryOhj ect, Spring. Data. GenFire"
par ent =" baseRegi on" >
<property nanme="Cacheli stener">
<obj ect type="Spring. Data. GenFire. Tests. Si npl eCacheli stener, Spring.Data. GenFire. Tests">
<l-- set properties or constructor arguments -->
</ obj ect >
</ property>
<property nanme="CachelLoader" >
<obj ect type="Spring. Data. GenFire. Tests. Si npl eCacheLoader, Spring. Data. GenFire. Tests"/>
</ property>
<property nanme="CacheWiter">
<obj ect type="Spring. Data. GenFire. Tests. Si npl eCacheWiter, Spring.Data.GenFire. Tests"/>
</ property>
</ obj ect >

1.2.1. Configuring update interest for client Region

Client interests can be registered in both key and regex form through AllKeysinterest, Keylnterest, and
RegexInterest classes in the Spri ng. Dat a. GenFi re namespace. Here is an example of how to configure the
AllKeys interest in the region.

<obj ect nanme="baseRegi on" abstract="true">

<property nanme="Endpoi nts" val ue="1ocal host: 40404"/ >

<property nanme="Cache" ref="Cache"/> <!-- definition not shown here -->
</ obj ect >

<obj ect name="basic-interest" type="Spring.Data. GenFire. Regi onFact oryObj ect, Spring.Data. GenFire"
par ent =" baseRegi on" >
<property name="ClientNotification" value="true"/>
<property nanme="interests">
<list>
<obj ect type="Spring.Data. GenFire. Al |l Keyslnterest"/>
</list>
</ property>
</ obj ect >

To register interest for a set of key, use the Keylnterest class, as shown below from the sample application

<obj ect nanme="Regi on" type="Spring. Data. GenFire. Regi onFact oryCObj ect, Spring.Data. GenFire">
<property nanme="Endpoi nts" val ue="1ocal host: 40404"/ >
<property nanme="Cache" ref="Cache"/>
<property nane="Nanme" val ue="exanpl eregi on"/>
<property nanme="ClientNotification" value="true"/>
<property name="Interests">
<list>
<obj ect type="Spring. Data. GenFire. Keylnterest">
<property name="Keys">
<list>
<obj ect type="GenStone. GenFire. Cache. Cacheabl eString" factory-nmethod="Create">
<constructor-arg val ue="Key-123"/>
</ obj ect >
</list>
</ property>
</ obj ect >
</list>
</ property>
</ obj ect >

To register interest based on aregular expression, use the following configuration

Spring GemFire (1.0.0 M1) 5

Bootstrapping GemFire through the Spring container

<obj ect nanme="Regi on" type="Spring. Data. GenFire. Regi onFact oryObj ect, Spring. Data. GenFire">
<property nanme="Endpoi nts" val ue="1ocal host: 40404"/ >
<property nanme="Cache" ref="Cache"/>
<property nanme="Name" val ue="exanpl eregi on"/>
<property name="ClientNotification" value="true"/>
<property name="Interests">
<list>
<obj ect type="Spring. Data. GenFire. Regexlnterest">
<property name="Regex" val ue="Key-.*"/>
</ obj ect >
</list>
</ property>
</ obj ect >

Thiswould only register interest in keys of the type 'Key-123' or 'Key-4abc'.

Note

e

For the M2 release the use of namespaces and type converters for 'l CacheableKey' subclasses will
make this configuration significantly less verbose. Also, there will a means to specify the collection
classthat can befilled with theintial cache values.

Please refer to the APl documentation for more information on the various | | nterest subclasses.

Spring GemFire (1.0.0 M1) 6

Chapter 2. Working with the GemFire
APIs

Once the GemFire cache and regions have been configured they can injected and used inside application objects.
This chapter describes the integration with Spring's DaoException hierarchy.

2.1. Exception translation

Using a new data access technology requires not just accommodating to anew API but also handling exceptions
specific to that technology. To accommodate this case, Spring Framework provides a technology agnostic,
consistent exception hierarchy that abstracts one from proprietary exceptions to a set of focused data access
exceptions. As mentioned in the Spring Framework documentation, exception translation can be applied
transparently to your data access objects through the use of the [Reposi t ory] attribute and AOP by defining
a PersistenceExceptionTrans ationPostProcessor object. The same exception trandation functionality is enabled
when using GemFire aslong as at |east a CacheFactoryObject is declared. The Cache factory acts as an exception
trandator which is automatically detected by the Spring infrastructure and used accordingly.

Spring GemFire (1.0.0 M1) 7

http://www.springframework.net/doc-latest/reference/html/dao.html#dao-exceptions
http://www.springframework.net/doc-latest/reference/html/orm.html#orm-hibernate-straight-ex

Chapter 3. Sample Applications

The Spring GemFire project includes one sample application. Named "Hello World", the sample demonstrates
how to configure and use GemFire inside a Spring application. At runtime, the sample offers a shell to the user
for running various commands against the grid. It provides an excellent starting point for users unfamiliar with
the essential components or the Spring and GemFire concepts.

The sample is bundled with the distribution and is included in the main solution file. You can aso run it from
the command line onceit is built in visual studio.

3.1. Prerequisites

1. You will need to download, install, and obtain alicense for
e GemFire Enterprise 6.0
» GemFire Enterprise Native Client 3.0.0.9

The GemFire Enterprise licence file, gemfireLicense.zip should reside in the root of your GemFire Enterprise
install directory. The GemFire Enterprise Native Client licence file, gf Cpplicense.zip, should reside in the 'bin’
sub-directory of the Native Client install directory.

The .NET clientsrun in a client-server architecture. Thisis shown below from the perspective of asingle 'native
(C++ or .NET) client and a single cache server process.

NET application

C++ API

Interface Java Cache Server

C++ application GemPFire Distributed System

Figure 3.1. Client-Server Configuration for native (C++ or .NET) clients

While not shown in this picture, there can be multiple .NET/C++ client applications and also multiple other
processes that act in a peer-to-peer like manner as part of the GemFire Distributed System.

When running in a client-server architecture there needs to be configuration of the client side, the .NET/C++
Application, and the data grid side, the Java Cache Server. In this example the configuration of the client side
is done entirely by the FactoryObject's declared in the Spring XML file. The data grid side is configured with
a standalone configuration file.

2. The Java Cache Server requires aconfiguration file in order to run. Thisfileis provided in the Spring GemFire
distribution and in named cache. xni . Itislocated in the ‘example\Spring.Data. Gemfire.Helloworld' directory. It
needs to be into the GemFire Enterprise 6.0 'bin’ directory where the cacheserver.bat fileis located.

3. Run the cacheserver.bat file located in the 'bin’ of the GemFire Enterprise 6.0 product. By default it will load
aconfiguration file named 'cache. xn".

Spring GemFire (1.0.0 M1) 8

http://download.gemstone.com/

Sample Applications

The Spring GemFire project ships with the essential GemFire client side libraries to run the sample application.
Note that because the .NET Client API isawrapper around the C++ API, it needs to be referenced in either the
App.config file or installed into the GAC. The HelloWorld example program is configured to load the libraries
from the 'lib\GemFire\net\2.0' directory.

Despite providing the client However, it isrecommended that you downl oad the GemFire Enterprise Native Client
3.0.0.9 from the download site to have access to reference documentation. Y ou may also find the GemFire .NET
API Tour of interest to read.

3.2. Hello World

The Hello World sample demonstrates the basic functionality of the Spring GemFire project and is also useful
to understand how GemFire clients work. The application bootstraps GemFire, configures it, allows for the
execution of several commands against the data grid, and gracefully shuts down when the application exits.
Multiple instances can be started at the same time as they will work with each other sharing data without any
user intervention.

3.2.1. Compiling, starting and stopping the sample

Hello World is designed as a stand-alone application. The main classisin thefile Progr am cs and generates an
executable named Hel | oWr | d. exe. To start the example follow the steps

To compile the example, load the solution Spri ng. Dat a. GenFi re. sl n in the root of the Spring GemFire project
directory.

1. Load the Visua Studio 2008 solution Spring.Data.GemFire.sln located in the root of the Spring GemFire
project directory. Compile the solution.

2. Ensure that the Java Cache Server isrunning as described in the previous section.

3. Set the startup project to be the Spring.DataGemfire.Helloworld project or cd to the ‘exanple
\ Spring. Dat a. Genfire. Hel | oWor | d\ bi n\ Debug' directory and run Hel | oWor | d. exe.

Note

. | .
Y ou can pass as a command line argument the name that will appear before you enter commands
inthe shell. Thisis useful for distinguishing different members of the distributed system

4. You can now execute commands in the shell, which will be described in the next section. Exit the shell by
typing 'exi t .

3.2.2. Using the sample

Once started, the samplewill create aclient side cachethat isreplicated with the server cache contained inthe Java
Cache Server. For example, the command line 'Hel | ovor | d. exe client-1"will result in the following greeting

Hello World
Want to interact with the world ? ...
Supported conmands are

get <key> - retrieves an entry (by key) fromthe grid
put <key> <value> - puts a new entry into the grid
renove <key> - renopves an entry (by key) fromthe grid
size - returns the size of the grid

clear - renoves all mapping in the grid

Spring GemFire (1.0.0 M1) 9

http://community.gemstone.com/display/gemfire/GemFire+.NET+API+Tour
http://community.gemstone.com/display/gemfire/GemFire+.NET+API+Tour

Sample Applications

keys - returns the keys contained by the grid

values - returns the values contained by the grid

contai nsKey <key> - indicates if the given key is contained by the grid
contai nsVal ue <value> - indicates if the given value is contained by the grid
map - returns a list of the key-value pairs in the grid

query <query> - executes a query on the grid
help - this info

exit - this node exists
client-1>

For example to add new itemsto the grid one can use:

client-1>put 1 unu
nul

client-1>put 1 one
ol d val ue = [unu]
client-1>size

1

client-1>put 2 two
nul

client-1>size

2

client-1>

Multiple instances can be created at the same time. Once started, the new clients automatically see the existing
region and its information. Start a second client with the command line 'Hel | oWor | d. exe client-2'

Hel l o Worl d!

client-2>size
2
client-2>map
[2=t wo] [1=0ne]
client-2>

Experiment with the example, start (and stop) as many instances as you want, run various commands in one
instance and see how the others react. To preserve data, the Java Cache Servier needsto be running at all times.

Spring GemFire (1.0.0 M1) 10

Part lll. Other Resources

In addition to this reference documentation, there are a number of other resources that may help you learn how
to use GemFire and Spring framework. These additional, third-party resources are enumerated in this section.

Spring GemFire (1.0.0 M1) 11

Chapter 4. Useful Links

* Soring GemFire Integration Home Page - here
» SpringSource blog - here

e GemFire Community - here

Spring GemFire (1.0.0 M1)

12

http://www.springframework.org/spring-gemfire/
http://blog.springsource.com/
http://community.gemstone.com/display/gemfire/GemFire+Enterprise

	Spring Gemfire for .NET - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	Part II. Reference Documentation
	Chapter 1. Bootstrapping GemFire through the Spring container
	1.1. Configuring the GemFire Cache
	1.2. Configuring a GemFire Region
	1.2.1. Configuring update interest for client Region

	Chapter 2. Working with the GemFire APIs
	2.1. Exception translation

	Chapter 3. Sample Applications
	3.1. Prerequisites
	3.2. Hello World
	3.2.1. Compiling, starting and stopping the sample
	3.2.2. Using the sample

	Part III. Other Resources
	Chapter 4. Useful Links

