
1.0.0 M1

Copyright © 2010 Costin Leau , Mark Pollack

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that

each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring GemFire (1.0.0 M1) ii

Preface ... iii

I. Introduction .. 1

II. Reference Documentation .. 2

1. Bootstrapping GemFire through the Spring container ... 3

1.1. Configuring the GemFire Cache ... 3

1.2. Configuring a GemFire Region .. 4

1.2.1. Configuring update interest for client Region .. 5

2. Working with the GemFire APIs .. 7

2.1. Exception translation ... 7

3. Sample Applications .. 8

3.1. Prerequisites .. 8

3.2. Hello World .. 9

3.2.1. Compiling, starting and stopping the sample ... 9

3.2.2. Using the sample .. 9

III. Other Resources ... 11

4. Useful Links .. 12

Spring GemFire (1.0.0 M1) iii

Preface
Spring GemFire Integration focuses on integrating Spring Framework's powerful, non-invasive programming

model and concepts with Gemstone's GemFire Enterprise Fabric, providing easier configuration, use and high-

level abstractions. This document assumes the reader is already has a basic familiarity with the Spring.NET

Framework and GemFire concepts and APIs.

While every effort has been made to ensure that this documentation is comprehensive and there are no errors,

nevertheless some topics might require more explanation and some typos might have crept in. If you do spot any

mistakes or even more serious errors and you can spare a few cycles during lunch, please do bring the error to the

attention of the Spring GemFire Integration team by raising an issue. Thank you.

https://jira.springframework.org/browse/SGFNET

Spring GemFire (1.0.0 M1) 1

Part I. Introduction
This document is the reference guide for Spring GemFire project (SGF). It explains the relationship between

Spring framework and GemFire Enterprise Fabric (GEF) 6.0.x, defines the basic concepts and semantics of the

integration and how these can be used effectively.

Spring GemFire (1.0.0 M1) 2

Part II. Reference Documentation

Document structure
This part of the reference documentation explains the core functionality offered by Spring GemFire integration.

Chapter 1, Bootstrapping GemFire through the Spring container describes the configuration support provided

for bootstrapping, initializing and accessing a GemFire cache or region.

Chapter 2, Working with the GemFire APIs explains the integration between GemFire API and the various "data"

features available in Spring, such as exception translation.

Chapter 3, Sample Applications describes the samples provided with the distribution for showcasing the various

features available in Spring GemFire.

Spring GemFire (1.0.0 M1) 3

Chapter 1. Bootstrapping GemFire
through the Spring container
One of the first tasks when using GemFire and Spring is to configure the data grid using dependency injection

via the Spring container. While this is possible out of the box, the configuration tends to be verbose and only

address basic cases. To address this problem, the Spring GemFire project provides several classes that enable the

configuration of distributed caches or regions to support a variety of scenarios with minimal effort.

Note

The M2 release of Spring GemFire will include Spring namespaces that will make it even easier to

create and configure the cache and specific region types (e.g. replicated, partitioned, etc.).

1.1. Configuring the GemFire Cache

In order to use the GemFire Fabric, one needs to either create a new Cache or connect to an existing one. As of the

current version of GemFire (6.0.x) there can be only one opened cache per application. In most cases the cache

is created once and then all other consumers connect to it.

In its simplest form, a cache can be defined in one line:

<object name="default-cache" type="Spring.Data.GemFire.CacheFactoryObject, Spring.Data.GemFire"/>

Here, the default-cache will try to connect to an existing cache and, in case one does not exist, create a local client

cache. Since no additional properties were specified the created cache uses the default cache configuration.

The name of the cache will be the name of the Spring objectd definition unless you specify a different name

using the NameValueCollection property described next. Note, you can specify the name of the underlying

DistributedSystem that will be created with the property DistributedSystemName

Especially in environments with opened caches, this basic configuration can go a long way. For scenarios where

the cache needs to be configured, the user can pass in a reference the GemFire configuration file:

<object name="cache-with-xml" type="Spring.Data.GemFire.CacheFactoryObject, Spring.Data.GemFire">

 <property name="CacheXml" value="cache.xml"/>

</object>

In this example, if the cache needs to be created, it will use the file named cache.xml located in the runtime

directory.

In addition to referencing an external configuration file one can specify GemFire settings directly through .NET

name value properties. This can be quite handy when just a few settings need to be changed:

<object name="cache-with-props" type="Spring.Data.GemFire.CacheFactoryObject, Spring.Data.GemFire">

 <property name="Properties">

 <name-values>

 <add key="log-level" value="warning"/>

 </name-values>

 </property>

</object>

The 'name' property is used to set the name of the Cache object. For a complete list of properties refer to the

GemFire reference documentation.

http://community.gemstone.com/display/gemfire/Integrating+GemFire+with+the+Spring+IoC+Container

Bootstrapping GemFire through the Spring container

Spring GemFire (1.0.0 M1) 4

Spring object definitions support property replacement through the use of variable replacement. The following

configuration allows you to externalize the properties from the Spring configuration file which is a best practice.

The Spring configuration file is usually an embedded assembly resource so as to prevent accidental changes

in production. There are seven locations supported out of the box in Spring.NET where you can place your

externalized configuration data and can be extended to support your own locations. In the following example the

configuration flues would come from a name-value configuration section in App/Web.config

<object name="cache-with-props" type="Spring.Data.GemFire.CacheFactoryObject, Spring.Data.GemFire">

 <property name="Properties">

 <name-values>

 <add key="name" value="StockCache"/>

 <add key="log-level" value="${cache.log-level}"/>

 </name-values>

 </property>

</object>

<object type="Spring.Objects.Factory.Config.VariablePlaceholderConfigurer, Spring.Core">

 <property name="VariableSources">

 <list>

 <object type="Spring.Objects.Factory.Config.ConfigSectionVariableSource, Spring.Core">

 <property name="SectionNames" value="CacheConfiguration" />

 </object>

 </list>

 </property>

</object>

The CacheConfiguration section in App.config would then look like the following

<configuration>

 <configSections>

 <section name="CacheConfiguration" type="System.Configuration.NameValueSectionHandler"/>

 </configSections>

 <CacheConfiguration>

 <add key="cache.log-level" value="warning"/>

 </CacheConfiguration>

</configuration>

It is worth pointing out again, that the cache settings apply only if the cache needs to be created, there is no opened

cache in existence otherwise the existing cache will be used and the configuration will simply be discarded.

1.2. Configuring a GemFire Region

Once the Cache is configured, one needs to configure one or more Regions to interact with the data fabric. In

a similar manner to the CacheFactoryObject, the RegionFactoryObject allows existing Regions to retrieved or,

in case they don't exist, created using various settings. One can specify the Region name, whether it will be

destroyed on shutdown (thereby acting as a temporary cache), the associated CacheLoaders, CacheListeners and

CacheWriters and if needed, the RegionAttributes for full customization.

Let us start with a simple region declaration, named basic using a nested cache declaration:

<object name="basic" type="Spring.Data.GemFire.RegionFactoryObject, Spring.Data.GemFire">

 <property Name="Cache">

 <object type="Spring.Data.GemFire.CacheFactoryObject, Spring.Data.GemFire"/>

 </property>

</object>

By default the region name is the name of the object definition unless explicitly specified using the Name property.

http://www.springframework.net/doc-latest/reference/html/objects.html#objects-variablesource

Bootstrapping GemFire through the Spring container

Spring GemFire (1.0.0 M1) 5

It is worth pointing out, that for the vast majority of cases configuring the cache loader, listener and writer through

the Spring container is preferred since the same instances can be reused across multiple regions and additionally,

the instances themselves can benefit from the container's rich feature set:

 <object name="baseRegion" abstract="true">

 <property name="Endpoints" value="localhost:40404"/>

 <property name="Cache" ref="Cache"/> <!-- definition not shown here -->

 </object>

 <object name="listeners" type="Spring.Data.GemFire.RegionFactoryObject, Spring.Data.GemFire"

 parent="baseRegion">

 <property name="CacheListener">

 <object type="Spring.Data.GemFire.Tests.SimpleCacheListener, Spring.Data.GemFire.Tests">

 <!-- set properties or constructor arguments -->

 </object>

 </property>

 <property name="CacheLoader">

 <object type="Spring.Data.GemFire.Tests.SimpleCacheLoader, Spring.Data.GemFire.Tests"/>

 </property>

 <property name="CacheWriter">

 <object type="Spring.Data.GemFire.Tests.SimpleCacheWriter, Spring.Data.GemFire.Tests"/>

 </property>

 </object>

1.2.1. Configuring update interest for client Region

Client interests can be registered in both key and regex form through AllKeysInterest, KeyInterest, and

RegexInterest classes in the Spring.Data.GemFire namespace. Here is an example of how to configure the

AllKeys interest in the region.

 <object name="baseRegion" abstract="true">

 <property name="Endpoints" value="localhost:40404"/>

 <property name="Cache" ref="Cache"/> <!-- definition not shown here -->

 </object>

 <object name="basic-interest" type="Spring.Data.GemFire.RegionFactoryObject, Spring.Data.GemFire"

 parent="baseRegion">

 <property name="ClientNotification" value="true"/>

 <property name="interests">

 <list>

 <object type="Spring.Data.GemFire.AllKeysInterest"/>

 </list>

 </property>

 </object>

To register interest for a set of key, use the KeyInterest class, as shown below from the sample application

 <object name="Region" type="Spring.Data.GemFire.RegionFactoryObject, Spring.Data.GemFire">

 <property name="Endpoints" value="localhost:40404"/>

 <property name="Cache" ref="Cache"/>

 <property name="Name" value="exampleregion"/>

 <property name="ClientNotification" value="true"/>

 <property name="Interests">

 <list>

 <object type="Spring.Data.GemFire.KeyInterest">

 <property name="Keys">

 <list>

 <object type="GemStone.GemFire.Cache.CacheableString" factory-method="Create">

 <constructor-arg value="Key-123"/>

 </object>

 </list>

 </property>

 </object>

 </list>

 </property>

 </object>

To register interest based on a regular expression, use the following configuration

Bootstrapping GemFire through the Spring container

Spring GemFire (1.0.0 M1) 6

 <object name="Region" type="Spring.Data.GemFire.RegionFactoryObject, Spring.Data.GemFire">

 <property name="Endpoints" value="localhost:40404"/>

 <property name="Cache" ref="Cache"/>

 <property name="Name" value="exampleregion"/>

 <property name="ClientNotification" value="true"/>

 <property name="Interests">

 <list>

 <object type="Spring.Data.GemFire.RegexInterest">

 <property name="Regex" value="Key-.*"/>

 </object>

 </list>

 </property>

 </object>

This would only register interest in keys of the type 'Key-123' or 'Key-4abc'.

Note

For the M2 release the use of namespaces and type converters for 'ICacheableKey' subclasses will

make this configuration significantly less verbose. Also, there will a means to specify the collection

class that can be filled with the intial cache values.

Please refer to the API documentation for more information on the various IInterest subclasses.

Spring GemFire (1.0.0 M1) 7

Chapter 2. Working with the GemFire
APIs
Once the GemFire cache and regions have been configured they can injected and used inside application objects.

This chapter describes the integration with Spring's DaoException hierarchy.

2.1. Exception translation

Using a new data access technology requires not just accommodating to a new API but also handling exceptions

specific to that technology. To accommodate this case, Spring Framework provides a technology agnostic,

consistent exception hierarchy that abstracts one from proprietary exceptions to a set of focused data access

exceptions. As mentioned in the Spring Framework documentation, exception translation can be applied

transparently to your data access objects through the use of the [Repository] attribute and AOP by defining

a PersistenceExceptionTranslationPostProcessor object. The same exception translation functionality is enabled

when using GemFire as long as at least a CacheFactoryObject is declared. The Cache factory acts as an exception

translator which is automatically detected by the Spring infrastructure and used accordingly.

http://www.springframework.net/doc-latest/reference/html/dao.html#dao-exceptions
http://www.springframework.net/doc-latest/reference/html/orm.html#orm-hibernate-straight-ex

Spring GemFire (1.0.0 M1) 8

Chapter 3. Sample Applications
The Spring GemFire project includes one sample application. Named "Hello World", the sample demonstrates

how to configure and use GemFire inside a Spring application. At runtime, the sample offers a shell to the user

for running various commands against the grid. It provides an excellent starting point for users unfamiliar with

the essential components or the Spring and GemFire concepts.

The sample is bundled with the distribution and is included in the main solution file. You can also run it from

the command line once it is built in visual studio.

3.1. Prerequisites

1. You will need to download, install, and obtain a license for

• GemFire Enterprise 6.0

• GemFire Enterprise Native Client 3.0.0.9

The GemFire Enterprise licence file, gemfireLicense.zip should reside in the root of your GemFire Enterprise

install directory. The GemFire Enterprise Native Client licence file, gfCpplicense.zip, should reside in the 'bin'

sub-directory of the Native Client install directory.

The .NET clients run in a client-server architecture. This is shown below from the perspective of a single 'native

(C++ or .NET) client and a single cache server process.

Figure 3.1. Client-Server Configuration for native (C++ or .NET) clients

While not shown in this picture, there can be multiple .NET/C++ client applications and also multiple other

processes that act in a peer-to-peer like manner as part of the GemFire Distributed System.

When running in a client-server architecture there needs to be configuration of the client side, the .NET/C++

Application, and the data grid side, the Java Cache Server. In this example the configuration of the client side

is done entirely by the FactoryObject's declared in the Spring XML file. The data grid side is configured with

a standalone configuration file.

2. The Java Cache Server requires a configuration file in order to run. This file is provided in the Spring GemFire

distribution and in named cache.xml. It is located in the 'example\Spring.Data.Gemfire.HelloWorld' directory. It

needs to be into the GemFire Enterprise 6.0 'bin' directory where the cacheserver.bat file is located.

3. Run the cacheserver.bat file located in the 'bin' of the GemFire Enterprise 6.0 product. By default it will load

a configuration file named 'cache.xml'.

http://download.gemstone.com/

Sample Applications

Spring GemFire (1.0.0 M1) 9

The Spring GemFire project ships with the essential GemFire client side libraries to run the sample application.

Note that because the .NET Client API is a wrapper around the C++ API, it needs to be referenced in either the

App.config file or installed into the GAC. The HelloWorld example program is configured to load the libraries

from the 'lib\GemFire\net\2.0' directory.

Despite providing the client However, it is recommended that you download the GemFire Enterprise Native Client

3.0.0.9 from the download site to have access to reference documentation. You may also find the GemFire .NET

API Tour of interest to read.

3.2. Hello World

The Hello World sample demonstrates the basic functionality of the Spring GemFire project and is also useful

to understand how GemFire clients work. The application bootstraps GemFire, configures it, allows for the

execution of several commands against the data grid, and gracefully shuts down when the application exits.

Multiple instances can be started at the same time as they will work with each other sharing data without any

user intervention.

3.2.1. Compiling, starting and stopping the sample

Hello World is designed as a stand-alone application. The main class is in the file Program.cs and generates an

executable named HelloWorld.exe. To start the example follow the steps

To compile the example, load the solution Spring.Data.GemFire.sln in the root of the Spring GemFire project

directory.

1. Load the Visual Studio 2008 solution Spring.Data.GemFire.sln located in the root of the Spring GemFire

project directory. Compile the solution.

2. Ensure that the Java Cache Server is running as described in the previous section.

3. Set the startup project to be the Spring.Data.Gemfire.HelloWorld project or cd to the 'example

\Spring.Data.Gemfire.HelloWorld\bin\Debug' directory and run HelloWorld.exe.

Note

You can pass as a command line argument the name that will appear before you enter commands

in the shell. This is useful for distinguishing different members of the distributed system

4. You can now execute commands in the shell, which will be described in the next section. Exit the shell by

typing 'exit'.

3.2.2. Using the sample

Once started, the sample will create a client side cache that is replicated with the server cache contained in the Java

Cache Server. For example, the command line 'HelloWorld.exe client-1' will result in the following greeting

Hello World!

Want to interact with the world ? ...

Supported commands are:

get <key> - retrieves an entry (by key) from the grid

put <key> <value> - puts a new entry into the grid

remove <key> - removes an entry (by key) from the grid

size - returns the size of the grid

clear - removes all mapping in the grid

http://community.gemstone.com/display/gemfire/GemFire+.NET+API+Tour
http://community.gemstone.com/display/gemfire/GemFire+.NET+API+Tour

Sample Applications

Spring GemFire (1.0.0 M1) 10

keys - returns the keys contained by the grid

values - returns the values contained by the grid

containsKey <key> - indicates if the given key is contained by the grid

containsValue <value> - indicates if the given value is contained by the grid

map - returns a list of the key-value pairs in the grid

query <query> - executes a query on the grid

help - this info

exit - this node exists

client-1>

For example to add new items to the grid one can use:

client-1>put 1 unu

null

client-1>put 1 one

old value = [unu]

client-1>size

1

client-1>put 2 two

null

client-1>size

2

client-1>

Multiple instances can be created at the same time. Once started, the new clients automatically see the existing

region and its information. Start a second client with the command line 'HelloWorld.exe client-2'

Hello World!

...

client-2>size

2

client-2>map

[2=two][1=one]

client-2>

Experiment with the example, start (and stop) as many instances as you want, run various commands in one

instance and see how the others react. To preserve data, the Java Cache Servier needs to be running at all times.

Spring GemFire (1.0.0 M1) 11

Part III. Other Resources
In addition to this reference documentation, there are a number of other resources that may help you learn how

to use GemFire and Spring framework. These additional, third-party resources are enumerated in this section.

Spring GemFire (1.0.0 M1) 12

Chapter 4. Useful Links
• Spring GemFire Integration Home Page - here

• SpringSource blog - here

• GemFire Community - here

http://www.springframework.org/spring-gemfire/
http://blog.springsource.com/
http://community.gemstone.com/display/gemfire/GemFire+Enterprise

	Spring Gemfire for .NET - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	Part II. Reference Documentation
	Chapter 1. Bootstrapping GemFire through the Spring container
	1.1. Configuring the GemFire Cache
	1.2. Configuring a GemFire Region
	1.2.1. Configuring update interest for client Region

	Chapter 2. Working with the GemFire APIs
	2.1. Exception translation

	Chapter 3. Sample Applications
	3.1. Prerequisites
	3.2. Hello World
	3.2.1. Compiling, starting and stopping the sample
	3.2.2. Using the sample

	Part III. Other Resources
	Chapter 4. Useful Links

