Spring Gemfire Integration Reference Guide

Costin Leau

SpringSource, a division of VMware

1.1.2.RELEASE

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.


Table of Contents

Preface
I. Introduction
1. Requirements
II. Reference Documentation
2. Bootstrapping GemFire through the Spring container
2.1. Using the Spring GemFire Namespace
2.2. Configuring the GemFire Cache
2.2.1. Configuring a GemFire CacheServer
2.2.2. Configuring a GemFire ClientCache
2.3. Configuring a GemFire Region
2.3.1. Using an externaly configured Region
2.3.2. Replicated Region
2.3.3. Partition(ed) Region
2.3.4. Client Region
2.3.5. Configurating Disk Storage
2.3.6. Data Persistence
2.3.7. Data Eviction and Overflowing
2.3.8. Advanced Region Configuration
2.4. Advantages of using Spring over GemFire cache.xml
2.5. Creating Indecies
3. Working with the GemFire APIs
3.1. Exception translation
3.2. GemfireTemplate
3.3. Support for Spring Cache Abstraction
3.4. Transaction Management
3.5. GemFire Continuous Query Container
3.5.1. Continuous Query Listener Container
3.5.2. The ContinuousQueryListenerAdapter and ContinuousQueryListener
3.6. Wiring Declarable components
3.6.1. Configuration using template definitions
3.6.2. Configuration using auto-wiring and annotations
4. Working with GemFire Serialization
4.1. Wiring deserialized instances
4.2. Auto-generating custom Instantiators
5. Sample Applications
5.1. Hello World
5.1.1. Starting and stopping the sample
5.1.2. Using the sample
5.1.3. Hello World Sample Explained
III. Other Resources
6. Useful Links
IV. Appendices
A. Spring GemFire Integration Schema

Preface

Spring GemFire Integration focuses on integrating Spring Framework's powerful, non-invasive programming model and concepts with Gemstone's GemFire Enterprise Fabric, providing easier configuration, use and high-level abstractions. This document assumes the reader already has a basic familiarity with the Spring Framework and GemFire concepts and APIs.

While every effort has been made to ensure that this documentation is comprehensive and there are no errors, nevertheless some topics might require more explanation and some typos might have crept in. If you do spot any mistakes or even more serious errors and you can spare a few cycles during lunch, please do bring the error to the attention of the Spring GemFire Integration team by raising an issue. Thank you.

Part I. Introduction

This document is the reference guide for Spring GemFire project (SGF). It explains the relationship between Spring framework and GemFire Enterprise Fabric (GEF) 6.0.x, defines the basic concepts and semantics of the integration and how these can be used effectively.

1. Requirements

Spring GemFire integration requires JDK level 5.0 and above, Spring Framework 3 and GemFire 6.5 and above.

Part II. Reference Documentation

Document structure

This part of the reference documentation explains the core functionality offered by Spring GemFire integration.

Chapter 2, Bootstrapping GemFire through the Spring container describes the configuration support provided for bootstrapping, initializing and accessing a GemFire cache or region.

Chapter 3, Working with the GemFire APIs explains the integration between GemFire API and the various "data" features available in Spring, such as transaction management and exception translation.

Chapter 4, Working with GemFire Serialization describes the enhancements for GemFire (de)serialization process and management of associated objects.

Chapter 5, Sample Applications describes the samples provided with the distribution for showcasing the various features available in Spring GemFire.

2. Bootstrapping GemFire through the Spring container

One of the first tasks when using GemFire and Spring is to configure the data grid through the IoC container. While this is possible out of the box, the configuration tends to be verbose and only address basic cases. To address this problem, the Spring GemFire project provides several classes that enable the configuration of distributed caches or regions to support a variety of scenarios with minimal effort.

2.1 Using the Spring GemFire Namespace

To simplify configuration, SGF provides a dedicated namespace for most of its components. However, one can opt to configure the beans directly through the usual <bean> definition. For more information about XML Schema-based configuration in Spring, see this appendix in the Spring Framework reference documentation.

To use the SGF namespace, one just needs to import it inside the configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xmlns:1gfe="http://www.springframework.org/schema/gemfire"2
	xsi:schemaLocation="
        http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
        3http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd">
	<bean id ... >
	
    4<gfe:cache ...>
		
</beans>

1

Spring GemFire namespace prefix. Any name can do but through out the reference documentation, the gfe will be used.

2

The namespace URI.

3

The namespace URI location. Note that even though the location points to an external address (which exists and is valid), Spring will resolve the schema locally as it is included in the Spring GemFire library.

4

Declaration example for the GemFire namespace. Notice the prefix usage.

Once declared, the namespace elements can be declared simply by appending the aforementioned prefix. Note that is possible to change the default namespace, for example from <beans> to <gfe>. This is useful for configuration composed mainly of GemFire components as it avoids declaring the prefix. To achieve this, simply swap the namespace prefix declaration above:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="1http://www.springframework.org/schema/gemfire"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xmlns:2beans="http://www.springframework.org/schema/beans"
	xsi:schemaLocation="
	    http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
	    http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd">
	    
    3<beans:bean id ... >
	
    4<cache ...>
	
</beans>

1

The default namespace declaration for this XML file points to the Spring GemFire namespace.

2

The beans namespace prefix declaration.

3

Bean declaration using the <beans> namespace. Notice the prefix.

4

Bean declaration using the <gfe> namespace. Notice the lack of prefix (as the default namespace is used).

For the remainder of this doc, to improve readability, the XML examples will simply refer to the <gfe> namespace without the namespace declaration, where possible.

2.2 Configuring the GemFire Cache

In order to use the GemFire Fabric, one needs to either create a new Cache or connect to an existing one. As in the current version of GemFire, there can be only one opened cache per VM (or classloader to be technically correct). In most cases the cache is created once and then all other consumers connect to it.

In its simplest form, a cache can be defined in one line:

<gfe:cache />

The declaration above declares a bean(CacheFactoryBean) for the GemFire Cache, named gemfire-cache. All the other SGF components use this naming convention if no name is specified, allowing for very concise configurations. The definition above will try to connect to an existing cache and, in case one does not exist, create it. Since no additional properties were specified the created cache uses the default cache configuration.Especially in environments with opened caches, this basic configuration can go a long way.

For scenarios where the cache needs to be configured, the user can pass in a reference the GemFire configuration file:

<gfe:cache id="cache-with-xml" cache-xml-location="classpath:cache.xml"/>

In this example, if the cache needs to be created, it will use the file named cache.xml located in the classpath root. Only if the cache is created will the configuration file be used.

[Note]Note

Note that the configuration makes use of Spring's Resource abstraction to locate the file. This allows various search patterns to be used, depending on the running environment or the prefix specified (if any) by the value.

In addition to referencing an external configuration file one can specify GemFire settings directly through Java Properties. This can be quite handy when just a few settings need to be changed.

To setup properties one can either use the properties element inside the util namespace to declare or load properties files (the latter is recommended for externalizing environment specific settings outside the application configuration):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:gfe="http://www.springframework.org/schema/gemfire"
    xmlns:util="http://www.springframework.org/schema/util"
	xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
        http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
        http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util.xsd">
        
     <gfe:cache id="cache-with-xml" cache-xml-location="classpath:cache.xml" properties-ref="props"/>
	 
     <util:properties id="props" location="classpath:/deployment/env.properties"/>
</beans>

Or can use fallback to a raw <beans> declaration:

<bean id="cache-with-props" class="org.springframework.data.gemfire.CacheFactoryBean">
    <property name="properties">
        <props>
           <prop key="bind-address">127.0.0.1</prop>
        </props>
    </property>
</bean>

In this last example, the SGF classes are declared and configured directly without relying on the namespace. As one can tell, this approach is a generic one, exposing more of the backing infrastructure.

It is worth pointing out again, that the cache settings apply only if the cache needs to be created, there is no opened cache in existence otherwise the existing cache will be used and the configuration will simply be discarded.

2.2.1 Configuring a GemFire CacheServer

In Spring GemFire 1.1 dedicated support for configuring a CacheServer was added through the org.springframework.data.gemfire.server package allowing complete configuration through the Spring container:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xmlns:gfe="http://www.springframework.org/schema/gemfire"
	xmlns:p="http://www.springframework.org/schema/p"
	xmlns:context="http://www.springframework.org/schema/context"
	xmlns:util="http://www.springframework.org/schema/util"
	xsi:schemaLocation="http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
		http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
		http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd
		http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util.xsd">

	<gfe:cache />
	
	<!-- Advanced example depicting various cache server configuration options -->
	<gfe:cache-server id="advanced-config" auto-startup="true"
		bind-address="localhost" port="${gfe.port.6}" host-name-for-clients="localhost"
		load-poll-interval="2000" max-connections="22" max-threads="16"
		max-message-count="1000" max-time-between-pings="30000"
		groups="test-server">

		<gfe:subscription-config eviction-type="ENTRY" capacity="1000" disk-store="file://${java.io.tmpdir}"/>
	</gfe:cache-server>

	<context:property-placeholder location="classpath:port.properties" />
</beans>

The configuration above shows the dedicated namespace support (through the cache-server element) and the pleothera of options available. Note that rather then just hard-coding the port, this config uses Spring util namespace to read it from a properties file and then replace it at runtime allowing administrators to change it without having to touch the main application config. Through Spring's property placeholder support, SpEL and the environment abstraction one can externalize environment specific properties from the main code base easing the deployment across multiple machines.

[Note]Note

To avoid initialization problems, the CacheServers started by SGF will start after the container has been fully initialized. This allows potential regions, listener, writers or instantiators defined declaratively to be fully initialized and registered before the server starts accepting connections. Keep this in mind when doing programmatic configuration of the items above as the server might start before your components and thus not be seen by the clients connecting right away.

2.2.2 Configuring a GemFire ClientCache

Another configuration addition in SGF 1.1 is the dedicated support for configuring ClientCache - similar to a cache (in both usage and definition) - through the org.springframework.data.gemfire.client package and in particular ClientCacheFactoryBean.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:gfe="http://www.springframework.org/schema/gemfire"
	xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
        http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd">
        
    <gfe:client-cache />
     
</beans>

client-cache supports much of the same options as the cache element. However as oppose to a vanilla cache, a client cache connects to a server through a pool (by default a pool is created to connect to a server on localhost and 40404 - the default pool is used by all client cache regions (unless configured to use a different pool)).

Pools can be defined through the pool; in case of client caches and regions pools can be used to customize the connectivity to the server for individual entities or for the entire cache. For example, to custommize the default pool used by client-cache, one needs to define a pool and wire it to cache definition:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:gfe="http://www.springframework.org/schema/gemfire"
	xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
        http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd">
        
	<gfe:client-cache id="simple" pool-name="my-pool"/>

	<gfe:pool id="my-pool" subscription-enabled="true">
	    <gfe:locator host="someHost" port="43210"/>
	</gfe:pool>
	 
</beans>

2.3 Configuring a GemFire Region

Once the Cache is configured, one needs to configure one or more Regions to interact with the data fabric. SGF allows various region types to be configured and created directly from Spring or in case they are created directly in GemFire, retrieved as such.

For more information about the various region types and their capabilities as well as configuration options, please refer to the GemFire Developer's Guide and community site.

2.3.1 Using an externaly configured Region

For consuming but not creating Regions (for example in case, the regions are already configured through GemFire native configuration, the cache.xml), one can use the lookup-region element. Simply declare the target region name the name attribute; for example to declare a bean definition, named region-bean for an existing region named orders one can use the following definition:

<gfe:lookup-region id="region-bean" name="orders"/>

If the name is not specified, the bean name will be used automatically. The example above becomes:

<!-- lookup for a region called 'orders' -->
<gfe:lookup-region id="orders"/>
[Note]Note

If the region does not exist, an initialization exception will be thrown. For configuring new GemFire regions proceed to the sections below for replicated, partitioned, client or advanced region configuration.

Note that in the previous examples, since no cache name was defined, the default SGF naming convention (gemfire-cache) was used. If that is not an option, one can point to the cache bean through the cache-ref attribute:

<gfe:cache id="cache"/>
		
<gfe:lookup-region id="region-bean" name="orders" cache-ref="cache"/>

The lookup-region provides a simple way of retrieving existing, pre-configured regions without exposing the region semantics or setup infrastructure.

2.3.2 Replicated Region

One of the common region types supported by GemFire is replicated region or replica. In short:

[Note]What is a replica?
When a region is configured to be a replicated region, every member that hosts that region stores a copy of the contents of the region locally. Any update to a replicated region is distributed to all copies of the region. [...] When a replica is created, it goes through an initialization stage in which it discovers other replicas and automatically copies all the entries. While one replica is initializing you can still continue to use the other replicas.

SGF offers a dedicated element for creating replicas in the form of replicated-region element. A minimal declaration looks as follows (again, the example will not setup the cache wiring, relying on the SGF namespace naming conventions):

<gfe:replicated-region id="simple-replica" />

Here, a replicated region is created (if one doesn't exist already). The name of the region is the same as the bean name (simple-replica) and the bean assumes the existence of a GemFire cache named gemfire-cache.

When setting a region, it's fairly common to associate various CacheLoaders, CacheListeners and CacheWriters with it. These components can be either referrenced or declared inlined by the region declaration.

[Note]Note

Following the GemFire recommandations, the namespace allows for each region created multiple listeners but only one cache writer and cache loader. This restriction can be relaxed, for advanced usages by using the beans declaration (see the next section).

Below is an example, showing both styles:

<gfe:replicated-region id="mixed">
    <gfe:cache-listener>
    	<!-- nested cache listener reference -->
        <ref bean="c-listener"/>
        <!-- nested cache listener declaration -->
        <bean class="some.pkg.SimpleCacheListener"/>
    </gfe:cache-listener>
    <!-- loader reference -->
    <gfe:cache-loader ref="c-loader"/>
    <!-- writer reference -->
    <gfe:cache-writer ref="c-writer"/>
</gfe:replicated-region>
[Warning]Warning

Using ref and a nested declaration on cache-listener, cache-loader or cache-writer is illegal. The two options are mutually exclusive and using them at the same time, on the same element will throw an exception.

replicated-region Options

The following table offers a quick overview of the most important configuration options names, possible values and short descriptions for each of settings supported by the replicated-region element. Please see the storage and eviction section for the relevant configuration.

Table 2.1. replicated-region options

NameValuesDescription
idany valid bean nameThe id of the region bean definition.
nameany valid region nameThe name of the region definition. If no specified, it will have the value of the id attribute (that is, the bean name).
cache-refGemFire cache bean nameThe name of the bean defining the GemFire cache (by default 'gemfire-cache').
cache-listenervalid bean name or definitionThe name or nested bean declaration of a GemFire CacheListener.
cache-loadervalid bean name or definitionThe name or nested bean declaration of a GemFire CacheLoader.
cache-writervalid bean name or definitionThe name or nested bean declaration of a GemFire CacheWriter.

2.3.3 Partition(ed) Region

Another region type supported out of the box by the SGF namespace, is the partitioned region. To quote again the GemFire docs:

[Note]What is a partition?

A partitioned region is a region where data is divided between peer servers hosting the region so that each peer stores a subset of the data. When using a partitioned region, applications are presented with a logical view of the region that looks like a single map containing all of the data in the region. Reads or writes to this map are transparently routed to the peer that hosts the entry that is the target of the operation. [...] GemFire divides the domain of hashcodes into buckets. Each bucket is assigned to a specific peer, but may be relocated at any time to another peer in order to improve the utilization of resources across the cluster.

A partition can be created by SGF through the partitioned-region element. Its configuration options are similar to that of the replicated-region plus the partion specific features such as the number of redundant copies, total maximum memory, number of buckets, partition resolver and so on. Below is a quick example on setting up a partition region with 2 redundant copies:

<!-- bean definition named 'distributed-partition' backed by a region named 'redundant' with 2 copies 
and a nested resolver declaration  -->
<gfe:partitioned-region id="distributed-partition" copies="2" total-buckets="4" name="redundant">
    <gfe:partition-resolver>
        <bean class="some.pkg.SimplePartitionResolver"/>
    </gfe:partition-resolver>
</gfe:partitioned-region>

partitioned-region Options

The following table offers a quick overview of the most important configuration options names, possible values and short descriptions for each of settings supported by the partition element. Please see the storage and eviction section for the relevant configuration.

Table 2.2. partitioned-region options

NameValuesDescription
idany valid bean nameThe id of the region bean definition.
nameany valid region nameThe name of the region definition. If no specified, it will have the value of the id attribute (that is, the bean name).
cache-refGemFire cache bean nameThe name of the bean defining the GemFire cache (by default 'gemfire-cache').
cache-listenervalid bean name or definitionThe name or nested bean declaration of a GemFire CacheListener.
cache-loadervalid bean name or definitionThe name or nested bean declaration of a GemFire CacheLoader.
cache-writervalid bean name or definitionThe name or nested bean declaration of a GemFire CacheWriter.
partition-resolverbean nameThe name of the partitioned resolver used by this region, for custom partitioning.
copies0..4The number of copies for each partition for high-availability. By default, no copies are created meaning there is no redundancy. Each copy provides extra backup at the expense of extra storages.
colocated-withvalid region nameThe name of the partitioned region with which this newly created partitioned region is colocated.
local-max-memorypositive integerThe maximum amount of memory, in megabytes, to be used by the region in this process.
total-max-memoryany integer valueThe maximum amount of memory, in megabytes, to be used by the region in all processes.
recovery-delayany long valueThe delay in milliseconds that existing members will wait before satisfying redundancy after another member crashes. -1 (the default) indicates that redundancy will not be recovered after a failure.
startup-recovery-delayany long valueThe delay in milliseconds that new members will wait before satisfying redundancy. -1 indicates that adding new members will not trigger redundancy recovery. The default is to recover redundancy immediately when a new member is added.

2.3.4 Client Region

GemFire supports various deployment topologies for managing and distributing data. The topic is outside the scope of this documentation however to quickly recap, they can be categoried in short in: peer-to-peer (p2p), client-server (or super-peer cache network) and wide area cache network (or WAN). In the last two scenarios, it is common to declare client regions which connect to a backing cache server (or super peer). SGF offers dedicated support for such configuration through Section 2.2.2, “Configuring a GemFire ClientCache, client-region and pool elements. As the name imply, the former defines a client region while the latter connection pools to be used/shared by the various client regions.

Below is a usual configuration for a client region:

<!-- client region using the default client-cache pool -->
<gfe:client-region id="simple">
    <gfe:cache-listener ref="c-listener"/>
</gfe:client-region>
		
		
<!-- region using its own dedicated pool -->
<gfe:client-region id="complex" pool-name="gemfire-pool">
    <gfe:cache-listener ref="c-listener"/>
</gfe:client-region>
	
<bean id="c-listener" class="some.pkg.SimpleCacheListener"/>

<!-- pool declaration -->	
<gfe:pool id="gemfire-pool" subscription-enabled="true">
    <gfe:locator host="someHost" port="40403"/>
</gfe:pool>

Just as the other region types, client-region allows defining CacheListeners. It also relies on the same naming conventions in case the region name or the cache are not set explicitely. However, it also requires a connection pool to be specified for connecting to the server. Each client can have its own pool or they can share the same one.

For a full list of options to set on the client and especially on the pool, please refer to the SGF schema (Appendix A, Spring GemFire Integration Schema) and the GemFire documentation.

Client Interests

To minimize network traffic, each client can define its own 'interest', pointing out to GemFire, the data it actually needs. In SGF, interests can be defined for each client, both key-based and regular-expression-based types being supported; for example:

<gfe:client-region id="complex" pool-name="gemfire-pool">
    <gfe:key-interest durable="true" result-policy="KEYS">
        <bean id="key" class="java.lang.String">
             <constructor-arg value="someKey" /> 
        </bean>
    </gfe:key-interest>
    <gfe:regex-interest pattern=".*" receive-values="false"/>
</gfe:client-region>

A special key ALL_KEYS means interest is registered for all keys (identical to a regex interest of .*). The receive-values attribute indicates whether or not the values are received for create and update events. If true, values are received; if false, only invalidation events are received - refer to the GemFire documentation for more details.

2.3.5 Configurating Disk Storage

GemFire can use disk as a secondary storage for persisting regions or/and overflow (known as data pagination or eviction to disk). SGF allows such options to be configured directly from Spring through disk-store element available on both replicated-region and partitioned-region as well as client-region. A disk store defines how that particular region can use the disk and how much space it has available. Multiple directories can be defined in a disk store such as in our example below:

<gfe:partitioned-region id="partition-data">
    <gfe:disk-store queue-size="50" auto-compact="true" max-oplog-size="10" synchronous-write="false" time-interval="9999">
        <gfe:disk-dir location="/mainbackup/partition" max-size="999"/>
        <gfe:disk-dir location="/backup2/partition" max-size="999"/>
    </gfe:disk-store> 
</gfe:replicated-region>

In general, for maximum efficiency, it is recommended that each region that accesses the disk uses a disk store configuration.

For the full set of options and their meaning please refer to the Appendix A, Spring GemFire Integration Schema and GemFire documentation.

2.3.6 Data Persistence

Both partitioned and replicated regions can be made persistent. That is:

[Note]What is region persistence?

GemFire ensures that all the data you put into a region that is configured for persistence will be written to disk in a way that it can be recovered the next time you create the region. This allows data to be recovered after a machine or process failure or after an orderly shutdown and restart of GemFire.

With SGF, to enable persistence, simply set to true the persistent attribute on replicated-region, partitioned-region or client-region:

<gfe:partitioned-region id="persitent-partition" persistent="true"/>
[Important]Important

Persistence for partitioned regions is supported from GemFire 6.5 onwards - configuring this option on a previous release will trigger an initialization exception.

When persisting regions, it is recommended to configure the storage through the disk-store element for maximum efficiency.

2.3.7 Data Eviction and Overflowing

Based on various constraints, each region can have an eviction policy in place for evicting data from memory. Currently, in GemFire eviction applies on the least recently used entry (also known as LRU). Evicted entries are either destroyed or paged to disk (also known as overflow).

SGF supports all eviction policies (entry count, memory and heap usage) for both partitioned-region and replicated-region as well as client-region, through the nested eviction element. For example, to configure a partition to overflow to disk if its size is more then 512 MB, one could use the following configuration:

<gfe:partitioned-region id="overflow-partition">
     <gfe:eviction type="MEMORY_SIZE" threshold="512" action="OVERFLOW_TO_DISK"/>
</gfe:partitioned-region>
[Important]Important

Replicas cannot use a local destroy eviction since that would invalidate them. See the GemFire docs for more information.

When configuring regions for oveflow, it is recommended to configure the storage through the disk-store element for maximum efficiency.

For a detailed description of eviction policies, see the GemFire documentation (such as this page).

2.3.8 Advanced Region Configuration

SGF namespaces allow short and easy configuration of the major GemFire regions and associated entities. However, there might be corner cases where the namespaces are not enough, where a certain combination or set of attributes needs to be used. For such situations, using directly the SGF FactoryBeans is a possible alternative as it gives access to the full set of options at the expense of conciseness.

As a warm up, below are some common configurations, declared through raw beans definitions.

A basic configuration looks as follows:

<bean id="basic" class="org.springframework.data.gemfire.RegionFactoryBean">
  <property name="cache">
      <bean class="org.springframework.data.gemfire.CacheFactoryBean"/>
  </property>
  <property name="name" value="basic"/>
</bean>

Notice how the GemFire cache definition has been nested into the declaring region definition. Let's add more regions and make the cache a top level bean.

Since the region bean definition name is usually the same with that of the cache, the name property can be omitted (the bean name will be used automatically). Additionally by using the name the p namespace, the configuration can be simplified even more:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:p="http://www.springframework.org/schema/p"
  xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">
  
    <!-- shared cache across regions -->
    <bean id="cache" class="org.springframework.data.gemfire.CacheFactoryBean"/>

    <!-- region named 'basic' -->
    <bean id="basic" class="org.springframework.data.gemfire.RegionFactoryBean" p:cache-ref="cache"/>

    <!-- region with a name different then the bean definition -->
    <bean id="root-region" class="org.springframework.data.gemfire.RegionFactoryBean" p:cache-ref="cache" p:name="default-region"/>
</beans>

It is worth pointing out, that for the vast majority of cases configuring the cache loader, listener and writer through the Spring container is preferred since the same instances can be reused across multiple regions and additionally, the instances themselves can benefit from the container's rich feature set:

<bean id="cacheLogger" class="org.some.pkg.CacheLogger"/>
<bean id="customized-region" class="org.springframework.data.gemfire.RegionFactoryBean" p:cache-ref="cache">
  <property name="cacheListeners">
    <array>
      <ref name="cacheLogger"/>
    <bean class="org.some.other.pkg.SysoutLogger"/>
    </array>
  </property>
  <property name="cacheLoader"><bean class="org.some.pkg.CacheLoad"/></property>
  <property name="cacheWriter"><bean class="org.some.pkg.CacheWrite"/></property>
</bean>

<bean id="local-region" class="org.springframework.data.gemfire.RegionFactoryBean" p:cache-ref="cache">
  <property name="cacheListeners" ref="cacheLogger"/>	
</bean>

For scenarios where a CacheServer is used and clients need to be configured and the namespace is not an option, SGF offers a dedicated configuration class named: ClientRegionFactoryBean. This allows client interests to be registered in both key and regex form through Interest and RegexInterest classes in the org.springframework.data.gemfire.client package:

<bean id="interested-client" class="org.springframework.data.gemfire.client.ClientRegionFactoryBean" p:cache-ref="cache" p:name="client-region">
  <property name="interests">
    <array>
      <!-- key-based interest -->
      <bean class="org.springframework.data.gemfire.client.Interest" p:key="Vlaicu" p:policy="NONE"/>
      <!-- regex-based interest -->
      <bean class="org.springframework.data.gemfire.client.RegexInterest" p:key=".*" p:policy="KEYS" p:durable="true"/>
    </array>
  </property>
</bean>

Users that need fine control over a region, can configure it in Spring by using the attributes property. To ease declarative configuration in Spring, SGF provides two FactoryBeans for creating RegionAttributes and PartitionAttributes, namely RegionAttributesFactory and PartitionAttributesFactory. See below an example of configuring a partitioned region through Spring XML:

<bean id="partitioned-region" class="org.springframework.data.gemfire.RegionFactoryBean" p:cache-ref="cache">
  <property name="attributes">
    <bean class="org.springframework.data.gemfire.RegionAttributesFactory" p:initial-capacity="1024">
      <property name="partitionAttributes">
        <bean class="org.springframework.data.gemfire.PartitionAttributesFactoryBean" p:redundant-copies="2" p:local-max-memory="512"/>
      </property>
    </bean>
  </property>
</bean>

By using the attribute factories above, one can reduce the size of the cache.xml or even eliminate it all together.

2.4 Advantages of using Spring over GemFire cache.xml

With SGF, GemFire regions, pools and cache can be configured either through Spring or directly inside GemFire, native, cache.xml file. While both are valid approaches, it's worth pointing out that Spring's powerful DI container and AOP functionality makes it very easy to wire GemFire into an application. For example configuring a region cache loader, listener and writer through the Spring container is preferred since the same instances can be reused across multiple regions and additionally are either to configure due to the presence of the DI and eliminates the need of implementing GemFire's Declarable interface (see Section 3.6, “Wiring Declarable components” on chapter on how you can still use them yet benefit from Spring's DI container).

Whatever route one chooses to go, SGF supports both approaches allowing for easy migrate between them without forcing an upfront decision.

2.5 Creating Indecies

GemFire allows creation on indices (or indexes) to improve the performance of (common) queries. SGF allows indecies to be declared through the index element:

<gfe:index id="myIndex" expression="someField" from="/someRegion"/>

Before creating an index, SGF will verify whether one with the same name already exists. If it does, it will compare the properties and if they don't match, will remove the old one to create a new one. If the properties match, SGF will simply return the index (in case it does not exist it will simply create one). To prevent the update of the index, even if the properties do not match, set the property override to false.

Note that index declaration are not bound to a region but rather are top-level elements (just like gfe:cache). This allows one to declare any number of indecies on any region whether they are just created or already exist - an improvement versus the GemFire cache.xml. By default the index relies on the default cache declaration but one can customize it accordingly or use a pool (if need be) - see the namespace schema for the full set of options.

3. Working with the GemFire APIs

Once the GemFire cache and regions have been configured they can injected and used inside application objects. This chapter describes the integration with Spring's transaction management functionality and DaoException hierarchy. It also covers support for dependency injection of GemFire managed objects.

3.1 Exception translation

Using a new data access technology requires not just accommodating to a new API but also handling exceptions specific to that technology. To accommodate this case, Spring Framework provides a technology agnostic, consistent exception hierarchy that abstracts one from proprietary (and usually checked) exceptions to a set of focused runtime exceptions. As mentioned in the Spring Framework documentation, exception translation can be applied transparently to your data access objects through the use of the @Repository annotation and AOP by defining a PersistenceExceptionTranslationPostProcessor bean. The same exception translation functionality is enabled when using Gemfire as long as at least a CacheFactoryBean is declared. The Cache factory acts as an exception translator which is automatically detected by the Spring infrastructure and used accordingly.

3.2 GemfireTemplate

As with many other high-level abstractions provided by the Spring Framework and related projects, Spring GemFire provides a template that plays a central role when working with the GemFire API. The class provides several one-liner methods, for popular operations but also the ability to execute code against the native GemFire API without having to deal with exceptions for example through the GemfireCallback.

The template class requires a GemFire Region instance and once configured is thread-safe and should be reused across multiple classes:

<bean id="gemfireTemplate" class="org.springframework.data.gemfire.GemfireTemplate" p:region-ref="someRegion"/>

Once the template is configured, one can use it alongside GemfireCallback to work directly with the GemFire Region, without having to deal with checked exceptions, threading or resource management concerns:

template.execute(new GemfireCallback<Iterable<String>>() {
  public Iterable<String> doInGemfire(Region reg) throws GemFireCheckedException, GemFireException {
    // working against a Region of String
    Region<String, String> region = reg;

    region.put("1", "one");
    region.put("3", "three");

    return region.query("length < 5");
  }
});

For accessing the full power of the GemFire query language, one can use the find and findUnique which, as oppose to the query method, can execute queries inside across multiple regions, execute projections just to name a few features. find method should be used when the query selects multiple items (through SelectResults) and the latter, findUnique, as the name suggests when only one object is returned.

3.3 Support for Spring Cache Abstraction

Since 1.1, Spring GemFire provides an implementation for Spring 3.1 cache abstraction through the org.springframework.data.gemfire.support package. To use GemFire as a backing implementation, simply add GemfireCacheManager to your configuration:

<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:cache="http://www.springframework.org/schema/cache"
  xmlns:gfe="http://www.springframework.org/schema/gemfire"
  xmlns:p="http://www.springframework.org/schema/p"
  xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
  	  http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
      http://www.springframework.org/schema/cache http://www.springframework.org/schema/cache/spring-cache.xsd">
  <!-- turn on declarative caching -->
  <cache:annotation-driven />
  
  <gfe:cache id="gemfire-cache" />
  <!-- declare GemFire Cache Manager -->
  <bean id="cacheManager" class="org.springframework.data.gemfire.support.GemfireCacheManager" p:cache-ref="gemfire-cache">
</beans>
  	
  	

3.4 Transaction Management

One of the most popular features of Spring Framework is transaction management. If you are not familiar with it, we strongly recommend looking into it as it offers a consistent programming model that works transparently across multiple APIs that can be configured either programmatically or declaratively (the most popular choice).

For GemFire, SGF provides a dedicated, per-cache, transaction manager that once declared, allows actions on the Regions to be grouped and executed atomically through Spring:

<gfe:transaction-manager id="tx-manager" cache-ref="cache"/>
[Note]Note
The example above can be simplified even more by eliminating the cache-ref attribute if the GemFire cache is defined under the default name gemfire-cache. As with the other SGF namespace elements, if the cache name is not configured, the aforementioned naming convention will used. Additionally, the transaction manager name, if not specified is gemfire-transaction-manager.

or if you prefer bean declarations:

<bean id="tx-manager" class="org.springframework.data.gemfire.GemfireTransactionManager" p:cache-ref="cache"/>

Note that currently GemFire supports optimistic transactions with read committed isolation. Furthermore, to guarantee this isolation, developers should avoid making in-place changes, that is manually modifying the values present in the cache. To prevent this from happening, the transaction manager configured the cache to use copy on read semantics, meaning a clone of the actual value is created, each time a read is performed. This behaviour can be disabled if needed through the copyOnRead property. For more information on the semantics of the underlying GemFire transaction manager, see the GemFire documentation.

3.5 GemFire Continuous Query Container

A powerful functionality offered by GemFire is continuous querying (or CQ). In short, CQ allows one to create a query and automatically be notified when new data that gets added to GemFire matches the query. Spring GemFire provides dedicated support for CQs through the org.springframework.data.gemfire.listener package and its listener container; very similar in functionality and naming to the JMS integration in Spring Framework; in fact, users familiar with the JMS support in Spring, should feel right at home. Basically SGF allows methods on POJOs to become end-points for CQ - simply define the query and indicate the method that should be notified when there is a match - SGF takes care of the rest. This of Java EE's message-driven bean style, but without any requirement for base class or interface implementations, based on GemFire.

[Note]Note

Currently, continuous queries are supported by GemFire only in client/server topologies. Additionally the pool used is required to have the subscription property enabled. Please refer to the documentation for more information.

3.5.1 Continuous Query Listener Container

SGF simplifies the creation, registration, life-cycle and dispatch of CQs by taking care of the infrastructure around them through ContinuousQueryListenerContainer which does all the heavy lifting on behalf of the user - users familiar with EJB and JMS should find the concepts familiar as it is designed as close as possible to the support in Spring Framework and its message-driven POJOs (MDPs)

ContinuousQueryListenerContainer acts as an event (or message) listener container; it is used to receive the events from the registered CQs and drive the POJOs that are injected into it. The listener container is responsible for all threading of message reception and dispatches into the listener for processing. It acts as the intermediary between an EDP (Event Driven POJO) and the event provider and takes care of creation and registration of CQs (to receive events), resource acquisition and release, exception conversion and suchlike. This allows you as an application developer to write the (possibly complex) business logic associated with receiving an event (and reacting to it), and delegates boilerplate GemFire infrastructure concerns to the framework.

The container is fully customizable - one can chose either to use the CQ thread to perform the dispatch (synchronous delivery) or a new thread (from an existing pool for examples) for an asynch approach by defining the suitable java.util.concurrent.Executor (or Spring's TaskExecutor). Depending on the load, the number of listeners or the runtime environment, one should change or tweak the executor to better serve her needs - in particular in managed environments (such as app servers), it is highly recommended to pick a a proper TaskExecutor to take advantage of its runtime.

3.5.2 The ContinuousQueryListenerAdapter and ContinuousQueryListener

The ContinuousQueryListenerAdapter class is the final component in SGF CQ support: in a nutshell, it allows you to expose almost any class as a EDP (there are of course some constraints) - it implements ContinuousQueryListener, a simpler listener interface similar to GemFire CqListener.

Consider the following interface definition. Notice the various event handling methods and their parameters:

public interface EventDelegate {
     void handleEvent(CqEvent event);
     void handleEvent(Operation baseOp);
     void handleEvent(Object key);
     void handleEvent(Object key, Object newValue);
     void handleEvent(Throwable th);
     void handleQuery(CqQuery cq);
     void handleEvent(CqEvent event, Operation baseOp, byte[] deltaValue);
     void handleEvent(CqEvent event, Operation baseOp, Operation queryOp, Object key, Object newValue);
}
public class DefaultEventDelegate implements EventDelegate {
    // implementation elided for clarity...
}

In particular, note how the above implementation of the EventDelegate interface (the above DefaultEventDelegate class) has no GemFire dependencies at all. It truly is a POJO that we will make into an EDP via the following configuration (note that the class doesn't have to implement an interface, one is present only to better show case the decoupling between contract and implementation).

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:gfe="http://www.springframework.org/schema/gemfire"
    xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
        http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd">

	
	<gfe:client-cache pool-name="client"/>
	
	<gfe:pool id="client" subscription-enabled="true">
	   <gfe:server host="localhost" port="40404"/>
	</gfe:pool>
	
	<gfe:cq-listener-container>
	   <!-- default handle method -->
	   <gfe:listener ref="listener" query="SELECT * from /region"/ >
	   <gfe:listener ref="another-listener" query="SELECT * from /another-region" name="my-query" method="handleQuery"/>
	</gfe:cq-listener-container>
  
	<bean id="listener" class="gemfireexample.DefaultMessageDelegate"/>
	<bean id="another-listener" class="gemfireexample.DefaultMessageDelegate"/>
  ...
<beans>
[Note]Note
The example above shows some of the various forms that a listener can have; at its minimum the listener reference and the actual query definition are required. It's possible however to specify a name for the resulting continuous query (useful for monitoring) but also the name of the method (the default is handleEvent). The specified method can have various argument types, the EventDelegate interface lists the allowed types.

The example above uses the SGF namespace to declare the event listener container and automatically register the POJOs as listeners. The full blown, beans definition is displayed below:

<!-- this is the Event Driven POJO (MDP) -->
<bean id="eventListener" class="org.springframework.data.gemfire.listener.adapter.ContinuousQueryListenerAdapter">
    <constructor-arg>
        <bean class="gemfireexample.DefaultEventDelegate"/>
    </constructor-arg>
</bean>

<!-- and this is the event listener container... -->
<bean id="gemfireListenerContainer" class="org.springframework.data.gemfire.listener.ContinuousQueryListenerContainer">
    <property name="cache" ref="gemfire-cache"/>
    <property name="queryListeners">
      <!-- set of listeners -->
      <set>
        <bean class="org.springframework.data.gemfire.listener.ContinuousQueryDefinition" >
               <constructor-arg value="SELECT * from /region" />
               <constructor-arg ref="eventListener" />
        </bean>
      </set>
    </property>
</bean>

Each time an event is received, the adapter automatically performs type translation between the GemFire event and the required method argument(s) transparently. Any exception caused by the method invocation is caught and handled by the container (by default, being logged).

3.6 Wiring Declarable components

GemFire XML configuration (usually named cache.xml allows user objects to be declared as part of the fabric configuration. Usually these objects are CacheLoaders or other pluggable components into GemFire. Out of the box in GemFire, each such type declared through XML must implement the Declarable interface which allows arbitrary parameters to be passed to the declared class through a Properties instance.

In this section we describe how you can configure the pluggable components defined in cache.xml using Spring while keeping your Cache/Region configuration defined in cache.xml This allows your pluggable components to focus on the application logic and not the location or creation of DataSources or other collaboration object.

However, if you are starting on a green-field project, it is recommended that you configure Cache, Region, and other pluggable components directly in Spring. This avoids inheriting from the Declarable interface or the base class presented in this section. See the following sidebar for more information on this approach.

As an example of configuring a Declarable component using Spring, consider the following declaration (taken from the Declarable javadoc):

<cache-loader>
   <class-name>com.company.app.DBLoader</class-name>
   <parameter name="URL">
     <string>jdbc://12.34.56.78/mydb</string>
   </parameter>
</cache-loader>

To simplify the task of parsing, converting the parameters and initializing the object, SGF offers a base class (WiringDeclarableSupport) that allows GemFire user objects to be wired through a template bean definition or, in case that is missing perform autowiring through the Spring container. To take advantage of this feature, the user objects need to extend WiringDeclarableSupport which automatically locates the declaring BeanFactory and performs wiring as part of the initialization process.

3.6.1 Configuration using template definitions

When used WiringDeclarableSupport tries to first locate an existing bean definition and use that as wiring template. Unless specified, the component class name will be used as an implicit bean definition name. Let's see how our DBLoader declaration would look in that case:

public class DBLoader extends WiringDeclarableSupport implements CacheLoader {
  private DataSource dataSource;

  public void setDataSource(DataSource ds){
    this.dataSource = ds;
  }

  public Object load(LoaderHelper helper) { ... }
}
<cache-loader>
   <class-name>com.company.app.DBLoader</class-name>
   <!-- no parameter is passed (use the bean implicit name
   that is the class name) -->
</cache-loader>
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:p="http://www.springframework.org/schema/p"
       xsi:schemaLocation="http://www.springframework.org/schema/beans 
           http://www.springframework.org/schema/beans/spring-beans.xsd">

  <bean id="dataSource" ... />

     <!-- template bean definition -->
     <bean id="com.company.app.DBLoader" abstract="true" p:dataSource-ref="dataSource"/>
</beans>

In the scenario above, as no parameter was specified, a bean with id/name com.company.app.DBLoader was searched for. The found bean definition is used as a template for wiring the instance created by GemFire. For cases where the bean name uses a different convention, one can pass in the bean-name parameter in the GemFire configuration:

<cache-loader>
   <class-name>com.company.app.DBLoader</class-name>
   <!-- pass the bean definition template name
        as parameter -->
   <parameter name="bean-name">
     <string>template-bean</string>
   </parameter>
</cache-loader>
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:p="http://www.springframework.org/schema/p"
       xsi:schemaLocation="http://www.springframework.org/schema/beans 
           http://www.springframework.org/schema/beans/spring-beans.xsd">

  <bean id="dataSource" ... />

     <!-- template bean definition -->   
     <bean id="template-bean" abstract="true" p:dataSource-ref="dataSource"/>
     
</beans>
[Note]Note

The template bean definitions do not have to be declared in XML - any format is allowed (Groovy, annotations, etc..).

3.6.2 Configuration using auto-wiring and annotations

If no bean definition is found, by default, WiringDeclarableSupport will autowire the declaring instance. This means that unless any dependency injection metadata is offered by the instance, the container will find the object setters and try to automatically satisfy these dependencies. However, one can also use JDK 5 annotations to provide additional information to the auto-wiring process. We strongly recommend reading the dedicated chapter in the Spring documentation for more information on the supported annotations and enabling factors.

For example, the hypothetical DBLoader declaration above can be injected with a Spring-configured DataSource in the following way:

public class DBLoader extends WiringDeclarableSupport implements CacheLoader {
  // use annotations to 'mark' the needed dependencies 
  @javax.inject.Inject
  private DataSource dataSource;

  public Object load(LoaderHelper helper) { ... }
}
<cache-loader>
   <class-name>com.company.app.DBLoader</class-name>
   <!-- no need to declare any parameters anymore
        since the class is auto-wired -->
</cache-loader>
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:context="http://www.springframework.org/schema/context"
       xsi:schemaLocation="http://www.springframework.org/schema/beans 
           http://www.springframework.org/schema/beans/spring-beans.xsd
           http://www.springframework.org/schema/context
           http://www.springframework.org/schema/context/spring-context.xsd">
            
     <!-- enable annotation processing -->   
     <context:annotation-config/>
     
</beans>

By using the JSR-330 annotations, the cache loader code has been simplified since the location and creation of the DataSource has been externalized and the user code is concerned only with the loading process. The DataSource might be transactional, created lazily, shared between multiple objects or retrieved from JNDI - these aspects can be easily configured and changed through the Spring container without touching the DBLoader code.

4. Working with GemFire Serialization

To improve overall performance of the data fabric, GemFire supports a dedicated serialization protocol that is both faster and offers more compact results over the standard Java serialization and works transparently across various language platforms (such as Java, .NET and C++). This chapter discusses the various ways in which SGF simplifies and improves GemFire custom serialization in Java.

4.1 Wiring deserialized instances

It is fairly common for serialized objects to have transient data. Transient data is often dependent on the node or environment where it lives at a certain point in time, for example a DataSource. Serializing such information is useless (and potentially even dangerous) since it is local to a certain VM/machine. For such cases, SGF offers a special Instantiator that performs wiring for each new instance created by GemFire during deserialization.

Through such a mechanism, one can rely on the Spring container to inject (and manage) certain dependencies making it easy to split transient from persistent data and have rich domain objects in a transparent manner (Spring users might find this approach similar to that of @Configurable). The WiringInstantiator works just like WiringDeclarableSupport, trying to first locate a bean definition as a wiring template and following to autowiring otherwise. Please refer to the previous section (Section 3.6, “Wiring Declarable components”) for more details on wiring functionality.

To use this Instantiator, simply declare it as a usual bean:

<bean id="instantiator" class="org.springframework.data.gemfire.serialization.WiringInstantiator">
  <!-- DataSerializable type -->
  <constructor-arg>org.pkg.SomeDataSerializableClass</constructor-arg>
  <!-- type id -->
  <constructor-arg>95</constructor-arg>
</bean>

During the container startup, once it is being initialized, the instantiator will, by default, register itself with the GemFire system and perform wiring on all instances of SomeDataSerializableClass created by GemFire during deserialization.

4.2 Auto-generating custom Instantiators

For data intensive applications, a large number of instances might be created on each machine as data flows in. Out of the box, GemFire uses reflection to create new types but for some scenarios, this might prove to be expensive. As always, it is good to perform profiling to quantify whether this is the case or not. For such cases, SGF allows the automatic generation of Instatiator classes which instantiate a new type (using the default constructor) without the use of reflection:

<bean id="instantiator-factory" class="org.springframework.data.gemfire.serialization.InstantiatorFactoryBean">
  <property name="customTypes">
    <map>
      <entry key="org.pkg.CustomTypeA" value="1025"/>
      <entry key="org.pkg.CustomTypeB" value="1026"/>
    </map>
  </property>
</bean>

The definition above, automatically generated two Instantiators for two classes, namely CustomTypeA and CustomTypeB and registers them with GemFire, under user id 1025 and 1026. The two instantiators avoid the use of reflection and create the instances directly through Java code.

5. Sample Applications

The Spring GemFire project includes one sample application. Named "Hello World", the sample demonstrates how to configure and use GemFire inside a Spring application. At runtime, the sample offers a shell to the user allowing him to run various commands against the grid. It provides an excellent starting point for users unfamiliar with the essential components or the Spring and GemFire concepts.

The sample is bundled with the distribution and is Maven-based. One can easily import them into any Maven-aware IDE (such as SpringSource Tool Suite) or run them from the command-line.

5.1 Hello World

The Hello World sample demonstrates the core functionality of the Spring GemFire project. It bootstraps GemFire, configures it, executes arbitrary commands against it and shuts it down when the application exits. Multiple instances can be started at the same time as they will work with each other sharing data without any user intervention.

[Note]Running under Linux

If you experience networking problems when starting GemFire or the samples, try adding the following system property java.net.preferIPv4Stack=true to the command line (insert -Djava.net.preferIPv4Stack=true). For an alternative (global) fix especially on Ubuntu see this link

5.1.1 Starting and stopping the sample

Hello World is designed as a stand-alone java application. It features a Main class which can be started either from your IDE of choice (in Eclipse/STS through Run As/Java Application) or from the command line through Maven using mvn exec:java. One can also use java directly on the resulting artifact if the classpath is properly set.

To stop the sample, simply type exit at the command line or press Ctrl+C to stop the VM and shutdown the Spring container.

5.1.2 Using the sample

Once started, the sample will create a shared data grid and allow the user to issue commands against it. The output will likely look as follows:

INFO: Created GemFire Cache [Spring GemFire World] v. X.Y.Z
INFO: Created new cache region [myWorld]
INFO: Member xxxxxx:50694/51611 connecting to region [myWorld]
Hello World!
Want to interact with the world ? ...
Supported commands are:

get <key> - retrieves an entry (by key) from the grid
put <key> <value> - puts a new entry into the grid
remove <key> - removes an entry (by key) from the grid
...

For example to add new items to the grid one can use:

-> put 1 unu
INFO: Added [1=unu] to the cache
null
-> put 1 one
INFO: Updated [1] from [unu] to [one]
unu
-> size
1
-> put 2 two
INFO: Added [2=two] to the cache
null
-> size
2

Multiple instances can be created at the same time. Once started, the new VMs automatically see the existing region and its information:

INFO: Connected to Distributed System ['Spring GemFire World'=xxxx:56218/49320@yyyyy]
Hello World!
...

-> size
2
-> map
[2=two] [1=one]
-> query length = 3
[one, two]

Experiment with the example, start (and stop) as many instances as you want, run various commands in one instance and see how the others react. To preserve data, at least one instance needs to be alive all times - if all instances are shutdown, the grid data is completely destroyed (in this example - to preserve data between runs, see the GemFire documentations).

5.1.3 Hello World Sample Explained

Hello World uses both Spring XML and annotations for its configuration. The initial boostrapping configuration is app-context.xml which includes the cache configuration, defined under cache-context.xml file and performs classpath scanning for Spring components. The cache configuration defines the GemFire cache, region and for illustrative purposes a simple cache listener that acts as a logger.

The main beans are HelloWorld and CommandProcessor which rely on the GemfireTemplate to interact with the distributed fabric. Both classes use annotations to define their dependency and life-cycle callbacks.

Part III. Other Resources

In addition to this reference documentation, there are a number of other resources that may help you learn how to use GemFire and Spring framework. These additional, third-party resources are enumerated in this section.

6. Useful Links

  • Spring GemFire Integration Home Page - here
  • SpringSource blog - here
  • GemFire Community - here

Part IV. Appendices

Appendix A. Spring GemFire Integration Schema

Spring GemFire Schema

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema xmlns="http://www.springframework.org/schema/gemfire"
            xmlns:xsd="http://www.w3.org/2001/XMLSchema"
            xmlns:beans="http://www.springframework.org/schema/beans"
            xmlns:tool="http://www.springframework.org/schema/tool"
            targetNamespace="http://www.springframework.org/schema/gemfire"
            elementFormDefault="qualified"
            attributeFormDefault="unqualified"
            version="1.1.1">

    <xsd:import namespace="http://www.springframework.org/schema/beans"/>
    <xsd:import namespace="http://www.springframework.org/schema/tool"/>

    <xsd:annotation>
        <xsd:documentation><![CDATA[
            Namespace support for the Spring GemFire project.
        ]]></xsd:documentation>
    </xsd:annotation>
    
    
   	<xsd:complexType name="cacheType">
		<xsd:attribute name="id" type="xsd:ID" use="optional">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
The name of the cache definition (by default "gemfire-cache").]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
		<xsd:attribute name="cache-xml-location" type="xsd:string" use="optional">
			<xsd:annotation>
				<xsd:documentation source="org.springframework.core.io.Resource"><![CDATA[
The location of the GemFire cache xml file, as a Spring resource location: a URL, a "classpath:" pseudo URL,
or a relative file path.
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
		<xsd:attribute name="properties-ref" type="xsd:string" use="optional">
			<xsd:annotation>
				<xsd:documentation source="java.util.Properties"><![CDATA[
The bean name of a Java Properties object that will be used for property substitution. For loading properties
consider using a dedicated utility such as the <util:*/> namespace and its 'properties' element.
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
		<xsd:attribute name="use-bean-factory-locator" type="xsd:string" default="true" use="optional">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
Indicates whether a bean factory locator is enabled (default) for this cache definition or not. The locator stores
the enclosing bean factory reference to allow auto-wiring of Spring beans into GemFire managed classes. Usually disabled
when the same cache is used in multiple application context/bean factories inside the same VM.
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
		<xsd:attribute name="pdx-serializer" type="xsd:string" use="optional">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
Sets the PDX serializer for the cache. If this serializer is set, it will be consulted to see if it can serialize any 
domain classes which are added to the cache in portable data exchange format. 				
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>		
		<xsd:attribute name="pdx-disk-store" type="xsd:string" use="optional">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
Sets the name of the disk store to use for PDX meta data. When serializing objects in the PDX format, 
the type definitions are persisted to disk. This setting controls which disk store is used for that persistence.
If not set, the metadata will go in the default disk store. 
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>		
		<xsd:attribute name="pdx-persistent" type="xsd:string" use="optional">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
Control whether the type metadata for PDX objects is persisted to disk. The default for this setting is true. 
If you are using a WAN gateway, or persistent regions, you should leave this set to true.
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>		
		<xsd:attribute name="pdx-read-serialized" type="xsd:string" use="optional">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
Sets the object preference to PdxInstance type. When a cached object that was serialized as a PDX is read from the cache 
a PdxInstance will be returned instead of the actual domain class. The PdxInstance is an interface that provides run time
access to the fields of a PDX without deserializing the entire PDX. The PdxInstance implementation is a light weight wrapper
that simply refers to the raw bytes of the PDX that are kept in the cache. Using this method applications can choose to 
access PdxInstance instead of Java object.

Note that a PdxInstance is only returned if a serialized PDX is found in the cache. If the cache contains a deserialized PDX, 
then a domain class instance is returned instead of a PdxInstance. 				
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>		
		<xsd:attribute name="pdx-ignore-unread-fields" type="xsd:string" use="optional">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
Controls whether pdx ignores fields that were unread during deserialization. The default is to preserve unread fields be
including their data during serialization. But if you configure the cache to ignore unread fields then their data will be 
lost during serialization.

You should only set this attribute to true if you know this member will only be reading cache data. In this use case you 
do not need to pay the cost of preserving the unread fields since you will never be reserializing pdx data. 				
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>		
	</xsd:complexType>
    
    <xsd:element name="cache" type="cacheType">
		<xsd:annotation>
			<xsd:documentation source="org.springframework.data.gemfire.CacheFactoryBean"><![CDATA[
Defines a GemFire Cache instance used for creating or retrieving 'regions'.
			]]></xsd:documentation>
			<xsd:appinfo>
				<tool:annotation>
					<tool:exports type="com.gemstone.gemfire.cache.Cache" />
				</tool:annotation>
			</xsd:appinfo>
		</xsd:annotation>
	</xsd:element>
	
	<xsd:element name="client-cache">
		<xsd:annotation>
			<xsd:documentation source="org.springframework.data.gemfire.client.ClientCacheFactoryBean"><![CDATA[
Defines a GemFire Client Cache instance used for creating or retrieving 'regions'.
			]]></xsd:documentation>
			<xsd:appinfo>
				<tool:annotation>
					<tool:exports type="com.gemstone.gemfire.cache.client.ClientCache" />
				</tool:annotation>
			</xsd:appinfo>
		</xsd:annotation>
		<xsd:complexType>
			<xsd:complexContent>
				<xsd:extension base="cacheType">
					<xsd:attribute name="pool-name" use="optional" type="xsd:string">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
The name of the pool used by this client.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:attribute>
				</xsd:extension>
			</xsd:complexContent>
		</xsd:complexType>
	</xsd:element>

	<xsd:element name="transaction-manager">
		<xsd:annotation>
			<xsd:documentation source="org.springframework.data.gemfire.GemfireTransactionManager"><![CDATA[
Defines a GemFire Transaction Manager instance for a single GemFire cache.
			]]></xsd:documentation>
		</xsd:annotation>
		<xsd:complexType>
			<xsd:attribute name="id" type="xsd:ID" use="optional">
				<xsd:annotation>
					<xsd:documentation><![CDATA[
The name of the transaction manager definition (by default "gemfire-transaction-manager").]]></xsd:documentation>
				</xsd:annotation>
			</xsd:attribute>
			<xsd:attribute name="cache-ref" type="xsd:string" default="gemfire-cache" use="optional">
				<xsd:annotation>
					<xsd:documentation><![CDATA[
The name of the bean defining the GemFire cache (by default 'gemfire-cache').
					]]></xsd:documentation>
				</xsd:annotation>
			</xsd:attribute>
			<xsd:attribute name="copy-on-read" type="xsd:string" default="true" use="optional">
				<xsd:annotation>
					<xsd:documentation><![CDATA[
Indicates whether the cache returns direct references or copies of the objects (default) it manages.
While copies imply additional work for every fetch operation, direct references can cause dirty reads
across concurrent threads in the same VM, whether or not transactions are used.
					]]></xsd:documentation>
				</xsd:annotation>
			</xsd:attribute> 
		</xsd:complexType>
	</xsd:element>
	
	<!-- nested bean definition -->
	<xsd:complexType name="beanDeclarationType">
		<xsd:sequence>
			<xsd:any namespace="##other" minOccurs="0" maxOccurs="1" processContents="skip">
    			<xsd:annotation>
         			<xsd:documentation><![CDATA[
Inner bean definition. The nested declaration serves as an alternative to bean references (using 
both in the same definition) is illegal.
					]]></xsd:documentation>
				</xsd:annotation>
         	</xsd:any>						
		</xsd:sequence>
		<xsd:attribute name="ref" type="xsd:string" use="optional">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
The name of the bean referred by this declaration. If no reference exists, use an inner bean declaration.
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
	</xsd:complexType>
	
	<xsd:complexType name="basicRegionType">
		<xsd:annotation>
			<xsd:appinfo>
				<tool:annotation>
					<tool:exports type="com.gemstone.gemfire.cache.Region" />
				</tool:annotation>
			</xsd:appinfo>
		</xsd:annotation>
		<xsd:attribute name="id" type="xsd:string" use="required">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
The id of the region bean definition.
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
		<xsd:attribute name="name" type="xsd:string" use="optional">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
The name of the region definition. If no specified, it will have the value of the id attribute (that is, the bean name).
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
		<xsd:attribute name="cache-ref" type="xsd:string" default="gemfire-cache" use="optional">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
The name of the bean defining the GemFire cache (by default 'gemfire-cache').
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute> 
	</xsd:complexType> 
	
	
	<xsd:complexType name="readOnlyRegionType" abstract="true">
		<xsd:complexContent>
			<xsd:extension base="basicRegionType">
				<xsd:sequence>
					<xsd:element name="cache-listener" minOccurs="0" maxOccurs="1">
						<xsd:annotation>
							<xsd:documentation source="com.gemstone.gemfire.cache.CacheListener"><![CDATA[
A cache listener definition for this region. A cache listener handles region or entry related events (that occur after
various operations on the region). Multiple listeners can be declared in a nested manner.

Note: Avoid the risk of deadlock. Since the listener is invoked while holding a lock on the entry generating the event,
it is easy to generate a deadlock by interacting with the region. For this reason, it is highly recommended to use some
other thread for accessing the region and not waiting for it to complete its task.
							]]></xsd:documentation>
							<xsd:appinfo>
								<tool:annotation>
									<tool:exports type="com.gemstone.gemfire.cache.CacheListener"/>
								</tool:annotation>
							</xsd:appinfo>
						</xsd:annotation>
						<xsd:complexType>
							<xsd:sequence>
								<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="skip">
					    			<xsd:annotation>
					         			<xsd:documentation><![CDATA[
Inner bean definition of the cache listener.
										]]></xsd:documentation>
									</xsd:annotation>
					         	</xsd:any>						
							</xsd:sequence>
							<xsd:attribute name="ref" type="xsd:string" use="optional">
								<xsd:annotation>
									<xsd:documentation><![CDATA[
The name of the cache listener bean referred by this declaration. Used as a convenience method. If no reference exists, 
use inner bean declarations.
									]]></xsd:documentation>
								</xsd:annotation>
							</xsd:attribute>
						</xsd:complexType>
					</xsd:element>
					<xsd:element name="disk-store" type="diskStoreType" minOccurs="0" maxOccurs="1">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
Disk storage configuration for the defined region.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:element>							
				</xsd:sequence>
				<xsd:attribute name="persistent" type="xsd:string" default="false">
					<xsd:annotation>
						<xsd:documentation><![CDATA[
Indicates whether the defined region is persistent or not. GemFire ensures that all the data you put into a region that
 is configured for persistence will be written to disk in a way that it can be recovered the next time you create the 
region. This allows data to be recovered after a machine or process failure or after an orderly shutdown and restart 
of GemFire.

Default is false, meaning the regions are not persisted.

Note: Persistence for partitioned regions is supported only from GemFire 6.5 onwards.						
						]]></xsd:documentation>
					</xsd:annotation>
				</xsd:attribute>
				<xsd:attribute name="destroy" type="xsd:string" default="false">
					<xsd:annotation>
						<xsd:documentation><![CDATA[
Indicates whether the defined region should be destroyed or not at shutdown. Destroy cascades to all entries and subregions.
After the destroy, this region object can not be used any more and any attempt to use this region object will get 
RegionDestroyedException.

Default is false, meaning that regions are not destroyed.

Note: destroy and close are mutually exclusive. Enabling one will automatically disable the other.
						]]></xsd:documentation>
					</xsd:annotation>
				</xsd:attribute>
				<xsd:attribute name="close" type="xsd:string" default="true">
					<xsd:annotation>
						<xsd:documentation><![CDATA[
Indicates whether the defined region should be closed or not at shutdown. Close performs a local destroy but leaves behind the region
disk files. Additionally it notifies the listeners and callbacks.

Default is true, meaning the regions are closed.

Note: Regions are automatically closed when cache closes.
Note: destroy and close are mutually exclusive. Enabling one will automatically disable the other.				
						]]></xsd:documentation>
					</xsd:annotation>
				</xsd:attribute>
				<xsd:attribute name="statistics" type="xsd:string" default="false">
					<xsd:annotation>
						<xsd:documentation><![CDATA[
Indicates whether statistics are enabled or disabled for this region and its entries.
Default is false, meaning statistics are disabled.
						]]></xsd:documentation>
					</xsd:annotation>
				</xsd:attribute>
			</xsd:extension>
		</xsd:complexContent>
	</xsd:complexType>
	
	<xsd:complexType name="regionType">
		<xsd:complexContent>
			<xsd:extension base="readOnlyRegionType">
				<xsd:sequence minOccurs="0" maxOccurs="1">
					<xsd:element name="cache-loader" minOccurs="0"  maxOccurs="1" type="beanDeclarationType">
						<xsd:annotation>
							<xsd:documentation source="com.gemstone.gemfire.cache.CacheLoader"><![CDATA[
The cache loader definition for this region. A cache loader allows data to be placed into a region.
							]]></xsd:documentation>
							<xsd:appinfo>
								<tool:annotation>
									<tool:exports type="com.gemstone.gemfire.cache.CacheLoader"/>
								</tool:annotation>
							</xsd:appinfo>
						</xsd:annotation>
					</xsd:element>
					<xsd:element name="cache-writer" minOccurs="0" maxOccurs="1" type="beanDeclarationType">
						<xsd:annotation>
							<xsd:documentation source="com.gemstone.gemfire.cache.CacheWriter"><![CDATA[
The cache writer definition for this region. A cache writer acts as a dedicated synchronous listener that is notified
before a region or an entry is modified. A typical example would be a writer that updates the database.

Note: Only one CacheWriter is invoked. GemFire will always prefer the local one (if it exists) otherwise it will
arbitrarily pick one.
							]]></xsd:documentation>
							<xsd:appinfo>
								<tool:annotation>
									<tool:exports type="com.gemstone.gemfire.cache.CacheWriter"/>
								</tool:annotation>
							</xsd:appinfo>
						</xsd:annotation>
					</xsd:element>
					
					<xsd:element name="region-ttl" minOccurs="0" maxOccurs="1" type="expirationType">
						<xsd:annotation>
							<xsd:documentation><![CDATA[[
Time to live configuration for the region itself. Default: no expiration.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:element>
					<xsd:element name="region-tti" minOccurs="0" maxOccurs="1" type="expirationType">
						<xsd:annotation>
							<xsd:documentation><![CDATA[[
Time to idle (or idle timeout) configuration for the region itself. Default: no expiration.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:element>
					<xsd:element name="entry-ttl" minOccurs="0" maxOccurs="1" type="expirationType">
						<xsd:annotation>
							<xsd:documentation><![CDATA[[
Time to live configuration for the region entries. Default: no expiration.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:element>
					<xsd:element name="entry-tti" minOccurs="0" maxOccurs="1" type="expirationType">
						<xsd:annotation>
							<xsd:documentation><![CDATA[[
Time to idle (or idle timeout) configuration for the region entries. Default: no expiration.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:element>
				</xsd:sequence>
			</xsd:extension>
		</xsd:complexContent>
	</xsd:complexType>
	
	<xsd:element name="lookup-region" type="basicRegionType">
		<xsd:annotation>
			<xsd:documentation><![CDATA[[
Looks up an existing, working, GemFire region. Typically regions are defined through GemFire own configuration, the 
cache.xml. If the region does not exist, an exception will be thrown.

For defining regions, consider the region elements.
			]]></xsd:documentation>
		</xsd:annotation>
	</xsd:element>
	
	<xsd:element name="replicated-region">
		<xsd:annotation>
			<xsd:documentation source="org.springframework.data.gemfire.RegionFactoryBean"><![CDATA[
Defines a GemFire replicated region instance. Each replicated region contains a complete copy of the data.
As well as high availability, replication provides excellent performance as each region contains a complete,
up to date copy of the data.
			]]></xsd:documentation>
			<xsd:appinfo>
				<tool:annotation>
					<tool:exports type="com.gemstone.gemfire.cache.Region" />
				</tool:annotation>
			</xsd:appinfo>
		</xsd:annotation>
		<xsd:complexType>
			<xsd:complexContent>
				<xsd:extension base="regionType">
					<xsd:sequence minOccurs="1" maxOccurs="1">
						<xsd:element name="eviction" minOccurs="0" maxOccurs="1">
							<xsd:annotation>
								<xsd:documentation><![CDATA[
Eviction policy for the replicated region.
								]]></xsd:documentation>
							</xsd:annotation>
							<xsd:complexType>
								<xsd:complexContent>
									<xsd:extension base="evictionType">
										<xsd:attribute name="action" type="evictionActionType" fixed="OVERFLOW_TO_DISK">
											<xsd:annotation>
												<xsd:documentation><![CDATA[
The action to take when performing eviction.
												]]></xsd:documentation>
											</xsd:annotation>
										</xsd:attribute>
									</xsd:extension>
								</xsd:complexContent>
							</xsd:complexType>
						</xsd:element>
					</xsd:sequence>
				</xsd:extension>
			</xsd:complexContent>
		</xsd:complexType>
	</xsd:element>
	
	<xsd:element name="partitioned-region">
		<xsd:annotation>
			<xsd:documentation source="org.springframework.data.gemfire.RegionFactoryBean"><![CDATA[
Defines a GemFire partitioned region instance. Through partitioning, the data is split across regions.
Partitioning is useful when the amount of data to store is too large for one member to hold and work
with as if it were a single entity. One can configure the partitioned region to store redundant copies
in different members, for high availability in case of an application failure.
			]]></xsd:documentation>
			<xsd:appinfo>
				<tool:annotation>
					<tool:exports type="com.gemstone.gemfire.cache.Region" />
				</tool:annotation>
			</xsd:appinfo>
		</xsd:annotation>
		<xsd:complexType>
			<xsd:complexContent>
				<xsd:extension base="regionType">
					<xsd:sequence>
						<xsd:element name="partition-resolver" minOccurs="0" maxOccurs="1" type="beanDeclarationType">
							<xsd:annotation>
								<xsd:documentation source="com.gemstone.gemfire.cache.PartitionResolver"><![CDATA[
The partition resolver definition for this region, allowing for custom partitioning. GemFire uses the resolver to
colocate data based on custom criterias (such as colocating trades by month and year).
								]]></xsd:documentation>
								<xsd:appinfo>
									<tool:annotation>
										<tool:exports type="com.gemstone.gemfire.cache.PartitionResolver"/>
									</tool:annotation>
								</xsd:appinfo>
							</xsd:annotation>
						</xsd:element>
						<xsd:element name="eviction" minOccurs="0" maxOccurs="1">
							<xsd:annotation>
								<xsd:documentation><![CDATA[
Eviction policy for the partitioned region.
								]]></xsd:documentation>
							</xsd:annotation>
							<xsd:complexType>
								<xsd:complexContent>
									<xsd:extension base="evictionType">
										<xsd:attribute name="action" type="evictionActionType" default="LOCAL_DESTROY">
											<xsd:annotation>
												<xsd:documentation><![CDATA[
The action to take when performing eviction.
												]]></xsd:documentation>
											</xsd:annotation>
										</xsd:attribute>
									</xsd:extension>
								</xsd:complexContent>
							</xsd:complexType>
						</xsd:element>
					</xsd:sequence>
					<xsd:attribute name="copies" default="0" use="optional">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
The number of copies for each partition for high-availability. By default, no copies are created meaning there is no
redundancy. Each copy provides extra backup at the expense of extra storages.
						]]></xsd:documentation>
						</xsd:annotation>
						<xsd:simpleType>
							<xsd:restriction base="xsd:byte">
								<xsd:minInclusive value="0"/>
								<xsd:maxInclusive value="3"/>
							</xsd:restriction>
						</xsd:simpleType>
					</xsd:attribute>
					<xsd:attribute name="colocated-with" type="xsd:string" use="optional">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
The name of the partitioned region with which this newly created partitioned region is colocated.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:attribute>
					<xsd:attribute name="local-max-memory" type="xsd:string" use="optional">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
The maximum amount of memory, in megabytes, to be used by the region in this process. If not set, a default of 90%
of available heap is used.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:attribute>
					<xsd:attribute name="total-max-memory" type="xsd:string" use="optional">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
The maximum amount of memory, in megabytes, to be used by the region in all process.

Note: This setting must be the same in all processes using the region.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:attribute>
					<xsd:attribute name="total-buckets" type="xsd:string" use="optional">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
The total number of hash buckets to be used by the region in all processes. 

A bucket is the smallest unit of data management in a partitioned region. Entries are stored in buckets and buckets may
 move from one VM to another. Buckets may also have copies, depending on redundancy to provide high availability in the
  face of VM failure.
The number of buckets should be prime and as a rough guide at the least four times the number of partition VMs. However
, there is significant overhead to managing a bucket, particularly for higher values of redundancy.
 
Note: This setting must be the same in all processes using the region.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:attribute>
					<xsd:attribute name="recovery-delay" type="xsd:string" default="-1" use="optional">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
The delay in milliseconds that existing members will wait before satisfying redundancy after another member crashes.
-1 (the default) indicates that redundancy will not be recovered after a failure.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:attribute>
					<xsd:attribute name="startup-recovery-delay" type="xsd:string" default="-1" use="optional">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
The delay in milliseconds that new members will wait before satisfying redundancy. -1 indicates that adding new members
 will not trigger redundancy recovery. The default is to recover redundancy immediately when a new member is added.
 							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:attribute>
				</xsd:extension>
			</xsd:complexContent>
		</xsd:complexType>
	</xsd:element>
	
	<xsd:complexType name="expirationType">
		<xsd:attribute name="timeout" type="xsd:string" default="0">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
The amount of time before the expiration action takes place. Defaults to zero (which means never timeout). 
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
		<xsd:attribute name="action" default="INVALIDATE">
			<xsd:simpleType>
				<xsd:restriction base="xsd:string">
					<xsd:enumeration value="INVALIDATE">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
When the region or cached object expires, it is invalidated. 
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:enumeration>
					<xsd:enumeration value="DESTROY">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
When the region or cached object expires, it is destroyed.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:enumeration>
					<xsd:enumeration value="LOCAL_INVALIDATE">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
When the region or cached object expires, it is invalidated locally only. Not supported on partitioned regions.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:enumeration>
					<xsd:enumeration value="LOCAL_DESTROY">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
When the region or cached object expires, it is destroyed locally only. Not supported on partitioned regions.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:enumeration>
				</xsd:restriction>
			</xsd:simpleType>
		</xsd:attribute>
	</xsd:complexType>
	
	<xsd:complexType name="evictionType">
		<xsd:sequence minOccurs="0" maxOccurs="1">
			<xsd:element name="object-sizer" type="beanDeclarationType">
				<xsd:annotation>
					<xsd:documentation><![CDATA[
Entity computing sizes for objects stored into the grid.
					]]></xsd:documentation>
					<xsd:appinfo>
						<tool:annotation>
							<tool:exports type="com.gemstone.gemfire.cache.util.ObjectSizer" />
						</tool:annotation>
					</xsd:appinfo>
				</xsd:annotation>
			</xsd:element>
		</xsd:sequence>
		<xsd:attribute name="type" default="ENTRY_COUNT">
			<xsd:simpleType>
				<xsd:restriction base="xsd:string">
					<xsd:enumeration value="ENTRY_COUNT">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
Considers the number of entries in the region before performing an eviction.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:enumeration>
					<xsd:enumeration value="MEMORY_SIZE">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
Considers the amount of memory consumed by the region before performing an eviction.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:enumeration>
					<xsd:enumeration value="HEAP_PERCENTAGE">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
Considers the amount of heap used (through the GemFire resource manager) before performing an eviction.
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:enumeration>
				</xsd:restriction>
			</xsd:simpleType>
		</xsd:attribute>
		<xsd:attribute name="threshold" type="xsd:string" use="required">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
The threshold (or limit) against which the eviction algorithm runs. Once the threashold is reached, eviction is
performed.
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
	</xsd:complexType>
	
	<xsd:simpleType name="evictionActionType">
		<xsd:restriction base="xsd:string">
			<xsd:enumeration value="LOCAL_DESTROY">
				<xsd:annotation>
					<xsd:documentation><![CDATA[
The LRU (least-recently-used) region entries is locally destroyed.

Note: this option is not compatible with replicated regions (as it render the replica region incomplete).  
							]]></xsd:documentation>
				</xsd:annotation>
			</xsd:enumeration>
			<xsd:enumeration value="OVERFLOW_TO_DISK">
				<xsd:annotation>
					<xsd:documentation><![CDATA[
The LRU (least-recently-used) region entry values are written to disk and nulled-out in the member to 
reclaim memory.
							]]></xsd:documentation>
				</xsd:annotation>
			</xsd:enumeration>
		</xsd:restriction>
	</xsd:simpleType>
	
	<xsd:complexType name="diskStoreType">
		<xsd:sequence>
			<xsd:element name="disk-dir" minOccurs="0" maxOccurs="unbounded">
				<xsd:complexType>
					<xsd:attribute name="location" type="xsd:string" use="required">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
Directory on the file system for storing data.

Note: the directory must already exist.						
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:attribute>
					<xsd:attribute name="max-size" type="xsd:string" default="10240">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
The maximum size (in megabytes) of data stored in each directory. Default is 10240 MB (10 gigabytes). 
							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:attribute>
				</xsd:complexType>
			</xsd:element>
		</xsd:sequence>
		<xsd:attribute name="synchronous-write" type="xsd:string" default="false">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
Indicates whether the writing to the disk si synchronous or not. Default is false, meaning asynchronous writing.
				]]>
				</xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>		
		<xsd:attribute name="auto-compact" type="xsd:string" default="true">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
Indicates whether or not the operation logs are automatically compacted or not. Default is true.
				]]>
				</xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
		<!-- 
		<xsd:attribute name="compaction-threshold" default="50">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
Sets the threshold at which an oplog will become compactable. Until it reaches this threshold the oplog will not be 
compacted. The threshold is a percentage in the range 0..100. When the amount of garbage in an oplog exceeds this 
percentage then when a compaction is done this garbage will be cleaned up freeing up disk space. Garbage is created 
by entry destroys, entry updates, and region destroys. 
				]]>
				</xsd:documentation>
			</xsd:annotation>
			<xsd:simpleType>
				<xsd:restriction base="xsd:short">
					<xsd:minExclusive value="0"/>
					<xsd:maxExclusive value="100"/>
				</xsd:restriction>
			</xsd:simpleType>
		</xsd:attribute>
		 -->
		<xsd:attribute name="max-oplog-size" type="xsd:string" default="1024">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
Sets the maximum size in megabytes a single oplog (operation log) is allowed to be. When an oplog is created this 
amount of file space will be immediately reserved. 
				]]>
				</xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
		<xsd:attribute name="time-interval" type="xsd:string" default="1">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
Sets the number of milliseconds that can elapse before unwritten data is written to disk. 
It is considered only for asynchronous writing. 
				]]>
				</xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
		<xsd:attribute name="queue-size" type="xsd:string" default="0">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
The maximum number of operations that can be asynchronously queued. Once this many pending async operations have been 
queued async ops will begin blocking until some of the queued ops have been flushed to disk.
Considered only for asynchronous writing.
				]]>
				</xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
	</xsd:complexType>

	<xsd:element name="client-region">
		<xsd:annotation>
			<xsd:documentation source="org.springframework.data.gemfire.client.ClientRegionFactoryBean"><![CDATA[
Defines a GemFire client region instance. A client region is connected to a (long-lived) farm of GemFire servers from
which it receives its data. The client can hold some data locally or forward all requests to the server.
			]]></xsd:documentation>
			<xsd:appinfo>
				<tool:annotation>
					<tool:exports type="com.gemstone.gemfire.cache.Region" />
				</tool:annotation>
			</xsd:appinfo>
		</xsd:annotation>
		<xsd:complexType>
			<xsd:complexContent>
				<xsd:extension base="readOnlyRegionType">
					<xsd:sequence>
						<xsd:choice minOccurs="0" maxOccurs="unbounded">
							<xsd:element name="key-interest">
								<xsd:annotation>
									<xsd:documentation><![CDATA[
Key based interest. If the key is a List, then all the keys in the List will be registered. The key can also be the 
special token 'ALL_KEYS', which will register interest in all keys in the region. In effect, this will cause an update 
to any key in this region in the CacheServer to be pushed to the client. 
									]]></xsd:documentation>
								</xsd:annotation>
								<xsd:complexType>
									<xsd:complexContent>
										<xsd:extension base="interestType">
											<xsd:sequence minOccurs="0" maxOccurs="1">
												<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="skip">
			    									<xsd:annotation>
			         									<xsd:documentation><![CDATA[
Inner bean definition of the client key interest.
														]]></xsd:documentation>
													</xsd:annotation>
			         							</xsd:any>						
											</xsd:sequence>
											<xsd:attribute name="key-ref" type="xsd:string" use="optional">
												<xsd:annotation>
													<xsd:documentation><![CDATA[
The name of the client key interest bean referred by this declaration. Used as a convenience method. If no reference exists, 
use the inner bean declaration.
													]]></xsd:documentation>
												</xsd:annotation>
											</xsd:attribute>
										</xsd:extension>
									</xsd:complexContent>
								</xsd:complexType>
							</xsd:element>
							<xsd:element name="regex-interest">
								<xsd:annotation>
									<xsd:documentation><![CDATA[
Regular expression based interest. If the pattern is '.*' then all keys of any type will be pushed to the client. 
									]]></xsd:documentation>
								</xsd:annotation>
								<xsd:complexType>
									<xsd:complexContent>
										<xsd:extension base="interestType">
											<xsd:attribute name="pattern" type="xsd:string"/>
										</xsd:extension>
									</xsd:complexContent>
								</xsd:complexType>
							</xsd:element>
						</xsd:choice>
						<xsd:element name="eviction" minOccurs="0" maxOccurs="1">
							<xsd:annotation>
								<xsd:documentation><![CDATA[
Eviction policy for the partitioned region.
								]]></xsd:documentation>
							</xsd:annotation>
							<xsd:complexType>
								<xsd:complexContent>
									<xsd:extension base="evictionType">
										<xsd:attribute name="action" type="evictionActionType" default="LOCAL_DESTROY">
											<xsd:annotation>
												<xsd:documentation><![CDATA[
The action to take when performing eviction.
												]]></xsd:documentation>
											</xsd:annotation>
										</xsd:attribute>
									</xsd:extension>
								</xsd:complexContent>
							</xsd:complexType>
						</xsd:element>						
					</xsd:sequence>
					<xsd:attribute name="data-policy" use="optional" default="NORMAL">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
The data policy for this client. Can be either 'EMPTY' or 'NORMAL' (the default). In case persistence or overflow are
configured for this region, this parameter will be ignored.

EMPTY - causes data to never be stored in local memory. The region will always appear empty. It can be used to for zero
 footprint producers that only want to distribute their data to others and for zero footprint consumers that only want 
 to see events.
NORMAL - causes data that this region is interested in to be stored in local memory. It allows the contents in this 
cache to differ from other caches.  
 							]]></xsd:documentation>
						</xsd:annotation>
						<xsd:simpleType>
							<xsd:restriction base="xsd:string">
								<xsd:enumeration value="EMPTY"/>
								<xsd:enumeration value="NORMAL"/>
							</xsd:restriction>
						</xsd:simpleType>
					</xsd:attribute>
					<xsd:attribute name="pool-name" use="optional" type="xsd:string">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
The name of the pool used by this client. If not set, a default pool (initialized when using client-cache) will be used.
 							]]></xsd:documentation>
						</xsd:annotation>
					</xsd:attribute>
					<xsd:attribute name="shortcut" use="optional">
						<xsd:annotation>
							<xsd:documentation><![CDATA[
The ClientRegionShortcut for this region. Allows easy initialization of the region based on defaults.
 							]]></xsd:documentation>
						</xsd:annotation>
						<xsd:simpleType>
							<xsd:restriction base="xsd:string">
								<xsd:enumeration value="PROXY"/>
								<xsd:enumeration value="CACHING_PROXY"/>
								<xsd:enumeration value="CACHING_PROXY_HEAP_LRU"/>
								<xsd:enumeration value="CACHING_PROXY_OVERFLOW"/>
								<xsd:enumeration value="LOCAL"/>
								<xsd:enumeration value="LOCAL_PERSISTENT"/>
								<xsd:enumeration value="LOCAL_HEAP_LRU"/>
								<xsd:enumeration value="LOCAL_OVERFLOW"/>
								<xsd:enumeration value="LOCAL_PERSISTENT_OVERFLOW"/>
							</xsd:restriction>
						</xsd:simpleType>
					</xsd:attribute>
				</xsd:extension>
			</xsd:complexContent>
		</xsd:complexType>
	</xsd:element>
	
	<xsd:complexType name="connectionType">
		<xsd:attribute name="host" type="xsd:string">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
The host name or ip address of the connection.				
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
		<xsd:attribute name="port">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
The port number of the connection (between 1 and 65535 inclusive).				
				]]></xsd:documentation>
			</xsd:annotation>
			<xsd:simpleType>
				<xsd:restriction base="xsd:string"/>
			</xsd:simpleType>			
		</xsd:attribute>
	</xsd:complexType>

	<xsd:complexType name="interestType" abstract="true">
		<xsd:attribute name="durable"  type="xsd:string" default="false" use="optional">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
Indicates whether or not the registered interest is durable or not. Default is false.
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>
		<xsd:attribute name="result-policy" default="KEYS_VALUES" use="optional">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
The result policy for this interest. Can be one of 'KEYS' or 'KEYS_VALUES' (the default) or 'NONE'. 

KEYS - Initializes the local cache with the keys satisfying the request.
KEYS-VALUES - initializes the local cache with the keys and current values satisfying the request.
NONE -  Does not initialize the local cache.
					]]></xsd:documentation>
			</xsd:annotation>
			<xsd:simpleType>
				<xsd:restriction base="xsd:string">
					<xsd:enumeration value="KEYS"/>
					<xsd:enumeration value="KEYS_VALUES"/>
					<xsd:enumeration value="NONE"/>
				</xsd:restriction>
			</xsd:simpleType>
		</xsd:attribute>
		<xsd:attribute name="receive-values" type="xsd:string" default="true" use="optional">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
Indicates whether values are received with create and update events on keys of interest (true) 
or only invalidations are received and the value will be received on the next get instead (false).
Default is true.
				]]></xsd:documentation>
			</xsd:annotation>
		</xsd:attribute>		
	</xsd:complexType>
	
	<xsd:element name="pool">
		<xsd:annotation>
			<xsd:documentation source="org.springframework.data.gemfire.client.PoolFactoryBean"><![CDATA[
Defines a pool for connections from a client to a set of GemFire Cache Servers.

Note that in order to instantiate a pool, a GemFire cache needs to be already started.
			]]></xsd:documentation>
			<xsd:appinfo>
				<tool:annotation>
					<tool:exports type="com.gemstone.gemfire.cache.client.Pool" />
				</tool:annotation>
			</xsd:appinfo>
		</xsd:annotation>
		<xsd:complexType>
			<xsd:choice minOccurs="1" maxOccurs="1">
				<xsd:element name="locator" type="connectionType" minOccurs="1" maxOccurs="unbounded"/>
				<xsd:element name="server" type="connectionType" minOccurs="1" maxOccurs="unbounded"/>
			</xsd:choice>
			<xsd:attribute name="id" type="xsd:ID" use="optional">
				<xsd:annotation>
					<xsd:documentation><![CDATA[
The name of the pool definition (by default "gemfire-pool").]]></xsd:documentation>
				</xsd:annotation>
			</xsd:attribute>
			<xsd:attribute name="free-connection-timeout" use="optional" type="xsd:string"/>
			<xsd:attribute name="idle-timeout" use="optional" type="xsd:string"/>
			<xsd:attribute name="load-conditioning-interval" use="optional" type="xsd:string"/>
			<xsd:attribute name="max-connections" use="optional" type="xsd:string"/>
			<xsd:attribute name="min-connections" use="optional" type="xsd:string"/>
			<xsd:attribute name="multi-user-authentication" use="optional" type="xsd:string"/>
			<xsd:attribute name="ping-interval" use="optional" type="xsd:string"/>
			<xsd:attribute name="pr-single-hop-enabled" use="optional" type="xsd:string"/>
			<xsd:attribute name="read-timeout" use="optional" type="xsd:string"/>
			<xsd:attribute name="retry-attempts" use="optional" type="xsd:string"/>
			<xsd:attribute name="server-group" use="optional" type="xsd:string"/>
			<xsd:attribute name="socket-buffer-size" use="optional" type="xsd:string"/>
			<xsd:attribute name="statistic-interval" use="optional" type="xsd:string"/>
			<xsd:attribute name="subscription-ack-interval" use="optional" type="xsd:string"/>
			<xsd:attribute name="subscription-enabled" use="optional" type="xsd:string"/>
			<xsd:attribute name="subscription-message-tracking-timeout" use="optional" type="xsd:string"/>
			<xsd:attribute name="subscription-redundancy" use="optional" type="xsd:string"/>
			<xsd:attribute name="thread-local-connections" use="optional" type="xsd:string"/>
		</xsd:complexType>
	</xsd:element>
	
	<xsd:element name="cache-server">
		<xsd:annotation>
			<xsd:documentation
				source="org.springframework.data.gemfire.server.CacheServerFactoryBean"><![CDATA[
Defines a Cache Server for feeding data to remote gemfire clients to a server GemFire Cache Servers.
Note: In order to instantiate a cacheserver, a GemFire cache needs to be avaialble in the VM.
			]]></xsd:documentation>
			<xsd:appinfo>
				<tool:annotation>
					<tool:exports type="com.gemstone.gemfire.cache.server.CacheServer" />
				</tool:annotation>
			</xsd:appinfo>
		</xsd:annotation>
		<xsd:complexType>
			<xsd:sequence minOccurs="0" maxOccurs="1">
				<xsd:element name="subscription-config" minOccurs="0" maxOccurs="1">
					<xsd:annotation>
						<xsd:documentation><![CDATA[
The client subscription configuration that is used to control a clients use of server resources towards notification queues.				
				]]></xsd:documentation>
					</xsd:annotation>
					<xsd:complexType>
						<xsd:attribute name="eviction-type" use="optional" default="NONE">
							<xsd:simpleType>
								<xsd:restriction base="xsd:string">
									<xsd:enumeration value="NONE"/>
									<xsd:enumeration value="MEM"/>
									<xsd:enumeration value="ENTRY"/>
								</xsd:restriction>
							</xsd:simpleType>
						</xsd:attribute>
						<xsd:attribute name="capacity" use="optional" default="1" type="xsd:string"/>
						<xsd:attribute name="disk-store" use="optional" default="." type="xsd:string"/>
					</xsd:complexType>
				</xsd:element>
			</xsd:sequence>
			<xsd:attribute name="id" type="xsd:ID" use="optional">
				<xsd:annotation>
					<xsd:documentation><![CDATA[The name of the cache server definition (by default "gemfire-server").]]></xsd:documentation>
				</xsd:annotation>
			</xsd:attribute>
			<xsd:attribute name="auto-startup" use="optional" type="xsd:string" default="true" />
			<xsd:attribute name="bind-address" use="optional" type="xsd:string" />
			<xsd:attribute name="port" use="optional" type="xsd:string" default="40404">
				<xsd:annotation>
					<xsd:documentation><![CDATA[The port number of the server.]]></xsd:documentation>
				</xsd:annotation>
			</xsd:attribute>
			<xsd:attribute name="host-name-for-clients" use="optional" type="xsd:string" />
			<xsd:attribute name="load-poll-interval" use="optional" type="xsd:string" default="5000" />
			<xsd:attribute name="max-connections" use="optional" type="xsd:string" default="800" />
			<xsd:attribute name="max-threads" use="optional" type="xsd:string" default="0" />
			<xsd:attribute name="max-message-count" use="optional" type="xsd:string" default="230000" />
			<xsd:attribute name="max-time-between-pings" use="optional"	type="xsd:string" default="60000" />
			<xsd:attribute name="message-time-to-live" use="optional" type="xsd:string" default="180" />
			<xsd:attribute name="socket-buffer-size" use="optional"	type="xsd:string" default="32768" />
			<xsd:attribute name="notify-by-subscription" use="optional"	type="xsd:string" default="true" />
			<xsd:attribute name="groups" use="optional"	type="xsd:string" default="">
				<xsd:annotation>
					<xsd:documentation><![CDATA[
The server groups that this server will be a member of given as a comma separated values list.				
				]]></xsd:documentation>
				</xsd:annotation>
			</xsd:attribute>
			<xsd:attribute name="load-probe-ref" use="optional" type="xsd:string">
				<xsd:annotation>
					<xsd:documentation><![CDATA[The name of the bean defining the CacheServer Load Probe.]]></xsd:documentation>
				</xsd:annotation>
			</xsd:attribute>
			<xsd:attribute name="cache-ref" type="xsd:string" default="gemfire-cache" use="optional">
				<xsd:annotation>
					<xsd:documentation><![CDATA[The name of the bean defining the GemFire cache (by default 'gemfire-cache').]]></xsd:documentation>
				</xsd:annotation>
			</xsd:attribute>
		</xsd:complexType>
	</xsd:element>
	
  	<xsd:element name="cq-listener-container">
	    <xsd:annotation>
	      <xsd:documentation><![CDATA[
Container for continuous query listeners. All listeners will be hosted by the same container.
	      ]]></xsd:documentation>
	      <xsd:appinfo>
	        <tool:annotation>
	          <tool:exports type="org.springframework.data.gemfire.listener.ContinuousQueryListenerContainer"/>
	        </tool:annotation>
	      </xsd:appinfo>
	    </xsd:annotation>
	    <xsd:complexType>
	      <xsd:sequence>
	        <xsd:element name="listener" type="listenerType" minOccurs="0" maxOccurs="unbounded"/>
	      </xsd:sequence>
	      <xsd:attribute name="cache" type="xsd:string" default="gemfire-cache">
	        <xsd:annotation>
	          <xsd:documentation><![CDATA[
A reference (by name) to the GemFire cache bean. Default is "gemfire-cache".
	          ]]></xsd:documentation>
	          <xsd:appinfo>
	            <tool:annotation kind="ref">
	              <tool:expected-type type="com.gemstone.gemfire.cache.RegionService"/>
	            </tool:annotation>
	          </xsd:appinfo>
	        </xsd:annotation>
	      </xsd:attribute>
	      <xsd:attribute name="task-executor" type="xsd:string">
	        <xsd:annotation>
	          <xsd:documentation><![CDATA[
A reference to a Spring TaskExecutor (or standard JDK 1.5 Executor) for executing
GemFire listener invokers. Default is a SimpleAsyncTaskExecutor.
	          ]]></xsd:documentation>
	          <xsd:appinfo>
	            <tool:annotation kind="ref">
	              <tool:expected-type type="java.util.concurrent.Executor"/>
	            </tool:annotation>
	          </xsd:appinfo>
	        </xsd:annotation>
	      </xsd:attribute>
	      <xsd:attribute name="phase" type="xsd:string">
	        <xsd:annotation>
	          <xsd:documentation><![CDATA[
The lifecycle phase within which this container should start and stop. The lower
the value the earlier this container will start and the later it will stop. The
default is Integer.MAX_VALUE meaning the container will start as late as possible
and stop as soon as possible.
	          ]]></xsd:documentation>
	        </xsd:annotation>
	      </xsd:attribute>
		  <xsd:attribute name="pool-name" use="optional" type="xsd:string">
			<xsd:annotation>
				<xsd:documentation><![CDATA[
The name of the pool used by the container.
 						]]></xsd:documentation>
			</xsd:annotation>
		  </xsd:attribute>
	    </xsd:complexType>
	  </xsd:element>
	
	  <xsd:complexType name="listenerType">
	    <xsd:attribute name="ref" type="xsd:string" use="required">
	      <xsd:annotation>
	        <xsd:documentation><![CDATA[
The bean name of the listener object, implementing the ContinuousQueryListener interface or defining the specified listener method.
Required.
	        ]]></xsd:documentation>
	        <xsd:appinfo>
	          <tool:annotation kind="ref"/>
	        </xsd:appinfo>
	      </xsd:annotation>
	    </xsd:attribute>
	    <xsd:attribute name="query" type="xsd:string" use="required">
	      <xsd:annotation>
	        <xsd:documentation><![CDATA[
The query for the GemFire continuous query. 
	        ]]></xsd:documentation>
	      </xsd:annotation>
	    </xsd:attribute>
	    <xsd:attribute name="method" type="xsd:string" use="optional">
	      <xsd:annotation>
	        <xsd:documentation><![CDATA[
The name of the listener method to invoke. If not specified, the target bean is supposed to implement the ContinuousQueryListener
interface or provide a method named 'handleEvent'.
	        ]]></xsd:documentation>
	      </xsd:annotation>
	    </xsd:attribute>
	    <xsd:attribute name="name" type="xsd:string" use="optional">
	      <xsd:annotation>
	        <xsd:documentation><![CDATA[
The name of the resulting GemFire continuous query. Useful for monitoring and statistics querying. 
	        ]]></xsd:documentation>
	      </xsd:annotation>
	    </xsd:attribute>
	    <xsd:attribute name="durable" type="xsd:string" use="optional">
	      <xsd:annotation>
	        <xsd:documentation><![CDATA[
Whether the resulting GemFire continuous query is durable or not. 
	        ]]></xsd:documentation>
	      </xsd:annotation>
	    </xsd:attribute>
	    
	</xsd:complexType>
	
	<xsd:element name="index">
		<xsd:annotation>
			<xsd:documentation source="org.springframework.data.gemfire.IndexFactoryBean"><![CDATA[
Defines a GemFire index.
			]]></xsd:documentation>
			<xsd:appinfo>
				<tool:annotation>
					<tool:exports type="com.gemstone.gemfire.cache.query.Index" />
				</tool:annotation>
			</xsd:appinfo>
		</xsd:annotation>
		<xsd:complexType>
			<xsd:attribute name="id" type="xsd:ID">
				<xsd:annotation>
					<xsd:documentation><![CDATA[
The name of the bean index definition. If property 'name' is not set, it will be used as the index name as well.]]></xsd:documentation>
				</xsd:annotation>
			</xsd:attribute>
			<xsd:attribute name="type" use="optional" default="FUNCTIONAL">
				<xsd:simpleType>
					<xsd:restriction base="xsd:string">
						<xsd:enumeration value="FUNCTIONAL"/>
						<xsd:enumeration value="PRIMARY_KEY"/>
					</xsd:restriction>
				</xsd:simpleType>
			</xsd:attribute>
			<xsd:attribute name="name" use="optional" type="xsd:string">
				<xsd:annotation>
					<xsd:documentation><![CDATA[
The name of the index.]]></xsd:documentation>
				</xsd:annotation>
			</xsd:attribute>
			<xsd:attribute name="expression" use="required" type="xsd:string"/>
			<xsd:attribute name="from" use="required" type="xsd:string"/>
			<xsd:attribute name="imports" use="optional" type="xsd:string"/>
			<xsd:attribute name="override" use="optional" type="xsd:string" default="true">
				<xsd:annotation>
					<xsd:documentation><![CDATA[
Indicates whether the index is created even if there is an index with the same name (default) or not.]]></xsd:documentation>
				</xsd:annotation>
			</xsd:attribute>
			
			<xsd:attribute name="cache-ref" type="xsd:string" default="gemfire-cache" use="optional">
				<xsd:annotation>
					<xsd:documentation><![CDATA[
The name of the bean defining the GemFire cache (by default 'gemfire-cache').
					]]></xsd:documentation>
				</xsd:annotation>
			</xsd:attribute>
			<xsd:attribute name="pool-name" use="optional" type="xsd:string">
				<xsd:annotation>
					<xsd:documentation><![CDATA[
The name of the pool used by the index. Used usually in client scenarios.
					]]></xsd:documentation>
				</xsd:annotation>
			</xsd:attribute>
		</xsd:complexType>
	</xsd:element>
	
</xsd:schema>