Spring Hadoop Reference Manual

Costin Leau

Spring Hadoop Reference Manual
by Costin Leau

1.0.0.M1

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies
and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Hadoop

Table of Contents

= = o= SRS %
[gL T [¥ o1 o o TSP PPTPPR 1
L REQUITEIMENES ..ottt e e e e e e e e e e e ettt e e e e e e e e s s et b baeeeeeeeeessnnrsaneeaaeeas 2
LTS o Vo =0 N = (0o o 3
2. Hadoop Configuration, MapReduce, and Distributed Cache ... 4
2.1. Using the Spring Hadoop NamMESPACEcoiviriiiiiiiee e 4
2.2. Configuring HAO00Pcooiuiiiieeiiiii ettt 5
2.3. Creating @ Hado0op JODcouveiiiiiiiiee et 8
Creating a Hadoop Streaming JObccooiiiiiiiieiiee e 9
RUNNiNg @ HadOop JODuviiiiiieiiiiiee e e 9
2.4. Configuring the Hadoop Di st ri but edCachecooevvvevivvviiiiieieeeieeeeeeeeeeeeeeee 10
2.5. Using the Hadoop JOD taSKIEtcccuviiiiiiiiieciieee e 10
2.6. RUNNiNg @ HAOOP TOO!ccouviiiiiiiiiie e 11
2.7. Using the Hadoop TOO! taSKIELccoiiiiiiiiiiiiec e 11
3. Working with the Hadoop File SYStemccvvvieiieee e 12
3.1. Scripting the Hadoop APl ... 12
L 10 o] o PPN 13
3.2. Scripting impliCit VATaIESveiiiieii e 14
3.3. File System Shell (FSShel)ovvviiiiiie e 15
D= 1@ 3 = IO 16
3.4, SCHPtiNG LIfECYCIE coeeiiiiiieee et 16
3.5. Using the Scripting taskltcccuvviiiiiie e 17
4, WOrKing With HBESEuuuiiiiiiiiiiiiiiiiiiiiiiiiiieiiieneerseneseneneneerereenrsraresssnrsenrnrnrnsnrnsnnnsnsnnnnns 18
5. HIVE INEEGIHON ...ttt e e s e e e s e e e e es 19
5.1, Starting @ HIVE SEIVET ...coooiiiiiieeee et 19
5.2. Using the Hive Thrift CHENtoooiiiiiii e 19
5.3. Using the Hive IDBC CHENtceviiiiiiiiciiie et e e 20
5.4. UsiNg the HIVE TasKIELuviiiiiei i 20
LS o T 0] o APt 22
6.1. USING the PIg taSKIELcoveiiiieieiiee e 22
7. CasCadiNG INTEGIELIONcci.eeiiieiiiee ettt e et e et e e s sb e e e e snbn e e e e e nnee e e e annees 23
7.1. Using the Cascading tasklefoooiiiiiiiiiiiie e 24
7.2, USING SCATING ...uvvviiieiiee ettt e e e e e e e e e s s e e e e e e e e e aanraeees 24
I11. Developing Spring Hadoop ApPpPliCatioNSc..uvviiiiiie i 26
8. GUIdaNCe and EXAMPIESuveiiieieieieieieieeeeie e ee e e eeeeee e e e e e eeseeeeeeereeeeerereeeeererereees 27
8.1, SCheAUIING ... e e 27
8.2. BACh JOD LISLENEIS ..oeieiieieiieiiee e ettt e e e e e e e e e e e e e nnaeeeeas 28
V. Spring Hadoop sample appliCalIONScuueiieiiiiiie et 29
9. SAMPIE PrEFEUUISITES ...eeiiiieeiiiiiiieiie et e e e e s ettt e e e e e e e s sttt e e e e e e e s saab b e e e eaeeeseasnsrareeeeaeeesans 30
10. Wordcount sample using the Spring Frameworkc.cccoovciiiiieiee e, 31
0 I 1 0o (1o o o PR 31
11. Wordcount sample using Spring BalChoooooviiiiiiii e 32
T T 1 1o [o RO 32
Spring Hadoop

1.0.0.M1 Reference Manua i

Spring Hadoop

11.2. Basic Spring Hadoop configurationccooiiiiiiieieiee e cciiieeee e 32

11.3. Build and run the sample applicationcccceeeiiiiiiiiiiiec e, 34

11.4. Run the sample application as a standlone Java applicationccccceennnnnnnnns 34

V. OLNEN RESOUICESeeeieiieeees ittt ee e e e e e e ettt e e aeeesaanateeeeeaaaeessaansneseeeeaaeesaaansbeeeneaaeeesaannneeees 36
N U I T 012 37

V1 APPENTICES ...ttt e e et e e et e e e e e et e et e e s 38
A. Spring Data Hadoop SChEMAuuiiiiiiiiii i 39

Spring Hadoop

1.0.0.M1 Reference Manua iv

Spring Hadoop

Preface

Spring Hadoop provides extensionsto Spring, Spring Batch, and Spring Integration to build manageable
and robust pipeline solutions around Hadoop.

Spring Hadoop supports reading from and writing to HDFS, running various types of Hadoop jobs
(Java MapReduce, Streaming), scripting and HBase, Hive and Pig interactions. An important goal isto
provide excellent support for non-Java based devel opers to be productive using Spring Hadoop and not
have to write any Java code to use the core feature set.

Spring Hadoop also applies the familiar Spring programming model to Java MapReduce jobs by
providing support for dependency injection of simple jobs as well as a POJO based MapReduce
programming model that decouples your MapReduce classes from Hadoop specific detail s such as base
classes and data types.

This document assumes the reader already has a basic familiarity with the Spring Framework and
Hadoop concepts and APIs.

While every effort has been made to ensure that this documentation is comprehensive and there are no
errors, nevertheless some topics might require more explanation and some typos might have crept in.
If you do spot any mistakes or even more serious errors and you can spare a few cycles during lunch,
please do bring the error to the attention of the Spring Hadoop team by raising an issue. Thank you.

Spring Hadoop
1.00M1 Reference Manual %

Part I. Introduction

Spring Hadoop providesintegration with the Spring Framework to create and run Hadoop MapReduce,
Hive, and Pig jobs as well as work with HDFS and HBase. If you have simple needs to work with
Hadoop, including basic scheduling, you can add the Spring Hadoop namespace to your Spring based
project and get going quickly using Hadoop. As the complexity of your Hadoop application increases,
you may want to use Spring Batch and Spring Integration to regin in the complexity of developing a
large Hadoop application.

This document is the reference guide for Spring Hadoop project (SHDP). It explains the relationship
between the Spring framework and Hadoop aswell as related projects such as Spring Batch and Spring
Integration. Thefirst part describestheintegration wtih the Spring framework to define the base concepts
and semantics of the integration and how they can be use effectively. The second part describes how
you can build upon these base concepts and create workflow based solutions provided by theintegration
with Spring Batch.

Spring Hadoop

1. Requirements

Spring Hadoop requires JDK level 6.0 (just like Hadoop) and above, Spring Framework 3.0 (3.1
recommended) and above and Hadoop 0.20.2 (1.0.0 recommended) and above. Regarding Hadoop-
related projects, SDHP supports HBase 0.90.x, Hive 0.7.x and Pig 0.9.x and above. Asarule of thumb,
when using Hadoop-related projects, such as Hive or Pig, use the required Hadoop version as a basis
for discovering the supported versions.

Spring Hadoop also requires you have a Hadoop installation up and running. If you don't already have a
Hadoop cluster up and running in your environment, agood first step isto create a single-node cluster.
To install Hadoop 0.20.x+, the Getting Started page from the official Apache documentation is a good
general guide. If you are running on Ubuntu, the tutorial from Michael G. Noll, "Running Hadoop
On Ubuntu Linux (Single-Node Cluster)" provides more details. It is also convenience to download a
Virtual Machine where Hadoop is setup and ready to go. Cloudera provides virtual machines of various
formats here. Y ou can also download the EMC Greenplum HD distribution or get a tech preview of
the Hortonworks distribution.

Spring Hadoop
1.00M1 Reference Manual 2

http://www.springsource.org/about
http://www.gemstone.com/products/gemfire
http://hbase.apache.org/
http://hive.apache.org/
http://pig.apache.org/
http://hadoop.apache.org/common/docs/stable/#Getting+Started
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
https://ccp.cloudera.com/display/SUPPORT/Cloudera%27s+Hadoop+Demo+VM
http://www.greenplum.com/products/greenplum-hd
http://hortonworks.com/technology/techpreview/

Part Il. Spring and Hadoop

Document structure

This part of the reference documentation explains the core functionality that Spring Hadoop (SHDP)
provides to any Spring based application.

Chapter 2, Hadoop Configuration, MapReduce, and Distributed Cache describes the Spring support for
bootstrapping, initializing and working with core Hadoop.

Chapter 3, Working with the Hadoop File System describes the Spring support for interacting with the
Hadoop file system.

Chapter 4, Working with HBase describes the Spring support for HBase.
Chapter 5, Hive integration describes the Spring support for Hive.

Chapter 6, Pig support describes the Spring support for Pig.

Spring Hadoop

2. Hadoop Configuration, MapReduce, and
Distributed Cache

One of the common tasks when using Hadoop is interacting with its runtime - whether it is a local
setup or aremote cluster, one needs to properly configure and bootstrap Hadoop in order to submit the
required jobs. This chapter will focus on how Spring Hadoop (SHDP) leverages Spring's lightweight
IoC container to simplify the interaction with Hadoop and make deployment, testing and provisioning
easier and more manageable.

2.1 Using the Spring Hadoop Namespace

To simplify configuration, SHDP provides adedicated namespace for most of itscomponents. However,
one can opt to configure the beans directly through the usual <bean> definition. For moreinformation
about XML Schemarbased configuration in Spring, seethisappendix inthe Spring Framework reference
documentation.

To use the SHDP namespace, one just needs to import it inside the configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: Ohdp="0Oht t p: / / ww. spri ngf r anewor k. or g/ schenma/ hadoop”
xsi : schemalLocat i on="
http://ww. springfranmework. org/ schema/ beans http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xs
http://ww. springframework. or g/ scherma/ hadoop http://wwmv. spri ngframewor k. or g/ schema/ hadoop/ spri ng- hadoop

<bean id ... >
O<hdp: configuration ...>
</ beans>

0 Spring Hadoop namespace prefix. Any name can do but through out the reference documentation,
the hdp will be used.

0 Thenamespace URI.

0 The namespace URI location. Note that even though the location points to an external address
(which exists and is valid), Spring will resolve the schema locally asit isincluded in the Spring
Hadoop library.

00 Declaration example for the Hadoop namespace. Notice the prefix usage.

Once declared, the namespace elements can be declared simply by appending the aforementioned prefix.
Note that is possible to change the default namespace, for example from <beans> to <hdp>. Thisis
useful for configuration composed mainly of Hadoop components as it avoids declaring the prefix. To
achieve this, smply swap the namespace prefix declaration above:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns="http://ww. spri ngfranmewor k. or g/ schena/ hadoop" [
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

Oxm ns: beans="htt p: //ww. spri ngframewor k. or g/ scherma/ beans"
Xsi : schemalLocat i on="

Spring Hadoop
1.00M1 Reference Manual 4

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/xsd-config.html

Spring Hadoop

O<beans: bean id ... >

O<configuration ...>

</ beans: beans>

The default namespace declaration for this XML file points to the Spring Hadoop namespace.
The beans namespace prefix declaration.

Bean declaration using the <beans > namespace. Notice the prefix.

Bean declaration using the <hdp> namespace. Notice the lack of prefix (as hdp is the default
namespace).

O 0o oo

For the remainder of thisdoc, to improve readability, the XML exampleswill simply refer tothe<hdp>
namespace without the namespace declaration, where possible.

2.2 Configuring Hadoop

In order to use Hadoop, one needsto first configure it namely by creating a Conf i gur at i on object.
The configuration holdsinformation about the job tracker, the input, output format and the various other
parameters of the map reduce job.

Inits simplest form, the configuration definition isaone liner:

<hdp: configuration />

The declaration above defines a Confi gur ati on bean (to be precise a factory bean of type
Confi gur ati onFact or yBean) named, by default, hadoop- confi gur ati on. The default
name is used, by conventions, by the other elements that require a configuration - this leads to smple
and very concise configurations as the main components can automatically wire themselves up without
requiring any specific configuration.

For scenarios where the defaults need to be tweaked, one can passin additional configuration files:

<hdp: configuration resources="cl asspath:/customsite.xm, classpath:/hg-site.xm">

In this example, two additional Hadoop configuration resources are added to the configuration.

Note

Note that the configuration makes use of Spring's Resour ce abstraction to locate the file.
This allows various search patterns to be used, depending on the running environment or the
prefix specified (if any) by the value - in this example the classpath is used.

In addition to referencing configuration resources, one can tweak Hadoop settings directly through Java
Pr operti es. Thiscan be quite handy when just a few options need to be changed:

<?xm version="1.0" encodi ng="UTF-8"?>

Spring Hadoop
1.00M1 Reference Manual 5

http://ww. springframework. or g/ schema/ beans http://ww. spri ngfranework. or g/ schema/ beans/ spri ng- beans. xs
http: //ww. spri ngfranewor k. or g/ schema/ hadoop http://wwv spri ngfranmewor k. or g/ schema/ genfire/ spring-hadoo

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/resources.html

Spring Hadoop

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: hdp="htt p: // www. spri ngf ramewor k. or g/ schema/ hadoop"
xsi : schemaLocati on="htt p: //ww. spri ngfranewor k. or g/ schema/ beans http://ww. spri ngframewor k. or g/ schena/ bean:
http: //ww. spri ngfranewor k. or g/ schena/ hadoop http://ww. spri ngfranewor k. or g/ schena/ hadoop/ spri ng- ha

<hdp: confi gurati on>
fs.defaul t.name=hdfs://I ocal host: 9000
hadoop. t np. di r =/ t np/ hadoop
el ectric=sea
</ hdp: confi gurati on>
</ beans>

One can further customize the settings by avoiding the so called hard-coded values by externalizing
them so they can be replaced at runtime, based on the existing environment without touching the
configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: hdp="htt p: / / ww. spri ngf ramewor k. or g/ schema/ hadoop"
xm ns: cont ext ="htt p: //ww. spri ngfranewor k. or g/ schena/ cont ext "
xsi : schemaLocati on="htt p: //ww. spri ngfranewor k. or g/ schema/ beans http://ww. spri ngframewor k. or g/ schena/ bean:
htt p: // ww. spri ngfranewor k. or g/ schena/ cont ext http://ww. springfranework. or g/ schena/ cont ext/ spri ng-
http://ww. springfranework. org/ schema/ hadoop http://ww. spri ngfranework. or g/ schena/ hadoop/ spri ng- ha

<hdp: confi gurati on>
fs. def aul t.name=${hd. f s}
hadoop.tnp.dir=file://${java.io.tnpdir}
hangar =${ nunber : 18}

</ hdp: confi gurati on>

<cont ext: property-pl acehol der | ocati on="cl asspat h: hadoop. properties" />
</ beans>

Through Spring's property placeholder support, SpEL and the environment abstraction (available in
Spring 3.1). one can externalize environment specific properties from the main code base easing the
deployment across multiple machines. In the example above, the default file system is replaced based
on the properties available in hadoop. properti es while the temp dir is determined dynamically
through SpEL . Both approaches offer alot of flexbility in adapting to the running environment - in fact
we use this approach extensivly in the Spring Hadoop test suite to cope with the differences between
the different devel opment boxes and the CI server.

Additionally, external Pr operti es files can be loaded, Pr operti es beans (typicaly declared
through Spring's util namespace). Along with the nested properties declaration, this alows
customized configurations to be easily declared:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: hdp="htt p: // www. spri ngf ramewor k. or g/ schema/ hadoop"
xm ns: cont ext ="htt p: //ww. spri ngfranewor k. or g/ schena/ cont ext "
xm ns:util="http://ww. springfranework. org/schema/util"
xsi : schemaLocati on="http://wwm. spri ngfranmewor k. or g/ schema/ beans http://wwmv springfranmewor k. or g/ schema/ b
http://ww. springfranework. org/ schenma/ context http://ww. springfranework. org/ schena/ cont ext/ spri ng-
http://ww. springframework. org/ schema/util http://ww. springfranework. org/schema/util/spring-util.x
htt p: // ww. spri ngfranewor k. or g/ schena/ hadoop http://ww. spri ngfranewor k. or g/ schena/ hadoop/ spri ng- ha

Spring Hadoop
1.00M1 Reference Manual 6

http://static.springsource.org/spring/docs/3.0.x/reference/beans.html#beans-factory-placeholderconfigurer
http://static.springsource.org/spring/docs/3.0.x/reference/expressions.html
http://blog.springsource.com/2011/06/09/spring-framework-3-1-m2-released/
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/xsd-config.html#xsd-config-body-schemas-util-properties

Spring Hadoop

<!-- nmerge the local properties, the props bean and the two properties files -->

<hdp: configurati on properties-ref="props" properties-location="cfg-1.properties, cfg-2.properties">
st ar=chasi ng
capt ai n=eo

</ hdp: confi gurati on>

<util:properties id="props" |ocation="props.properties"/>
</ beans>

When merging several properties, ones defined locally win. In the example above the configuration
properties are the primary source, followed by the pr ops bean followed by the external propertiesfile
based on their defined order. Whileit's not typical for aconfiguration to refer to use so many properties,
the example showcases the various options available.

Note

For more properties utilities, including using the System as a source or fallback, or control
over the merging order, consider using Spring's Pr operti esFact or yBean (which is
what Spring Hadoop and ut i | : pr oper ti es use underneath).

It is possible to create configuration based on existing ones - this alows one to create dedicated
configurations, dlightly different from the main ones, usable for certain jobs (such as streaming - more
on that below). Simply usetheconf i gur ati on-r ef attribute to refer to the parent configuration -
all its propertieswill be inherited and overridden as specified by the child:

<!-- default name is 'hadoop-configuration' -->
<hdp: confi gurati on>

fs.defaul t. name=${hd. f s}

hadoop. tnp.dir=file://${java.io.tnpdir}
</ hdp: confi gurati on>

<hdp: configuration id="custon configuration-ref="hadoop-configuration">
fs.defaul t. name=${cust om hd. f s}
</ hdp: confi gurati on>

M ake surethough you specify adifferent name since otherwise, since both definitionswill havethe same
name, the Spring container will interpret this as being the same definition (and will usually consider
the last one found).

Another option worth mentioning is regi ster-url - handl er which, as the name implies,
automatically registers an URL handler in the running VM. This allows urls referrencing hdfs resource
(by using the hdf s prefix) to be properly resolved - if the handler isnot registered, such an URL would
through an exception since the VM does not know what hdf s mean.

Note

Since only one URL handler can be registered per VM, at most once, this option is turned off
by default. Due to the reasons mentioned before, once enabled if it fails, it will log the error
but will not throw an exception. If your hdf s URLSs stop working, make sure to investigate
this aspect.

Spring Hadoop
1.00M1 Reference Manual 7

http://static.springsource.org/spring/docs/3.0.x/api/org/springframework/beans/factory/config/PropertiesFactoryBean.html

Spring Hadoop

Last but not least a reminder that one can mix and match all these options to her preference. In
general, consider externalizing configuration since it allows easier updates without interfering with
the application configuration. When dealing with multiple, similar configuration use configuration
composition as it tends to keep the definitions concise, in sync and easy to update.

2.3 Creating a Hadoop Job

Once the Hadoop configuration is taken care of, one needs to actually submit some work to it. SHDP
makes it easy to configure and run Hadoop jobs whether they are vanilla map-reduce type or streaming.
Let us start with an example:

<hdp:job id="nr-job"
i nput - pat h="/i nput/" out put - pat h="/ouput/"
mapper =" or g. apache. hadoop. exanpl es. Wr dCount . Tokeni zer Mapper "
reducer =" or g. apache. hadoop. exanpl es. Wr dCount . | nt SunReducer "/ >

The declaration above creates a typical Hadoop Job: specifiesitsinput and output, the mapper and the
reducer classes. Notice that there is no reference to the Hadoop configuration above - that's because,
if not specified, the default naming convention (hadoop- confi gur ati on) will be used instead.
Neither are the key or value types - these two are automatically determined through a best-effort
attempt by analyzing the class information of the mapper and the reducer. Of course, these settings can
be overridden: the former through the conf i gur ati on-r ef element, the latter through key and
val ue attributes. There are plenty of options available not shown in the example (for simplicity) such
as the jar (specified directly or by class), sort or group comparator, the combiner, the partitioner, the
codecs to use or the input/output format just to name afew - they are supported, just take alook at the
SHDP schema (Appendix A, Soring Data Hadoop Schema) or simply trigger auto-completion (usually
ALT+SPACE) in your IDE; if it supports XML namespaces and is properly configured it will display
the available elements. Additionally one can extend the default Hadoop configuration object and add
any special properties not available in the namespace or its backing bean (JobFact or yBean).

It is worth pointing out that per-job specific configurations are supported by specifying the custom
properties directly or referring to them (more information on the pattern is available here):

<hdp:job id="nr-job"
i nput - pat h="/input/" out put - pat h="/ouput/"
mapper =" mapper cl ass" reducer="reducer cl ass"
jar-by-class="cl ass used for jar detection"
properties-locati on="cl asspat h: speci al -j ob. properties">
el ectric=sea
</ hdp: j ob>

Note

The job definition can validate the existance of the input and output paths before submitting
the actual job (which is slow), to prevent itsfailure. Take alook at validate-paths attribute to
avoid these errors early on without having to touch the job tracker only to get an exception.

Spring Hadoop
1.00M1 Reference Manual 8

Spring Hadoop

Creating a Hadoop Streaming Job

Hadoop Streaming job (or in short streaming), is a popular feature of Hadoop asthey allow the creation
of Map/Reduce jobs with any executable or script (the equivalent of using the previous counting words
exampleistousecat andwc commands). Whileitisrather easy to start up streaming from the command
line, doing so programatically, such as from a Java environment, can be challenging due to the various
number of parameters (and their ordering) that need to be parsed. SHDP simplifies such as tasks - it's
as easy and straight-forward as declaring aj ob from the previous section; in fact most of the attributes
will be the same:

<hdp: streani ng i d="streani ng"
i nput - pat h="/i nput/" out put - pat h="/ouput/"
mapper =" ${path. cat}" reducer="${path.wc}"/>

Existing users might be wondering how can they pass the command line arguments (such as- D or -
cndenv). These former customize the Hadoop configuration (which has been convered in the previous
section) while the latter are supported through the crd- env element:

<hdp: streani ng i d="streani ng-env"
i nput - pat h="/i nput/" out put-pat h="/ouput/"
mapper =" ${pat h. cat}" reducer="${path. wc}">
<hdp: cnd- env>
EXAMPLE_DI R=/ hone/ exanpl e/ di cti onari es/

</ hdp: cnd- env>
</ hdp: st ream ng>

Running a Hadoop Job

Thejobs, after being created and configured, need to be submitted for execution to aHadoop cluster. For
non-trivial cases, a coordinating, workflow solution such as Spring Batch is recommended . However
for basic job submission SHDP provides JobRunner class which submits several jobs sequentially
(and waits by default for their completion):

<bean id="runner" class="org. springfranmework. dat a. hadoop. mapr educe. JobRunner" p:jobs-ref="job"/>
<hdp:job id="job" input-path="/input/" output-path="/output/"

mapper =" or g. apache. hadoop. exanpl es. Wr dCount . Tokeni zer Mapper "
reducer ="or g. apache. hadoop. exanpl es. Wr dCount . | nt SunReducer" />

Multiple jobs can be specified and even nested if they are not used outside the runner:

<bean id="runner" class="org. springfranmework. dat a. hadoop. mapr educe. JobRunner" >
<property name="jobs"><l|ist>
<!-- reference to another job named 'job' -->
<ref bean="stream ng-job"/>
<I-- nested bean definition -->
<hdp:job id="nested-job" />
</list></property>
</ bean>
<hdp:job id="job" ... />
Spring Hadoop

1.0.0.M1 Reference Manual 9

http://hadoop.apache.org/common/docs/current/streaming.html
http://en.wikipedia.org/wiki/Cat_%28Unix%29
http://en.wikipedia.org/wiki/Wc_%28Unix%29

Spring Hadoop

2.4 Configuring the Hadoop Di stri but edCache

DistributedCache is a Hadoop facility for distributing application-specific, large, read-only files (text,
archives, jars and so on) efficiently. Applications specify the files to be cached via urls (hdf s: //)
using Di st ri but edCache and the framework will copy the necessary filesto the slave nodes before
any tasks for the job are executed on that node. Its efficiency stems from the fact that the files are only
copied once per job and the ability to cache archives which are un-archived on the slaves. Note that
Di stri but edCache assumes that the files to be cached (and specified via hdfs:// urls) are already
present on the Hadoop Fi | eSyst em

SHDP provides first-class configuration for the distributed cache through its cache element (backed
by D stri but edCacheFact or yBean class), alowing files and archives to be easily distributed
across nodes:

<hdp: cache create-sym ink="true">
<hdp: cl asspath val ue="/cp/sone-library.jar#library.jar" />
<hdp: cache val ue="/cache/ sone- ar chi ve. t gz#mai n- ar chi ve" />
<hdp: cache val ue="/cache/ some-resource.res" />
<hdp: | ocal val ue="some-file.txt" />

</ hdp: cache>

The definition above registers several resources with the cache (adding them to the job cache or
classpath) and creates symlinks for them. As described in the Di st ri but edCache documentation,
the declaration format is (absol ut e- pat h#l i nk- nane). Thelink name is determined by the URI
fragment (the text following the# such as#library.jar or #main-archive above) - if no nameis specified,
the cache bean will infer one based on the resource file name. Note that one does not have to specify the
hdf s: // node: port prefix asthese are automatically determined based on the configuration wired
into the bean; this prevents environment settings from being hard-coded into the configuration which
becomes portable. Additionally based on the resource extension, the definition differentiates between
archives (.t gz, . tar.gz,. zi p and. t ar) which will be uncompressed, and regular files that are
copied as-is. Aswith therest of the namespace declarations, the definition aboverelieson defaults- since
it requires a Hadoop Confi gur ati on and Fi | eSyst emobjects and none are specified (through
configuration-ref andfil e-systemr ef) it falsback to the default naming and is wired
with the bean named hadoop-configuration, creating the Fi | eSyst emautomatically.

2.5 Using the Hadoop Job tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hadoop jobs asastep in
a Spring Batch workflow. An example declaration is shown below:

<hdp: t askl et i d="hadoop-tasklet" job-ref="nr-job" wait-for-job="true" />

The tasklet above references a Hadoop job definition named "mr-job". By default, wait-for-job is true
so that the tasklet will wait for the job to complete when it executes. Setting wait-for-job to false will
submit the job to the Hadoop cluster but not wait for it to complete.

Spring Hadoop
1.00M1 Reference Manual 10

http://hadoop.apache.org/common/docs/stable/mapred_tutorial.html#DistributedCache
http://hadoop.apache.org/common/docs/stable/mapred_tutorial.html#DistributedCache

Spring Hadoop

2.6 Running a Hadoop Tool

Itis common for Hadoop utilities and librariesto be started from the command-line (ex: hadoop j ar

some.jar). SHDP offers generic support for such cases provided that the packages in question are built
on top of Hadoop standard infrastructure, namely Tool and Tool Runner classes. As oppose to the
command-line usage, Tool instances benefit from Spring's 10C features; they can be parameterized,
created and destroyed on demand and have their properties (such as the Hadoop configuration) injected.

Consider thetypical j ar example-invoking aclasswith some (two in this case) arguments (hotice that
the Hadoop configuration properties are passed as well):

bi n/ hadoop jar -conf hadoop-site.xm -jt darw n:50020 -D property=val ue sonmelar.jar org.foo.SomeTool data/i

Since SHDP has first-class support for configuring Hadoop, the so called generi ¢ opti ons aren't
needed any more, even more so since typically there is only one Hadoop configuration per application.
Through t ool - runner element (and its backing Tool Runner class) one typically just needs to
specify the Tool implementation and its arguments:

<hdp: t ool -runner id="soneTool" tool-class="org.foo. SoneTool " confi guration-ref="hadoop-configuration">
<hdp: arg val ue="data/in.txt"/>
<hdp: arg val ue="data/out.txt"/>

property=val ue
</ hdp: t ool - runner >

Liketherest of the SHDPelements, t ool - r unner alowsthe passed Hadoop configuration (by default
hadoop- confi gurati on but specified in the example for clarity) to be customized accordingly;
the snippet only highlightsthe property initialization for simplicity but more options are available. Since
usually the Tool implementation has a default argument, one can use the t ool - cl ass attribute
however it is possible to refer to another Tool instance or declare a nested one:

<hdp: tool -runner id="sonmeTool" run-at-startup="true">
<bean cl ass="org. f 0o. Anot her Tool " p:input="data/in.txt" p:output="data/out.txt"/>
</ hdp: t ool - runner >

Thisis quite convenient if the Tool class provides setters or richer constructors. Note that by default
thet ool - runner does not executesthe Tool until its definition is actually called - this behavior can
be changed through ther un- at - st ar t up attribute above.

2.7 Using the Hadoop Tool tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hadoop tasks as a step
in a Spring Batch workflow. The tasklet element supports the same configuration options as tool-runner
except for run- at - st ar t up (which does not apply for aworkflow):

<hdp: tool -taskl et id="tool -tasklet" tool-ref="sonme-tool" />

Spring Hadoop
1.00M1 Reference Manual 11

Spring Hadoop

3. Working with the Hadoop File System

A common task in Hadoop isinteracting with itsfile system, whether for provisioning, adding new files
to be processed, parsing results, or performing cleanup. Hadoop offers several ways to achieve that:
one can use its Java APl (namely Fi | eSyst en) or use the hadoop command line, in particular the
file system shell. However thereis no middle ground, one either has to use the (somewhat verbose, full
of checked exceptions) API or fall back to the command line, outside the application. SHDP addresses
this issue by bridging the two worlds, exposing both the Fi | eSyst emand the fs shell through an
intuitive, easy-to-use Java API. Add your favorite VM scripting language right inside your Spring
Hadoop application and you have a powerful combination.

3.1 Scripting the Hadoop API

Supported scripting languages

SHDP scripting supports any JSR-223 (also known asj avax. scri pt i ng) compliant scripting
engine. Simply add the engine jar to the classpath and the application should be able to find it.
Most languages (such as Groovy or JRuby) provide JSR-233 support out of the box; for those that
do not see the scripting project that provides various adapters.

Since Hadoop is written in Java, accessing its APIs in a native way provides maximum control
and flexibility over the interaction with Hadoop. This holds true for working with its files system;
in fact al the other tools that one might use are built upon these. The main entry point is the
or g. apache. hadoop. f s. Fi | eSyst emabstract class which provides the foundation of most (if
not al) of the actual file system implementations out there. Whether one is using a local, remote or
distributed store through the Fi | eSyst emARPI she can query and manipulate the available resources
or create new ones. To do so however, one needs to write Java code, compile the classes and configure
them which is somewhat cumbersome especially when performing simple, straight-forward operations
(like copy afile or delete adirectory).

JVM scripting languages (such as Groovy, JRuby, Jython or Rhino to name just afew) provide a nice
solution to the Java language; they run on the JVM, can interact with the Java code with no or few
changes or restrictions and have a nicer, ssimpler, less ceremonial syntax; that is, there is no need to
define a class or a method - simply write the code that you want to execute and you are done. SHDP
combines the two, taking care of the configuration and the infrastructure so one can interact with the
Hadoop environment from her language of choice

Let ustake alook of a JavaScript example using Rhino (which is part of JDK 6 or higher, meaning one
does not need any extra libraries):

<beans xm ns="http://ww. spri ngframework. or g/ schema/ beans" ...>
<hdp: configuration .../>

<hdp: script id="inlined-js" |anguage="javascript">
i mport Package(java.util);

nane = UUl D. randomJUl D().toString()

Spring Hadoop
1.00M1 Reference Manual 12

http://hadoop.apache.org/common/docs/stable/api/index.html?org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/common/docs/stable/file_system_shell.html
http://en.wikipedia.org/wiki/List_of_JVM_languages
http://www.jcp.org/en/jsr/detail?id=223
http://java.net/projects/scripting
http://groovy.codehaus.org/
http://jruby.org/
http://www.jython.org/
http://www.mozilla.org/rhino/

Spring Hadoop

scriptNanme = "src/test/resources/test. properties"”
/1 fs - FileSysteminstance based on 'hadoop-configuration' bean
/1 call FileSystemtcopyFroniocal (Path, Path)
fs.copyFronlLocal Fil e(scri pt Name, nane)
Il return the file length
fs. get Lengt h(nane)

</ hdp: scri pt >

</ beans>

Thescri pt element, part of the SHDP namespace, builds on top of the scripting support in Spring
permitting script declarations to be evaluated and declared as normal bean definitions. Further more it
automatically exposes Hadoop-specific objects, based on the existing configuration, to the script such
asthe Fi | eSyst em(more on that in the next section). As one can see, the script is fairly obvious: it
generates arandom name (using the UUI Dclassfromj ava. uti | package) and the copiesalocal file
into HDFS under the random name. The last line returns the length of the copied file which becomes
the value of the declaring bean (in this case i nl i ned-j s) - note that this might vary based on the
scripting engine used.

Note

The attentive reader might have noticed that the arguments passed to the Fi | eSy st emobject
are not of type Pat h but rather St r i ng. To avoid the creation of Pat h object, SHDP uses
awrapper class (Si nmpl er Fi | eSyst em) which automatically does the conversion so you
don't have to. For more information see the implicit variables section.

Note that for inlined scripts, one can use Spring's property placeholder configurer to automatically
expand variables at runtime. Using one of the examples before:

<beans ...>
<cont ext: property-pl acehol der | ocati on="cl asspat h: hadoop. properties" />

<hdp: scri pt | anguage="j avascri pt">
tracker=${hd. f s}

</ hdp: scri pt >
</ beans>

Notice how the script above relies on the property placeholder to expand ${ hd. f s} with the values
fromhadoop. properti es fileavailablein the classpath.

Using scripts

Inlined scripting is quite handy for doing simple operations and couple with the property expansion is
quite a powerful tool that can handle a variety of use cases. However when more logic is required or
the script is affected by XML formatting, encoding or syntax restrictions (such as Jython/Python for
which white-spaces are important) one should consider externalization. That israther then declaring the
script directly inside the XML, one can declareit in its own file. And speaking of Python, consider the
variation of the previous example:

<hdp: scri pt | ocation="org/conpany/ basi c-script.py"/>

Spring Hadoop
1.00M1 Reference Manual 13

Spring Hadoop

The definition does not bring any surprises but do notice there is no need to specify the language (asin
the case of ainlined declaration) since script extension (py) already provides that information. Just for
completeness, thebasi c- scri pt. py looks asfollows:

fromjava.util inmport UU D
from org. apache. hadoop. fs inport Path

print "Home dir is " + str(fs.homeDirectory)
print “Work dir is " + str(fs.workingDirectory)
print "/user exists " + str(fs.exists("/user"))

name = UUI D.randomJUl D().toString()

scriptNane = "src/test/resources/test. properties"”
fs.copyFromnLocal Fil e(scri pt Name, nane)

print Path(name).makeQualified(fs)

3.2 Scripting implicit variables

To ease the interaction of the script with its enclosing context, SHDP binds by default the so-called
implicit variables. These are:

Table 3.1. Implicit variables

Name Type Description

or g. agAghe. hadoop. conf . Conf i gur atHasloop Configuration (relies on hadoop-
configuration bean or singleton type match)

clj ava. |l ang. d assLoader ClassLoader used for executing the script

or g. spri ngfabamewor k. cont ext . Appl i cat i onCoriErekasing application context

org. springframx®ik. i 0. support. Resour ceP&n¢lesndgRagmdicatbon context Resourcel oader

org. springfrandsop k. dat a. hadoop. f|s. Di st ri but eB@gpgrhingatic accessto DistCp

or g.fapache. hadoop. f s. Fi | elsgsoperile System (relies on 'hadoop-fs bean or singleton
type match, falls back to creating one based on 'cfg’)

org. spri rigir amewor k. dat a. hadodiil efSystes3hell | exposing hadoop 'fs' commands as an AP

org. spri ngf r awdésiRir k. dat a. hadoop. | 0. Hdf $Rsmsoured mader(relies on *hadoop-resource-

loader' or singleton type match, falls back
to creating one automatically based on 'cfg")

Asmentioned in the Description column, the variables are first looked (either by name or by type) inthe
application context and, in case they are missing, created on the spot based on the existing configuration.
Note that it is possible to override or add new variables to the scripts through the pr operty sub-
element that can set values or references to other beans:

<hdp: scri pt | ocation="org/ conpany/basic-script.js">
<hdp: property nane="foo" val ue="bar"/>
<hdp: property nanme="ref" ref="sonme-bean"/>

Spring Hadoop
1.00M1 Reference Manual 14

Spring Hadoop

‘</hdp:script>

3.3 File System Shell (FsShell)

A handy utility provided by the Hadoop distribution is the file system shell which allows UNIX-like
commands to be executed against HDFS. One can check for the existance of files, delete, move, copy
directories or files or setting up permissions. However the utility is only available from the command-
linewhich makesit hard to useit from/insideaJavaapplication. To addressthis problem, SHDP provides
alightweight, fully embeddable shell, called FsShel | which mimics most of the commands available
from the command line: rather then dealing with the Syst em i n or Syst em out , one deals with
objects.

Let ustake alook of using FsShel | by building on the previous scripting examples:

<hdp: scri pt | ocation="org/conpany/ basi c-script.groovy"/>

name = UUI D.randonJUl D().toString()
scriptName = "src/test/resources/test. properties"
fs.copyFroniocal Fil e(scri pt Name, nane)

/'l use the shell (nmade avail able under variable fsh
dir = "script-dir"
if (!fsh.test(dir)) {
fsh.nkdir(dir); fsh.cp(name, dir); fsh.chnmodr (700, dir)
println "File content is " + fsh.cat(dir + name).toString()
}
println fsh.ls(dir).toString()
fsh.rmr(dir)

As mentioned in the previous section, aFs Shel | instanceis automatically created and for configured
for scripts, under the name fsh. Notice how the entire block relies on the usual commands: t est ,
nmkdi r, cp and so on. Their semantics are exactly the same as in the command-line version however
one has access to a native Java APl that returns actual objects (rather then St r i ngs) making it easy to
usethem programmatically whether in Javaor another language. Further more, the class offers enhanced
methods (such aschnodr which standsfor recursive chnod) and multiple overloaded methodstaking
advantage of varargs so that multiple parameters can be specified. Consult the API for moreinformation.

To be as close as possible to the command-line shell, FsShel | mimics even the messages being
displayed. Take a look at line 9 which prints the result of fsh. cat (). The method returns a
Col | ect i on of Hadoop Pat h objects (which one can use programatically). However when invoking
t oSt r i ng on the collection, the same printout as from the command-line shell is being displayed:

File content is sone text

The same goesfor the rest of the methods, such as| s. The same script in JRuby would look something
likethis:

require 'java

nane = java.util.UU D.randonJUl D().to_s
scriptNane = "src/test/resources/test. properties"”
$f s. copyFroniLocal Fi |l e(scri pt Nane, nane)

Spring Hadoop
1.00M1 Reference Manual 15

http://hadoop.apache.org/common/docs/stable/file_system_shell.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/varargs.html
http://static.springsource.org/spring-hadoop/docs/current/api/index.html?org/springframework/data/hadoop/fs/FsShell.html

Spring Hadoop

use the shel
dir = "script-dir/"

print $fsh.ls(dir).to_s

which prints out something like this:

dr wx- - - - - - - user super gr oup 0 2012-01-26 14:08 /user/user/script-dir

STWr--r-- 3 user super gr oup 344 2012-01-26 14: 08 /user/user/script-dir/520cf2f6-a0b6-427e-a23

Asyou can see, not only you can reuse the existing tool s and commands with Hadoop inside SHDP, but
you can also code against them in various scripting languages. And as you might have noticed, thereis
no special configuration required - thisis automatically inferred from the enclosing application context.

Note

The careful reader might have noticed that besi desthe syntax, there are someminor differences
in how the various langauges interact with the java objects. For example the automatic
toString cal called in Java for doing automatic St ri ng conversion is not necessarily
supported (hencethet o_s inRuby or st r in Python). Thisisto be expected as each language
hasits own semantics- for the most part these are easy to pick up but do pay attention to details.

DistCp API

Similar to the FsShel | , SHDP provides alightweight, fully embeddable Di st Cp version that builds
on top of the di st cp from the Hadoop distro. The semantics are configuration options are the same
however, one can use it from within an Java application without having to use the command-line. See
the API for more information:

<hdp: scri pt | anguage="groovy">di stcp. copy("${di stcp.src}", "${distcp.dst}")</hdp:script>

The bean above triggers a distributed copy relying again on Spring's property placeholder variable
expansion for its source and destination.

3.4 Scripting Lifecycle

The scri pt namespace provides various options to adjust its behaviour depending on the script
content. By default the script is executed in alazy manner - that is when the declaring bean is being
referred/used by another entity. One however can change that so that the script gets evaluated at startup
throughther un- at - st ar t up flag (whichisby default f al se). Similarily, by default the script gets
evaluated every single time the bean is being invoked - that is the script is actually ran every time one
referstoit. However for scriptsthat are expensive and return the same value every time one has various
caching options, so the evaluation occurs only when needed through the eval uat e attribute:

Table3.2. scri pt attributes

Name Values Description

run-at- f al se(default), Wether the script is executed at startup or on demand (lazy)
startup true

Spring Hadoop
1.00M1 Reference Manual 16

http://hadoop.apache.org/common/docs/stable/distcp.html
http://static.springsource.org/spring-hadoop/docs/current/api/index.html?org/springframework/data/hadoop/fs/DistCp.html

Spring Hadoop

Name Values Description
eval uat e ALWAYS(default), Wether to actually evaluate the script when invoked or
| F_MODI FI ED, used apreviousvaue. ALWAYS means evaluate every time,
ONCE | F_MODI FI ED evauate if the backing resource (such asa
file) has been modified in the meantime and ONCE only one.

3.5 Using the Scripting tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute scripts.

<script-tasklet id="script-tasklet">
<script |anguage="groovy">
i nput Path = "/user/gutenberg/input/word/"
out put Path = "/user/ gut enber g/ out put/word/"
if (fsh.test(inputPath)) {
fsh. rnr (i nput Pat h)
}
if (fsh.test(outputPath)) {
fsh. rnr (out put Pat h)

}
inputFile = "src/main/resources/datal ni etzsche-chapter-1.txt"
fsh. put (i nputFile, inputPath)

</script>

</script-taskl et>

The tasklet above embedds the script as a nested element. Y ou can also declare a reference to another
script definition, using the script-ref attribute which allows you to externalize the scripting code to an

external resource.

<script-tasklet id="script-tasklet" script-ref="clean-up"/>
<hdp: scri pt id="cl ean-up" | ocation="org/ conpany/ nyapp/ cl ean- up-wor dcount. groovy"/>

Spring Hadoop
1.00M1 Reference Manual

17

Spring Hadoop

4. Working with HBase

SHDP provides basic configuration for HBase through the hbase- conf i gur ati on namespace
element (or its backing HbaseConf i gur at i onFact or yBean).

<I-- default bean id is 'hbase-configuration' that uses the existing 'hadoop-configuration' object -->
<hdp: hbase- confi gurati on confi guration-ref="hadoop-configuration" />

The above declaration does more than easily create an HBase configuration object; it will also
manage the backing HBase connections. when the application context shuts down, so will any
HBase connections opened - this behavior can be adjusted through the st op- pr oxy and del et e-
connect i on attributes:

<I-- del ete associ ated connections but do not stop the proxies -->
<hdp: hbase- confi gurati on stop-proxy="fal se" del ete-connecti on="true">
f oo=bar

property=val ue
</ hdp: hbase- confi gurati on>

Notice that like with the other elements, one can specify additional properties specific to this
configuration. In fact hbase- conf i gur at i on provides the same properties configuration knobs
as hadoop configuration:

<hdp: hbase- confi gurati on properties-ref="sonme-props-bean" properties-I|location="classpath:/conf/testing/hbas

Spring Hadoop
1.00M1 Reference Manual 18

http://hbase.apache.org

Spring Hadoop

5. Hive integration

When working with http://hive.apache.org from a Java environment, one can choose between the Thrift
client or using the Hive JDBC-likedriver. Both havetheir prosand cons but no matter the choice, Spring
and SHDP supports both of them.

5.1 Starting a Hive Server

SHDP provides a dedicated namespace element for starting a Hive server asa Thrift service (only when
using Hive 0.8 or higher). Simply specify the host, the port (the defaultsarel ocal host and 10000
respectively) and you're good to go:

<I-- by default, the definition nane is 'hive-server' -->
<hdp: hi ve- server host="sone- ot her-host" port="10001" />

If needed the Hadoop configuration can be passed in or additional properties specified. Infact hi ver -
server providesthe same properties configuration knobs as hadoop configuration:

<hdp: hi ve- server host="sone-ot her-host" port="10001" properties-Ilocation="classpath: hi ve-dev. properties" co
sonepr opert y=soneval ue
hi ve. exec. scrat chdi r =/t np/ nmydi r

</ hdp: hi ve- server >

The Hive server is bound to the enclosing application context life-cycle, that is it will automatically
startup and shutdown along-side the application context.

5.2 Using the Hive Thrift Client

Similar to the server, SHDP provides a dedicated namespace element for configuring a Hive client (that
is Hive accessing a server node through the Thrift). Likewise, smply specify the host, the port (the
defaultsarel ocal host and 10000 respectively) and you're done:

<!-- by default, the definition name is 'hive-client' -->
<hdp: hi ve-cl i ent host="sone- ot her-host" port="10001" />

Just aswell, the Hive client is bound to the enclosing application context life-cycle; it will automatically
startup and shutdown along-side the application context. Further more, the client definition also allows
Hive scripts ()either declared inlined or externally) to be executed at startup, once the client connects,
this quite useful for doing Hive specific initialization:

<hi ve-cl i ent host="sone-host" port="sonme-port" xm ns="http://ww. springfranework. org/ schema/ hadoop" >
<hdp: scri pt >
DROP TABLE | F EXI TS test Hi veBat chTabl e;
CREATE TABLE testHi veBatchTabl e (key int, value string);
</ hdp: scri pt >
<hdp: scri pt | ocation="cl asspat h: or g/ conpany/ hi ve/ script.q" />
</hive-client> />

Spring Hadoop
1.00M1 Reference Manual 19

http://hive.apache.org
http://thrift.apache.org/
http://hive.apache.org/docs/r0.7.1/api/org/apache/hadoop/hive/jdbc/package-summary.html

Spring Hadoop

5.3 Using the Hive JDBC Client

Anocther attractive option for accessing Hiveisthrough its JDBC driver. This exposes Hive through the
JDBC API meaning one can use the standard API or its derived utilities to interact with Hive, such as
the rich JDBC support in Spring Framework.

. Warning

Note that the JDBC driver is awork-in-progress and not all the JDBC features are available
(and probably never will since Hive cannot support all of them asit isnot thetypical relational
database). Do read the official documentation and examples.

SHDP does not offer any dedicated support for the JDBC integration - Spring Framework itself provides
the needed tools; simply configure Hive as you would with any other JDBC Dr i ver :

<beans xm ns="http://wwmv springfranmewor k. or g/ schema/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: c="http://ww. springfranmework. org/ schema/c"

xm ns: cont ext ="http://ww. spri ngframewor k. or g/ schema/ cont ext "

xsi :schemaLocati on="http://wwm. spri ngfranmewor k. or g/ schema/ beans http://ww. spri ngfranmewor k. or g/ schema/ bean:
http://ww. springframework. org/ schema/ context http://ww. springfranmework. org/ schema/ context/spring-c

<!-- basic Hive driver bean -->
<bean id="hive-driver" class="org. apache. hadoop. hi ve.j dbc. Hi veDriver"/>

<!-- wrapping a basic datasource around the driver -->
<I-- notice the 'c:' nanespace (available in Spring 3.1+) for inlining constructor argunents
inthis case the url (default is 'jdbc:hive://local host: 10000/ default') -->
<bean i d="hi ve-ds" class="org.springfranmework.jdbc. datasource. Si npl eDri ver Dat aSour ce"
c:driver-ref="hive-driver" c:url="%{hive.url}"/>

<I-- standard JdbcTenpl ate decl aration -->
<bean id="tenpl ate" class="org.springframework.jdbc. core.JdbcTenpl ate" c: data-source-ref="hive-ds"/>

<cont ext : property-pl acehol der | ocation="hive. properties"/>
</ beans>

Andthat isit! Following the exampleabove, onecan usethehi ve- ds Dat aSour ce beantomanually
get ahold of Connect i onsor better yet, use Spring's Jdbc Tenpl at e asin the example above.

5.4 Using the Hive tasklet

For Spring Batch environments, SHDP provides a dedicated taskl et to execute Hive queries, on demand,
as part of abatch or workflow. The declaration is pretty straight forward:

<hdp: hi ve-t askl et id="hive-script">
<hdp: scri pt >
DROP TABLE | F EXI TS test Hi veBat chTabl e
CREATE TABLE test Hi veBat chTabl e (key int, value string)
</ hdp: scri pt >
<hdp: scri pt | ocation="cl asspat h: or g/ conpany/ hi ve/ script.q" />
</ hdp: hi ve-t askl et >

Spring Hadoop
1.00M1 Reference Manual 20

http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/jdbc.html

Spring Hadoop

The tasklet above executes two scripts - one declared as part of the bean definition followed by another
located on the classpath.

Spring Hadoop
1.00M1 Reference Manual 21

Spring Hadoop

6. Pig support

For Pig users, SHDP provides easy creation and configuration of Pi gSer ver instancesfor registering
and executing scripts either locally or remotely. In its simplest form, the declaration looks as follows:

<hdp: pig />

This will create a Pi gServer instance, named hadoop- pi g, configured with a default
Pi gCont ext , executing scriptsin MapReduce mode. In typical scenarios however, one might want
to connect to a remote Hadoop tracker and register some scripts automatically so let us take a look of
how the configuration might look like:

<pi g exec-type="LOCAL" job-nanme="pig-script" configuration-ref="hadoop-configuration" properties-|ocation="
xm ns="http://ww. spri ngframewor k. or g/ schena/ hadoop" >
sour ce=${pi g. scri pt.src}
<script |ocation="org/conpany/pig/script.pig">
<ar gument s>el ectri c=sea</ ar gunent s>
</script>
<script>
A = LOAD 'src/test/resources/| ogs/ apache_access. | og' USING PigStorage() AS (nane:chararray, age:int);
B = FOREACH A CGENERATE nane;
DUWP B
</script>
</pig> />

The example exposes quite a few options so let us review them one by one. First the top-level pig
definition configures the pig instance: the execution type, the Hadoop configuration used and the job
name. Notice that additional properties can be specified (either by declaring them inlined or/and loading
them from an externa file) - in fact, <hdp: pi g/ > just like the rest of the libraries configuration
elements, supports common properties attributes as described in the hadoop configuration section.

The definition contains also two scripts: scri pt . pi g (read from the classpath) to which one pair of
arguments, relevant to the script, is passed (notice the use of property placeholder) but also an inlined
script, declared as part of the definition, without any arguments.

Asyou can tell, the pi g namespace offers several options pertaining to Pig configuration. And, aswith
the other Hadoop-related integration, the underlying Pi gSer ver isbound to the enclosing application
context life-cycle; that is, it will automatically start and stop along-side the application so one does not
have to worry about its management.

6.1 Using the Pig tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Pig queries, on demand,
as part of abatch or workflow. The declaration is pretty straight forward:

<hdp: pi g-taskl et i d="pig-script">
<hdp: scri pt | ocati on="org/ conpany/ pi g/ handsone. pi g" />
</ hdp: pi g-t askl et >

The syntax of the scripts declaration is similar to that of the pi g namespace.

Spring Hadoop
1.00M1 Reference Manual 22

http://pig.apache.org

Spring Hadoop

7. Cascading integration

SHDP provides basic support for Cascading library through the
or g. spri ngframewor k. dat a. hadoop. cascadi ng package - one can create Fl ows or
Cascades, either through XML or/and Java and execute them, either in asimplistic manner or as part
of a Spring Batch job.

As Cascading isaimed at code configuration, typically onewould configure thelibrary programatically.
This type of configuration is supported through Spring's @Conf i gur ati on and @ean (see this
chapter for more information). In short one use Java code (or any JVM language for that matter) to
create beans. Below is an example of using that to create various Cascading components (do refer to
the Cascading examples for more context):

@onfiguration

public class Cascadi ngAnal ysi sConfig {
// fields that act as placeholders for externalized val ues
@/al ue(" ${cascade. sec}") private String sec;
@/al ue("${cascade.min}") private String mn;

@ean public Pipe tsPipe() {
Dat ePar ser dat eParser = new Dat eParser (new Fields("ts"), "dd/ MW yyyy: HH mm ss Z");
return new Each("arrival rate", new Fields("time"), dateParser);

}

@ean public Pipe tsCountPipe() {
Pi pe tsCount Pi pe = new Pi pe("tsCount", tsPipe());
t sCount Pi pe = new G oupBy(tsCountPi pe, new Fields("ts"));
return new Every(tsCountPi pe, Fields. GROUP, new Count());

}

@ean public Pipe tnCountPipe() {
Pi pe tnPi pe = new Each(tsPipe(),
new ExpressionFunction(new Fields("tnm'), "ts - (ts % (60 * 1000))", long.class));
Pi pe tnCount Pi pe = new Pi pe("tnCount", tnPipe);
t nCount Pi pe = new G oupBy(tnCount Pi pe, new Fields("tnl));
return new Every(tnCountPi pe, Fields. GROUP, new Count());

}

@ean public Map<String, Tap> sinks(){
Tap tsSinkTap = new Hf s(new Text Li ne(), sec);
Tap tnSi nkTap = new Hf s(new TextLine(), min);
return Cascades.tapsMap(Pi pe. pi pes(tsCount Pi pe(), tnCountPipe()), Tap.taps(tsSinkTap, tmSinkTap));

}

@ean public String regex() {
return "AC[A]F) [N T [N T RNANLCLATTONNT AN T*) (0 1) [TV (0~ 1%) (0 1%) .87
}

@ean public Fields fields() {
return new Fields("ip", "time", "method", "event", "status", "size");

}

The class above creates several objects (all part of the Cascading package) (named after the methods)
which can beinjected or wired just like any other bean (notice how the wiring is done between the beans

Spring Hadoop
1.00M1 Reference Manual 23

http://www.cascading.org/
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-java
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-java
http://github.com/cwensel/cascading.samples/

Spring Hadoop

by point to their methods). One can mix and match (if needed) code and XML configurations inside
the same application:

<!-- code configuration class -->
<bean cl ass="org. spri ngf ramewor k. dat a. hadoop. cascadi ng. Cascadi ngAnal ysi sConfi g"/>

<l-- Tap created through XM. rather then code (using Spring's 3.1 c: namespace)-->
<bean i d="tap" class="cascadi ng.tap. hadoop. Hf s" c:fields-ref="fields" c:string-path-val ue="${cascade. i nput}

<bean i d="cascade" cl ass="org. springfranmework. dat a. hadoop. cascadi ng. CascadeFact or yBean" p: configuration-ref
<property name="fl ows"><|ist>
<bean cl ass="org. spri ngf ramewor k. dat a. hadoop. cascadi ng. HadoopFl owFact or yBean"
p: confi guration-ref="hadoop-configuration" p:source-ref="tap" p:sinks-ref="sinks">
<property name="tails"><l|ist>
<ref bean="tsCount Pi pe"/>
<ref bean="t nCount Pi pe"/>
</list></property>
</ bean>
</list></property>
</ bean>

<bean i d="cascade-runner" cl ass="org. springfranmework. dat a. hadoop. cascadi ng. CascadeRunner" p:unit-of-wrk-re

The XML above, whose main purpose isto illustrate possible ways of configuring, uses SHDP classes
to create a Cascade with one nested FI ow using the taps and sinks configured by the code class.
Additionally it also shows how the cascade isran (through CascadeRunner).

Whether XML or Java config is better is up to the user and is usualy based on the type of the
configuration required. Java config suits Cascading better but note that the Fact or yBeans above
handle the life-cycle and some default configuration for both the FI ow and Cascade object. Either
way, whatever option is used, SHDP fully supportsit.

7.1 Using the Cascading tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet (similar to CascadeRunner
above) for executing Cascade or FI ow instances, on demand, as part of a batch or workflow. The
declaration is pretty straight forward:

<bean id="cascade-taskl et" class="org. springfranmework. data. hadoop. cascadi ng. CascadeTaskl et" p: unit-of - wor k-

7.2 Using Scalding

There are quiteanumber of DSL sbuilt ontop of Cascading, most noteably Cascal og (writtenin Clojure)
and Scalding (written in Scala). This documentation will cover Scalding however the same concepts
can be applied across the board to the DSLs.

Aswith the rest of the DSLs, Scalding offers asimplified, fluent syntax for creating units of code that
built on top of Cascading. Thisin turn translate to Map Reduce jobs that get executed on Hadoop. Once
compiled, the DSL gets trandated into actual VM classes that get executed by Scalding through its
ownTool instance(namelycom twi tter. scal di ng. Tool). Onehasthe option or either deploy
the Scalding jobs directly (by invoking the aforementioned Tool) or use Scalding'sscal d. r b script
which does the same thing based on the various attributes passed to it. Both approaches can be used in

Spring Hadoop
1.00M1 Reference Manual 24

https://github.com/nathanmarz/cascalog
https://github.com/twitter/scalding

Spring Hadoop

SHDP, the former through the Tool support (described bel ow) and thelatter by invokingthescal d. rb
script directly through the scripting feature.

For example, to run the tutorial examples (say Tutorial 1), one can issue the following command:

scripts/scald.rb --local tutorial/Tutoriall.scala

which compiles Tutoria 1, creates a bundled jar and runs it on a local Hadoop instance. When using
the Tool support, the compilation and the library provisioning are external tasks (just asin the case of
typical Hadoop jobs). The SHDP configuration to run the tutorial looks as follows:

<!-- the tool automatically is injected with 'hadoop-configuration' -->
<hdp: t ool -runner id="scal di ng" tool -class="comtwitter.scal di ng. Tool ">
<hdp: arg val ue="tutorial/Tutorial 1"/>
<hdp: arg val ue="--1ocal "/ >
</ hdp: t ool - runner >

Spring Hadoop
1.00M1 Reference Manual 25

Part Ill. Developing Spring
Hadoop Applications

This section provides some guidance on how one can use the Spring Hadoop project in conjunction with
other Spring projects, starting with the Spring Framework itself, then Spring Batch, and then Spring
Integration.

Spring Hadoop

8. Guidance and Examples

Spring Hadoop providesintegration with the Spring Framework to create and run Hadoop MapReduce,
Hive, and Pig jobs as well as work with HDFS and HBase. If you have simple needs to work with
Hadoop, including basic scheduling, you can add the Spring Hadoop namespace to your Spring based
project and get going quickly using Hadoop.

As the complexity of your Hadoop application increases, you may want to use Spring Batch to regin
in the complexity of developing alarge Hadoop application. Spring Batch provides an extension to the
Spring programming model to support common batch job scenarios characterized by the processing of
large amounts of data from flat files, databases and messaging systems. It also provides a workflow
style processing model, persistent tracking of steps within the workflow, event notification, as well
as administrative functionality to start/stop/restart a workflow. As Spring Batch was designed to be
extended, Spring Hadoop plugs into those extensibilty points, alowing for Hadoop related processing
to be afirst class citizen in the Spring Batch processing model.

Another project of interest to Hadoop developers is Spring Integration. Spring Integration provides an
extension of the Spring programming model to support the well-known Enterprise I ntegration Patterns.
It enableslightwei ght messaging within Spring-based applications and supportsintegration with external
systems via declarative adapters. These adapters are of particular interest to Hadoop devel opers, asthey
directly support common Hadoop use-cases such as polling a directory or FTP folder for the presence
of afileor group of files. Then once thefiles are present, a message is sent internal to the application to
do additional processing. This additional processing can be calling a Hadoop MapReduce job directly
or starting amore complex Spring Batch based workflow. Similarly, astep in a Spring Batch workflow
can invoke functionality in Spring Integration, for example to send a message though an email adapter.

Not matter if you use the Spring Batch project with the Spring Framework by itself or with additional
extentions such as Spring Batch and Spring Integration that focus on a particular domain, you will you
benefit from the core values that Spring projects bring to the table, namely enabling modularity, reuse
and extensive support for unit and integration testing.

8.1 Scheduling

Spring Batch integrates with a variety of job schedulers and is not a scheduling framework. There are
many good enterprise schedulers available in both the commercial and open source spaces such as
Quartz, Tivoli, Control-M, etc. It is intended to work in conjunction with a scheduler, not replace a
scheduler. As a lightweight solution, you can use Spring's built in scheduling support that will give
you cron like and other basic scheduling trigger functionality. See the Task Execution and Scheduling
documention for more info. A middle ground it to use Spring's Quartz integration, see Using the
OpenSymphony Quartz Scheduler for more information. The Spring Batch distribution contains an
example, but this documentation will be updated to provide some more directed exampleswith Hadoop,
check for updates on the main web site of Spring Hadoop.

Spring Hadoop
1.00M1 Reference Manual 27

http://www.eaipatterns.com
http://static.springsource.org/spring-batch/faq.html#schedulers
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/scheduling.html#scheduling-quartz
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/scheduling.html#scheduling-quartz
http://www.springsource.org/spring-data/hadoop

Spring Hadoop

8.2 Batch Job Listeners

Spring Batch let's you attached listeners at the job and step levelsto perform additional processing. For
example, at the end of a job you can perform some notification or perhaps even start another Spring
Batch Jobs. Asabrief example, implement the interface JobExecutionL istener and configure it into the
Spring Batch job as shown below.

<bat ch:job id="j obl">
<bat ch: step id="inmport" next="wordcount">
<bat ch: taskl et ref="script-tasklet"/>
</ bat ch: st ep>

<bat ch: step i d="wordcount" >
<bat ch: t askl et ref="wordcount-tasklet" />
</ bat ch: st ep>
<bat ch:li steners>
<bat ch:|istener ref="sinpleNotificatonListener"/>
</ batch:|i steners>

</ bat ch: j ob>

<bean i d="si npl eNoti fi catonLi stener" cl ass="com nyconpany. myapp. Si npl eNoti fi cati onLi stener"/>

Spring Hadoop
1.00M1 Reference Manual 28

http://static.springsource.org/spring-batch/apidocs/org/springframework/batch/core/JobExecutionListener.html

Part IV. Spring Hadoop
sample applications

Document structure

This part of the reference documentation covers the sample applications included with Spring Hadoop
that demonstrate features in a code centric manner.

Chapter 10, Wordcount sample using the Soring Framework describes a standard Spring application
that executes the wordcount map-reduce job

Chapter 11, Wordcount sample using Spring Batch describes a Batch application that executes the
wordcount map-reduce job

Spring Hadoop

9. Sample prerequisites

In order to run the examples you need a working Hadoop installation and JDK 1.6+ installed on the
machine that runs the samples.

For instructions on installing Hadoop refer to your distribution documentation or you can refer to the
Getting Started section of this for instructions based off the Apache download distribution.

Spring Hadoop
1.00M1 Reference Manual 30

Spring Hadoop

10. Wordcount sample using the Spring
Framework

Please read the sample prerequistes before following these instructions.

10.1 Introduction

This sample demonstrates how to execute a MapReduce application and a script that interacts with
HDFS inside a Spring based application. It does not use spring Batch or Spring Integration.

The example code is located in the distribution directory <spri ng- hadoop-instal | -di r>/
sanpl es/ wor dcount .

Spring Hadoop
1.00M1 Reference Manual 31

Spring Hadoop

11. Wordcount sample using Spring Batch

Please read the sample prerequistes before following these instructions.

11.1 Introduction

This sample demonstrates how to execute the wordcount example in the context of a Spring Batch
application. It serves as a starting point that will be expanded upon in other samples. The sample code
is located in the distribution directory <spri ng- hadoop-i nstal | - di r>/ sanpl es/ bat ch-
wor dcount

The sample uses the Spring Hadoop namespace to define a Spring Batch Tasklet that runs a Hadoop
job. A Spring Batch Job (not to be confused with a Hadoop job) combines multiple steps together to
create aflow of execution, asmall workflow. Each step in the flow does some processing which can be
as complex or assimple asyour require. The configuration of the flow from one step to another can very
simple, alinear sequence of steps, or complex using conditional and programmatic branching as well
as sequential and parallel step execution. A Spring Batch Tasklet is the abstraction that represents the
processing for a Step and is an extensible part of Spring Batch. Y ou can write your own implementation
of a Tasklet to perform arbitrary processing, but often you configure existing Tasklets provided by
Spring Batch and Spring Hadoop.

Spring Batch provides Tasklets for reading, writing, and processing data from flat files, databases,
messaging systems and executing system (shell) commands. Spring Hadoop provides Tasklets for
running Hadoop MapReduce, Streaming, Hive, and Pig jobs as well as executing script files that have
build in support for ease of use interaction with HDFS.

11.2 Basic Spring Hadoop configuration

The part of the configuration file that defines the Spring Batch Job flow is shown below and can be
found in thefilewor dcount - cont ext . xm . The elements <bat ch: j ob/ >, <bat ch: st ep/
>, <bat ch: t askl et > comefrom the XML Schemafor Spring Batch

<bat ch:job id="jobl">
<bat ch: step id="inmport" next="wordcount">
<batch: taskl et ref="script-tasklet"/>
</ bat ch: st ep>

<bat ch: step i d="wor dcount ">
<bat ch: t askl et ref="wordcount-tasklet" />
</ bat ch: st ep>
</ bat ch: j ob>

This configuration defines a Spring Batch Job named "jobl" that contains two steps executed
sequentially. Thefirst one prepares HDFS with sample data and the second runs the Hadoop wordcount
mapreduce job. The tasklet's reference to "script-tasklet” and "wordcount-tasklet" definitions that will
be shown alittle later.

The Spring Source Toolsuiteis afree Eclipse-powered devel opment environment which providesanice
visualization and authoring help for Spring Batch workflows as shown below.

Spring Hadoop
1.00M1 Reference Manual 32

http://static.springsource.org/spring-batch/reference/html/domain.html#domainJob
http://static.springsource.org/spring-batch/apidocs/org/springframework/batch/core/step/tasklet/Tasklet.html
http://www.springsource.com/developer/sts

Spring Hadoop

The script tasklet shown below uses Groovy to remove any datathat isin the input or output directories
and puts the file "nietzsche-chapter-1.txt" into HDFS.

<script-tasklet id="script-tasklet">
<scri pt |anguage="groovy">
i nput Pat h = "${wor dcount . i nput. pat h:/user/gut enberg/i nput/word/}"
out put Path = "${wor dcount . out put . pat h: / user/ gut enber g/ out put/ word/ }"
if (fsh.test(inputPath)) {
fsh. ror (i nput Pat h)
}
if (fsh.test(outputPath)) {
fsh. rnr (out put Pat h)

}

inputFile = "src/main/resources/datalni etzsche-chapter-1.txt"
fsh. put (i nputFile, inputPath)
</script>

</script-taskl et>

The script makes use of the predefined variable fsh, which isthe embedded Filesystem Shell that Spring
Hadoop provides. It also uses Spring's Property Placeholder functionality so that the input and out paths
can be configured external to the application, for example using property files. The syntax for variables
recognized by Spring's Property Placeholder is ${ key: def aul t Val ue}, soin thiscase/ user/
gut enber g/ i nput/word and / user/ gut enber g/ out put / wor d are the default input and
output paths. Note you can also use Spring's Expression Language to configure values in the script or
in other XML definitions.

The configuration of the tasklet to execute the Hadoop MapReduce jobs is shown below.

<hdp: t askl et i d="hadoop-tasklet" job-ref="nr-job"/>

<j ob i d="wordcount -j ob"
i nput - pat h="%{ wor dcount . i nput . pat h: / user/ gut enber g/ i nput/ word/ }"
out put - pat h="${wor dcount . out put . pat h: / user/ gut enber g/ out put/word/ }"
mapper =" or g. apache. hadoop. exanpl es. Wr dCount . Tokeni zer Mapper "
reducer =" or g. apache. hadoop. exanpl es. Wor dCount . | nt SunReducer" />

The <hdp: t askl et > and <hdp: j ob/ > eements are from Spring Haddop XML Schema. The
hadoop tasklet is the bridge between the Spring Batch world and the Hadoop world. The hadoop tasklet
in turn refers to your map reduce job. Various common properties of a map reduce job can be set, such
as the mapper and reducer. The section Creating a Hadoop Job describes the additional elements you
can configurein the XML.

Note

If you look at the JavaDocs for the org.apache.hadoop.examples package (here), you can see
the Mapper and Reducer class names for many examples you may have previously used from
the hadoop command line runner.

The confi gurati on-ref element in the job definition refers to common Hadoop configuration
information that can be shared across many jobs. It isdefined inthefilehadoop- cont ext . xm and
is shown below

Spring Hadoop
1.00M1 Reference Manual 33

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/expressions.html#expressions-beandef
org.apache.hadoop.examples.PiEstimator.PiMapper

Spring Hadoop

<I-- default id is 'hadoop-configuration -->

<hdp: configuration register-url-handl er="fal se">
fs. defaul t.name=${hd. f s}

</ hdp: confi guration>

As mentioned before, as this is a configuration file processed by the Spring container, it supports
variable substitution through the use of ${ var} stylevariables. In this case the location for HDFSis
parameterized and no default valueis provided. The property filehadoop. properti es containsthe
definition of the hd.fs variable, change the value if you want to refer to a different name node location.

hd. f s=hdf s: / /| ocal host : 9000

The entire application is put together in the configuration filel aunch- cont ext . xmi , shown below.

<l-- where to read externalized configuration values -->
i gnor e-resource-not-found="true" ignore-unresol vable="true" />

<I-- sinmple base configuration for batch conponents, e.g. JobRepository -->
<i nport resource="cl asspat h: / META- | NF/ spri ng/ bat ch- cormon. xm * />

<!-- shared hadoop configuration -->

<i nport resource="cl asspat h:/META-| NF/ spri ng/ hadoop- cont ext.xm " />

<!-- word count workflow -->

<i mport resource="cl asspat h: / META-| NF/ spri ng/ wor dcount - cont ext. xm " />

11.3 Build and run the sample application

Inthedirectory <spri ng- hadoop-i nstal | -di r >/ sanpl es/ bat ch- wor dcount build and
run the sample

$../../gradl ew

If thisisthe first time you are using gradlew, it will download the Gradle build tool and all necessary
dependencies to run the sample.

Note

If you run into some issues, drop us aline in the Spring Forums.
11.4 Run the sample application as a standlone Java

application

Y ou can use Gradle to export all required dependencies into a directory and create a shell script to run
the application. To do this execute the command

‘$../..lgradl ewinstall App

This places the shell scripts and dependencies under the bui | d/ i nst al | / bat ch- wor dcount
directory. You can zip up that directory and share the application with others.

Spring Hadoop
1.00M1 Reference Manual 34

<cont ext: property-pl acehol der | ocation="cl asspat h: bat ch. properti es, cl asspat h: hadoop. properti es"

http://forum.springsource.org/forumdisplay.php?27-Data

Spring Hadoop

The man Java class used is pat of Spring Batch. The class
is org. spri ngfranmework. bat ch. core. | aunch. support. CommandLi neJobRunner.
This main app requires you to specify at least a Spring configuration file and a job instance name. Y ou
can read the CommandLi neJobRunner JavaDocs for moreinformation aswell asthis section in the
reference docs for Spring Batch to find out more of what command line options it supports.

$./build/install/wordcount/bin/wordcount classpath:/launch-context.xm jobl

Y ou can then verify the output from work count is present and cat it to the screen

$ hadoop dfs -Is /user/gutenberg/out put/word
War ni ng: $HADOOP_HOME i s deprecat ed

Found 2 items
SPWr--r-- 3 npol | ack supergroup 0 2012-01-31 19: 29 /user/ gutenber g/ out put/wor d/ _SUCCESS
STWr--1-- 3 npol | ack supergroup 918472 2012-01-31 19: 29 /user/ gut enber g/ out put/wor d/ part-r-00000

$ hadoop dfs -cat /user/gutenberg/output/word/part-r-00000 | nore
Var ni ng: $HADOOP_HOME i s deprecat ed

"'Spells 1
"tarny' 1
"(1) 1
"(Lo)cra"1
"13 4
"1490 1
"1498," 1
" 35" 1
" 40, " 1
"A 9
"AS-1S". 1
" AVAY 1
A 1
" Abi de 1
" About 1

Spring Hadoop
1.00M1 Reference Manual 35

http://static.springsource.org/spring-batch/apidocs/org/springframework/batch/core/launch/support/CommandLineJobRunner.html
http://static.springsource.org/spring-batch/reference/html/configureJob.html#runningJobsFromCommandLine
http://static.springsource.org/spring-batch/reference/html/configureJob.html#runningJobsFromCommandLine

Part V. Other Resources

In addition to this reference documentation, there are a number of other resources that may help you
learn how to use Hadoop and Spring framework. These additional, third-party resources are enumerated
in this section.

Spring Hadoop

12. Useful Links

» Spring Data Hadoop - Home Page

» Soring Data - Home Page

» SpringSource - Blog

Hadoop - Home Page

» Spring Hadoop Team on Twitter - Costin

Spring Hadoop
1.00M1 Reference Manual

37

http://www.springframework.org/spring-data/hadoop
http://www.springframework.org/spring-data
http://blog.springsource.com/
http://hadoop.apache.org/
http://twitter.com/costinl

Part VI. Appendices

Spring Hadoop

Appendix A. Spring Data Hadoop
Schema

Spring Hadoop Schema

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schema xm ns="http://wmv. spri ngfranmewor k. or g/ schema/ hadoop"
xm ns: xsd="htt p: // ww. w3. or g/ 2001/ XM_Schema"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: beans="htt p: // ww. spri ngf ramewor k. or g/ schema/ beans"

xm ns: tool ="http://ww. spri ngframewor k. org/ schena/t ool "

t ar get Nanespace="htt p: // www. spri ngf ramewor k. or g/ schena/ hadoop"
el ement For nDef aul t =" qual i fi ed"

attri but eFor nDef aul t =" unqual i fi ed"

version="1.0.0. ML" >

<xsd:inport namespace="http://ww. springframework. or g/ schema/ beans" />
<xsd:inmport namespace="http://ww. spri ngfranework. org/schema/tool" />

<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[

Defines the configuration elements for Spring Data Hadoop
]1></ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: el enent nane="t askl et">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a Spring Batch tasklet for Hadoop Jobs
11>
</ xsd: docunent at i on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org.springframework. dat a. hadoop. mapr educe. HadoopTaskl et "/ >
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>
<I-- the job reference -->
<xsd:attribute name="job-ref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. apache. hadoop. mapr educe. Job" ><! [CDATA]
Hadoop Job]] ></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. mapr educe. Job" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd:attribute name="wait-for-job" type="xsd:string" use="optional" default="true">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Whet her to synchronously wait for the job to finish (the default) or not.
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute name="id" type="xsd:|D"' use="required" />

Spring Hadoop
1.00M1 Reference Manual

Spring Hadoop

<xsd: attribute name="scope" type="xsd:string" use="optional" />
</ xsd: conpl exType>
</ xsd: el enent >

<l-- common attributes shared by properties based configurations
NOT neant for extensibility - do NOT rely on this type as it might be renoved in the future -->
<xsd: conmpl exType name="propertiesConfi gurabl eType" m xed="true">
<xsd:attribute name="properties-ref" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Reference to a Properties object.
]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expected-type type="java.util.Properties" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="properties-|location" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Properties location(s). Miltiple |ocations can be specified using conma (,) as a separator
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: conpl exType>

<xsd: el ement nanme="confi gurati on">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a Hadoop Configuration
]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org. apache. hadoop. conf. Confi guration"/>
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType mi xed="true">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="propertiesConfigurabl eType">
<xsd:attribute name="id" type="xsd:|D"' use="optional">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Bean id (default is "hadoop-configuration").
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="configuration-ref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. apache. hadoop. conf . Confi gurati on"><! [CDATA[
Ref erence to anot her Hadoop configuration (useful for chaining)]]></xsd: docunmentation>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute nane="resources">
<xsd: annot ati on>

Spring Hadoop
1.00M1 Reference Manual 40

Spring Hadoop

<xsd: docunent ati on source="j ava: org. spri ngf ramewor k. core. i 0. Resour ce" ><! [CDATA[
Hadoop Configuration resources. Miltiple resources can be specified, using conma (,) as a separator.]]></xst
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="org. springframework.core.io. Resource[]" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="regi ster-url-handl er" use="optional" default="fal se">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Regi sters an HDFS url handler in the running VM Note that this operation can be executed at nost once
in a given JVM hence the default is false
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement nanme="resource-| oader">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a HDFS-aware resource | oader
11>
</ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="org.springframework. dat a. hadoop. f s. Hif sResour ceLoader"/ >
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd:attribute name="id" type="xsd:|D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id (default is "hadoop-resource-I|oader").
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute nanme="configuration-ref" use="optional" default="hadoop-configuration">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. hadoop. conf. Confi gurati on"><! [CDATA[
Ref erence to the Hadoop Configuration. Defaults to 'hadoop-configuration'.]]></xsd:docunmentation>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot at i on>
</ xsd: attribute>
<xsd:attribute name="uri" use="optional"/>
</ xsd: conpl exType>
</ xsd: el ement >

<I-- comon attributes shared by properties based configurations
NOT neant for extensibility - do NOT rely on this type as it might be renmoved in the future -->
<xsd: conpl exType nanme="jobType">
<xsd: conmpl exCont ent >
<xsd: ext ensi on base="properti esConfi gurabl eType">

Spring Hadoop
1.00M1 Reference Manual 41

Spring Hadoop

<xsd:attribute nane="id" type="xsd:ID' use="required" />
<xsd:attribute name="scope" type="xsd:string" use="optional" />
<xsd: attribute name="nmapper" use="required">
<xsd: annot ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
<t ool : assi gnabl e-t o type="org. apache. hadoop. mapr educe. Mapper" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd: attribute nane="reducer" use="required">
<xsd: annot ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.l ang. d ass" />
<t ool : assi gnabl e-to type="org. apache. hadoop. mapr educe. Reducer" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="conbi ner">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The conbi ner cl ass nane
]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
<t ool : assi gnabl e-to type="org. apache. hadoop. mapr educe. Reducer" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd: attribute name="i nput-format">
<xsd: annot ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
<t ool : assi gnabl e-t o type="org. apache. hadoop. mapr educe. | nput Format" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd: attribute nanme="out put-format">
<xsd: annot ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.l ang. d ass" />
<t ool : assi gnabl e-to type="org. apache. hadoop. mapr educe. Qut put Format" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="partitioner">
<xsd: annot ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang.d ass" />
<t ool : assi gnabl e-to type="org. apache. hadoop. mapreduce. Partitioner" />
</tool : annot ati on>

Spring Hadoop
1.00M1 Reference Manual

42

Spring Hadoop

</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="i nput-pat h" use="required">
<xsd: annot ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.lang. String[]" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="out put - pat h" use="required">
<xsd: annot ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.l ang. String" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="configuration-ref" default="hadoop-configuration">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. hadoop. conf. Confi gurati on"><! [CDATA[
Ref erence to the Hadoop Configuration. Defaults to 'hadoop-configuration'.]]></xsd:docunmentation>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: el enent nane="j ob">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Defi nes a Hadoop Job
]]></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org. apache. hadoop. mapr educe. Job"/ >
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conmpl exCont ent mi xed="true">
<xsd: ext ensi on base="j obType" >
<xsd:attribute name="sort-conparator">
<xsd: annot ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
<t ool : assi gnabl e-t o type="org. apache. hadoop. i 0. RawConparator" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="groupi ng- conpar at or" >
<xsd: annot ati on>

Spring Hadoop
1.00M1 Reference Manual 43

Spring Hadoop

<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang.d ass" />
<t ool : assi gnabl e-to type="org. apache. hadoop. i 0. RawConparator" />
</tool : annot ati on>

</ xsd: appi nf o>

</ xsd: annot ati on>

</ xsd: attribute>

<xsd: attribute name="key">

<xsd: annot ati on>

<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
</tool : annot ati on>

</ xsd: appi nf o>

</ xsd: annot ati on>

</ xsd: attribute>

<xsd:attribute name="val ue">

<xsd: annot ati on>

<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
</tool : annot ati on>

</ xsd: appi nf o>

</ xsd: annot ati on>

</ xsd: attribute>

<xsd: attribute nane="map- key">

<xsd: annot ati on>

<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
</tool : annot ati on>

</ xsd: appi nf o>

</ xsd: annot ati on>

</ xsd: attribute>

<xsd: attribute nane="map-val ue">

<xsd: annot ati on>

<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
</tool : annot ati on>

</ xsd: appi nf o>

</ xsd: annot ati on>

</ xsd: attribute>

<xsd:attribute name="codec">

<xsd: annot ati on>

<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
</tool : annot ati on>

</ xsd: appi nf o>

</ xsd: annot at i on>

</ xsd: attribute>

<xsd:attribute name="jar">

<xsd: annot ati on>

<xsd: docunent at i on><! [CDATA[

I ndi cates the user jar for the map-reduce job

]1></ xsd: docunent ati on>

<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : expect ed-type type="org.springframework. core.io. Resource" />
</tool : annot ati on>

Spring Hadoop
1.00M1 Reference Manual

Spring Hadoop

</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="j ar-by-cl ass">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Indicates the job's jar file by finding an exanple class |ocation
]]></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.l ang. C ass" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="val i dat e- pat hs" defaul t="true">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
I ndi cat es whether the job input/output paths are validated before submitting. This
saves tinme as the validation is done locally without having to interact with the job
tracker. The validation checks whether the input path exists and the output does not.
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement nanme="stream ng">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a Hadoop Streami ng Job
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="org. apache. hadoop. mapr educe. Job"/>
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conmpl exCont ent m xed="true">
<xsd: ext ensi on base="j obType">
<xsd: sequence>
<xsd: el ement nanme="cnd-env" m nCccurs="0" maxQccurs="1">
<xsd: annot ati on>
<xsd: docunent ati on><! [CDATA[Envi ronnment vari abl es (-cndenv)]]></xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="nunber-reducers">
<xsd: annot ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.l ang. I nteger" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd:attribute name="file">
<xsd: annot ati on>
<xsd: appi nf o>

Spring Hadoop
1.00M1 Reference Manual

Spring Hadoop

<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.lang. String[]" />
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd: attribute nane="archive">
<xsd: annot ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.lang. String[]" />
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute nane="I|ib">
<xsd: annot ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.lang. String[]" />
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enrent >

<l-- comon attributes shared by properties based configurations
NOT neant for extensibility - do NOT rely on this type as it might be renoved in the future -->
<xsd: conpl exType nanme="t ool Runner Type" >
<xsd: conmpl exCont ent m xed="true">
<xsd: ext ensi on base="propertiesConfigurabl eType">
<xsd: sequence>
<xsd: any namespace="##any" processContents="1lax" m nCccurs="0" maxCccurs="1"/>
<xsd: el ement nane="arg" m nCccurs="0" maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Tool argument.]]></xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: attribute name="val ue" type="xsd:string" use="required"/>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D' use="required">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id.]]></xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="tool -cl ass" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Indicates the job's jar file by finding an exanple class |ocation
]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
</tool : annot ati on>
</ xsd: appi nf 0>

Spring Hadoop
1.00M1 Reference Manual 46

Spring Hadoop

</ xsd: annot ati on>
</ xsd: attribute>
<xsd:attribute name="tool -ref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. hadoop. uti |l . Tool " ><! [CDATA]
Ref erence to a Hadoop Tool instance.]]></xsd:docunentation>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. util.Tool" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="configuration-ref" defaul t="hadoop-configuration">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. apache. hadoop. conf . Confi gurati on"><! [CDATA[
Reference to the Hadoop Configuration. Defaults to 'hadoop-configuration'.]]></xsd:docunentation>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: el ement nanme="t ool - runner">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Execut es a Hadoop Tool .]] ></xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="t ool Runner Type" >
<xsd: attribute name="run-at-startup" type="xsd: bool ean" default="fal se">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Whet her the Tool runs at startup or not (default).
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: el enent nane="t ool -taskl et">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Defines a Hadoop Tool Taskl et.]]></xsd: docunentati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conmpl exCont ent >
<xsd: ext ensi on base="t ool Runner Type" >
<xsd: attribute name="scope" type="xsd:string" use="optional" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

Spring Hadoop
1.00M1 Reference Manual 47

Spring Hadoop

<xsd: conpl exType name="entryType">
<xsd: attribute nane="val ue" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<xsd: el ement nanme="cache">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Configures Hadoop Distributed Cache
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="org.apache. hadoop. i o. Di stri but edCacheFact oryBean"/>
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence m nCccurs="1" maxQccur s="unbounded" >
<xsd: choi ce>
<xsd: el ement nanme="cl asspath" type="entryType"/>
<xsd: el enent nane="cache" type="entryType"/>
<xsd: el enent nane="l|ocal " type="entryType"/>
</ xsd: choi ce>
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Bean id (default is "hadoop-cache").
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="create-symink" type="xsd:bool ean"/>
<xsd: attribute nane="configuration-ref" default="hadoop-configurati on">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. hadoop. conf . Confi gurati on"><! [CDATA[
Ref erence to the Hadoop Configuration. Defaults to 'hadoop-configuration'.]]></xsd:docunentation>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="fil e-systemref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. apache. hadoop. fs. Fi | eSyst eni' ><! [CDATA][
Reference to the Hadoop Fil eSystem]]></xsd: docunentati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. fs. Fi | eSystent />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: conpl exType nanme="scri pt Type" m xed="true">
<xsd:attribute name="|ocati on" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Location of the script. As an alternative one can inline the script by using a nested, text declaration.]]>

Spring Hadoop
1.00M1 Reference Manual 48

Spring Hadoop

<xsd: appi nf o>
<t ool : annot ati on>
<t ool : expect ed-type type="org.springframework.core.io. Resource"/>
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
</ xsd: conpl exType>

<xsd: conmpl exType name="scri pt Wt hArgument sType" m xed="true">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="scri pt Type">
<xsd: sequence>
<xsd: el ement nanme="argunents" m nCccurs="0" maxQccurs="1">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Argunent (s) to pass to this script. Defined in Properties format (key=val ue)
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: el emrent name="pi g">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a PigServer 'tenplate' (note that since PigServer is not thread-safe, each bean invocation will cre:
11>
</ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="org.apache. pi g. Pi gServer"/>
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conmpl exCont ent m xed="true">
<xsd: ext ensi on base="propertiesConfigurabl eType">
<xsd: sequence>
<xsd: el enent nane="script" type="scriptWthArgunentsType" m nCccurs="0" maxCccurs="unbounded">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Pi g script.]]></xsd: docunentati on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Bean id (default is "hadoop-pig-server").
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd: attribute name="paths-to-skip">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The path to be skipped while autonatically shipping binaries for streaming. Miultiple resources can be speci
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>

Spring Hadoop
1.00M1 Reference Manual 49

Spring Hadoop

<xsd:attribute name="parallelisn type="xsd:integer"/>
<xsd:attribute nanme="val i dat e- each-statenment" type="xsd: bool ean"/>
<xsd:attribute name="job-priority" type="xsd:string"/>
<xsd: attribute name="j ob- nane" type="xsd:string"/>
<xsd:attribute name="job-tracker" type="xsd:string"/>
<xsd: attribute nanme="configuration-ref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. hadoop. conf . Confi gurati on"><! [CDATA[
Ref erence to the Hadoop Configuration. Can be tweaked through the 'configuration' elenment or the other attr
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="exec-type" defaul t =" MAPREDUCE" >
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue=" MAPREDUCE"/ >
<xsd: enunerati on val ue="LOCAL"/ >
</xsd:restriction>
</ xsd: si npl eType>
</ xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement nane="pi g-taskl et">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a PigTaskl et.
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="org.springframework. dat a. hadoop. bat ch. Pi gTasket"/>
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nane="script" type="scriptWthArgunmentsType" m nCccurs="1" maxCccurs="unbounded">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Pi g script.]]></xsd: docunentati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D' use="required">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id.]]></xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute name="pi g-server-ref" type="xsd:string" use="optional" defaul t="pig">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. pi g. Pi gSer ver " ><! [CDATA|
Reference to a PigServer instance. Defaults to 'hadoop-pig-server'
]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on kind="ref">

Spring Hadoop
1.00M1 Reference Manual 50

Spring Hadoop

<t ool : expect ed-type type="org. apache. pi g. Pi gServer" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot at i on>
</ xsd: attribute>
<xsd: attribute name="scope" type="xsd:string" use="optional" />
</ xsd: conpl exType>
</ xsd: el ement >

<l-- HBase -->
<xsd: el ement nane="hbase- confi guration">
<xsd: conpl exType>
<xsd: conmpl exCont ent m xed="true">
<xsd: ext ensi on base="properti esConfi gurabl eType">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines an HBase configuration
]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org. apache. hadoop. conf. Confi gurati on"/>
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd:attribute name="id" type="xsd:|D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Bean id (default is "hbase-configuration").
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="stop-proxy" type="xsd: bool ean" defaul t="true"/>
<xsd: attribute nane="del et e-connecti on" type="xsd: bool ean" default="true"/>
<xsd: attribute name="configuration-ref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. hadoop. conf. Confi gurati on"><! [CDATA[
Ref erence to the Hadoop configuration.]]></xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >

<l-- Hve -->
<xsd: el ement nanme="hive-client">
<xsd: conpl exType>
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Defines a Hive client for connecting to a Hive server through the Thrift protocol
]]></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org. apache. hadoop. hi ve. servi ce. Hvedient"/>
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>

Spring Hadoop
1.00M1 Reference Manual 51

Spring Hadoop

<xsd: sequence>
<xsd: el ement nanme="script" type="scriptType" m nCccurs="0" maxQccurs="unbounded">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Hi ve script to be executed during start-up.]]></xsd: docunentation>
</ xsd: annot ati on>
</ xsd: el emrent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id (default is "hive-client").
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="host" type="xsd:string" default="I|ocal host"/>
<xsd:attribute name="port" type="xsd:string" defaul t="10000"/>
<xsd: attribute name="aut o-startup" type="xsd: bool ean" defaul t="true"/>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement name="hi ve-server">
<xsd: conpl exType>
<xsd: conmpl exCont ent m xed="true">
<xsd: ext ensi on base="propertiesConfigurabl eType">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Defines an enbedded Hive Server instance opened for access through the Thrift protocol
]]></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org. apache.thrift.server. TServer"/>
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd:attribute name="id" type="xsd:|D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id (default is "hive-server").
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd:attribute name="port" type="xsd:string" default="10000"/>
<xsd:attribute name="m n-threads" type="xsd:string" defaul t="5"/>
<xsd: attribute name="nax-threads" type="xsd:string" default="100"/>
<xsd: attribute name="aut o-startup" type="xsd: bool ean" defaul t="true"/>
<xsd:attribute name="configuration-ref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. apache. hadoop. conf . Confi gurati on"><! [CDATA[
Reference to the Hadoop configuration.]]></xsd: docunentation>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >

Spring Hadoop
1.00M1 Reference Manual

52

Spring Hadoop

<xsd: el enent nane="hi ve-tasklet">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Defines a HiveTaskl et.
]]></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org.springframework. dat a. hadoop. bat ch. H veTasket"/>
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="script" type="scriptType" m nCccurs="1" maxQccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Hi ve script.]]></xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D' use="required">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id.]]></xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd: attribute name="hive-client-ref" type="xsd:string" use="optional" default="hive-client">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. hadoop. hi ve. servi ce. Hi ved i ent " ><! [CDATA[
Reference to a HveQient instance. Defaults to 'hive-client'
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. hi ve. servi ce. Hvedient" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd: attribute name="scope" type="xsd:string" use="optional" />
</ xsd: conpl exType>
</ xsd: el ement >

<I-- Script type - NOT nean to be reused outside this schema -->
<xsd: conpl exType nanme="scri pti ngType" abstract="true" m xed="true">
<xsd: sequence>
<xsd: el ement nane="property" type="beans: propertyType" mi nCccurs="0" maxCccurs="unbounded">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Property to pass to the script. Can be used to enhance or override the default properties
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="|ocati on" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The | ocation of the script. Can be any resource on the local filesystem web or even hdfs
11>
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="| anguage" type="xsd:string">

Spring Hadoop
1.00M1 Reference Manual 53

Spring Hadoop

<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The | anguage used for executing the script. If no value is given, the script source extension
is used to determine the scripting engine
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="eval uate" defaul t =" ALWAYS" >
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Wien to evaluate the script. 'ALWAYS' (default) evaluates the script on all invocations
'"IF_MXDIFIED if the script source has been nodified since the |ast invocation and ' ONCE
only once for the duration of the application
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: si mpl eType>
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="ONCE"/ >
<xsd: enuneration val ue="1F_MODI Fl ED'/ >
<xsd: enuner ati on val ue="ALWAYS"/ >
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: attribute>
</ xsd: conpl exType>

<xsd: el ement name="script">
<xsd: conpl exType m xed="true">
<xsd: conmpl exCont ent >
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Dedi cated scripting facility for interacting with Hadoop. Allows G oovy, JavaScript (Rhino), Ruby (JRuby),
or any JSR-223 scripting |anguage to be used for executing commands agai nst Hadoop, in particular its file
]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="java.l ang. Obj ect"/>
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
<xsd: ext ensi on base="scri pti ngType">
<xsd:attribute name="id" type="xsd:|D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id (if no value is given, a name will be generated)
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>

<xsd: attribute name="run-at-startup" type="xsd: bool ean" default="fal se">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Whet her the script is evaluated automatically once the application context initializes or only when in use
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el enent nane="script-tasklet">
<xsd: conpl exType>

Spring Hadoop
1.00M1 Reference Manual 54

Spring Hadoop

<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a scripting Tasklet for interacting with Hadoop. Allows G oovy, JavaScript (Rhino), Ruby (JRuby), P
or any JSR-223 scripting |anguage to be used for executing conmmands agai nst Hadoop, in particular its file ¢
11>
</ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="java.l ang. Obj ect"/>
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="script" m nCccurs="0" maxCccurs="1">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Nested script declaration.]]></xsd: docunentation>
</ xsd: annot ati on>
<xsd: conpl exType mi xed="true">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="scri pti ngType"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:| D' use="required">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id.]]></xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="script-ref" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Reference to a script declaration.]]></xsd: docunentation>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expected-type type="java.l ang. Obj ect" />
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd: attribute name="scope" type="xsd:string" use="optional" />
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schema>

Spring Hadoop
1.00M1 Reference Manual 55

	Spring Hadoop Reference Manual
	Table of Contents
	Preface
	Part I. Introduction
	1. Requirements

	Part II. Spring and Hadoop
	2. Hadoop Configuration, MapReduce, and Distributed Cache
	2.1 Using the Spring Hadoop Namespace
	2.2 Configuring Hadoop
	2.3 Creating a Hadoop Job
	Creating a Hadoop Streaming Job
	Running a Hadoop Job

	2.4 Configuring the Hadoop DistributedCache
	2.5 Using the Hadoop Job tasklet
	2.6 Running a Hadoop Tool
	2.7 Using the Hadoop Tool tasklet

	3. Working with the Hadoop File System
	3.1 Scripting the Hadoop API
	Using scripts

	3.2 Scripting implicit variables
	3.3 File System Shell (FsShell)
	DistCp API

	3.4 Scripting Lifecycle
	3.5 Using the Scripting tasklet

	4. Working with HBase
	5. Hive integration
	5.1 Starting a Hive Server
	5.2 Using the Hive Thrift Client
	5.3 Using the Hive JDBC Client
	5.4 Using the Hive tasklet

	6. Pig support
	6.1 Using the Pig tasklet

	7. Cascading integration
	7.1 Using the Cascading tasklet
	7.2 Using Scalding

	Part III. Developing Spring Hadoop Applications
	8. Guidance and Examples
	8.1 Scheduling
	8.2 Batch Job Listeners

	Part IV. Spring Hadoop sample applications
	9. Sample prerequisites
	10. Wordcount sample using the Spring Framework
	10.1 Introduction

	11. Wordcount sample using Spring Batch
	11.1 Introduction
	11.2 Basic Spring Hadoop configuration
	11.3 Build and run the sample application
	11.4 Run the sample application as a standlone Java application

	Part V. Other Resources
	12. Useful Links

	Part VI. Appendices
	Appendix A. Spring Data Hadoop Schema

