Spring Hadoop Reference Manual

Costin Leau

Spring Hadoop Reference Manual
by Costin Leau

1.0.0.M2

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies
and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Hadoop

Table of Contents

= = o= SRS %

[gL T [¥ o1 o o TSP PPTPPR 1

L REQUITEIMENES ..ottt e e e e e e e e e e e ettt e e e e e e e e s s et b baeeeeeeeeessnnrsaneeaaeeas 2

LTS o Vo =0 N = (0o o 3

2. Hadoop Configuration, MapReduce, and Distributed Cache ... 4

2.1. Using the Spring for Apache Hadoop NamesSpacecooovveveeiiiieeeeiiiieee e 4

2.2. Configuring HAO00Pcooiuiiiieeiiiii ettt 5

2.3. Creating @ Hado0op JODcouveiiiiiiiiee et 8

Creating a Hadoop Streaming JObccooiiiiiiiieiiee e 9

RUNNiNg @ HadOop JODuviiiiiieiiiiiee e e 9

2.4. Using the Hadoop JOb taskI€tcoevviviiiiiiiiiiieceeeeeeeeeeeeeeeeeeeee e 10

2.5. Running @ Hadoop TOO!cuuviiiiiiiiie e 10

Replacing Hadoop shell invocations with t 001c..oooviiiiiiiiiiee, 11

2.6. Using the Hadoop TOO! taSKIELccoiiiiiiiiiiiiieceieee e 12

2.7. Map Reduce GENENC OPLIONSuuviieiiee i ettt e et e e srree e e e e e eanees 12

2.8. Configuring the Hadoop Di stri but edCachecocociiieiiiiiiiciieeeee e 12

3. Working with the Hadoop File System ..., 14

3.1. Configuring the file-SYStEMooiiiiii e 14

3.2. Scripting the Hadoop AP ... 15

USING SCHPLS «.uevteeeeiiteie e ettt e ettt e sttt ettt e e et e e e st e e e e e e e e snnbe e e e s nnbneeeeane 17

3.3. Scripting implicit Variablesccc.vvviiiiiee e 17

3.4. File System Shell (FSShel)vvviiiiiiie e 18

D ES (0% o AN SRS 19

3.5, SCHPtiNG LITECYCIE ...t 20

3.6. Using the Scripting taskletcooiiiiiiiiiii e 20

4. WOTKING WIth HBESEceiiiiiiiiiiiiieiie ettt e e e e n 22

4.1. Data Access Object (DAO) SUPPOITuvvrieiieeeeiicciiieeee e e a e e e e e 22

N AVl 01 = = (oo SRR PPRRRRR 24

5.1 Starting @ HIVE SEIVEYuuviiiiiiiiiiii s n s nnnnns 24

5.2. Using the Hive Thrift CHENtooooiiiii e 24

5.3. Using the Hive IDBC ClIENTc.ccueiiiiiiiiiieeeiee et 25

5.4.UsSiNg the HIVE TasKIElveviiiiiiii e 25

L o = U o] oo AU PRPPR 27

6.1. USING the Pig tasKIEcoiieiiiiiiiee et 27

7. Cascading iNtEQratiONccoeeeeii i 28

7.1. Using the Cascading taskletooo i 29

7.2, USING SCAIAINGveeeiiiiiiiee ettt 29

7.3. SPring-SPECifiC 10CEA TAPS ..vvveeiiiiiiiee it 30

8. SECUNMLY SUPPOIT ..ooieeiiiiieeee et e e e e e e e e e e e e e e e s s e aa e b e e e e e aeeesannnarneeeeeas 32

8.1. HDFS PEMIUSSIONS ...ttt ie e e ettt e e e e et e e e e e s st e e e e e e e e s snanraneeeaeeas 32

8.2. User impersonation (KEerberos)ooooveveeeiie e, 32

I11. Developing Spring for Apache Hadoop AppliCationSc..eveiiiieeiiiiiieee e 34

9. Guidance and EXBMPIESuuiiiiiiiiii it 35
Spring Hadoop

1.0.0.M2 Reference Manua i

Spring Hadoop

9.1, SChEAUIINGccoiieeeee e 35

9.2. BatCh JOD LISIENEIS ...t 36

IV. Spring for Apache Hadoop sample appliCations ..., 37
10. SAMPIE PrErQQUISITESeeiieeeei e e e ettt e e e e e st e e e e e e e e s et e e e e e e e e s eanneneeeeeeens 38

11. Wordcount sample using the Spring Frameworkccceeeiiiiieeiniieeeeee e 39

T T T o [o TSR 39

12. Wordcount sample using Spring BalChcooooiiiiiiiiec e 40
20 g1 oo (8 1 o PSP RPN 40

12.2. Basic Spring for Apache Hadoop configurationcccccceeeeciiinnnnennnnnennnnnnnnns 40

12.3. Build and run the sample applicationccccoeiiiiiiiiiiiee e 42

12.4. Run the sample application as a standlone Java applicationcceveeeriiveeeenns 42

R O 1 0= (= o 0 = PR 44
13, USEFUI LINKS .ttt ettt e s e e e e s s e e e e enreeeeaans 45

RV BN o 0= g o =S SEPRR PSP 46
A. Spring for Apache Hadoop SChEMAcuviiiiiiiiiiiiieccc e 47

Spring Hadoop

1.0.0.M2 Reference Manua iv

Spring Hadoop

Preface

Spring for Apache Hadoop provides extensions to Spring, Spring Batch, and Spring Integration to build
manageabl e and robust pipeline solutions around Hadoop.

Spring for Apache Hadoop supports reading from and writing to HDFS, running varioustypes of Hadoop
jobs (Java MapReduce, Streaming), scripting and HBase, Hive and Pig interactions. An important goal
isto provide excellent support for non-Java based developers to be productive using Spring for Apache
Hadoop and not have to write any Java code to use the core feature set.

Spring for Apache Hadoop aso applies the familiar Spring programming model to Java MapReduce
jobs by providing support for dependency injection of ssmple jobs aswell as a POJO based MapReduce
programming model that decouples your MapReduce classes from Hadoop specific detail s such as base
classes and data types.

This document assumes the reader already has a basic familiarity with the Spring Framework and
Hadoop concepts and APIs.

While every effort has been made to ensure that this documentation is comprehensive and there are no
errors, neverthel ess some topics might require more explanation and some typos might have crept in. If
you do spot any mistakes or even more serious errors and you can spare afew cyclesduring lunch, please
do bring the error to the attention of the Spring for Apache Hadoop team by raising an issue. Thank you.

Spring Hadoop
1.0.0.M2 Reference Manual %

Part I. Introduction

Spring for Apache Hadoop provides integration with the Spring Framework to create and run Hadoop
MapReduce, Hive, and Pigjobsaswell aswork with HDFS and HBase. If you have simple needsto work
with Hadoop, including basic scheduling, you can add the Spring for A pache Hadoop namespace to your
Spring based project and get going quickly using Hadoop. Asthe complexity of your Hadoop application
increases, you may want to use Spring Batch and Spring Integration to regin in the complexity of
developing alarge Hadoop application.

This document is the reference guide for Spring for Apache Hadoop project (SHDP). It explains the
relationship between the Spring framework and Hadoop aswell asrelated projects such as Spring Batch
and Spring Integration. The first part describes the integration wtih the Spring framework to define the
base concepts and semantics of the integration and how they can be use effectively. The second part
describes how you can build upon these base concepts and create workflow based solutions provided
by the integration with Spring Batch.

Spring Hadoop

1. Requirements

Spring for Apache Hadoop requires JDK level 6.0 (just like Hadoop) and above, Spring Framework 3.0
(3.1 recommended) and above and Hadoop 0.20.2 (1.0.0 recommended) and above. Regarding Hadoop-
related projects, SDHP supports HBase 0.90.x, Hive 0.7.x and Pig 0.9.x and above. Asarule of thumb,
when using Hadoop-related projects, such as Hive or Pig, use the required Hadoop version as a basis
for discovering the supported versions.

Spring for Apache Hadoop also requires you have a Hadoop installation up and running. If you don't
already have a Hadoop cluster up and running in your environment, a good first step is to create
a single-node cluster. To install Hadoop 0.20.x+, the Getting Started page from the official Apache
documentation is a good general guide. If you are running on Ubuntu, the tutorial from Michael G.
Noll, "Running Hadoop On Ubuntu Linux (Single-Node Cluster)" provides more details. It is aso
convenience to download a Virtual Machine where Hadoop is setup and ready to go. Cloudera provides
virtual machines of various formats here. Y ou can also download the EM C Greenplum HD distribution
or get atech preview of the Hortonworks distribution.

Spring Hadoop
1.0.0.M2 Reference Manual 2

http://www.springsource.org/about
http://www.gemstone.com/products/gemfire
http://hbase.apache.org/
http://hive.apache.org/
http://pig.apache.org/
http://hadoop.apache.org/common/docs/stable/#Getting+Started
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
https://ccp.cloudera.com/display/SUPPORT/Cloudera%27s+Hadoop+Demo+VM
http://www.greenplum.com/products/greenplum-hd
http://hortonworks.com/technology/techpreview/

Part Il. Spring and Hadoop

Document structure

This part of the reference documentation explains the core functionality that Spring for A pache Hadoop
(SHDP) provides to any Spring based application.

Chapter 2, Hadoop Configuration, MapReduce, and Distributed Cache describes the Spring support for
bootstrapping, initializing and working with core Hadoop.

Chapter 3, Working with the Hadoop File System describes the Spring support for interacting with the
Hadoop file system.

Chapter 4, Working with HBase describes the Spring support for HBase.
Chapter 5, Hive integration describes the Spring support for Hive.

Chapter 6, Pig support describes the Spring support for Pig.

Spring Hadoop

2. Hadoop Configuration, MapReduce, and
Distributed Cache

One of the common tasks when using Hadoop is interacting with its runtime - whether it is a local
setup or aremote cluster, one needs to properly configure and bootstrap Hadoop in order to submit the
required jobs. This chapter will focus on how Spring for Apache Hadoop (SHDP) leverages Spring's
lightweight 10C container to simplify the interaction with Hadoop and make deployment, testing and
provisioning easier and more manageable.

2.1 Using the Spring for Apache Hadoop Namespace

To simplify configuration, SHDP provides adedicated namespace for most of itscomponents. However,
one can opt to configure the beans directly through the usual <bean> definition. For moreinformation
about XML Schemarbased configuration in Spring, seethisappendix inthe Spring Framework reference
documentation.

To use the SHDP namespace, one just needs to import it inside the configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: Ohdp="0Oht t p: / / ww. spri ngf r anewor k. or g/ schenma/ hadoop”
xsi : schemalLocat i on="
http://ww. springfranmework. org/ schema/ beans http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xs
http://ww. springframework. or g/ scherma/ hadoop http://wwmv. spri ngframewor k. or g/ schema/ hadoop/ spri ng- hadoop

<bean id ... >
O<hdp: configuration ...>
</ beans>

O Spring for Apache Hadoop namespace prefix. Any name can do but through out the reference
documentation, the hdp will be used.

0 Thenamespace URI.

0 The namespace URI location. Note that even though the location points to an external address
(which exists and is valid), Spring will resolve the schema locally asit isincluded in the Spring
for Apache Hadoop library.

00 Declaration example for the Hadoop namespace. Notice the prefix usage.

Once declared, the namespace elements can be declared simply by appending the aforementioned prefix.
Note that is possible to change the default namespace, for example from <beans> to <hdp>. Thisis
useful for configuration composed mainly of Hadoop components as it avoids declaring the prefix. To
achieve this, smply swap the namespace prefix declaration above:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns="http://ww. spri ngfranmewor k. or g/ schena/ hadoop" [
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

Oxm ns: beans="htt p: //ww. spri ngframewor k. or g/ scherma/ beans"
Xsi : schemalLocat i on="

Spring Hadoop
1.0.0.M2 Reference Manual 4

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/xsd-config.html

Spring Hadoop

O<beans: bean id ... >

O<configuration ...>

</ beans: beans>

0 The default namespace declaration for this XML file points to the Spring for Apache Hadoop
namespace.

0 The beans namespace prefix declaration.

Bean declaration using the <beans> namespace. Notice the prefix.

[0 Bean declaration using the <hdp> namespace. Notice the lack of prefix (as hdp is the default
namespace).

O

For the remainder of thisdoc, to improve readability, the XML exampleswill simply refer tothe<hdp>
namespace without the namespace declaration, where possible.

2.2 Configuring Hadoop

In order to use Hadoop, one needsto first configure it namely by creating aConf i gur at i on object.
The configuration holdsinformation about the job tracker, the input, output format and the various other
parameters of the map reduce job.

In its simplest form, the configuration definition is a one liner:

<hdp: confi guration />

The declaration above defines a Confi gur ati on bean (to be precise a factory bean of type
Confi gur at i onFact or yBean) named, by default, hadoopConf i gur at i on. Thedefault name
isused, by conventions, by the other elementsthat require aconfiguration - thisleadsto simple and very
concise configurations as the main components can automatically wire themselves up without requiring
any specific configuration.

For scenarios where the defaults need to be tweaked, one can passin additional configuration files:

<hdp: configuration resources="cl asspath:/customsite.xm, classpath:/hg-site.xm">

In this example, two additional Hadoop configuration resources are added to the configuration.

Note

Note that the configuration makes use of Spring's Resour ce abstraction to locate the file.
This allows various search patterns to be used, depending on the running environment or the
prefix specified (if any) by the value - in this exampl e the classpath is used.

In addition to referencing configuration resources, one can tweak Hadoop settings directly through Java
Pr operti es. Thiscan be quite handy when just afew options need to be changed:

Spring Hadoop
1.0.0.M2 Reference Manual 5

http://ww. springframework. or g/ schema/ beans http://ww. spri ngfranework. or g/ schema/ beans/ spri ng- beans. xs
http: //ww. spri ngfranewor k. or g/ schema/ hadoop http://wwv spri ngfranmewor k. or g/ schema/ genfire/ spring-hadoo

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/resources.html

Spring Hadoop

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://wmv springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: hdp="htt p: // wwv. spri ngf ramewor k. or g/ schena/ hadoop"
xsi : schemaLocati on="http://wmv spri ngfranmewor k. or g/ schema/ beans http://wwmv. springfranmewor k. or g/ schema/ bean:
http://ww. springfranmework. or g/ schema/ hadoop http://ww. spri ngframewor k. or g/ schema/ hadoop/ spri ng- ha

<hdp: confi gur ati on>
fs.defaul t. nane=hdfs://I| ocal host: 9000
hadoop. t nmp. di r =/ t np/ hadoop
el ectric=sea
</ hdp: confi gurati on>
</ beans>

One can further customize the settings by avoiding the so called hard-coded values by externalizing
them so they can be replaced at runtime, based on the existing environment without touching the
configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: hdp="htt p: // ww. spri ngf ramewor k. or g/ scherma/ hadoop"
xm ns: context="http://wwmv spri ngframework. or g/ schema/ cont ext "
xsi : schemaLocati on="http://wwm. spri ngfranmewor k. or g/ schema/ beans http://wwmv. springfranmewor k. or g/ schema/ bean:
http://ww. springfranework. org/ schenma/ context http://ww. springfranework. org/ schena/ cont ext/ spri ng-
http://ww. springframework. or g/ schema/ hadoop http://ww. spri ngframewor k. or g/ schema/ hadoop/ spri ng- ha

<hdp: confi gurati on>
fs.defaul t.name=${hd. f s}
hadoop.tnp.dir=file://${java.io.tnpdir}
hangar =${ nunber : 18}

</ hdp: confi gurati on>

<cont ext : property-pl acehol der | ocation="cl asspat h: hadoop. properties" />
</ beans>

Through Spring's property placeholder support, SpEL and the environment abstraction (available in
Spring 3.1). one can externalize environment specific properties from the main code base easing the
deployment across multiple machines. In the example above, the default file system is replaced based
on the properties available in hadoop. pr operti es while the temp dir is determined dynamically
through SpEL. Both approaches offer alot of flexbility in adapting to the running environment - in fact
we use this approach extensivly in the Spring for Apache Hadoop test suite to cope with the differences
between the different development boxes and the Cl server.

Additionally, external Pr operti es files can be loaded, Pr operti es beans (typicaly declared
through Spring's util namespace). Along with the nested properties declaration, this alows
customized configurations to be easily declared:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wmv springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: hdp="htt p: // www. spri ngf ramewor k. or g/ schena/ hadoop"
xm ns: context ="http://wmv springfranmewor k. or g/ schema/ cont ext"
xm ns:util="http://ww. springframework. org/schema/util"
Xsi : schemaLocati on="htt p: //ww. spri ngfranmewor k. or g/ schema/ beans http://ww. spri ngfranework. or g/ schenma/ b
http: //ww. spri ngfranework. org/ schena/ cont ext http://ww. springfranework. org/ schena/ cont ext/ spri ng-

Spring Hadoop
1.0.0.M2 Reference Manual 6

http://static.springsource.org/spring/docs/3.0.x/reference/beans.html#beans-factory-placeholderconfigurer
http://static.springsource.org/spring/docs/3.0.x/reference/expressions.html
http://blog.springsource.com/2011/06/09/spring-framework-3-1-m2-released/
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/xsd-config.html#xsd-config-body-schemas-util-properties

Spring Hadoop

http://ww. springframework. org/ schema/util http://ww. springfranework. org/schema/util/spring-util.x
http: // wwv. spri ngfranmewor k. or g/ schema/ hadoop http://wwv spri ngframewor k. or g/ schema/ hadoop/ spri ng- ha

<I-- merge the local properties, the props bean and the two properties files -->

<hdp: configurati on properties-ref="props" properties-location="cfg-1.properties, cfg-2.properties">
st ar =chasi ng
capt ai n=eo

</ hdp: confi gurati on>

<util:properties id="props" |ocation="props.properties"/>
</ beans>

When merging several properties, ones defined locally win. In the example above the configuration
properties are the primary source, followed by the pr ops bean followed by the external propertiesfile
based on their defined order. While it's not typical for a configuration to refer to use so many properties,
the exampl e showcases the various options available.

Note

For more properties utilities, including using the System as a source or fallback, or control
over the merging order, consider using Spring's Pr operti esFact or yBean (which is
what Spring for Apache Hadoop and ut i | : properti es use underneath).

It is possible to create configuration based on existing ones - this alows one to create dedicated
configurations, sightly different from the main ones, usable for certain jobs (such as streaming - more
on that below). Simply usethe conf i gur at i on- r ef attribute to refer to the parent configuration -
all its propertieswill be inherited and overridden as specified by the child:

<I-- default nane is 'hadoopConfiguration' -->
<hdp: confi gur ati on>
fs. defaul t.name=${hd. f s}
hadoop.tnp.dir=file://${java.io.tnpdir}
</ hdp: confi gurati on>

<hdp: configuration id="custonm configuration-ref="hadoopConfi guration">
fs.defaul t. name=${cust om hd. f s}
</ hdp: confi gurati on>

Make surethough you specify adifferent name since otherwise, since both definitionswill havethe same
name, the Spring container will interpret this as being the same definition (and will usually consider
the last one found).

Another option worth mentioning is r egi st er-url - handl er which, as the name implies,
automatically registers an URL handler in the running VM. This allows urls referrencing hdfs resource
(by using the hdf s prefix) to be properly resolved - if the handler is not registered, such an URL would
through an exception since the VM does not know what hdf s mean.

Note

Since only one URL handler can be registered per VM, at most once, this option is turned off
by default. Due to the reasons mentioned before, once enabled if it fails, it will log the error

Spring Hadoop
1.0.0.M2 Reference Manual 7

http://static.springsource.org/spring/docs/3.0.x/api/org/springframework/beans/factory/config/PropertiesFactoryBean.html

Spring Hadoop

but will not throw an exception. If your hdf s URLSs stop working, make sure to investigate
this aspect.

Last but not least a reminder that one can mix and match all these options to her preference. In
general, consider externalizing configuration since it allows easier updates without interfering with
the application configuration. When dealing with multiple, similar configuration use configuration
composition as it tends to keep the definitions concise, in sync and easy to update.

2.3 Creating a Hadoop Job

Once the Hadoop configuration is taken care of, one needs to actually submit some work to it. SHDP
makes it easy to configure and run Hadoop jobs whether they are vanilla map-reduce type or streaming.
Let us start with an example:

<hdp:job id="nr-job"
i nput - pat h="/i nput/" out put - pat h="/ouput/"
mapper =" or g. apache. hadoop. exanpl es. Wr dCount . Tokeni zer Mapper "
reducer =" or g. apache. hadoop. exanpl es. Wor dCount . | nt SunReducer"/ >

The declaration above creates a typical Hadoop Job: specifiesitsinput and output, the mapper and the
reducer classes. Notice that there is no reference to the Hadoop configuration above - that's because,
if not specified, the default naming convention (hadoopConf i gur ati on) will be used instead.
Neither are the key or value types - these two are automatically determined through a best-effort
attempt by analyzing the class information of the mapper and the reducer. Of course, these settings can
be overridden: the former through the conf i gur ati on-r ef element, the latter through key and
val ue attributes. There are plenty of options available not shown in the example (for ssimplicity) such
as the jar (specified directly or by class), sort or group comparator, the combiner, the partitioner, the
codecs to use or the input/output format just to name afew - they are supported, just take alook at the
SHDP schema (Appendix A, Soring for Apache Hadoop Schema) or simply trigger auto-completion
(usually ALT+SPACE) in your IDE; if it supports XML namespaces and is properly configured it will
display the available elements. Additionally one can extend the default Hadoop configuration object and
add any special properties not available in the namespace or its backing bean (JobFact or yBean).

It is worth pointing out that per-job specific configurations are supported by specifying the custom
properties directly or referring to them (more information on the pattern is available here):

<hdp:job id="nr-job"
i nput - pat h="/i nput/" out put - pat h="/ ouput / "
mapper =" mapper cl ass" reducer="reducer class"
jar-by-class="cl ass used for jar detection"
properties-|ocati on="cl asspat h: speci al -j ob. properties">
el ectric=sea
</ hdp: j ob>

Note

The job definition can validate the existance of the input and output paths before submitting
the actual job (which is slow), to prevent its failure. Take a look at validate-paths attribute
avoid these errors early on without having to touch the job tracker only to get an exception.

Spring Hadoop
1.0.0.M2 Reference Manual 8

Spring Hadoop

j ob provides additional properties, such as the generic options, however one that is worth mentioning
isj ar which allowsajob (and its dependencies) to be loaded form entirely from aspecified jar. Thisis
useful for isolating jobs and avoiding classpath and versioning collisions. Note that provisioning of the
jar into the cluster, still depends on the target environment - see the aforementioned section for more
info (such asl i bs).

Creating a Hadoop Streaming Job

Hadoop Streaming job (or in short streaming), is a popular feature of Hadoop as they allow the creation
of Map/Reduce jobs with any executable or script (the equivalent of using the previous counting words
exampleistousecat andwc commands). Whileitisrather easy to start up streaming from the command
line, doing so programatically, such as from a Java environment, can be challenging due to the various
number of parameters (and their ordering) that need to be parsed. SHDP simplifies such as tasks - it's
as easy and straight-forward as declaring aj ob from the previous section; in fact most of the attributes
will be the same:

<hdp: streani ng i d="stream ng"
i nput - pat h="/1i nput/" out put - pat h="/ouput/"
mapper ="${path.cat}" reducer="${path. wc}"/>

Existing users might be wondering how can they pass the command line arguments (such as - D or -
cndenv). These former customize the Hadoop configuration (which has been convered in the previous
section) while the latter are supported through the cnd- env element:

<hdp: streamni ng i d="streani ng-env"
i nput - pat h="/1i nput/" out put - pat h="/ouput/"
mapper =" ${ pat h. cat}" reducer="${path. wc}">
<hdp: cnd- env>
EXAMPLE_DI R=/ hore/ exanpl e/ di cti onari es/

</ hdp: cnd- env>
</ hdp: streamni ng>

Just likej ob, st r eam ng supports the generic options; follow the link for more information.
Running a Hadoop Job

Thejobs, after being created and configured, need to be submitted for execution to a Hadoop cluster. For
non-trivial cases, a coordinating, workflow solution such as Spring Batch is recommended . However
for basic job submission SHDP provides JobRunner class which submits several jobs sequentially
(and waits by default for their completion):

<bean id="runner" cl ass="org. springfranmework. dat a. hadoop. mapr educe. JobRunner" p:jobs-ref="job"/>

<hdp:job id="job" input-path="/input/" output-path="/output/"
mapper =" or g. apache. hadoop. exanpl es. Wr dCount . Tokeni zer Mapper "
reducer =" or g. apache. hadoop. exanpl es. Wor dCount . | nt SunReducer" />

Multiple jobs can be specified and even nested if they are not used outside the runner:

<bean id="runner" cl ass="org. springfranmework. dat a. hadoop. mapr educe. JobRunner " >

Spring Hadoop
1.0.0.M2 Reference Manual 9

http://hadoop.apache.org/common/docs/current/streaming.html
http://en.wikipedia.org/wiki/Cat_%28Unix%29
http://en.wikipedia.org/wiki/Wc_%28Unix%29

Spring Hadoop

<property name="jobs"><l|ist>
<!-- reference to another job named 'job' -->
<ref bean="stream ng-job"/>
<I-- nested bean definition -->
<hdp:job id="nested-job" />
</list></property>
</ bean>
<hdp:job id="job" ... />

2.4 Using the Hadoop Job tasklet

For Spring Batch environments, SHDP provides a dedi cated tasklet to execute Hadoop jobsasastep in
a Spring Batch workflow. An example declaration is shown below:

<hdp: t askl et i d="hadoop-tasklet" job-ref="nr-job" wait-for-job="true" />

The tasklet above references a Hadoop job definition named "mr-job". By default, wait-for-job is true
so that the tasklet will wait for the job to complete when it executes. Setting wait-for-job to false will
submit the job to the Hadoop cluster but not wait for it to complete.

2.5 Running a Hadoop Tool

Itis common for Hadoop utilities and librariesto be started from the command-line (ex: hadoop | ar

some.jar). SHDP offers generic support for such cases provided that the packages in question are built
on top of Hadoop standard infrastructure, namely Tool and Tool Runner classes. As oppose to the
command-line usage, Tool instances benefit from Spring's 10C features; they can be parameterized,
created and destroyed on demand and have their properties (such as the Hadoop configuration) injected.

Consider thetypical j ar example - invoking aclasswith some (two in this case) arguments (notice that
the Hadoop configuration properties are passed as well):

bi n/ hadoop jar -conf hadoop-site.xm -jt darw n:50020 -D property=val ue sonelar.jar org.foo.SomeTool data/i

Since SHDP has first-class support for configuring Hadoop, the so called generi ¢ opti ons aren't
needed any more, even more so since typically there is only one Hadoop configuration per application.
Through t ool - r unner element (and its backing Tool Runner class) one typically just needs to
specify the Tool implementation and its arguments:

<hdp: tool -runner id="soneTool" tool-class="org.foo.SonmeTool " configuration-ref="hadoopConfi guration">
<hdp: arg val ue="data/in.txt"/>
<hdp: arg val ue="data/out.txt"/>

property=val ue
</ hdp: t ool - runner >

The previous example assumesthe Tool dependencies (such asits class) are available in the classpath.
If that isnot the case, t ool - runner alowsajar to be specified:

<hdp:tool -runner ... jar="nyTool.jar">

Spring Hadoop
1.0.0.M2 Reference Manual 10

Spring Hadoop

</ hdp: t ool - runner >

Thejarisusedtoinstantiate and start thetool - infact all itsdependenciesareloaded from thejar meaning
they no longer need to be part of the classpath. This mechanism provides proper isolation between tools
as each of them might depend on certain libraries with different versions; rather then adding them all
into the same app (which might be impossible due to versioning conflicts), one can simply point to the
different jars and be on her way. Note that when using ajar, if the main class (as specified by the Main-
Class entry) isthetarget Tool , one can skip specifying the tool asit will picked up automatically.

Liketherest of the SHDPelements, t ool - r unner alowsthe passed Hadoop configuration (by default
hadoopConf i gur at i on but specified in the example for clarity) to be customized accordingly; the
snippet only highlights the property initialization for simplicity but more options are available. Since
usualy the Tool implementation has a default argument, one can use the t ool - cl ass attribute
however it is possible to refer to another Tool instance or declare a nested one:

<hdp: tool -runner id="sonmeTool" run-at-startup="true">
<bean cl ass="org. f 0o. Anot her Tool " p:input="data/in.txt" p:output="data/out.txt"/>
</ hdp: t ool - runner >

Thisis quite convenient if the Tool class provides setters or richer constructors. Note that by default
thet ool - r unner does not executesthe Tool until its definition isactually called - this behavior can
be changed through ther un- at - st ar t up attribute above.

Replacing Hadoop shell invocations with t ool

t ool isaniceway for migrating series or shell invocations or scripts into fully wired, managed Java
objects. Consider the following shell script:

hadoop jar jobl.jar -files fullpath:props.properties -Dconfig=config.properties ...
hadoop jar job2.jar argl arg2..

hadoop jar joblO.jar ...

Each job is fully contained in the specified jar, including all the dependencies (which might conflict
with the ones from other jobs). Additionally each invocation might provide some generic options or
arguments but for the most part al will share the same configuration (as they will execute against the
same cluster).

The script can be fully ported to SHDP, through thet ool element:

<hdp:tool id="jobl" tool-class="jobl.Tool" jar="jobl.jar" files="fullpath:props.properties" properties-|loca
<hdp:tool id="job2" jar="job2.jar">
<hdp: arg val ue="arg1"/>
<hdp: arg val ue="arg2"/>
</ hdp: t ool >
<hdp:tool id="job3" jar="job3.jar"/>

All the features have been explained in the previous sections but let us review what happens here. As
mentioned before, each tool gets autowired with the hadoopConf i gur ati on; j ob1 goes beyond
this and uses its own properties instead. For the first jar, the Tool class is specified, however the

Spring Hadoop
1.0.0.M2 Reference Manual 11

http://docs.oracle.com/javase/tutorial/deployment/jar/appman.html
http://docs.oracle.com/javase/tutorial/deployment/jar/appman.html

Spring Hadoop

rest assume the jar main classes implement the Tool interface; the namespace will discover them
automatically and use it accordingly. When needed (such as with j ob1), additiona files or libs are
provisioned in the cluster. Same thing with the job arguments.

However more things that go beyond scripting, can be applied to this configuration - each job can
have multiple properties loaded or declared inlined - not just from the local file system, but also
from the classpath or any url for that matter. In fact, the whole configuration can be externalized and
parameterized (through Spring's property placeholder and/or Environment abstraction). Moreover, each
job can be ran by itself (through the JobRunner) or as part of a workflow - either through Spring's
depends- on or the much more powerful Spring Batch and t ool -t askl et .

2.6 Using the Hadoop Tool tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hadoop tasks as a step
in a Spring Batch workflow. The tasklet element supports the same configuration options as tool -runner
except for r un- at - st ar t up (which does not apply for aworkflow):

<hdp: tool -taskl et id="tool -tasklet" tool-ref="sonme-tool" />

2.7 Map Reduce Generic Options

The j ob, stream ng and t ool all support a subset of generic options, specifically ar chi ves,
filesandlibs.|ibs isprobably the most useful as it enriches a job classpath (typicaly with
some jars) - however the other two allow resources or archives to be copied through-out the cluster for
the job to consume. Whenver faced with provisioning issues, revisit these options as they can help up
significantly. Notethat thef s,j t orconf optionsare not supported - these are designed for command-
line usage, for bootstrapping the application. Thisis nho longer the case, as the SHDP offers first-class
support for defining and customizing Hadoop configurations.

2.8 Configuring the Hadoop Di st ri but edCache

DistributedCache is a Hadoop facility for distributing application-specific, large, read-only files (text,
archives, jars and so on) efficiently. Applications specify the files to be cached via urls (hdf s: / /)
using Di st ri but edCache and the framework will copy the necessary filesto the slave nodes before
any tasks for the job are executed on that node. Its efficiency stems from the fact that the files are only
copied once per job and the ability to cache archives which are un-archived on the slaves. Note that
Di stri but edCache assumes that the files to be cached (and specified via hdfs:// urls) are already
present on the Hadoop Fi | eSyst em

SHDP provides first-class configuration for the distributed cache through its cache element (backed
by D stri but edCacheFact or yBean class), dlowing files and archives to be easily distributed
across nodes:

<hdp: cache create-sym ink="true">
<hdp: cl asspath val ue="/cp/sone-library.jar#library.jar" />
<hdp: cache val ue="/cache/ some- ar chi ve. t gz#nmai n- archi ve" />
<hdp: cache val ue="/cache/ some-resource.res" />

Spring Hadoop
1.0.0.M2 Reference Manual 12

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/new-in-3.1.html#d0e1313
http://hadoop.apache.org/common/docs/stable/commands_manual.html#Generic+Options
http://hadoop.apache.org/common/docs/stable/mapred_tutorial.html#DistributedCache

Spring Hadoop

<hdp: | ocal val ue="some-file.txt" />
</ hdp: cache>

The definition above registers severa resources with the cache (adding them to the job cache or
classpath) and creates symlinks for them. As described inthe Di st ri but edCache documentation,
the declaration format is (absol ut e- pat h#l i nk- nane). Thelink name is determined by the URI
fragment (the text following the# such as#library.jar or #main-archive above) - if no nameis specified,
the cache bean will infer one based on the resource file name. Note that one does not have to specify the
hdf s: // node: port prefix asthese are automatically determined based on the configuration wired
into the bean; this prevents environment settings from being hard-coded into the configuration which
becomes portable. Additionally based on the resource extension, the definition differentiates between
archives (.t gz, .tar.gz,. zi p and. t ar) which will be uncompressed, and regular files that are
copied as-is. Aswith therest of the namespace declarations, the definition aboverelieson defaults- since
it requires a Hadoop Confi gur ati on and Fi | eSyst emobjects and none are specified (through
configuration-ref andfil e-systemref) it falsback to the default naming and is wired
with the bean named hadoopConfiguration, creating the Fi | eSyst emautomatically.

Spring Hadoop
1.0.0.M2 Reference Manual 13

http://hadoop.apache.org/common/docs/stable/mapred_tutorial.html#DistributedCache

Spring Hadoop

3. Working with the Hadoop File System

A common task in Hadoop isinteracting with itsfile system, whether for provisioning, adding new files
to be processed, parsing results, or performing cleanup. Hadoop offers several waysto achievethat: one
can useits Java API (namely Fi | eSyst en) or use the hadoop command line, in particular the file
system shell. However there is no middle ground, one either has to use the (somewhat verbose, full of
checked exceptions) API or fall back to the command line, outside the application. SHDP addressesthis
issue by bridging the two worlds, exposing both the Fi | e Syst emand the fs shell through an intuitive,
easy-to-use Java API. Add your favorite VM scripting language right inside your Spring for Apache
Hadoop application and you have a powerful combination.

3.1 Configuring the file-system

The Hadoop file-system, HDFS, can be accessed in various ways - this section will cover the most
popular protocolsfor interacting with HDFS and their prosand cons. SHDP does hot enforce any specific
protocol to be used - infact, asdescribed inthissection any Fi | eSy st emimplementation can be used,
allowing even other implementations then HDFS to be used.

The table below describes the common HDFS APIsin use:

Table 3.1. HDFSAPIs

File System Comm. Method Scheme/ Prefix Read / Write CrossVersion

HDFS RPC hdfs: // Read / Write Same HDFS
version only

HFTP HTTP hftp:// Read only Version
independent

WebHDFS HTTP (REST) webhdfs:// Read / Write Version
independent

hdf s: // protocol should be familiar to most reader - most docs (and in fact the previous chapter as
well) mention it. It works out of the box and it's fairly efficient however because it is RPC based, it
requires both the client and the Hadoop cluster to share the same version. Upgrading one without the
other causes serialization errors meaning the client cannot interact with the cluster. As an alternative
one can use hf t p: // which is HTTP-based or its more secure brother hsft p: // (based on SSL)
which gives you aversion independent protocol meaning you can useit to interact with clusters with an
unknown or different version then that of the client. hf t p isread only (write operations will fail right
away) and it istypically used with di sct p for reading data. webhdf s: // isone of the additionsin
Hadoop 1.0 and is a mixture between hdf s and hf t p protocol - it provides a version-independent,
read-write, REST-based protocol which means that you can read and write to/from Hadoop clusters no
matter their version. Further more, since webhdf s: // is backed by a REST APIs, clients in other
languages can use it with minimal effort.

Spring Hadoop
1.0.0.M2 Reference Manual 14

http://hadoop.apache.org/common/docs/stable/api/index.html?org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/common/docs/stable/file_system_shell.html
http://en.wikipedia.org/wiki/List_of_JVM_languages

Spring Hadoop

Note

Not al file-system work out of the box. For example WebHDFS needs to be enabled
first in the cluster (through df s. webhdf s. enabl ed property) see this document for
more information) while the secure hf t p, hsf t p requires the SSL configuration (such as
certificates) to be specified. Maore about this (and how to use hf t p/ hsf t p for proxying) in
this page.

Once the schema has been decided upon, one can specify it through the standard Hadoop configuration,
either through the Hadoop configuration files and its properties:

<hdp: confi gurati on>
fs. defaul t.nane=webhdfs://I ocal host

</ hdp: confi gurati on>

This instructs Hadoop (and automatically SHDP) what the default, implied file-system is. In SHDP,
one can create additional file-systems (potentially to connect to other clusters) and specify a different
schema:

<I-- manually creates the default SHDP fil e-system named ' hadoopFs' -->
<hdp: fil e-system uri ="webhdfs://| ocal host"/>
<I-- create a different FileSysteminstance -->

<hdp:file-systemid="old-cluster" uri="hftp://old-cluster/"/>

As with the rest of the components, the file systems can be injected where needed - such as file shell
or inside scripts (see the next section).

3.2 Scripting the Hadoop API

Supported scripting languages

SHDP scripting supports any JSR-223 (also known asj avax. scri pt i ng) compliant scripting
engine. Simply add the engine jar to the classpath and the application should be able to find it.
Most languages (such as Groovy or JRuby) provide JSR-233 support out of the box; for those that
do not see the scripting project that provides various adapters.

Since Hadoop is written in Java, accessing its APIs in a native way provides maximum control
and flexibility over the interaction with Hadoop. This holds true for working with its files system;
in fact al the other tools that one might use are built upon these. The main entry point is the
or g. apache. hadoop. f s. Fi | eSyst emabstract class which provides the foundation of most (if
not al) of the actual file system implementations out there. Whether one is using a local, remote or
distributed store through the Fi | eSyst emAPI she can query and manipulate the avail able resources
or create new ones. To do so however, one needs to write Java code, compile the classes and configure
them which is somewhat cumbersome especially when performing simple, straight-forward operations
(like copy afile or delete a directory).

Spring Hadoop
1.0.0.M2 Reference Manual 15

http://hadoop.apache.org/common/docs/r1.0.0/webhdfs.html#Document+Conventions
http://hadoop.apache.org/hdfs/docs/r0.21.0/hdfsproxy.html
http://www.jcp.org/en/jsr/detail?id=223
http://java.net/projects/scripting

Spring Hadoop

JVM scripting languages (such as Groovy, JRuby, Jython or Rhino to name just afew) provide a nice
solution to the Java language; they run on the JVM, can interact with the Java code with no or few
changes or restrictions and have a nicer, simpler, less ceremonial syntax; that is, there is no need to
define a class or a method - simply write the code that you want to execute and you are done. SHDP
combines the two, taking care of the configuration and the infrastructure so one can interact with the
Hadoop environment from her language of choice

Let ustake alook of aJavaScript example using Rhino (which is part of JDK 6 or higher, meaning one
does not need any extralibraries):

<beans xm ns="http://ww. spri ngfranework. or g/ schema/ beans" ...>
<hdp: configuration .../>

<hdp: script id="inlined-js" |anguage="javascript">
i mport Package(java.util);

nanme = UUl D. randomJUl D().toString()
scriptNanme = "src/test/resources/test. properties"”
/Il fs - FileSysteminstance based on 'hadoopConfiguration' bean
/] call FileSystemicopyFroniocal (Path, Path)
fs.copyFromnLocal Fil e(scri pt Name, nane)
/1 return the file length
fs. get Lengt h(nane)
</ hdp: scri pt >

</ beans>

Thescri pt element, part of the SHDP namespace, builds on top of the scripting support in Spring
permitting script declarations to be evaluated and declared as normal bean definitions. Further more it
automatically exposes Hadoop-specific objects, based on the existing configuration, to the script such
asthe Fi | eSyst em(more on that in the next section). As one can see, the script is fairly obvious: it
generates arandom name (using the UUI Dclassfromj ava. uti | package) and the copiesalocal file
into HDFS under the random name. The last line returns the length of the copied file which becomes
the value of the declaring bean (in this case i nl i ned-j s) - note that this might vary based on the
scripting engine used.

Note

The attentive reader might have noticed that the arguments passed to the Fi | e Sy st emobject
are not of type Pat h but rather St ri ng. To avoid the creation of Pat h object, SHDP uses
awrapper class (Si npl er Fi | eSyst en) which automatically does the conversion so you
don't have to. For more information see the implicit variables section.

Note that for inlined scripts, one can use Spring's property placeholder configurer to automatically
expand variables at runtime. Using one of the examples before:

<beans ...>
<cont ext: property-pl acehol der | ocati on="cl asspat h: hadoop. properties" />

<hdp: scri pt | anguage="j avascri pt">

tracker=${ hd. f s}

</ hdp: scri pt >

Spring Hadoop
1.0.0.M2 Reference Manual 16

http://groovy.codehaus.org/
http://jruby.org/
http://www.jython.org/
http://www.mozilla.org/rhino/

Spring Hadoop

</ beans>

Notice how the script above relies on the property placeholder to expand ${ hd. f s} with the values
fromhadoop. properti es fileavailablein the classpath.

Using scripts

Inlined scripting is quite handy for doing simple operations and couple with the property expansion is
quite a powerful tool that can handle a variety of use cases. However when more logic is required or
the script is affected by XML formatting, encoding or syntax restrictions (such as Jython/Python for
which white-spaces are important) one should consider externalization. That israther then declaring the
script directly inside the XML, one can declareit in its own file. And speaking of Python, consider the
variation of the previous example:

<hdp: scri pt | ocation="org/conpany/ basic-script.py"/>

The definition does not bring any surprises but do notice there is no need to specify the language (asin
the case of ainlined declaration) since script extension (py) already provides that information. Just for
completeness, thebasi ¢c- scri pt. py looksasfollows:

fromjava.util inmport UU D
from org. apache. hadoop. fs inport Path

print "Home dir is " + str(fs.homeDirectory)
print “Work dir is " + str(fs.workingDirectory)
print "/user exists " + str(fs.exists("/user"))

nane = UUl D. randomJUl D().toString()

scriptNane = "src/test/resources/test. properties"”
fs.copyFromnLocal Fil e(scri pt Name, nane)

print Path(nane). makeQualified(fs)

3.3 Scripting implicit variables

To ease the interaction of the script with its enclosing context, SHDP hinds by default the so-called
implicit variables. These are:

Table 3.2. Implicit variables

Name Type Description

or g. apAghe. hadoop. conf . Confi gur at i orHadoop Configuration (relies on
hadoopConfiguration bean or singleton type match)

clj ava. | ang. G assLoader ClassL oader used for executing the script
or g. spri ngfabamewor k. cont ext . Appl i cat i onCoriErekasing application context
org.springframx®ik. i 0. support. Resour ceP&htles ndqReggmiceakeon context Resourcel oader

org. springframgop k. dat a. hadoop. f|s. Di st ri but eBgpgniinatic access to DistCp

Spring Hadoop
1.0.0.M2 Reference Manual 17

Spring Hadoop

Name Type Description

or g.fapache. hadoop. f s. Fi | elsgsopeile System (relies on 'hadoop-fs bean or singleton
type match, falls back to creating one based on 'cfg’)

org. spri rigir amewor k. dat a. hadodiil efSystes3nell | exposing hadoop 'fs' commands as an AP

or g. spri ngf r awdésiRir k. dat a. hadoop. | 0. Hdf $Rfsmsoured mader(relies on *hadoop-resource-
loader' or singleton type match, falls back
to creating one automatically based on 'cfg")

Note

If noHadoop Conf i gur at i on canbedetected (either by namehadoopConf i gur ati on
or type), several log warnings will be made and none of the Hadoop-based variables namely
cfg,distcp,fs,fsh,distcp orhdf sRL bound.

Asmentioned in the Description column, the variables are first looked (either by name or by type) inthe
application context and, in casethey are missing, created on the spot based on the existing configuration.
Note that it is possible to override or add new variables to the scripts through the pr operty sub-
element that can set values or references to other beans:

<hdp: scri pt | ocation="org/conpany/basic-script.js">
<hdp: property nane="foo" val ue="bar"/>
<hdp: property nane="ref" ref="sone-bean"/>

</ hdp: scri pt >

3.4 File System Shell (FsShell)

A handy utility provided by the Hadoop distribution is the file system shell which allows UNIX-like
commands to be executed against HDFS. One can check for the existance of files, delete, move, copy
directories or files or setting up permissions. However the utility is only available from the command-
linewhichmakesit hard to useit from/insideaJavaapplication. To addressthis problem, SHDP provides
alightweight, fully embeddable shell, called FsShel | which mimics most of the commands available
from the command line: rather then dealing with the Syst em i n or Syst em out , one deals with
objects.

Let ustake alook of using FsShel | by building on the previous scripting examples:

<hdp: scri pt | ocation="org/conpany/ basi c-script.groovy"/>

name = UUI D.randonJUl D().toString()
scriptName = "src/test/resources/test. properties"
fs.copyFroniocal Fil e(scri pt Name, nane)

/'l use the shell (nmemde avail able under variable fsh

dir = "script-dir"

if (!fsh.test(dir)) {
fsh.nkdir(dir); fsh.cp(name, dir); fsh.chnmodr (700, dir)
printin "File content is " + fsh.cat(dir + name).toString()

}
println fsh.ls(dir).toString()

Spring Hadoop
1.0.0.M2 Reference Manual 18

http://hadoop.apache.org/common/docs/stable/file_system_shell.html

Spring Hadoop

fsh.ror(dir)

As mentioned in the previous section, aFs Shel | instanceisautomatically created and for configured
for scripts, under the name fsh. Notice how the entire block relies on the usual commands: t est ,
nkdi r, cp and so on. Their semantics are exactly the same as in the command-line version however
one has access to anative Java APl that returns actual objects (rather then St r i ngs) making it easy to
use them programmatically whether in Javaor another language. Further more, the class offers enhanced
methods (such aschnodr which standsfor recursive chnod) and multiple overloaded methodstaking
advantage of varargs so that multiple parameters can be specified. Consult the API for moreinformation.

To be as close as possible to the command-line shell, FsShel | mimics even the messages being
displayed. Take a look at line 9 which prints the result of fsh. cat (). The method returns a
Col | ect i on of Hadoop Pat h objects (which one can use programatically). However when invoking
t oSt r i ng on the collection, the same printout as from the command-line shell is being displayed:

File content is sone text

The same goes for the rest of the methods, such as| s. The same script in JRuby would ook something
likethis:

require 'java

name = java.util.UU D.randomJUl D().to_s
scriptName = "src/test/resources/test. properties"
$fs. copyFronlLocal Fi | e(scri pt Nanme, nane)

use the shel
dir = "script-dir/"

print $fsh.ls(dir).to_s

which prints out something like this:

dr wx- - - - - - - user super gr oup 0 2012-01-26 14:08 /user/user/script-dir

STWr--1-- 3 user super gr oup 344 2012-01-26 14: 08 /user/user/script-dir/520cf2f6-a0b6-427e-a23

Asyou can see, hot only you can reuse the existing tools and commands with Hadoop inside SHDP, but
you can also code against them in various scripting languages. And as you might have noticed, thereis
no special configuration required - thisis automatically inferred from the enclosing application context.

Note

The careful reader might have noticed that besidesthe syntax, there are some minor differences
in how the various langauges interact with the java objects. For example the automatic
toString cal called in Java for doing automatic St ri ng conversion is not necessarily
supported (hencethet o_s inRuby or st r in Python). Thisisto be expected aseach language
hasitsown semantics- for the most part these are easy to pick up but do pay attention to details.

DistCp API

Similar to the FsShel | , SHDP provides alightweight, fully embeddable Di st Cp version that builds
on top of the di st cp from the Hadoop distro. The semantics are configuration options are the same

Spring Hadoop
1.0.0.M2 Reference Manual 19

http://docs.oracle.com/javase/1.5.0/docs/guide/language/varargs.html
http://static.springsource.org/spring-hadoop/docs/current/api/index.html?org/springframework/data/hadoop/fs/FsShell.html
http://hadoop.apache.org/common/docs/stable/distcp.html

Spring Hadoop

however, one can use it from within an Java application without having to use the command-line. See
the API for more information:

<hdp: scri pt | anguage="groovy">di stcp. copy("${distcp.src}", "${distcp.dst}")</hdp:script>

The bean above triggers a distributed copy relying again on Spring's property placeholder variable
expansion for its source and destination.

3.5 Scripting Lifecycle

The scri pt namespace provides various options to adjust its behaviour depending on the script
content. By default the script is executed in alazy manner - that is when the declaring bean is being
referred/used by another entity. One however can change that so that the script gets evaluated at startup
throughther un- at - st ar t up flag (whichisby default f al se). Similarily, by default the script gets
evaluated every single time the bean is being invoked - that is the script is actually ran every time one
referstoit. However for scriptsthat are expensive and return the same value every time one has various
caching options, so the evaluation occurs only when needed through the eval uat e attribute:

Table3.3. scri pt attributes

Name Values Description

run-at - f al se(default), Wether the script is executed at startup or on demand (lazy)
startup true

eval uat e ALWAYS(default), Wether to actually evaluate the script when invoked or
| F_MODI FI ED, used apreviousvaue. ALWAYS means evaluate every time,
ONCE | F_MODI FI ED evauate if the backing resource (such asa

file) has been modified in the meantime and ONCE only one.

3.6 Using the Scripting tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute scripts.

<script-tasklet id="script-tasklet">
<scri pt |anguage="groovy">
i nput Path = "/user/gutenberg/input/word/"
out put Path = "/user/gut enber g/ out put/word/"
if (fsh.test(inputPath)) {
fsh. ror (i nput Pat h)
}
if (fsh.test(outputPath)) {
fsh. rnr (out put Pat h)

}

inputFile = "src/main/resources/datalni etzsche-chapter-1.txt"
fsh. put (i nputFil e, inputPath)
</script>

</script-taskl et>

The tasklet above embedds the script as a nested element. Y ou can also declare a reference to another
script definition, using the script-ref attribute which allows you to externalize the scripting code to an
external resource.

Spring Hadoop
1.0.0.M2 Reference Manual 20

http://static.springsource.org/spring-hadoop/docs/current/api/index.html?org/springframework/data/hadoop/fs/DistCp.html

Spring Hadoop

<script-tasklet id="script-tasklet" script-ref="clean-up"/>

<hdp: scri pt

i d="cl ean-up" | ocation="or g/ conpany/ nyapp/ cl ean- up- wor dcount . gr oovy"/ >

1.0.0.M2

Spring Hadoop
Reference Manual

21

Spring Hadoop

4. Working with HBase

SHDP provides basic configuration for HBase through the hbase- confi gur at i on namespace
element (or its backing HbaseConf i gur at i onFact or yBean).

<I-- default bean id is 'hbaseConfiguration' that uses the existing 'hadoopCconfiguration' object -->
<hdp: hbase- confi gurati on configuration-ref="hadoopCconfiguration" />

The above declaration does more than easily create an HBase configuration object; it will also
manage the backing HBase connections. when the application context shuts down, so will any
HBase connections opened - this behavior can be adjusted through the st op- pr oxy and del et e-
connect i on attributes:

<I-- del ete associ ated connections but do not stop the proxies -->
<hdp: hbase- confi gurati on stop-proxy="fal se" del ete-connecti on="true">
f oo=bar

property=val ue
</ hdp: hbase- confi gurati on>

Notice that like with the other elements, one can specify additional properties specific to this
configuration. In fact hbase- conf i gur at i on provides the same properties configuration knobs
as hadoop configuration:

<hdp: hbase- confi gurati on properties-ref="some-props-bean" properties-I|ocation="classpath:/conf/testing/hbas

4.1 Data Access Object (DAO) Support

One of the most popular and powerful feature in Spring Framework is the Data Access Object (or
DAO) support. It makes dealing with data access technol ogies easy and consistent allowing easy switch
or interconnection of the aforementioned persistent stores with minimal friction (no worrying about
catching exceptions, writing boiler-plate code or handling resource acquisition and disposal). Rather
then reiterating here the value proposal of the DAO support, we recommend the DAO section in the
Spring Framework reference documentation

SHDP provides the same functionality for Apache HBase through its
org. springframewor k. dat a. hadoop. hbase package: an HbaseTenpl at e aong with
several callbacks such as Tabl eCal | back, Rowivapper and Resul t sExt r act or that remove
the low-level, tedious details for finding the HBase table, run the query, prepare the scanner, analyze
the results then clean everything up, letting the developer focus on her actual job (users familiar with
Spring should find the classsmethod names quite familiar).

At the core of the DAO support lies HbaseTenpl at e - a high-level abstraction for interacting with
HBase. The template requires an HBase configuration, once it's set, the template is thread-safe and can
be reused across multiple instances at the same time:

/] default HBase configuration
<hdp: hbase- confi gurati on/ >

/'l wire hbase configuration (using default nane 'hbaseConfiguration') into the tenplate

Spring Hadoop
1.0.0.M2 Reference Manual 22

http://hbase.apache.org
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/dao.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/jdbc.html

Spring Hadoop

<bean i d="htenpl ate" class="org. springfranework. dat a. hadoop. hbase. HbaseTenpl at e" p: confi gurati on-ref="hbase!

The template provides generic callbacks, for executing logic against the tables or doing result or row
extraction, but also utility methods (the so-called one-liners) for common operations. Below are some
examples of how the template usage |ooks like:

// witing to ' MyTabl e
tenpl at e. execut e("MyTabl e", new Tabl eCal | back<Cbj ect >() {
@verride
publ i c Object dolnTabl e(HTabl e table) throws Throwabl e {
Put p = new Put (Bytes.toBytes("SomeRow'));
p. add(Byt es. t oByt es(" SonmeCol um"), Bytes.toBytes("SomeQualifier"), Bytes.toBytes("Avalue"));
tabl e. put(p);
return null;
}
5D

// read each row from' M/Tabl e’
List<String> rows = tenplate.find("MTable", "SoneColum", new Rowivapper<String>() {
@verride
public String mapRow(Result result, int rowNum) throws Exception {
return result.toString();
}
)

The first snippet show-cases the generic Tabl eCal | back - the most generic of the callbacks, it
does the table lookup and resource cleanup so that the user code does not have to. Notice the callback
signature - any exception thrown by the HBase API is automatically caught, converted to Spring's DAO
exceptions and resource clean-up applied transparently. The second example, displays the dedicated
lookup methods - in thiscase f i nd which, as the name implies, finds all the rows matching the given
criteriaand allows user code to be executed against each of them (typically for doing some sort of type
conversion of mapping). If theentireresult isrequired, thenonecan use Resul t sExt r act or instead
of RowMapper .

Besides the template, the package offers support for automatically binding HBase table to the current
thread through Hbasel nt er cept or andHbaseSynchr oni zat i onManager . Thatis, each class
that performs DAO operations on HBase can be wrapped by Hbasel nt er cept or so that each table
in use, once found, is bound to the thread so any subsequent call to it avoids the lookup. Once the
call ends, the table is automatically closed so there is no leakage between requests. Please refer to the
Javadocs for more information.

Spring Hadoop
1.0.0.M2 Reference Manual 23

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/dao.html#dao-exceptions
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/dao.html#dao-exceptions
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/aop.html#aop-schema-advisors

Spring Hadoop

5. Hive integration

When working with http://hive.apache.org from a Java environment, one can choose between the Thrift
client or using the Hive JDBC-likedriver. Both havetheir prosand cons but no matter the choice, Spring
and SHDP supports both of them.

5.1 Starting a Hive Server

SHDP provides a dedicated namespace element for starting a Hive server asa Thrift service (only when
using Hive 0.8 or higher). Simply specify the host, the port (the defaultsarel ocal host and 10000
respectively) and you're good to go:

<I-- by default, the definition nane is 'hive-server' -->
<hdp: hi ve- server host="sone- ot her-host" port="10001" />

If needed the Hadoop configuration can be passed in or additional properties specified. Infact hi ver -
server providesthe same properties configuration knobs as hadoop configuration:

<hdp: hi ve- server host="sone-ot her-host" port="10001" properties-Ilocation="classpath: hi ve-dev. properties" co
sonepr opert y=soneval ue
hi ve. exec. scrat chdi r =/t np/ nmydi r

</ hdp: hi ve- server >

The Hive server is bound to the enclosing application context life-cycle, that is it will automatically
startup and shutdown along-side the application context.

5.2 Using the Hive Thrift Client

Similar to the server, SHDP provides a dedicated namespace element for configuring a Hive client (that
is Hive accessing a server node through the Thrift). Likewise, smply specify the host, the port (the
defaultsarel ocal host and 10000 respectively) and you're done:

<!-- by default, the definition name is 'hive-client' -->
<hdp: hi ve-cl i ent host="sone- ot her-host" port="10001" />

Just aswell, the Hive client is bound to the enclosing application context life-cycle; it will automatically
startup and shutdown along-side the application context. Further more, the client definition also allows
Hive scripts ()either declared inlined or externally) to be executed at startup, once the client connects,
this quite useful for doing Hive specific initialization:

<hi ve-cl i ent host="sone-host" port="sonme-port" xm ns="http://ww. springfranework. org/ schema/ hadoop" >
<hdp: scri pt >
DROP TABLE | F EXI TS test Hi veBat chTabl e;
CREATE TABLE testHi veBatchTabl e (key int, value string);
</ hdp: scri pt >
<hdp: scri pt | ocation="cl asspat h: or g/ conpany/ hi ve/ script.q" />
</hive-client> />

Spring Hadoop
1.0.0.M2 Reference Manual 24

http://hive.apache.org
http://thrift.apache.org/
http://hive.apache.org/docs/r0.7.1/api/org/apache/hadoop/hive/jdbc/package-summary.html

Spring Hadoop

5.3 Using the Hive JDBC Client

Anocther attractive option for accessing Hiveisthrough its JDBC driver. This exposes Hive through the
JDBC API meaning one can use the standard API or its derived utilities to interact with Hive, such as
the rich JDBC support in Spring Framework.

. Warning

Note that the JDBC driver is awork-in-progress and not all the JDBC features are available
(and probably never will since Hive cannot support all of them asit isnot thetypical relational
database). Do read the official documentation and examples.

SHDP does not offer any dedicated support for the JDBC integration - Spring Framework itself provides
the needed tools; simply configure Hive as you would with any other JDBC Dr i ver :

<beans xm ns="http://wwmv springfranmewor k. or g/ schema/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: c="http://ww. springfranmework. org/ schema/c"

xm ns: cont ext ="http://ww. spri ngframewor k. or g/ schema/ cont ext "

xsi :schemaLocati on="http://wwm. spri ngfranmewor k. or g/ schema/ beans http://ww. spri ngfranmewor k. or g/ schema/ bean:
http://ww. springframework. org/ schema/ context http://ww. springfranmework. org/ schema/ context/spring-c

<!-- basic Hive driver bean -->
<bean id="hive-driver" class="org. apache. hadoop. hi ve.j dbc. Hi veDriver"/>

<!-- wrapping a basic datasource around the driver -->
<I-- notice the 'c:' nanespace (available in Spring 3.1+) for inlining constructor argunents
inthis case the url (default is 'jdbc:hive://local host: 10000/ default') -->
<bean i d="hi ve-ds" class="org.springfranmework.jdbc. datasource. Si npl eDri ver Dat aSour ce"
c:driver-ref="hive-driver" c:url="%{hive.url}"/>

<I-- standard JdbcTenpl ate decl aration -->
<bean id="tenpl ate" class="org.springframework.jdbc. core.JdbcTenpl ate" c: data-source-ref="hive-ds"/>

<cont ext : property-pl acehol der | ocation="hive. properties"/>
</ beans>

Andthat isit! Following the exampleabove, onecan usethehi ve- ds Dat aSour ce beantomanually
get ahold of Connect i onsor better yet, use Spring's Jdbc Tenpl at e asin the example above.

5.4 Using the Hive tasklet

For Spring Batch environments, SHDP provides a dedicated taskl et to execute Hive queries, on demand,
as part of abatch or workflow. The declaration is pretty straight forward:

<hdp: hi ve-t askl et id="hive-script">
<hdp: scri pt >
DROP TABLE | F EXI TS test Hi veBat chTabl e
CREATE TABLE test Hi veBat chTabl e (key int, value string)
</ hdp: scri pt >
<hdp: scri pt | ocation="cl asspat h: or g/ conpany/ hi ve/ script.q" />
</ hdp: hi ve-t askl et >

Spring Hadoop
1.0.0.M2 Reference Manual 25

http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/jdbc.html

Spring Hadoop

The tasklet above executes two scripts - one declared as part of the bean definition followed by another
located on the classpath.

Spring Hadoop
1.0.0.M2 Reference Manual 26

Spring Hadoop

6. Pig support

For Pig users, SHDP provides easy creation and configuration of Pi gSer ver instancesfor registering
and executing scripts either locally or remotely. In its simplest form, the declaration looks as follows:

<hdp: pig />

This will create a Pi gServer instance, named hadoop- pi g, configured with a default
Pi gCont ext , executing scriptsin MapReduce mode. In typical scenarios however, one might want
to connect to a remote Hadoop tracker and register some scripts automatically so let us take a look of
how the configuration might look like:

<pi g exec-type="LOCAL" job-nanme="pig-script" configuration-ref="hadoopConfigurati on" properties-|location="p
xm ns="http://ww. spri ngframewor k. or g/ schena/ hadoop" >
sour ce=${pi g. scri pt.src}
<script |ocation="org/conpany/pig/script.pig">
<ar gument s>el ectri c=sea</ ar gunent s>
</script>
<script>
A = LOAD 'src/test/resources/| ogs/ apache_access. | og' USING PigStorage() AS (nane:chararray, age:int);
B = FOREACH A CGENERATE nane;
DUWP B
</script>
</pig> />

The example exposes quite a few options so let us review them one by one. First the top-level pig
definition configures the pig instance: the execution type, the Hadoop configuration used and the job
name. Notice that additional properties can be specified (either by declaring them inlined or/and loading
them from an externa file) - in fact, <hdp: pi g/ > just like the rest of the libraries configuration
elements, supports common properties attributes as described in the hadoop configuration section.

The definition contains also two scripts: scri pt . pi g (read from the classpath) to which one pair of
arguments, relevant to the script, is passed (notice the use of property placeholder) but also an inlined
script, declared as part of the definition, without any arguments.

Asyou can tell, the pi g namespace offers several options pertaining to Pig configuration. And, aswith
the other Hadoop-related integration, the underlying Pi gSer ver isbound to the enclosing application
context life-cycle; that is, it will automatically start and stop along-side the application so one does not
have to worry about its management.

6.1 Using the Pig tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Pig queries, on demand,
as part of abatch or workflow. The declaration is pretty straight forward:

<hdp: pi g-taskl et i d="pig-script">
<hdp: scri pt | ocati on="org/ conpany/ pi g/ handsone. pi g" />
</ hdp: pi g-t askl et >

The syntax of the scripts declaration is similar to that of the pi g namespace.

Spring Hadoop
1.0.0.M2 Reference Manual 27

http://pig.apache.org

Spring Hadoop

7. Cascading integration

SHDP provides basic support for Cascading library through the
or g. spri ngframewor k. dat a. hadoop. cascadi ng package - one can create Fl ows or
Cascades, either through XML or/and Java and execute them, either in asimplistic manner or as part
of a Spring Batch job. In addition, dedicated Taps for Spring environments are available.

As Cascading isaimed at code configuration, typically onewould configure thelibrary programatically.
This type of configuration is supported through Spring's @Conf i gur ati on and @ean (see this
chapter for more information). In short one use Java code (or any JVM language for that matter) to
create beans. Below is an example of using that to create various Cascading components (do refer to
the Cascading examples for more context):

@onfiguration

public class Cascadi ngAnal ysi sConfig {
// fields that act as placeholders for externalized val ues
@/al ue(" ${cascade. sec}") private String sec;
@/al ue("${cascade.min}") private String mn;

@ean public Pipe tsPipe() {
Dat ePar ser dat eParser = new Dat eParser (new Fields("ts"), "dd/ MW yyyy: HH mm ss Z");
return new Each("arrival rate", new Fields("time"), dateParser);

}

@ean public Pipe tsCountPipe() {
Pi pe tsCount Pi pe = new Pi pe("tsCount", tsPipe());
t sCount Pi pe = new G oupBy(tsCountPi pe, new Fields("ts"));
return new Every(tsCountPi pe, Fields. GROUP, new Count());

}

@ean public Pipe tnCountPipe() {
Pi pe tnPi pe = new Each(tsPipe(),
new ExpressionFunction(new Fields("tnm'), "ts - (ts % (60 * 1000))", long.class));
Pi pe tnCount Pi pe = new Pi pe("tnCount", tnPipe);
t nCount Pi pe = new G oupBy(tnCount Pi pe, new Fields("tnl));
return new Every(tnCountPi pe, Fields. GROUP, new Count());

}

@ean public Map<String, Tap> sinks(){
Tap tsSinkTap = new Hf s(new Text Li ne(), sec);
Tap tnSi nkTap = new Hf s(new TextLine(), min);
return Cascades.tapsMap(Pi pe. pi pes(tsCount Pi pe(), tnCountPipe()), Tap.taps(tsSinkTap, tmSinkTap));

}

@ean public String regex() {
return "AC[A]F) [N T [N T RNANLCLATTONNT AN T*) (0 1) [TV (0~ 1%) (0 1%) .87
}

@ean public Fields fields() {
return new Fields("ip", "time", "method", "event", "status", "size");

}

The class above creates several objects (all part of the Cascading package) (named after the methods)
which can beinjected or wired just like any other bean (notice how the wiring is done between the beans

Spring Hadoop
1.0.0.M2 Reference Manual 28

http://www.cascading.org/
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-java
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-java
http://github.com/cwensel/cascading.samples/

Spring Hadoop

by point to their methods). One can mix and match (if needed) code and XML configurations inside
the same application:

<!-- code configuration class -->
<bean cl ass="org. spri ngf ramewor k. dat a. hadoop. cascadi ng. Cascadi ngAnal ysi sConfi g"/>

<l-- Tap created through XM. rather then code (using Spring's 3.1 c: namespace)-->
<bean i d="tap" class="cascadi ng.tap. hadoop. Hf s" c:fields-ref="fields" c:string-path-val ue="${cascade. i nput}

<bean i d="cascade" cl ass="org. springfranmework. dat a. hadoop. cascadi ng. CascadeFact or yBean" p: configuration-ref
<property name="fl ows"><|ist>
<bean cl ass="org. spri ngf ramewor k. dat a. hadoop. cascadi ng. HadoopFl owFact or yBean"
p: confi guration-ref="hadoopConfi gurati on" p:source-ref="tap" p:sinks-ref="sinks">
<property name="tails"><l|ist>
<ref bean="tsCount Pi pe"/>
<ref bean="t nCount Pi pe"/>
</list></property>
</ bean>
</list></property>
</ bean>

<bean i d="cascade-runner" cl ass="org. springfranmework. dat a. hadoop. cascadi ng. CascadeRunner" p:unit-of-wrk-re

The XML above, whose main purpose isto illustrate possible ways of configuring, uses SHDP classes
to create a Cascade with one nested FI ow using the taps and sinks configured by the code class.
Additionally it also shows how the cascade isran (through CascadeRunner).

Whether XML or Java config is better is up to the user and is usualy based on the type of the
configuration required. Java config suits Cascading better but note that the Fact or yBeans above
handle the life-cycle and some default configuration for both the FI ow and Cascade object. Either
way, whatever option is used, SHDP fully supportsit.

7.1 Using the Cascading tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet (similar to CascadeRunner
above) for executing Cascade or FI ow instances, on demand, as part of a batch or workflow. The
declaration is pretty straight forward:

<bean id="cascade-taskl et" class="org. springfranmework. data. hadoop. cascadi ng. CascadeTaskl et" p: unit-of - wor k-

7.2 Using Scalding

There are quiteanumber of DSL sbuilt ontop of Cascading, most noteably Cascal og (writtenin Clojure)
and Scalding (written in Scala). This documentation will cover Scalding however the same concepts
can be applied across the board to the DSLs.

Aswith the rest of the DSLs, Scalding offers asimplified, fluent syntax for creating units of code that
built on top of Cascading. Thisin turn translate to Map Reduce jobs that get executed on Hadoop. Once
compiled, the DSL gets trandated into actual VM classes that get executed by Scalding through its
ownTool instance(namelycom twi tter. scal di ng. Tool). Onehasthe option or either deploy
the Scalding jobs directly (by invoking the aforementioned Tool) or use Scalding'sscal d. r b script
which does the same thing based on the various attributes passed to it. Both approaches can be used in

Spring Hadoop
1.0.0.M2 Reference Manual 29

https://github.com/nathanmarz/cascalog
https://github.com/twitter/scalding

Spring Hadoop

SHDP, the former through the Tool support (described bel ow) and thelatter by invokingthescal d. rb
script directly through the scripting feature.

For example, to run the tutorial examples (say Tutorial 1), one can issue the following command:

scripts/scald.rb --local tutorial/Tutoriall.scala

which compiles Tutoriall, creates a bundled jar and runs it on a local Hadoop instance. When using
the Tool support, the compilation and the library provisioning are external tasks (just asin the case of
typical Hadoop jobs). The SHDP configuration to run the tutorial looks as follows:

<!-- the tool automatically is injected with 'hadoopConfiguration' -->
<hdp: t ool -runner id="scal di ng" tool -class="comtwitter.scal di ng. Tool ">
<hdp: arg val ue="tutorial/Tutorial 1"/>
<hdp: arg val ue="--1ocal "/ >
</ hdp: t ool - runner >

7.3 Spring-specific local Taps

Why only local Tap?

Because Hadoop isdesigned adistributed file-system (HDFS) and splitable resources. Non-HDFS
resources tend to not be cluster friendly: for example don't offer any notion of node locality, true
chucking or even scalability (as there are no copies, partial or not made). These being said, the
team is pursuing certain approaches to see whether they are viable or not. Feedback is of course
welcome.

Besides dedicated configuration support, SHDP also provides read-only Tap implementations useful
inside Spring environments. Currently they are meant for local use only such as testing or single-node
Hadoop setups.

The Taps in org. spri ngfranmewor k. dat a. hadoop. cascadi ng. t ap. | ocal tap (pun
intended) into the rich resource support from Spring Framework and Spring Integration allowing data
to flow easily in and out of a Cascading flow.

Below isalist of the type of Taps available and their backing support.

Table7.1. Local Taps

Tap Name Tap Type Backing Resour ce Description
Resource
Resour ceTap Source Spring classpath, file-system, URL-

Resour ce based or even in-memory content

MessageSour ceTap Source Spring Integration Inbound adapter for anything

M essageSource from arbitrary streams, FTP or
JDBC to RSS/Atom and Twitter

Spring Hadoop

1.0.0.M2 Reference Manual 30

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/core/io/Resource.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/resources.html#resources-implementations
http://static.springsource.org/spring-integration/api/org/springframework/integration/core/MessageSource.html

Spring Hadoop

Tap Name Tap Type Backing Resour ce Description
Resource
MessageHandl er Tap Sink Spring Integration The opposite of

MessageHandler MessageSour ceTap: Outbound
adapter for Files, IMS, TCP, etc...

Note the Taps do not require any special configuration and are fully compatible with the existing
Cascading local Schenes. To wit:

<bean id="cp-txt-files" class="org.springfranmework. data. hadoop. cascadi ng. tap. | ocal . Resour ceTap" >
<constructor-arg><bean cl ass="cascadi ng. schene. | ocal . Text Li ne"/ ></ constructor-arg>
<const ruct or - ar g><val ue>cl asspat h: / dat a/ *. t xt </ val ue></ const ruct or - ar g>

</ bean>

The Tap above, reads al the text files in the classpath, under dat a folder, through Cascading
Text Li ne. Simply wire that to a Cascading flow (as described in the previous section) and you are
good to go.

Spring Hadoop
1.0.0.M2 Reference Manual 31

http://static.springsource.org/spring-integration/api/index.html?org/springframework/integration/core/MessageSource.html

Spring Hadoop

8. Security Support

Spring for Apache Hadoop is aware of the security constraints of the running Hadoop environment and
allows its components to be configured as such. For clarity, this document breaks down security into
HDFS permissions and user impersonation (also known as secure Hadoop). The rest of this document
discusses each component and the impact (and usage) it has on the various SHDP features.

8.1 HDFS permissions

HDFS layer provides file permissions designed to be similar to those present in *nix OS. The official
guide explains the major components but in short, the access for each file (whether it's for reading,
writing or in case of directories accessing) can be restricted to a certain users or groups. Depending on
the user identity (which is typically based on the host operating system), code executing against the
Hadoop cluster can see or/and interact with the file-system based on these permissions. Do note that
each HDFSor Fi | eSyst emimplementation can have dlightly different semantics or implementation.

SHDP obeysthe HDFS permissions, using theidentity of the current user (by default) for interacting with
the file system. In particular, the HIf sResour ceLoader considers when doing pattern matching,
only thefilesthat its suppose to see and does not perform any privileged action. It is possible however to
specify a different user, meaning the Resour ceLoader interacts with HDFS using that user's rights
- however this obeys the user impersonation rules. When using different users, it is recommended to
create separate Resour ceLoader instances (one per user) instead of assigning additional permissions
or groupsto one user - thismakes it easier to manage and wire the different HDFS views without having
to modify the ACLs. Note however that when using impersonation, the Resour ceLoader might (and
will typically) return restricted files that might not be consumed or seen by the callee.

8.2 User impersonation (Kerberos)

Securing a Hadoop cluster can be a difficult task - each machine can have a different set of users and
groups, each with different passwords. Hadoop relies on Kerberos, aticket-based protocol for alowing
nodes to communicate over a non-secure network to prove their identity to one another in a secure
manner. Unfortunately there is not alot of documentation on this topic out there however the there are
Some resources to get you started.

SHDP does not require any extra configuration - it simply obeys the security system in place. By
default, when running inside asecure Hadoop, SHDP usesthe current user (as expected). It also supports
user impersonation, that is, interacting with the Hadoop cluster with a different identity (this allows
a superuser to submit job or access hdfs on behalf of another user in a secure way, without leaking
permissions). The major MapReduce components, such asj ob, st r eam ng andt ool aswell aspi g
support user impersonation through the user attribute. By default, this property is empty, meaning the
current user is used - however one can specify the different identity (also known as ugi) to be used by
the target component:

<hdp:j ob id="j obFromloe" user="joe" .../>

Spring Hadoop
1.0.0.M2 Reference Manual 32

http://hadoop.apache.org/common/docs/r1.0.3/hdfs_permissions_guide.html
http://en.wikipedia.org/wiki/Kerberos_%28protocol%29
http://hortonworks.com/blog/fine-tune-your-apache-hadoop-security-settings/
https://ccp.cloudera.com/display/CDHDOC/Configuring+Hadoop+Security+in+CDH3

Spring Hadoop

Note that the user running the application (or the current user) must have the proper kerberos credentials
to be able to impersonate the target user (in this case joe).

Spring Hadoop
1.0.0.M2 Reference Manual 33

Part Ill. Developing Spring for
Apache Hadoop Applications

This section provides some guidance on how one can use the Spring for Apache Hadoop project in
conjunction with other Spring projects, starting with the Spring Framework itself, then Spring Batch,
and then Spring Integration.

Spring Hadoop

9. Guidance and Examples

Spring for Apache Hadoop provides integration with the Spring Framework to create and run Hadoop
MapReduce, Hive, and Pig jobs as well as work with HDFS and HBase. If you have simple needs to
work with Hadoop, including basic scheduling, you can add the Spring for A pache Hadoop namespace
to your Spring based project and get going quickly using Hadoop.

As the complexity of your Hadoop application increases, you may want to use Spring Batch to regin
in the complexity of developing alarge Hadoop application. Spring Batch provides an extension to the
Spring programming model to support common batch job scenarios characterized by the processing of
large amounts of data from flat files, databases and messaging systems. It also provides a workflow
style processing model, persistent tracking of steps within the workflow, event notification, as well
as administrative functionality to start/stop/restart a workflow. As Spring Batch was designed to be
extended, Spring for Apache Hadoop plugs into those extensibilty points, allowing for Hadoop related
processing to be afirst class citizen in the Spring Batch processing model.

Another project of interest to Hadoop developers is Spring Integration. Spring Integration provides an
extension of the Spring programming model to support the well-known Enterprise I ntegration Patterns.
It enableslightwei ght messaging within Spring-based applications and supportsintegration with external
systems via declarative adapters. These adapters are of particular interest to Hadoop devel opers, asthey
directly support common Hadoop use-cases such as polling a directory or FTP folder for the presence
of afileor group of files. Then once thefiles are present, a message is sent internal to the application to
do additional processing. This additional processing can be calling a Hadoop MapReduce job directly
or starting amore complex Spring Batch based workflow. Similarly, astep in a Spring Batch workflow
can invoke functionality in Spring Integration, for example to send a message though an email adapter.

Not matter if you use the Spring Batch project with the Spring Framework by itself or with additional
extentions such as Spring Batch and Spring Integration that focus on a particular domain, you will you
benefit from the core values that Spring projects bring to the table, namely enabling modularity, reuse
and extensive support for unit and integration testing.

9.1 Scheduling

Spring Batch integrates with a variety of job schedulers and is not a scheduling framework. There are
many good enterprise schedulers available in both the commercial and open source spaces such as
Quartz, Tivoli, Control-M, etc. It is intended to work in conjunction with a scheduler, not replace a
scheduler. As a lightweight solution, you can use Spring's built in scheduling support that will give
you cron like and other basic scheduling trigger functionality. See the Task Execution and Scheduling
documention for more info. A middle ground it to use Spring's Quartz integration, see Using the
OpenSymphony Quartz Scheduler for more information. The Spring Batch distribution contains an
example, but this documentation will be updated to provide some more directed exampleswith Hadoop,
check for updates on the main web site of Spring for Apache Hadoop.

Spring Hadoop
1.0.0.M2 Reference Manual 35

http://www.eaipatterns.com
http://static.springsource.org/spring-batch/faq.html#schedulers
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/scheduling.html#scheduling-quartz
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/scheduling.html#scheduling-quartz
http://www.springsource.org/spring-data/hadoop

Spring Hadoop

9.2 Batch Job Listeners

Spring Batch let's you attached listeners at the job and step levelsto perform additional processing. For
example, at the end of a job you can perform some notification or perhaps even start another Spring
Batch Jobs. Asabrief example, implement the interface JobExecutionL istener and configure it into the
Spring Batch job as shown below.

<bat ch:job id="j obl">
<bat ch: step id="inmport" next="wordcount">
<bat ch: taskl et ref="script-tasklet"/>
</ bat ch: st ep>

<bat ch: step i d="wordcount" >
<bat ch: t askl et ref="wordcount-tasklet" />
</ bat ch: st ep>
<bat ch:li steners>
<bat ch:|istener ref="sinpleNotificatonListener"/>
</ batch:|i steners>

</ bat ch: j ob>

<bean i d="si npl eNoti fi catonLi stener" cl ass="com nyconpany. myapp. Si npl eNoti fi cati onLi stener"/>

Spring Hadoop
1.0.0.M2 Reference Manual 36

http://static.springsource.org/spring-batch/apidocs/org/springframework/batch/core/JobExecutionListener.html

Part IV. Spring for Apache
Hadoop sample applications

Document structure

Thispart of the reference documentati on coversthe sampl e applicationsincluded with Spring for Apache
Hadoop that demonstrate featuresin a code centric manner.

Chapter 11, Wordcount sample using the Soring Framework describes a standard Spring application
that executes the wordcount map-reduce job

Chapter 12, Wordcount sample using Spring Batch describes a Batch application that executes the
wordcount map-reduce job

Spring Hadoop

10. Sample prerequisites

In order to run the examples you need a working Hadoop installation and JDK 1.6+ installed on the
machine that runs the samples.

For instructions on installing Hadoop refer to your distribution documentation or you can refer to the
Getting Started section of this for instructions based off the Apache download distribution.

Spring Hadoop
1.0.0.M2 Reference Manual 38

Spring Hadoop

11. Wordcount sample using the Spring
Framework

Please read the sample prerequistes before following these instructions.

11.1 Introduction

This sample demonstrates how to execute a MapReduce application and a script that interacts with
HDFS inside a Spring based application. It does not use spring Batch or Spring Integration.

The example code is located in the distribution directory <spri ng- hadoop-instal | -di r>/
sanpl es/ wor dcount .

Spring Hadoop
1.0.0.M2 Reference Manual 39

Spring Hadoop

12. Wordcount sample using Spring Batch

Please read the sample prerequistes before following these instructions.

12.1 Introduction

This sample demonstrates how to execute the wordcount example in the context of a Spring Batch
application. It serves as a starting point that will be expanded upon in other samples. The sample code
is located in the distribution directory <spri ng- hadoop-i nstal | - di r>/ sanpl es/ bat ch-
wor dcount

The sample uses the Spring for Apache Hadoop namespace to define a Spring Batch Tasklet that runs
a Hadoop job. A Spring Batch Job (not to be confused with a Hadoop job) combines multiple steps
together to create a flow of execution, a small workflow. Each step in the flow does some processing
which can be as complex or as simple as your require. The configuration of the flow from one step to
another can very simple, alinear sequence of steps, or complex using conditional and programmatic
branching aswell as sequential and parallel step execution. A Spring Batch Tasklet isthe abstraction that
represents the processing for a Step and is an extensible part of Spring Batch. Y ou can write your own
implementation of a Tasklet to perform arbitrary processing, but often you configure existing Tasklets
provided by Spring Batch and Spring Hadoop.

Spring Batch provides Tasklets for reading, writing, and processing data from flat files, databases,
messaging systems and executing system (shell) commands. Spring for Apache Hadoop provides
Taskletsfor running Hadoop M apReduce, Streaming, Hive, and Pig jobsaswell as executing script files
that have build in support for ease of use interaction with HDFS.

12.2 Basic Spring for Apache Hadoop configuration

The part of the configuration file that defines the Spring Batch Job flow is shown below and can be
found in thefilewor dcount - cont ext . xm . The elements <bat ch: j ob/ >, <bat ch: st ep/
>, <bat ch: t askl et > comefrom the XML Schemafor Spring Batch

<bat ch:job id="jobl">
<bat ch: step id="inmport" next="wordcount">
<batch: taskl et ref="script-tasklet"/>
</ bat ch: st ep>

<bat ch: step i d="wor dcount ">
<bat ch: t askl et ref="wordcount-tasklet" />
</ bat ch: st ep>
</ bat ch: j ob>

This configuration defines a Spring Batch Job named "jobl" that contains two steps executed
sequentially. Thefirst one prepares HDFS with sample data and the second runs the Hadoop wordcount
mapreduce job. The tasklet's reference to "script-tasklet” and "wordcount-tasklet" definitions that will
be shown alittle later.

The Spring Source Toolsuiteis afree Eclipse-powered devel opment environment which providesanice
visualization and authoring help for Spring Batch workflows as shown below.

Spring Hadoop
1.0.0.M2 Reference Manual 40

http://static.springsource.org/spring-batch/reference/html/domain.html#domainJob
http://static.springsource.org/spring-batch/apidocs/org/springframework/batch/core/step/tasklet/Tasklet.html
http://www.springsource.com/developer/sts

Spring Hadoop

The script tasklet shown below uses Groovy to remove any datathat isin the input or output directories
and puts the file "nietzsche-chapter-1.txt" into HDFS.

<script-tasklet id="script-tasklet">
<scri pt |anguage="groovy">
i nput Pat h = "${wor dcount . i nput. pat h:/user/gut enberg/i nput/word/}"
out put Path = "${wor dcount . out put . pat h: / user/ gut enber g/ out put/ word/ }"
if (fsh.test(inputPath)) {
fsh. ror (i nput Pat h)
}
if (fsh.test(outputPath)) {
fsh. rnr (out put Pat h)
}

inputFile = "src/main/resources/datalni etzsche-chapter-1.txt"
fsh. put (i nputFile, inputPath)
</script>

</script-taskl et>

The script makes use of the predefined variable fsh, which is the embedded Filesystem Shell that
Spring for Apache Hadoop provides. It also uses Spring's Property Placeholder functionality so that
the input and out paths can be configured external to the application, for example using property files.
The syntax for variables recognized by Spring's Property Placeholder is ${ key: def aul t Val ue},
sointhiscase/ user/ gut enber g/ i nput/wor d and/ user/ gut enber g/ out put / wor d are
the default input and output paths. Note you can also use Spring's Expression Language to configure
valuesin the script or in other XML definitions.

The configuration of the tasklet to execute the Hadoop MapReduce jobs is shown below.

<hdp: t askl et i d="hadoop-tasklet" job-ref="nr-job"/>

<j ob i d="wordcount -j ob"
i nput - pat h="%{ wor dcount . i nput . pat h: / user/ gut enber g/ i nput/ word/ }"
out put - pat h="${wor dcount . out put . pat h: / user/ gut enber g/ out put/word/ }"
mapper =" or g. apache. hadoop. exanpl es. Wr dCount . Tokeni zer Mapper "
reducer =" or g. apache. hadoop. exanpl es. Wor dCount . | nt SunReducer" />

The <hdp: t askl et > and <hdp: j ob/ > eements are from Spring Haddop XML Schema. The
hadoop tasklet is the bridge between the Spring Batch world and the Hadoop world. The hadoop tasklet
in turn refers to your map reduce job. Various common properties of a map reduce job can be set, such
as the mapper and reducer. The section Creating a Hadoop Job describes the additional elements you
can configurein the XML.

Note

If you look at the JavaDocs for the org.apache.hadoop.examples package (here), you can see
the Mapper and Reducer class names for many examples you may have previously used from
the hadoop command line runner.

The confi gurati on-ref element in the job definition refers to common Hadoop configuration
information that can be shared across many jobs. It isdefined inthefilehadoop- cont ext . xm and
is shown below

Spring Hadoop
1.0.0.M2 Reference Manual 41

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/expressions.html#expressions-beandef
org.apache.hadoop.examples.PiEstimator.PiMapper

Spring Hadoop

<I-- default id is 'hadoopConfiguration' -->

<hdp: configuration register-url-handl er="fal se">
fs. defaul t.name=${hd. f s}

</ hdp: confi guration>

As mentioned before, as this is a configuration file processed by the Spring container, it supports
variable substitution through the use of ${ var} stylevariables. In this case the location for HDFSis
parameterized and no default valueis provided. The property filehadoop. properti es containsthe
definition of the hd.fs variable, change the value if you want to refer to a different name node location.

hd. f s=hdf s: / /| ocal host : 9000

The entire application is put together in the configuration filel aunch- cont ext . xmi , shown below.

<l-- where to read externalized configuration values -->
<cont ext: property-pl acehol der | ocation="cl asspat h: bat ch. properti es, cl asspat h: hadoop. properti es"
i gnor e-resource-not-found="true" ignore-unresol vable="true" />

<I-- sinmple base configuration for batch conponents, e.g. JobRepository -->
<i nport resource="cl asspat h: / META- | NF/ spri ng/ bat ch- cormon. xm * />

<!-- shared hadoop configuration -->

<i nport resource="cl asspat h:/META-| NF/ spri ng/ hadoop- cont ext.xm " />

<!-- word count workflow -->

<i mport resource="cl asspat h: / META-| NF/ spri ng/ wor dcount - cont ext. xm " />

12.3 Build and run the sample application

Inthedirectory <spri ng- hadoop-i nstal | -di r >/ sanpl es/ bat ch- wor dcount build and
run the sample

$../../gradl ew

If thisisthe first time you are using gradlew, it will download the Gradle build tool and all necessary
dependencies to run the sample.

Note

If you run into some issues, drop us aline in the Spring Forums.
12.4 Run the sample application as a standlone Java

application

Y ou can use Gradle to export all required dependencies into a directory and create a shell script to run
the application. To do this execute the command

‘$../..lgradl ewinstall App

This places the shell scripts and dependencies under the bui | d/ i nst al | / bat ch- wor dcount
directory. You can zip up that directory and share the application with others.

Spring Hadoop
1.0.0.M2 Reference Manual 42

http://forum.springsource.org/forumdisplay.php?27-Data

Spring Hadoop

The man Java class used is pat of Spring Batch. The class
is org. spri ngfranmework. bat ch. core. | aunch. support. CommandLi neJobRunner.
This main app requires you to specify at least a Spring configuration file and a job instance name. Y ou
can read the CommandLi neJobRunner JavaDocs for moreinformation aswell asthis section in the
reference docs for Spring Batch to find out more of what command line options it supports.

$./build/install/wordcount/bin/wordcount classpath:/launch-context.xm jobl

Y ou can then verify the output from work count is present and cat it to the screen

$ hadoop dfs -Is /user/gutenberg/out put/word
War ni ng: $HADOOP_HOME i s deprecat ed

Found 2 items
SPWr--r-- 3 npol | ack supergroup 0 2012-01-31 19: 29 /user/ gutenber g/ out put/wor d/ _SUCCESS
STWr--1-- 3 npol | ack supergroup 918472 2012-01-31 19: 29 /user/ gut enber g/ out put/wor d/ part-r-00000

$ hadoop dfs -cat /user/gutenberg/output/word/part-r-00000 | nore
Var ni ng: $HADOOP_HOME i s deprecat ed

"'Spells 1
"tarny' 1
"(1) 1
"(Lo)cra"1
"13 4
"1490 1
"1498," 1
" 35" 1
" 40, " 1
"A 9
"AS-1S". 1
" AVAY 1
A 1
" Abi de 1
" About 1

Spring Hadoop
1.0.0.M2 Reference Manual 43

http://static.springsource.org/spring-batch/apidocs/org/springframework/batch/core/launch/support/CommandLineJobRunner.html
http://static.springsource.org/spring-batch/reference/html/configureJob.html#runningJobsFromCommandLine
http://static.springsource.org/spring-batch/reference/html/configureJob.html#runningJobsFromCommandLine

Part V. Other Resources

In addition to this reference documentation, there are a number of other resources that may help you
learn how to use Hadoop and Spring framework. These additional, third-party resources are enumerated
in this section.

Spring Hadoop

13. Useful Links

Soring for Apache Hadoop - Home Page

» Soring Data - Home Page

» SpringSource - Blog

Hadoop - Home Page

» Spring Hadoop Team on Twitter - Costin

Spring Hadoop
1.0.0.M2 Reference Manual

http://www.springframework.org/spring-data/hadoop
http://www.springframework.org/spring-data
http://blog.springsource.com/
http://hadoop.apache.org/
http://twitter.com/costinl

Part VI. Appendices

Spring Hadoop

Appendix A. Spring for Apache
Hadoop Schema

Spring for Apache Hadoop Schema

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schema xm ns="http://wmv. spri ngfranmewor k. or g/ schema/ hadoop"
xm ns: xsd="htt p: // ww. w3. or g/ 2001/ XM_Schema"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: beans="htt p: // ww. spri ngf ramewor k. or g/ schema/ beans"

xm ns: tool ="http://ww. spri ngframewor k. org/ schena/t ool "

t ar get Nanespace="htt p: // www. spri ngf ramewor k. or g/ schena/ hadoop"
el ement For nDef aul t =" qual i fi ed"

attri but eFor nDef aul t =" unqual i fi ed"

versi on="1.0.0. ">

<xsd:inport namespace="http://ww. springframework. or g/ schema/ beans" />
<xsd:inmport namespace="http://ww. spri ngfranework. org/schema/tool" />

<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[

Defines the configuration elements for Spring Data Hadoop
]1></ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: el enent nane="t askl et">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a Spring Batch tasklet for Hadoop Jobs
11>
</ xsd: docunent at i on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org.springframework. dat a. hadoop. mapr educe. HadoopTaskl et "/ >
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>
<I-- the job reference -->
<xsd:attribute name="job-ref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. apache. hadoop. mapr educe. Job" ><! [CDATA]
Hadoop Job]] ></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. mapr educe. Job" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd:attribute name="wait-for-job" type="xsd:string" use="optional" default="true">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Whet her to synchronously wait for the job to finish (the default) or not.
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute name="id" type="xsd:|D"' use="required" />

Spring Hadoop
1.0.0.M2 Reference Manual

Spring Hadoop

<xsd: attribute name="scope" type="xsd:string" use="optional" />
</ xsd: conpl exType>
</ xsd: el enent >

<l-- common attributes shared by properties based configurations
NOT neant for extensibility - do NOT rely on this type as it might be renoved in the future -->
<xsd: conmpl exType name="propertiesConfi gurabl eType" m xed="true">
<xsd:attribute name="properties-ref" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Reference to a Properties object.
]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expected-type type="java.util.Properties" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="properties-|location" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Properties location(s). Miltiple |ocations can be specified using conma (,) as a separator
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: conpl exType>

<xsd: el ement nanme="confi gurati on">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a Hadoop Configuration
]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org. apache. hadoop. conf. Confi guration"/>
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType mi xed="true">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="propertiesConfigurabl eType">
<xsd:attribute name="id" type="xsd:|D"' use="optional">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Bean id (default is "hadoopConfiguration").
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="configuration-ref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. apache. hadoop. conf . Confi gurati on"><! [CDATA[
Ref erence to anot her Hadoop configuration (useful for chaining)]]></xsd: docunmentation>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute nane="resources">
<xsd: annot ati on>

Spring Hadoop
1.0.0.M2 Reference Manual 48

Spring Hadoop

<xsd: docunent ati on source="j ava: org. spri ngf ramewor k. core. i 0. Resour ce" ><! [CDATA[
Hadoop Configuration resources. Miltiple resources can be specified, using conma (,) as a separator.]]></xst
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="org. springframework.core.io. Resource[]" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="regi ster-url-handl er" use="optional" default="fal se">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Regi sters an HDFS url handler in the running VM Note that this operation can be executed at nost once
in a given JVM hence the default is false
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement nanme="fil e-systent>
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a HDFS file system
11>
</ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="org. apache. hadoop. fs. Fi | eSysteni'/ >
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd:attribute name="id" type="xsd:|D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id (default is "hadoopFs").
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="configuration-ref" use="optional" default="hadoopConfiguration">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. hadoop. conf. Confi gurati on"><! [CDATA[
Ref erence to the Hadoop Configuration. Defaults to 'hadoopConfiguration'.]]></xsd:docunmentation>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot at i on>
</ xsd: attribute>
<xsd:attribute name="uri" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The underlyi ng HDFS system URI (by default the configuration settings will be used)
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute nane="user" type="xsd:string">
<xsd: annot ati on>

Spring Hadoop
1.0.0.M2 Reference Manual 49

Spring Hadoop

<xsd: docunent at i on><! [CDATA[
The security user (ugi) to use for inpersonation at runtine
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement nane="r esour ce-| oader" >
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a HDFS-aware resource | oader
11>
</ xsd: docunent at i on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org. springframework. dat a. hadoop. f s. Hdf sResour ceLoader "/ >
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd:attribute name="id" type="xsd:|D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Bean id (default is "hadoopResourcelLoader").
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute name="configuration-ref" use="optional" defaul t="hadoopConfi guration">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. apache. hadoop. conf . Confi gurati on"><! [CDATA[
Reference to the Hadoop Configuration. Defaults to 'hadoopConfiguration'.]]></xsd:docunentation>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd:attribute name="uri" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
The underlying HDFS system URI (by default the configuration settings will be used)
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute name="fil e-systemref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. apache. hadoop. fs. Fi | eSyst enl' ><! [CDATA][
Reference to the Hadoop FileSystem Overrides the 'uri' or 'configuration-ref' properties.]]></xsd:docunent
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. fs. Fi | eSystent />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute nane="user" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
The security user (ugi) to use for inpersonation at runtime.
]]></ xsd: docunent ati on>

Spring Hadoop
1.0.0.M2 Reference Manual 50

Spring Hadoop

</ xsd: annot ati on>
</ xsd: attri bute>
</ xsd: conpl exType>
</ xsd: el enent >

<!-- generic options shared by the various jobs
NOT neant for extensibility - do NOT rely on this type as it might be renoved in the future -->
<xsd: conpl exType nane="generi cOpti onsType" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="propertiesConfigurabl eType">
<xsd:attribute name="archi ves">
<xsd: annot ati on>
<xsd: appi nf o>
<xsd: docunent ati on source="j ava: org. spri ngframewor k. core.i 0. Resour ce" ><! [CDATA|
Archives to be unarchived to the cluster. Miltiple resources can be specified, using comma (,) as a separat
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java: org. springframework. core.io. Resource[]" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd:attribute name="fil es">
<xsd: annot ati on>
<xsd: appi nf o>
<xsd: docunent ati on source="j ava: org. spri ngf ramewor k. core. i 0. Resour ce" ><! [CDATA[
| e resources to be copied to the cluster. Miltiple resources can be specified, using conma (,) as a separ;
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java: org. springframework. core.io. Resource[]" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd:attribute name="|ibs">
<xsd: annot ati on>
<xsd: appi nf 0>
<xsd: docunent ati on source="j ava: org. spri ngframewor k. core. i 0. Resour ce" ><! [CDATA[
Jar resources to include in the classpath. Miltiple resources can be specified, using comma (,) as a separa
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java: org. spri ngframework. core.io. Resource[]" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="user" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The security user (ugi) to use for inpersonation at runtine
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Fi

<I-- common attributes shared by properties based configurations

NOT neant for extensibility - do NOT rely on this type as it might be renmoved in the future -->
<xsd: conpl exType nanme="jobType">

<xsd: conmpl exCont ent >

<xsd: ext ensi on base="generi cOpti onsType">

<xsd:attribute nane="id" type="xsd:ID' use="required" />

<xsd: attribute name="scope" type="xsd:string" use="optional" />

<xsd:attribute name="mapper" defaul t="org. apache. hadoop. mapr educe. Mapper" >

Spring Hadoop
1.0.0.M2 Reference Manual 51

Spring Hadoop

<xsd: annot ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
<t ool : assi gnabl e-t o type="org. apache. hadoop. mapr educe. Mapper" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd: attribute name="reducer" default="org.apache. hadoop. mapr educe. Reducer" >
<xsd: annot ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.l ang. d ass" />
<t ool : assi gnabl e-to type="org. apache. hadoop. mapr educe. Reducer" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="conbi ner">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The conbi ner cl ass nane
]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
<t ool : assi gnabl e-to type="org. apache. hadoop. mapr educe. Reducer" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd: attribute name="i nput-format">
<xsd: annot ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
<t ool : assi gnabl e-t o type="org. apache. hadoop. mapr educe. | nput Format" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd: attribute nanme="out put-format">
<xsd: annot ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.l ang. C ass" />
<t ool : assi gnabl e-to type="org. apache. hadoop. mapr educe. Qut put Format" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="partitioner">
<xsd: annot ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
<t ool : assi gnabl e-to type="org. apache. hadoop. mapreduce. Partitioner" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>

Spring Hadoop
1.0.0.M2 Reference Manual 52

Spring Hadoop

<xsd: attribute name="i nput-pat h" use="required">
<xsd: annot ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.lang. String[]" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="out put - pat h" use="required">
<xsd: annot ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.l ang. String" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="configuration-ref" default="hadoopConfi guration">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. hadoop. conf. Confi gurati on"><! [CDATA[
Ref erence to the Hadoop Configuration. Defaults to 'hadoopConfiguration'.]]></xsd:docunmentation>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: el enent nane="j ob">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Defi nes a Hadoop Job
]]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org. apache. hadoop. mapr educe. Job"/ >
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conmpl exCont ent mi xed="true">
<xsd: ext ensi on base="j obType" >
<xsd:attribute name="sort-conparator">
<xsd: annot ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
<t ool : assi gnabl e-t o type="org. apache. hadoop. i 0. RawConparator" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="groupi ng- conpar at or">
<xsd: annot ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.l ang. d ass" />

Spring Hadoop
1.0.0.M2 Reference Manual 53

Spring Hadoop

<t ool : assi gnabl e-to type="org. apache. hadoop. i 0. RawConparator" />
</t ool : annot ati on>

</ xsd: appi nf o>

</ xsd: annot ati on>

</ xsd: attri bute>

<xsd: attribute name="key">

<xsd: annot at i on>

<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
</t ool : annot ati on>

</ xsd: appi nf o>

</ xsd: annot ati on>

</ xsd: attri bute>

<xsd: attribute name="val ue">

<xsd: annot at i on>

<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
</t ool : annot ati on>

</ xsd: appi nf o>

</ xsd: annot ati on>

</ xsd: attri bute>

<xsd: attribute nane="map- key">

<xsd: annot at i on>

<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
</t ool : annot ati on>

</ xsd: appi nf o>

</ xsd: annot ati on>

</ xsd: attri bute>

<xsd: attribute nane="map-val ue">

<xsd: annot at i on>

<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
</t ool : annot ati on>

</ xsd: appi nf o>

</ xsd: annot ati on>

</ xsd: attri bute>

<xsd:attribute name="codec">

<xsd: annot at i on>

<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.lang. d ass" />
</t ool : annot ati on>

</ xsd: appi nf o>

</ xsd: annot ati on>

</ xsd: attri bute>

<xsd:attribute name="jar">

<xsd: annot at i on>

<xsd: docunent at i on><! [CDATA[

I ndi cates the user jar for the map-reduce job

]1></ xsd: docunent ati on>

<xsd: appi nf o>
<t ool : annot ati on>
<t ool : expect ed-type type="org.springframework. core.io.Resource" />
</t ool : annot ati on>

</ xsd: appi nf o>

</ xsd: annot ati on>

</ xsd: attri bute>

Spring Hadoop
1.0.0.M2 Reference Manual

Spring Hadoop

<xsd: attribute name="j ar-by-cl ass">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Indicates the job's jar file by finding an exanple class |ocation
]]></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.l ang. d ass" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="val i dat e- pat hs" defaul t="true">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
I ndi cat es whether the job input/output paths are validated before submitting. This
saves tinme as the validation is done locally without having to interact with the job

]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enrent >

<xsd: el ement nanme="stream ng">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a Hadoop Streami ng Job
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="org. apache. hadoop. mapr educe. Job"/>
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conmpl exCont ent m xed="true">
<xsd: ext ensi on base="j obType">
<xsd: sequence>
<xsd: el ement nanme="cnd-env" m nCccurs="0" maxQccurs="1">
<xsd: annot ati on>

</ xsd: annot ati on>
</ xsd: el enrent >
</ xsd: sequence>
<xsd: attribute nanme="nunber-reducers">
<xsd: annot at i on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="direct">
<t ool : expect ed-type type="java.l ang. | nteger" />
</t ool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attri bute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

<l-- common attributes shared by properties based configurations

tracker. The validation checks whether the input path exists and the output does not.

<xsd: docunent ati on><! [CDATA[Envi ronnment vari abl es (-cndenv)]]></xsd: docunent ati on>

Spring Hadoop
1.0.0.M2 Reference Manual

55

Spring Hadoop

NOT neant for extensibility - do NOT rely on this type as it might be renoved in the future -->
<xsd: conpl exType nanme="t ool Runner Type" >
<xsd: conmpl exCont ent m xed="true">
<xsd: ext ensi on base="generi cOpti onsType">
<xsd: sequence>
<xsd: any namespace="##any" processContents="1lax" m nCccurs="0" maxCccurs="1"/>
<xsd: el ement nane="arg" m nCccurs="0" maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Tool argument.]]></xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: attribute name="val ue" type="xsd:string" use="required"/>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D' use="required">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id.]]></xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="tool -cl ass" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
I ndi cates the Tool class nane. This is useful when referring to an external jar (not required
in the classpath). If not specified, the Main-Cl ass (specified in the MANI FEST. M7), if present,
is used instead
]]></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="direct">
<t ool : expected-type type="java.l ang. C ass" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd:attribute name="jar" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Indicates the jar (not required to be in the classpath) providing the Tool (and its dependencies).
]]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : expected-type type="org. springframework. core.io. Resource" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="tool -ref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. apache. hadoop. uti |l . Tool "><! [CDATA[
Ref erence to a Hadoop Tool instance.]]></xsd:docunentation>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. util.Tool" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd:attribute name="configuration-ref" default="hadoopConfi guration">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. hadoop. conf . Confi gurati on"><! [CDATA[

Spring Hadoop
1.0.0.M2 Reference Manual 56

Spring Hadoop

Ref erence to the Hadoop Configuration. Defaults to 'hadoopConfiguration'.]]></xsd:docunmentation>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: el ement nane="t ool -runner">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Execut es a Hadoop Tool .]]></xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conmpl exCont ent mi xed="true">
<xsd: ext ensi on base="t ool Runner Type" >
<xsd: attribute name="run-at-startup" type="xsd: bool ean" default="fal se">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Whet her the Tool runs at startup or not (default).
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement nanme="t ool -t askl et">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defi nes a Hadoop Tool Taskl et.]]></xsd: docunentati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="t ool Runner Type" >
<xsd:attribute name="scope" type="xsd:string" use="optional" />
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: conpl exType nanme="entryType">
<xsd: attribute nanme="val ue" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<xsd: el enent nane="cache">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Confi gures Hadoop Distributed Cache
]]></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org. apache. hadoop.i o. D stri but edCacheFact oryBean"/ >
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>

Spring Hadoop
1.0.0.M2 Reference Manual 57

Spring Hadoop

<xsd: conpl exType>
<xsd: sequence m nCccurs="1" maxQccur s="unbounded" >
<xsd: choi ce>
<xsd: el enent nane="cl asspath" type="entryType"/>
<xsd: el ement nanme="cache" type="entryType"/>
<xsd: el enent nane="local " type="entryType"/>
</ xsd: choi ce>
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id (default is "hadoopCache").
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="create-synlink" type="xsd: bool ean"/>
<xsd:attribute name="configuration-ref" defaul t="hadoopConfi guration">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. apache. hadoop. conf . Confi gurati on"><! [CDATA[
Reference to the Hadoop Configuration. Defaults to 'hadoopConfiguration'.]]></xsd:docunentation>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
<xsd:attribute name="file-systemref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. apache. hadoop. fs. Fi | eSyst enl' ><! [CDATA][
Ref erence to the Hadoop Fil eSystem]]></xsd: docunment ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. fs. Fil eSysten' />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: conmpl exType nanme="scri pt Type" m xed="true">
<xsd: attribute name="| ocati on" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Location of the script. As an alternative one can inline the script by using a nested, text declaration.]]>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : expect ed-type type="org.springframework. core.io.Resource"/>
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: conpl exType>

<xsd: conpl exType nanme="scri pt Wt hAr gument sType" m xed="true">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="scri pt Type">
<xsd: sequence>
<xsd: el enent nane="argunents" m nCccurs="0" maxCccurs="1">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[

Spring Hadoop
1.0.0.M2 Reference Manual 58

Spring Hadoop

Argument (s) to pass to this script. Defined in Properties format (key=val ue).
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>

</ xsd: el ement >
</ xsd: sequence>
</ xsd: ext ensi on>

</ xsd: conpl exCont ent >

</ xsd: conpl exType>

<xsd: el enent nane="pig">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Defines a PigServer 'tenplate' (note that since PigServer is not thread-safe, each bean invocation will cre
11>
</ xsd: docunent at i on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org. apache. pi g. Pi gServer"/>
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conpl exCont ent m xed="true">
<xsd: ext ensi on base="propertiesConfigurabl eType">
<xsd: sequence>
<xsd: el ement name="script" type="scriptWthArgunmentsType" m nCccurs="0" maxQccurs="unbounded" >
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Pig script.]]></xsd: docunentati on>
</ xsd: annot ati on>
</ xsd: el emrent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id (default is "pig").
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute nanme="pat hs-to-skip">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
The path to be skipped while automatically shipping binaries for streaming. Miltiple resources can be speci
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute name="parallelisn type="xsd:integer"/>
<xsd: attribute nanme="val i dat e-each-statenment" type="xsd: bool ean"/ >
<xsd:attribute name="job-priority" type="xsd:string"/>
<xsd:attribute nanme="j ob-nanme" type="xsd:string"/>
<xsd:attribute name="job-tracker" type="xsd:string"/>
<xsd: attribute name="configuration-ref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. hadoop. conf. Confi gurati on"><! [CDATA[
Ref erence to the Hadoop Configuration. Can be tweaked through the 'configuration' elenment or the other attr
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</xsd:attribute>

Spring Hadoop
1.0.0.M2 Reference Manual 59

Spring Hadoop

<xsd: attribute name="exec-type" defaul t =" MAPREDUCE" >
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="MAPREDUCE"/ >
<xsd: enuner ati on val ue="LOCAL"/ >
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: attribute>
<xsd:attribute name="user" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The security user (ugi) to use for inpersonation at runtinme.
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement nane="pi g-taskl et">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a PigTaskl et.
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="org.springframework. dat a. hadoop. bat ch. Pi gTasket"/>
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nane="script" type="scriptWthArgunentsType" m nCccurs="1" maxCccurs="unbounded">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Pig script.]]></xsd: docunentati on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D' use="required">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id.]]></xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="pi g-server-ref" type="xsd:string" use="optional" defaul t="pig">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. pi g. Pi gSer ver " ><! [CDATA|
Reference to a PigServer instance. Defaults to 'pig'.
]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. pi g. Pi gServer" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="scope" type="xsd:string" use="optional" />
</ xsd: conpl exType>
</ xsd: el enent >

Spring Hadoop
1.0.0.M2 Reference Manual 60

Spring Hadoop

<l-- HBase -->
<xsd: el ement nane="hbase- confi guration">
<xsd: conpl exType>
<xsd: conmpl exCont ent mi xed="true">
<xsd: ext ensi on base="properti esConfi gurabl eType">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines an HBase configuration
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="org. apache. hadoop. conf. Confi guration"/>
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd:attribute name="id" type="xsd:|D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Bean id (default is "hbaseConfiguration").
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="stop-proxy" type="xsd:bool ean" defaul t="true"/>
<xsd: attribute nane="del et e-connecti on" type="xsd: bool ean" defaul t="true"/>
<xsd: attribute name="configuration-ref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. hadoop. conf. Confi gurati on"><! [CDATA[
Ref erence to the Hadoop configuration.]]></xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >

<l-- Hve -->
<xsd: el ement nanme="hi ve-client">
<xsd: conpl exType>
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Defines a Hive client for connecting to a Hive server through the Thrift protocol
]]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org. apache. hadoop. hi ve. servi ce. H vedient"/>
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nane="script" type="scriptType" m nCccurs="0" maxCccurs="unbounded">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Hive script to be executed during start-up.]]></xsd: docunentati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D' use="optional ">

Spring Hadoop
1.0.0.M2 Reference Manual 61

Spring Hadoop

<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id (default is "hiveCient").
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="host" type="xsd:string" default="I|ocal host"/>
<xsd:attribute name="port" type="xsd:string" defaul t="10000"/>
<xsd: attribute name="aut o-startup" type="xsd: bool ean" defaul t="true"/>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: el ement name="hi ve-server">
<xsd: conpl exType>
<xsd: conmpl exCont ent m xed="true">
<xsd: ext ensi on base="propertiesConfigurabl eType">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Defi nes an enbedded Hive Server instance opened for access through the Thrift protocol
]]></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="org. apache.thrift.server. TServer"/>
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd:attribute name="id" type="xsd:|D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id (default is "hiveServer").
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd:attribute name="port" type="xsd:string" default="10000"/>
<xsd:attribute name="m n-threads" type="xsd:string" defaul t="5"/>
<xsd: attribute name="nax-threads" type="xsd:string" default="100"/>
<xsd: attribute name="aut o-startup" type="xsd: bool ean" defaul t="true"/>
<xsd:attribute name="configuration-ref">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. apache. hadoop. conf . Confi gurati on"><! [CDATA[
Reference to the Hadoop configuration.]]></xsd: docunentation>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: el ement nanme="hi ve-taskl et">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Defines a HiveTaskl et.
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="org.springframework. dat a. hadoop. bat ch. H veTasket"/>
</tool : annot ati on>

Spring Hadoop
1.0.0.M2 Reference Manual

Spring Hadoop

</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="script" type="scriptType" m nCccurs="1" maxQccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Hi ve script.]]></xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D' use="required">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id.]]></xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd: attribute nanme="hive-client-ref" type="xsd:string" use="optional" default="hivedient">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: or g. apache. hadoop. hi ve. servi ce. Hi veC i ent " ><! [CDATA[
Reference to a HveQient instance. Defaults to 'hivedient'
]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. hi ve. servi ce. Hvedient" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd: attribute name="scope" type="xsd:string" use="optional" />
</ xsd: conpl exType>
</ xsd: el ement >

<I-- Script type - NOT nean to be reused outside this schema -->
<xsd: conpl exType nanme="scri pti ngType" abstract="true" m xed="true">
<xsd: sequence>
<xsd: el enent nane="property" type="beans: propertyType" mi nCccurs="0" maxCccurs="unbounded">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Property to pass to the script. Can be used to enhance or override the default properties
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="|ocation" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The | ocation of the script. Can be any resource on the local filesystem web or even hdfs
11>
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="| anguage" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The | anguage used for executing the script. If no value is given, the script source extension
is used to determine the scripting engine
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="eval uate" defaul t =" ALWAYS" >
<xsd: annot ati on>

Spring Hadoop
1.0.0.M2 Reference Manual 63

Spring Hadoop

<xsd: docunent at i on><! [CDATA[
Wien to evaluate the script. 'ALWAYS' (default) evaluates the script on all invocations
'"IF_MXDIFIED if the script source has been nodified since the |last invocation and ' ONCE
only once for the duration of the application
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: si mpl eType>
<xsd:restriction base="xsd:string">
<xsd: enuneration val ue="ONCE"/>
<xsd: enuneration val ue="1F_MODI Fl ED'/ >
<xsd: enuneration val ue="ALWAYS"/ >
</xsd:restriction>
</ xsd: si npl eType>
</xsd:attribute>
</ xsd: conpl exType>

<xsd: el ement nanme="script">
<xsd: conpl exType m xed="true">
<xsd: conmpl exCont ent >
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA]
Dedi cated scripting facility for interacting with Hadoop. Allows G oovy, JavaScript (Rhino), Ruby (JRuby),
or any JSR-223 scripting |anguage to be used for executing commands agai nst Hadoop, in particular its file
]1></ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="java.l ang. Obj ect"/>
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: ext ensi on base="scri pti ngType">
<xsd:attribute name="id" type="xsd:| D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id (if no value is given, a name will be generated)
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd: attribute name="run-at-startup" type="xsd: bool ean" default="fal se">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Whet her the script is evaluated automatically once the application context initializes or only when in use
]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd: attribute name="scope" type="xsd:string" use="optional" />
<xsd:attribute name="configuration-ref" defaul t="hadoopConfi guration">
<xsd: annot ati on>
<xsd: docunent ati on source="j ava: org. apache. hadoop. conf . Confi gurati on"><! [CDATA[
Reference to the Hadoop Configuration. Defaults to 'hadoopConfiguration'.]]></xsd:docunentation>
<xsd: appi nf o>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. conf. Confi gurati on" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

Spring Hadoop
1.0.0.M2 Reference Manual 64

Spring Hadoop

<xsd: el enent nane="script-tasklet">
<xsd: conpl exType>
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[

Defines a scripting Tasklet for interacting with Hadoop. Allows G oovy, JavaScript (Rhino), Ruby (JRuby), P
or any JSR-223 scripting |anguage to be used for executing conmmands agai nst Hadoop, in particular its file
11>
</ xsd: docunent ati on>
<xsd: appi nf o>
<t ool : annot ati on>
<t ool : exports type="java.l ang. Obj ect"/>
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nane="script" m nCccurs="0" naxCccurs="1">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Nested script declaration.]]></xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType m xed="true">
<xsd: conmpl exCont ent >
<xsd: ext ensi on base="scri pti ngType"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:|D"' use="required">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Bean id.]]></xsd: docunment ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute name="script-ref" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Ref erence to a script declaration.]]></xsd:docunentation>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="java.l ang. Object" />
</tool : annot ati on>
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd: attribute name="scope" type="xsd:string" use="optional" />
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schema>

Spring Hadoop
1.0.0.M2 Reference Manual 65

	Spring Hadoop Reference Manual
	Table of Contents
	Preface
	Part I. Introduction
	1. Requirements

	Part II. Spring and Hadoop
	2. Hadoop Configuration, MapReduce, and Distributed Cache
	2.1 Using the Spring for Apache Hadoop Namespace
	2.2 Configuring Hadoop
	2.3 Creating a Hadoop Job
	Creating a Hadoop Streaming Job
	Running a Hadoop Job

	2.4 Using the Hadoop Job tasklet
	2.5 Running a Hadoop Tool
	Replacing Hadoop shell invocations with tool

	2.6 Using the Hadoop Tool tasklet
	2.7 Map Reduce Generic Options
	2.8 Configuring the Hadoop DistributedCache

	3. Working with the Hadoop File System
	3.1 Configuring the file-system
	3.2 Scripting the Hadoop API
	Using scripts

	3.3 Scripting implicit variables
	3.4 File System Shell (FsShell)
	DistCp API

	3.5 Scripting Lifecycle
	3.6 Using the Scripting tasklet

	4. Working with HBase
	4.1 Data Access Object (DAO) Support

	5. Hive integration
	5.1 Starting a Hive Server
	5.2 Using the Hive Thrift Client
	5.3 Using the Hive JDBC Client
	5.4 Using the Hive tasklet

	6. Pig support
	6.1 Using the Pig tasklet

	7. Cascading integration
	7.1 Using the Cascading tasklet
	7.2 Using Scalding
	7.3 Spring-specific local Taps

	8. Security Support
	8.1 HDFS permissions
	8.2 User impersonation (Kerberos)

	Part III. Developing Spring for Apache Hadoop Applications
	9. Guidance and Examples
	9.1 Scheduling
	9.2 Batch Job Listeners

	Part IV. Spring for Apache Hadoop sample applications
	10. Sample prerequisites
	11. Wordcount sample using the Spring Framework
	11.1 Introduction

	12. Wordcount sample using Spring Batch
	12.1 Introduction
	12.2 Basic Spring for Apache Hadoop configuration
	12.3 Build and run the sample application
	12.4 Run the sample application as a standlone Java application

	Part V. Other Resources
	13. Useful Links

	Part VI. Appendices
	Appendix A. Spring for Apache Hadoop Schema

