Spring for Apache Hadoop Reference Manual

1.1.0.RC1-cdh4

Costin Leau Elasticsearch , Thomas Risberg Pivotal , Janne Valkealahti Pivotal

Copyright ©

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Hadoop

Table of Contents

L 1= 7= Lo iv
I 01 oo [N o1 o] o H PP PSPPSR 1
I o [T =10 =T o £ PPN 2
2. AAAItIONAl RESOUITESiieiiiiiiieeeii ettt e et e e et e e e e et e e e eebeneeeene 3
1T o T aTo = U [o I =T [T o JS PN 4
3. Hadoop Configuration, MapReduce, and Distributed Cacheccc.ooiiiiiiiin. 5
3.1. Using the Spring for Apache Hadoop Namespacecovvvveviineiiiiiineeiiiineeeciie 5

G720 @10] 1110 18 [To [F=To 0T o PSP 6

3.3. Creating @ Hadoop JOD ... et 9
Creating a Hadoop Streaming JODc.oiviiiiiiiiii e 10

3.4. RUNning @ Hadoop JODcuuiiiiiiii e 10
Using the Hadoop Job tasklet ... 11

3.5. RUNNINg @ HAdOoOop TOOIc.uuiiiiiii e 11
Replacing Hadoop shell invocations with t 0ol -runnercccocceviiiiiiiieeinns 13

Using the Hadoop Tool taskIetooouiiiiiii e 13

3.6. RUNNING @ HAOOP JAI ...ouiiiiiiiieii e 13
Using the Hadoop Jar taskletcccoouiiiiiiiiiii e 15

3.7. Configuring the Hadoop Di stri butedCacheocoiiiiiiii e, 15

3.8. Map Reduce GeneriC OPLIONScceeuuiiiiiiie ettt eeaaans 16

4. Working with the Hadoop File SYStEM ..o 17
4.1. Configuring the file-SYStEMiii e 17

4.2. USiNg HDFS RESOUICE LOAUETuuiiiiiiiiiieiiiiie ettt 18

4.3. Scripting the Hadoop APl ... e e e 20

L0 LS o IR 1] o] £ T PP 22

4.4, Scripting implicit Variables ... 22
L0] T o To TE=To] 1] o NS 23

Using the Scripting taskIetoo e 23

4.5. File System Shell (FSShell)uiiiiii e 24
DISICP AP it 25

5. WOrKIiNg WIth HBASEiiiiiiiiiii et e e e eaans 26
5.1. Data Access ODbject (DAO) SUPPOIT ..ceeuuuniiiiiiiee e 26

(ST 1Y/ S I T a1 =T = i o) o PN 28
6.1, Starting @ HIVE SEIVEL ... e e 28

6.2. Using the Hive Thrift CHENt ... 28

6.3. Using the Hive JDBC ClHENLcccviiiiici e e e 29

6.4. RUNNINg @ HiVE SCHPL OF QUEIY ...t e e et ea e 29
UsiNg the HIVe taSKIELoiiiii e 30

6.5. Interacting with the HIVe APl ... e 30

A [TRESTU o] oL] o ST U PPR 32
7.1. RUNNING @ Pig SCHPL vt 32
Using the Pig taskIetooiiiiiii e 33

7.2. Interacting with the Pig APL ... 33

I 0= ETo= o [g [o T 01 (=T o | =1 1] o B OPPPTRRPP 34
8.1. Using the Cascading taskIetcccoouiiiiiiiiiii e 37

8.2. USING SCAIAING ..cvniieiiiiiii et e e e e 37

8.3. SPring-SPeCific 10CAl TAPS .vvuiiiiiiiii e 38

9. USING the TUNNET CIASSES . .ouiiiiiiieii et e e e e e e e e et e e e eaneees 40

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual ii

Spring Hadoop

O TS T ot W14V U]] o o A 42
10.1. HDFS PEIMUSSIONSuiitieitieeti ettt e et et et e e e e e e et e e et e e et e e et e e ebn e e e eeennns 42

10.2. User impersonation (KErberoS)cuuuiiiiiiiiieiiii et 42

[ll. Developing Spring for Apache Hadoop ApPlICAtioNScceuuiiiiiiiiiii e 43
11. Guidance and EXamPIESooeiiiiiiii e e 44
0 S 1] 1 =T [g T PSPPSR PP 44

11.2. BatCh JOD LISTENEIS ... e 44

IV. Spring for Apache Hadoop sample appliCationsoooouiiiiiiiiiiiei e 46
RV @ 1 o1 g Lo T Yo 10 o = PP 47
12, USETUL LINKS .ottt e et e e e e e e e 48

A Y o] o 1=] o [o [ol 2SR UTTPPRPIN 49
A. Using Spring for Apache Hadoop with Amazon EMR ..o 50

AL Start UP the CIUSTEN ..coee e 50

A.2. Open an SSH Tunnel as @ SOCKS PrOXY ...cccuuiieuuieiniaiiieeiieeeiiae et eeie e e eaneees 51

A.3. Configuring Hadoop to use @ SOCKS PrOXYccuuuieiiiiinieiiiiiieeeiii e 51

A.4. Accessing the file-SYStEmM ..o 52

A.5. Shutting down the CIUSTET ... e 52

A.6. Example CONFIQUIALIONiiiiiiii e 53

B. Using Spring for Apache Hadoop with EC2/Apache WHhirrcccoeiiiiiiiiiiiiicie e, 55

B.1. Setting up the Hadoop cluster on EC2 with Apache Whirrc.cocoiiiiiiiiinnnannn. 55

C. Spring for Apache Hadoop SCheM@viiiiiiiiiiii e 57

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual iii

Spring Hadoop

Preface

Spring for Apache Hadoop provides extensions to Spring, Spring Batch, and Spring Integration to build
manageable and robust pipeline solutions around Hadoop.

Spring for Apache Hadoop supports reading from and writing to HDFS, running various types of Hadoop
jobs (Java MapReduce, Streaming), scripting and HBase, Hive and Pig interactions. An important goal
is to provide excellent support for non-Java based developers to be productive using Spring for Apache
Hadoop and not have to write any Java code to use the core feature set.

Spring for Apache Hadoop also applies the familiar Spring programming model to Java MapReduce
jobs by providing support for dependency injection of simple jobs as well as a POJO based MapReduce
programming model that decouples your MapReduce classes from Hadoop specific details such as
base classes and data types.

This document assumes the reader already has a basic familiarity with the Spring Framework and
Hadoop concepts and APIs.

While every effort has been made to ensure that this documentation is comprehensive and there are
no errors, nevertheless some topics might require more explanation and some typos might have crept
in. If you do spot any mistakes or even more serious errors and you can spare a few cycles during
lunch, please do bring the error to the attention of the Spring for Apache Hadoop team by raising an
issue. Thank you.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual iv

Part I. Introduction

Spring for Apache Hadoop provides integration with the Spring Framework to create and run Hadoop
MapReduce, Hive, and Pig jobs as well as work with HDFS and HBase. If you have simple needs to work
with Hadoop, including basic scheduling, you can add the Spring for Apache Hadoop nhamespace to your
Spring based project and get going quickly using Hadoop. As the complexity of your Hadoop application
increases, you may want to use Spring Batch and Spring Integration to regain on the complexity of
developing a large Hadoop application.

This document is the reference guide for Spring for Apache Hadoop project (SHDP). It explains the
relationship between the Spring framework and Hadoop as well as related projects such as Spring Batch
and Spring Integration. The first part describes the integration with the Spring framework to define the
base concepts and semantics of the integration and how they can be used effectively. The second part
describes how you can build upon these base concepts and create workflow based solutions provided
by the integration with Spring Batch.

Spring Hadoop

1. Requirements

Spring for Apache Hadoop requires JDK level 6.0 (just like Hadoop) and above, Spring Framework 3.0
(3.2 recommended) and above and is built against Apache Hadoop 1.2.1. SHDP supports and is tested
daily against Apache Hadoop 1.2.1 and also against 1.1.2 and 2.0.x alpha as well as against various
Hadoop distributions:

» Pivotal HD 1.1
» Cloudera CDH4 (cdh4.3.1 MRv1) distributions

» Hortonworks Data Platform 1.3
Any distro compatible with Apache Hadoop 1.x stable should be supported.

We have recently added support to allow Hadoop 2.x based distributions to be used with the current
functionality. We are running test builds against Apache Hadoop 2.0.x alpha, Pivotal HD 1.1 and
Hortonworks Data Platform 2.0.

@ Note

Hadoop YARN support is only available in Spring for Apache Hadoop version 2.0 and later.

Spring Data Hadoop is provided out of the box and it is certified to work on Greenplum HD 1.2 and
Pivotal HD 1.0 and 1.1 distributions. It is also certified to run against Hortonworks HDP 1.3.

Instructions for setting up project builds using various supported distributions are provided on the Spring
for Apache Hadoop wiki -http://cascading.org/http://hbase.apache.org/http://hive.apache.org/ https://
github.com/spring-projects/spring-hadoop/wiki

Regarding Hadoop-related projects, SDHP supports Cascading 2.1, HBase 0.90.x, Hive 0.8.x and Pig
0.9.x and above. As a rule of thumb, when using Hadoop-related projects, such as Hive or Pig, use the
required Hadoop version as a basis for discovering the supported versions.

Spring for Apache Hadoop also requires a Hadoop installation up and running. If you don't already
have a Hadoop cluster up and running in your environment, a good first step is to create a single-node
cluster. To install Hadoop 1.2.1, the "Getting Started" page from the official Apache documentation is a
good general guide. If you are running on Ubuntu, the tutorial from Michael G. Noll, "Running Hadoop
On Ubuntu Linux (Single-Node Cluster)" provides more details. It is also convenient to download a
Virtual Machine where Hadoop is setup and ready to go. Cloudera, Hortonworks and Pivotal all provide
virtual machines and provide VM downloads on their product pages. Additionally, the appendix provides
information on how to use Spring for Apache Hadoop and setup Hadoop with cloud providers, such as
Amazon Web Services.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 2

http://spring.io/
http://hadoop.apache.org/
https://build.spring.io/browse/SPRINGDATAHADOOP
http://www.gopivotal.com/
http://www.cloudera.com/
http://www.hortonworks.com/
http://cascading.org/
http://hbase.apache.org/
http://hive.apache.org/
https://github.com/spring-projects/spring-hadoop/wiki
https://github.com/spring-projects/spring-hadoop/wiki
http://cascading.org/
http://hbase.apache.org/
http://hive.apache.org/
http://pig.apache.org/
http://hadoop.apache.org/common/docs/stable/#Getting+Started
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/

Spring Hadoop

2. Additional Resources

While this documentation acts as a reference for Spring for Hadoop project, there are number of
resources that, while optional, complement this document by providing additional background and code
samples for the reader to try and experiment with:

» Spring for Apache Hadoop samples https://github.com/spring-projects/spring-hadoop-
samples/. Official repository full of SHDP samples demonstrating the various project features.

» Spring Data Book http://shop.oreilly.com/product/0636920024767.do. Guide to Spring Data
projects, written by the committers behind them. Covers Spring Data Hadoop stand-alone but in
tandem with its siblings projects. All author royalties from book sales are donated to Creative
Commons organization.

» Spring Data Book Hadoop examples https://github.com/spring-projects/spring-data-book/
tree/master/hadoop. Complete running samples for the Spring Data book. Note that some of them
are available inside Spring for Apache Hadoop samples as well.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 3

https://github.com/spring-projects/spring-hadoop-samples/
https://github.com/spring-projects/spring-hadoop-samples/
http://shop.oreilly.com/product/0636920024767.do
http://creativecommons.org/about
http://creativecommons.org/about
https://github.com/spring-projects/spring-data-book/tree/master/hadoop
https://github.com/spring-projects/spring-data-book/tree/master/hadoop

Part Il. Spring and Hadoop

Document structure

This part of the reference documentation explains the core functionality that Spring for Apache Hadoop
(SHDP) provides to any Spring based application.

Chapter 3, Hadoop Configuration, MapReduce, and Distributed Cache describes the Spring support for
bootstrapping, initializing and working with core Hadoop.

Chapter 4, Working with the Hadoop File System describes the Spring support for interacting with the
Hadoop file system.

Chapter 5, Working with HBase describes the Spring support for HBase.

Chapter 6, Hive integration describes the Hive integration in SHDP.

Chapter 7, Pig support describes the Pig support in Spring for Apache Hadoop.

Chapter 8, Cascading integration describes the Cascading integration in Spring for Apache Hadoop.

Chapter 10, Security Support describes how to configure and interact with Hadoop in a secure
environment.

Spring Hadoop

3. Hadoop Configuration, MapReduce, and
Distributed Cache

One of the common tasks when using Hadoop is interacting with its runtime - whether it is a local setup or
a remote cluster, one needs to properly configure and bootstrap Hadoop in order to submit the required
jobs. This chapter will focus on how Spring for Apache Hadoop (SHDP) leverages Spring's lightweight
loC container to simplify the interaction with Hadoop and make deployment, testing and provisioning
easier and more manageable.

3.1 Using the Spring for Apache Hadoop Namespace

To simplify configuration, SHDP provides a dedicated namespace for most of its components. However,
one can opt to configure the beans directly through the usual <bean> definition. For more information
about XML Schema-based configuration in Spring, see this appendix in the Spring Framework reference
documentation.

To use the SHDP namespace, one just needs to import it inside the configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: Ohdp="0htt p: // ww. spri ngf ramewor k. or g/ schema/ hadoop"
xsi : schemaLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. spri ngfranework. org/ schema/
beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ hadoop http://ww. springframework. or g/ schema/

hadoop/ spri ng- hadoop. xsd" >

<bean id ... >
O<hdp: configuration ...>
</ beans>

0 Spring for Apache Hadoop namespace prefix. Any name can do but throughout the reference
documentation, hdp will be used.

O The namespace URI.

0 The namespace URI location. Note that even though the location points to an external address
(which exists and is valid), Spring will resolve the schema locally as it is included in the Spring for
Apache Hadoop library.

O Declaration example for the Hadoop namespace. Notice the prefix usage.

Once imported, the namespace elements can be declared simply by using the aforementioned prefix.
Note that is possible to change the default namespace, for example from <beans> to <hdp>. This is
useful for configuration composed mainly of Hadoop components as it avoids declaring the prefix. To
achieve this, simply swap the namespace prefix declarations above:

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 5

http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/xsd-config.html

Spring Hadoop

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns="http://wwmv. spri ngfranmewor k. or g/ schema/ hadoop" [
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
Oxm ns: beans="htt p: //ww. spri ngframewor k. or g/ schenma/ beans”
xsi : schemalLocati on="
http://ww. springframework. or g/ scherma/ beans http://ww. spri ngfranework. org/ schema/
beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ hadoop http://ww. spri ngframework. or g/ schema/
hadoop/ spri ng- hadoop. xsd" >

O<beans: bean id ... >

O<configuration ...>

</ beans: beans>

0 The default namespace declaration for this XML file points to the Spring for Apache Hadoop
namespace.

0 The beans namespace prefix declaration.

Bean declaration using the <beans> namespace. Notice the prefix.

O Bean declaration using the <hdp> namespace. Notice the lack of prefix (as hdp is the default
namespace).

O

For the remainder of this doc, to improve readability, the XML examples may simply refer to the <hdp>
namespace without the namespace declaration, where possible.

3.2 Configuring Hadoop

In order to use Hadoop, one needs to first configure it namely by creating a Conf i gur at i on object.
The configuration holds information about the job tracker, the input, output format and the various other
parameters of the map reduce job.

In its simplest form, the configuration definition is a one liner:

<hdp: configuration />

The declaration above defines a Confi gurati on bean (to be precise a factory bean of type
Conf i gur ati onFact or yBean) named, by default, hadoopConf i gur ati on. The default name is
used, by conventions, by the other elements that require a configuration - this leads to simple and very
concise configurations as the main components can automatically wire themselves up without requiring
any specific configuration.

For scenarios where the defaults need to be tweaked, one can pass in additional configuration files:

<hdp: configurati on resources="cl asspath:/customsite.xm, classpath:/hg-site.xm">

In this example, two additional Hadoop configuration resources are added to the configuration.

© Note

Note that the configuration makes use of Spring's _Resour ce_abstraction to locate the file. This
allows various search patterns to be used, depending on the running environment or the prefix
specified (if any) by the value - in this example the classpath is used.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 6

http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/resources.html

Spring Hadoop

In addition to referencing configuration resources, one can tweak Hadoop settings directly through Java
Properti es. This can be quite handy when just a few options need to be changed:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: hdp="htt p: // ww. spri ngf ramewor k. or g/ schena/ hadoop"
xsi : schemaLocati on="htt p://wmv spri ngfranmewor k. or g/ schema/ beans http://
www. spri ngframewor k. or g/ schena/ beans/ spri ng- beans. xsd

http://ww. springframework. or g/ scherma/ hadoop http://ww. spri ngfranework. or g/

schema/ hadoop/ spri ng- hadoop. xsd" >

<hdp: confi gurati on>
fs.defaul t. name=hdfs:/ /1 ocal host: 9000
hadoop. t np. di r =/ t np/ hadoop
el ectric=sea
</ hdp: confi gurati on>
</ beans>

One can further customize the settings by avoiding the so called hard-coded values by externalizing
them so they can be replaced at runtime, based on the existing environment without touching the
configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: hdp="http://ww. spri ngframewor k. or g/ schema/ hadoop"
xm ns: cont ext ="http://wwm. springframewor k. or g/ schema/ cont ext"
xsi : schemaLocati on="htt p://ww. spri ngfranework. or g/ schema/ beans http://
www. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ context http://ww. springframework. org/
schema/ cont ext/ spri ng- cont ext . xsd
http://ww. springframework. or g/ scherma/ hadoop http://ww. spri ngfranework. org/
schema/ hadoop/ spri ng- hadoop. xsd" >

<hdp: confi gurati on>
fs.defaul t.name=${hd. f s}
hadoop.tnp.dir=file://${java.io.tnpdir}
hangar =${ nunber : 18}

</ hdp: confi gurati on>

<cont ext: property-pl acehol der | ocati on="cl asspat h: hadoop. properties" />
</ beans>

Through Spring's property placeholder support, SpEL and the environment abstraction (available in
Spring 3.1). one can externalize environment specific properties from the main code base easing the
deployment across multiple machines. In the example above, the default file system is replaced based
on the properties available in hadoop. properti es while the temp dir is determined dynamically
through SpEL. Both approaches offer a lot of flexbility in adapting to the running environment - in fact
we use this approach extensivly in the Spring for Apache Hadoop test suite to cope with the differences
between the different development boxes and the Cl server.

Additionally, external Pr oper t i es files can be loaded, Pr oper t i es beans (typically declared through
Spring's util namespace). Along with the nested properties declaration, this allows customized
configurations to be easily declared:

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 7

http://docs.spring.io/spring/docs/3.0.x/reference/beans.html#beans-factory-placeholderconfigurer
http://docs.spring.io/spring/docs/3.0.x/reference/expressions.html
http://spring.io/blog/2011/06/09/spring-framework-3-1-m2-released/
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/xsd-config.html#xsd-config-body-schemas-util-properties

Spring Hadoop

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: hdp="htt p: // www. spri ngf ramewor k. or g/ schena/ hadoop"
xm ns: cont ext ="http://wwmv. springfranmewor k. or g/ schema/ cont ext "
xm ns:util="http://ww. springframework. org/schema/util"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans http://
www. spri ngframewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. org/ schema/ context http://ww. springframework. org/
schema/ cont ext/ spri ng- cont ext . xsd
http://ww. spri ngfranewor k. org/ schema/util http://ww. springfranmework. org/ schema/
util/spring-util.xsd
http://ww. springframework. or g/ scherma/ hadoop http://ww. spri ngfranework. or g/
schema/ hadoop/ spri ng- hadoop. xsd" >

<l-- nerge the local properties, the props bean and the two properties files -->

<hdp: configuration properties-ref="props" properties-|ocation="cfg-1.properties
cfg-2. properties">
st ar =chasi ng
capt ai n=eo
</ hdp: confi gurati on>

<util:properties id="props" |ocation="props.properties"/>
</ beans>

When merging several properties, ones defined locally win. In the example above the configuration
properties are the primary source, followed by the pr ops bean followed by the external properties file
based on their defined order. While it's not typical for a configuration to refer to so many properties, the
example showcases the various options available.

© Note

For more properties utilities, including using the System as a source or fallback, or control over
the merging order, consider using Spring's Properti esFact oryBean (which iswhat Spring
for Apache Hadoop and uti | : properti es use underneath).

It is possible to create configurations based on existing ones - this allows one to create dedicated
configurations, slightly different from the main ones, usable for certain jobs (such as streaming - more
on that below). Simply use the confi gur ati on-ref attribute to refer to the parent configuration - all
its properties will be inherited and overridden as specified by the child:

<!-- default nanme is 'hadoopConfiguration' -->
<hdp: confi gurati on>

fs.defaul t.name=${hd. f s}

hadoop. tnp.dir=file://${java.io.tnpdir}
</ hdp: confi gurati on>

<hdp: configuration i d="custom' configuration-ref="hadoopConfi guration">
fs. def aul t.name=${cust om hd. f s}
</ hdp: confi gurati on>

Make sure though that you specify a different name since otherwise, because both definitions will have
the same name, the Spring container will interpret this as being the same definition (and will usually
consider the last one found).

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 8

http://docs.spring.io/spring/docs/3.0.x/api/org/springframework/beans/factory/config/PropertiesFactoryBean.html

Spring Hadoop

Another option worth mentioning is regi ster-url-handl er which, as the name implies,
automatically registers an URL handler in the running VM. This allows urls referrencing hdfs resource
(by using the hdf s prefix) to be properly resolved - if the handler is not registered, such an URL will
throw an exception since the VM does not know what hdf s means.

© Note

Since only one URL handler can be registered per VM, at most once, this option is turned off by
default. Due to the reasons mentioned before, once enabled if it fails, it will log the error but will
not throw an exception. If your hdf s URLSs stop working, make sure to investigate this aspect.

Last but not least a reminder that one can mix and match all these options to her preference. In
general, consider externalizing Hadoop configuration since it allows easier updates without interfering
with the application configuration. When dealing with multiple, similar configurations use configuration
composition as it tends to keep the definitions concise, in sync and easy to update.

3.3 Creating a Hadoop Job

Once the Hadoop configuration is taken care of, one needs to actually submit some work to it. SHDP
makes it easy to configure and run Hadoop jobs whether they are vanilla map-reduce type or streaming.
Let us start with an example:

<hdp:job id="nr-job"
i nput - pat h="/1i nput/" out put - pat h="/ ouput/"
mapper =" or g. apache. hadoop. exanpl es. Wr dCount . Tokeni zer Mapper "
reducer =" org. apache. hadoop. exanpl es. Wr dCount . | nt SunReducer"/ >

The declaration above creates a typical Hadoop Job: specifies its input and output, the mapper and the
reducer classes. Notice that there is no reference to the Hadoop configuration above - that's because,
if not specified, the default naming convention (hadoopConf i gur at i on) will be used instead. Neither
is there to the key or value types - these two are automatically determined through a best-effort attempt
by analyzing the class information of the mapper and the reducer. Of course, these settings can be
overridden: the former through the conf i gur ati on-ref element, the latter through key and val ue
attributes. There are plenty of options available not shown in the example (for simplicity) such as the
jar (specified directly or by class), sort or group comparator, the combiner, the partitioner, the codecs
to use or the input/output format just to name a few - they are supported, just take a look at the SHDP
schema (Appendix C, Spring for Apache Hadoop Schema) or simply trigger auto-completion (usually
CTRL+SPACE) in your IDE; if it supports XML namespaces and is properly configured it will display the
available elements. Additionally one can extend the default Hadoop configuration object and add any
special properties not available in the namespace or its backing bean (JobFact or yBean).

It is worth pointing out that per-job specific configurations are supported by specifying the custom
properties directly or referring to them (more information on the pattern is available here):

<hdp: job id="nr-job"
i nput - pat h="/1i nput/" out put - pat h="/ ouput /"
mapper =" mapper cl ass" reducer="reducer class"
jar-by-class="cl ass used for jar detection"
properties-locati on="cl asspat h: speci al -j ob. properties">
el ectric=sea
</ hdp: j ob>

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 9

Spring Hadoop

<hdp: j ob> provides additional properties, such as the generic options, however one that is worth
mentioning is j ar which allows a job (and its dependencies) to be loaded entirely from a specified jar.
This is useful for isolating jobs and avoiding classpath and versioning collisions. Note that provisioning
of the jar into the cluster still depends on the target environment - see the aforementioned section for
more info (such as | i bs).

Creating a Hadoop Streaming Job

Hadoop Streaming job (or in short streaming), is a popular feature of Hadoop as it allows the creation
of Map/Reduce jobs with any executable or script (the equivalent of using the previous counting words
example is to use _cat and wc_ commands). While it is rather easy to start up streaming from the
command line, doing so programatically, such as from a Java environment, can be challenging due to
the various number of parameters (and their ordering) that need to be parsed. SHDP simplifies such
a task - it's as easy and straightforward as declaring a j ob from the previous section; in fact most of
the attributes will be the same:

<hdp: stream ng i d="stream ng"
i nput - pat h="/1i nput/" out put - pat h="/ ouput/"
mapper =" ${path.cat}" reducer="${path. wc}"/>

Existing users might be wondering how they can pass the command line arguments (such as - D or
- cndenv). While the former customize the Hadoop configuration (which has been convered in the
previous section), the latter are supported through the cnd- env element:

<hdp: stream ng i d="streamni ng-env"
i nput - pat h="/i nput/" out put - pat h="/ ouput/"
mapper ="${path.cat}" reducer="${path. w}">
<hdp: cnd- env>
EXAMPLE_DI R=/ hone/ exanpl e/ di cti onari es/

</ hdp: cnd- env>
</ hdp: st reani ng>

Just like j ob, st r eani ng supports the generic options; follow the link for more information.

3.4 Running a Hadoop Job

The jobs, after being created and configured, need to be submitted for execution to a Hadoop cluster. For
non-trivial cases, a coordinating, workflow solution such as Spring Batch is recommended . However for
basic job submission SHDP provides the j ob- r unner element (backed by JobRunner class) which
submits several jobs sequentially (and waits by default for their completion):

<hdp: j ob-runner id="nmnyjob-runner" pre-action="cl eanup-script" post-action="export-
resul ts" job-ref="nyjob" run-at-startup="true"/>

<hdp:job id="mnyjob" input-path="/input/" output-path="/output/"
mapper =" or g. apache. hadoop. exanpl es. Wr dCount . Tokeni zer Mapper "
reducer ="org. apache. hadoop. exanpl es. Wr dCount . | nt SunReducer" />

Multiple jobs can be specified and even nested if they are not used outside the runner:

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 10

http://hadoop.apache.org/common/docs/current/streaming.html
http://en.wikipedia.org/wiki/Cat_%28Unix%29
http://en.wikipedia.org/wiki/Wc_%28Unix%29

Spring Hadoop

<hdp: j ob-runner id="nmnyj obs-runner" pre-action="cl eanup-script" job-ref="mnyjobl
nyj ob2" run-at-startup="true"/>

<hdp: job id="nmyjobl" ... />
<hdp: stream ng i d="nyjob2" ... />

One or multiple Map-Reduce jobs can be specified through the j ob attribute in the order of the execution.
The runner will trigger the execution during the application start-up (notice the r un- at - st ar t up flag
which is by default f al se). Do note that the runner will not run unless triggered manually or if r un-
at-startup is settotrue. Additionally the runner (as in fact do all runners in SHDP) allows one or
multiple pr e and post actions to be specified to be executed before and after each run. Typically other
runners (such as other jobs or scripts) can be specified but any JDK Cal | abl e can be passed in. For
more information on runners, see the dedicated chapter.

© Note

As the Hadoop job submission and execution (when wait-for-conpletion is true) is
blocking, JobRunner uses a JDK Execut or to start (or stop) a job. The default implementation,
SyncTaskExecut or uses the calling thread to execute the job, mimicking the hadoop command
line behaviour. However, as the hadoop jobs are time-consuming, in some cases this can lead to
“application freeze”, preventing normal operations or even application shutdown from occuring
properly. Before going into production, it is recommended to double-check whether this strategy
is suitable or whether a throttled or pooled implementation is better. One can customize the
behaviour through the execut or - r ef parameter.

The job runner also allows running jobs to be cancelled (or killed) at shutdown. This applies only to jobs
that the runner waits for (wai t - f or - conpl et i on ist r ue) using a different executor then the default
- that is, using a different thread then the calling one (since otherwise the calling thread has to wait for
the job to finish first before executing the next task). To customize this behaviour, one should set the
kill-j ob-at-shut down attribute to f al se and/or change the execut or - r ef implementation.

Using the Hadoop Job tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hadoop jobs as a step
in a Spring Batch workflow. An example declaration is shown below:

<hdp: j ob-t askl et id="hadoop-tasklet" job-ref="nr-job" wait-for-conpletion="true" />

The tasklet above references a Hadoop job definition named "mr-job". By default, wait - f or -
conpl eti on is true so that the tasklet will wait for the job to complete when it executes. Setting wai t -
for-conpl eti on tofal se will submit the job to the Hadoop cluster but not wait for it to complete.

3.5 Running a Hadoop Tool

It is common for Hadoop utilities and libraries to be started from the command-line (ex: hadoop j ar
some.jar). SHDP offers generic support for such cases provided that the packages in question are built
on top of Hadoop standard infrastructure, namely Tool and Tool Runner classes. As opposed to the
command-line usage, Tool instances benefit from Spring's 10C features; they can be parameterized,
created and destroyed on demand and have their properties (such as the Hadoop configuration) injected.

Consider the typical j ar example - invoking a class with some (two in this case) arguments (notice that
the Hadoop configuration properties are passed as well):

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 11

Spring Hadoop

bi n/ hadoop jar -conf hadoop-site.xm -jt darw n: 50020 - Dproperty=val ue
sonelJar.jar org.foo. SoneTool data/in.txt datal/out.txt

Since SHDP has first-class support for configuring Hadoop, the so called generi c opti ons aren't
needed any more, even more so since typically there is only one Hadoop configuration per application.
Throught ool - runner element (and its backing Tool Runner class) one typically just needs to specify
the Tool implementation and its arguments:

<hdp: t ool -runner id="soneTool " tool -class="org.foo.SonmeTool " run-at-startup="true">
<hdp: arg val ue="data/in.txt"/>
<hdp: arg val ue="data/out.txt"/>

property=val ue
</ hdp: t ool - runner >

Additionally the runner (just like the job runner) allows one or multiple pr e and post actions to be
specified to be executed before and after each run. Typically other runners (such as other jobs or scripts)
can be specified but any JDK Cal | abl e can be passed in. Do note that the runner will not run unless
triggered manually or if run- at - st art up is set to t r ue. For more information on runners, see the
dedicated chapter.

The previous example assumes the Tool dependencies (such as its class) are available in the
classpath. If that is not the case, t ool - r unner allows a jar to be specified:

<hdp:tool -runner ... jar="nyTool.jar">

</ hdp: t ool - runner >

The jar is used to instantiate and start the tool - in fact all its dependencies are loaded from the jar
meaning they no longer need to be part of the classpath. This mechanism provides proper isolation
between tools as each of them might depend on certain libraries with different versions; rather then
adding them all into the same app (which might be impossible due to versioning conflicts), one can
simply point to the different jars and be on her way. Note that when using a jar, if the main class (as
specified by the Main-Class entry) is the target Tool , one can skip specifying the tool as it will picked
up automatically.

Like the rest of the SHDP elements, t ool - r unner allows the passed Hadoop configuration (by default
hadoopConf i gur ati on but specified in the example for clarity) to be customized accordingly; the
snippet only highlights the property initialization for simplicity but more options are available. Since
usually the Tool implementation has a default argument, one can use the t ool - cl ass attribute.
However it is possible to refer to another Tool instance or declare a nested one:

<hdp: t ool -runner id="sonmeTool" run-at-startup="true">
<hdp: t ool >
<bean cl ass="org. f 0o. Anot her Tool " p:input="data/in.txt" p:output="datal/out.txt"/>
</ hdp: t ool >
</ hdp: t ool - runner >

This is quite convenient if the Tool class provides setters or richer constructors. Note that by default
thet ool - r unner does not execute the Tool until its definition is actually called - this behavior can be
changed through the r un- at - st ar t up attribute above.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 12

http://docs.oracle.com/javase/tutorial/deployment/jar/appman.html

Spring Hadoop

Replacing Hadoop shell invocations with t ool - r unner

t ool - runner is a nice way for migrating series or shell invocations or scripts into fully wired, managed
Java objects. Consider the following shell script:

hadoop jar jobl.jar -files fullpath:props. properties -Dconfig=config.properties ...
hadoop jar job2.jar argl arg2..

hadoop jar jobl0.jar ...

Each job is fully contained in the specified jar, including all the dependencies (which might conflict with
the ones from other jobs). Additionally each invocation might provide some generic options or arguments
but for the most part all will share the same configuration (as they will execute against the same cluster).

The script can be fully ported to SHDP, through the t ool - r unner element:

<hdp: t ool -runner id="jobl" tool -
class="jobl. Tool" jar="jobl.jar" files="fullpath: props. properties" properties-
| ocation="config.properties"/>
<hdp: t ool -runner id="job2" jar="job2.jar">
<hdp: arg val ue="argl"/>
<hdp: arg val ue="arg2"/ >
</ hdp: t ool - runner >
<hdp: t ool -runner id="job3" jar="job3.jar"/>

All the features have been explained in the previous sections but let us review what happens here.
As mentioned before, each tool gets autowired with the hadoopConf i gur ati on; j ob1 goes beyond
this and uses its own properties instead. For the first jar, the Tool class is specified, however the
rest assume the jar Main-Classes implement the Tool interface; the namespace will discover them
automatically and use them accordingly. When needed (such as with j ob1), additional files or libs are
provisioned in the cluster. Same thing with the job arguments.

However more things that go beyond scripting, can be applied to this configuration - each job can
have multiple properties loaded or declared inlined - not just from the local file system, but also from
the classpath or any url for that matter. In fact, the whole configuration can be externalized and
parameterized (through Spring's property placeholder and/or Environment abstraction). Moreover, each
job can be ran by itself (through the JobRunner) or as part of a workflow - either through Spring's
depends- on or the much more powerful Spring Batch and t ool -t askl et .

Using the Hadoop Tool tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hadoop tasks as a step
in a Spring Batch workflow. The tasklet element supports the same configuration options as tool-runner
except for run- at - st art up (which does not apply for a workflow):

<hdp: t ool -t askl et id="tool -tasklet" tool-ref="sonme-tool" />

3.6 Running a Hadoop Jar
SHDP also provides support for executing vanilla Hadoop jars. Thus the famous WordCount example:

bi n/ hadoop jar hadoop- exanpl es. jar wordcount /wordcount/input /wordcount/ out put

becomes

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 13

http://docs.spring.io/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://docs.spring.io/spring/docs/3.1.x/spring-framework-reference/html/new-in-3.1.html#d0e1313
http://hadoop.apache.org/common/docs/r1.0.3/mapred_tutorial.html#Example%3A+WordCount+v1.0

Spring Hadoop

<hdp: jar-runner id="wordcount" jar="hadoop-exanples.jar" run-at-startup="true">
<hdp: arg val ue="wordcount"/ >
<hdp: arg val ue="/wordcount/input"/>
<hdp: arg val ue="/wor dcount/ out put "/ >

</ hdp:j ar - runner >

© Note

Just like the hadoop j ar command, by default the jar support reads the jar's Mai n- Cl ass if
none is specified. This can be customized through the rmai n- cl ass attribute.

Additionally the runner (just like the job runner) allows one or multiple pr e and post actions to be
specified to be executed before and after each run. Typically other runners (such as other jobs or scripts)
can be specified but any JDK Cal | abl e can be passed in. Do note that the runner will not run unless
triggered manually or if run- at - st art up is set to t r ue. For more information on runners, see the
dedicated chapter.

The j ar support provides a nice and easy migration path from jar invocations from the command-
line to SHDP (note that Hadoop generic options are also supported). Especially since SHDP enables
Hadoop Confi gur at i on objects, created during the jar execution, to automatically inherit the context
Hadoop configuration. In fact, just like other SHDP elements, the j ar element allows configurations
properties to be declared locally, just for the jar run. So for example, if one would use the following
declaration:

<hdp:jar-runner id="wordcount" jar="hadoop-exanples.jar" run-at-startup="true">
<hdp: arg val ue="wordcount"/ >

speed=f ast
</ hdp:j ar-runner >

inside the jar code, one could do the following:

assert "fast".equal s(new Configuration().get("speed"));

This enabled basic Hadoop jars to use, without changes, the enclosing application Hadoop
configuration.

And while we think it is a useful feature (that is why we added it in the first place), we strongly recommend
using the tool support instead or migrate to it; there are several reasons for this mainly because there
are no contracts to use, leading to very poor embeddability caused by:

» No standard Conf i gur at i on injection

While SHDP does a best effort to pass the Hadoop configuration to the jar, there is no guarantee the
jar itself does not use a special initialization mechanism, ignoring the passed properties. After all, a
vanilla Conf i gur at i on is not very useful so applications tend to provide custom code to address
this.

* Systemexit() calls

Most jar examples out there (including Wor dCount) assume they are started from the command line
and among other things, call Syst em exi t, to shut down the JVM, whether the code is succesful
or not. SHDP prevents this from happening (otherwise the entire application context would shutdown
abruptly) but it is a clear sign of poor code collaboration.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 14

Spring Hadoop

SHDP tries to use sensible defaults to provide the best integration experience possible but at the end
of the day, without any contract in place, there are no guarantees. Hence using the Tool interface is
a much better alternative.

Using the Hadoop Jar tasklet

Like for the rest of its tasks, for Spring Batch environments, SHDP provides a dedicated tasklet to
execute Hadoop jars as a step in a Spring Batch workflow. The tasklet element supports the same
configuration options as jar-runner except for r un- at - st ar t up (which does not apply for a workflow):

<hdp:jar-tasklet id="jar-tasklet" jar="sonme-jar.jar" />

3.7 Configuring the Hadoop Di st ri but edCache

DistributedCache is a Hadoop facility for distributing application-specific, large, read-only files (text,
archives, jars and so on) efficiently. Applications specify the files to be cached via urls (hdf s: / /) using
Di stri but edCache and the framework will copy the necessary files to the slave nodes before any
tasks for the job are executed on that node. Its efficiency stems from the fact that the files are only
copied once per job and the ability to cache archives which are un-archived on the slaves. Note that
Di stri but edCache assumes that the files to be cached (and specified via hdfs:// urls) are already
present on the Hadoop Fi | eSyst em

SHDP provides first-class configuration for the distributed cache through its cache element (backed by
Di stri but edCacheFact or yBean class), allowing files and archives to be easily distributed across
nodes:

<hdp: cache create-symink="true">
<hdp: cl asspat h val ue="/cp/some-library.jar#library.jar" />
<hdp: cache val ue="/cache/ sone- ar chi ve. t gz#mai n- archi ve" />
<hdp: cache val ue="/cache/ sone-resource.res" />
<hdp: | ocal val ue="sonme-file.txt" />

</ hdp: cache>

The definition above registers several resources with the cache (adding them to the job cache or
classpath) and creates symlinks for them. As described in the Di stri but edCache documentation,
the declaration format is (absol ut e- pat h#l i nk- nane). The link name is determined by the URI
fragment (the text following the # such as #library.jar or #main-archive above) - if no name is specified,
the cache bean will infer one based on the resource file name. Note that one does not have to specify
the hdf s: / / node: port prefix as these are automatically determined based on the configuration wired
into the bean; this prevents environment settings from being hard-coded into the configuration which
becomes portable. Additionally based on the resource extension, the definition differentiates between
archives (.tgz, .tar.gz, .zip and .tar) which will be uncompressed, and regular files that are
copied as-is. As with the rest of the namespace declarations, the definition above relies on defaults -
since it requires a Hadoop Conf i gur at i on and Fi | eSyst emobjects and none are specified (through
configuration-ref andfil e-systemref) it falls back to the default naming and is wired with
the bean named hadoopConfiguration, creating the Fi | eSyst emautomatically.

© Warning
Clients setting up a classpath inthe Di st ri but edCache, running on Windows platforms should
set the Syst empat h. separ at or property to : . Otherwise the classpath will be set incorrectly
and will be ignored; see HADOOP-9123 bug report for more information.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 15

http://hadoop.apache.org/common/docs/stable/mapred_tutorial.html#DistributedCache
http://hadoop.apache.org/common/docs/stable/mapred_tutorial.html#DistributedCache
https://issues.apache.org/jira/browse/HADOOP-9123

Spring Hadoop

There are multiple ways to change the pat h. separ at or Syst emproperty - a quick one being
a simple scri pt in Javascript (that uses the Rhino package bundled with the JDK) that runs
at start-up:

<hdp: scri pt | anguage="javascript" run-at-startup="true">
/] set System 'path.separator' to ':' - see HADOOP-9123
java.l ang. Syst em set Property("path. separator", ":")

</ hdp: scri pt >

3.8 Map Reduce Generic Options

The j ob, st ream ng and t ool all support a subset of generic options, specifically ar chi ves, fil es
and | i bs. i bs is probably the most useful as it enriches a job classpath (typically with some jars)
- however the other two allow resources or archives to be copied throughout the cluster for the job to
consume. Whenver faced with provisioning issues, revisit these options as they can help up significantly.
Note that the f s, j t or conf options are not supported - these are designed for command-line usage,
for bootstrapping the application. This is no longer needed, as the SHDP offers first-class support for
defining and customizing Hadoop configurations.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 16

http://hadoop.apache.org/common/docs/stable/commands_manual.html#Generic+Options

Spring Hadoop

4. Working with the Hadoop File System

A common task in Hadoop is interacting with its file system, whether for provisioning, adding new files
to be processed, parsing results, or performing cleanup. Hadoop offers several ways to achieve that:
one can use its Java APl (namely Fi | eSyst en) or use the hadoop command line, in particular the file
system shell. However there is no middle ground, one either has to use the (somewhat verbose, full of
checked exceptions) API or fall back to the command line, outside the application. SHDP addresses this
issue by bridging the two worlds, exposing both the Fi | eSyst emand the fs shell through an intuitive,
easy-to-use Java API. Add your favorite JVM scripting language right inside your Spring for Apache
Hadoop application and you have a powerful combination.

4.1 Configuring the file-system

The Hadoop file-system, HDFS, can be accessed in various ways - this section will cover the most
popular protocols for interacting with HDFS and their pros and cons. SHDP does not enforce any specific
protocol to be used - in fact, as described in this section any Fi | eSyst emimplementation can be used,
allowing even other implementations than HDFS to be used.

The table below describes the common HDFS APIs in use:

Table 4.1. HDFS APIs

File System Comm. Method Scheme / Prefix Read / Write Cross Version
HDFS RPC hdf s: // Read / Write Same HDFS
version only
HFTP HTTP hftp:// Read only Version
independent
WebHDFS HTTP (REST) webhdf s: // Read / Write Version
independent

What about FTP, Kosmos, S3 and the other file systems?

This chapter focuses on the core file-system protocols supported by Hadoop. S3 (see the
Appendix), FTP and the rest of the other Fi | eSyst emimplementations are supported as well -
Spring for Apache Hadoop has no dependency on the underlying system rather just on the public
Hadoop API.

hdf s: // protocol should be familiar to most readers - most docs (and in fact the previous chapter as
well) mention it. It works out of the box and it's fairly efficient. However because it is RPC based, it
requires both the client and the Hadoop cluster to share the same version. Upgrading one without the
other causes serialization errors meaning the client cannot interact with the cluster. As an alternative
one can use hftp:// which is HTTP-based or its more secure brother hsftp:// (based on SSL)
which gives you a version independent protocol meaning you can use it to interact with clusters with
an unknown or different version than that of the client. hf t p is read only (write operations will fail right
away) and it is typically used with di sct p for reading data. webhdf s: // is one of the additions in
Hadoop 1.0 and is a mixture between hdf s and hft p protocol - it provides a version-independent,
read-write, REST-based protocol which means that you can read and write to/from Hadoop clusters

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 17

http://hadoop.apache.org/common/docs/stable/api/index.html?org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/common/docs/stable/file_system_shell.html
http://en.wikipedia.org/wiki/List_of_JVM_languages

Spring Hadoop

no matter their version. Furthermore, since webhdf s:// is backed by a REST API, clients in other
languages can use it with minimal effort.

© Note

Not all file systems work out of the box. For example WebHDFS needs to be enabled first in
the cluster (through df s. webhdf s. enabl ed property, see this document for more information)
while the secure hftp, hsftp requires the SSL configuration (such as certificates) to be
specified. More about this (and how to use hf t p/ hsf t p for proxying) in this page.

Once the scheme has been decided upon, one can specify it through the standard Hadoop configuration,
either through the Hadoop configuration files or its properties:

<hdp: confi gurati on>
fs.defaul t. nane=webhdfs://I ocal host

</ hdp configuration>
This instructs Hadoop (and automatically SHDP) what the default, implied file-system is. In SHDP,

one can create additional file-systems (potentially to connect to other clusters) and specify a different
scheme:

<I-- manual ly creates the default SHDP fil e-system naned ' hadoopFs' -->
<hdp: fil e-systemuri="webhdfs://|ocal host"/>

<l-- creates a different FileSysteminstance -->
<hdp: file-systemid="old-cluster" uri="hftp://old-cluster/"/>

As with the rest of the components, the file systems can be injected where needed - such as file shell
or inside scripts (see the next section).

4.2 Using HDFS Resource Loader

In Spring the Resour ceLoader interface is meant to be implemented by objects that can return (i.e.
load) Resource instances.

public interface ResourcelLoader {
Resource get Resource(String |ocation);

}

All application contexts implement the Resour ceLoader interface, and therefore all application
contexts may be used to obtain Resource instances.

When you call get Resour ce() on a specific application context, and the location path specified
doesn't have a specific prefix, you will get back a Resour ce type that is appropriate to that particular
application context. For example, assume the following snippet of code was executed against a
Cl assPat hXm Appl i cati onCont ext instance:

Resource tenplate = ctx. get Resource("sone/resource/ path/ nyTenpl ate. txt");

What would be returned would be a C assPat hResour ce; if the same method was executed against
aFil eSystemXm Appl i cati onCont ext instance, you'd get back a Fi | eSyst enResour ce. For a
WebAppl i cati onCont ext , you'd get back a Ser vl et Cont ext Resour ce, and so on.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 18

http://hadoop.apache.org/common/docs/r1.0.0/webhdfs.html#Document+Conventions
http://hadoop.apache.org/hdfs/docs/r0.21.0/hdfsproxy.html

Spring Hadoop

As such, you can load resources in a fashion appropriate to the particular application context.

On the other hand, you may also force Cl assPat hResour ce to be used, regardless of the application
context type, by specifying the special cl asspat h: prefix:

‘ Resource tenplate = ctx. get Resource("cl asspat h: sone/ resour ce/ pat h/ myTenpl ate. txt");

© Note

More information about the generic usage of resource loading, check the Spring Framework
Documentation.

Spring Hadoop is adding its own functionality into generic concept of resource loading. Resour ce
abstraction in Spring has always been a way to ease resource access in terms of not having a need
to know where there resource is and how it's accessed. This abstraction also goes beyond a single
resource by allowing to use patterns to access multiple resources.

Lets first see how Hdf sResour ceLoader is used manually.

<hdp: file-system />
<hdp: resour ce-| oader id="|oader" file-systemref="hadoopFs" />
<hdp: resource-| oader id="|oaderWthUser" user="nmyuser" uri="hdfs://|ocal host:8020" />

In above configuration we created two beans, one with reference to existing Hadoop Fil eSystem
bean and one with impersonated user.

/] get path '/tnp/file.txt'

Resource resource = | oader.get Resource("/tnp/file.txt");
/] get path '/tnp/file.txt' with user inpersonation
Resource resource = | oader WthUser. get Resource("/tnp/file.txt");

/] get path '/user/<current user>/file.txt'

Resource resource = | oader. get Resource("file.txt");
/1l get path '/user/nyuser/file.txt'
Resource resource = | oader Wt hUser. get Resource("file.txt");

/'l get all paths under '/tnp/'

Resource[] resources = | oader. get Resources("/tnp/*");

/1 get all paths under '/tnp/' recursively

Resource[] resources = | oader.get Resources("/tnp/**/*");

I/l get all paths under '/tnp/' using nore conplex ant path natching
Resource[] resources = | oader. get Resources("/tnp/?ile?.txt");

What would be returned in above examples would be instances of Hdf sResour ces.

<hdp: file-system />
<hdp: resource-| oader file-systemref="hadoopFs" handl e-noprefix="fal se" />

@ Note

On default the Hdf sResour ceLoader will handle all resource paths without prefix. Attribute
handl e- nopr ef i x can be used to control this behaviour. If this attribute is set to false, non-
prefixed resource uris will be handled by Spring Application Context.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 19

Spring Hadoop

/] get 'default.txt' fromcurrent user's honme directory

Resource[] resources = context.getResources("hdfs:default.txt");

/1 get all files from hdfs root

Resource[] resources = context.getResources("hdfs:/*");

/1 let context handle classpath prefix

Resource[] resources = context.getResources("cl asspath: cfg*properties");

What would be returned in above examples would be instances of Hdf sResources and
Cl assPat hResour ce for the last one. If requesting resource paths without existing prefix, this example
would fall back into Spring Application Context. It may be advisable to let Hdf sResour ceLoader to
handle paths without prefix if your application doesn't rely on loading resources from underlying context
without prefixes.

Table 4.2. hdp: r esour ce- | oader attributes

Name Values Description
file- Bean Reference to existing Hadoop FileSystem bean
systemr ef Reference

use- codecs Boolean(defaultsl Indicates whether to use (or not) the codecs found inside the

to true) Hadoop configuration when accessing the resource input stream.
user String The security user (ugi) to use for impersonation at runtime.
uri String The underlying HDFS system URI.
handl e- Boolean(defaults| Indicates if loader should handle resource paths without prefix.
nopr efi x to true)

4.3 Scripting the Hadoop API

Supported scripting languages

SHDP scripting supports any JSR-223 (also known as j avax. scri pti ng) compliant scripting
engine. Simply add the engine jar to the classpath and the application should be able to find it.
Most languages (such as Groovy or JRuby) provide JSR-233 support out of the box; for those that
do not see the scripting project that provides various adapters.

Since Hadoop is written in Java, accessing its APIs in a native way provides maximum control
and flexibility over the interaction with Hadoop. This holds true for working with its file systems;
in fact all the other tools that one might use are built upon these. The main entry point is the
or g. apache. hadoop. f s. Fi | eSyst emabstract class which provides the foundation of most (if not
all) of the actual file system implementations out there. Whether one is using a local, remote or distributed
store through the Fi | eSyst emAPI she can query and manipulate the available resources or create
new ones. To do so however, one needs to write Java code, compile the classes and configure them
which is somewhat cumbersome especially when performing simple, straightforward operations (like
copy a file or delete a directory).

JVM scripting languages (such as Groovy, JRuby, Jython or Rhino to name just a few) provide a nice
solution to the Java language; they run on the JVM, can interact with the Java code with no or few
changes or restrictions and have a nicer, simpler, less ceremonial syntax; that is, there is no need to
define a class or a method - simply write the code that you want to execute and you are done. SHDP

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 20

http://www.jcp.org/en/jsr/detail?id=223
http://java.net/projects/scripting
http://groovy.codehaus.org/
http://jruby.org/
http://www.jython.org/
http://www.mozilla.org/rhino/

Spring Hadoop

combines the two, taking care of the configuration and the infrastructure so one can interact with the
Hadoop environment from her language of choice.

Let us take a look at a JavaScript example using Rhino (which is part of JDK 6 or higher, meaning one
does not need any extra libraries):

<beans xm ns="http://wwv spri ngfranmework. or g/ schema/ beans" ...>
<hdp: configuration .../>

<hdp: script id="inlined-js" |anguage="javascript" run-at-startup="true">
i nport Package(java. util);

name = UUI D.randomJUl D().toString()
scriptName = "src/test/resources/test. properties"
/1l fs - FileSysteminstance based on 'hadoopConfiguration' bean
/1 call FileSystemtcopyFroniocal (Path, Path)
fs.copyFroniLocal Fil e(scri pt Nanme, nane)
/1 return the file length
fs. get Lengt h(nanme)
</ hdp: scri pt >

</ beans>

The scri pt element, part of the SHDP namespace, builds on top of the scripting support in Spring
permitting script declarations to be evaluated and declared as normal bean definitions. Furthermore it
automatically exposes Hadoop-specific objects, based on the existing configuration, to the script such
as the Fi | eSyst em(more on that in the next section). As one can see, the script is fairly obvious: it
generates a random name (using the UUI D class from j ava. ut i | package) and then copies a local
file into HDFS under the random name. The last line returns the length of the copied file which becomes
the value of the declaring bean (in this case i nl i ned-|j s) - note that this might vary based on the
scripting engine used.

© Note

The attentive reader might have noticed that the arguments passed to the Fi | eSyst emobject
are not of type Pat h but rather St ri ng. To avoid the creation of Pat h object, SHDP uses a
wrapper class (Si npl er Fi | eSyst em) which automatically does the conversion so you don't
have to. For more information see the implicit variables section.

Note that for inlined scripts, one can use Spring's property placeholder configurer to automatically
expand variables at runtime. Using one of the examples seen before:

<beans ... >
<cont ext: property-pl acehol der | ocati on="cl asspat h: hadoop. properties" />

<hdp: scri pt | anguage="javascript" run-at-startup="true">
tracker=${hd. f s}

</ hdp: scri pt >
</ beans>

Notice how the script above relies on the property placeholder to expand ${ hd. f s} with the values
from hadoop. properti es file available in the classpath.

As you might have noticed, the scri pt element defines a runner for JVM scripts. And just like the rest
of the SHDP runners, it allows one or multiple pr e and post actions to be specified to be executed

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 21

Spring Hadoop

before and after each run. Typically other runners (such as other jobs or scripts) can be specified but
any JDK Cal | abl e can be passed in. Do note that the runner will not run unless triggered manually or
if run-at-startupissettotrue. For more information on runners, see the dedicated chapter.

Using scripts

Inlined scripting is quite handy for doing simple operations and coupled with the property expansion
is quite a powerful tool that can handle a variety of use cases. However when more logic is required
or the script is affected by XML formatting, encoding or syntax restrictions (such as Jython/Python for
which white-spaces are important) one should consider externalization. That is, rather than declaring
the script directly inside the XML, one can declare it in its own file. And speaking of Python, consider
the variation of the previous example:

<hdp: script | ocation="org/conpany/basic-script.py" run-at-startup="true"/>

The definition does not bring any surprises but do notice there is no need to specify the language (as
in the case of a inlined declaration) since script extension (py) already provides that information. Just

for completeness, the basi c- scr

fromjava.util inmport UU D

print "Hone dir is " + str(fs.
print "Work dir is " + str(fs.

name = UUI D.randonJUl D().toStr

4.4 Scripting implicit

i pt. py looks as follows:

from org. apache. hadoop. fs inport Path

horeDi r ect ory)
wor ki ngDi rect ory)

print "/user exists " + str(fs.exists("/user"))

ing()

scriptName = "src/test/resources/test. properties"
fs.copyFroniLocal Fil e(scri pt Name, nane)
print Path(name).nmakeQualified(fs)

variables

To ease the interaction of the script with its enclosing context, SHDP binds by default the so-called

implicit variables. These are:

Table 4.3. Implicit variables

Name Type

Description

or g. afgche. hadoop. conf . C

cl java.lang. d assLq
or g. spri ngtx amewor k. cont ext . Al
org. springfraeor k. i 0. support. Re

or g. spri ngf r aisteyor k. dat a. hadoop. f

onf i guration Hadoop Configuration (relies on
hadoopConfiguration bean or singleton type match)

ader ClassLoader used for executing the script
ppl i cati onCont exriclosing application context
sour cePatBnetasiResappiexation context ResourcelLoader

s. Di st ri but ed@mgthinimatic access to DistCp

or ds apache. hadoop. f s. Fi | eBgdbvepFile System (relies on 'hadoop-fs' bean or singleton

or g. sprifsigf r amewor k. dat a. ha

type match, falls back to creating one based on 'cfg")

doopild SyEFesnhehtll, exposing hadoop 'fs' commands as an API

1.1.0.RC1-cdh4

Spring for Apache Hadoop
Reference Manual

22

Spring Hadoop

Name Type Description

or g. spri ngf halfeRior k. dat a. hadoop. i|0. HIf sResoddfsaksadee loader (relies on 'hadoop-
resource-loader’ or singleton type match, falls
back to creating one automatically based on 'cfg’)

@ Note

If no Hadoop Confi gur ati on can be detected (either by name hadoopConfi gur ati on or
by type), several log warnings will be made and none of the Hadoop-based variables (hamely
cfg,distcp,fs,fsh,distcp orhdf sRL) will be bound.

As mentioned in the Description column, the variables are first looked (either by name or by type)
in the application context and, in case they are missing, created on the spot based on the existing
configuration. Note that it is possible to override or add new variables to the scripts through the
pr operty sub-element that can set values or references to other beans:

<hdp: script | ocation="org/conpany/basic-script.js" run-at-startup="true">
<hdp: property nanme="foo" val ue="bar"/>
<hdp: property nanme="ref" ref="sone-bean"/>

</ hdp: scri pt >

Running scripts

The scri pt namespace provides various options to adjust its behaviour depending on the script
content. By default the script is simply declared - that is, no execution occurs. One however can change
that so that the script gets evaluated at startup (as all the examples in this section do) through the
run- at - st art up flag (which is by default f al se) or when invoked manually (through the Cal | abl e).
Similarily, by default the script gets evaluated on each run. However for scripts that are expensive and
return the same value every time one has various caching options, so the evaluation occurs only when
needed through the eval uat e attribute:

Table 4.4. scri pt attributes

Name Values Description
run-at - f al se(default), Wether the script is executed at startup or not
startup true
eval uate ALWAYS(default), Wether to actually evaluate the script when invoked or
| F_MODI FI ED, used a previous value. ALWAYS means evaluate every time,
ONCE | F_MODI FI ED evaluate if the backing resource (such as a
file) has been modified in the meantime and ONCE only once.

Using the Scripting tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute scripts.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 23

Spring Hadoop

<script-tasklet id="script-tasklet">
<script |anguage="groovy">
i nput Path = "/user/gutenberg/input/word/"
out put Path = "/user/ gut enber g/ out put/word/"
if (fsh.test(inputPath)) {
fsh. ror (i nput Pat h)
}
if (fsh.test(outputPath)) {
fsh. rnr (out put Pat h)

}
inputFile = "src/main/resources/datal ni et zsche-chapter-1.txt"
fsh. put (i nputFile, inputPath)

</ scri pt>

</script-tasklet>

The tasklet above embedds the script as a nested element. You can also declare a reference to another
script definition, using the script-ref attribute which allows you to externalize the scripting code to an
external resource.

<script-tasklet id="script-tasklet" script-ref="clean-up"/>
<hdp: script id="clean-up" |ocation="org/conpany/ myapp/ cl ean- up-wor dcount. groovy"/>

4.5 File System Shell (FsShell)

A handy utility provided by the Hadoop distribution is the file system shell which allows UNIX-like
commands to be executed against HDFS. One can check for the existence of files, delete, move, copy
directories or files or set up permissions. However the utility is only available from the command-line
which makes it hard to use from/inside a Java application. To address this problem, SHDP provides
a lightweight, fully embeddable shell, called FsShel | which mimics most of the commands available
from the command line: rather than dealing with Syst em i n or Syst em out , one deals with objects.

Let us take a look at using FsShel | by building on the previous scripting examples:

<hdp: script | ocation="org/conpany/basic-script.groovy" run-at-startup="true"/>

nane = UUl D. randomJUl D().toString()
scriptNanme = "src/test/resources/test. properties"”
fs.copyFroniLocal Fi |l e(scri pt Name, nane)

/'l use the shell made avail abl e under variable fsh

dir = "script-dir"

if (!fsh.test(dir)) {
fsh.nkdir(dir); fsh.cp(nanme, dir); fsh.chnmodr (700, dir)
println "File content is " + fsh.cat(dir + name).toString()

}
println fsh.Is(dir).toString()
fsh.rmr(dir)

As mentioned in the previous section, a FsShel | instance is automatically created and configured for
scripts, under the name fsh. Notice how the entire block relies on the usual commands: t est , nkdi r,
cp and so on. Their semantics are exactly the same as in the command-line version however one has
access to a native Java API that returns actual objects (rather than St ri ngs) making it easy to use
them programmatically whether in Java or another language. Furthermore, the class offers enhanced
methods (such as chnodr which stands for recursive chnod) and multiple overloaded methods taking
advantage of varargs so that multiple parameters can be specified. Consult the API for more information.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 24

http://hadoop.apache.org/common/docs/stable/file_system_shell.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/varargs.html
http://docs.spring.io/spring-hadoop/docs/current/api/index.html?org/springframework/data/hadoop/fs/FsShell.html

Spring Hadoop

To be as close as possible to the command-line shell, FsShel | mimics even the messages being
displayed. Take a look at line 9 which prints the result of fsh. cat (). The method returns a
Col I ect i on of Hadoop Pat h objects (which one can use programatically). However when invoking
t oSt ri ng on the collection, the same printout as from the command-line shell is being displayed:

File content is sone text

The same goes for the rest of the methods, such as | s. The same script in JRuby would look something
like this:

require 'java

name = java.util.UU D.randomuUl D().to_s
scriptNanme = "src/test/resources/test. properties"”
$f s. copyFronlLocal Fi |l e(scri pt Namre, nane)

use the shel
dir = "script-dir/"

print $fsh.ls(dir).to_s

which prints out something like this:

dr wx- - - - - - - user super gr oup 0 2012-01-26 14:08 /user/user/script-dir
STWTr--r-- 3 user super gr oup 344 2012-01-26 14:08 /user/user/script-
di r/ 520cf 2f 6- aOb6- 427e- a232- 2d5426¢c2bc4e

As you can see, not only can you reuse the existing tools and commands with Hadoop inside SHDP, but
you can also code against them in various scripting languages. And as you might have noticed, there is
no special configuration required - this is automatically inferred from the enclosing application context.

© Note

The careful reader might have noticed that besides the syntax, there are some minor differences
in how the various languages interact with the java objects. For example the automatict oSt ri ng
call called in Java for doing automatic St r i ng conversion is not necessarily supported (hence the
t o_s in Ruby or st r in Python). This is to be expected as each language has its own semantics
- for the most part these are easy to pick up but do pay attention to details.

DistCp API

Similar to the FsShel | , SHDP provides a lightweight, fully embeddable Di st Cp version that builds
on top of the di st cp from the Hadoop distro. The semantics and configuration options are the same
however, one can use it from within a Java application without having to use the command-line. See
the API for more information:

<hdp: scri pt | anguage="groovy" >di stcp. copy("${di stcp.src}", "${distcp.dst}")</hdp:script>

The bean above triggers a distributed copy relying again on Spring's property placeholder variable
expansion for its source and destination.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 25

http://hadoop.apache.org/common/docs/stable/distcp.html
http://docs.spring.io/spring-hadoop/docs/current/api/index.html?org/springframework/data/hadoop/fs/DistCp.html

Spring Hadoop

5. Working with HBase

SHDP provides basic configuration for HBase through the hbase- confi gurati on namespace
element (or its backing HbaseConf i gur at i onFact or yBean).

<I-- default bean id is 'hbaseConfiguration' that uses the existing 'hadoopCconfiguration
object -->
<hdp: hbase- confi gurati on confi gurati on-ref="hadoopCconfi gurati on" />

The above declaration does more than easily create an HBase configuration object; it will also
manage the backing HBase connections: when the application context shuts down, so will any
HBase connections opened - this behavior can be adjusted through the st op- pr oxy and del et e-
connect i on attributes:

<l-- del ete associated connections but do not stop the proxies -->
<hdp: hbase-confi gurati on stop-proxy="fal se" del ete-connecti on="true">
f oo=bar

property=val ue
</ hdp: hbase- confi gurati on>

Additionally, one can specify the ZooKeeper port used by the HBase server - this is especially useful
when connecting to a remote instance (note one can fully configure HBase including the ZooKeeper
host and port through properties; the attributes here act as shortcuts for easier declaration):

<l-- specify ZooKeeper host/port -->
<hdp: hbase- confi guration zk-quorum="${hbase. host}" zk-port="%${hbase. port}">

Notice that like with the other elements, one can specify additional properties specific to this
configuration. In fact hbase- confi gur at i on provides the same properties configuration knobs as
hadoop configuration:

<hdp: hbase-confi gurati on properties-ref="sone- props-bean" properties-|ocati on="cl asspath:/
conf/testing/ hbase. properties"/>

5.1 Data Access Object (DAO) Support

One of the most popular and powerful feature in Spring Framework is the Data Access Object (or
DAO) support. It makes dealing with data access technologies easy and consistent allowing easy switch
or interconnection of the aforementioned persistent stores with minimal friction (no worrying about
catching exceptions, writing boiler-plate code or handling resource acquisition and disposal). Rather
than reiterating here the value proposal of the DAO support, we recommend the DAQO section in the
Spring Framework reference documentation

SHDP provides the same functionality for Apache HBase through its
org. spri ngfranmewor k. dat a. hadoop. hbase package: an HoaseTenpl at e along with several
callbacks such as Tabl eCal | back, Rowvapper and Resul t sExt r act or that remove the low-level,
tedious details for finding the HBase table, run the query, prepare the scanner, analyze the results then
clean everything up, letting the developer focus on her actual job (users familiar with Spring should find
the class/method names quite familiar).

At the core of the DAO support lies HbaseTenpl at e - a high-level abstraction for interacting with
HBase. The template requires an HBase configuration, once it's set, the template is thread-safe and
can be reused across multiple instances at the same time:

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 26

http://hbase.apache.org
http://docs.spring.io/spring/docs/3.1.x/spring-framework-reference/html/dao.html
http://docs.spring.io/spring/docs/3.1.x/spring-framework-reference/html/jdbc.html

Spring Hadoop

/] default HBase configuration
<hdp: hbase- confi gurati on/ >

/'l wire hbase configuration (using default nane 'hbaseConfiguration') into the tenplate
<bean i d="htenpl ate" cl ass="org. springframewor k. dat a. hadoop. hbase. HbaseTenpl ate" p: confi gurati on-
ref ="hbaseConfi guration"/>

The template provides generic callbacks, for executing logic against the tables or doing result or row
extraction, but also utility methods (the so-called one-liners) for common operations. Below are some
examples of how the template usage looks like:

/'l witing to ' MyTabl e’
tenpl at e. execut e(" MyTabl e", new Tabl eCal | back<Cbj ect >() {
@verride
public Object dolnTabl e(HTabl e table) throws Throwabl e {
Put p = new Put (Bytes.toBytes("SomeRow'));
p. add(Byt es. t oByt es(" SonmeCol um"), Bytes.toBytes("SoneQualifier"),
Byt es. t oByt es("Aval ue"));
tabl e. put (p);
return null;
}
b

/'l read each row from' My/Tabl e’
List<String> rows = tenplate.find("MTable", "SoneColum", new Rowivapper<String>() {
@verride
public String mapRow(Result result, int rowNum) throws Exception {
return result.toString();
}
)

The first snippet showcases the generic Tabl eCal | back - the most generic of the callbacks, it does
the table lookup and resource cleanup so that the user code does not have to. Notice the callback
signature - any exception thrown by the HBase API is automatically caught, converted to Spring's DAO
exceptions and resource clean-up applied transparently. The second example, displays the dedicated
lookup methods - in this case f i nd which, as the name implies, finds all the rows matching the given
criteria and allows user code to be executed against each of them (typically for doing some sort of type
conversion or mapping). If the entire result is required, then one can use Resul t sExt r act or instead
of Rowvapper .

Besides the template, the package offers support for automatically binding HBase table to the current
thread through Hbasel nt er cept or and HbaseSynchr oni zat i onManager . Thatis, each class that
performs DAO operations on HBase can be wrapped by Hbasel nt er cept or so that each table in
use, once found, is bound to the thread so any subsequent call to it avoids the lookup. Once the call
ends, the table is automatically closed so there is no leakage between requests. Please refer to the
Javadocs for more information.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 27

http://docs.spring.io/spring/docs/3.1.x/spring-framework-reference/html/dao.html#dao-exceptions
http://docs.spring.io/spring/docs/3.1.x/spring-framework-reference/html/dao.html#dao-exceptions
http://docs.spring.io/spring/docs/3.1.x/spring-framework-reference/html/aop.html#aop-schema-advisors

Spring Hadoop

6. Hive integration

When working with http://hive.apache.org from a Java environment, one can choose between the Thrift
client or using the Hive JDBC-like driver. Both have their pros and cons but no matter the choice, Spring
and SHDP support both of them.

6.1 Starting a Hive Server

SHDP provides a dedicated namespace element for starting a Hive server as a Thrift service (only when
using Hive 0.8 or higher). Simply specify the host, the port (the defaults are | ocal host and 10000
respectively) and you're good to go:

<I-- by default, the definition name is 'hive-server' -->
<hdp: hi ve-server host="sone-ot her-host" port="10001" />

If needed the Hadoop configuration can be passed in or additional properties specified. In fact hi ver -
server provides the same properties configuration knobs as hadoop configuration:

<hdp: hi ve-server host="sone-ot her-host" port="10001" properties-Ilocati on="cl asspat h: hi ve-
dev. properties" configuration-ref="hadoopConfi guration">

sonepr opert y=soneval ue

hi ve. exec. scrat chdi r=/tnp/ mydir
</ hdp: hi ve- server >

The Hive server is bound to the enclosing application context life-cycle, that is it will automatically startup
and shutdown along-side the application context.

6.2 Using the Hive Thrift Client

Similar to the server, SHDP provides a dedicated namespace element for configuring a Hive client (that
is Hive accessing a server node through the Thrift). Likewise, simply specify the host, the port (the
defaults are | ocal host and 10000 respectively) and you're done:

<l-- by default, the definition name is 'hiveCientFactory' -->
<hdp: hi ve-client-factory host="sone-other-host" port="10001" />

Note that since Thrift clients are not thread-safe, hi ve-cl i ent - f act ory returns a factory (named
org. spri ngfranmewor k. dat a. hadoop. hi ve. Hi veC i ent Fact ory) for creating Hi ved i ent
new instances for each invocation. Furthermore, the client definition also allows Hive scripts (either
declared inlined or externally) to be executed during initialization, once the client connects; this is quite
useful for doing Hive specific initialization:

<hive-client-factory host="some-host" port="some-port" xm ns="http://
www. spri ngf ramewor k. or g/ schema/ hadoop” >
<hdp: scri pt >
DROP TABLE | F EXITS testHi veBat chTabl e
CREATE TABLE testHiveBatchTabl e (key int, value string)
</ hdp: scri pt >
<hdp: script | ocation="cl asspath: org/ conpany/ hi ve/ script.q">
<ar gunment s>i gnor e- case=t r ue</ ar gunent s>
</ hdp: scri pt >
</ hive-client-factory>

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 28

http://hive.apache.org
http://thrift.apache.org/
http://hive.apache.org/docs/r0.7.1/api/org/apache/hadoop/hive/jdbc/package-summary.html

Spring Hadoop

In the example above, two scripts are executed each time a new Hive client is created (if the scripts
need to be executed only once consider using a tasklet) by the factory. The first script is defined inline
while the second is read from the classpath and passed one parameter. For more information on using
parameters (or variables) in Hive scripts, see this section in the Hive manual.

6.3 Using the Hive JDBC Client

Another attractive option for accessing Hive is through its JDBC driver. This exposes Hive through the
JDBC API meaning one can use the standard API or its derived utilities to interact with Hive, such as
the rich JDBC support in Spring Framework.

© Warning

Note that the JDBC driver is a work-in-progress and not all the JDBC features are available
(and probably never will since Hive cannot support all of them as it is not the typical relational
database). Do read the official documentation and examples.

SHDP does not offer any dedicated support for the JDBC integration - Spring Framework itself provides
the needed tools; simply configure Hive as you would with any other JDBC Dr i ver :

<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns:c="http://ww. springfranmework. org/ schema/c"

xm ns: cont ext ="htt p://ww. spri ngfranmewor k. or g/ schena/ cont ext "

xsi:schemaLocati on="http://wmv springframewor k. or g/ schema/ beans http://
www. spri ngf ranewor k. or g/ schenma/ beans/ spri ng- beans. xsd

http://ww. springfranmework. org/ schema/ cont ext http://ww. springfranmework. org/

schema/ cont ext/ spri ng- cont ext. xsd" >

<!-- basic Hive driver bean -->
<bean id="hive-driver" class="org. apache. hadoop. hi ve. jdbc. Hi veDriver"/>

<I-- wrapping a basic datasource around the driver -->
<l-- notice the 'c:' nanespace (available in Spring 3.1+) for inlining constructor
argunent s,

in this case the url (default is 'jdbc:hive://local host: 10000/ default') -->
<bean id="hive-ds" class="org.springfranework.jdbc. datasource. Si npl eDri ver Dat aSour ce"
c:driver-ref="hive-driver" c:url="%{hive.url}"/>

<l-- standard JdbcTenpl ate decl aration -->
<bean i d="tenpl ate" class="org.springframework.jdbc.core.JdbcTenpl ate" c: data-source-
ref="hive-ds"/>

<cont ext : property-pl acehol der | ocati on="hive. properties"/>
</ beans>

And that is it! Following the example above, one can use the hi ve- ds Dat aSour ce bean to manually
get a hold of Connect i ons or better yet, use Spring's JdbcTenpl at e as in the example above.

6.4 Running a Hive script or query

Like the rest of the Spring Hadoop components, a runner is provided out of the box for executing Hive
scripts, either inlined or from various locations through hi ve-r unner element:

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 29

http://hive.apache.org/docs/r0.9.0/language_manual/var_substitution.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html
http://docs.spring.io/spring/docs/3.1.x/spring-framework-reference/html/jdbc.html#jdbc-JdbcTemplate

Spring Hadoop

<hdp: hi ve-runner id="hi veRunner" run-at-startup="true">
<hdp: scri pt >
DROP TABLE | F EXI TS test Hi veBat chTabl e
CREATE TABLE test Hi veBat chTabl e (key int, value string)
</ hdp: scri pt >
<hdp: scri pt | ocation="hive-scripts/script.q"/>
</ hdp: hi ve-runner >

The runner will trigger the execution during the application start-up (notice the r un- at - st ar t up flag
which is by default f al se). Do note that the runner will not run unless triggered manually or if r un-
at-startup is settotrue. Additionally the runner (as in fact do all runners in SHDP) allows one or
multiple pr e and post actions to be specified to be executed before and after each run. Typically other
runners (such as other jobs or scripts) can be specified but any JDK Cal | abl e can be passed in. For
more information on runners, see the dedicated chapter.

Using the Hive tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hive queries, on demand,
as part of a batch or workflow. The declaration is pretty straightforward:

<hdp: hi ve-taskl et id="hive-script">
<hdp: scri pt >
DROP TABLE | F EXI TS test Hi veBat chTabl e
CREATE TABLE test Hi veBat chTabl e (key int, value string)
</ hdp: scri pt >
<hdp: script | ocation="cl asspath: org/ conpany/ hi ve/script.q" />
</ hdp: hi ve-t askl et >

The tasklet above executes two scripts - one declared as part of the bean definition followed by another
located on the classpath.

6.5 Interacting with the Hive API

For those that need to programmatically interact with the Hive API, Spring for Apache Hadoop
provides a dedicated template, similar to the aforementioned JdbcTenpl at e. The template handles
the redundant, boiler-plate code, required for interacting with Hive such as creatinganew H ved i ent ,
executing the queries, catching any exceptions and performing clean-up. One can programmatically
execute queries (and get the raw results or convert them to longs or ints) or scripts but also interact with
the Hive API through the Hi veCl i ent Cal | back. For example:

<hdp: hi ve-client-factory ... />
<I-- Hve tenplate wires automatically to 'hiveCientFactory'-->
<hdp: hi ve-tenpl ate />

<l-- wire hive tenplate into a bean -->
<bean i d="soneBean" cl ass="org. Somed ass" p: hi ve-tenpl ate-ref="hiveTenpl ate"/>

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 30

http://en.wikipedia.org/wiki/Template_method_pattern

Spring Hadoop

public class Sonmed ass {
private Hi veTenpl ate tenpl ate;

public void setH veTenpl ate(H veTenpl ate tenplate) { this.tenplate = tenpl ate; }

public List<String> getDbs() {
return hiveTenpl at e. execut e(new H ved i ent Cal | back<Li st <Stri ng>>() {
@verride
public List<String> dolnH ve(Hi veCient hiveCient) throws Exception {
return hiveCient.get_all_databases();
}
)

The example above shows a basic container configuration wiring a Hi veTenpl at e into a user class
which uses it to interact with the Hi veCl i ent Thrift API. Notice that the user does not have to handle
the lifecycle of the Hi veC i ent instance or catch any exception (out of the many thrown by Hive itself
and the Thrift fabric) - these are handled automatically by the template which converts them, like the
rest of the Spring templates, into Dat aAccessExcept i ons. Thus the application only has to track only
one exception hierarchy across all data technologies instead of one per technology.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 31

Spring Hadoop

7. Pig support

For Pig users, SHDP provides easy creation and configuration of Pi gSer ver instances for registering
and executing scripts either locally or remotely. In its simplest form, the declaration looks as follows:

<hdp: pig />

This will create a org. springfranmework. dat a. hadoop. pi g. Pi gSer ver Fact ory instance,
named pi gFact ory, afactory that creates Pi gSer ver instances on demand configured with a default
Pi gCont ext , executing scripts in MapReduce mode. The factory is needed since Pi gSer ver is not
thread-safe and thus cannot be used by multiple objects at the same time. In typical scenarios however,
one might want to connect to a remote Hadoop tracker and register some scripts automatically so let
us take a look of how the configuration might look like:

<pi g-factory exec-type="LOCAL" job-nane="pig-script" configuration-
ref ="hadoopConfi gurati on" properties-I|ocati on="pi g-dev. properties"
xm ns="htt p: //ww. spri ngf ramewor k. or g/ schena/ hadoop" >
sour ce=${ pi g. scri pt.src}
<script | ocation="org/conpany/pig/script.pig">
<ar gunent s>el ectri c=sea</ ar gunent s>
</ scri pt>
<scri pt >
A = LOAD 'src/test/resources/| ogs/apache_access.log' USING Pi gStorage() AS
(nane: chararray, age:int);
B = FOREACH A GENERATE nane
DUVP B
</ scri pt>
</ pig-factory> />

The example exposes quite a few options so let us review them one by one. First the top-level pig
definition configures the pig instance: the execution type, the Hadoop configuration used and the job
name. Notice that additional properties can be specified (either by declaring them inlined or/and loading
them from an external file) - in fact, <hdp: pi g- f act or y/ > just like the rest of the libraries configuration
elements, supports common properties attributes as described in the hadoop configuration section.

The definition contains also two scripts: scri pt. pi g (read from the classpath) to which one pair of
arguments, relevant to the script, is passed (notice the use of property placeholder) but also an inlined
script, declared as part of the definition, without any arguments.

As you can tell, the pi g- f act or y namespace offers several options pertaining to Pig configuration.
7.1 Running a Pig script

Like the rest of the Spring Hadoop components, a runner is provided out of the box for executing Pig
scripts, either inlined or from various locations through pi g- r unner element:

<hdp: pi g-runner id="pi gRunner" run-at-startup="true">
<hdp: scri pt >
A = LOAD 'src/test/resources/| ogs/ apache_access. |l og' USI NG Pi gStorage() AS
(nane: chararray, age:int);

</ hdp: scri pt >
<hdp: script | ocation="pig-scripts/script.pig"/>
</ hdp: pi g- runner >

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 32

http://pig.apache.org

Spring Hadoop

The runner will trigger the execution during the application start-up (notice the r un- at - st art up flag
which is by default f al se). Do note that the runner will not run unless triggered manually or if r un-
at-startup is settotrue. Additionally the runner (as in fact do all runners in SHDP) allows one or
multiple pr e and post actions to be specified to be executed before and after each run. Typically other
runners (such as other jobs or scripts) can be specified but any JDK Cal | abl e can be passed in. For
more information on runners, see the dedicated chapter.

Using the Pig tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Pig queries, on demand,
as part of a batch or workflow. The declaration is pretty straightforward:

<hdp: pi g-taskl et id="pig-script">
<hdp: script | ocation="org/conpany/ pi g/ handson®e. pi g" />
</ hdp: pi g-t askl et >

The syntax of the scripts declaration is similar to that of the pi g namespace.

7.2 Interacting with the Pig API

For those that need to programmatically interact directly with Pig , Spring for Apache Hadoop provides
a dedicated template, similar to the aforementioned Hi veTenpl at e. The template handles the
redundant, boiler-plate code, required for interacting with Pig such as creating a new Pi gSer ver,
executing the scripts, catching any exceptions and performing clean-up. One can programmatically
execute scripts but also interact with the Hive API through the Pi gSer ver Cal | back. For example:

<hdp: pi g-factory ... />
<l-- Pig tenplate wires automatically to 'pigFactory'-->
<hdp: pi g-tenpl ate />

<l-- use conponent scanni ng-->
<cont ext : conponent - scan base- package="sone. pkg" />

public class Sonmed ass {
@ nj ect
private PigTenpl ate tenpl ate;

public Set<String> getDbs() {
return pigTenpl at e. execut e(new Pi gCal | back<Set <String>() {
@verride
public Set<String> dol nPi g(Pi gServer pig) throws ExecException, |OException {
return pig.getAliasKeySet();
}
b

The example above shows a basic container configuration wiring a Pi gTenpl at e into a user class
which uses it to interact with the Pi gSer ver API. Notice that the user does not have to handle the
lifecycle of the Pi gSer ver instance or catch any exception - these are handled automatically by the
template which converts them, like the rest of the Spring templates, into Dat aAccessExcepti ons.
Thus the application only has to track only one exception hierarchy across all data technologies instead
of one per technology.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 33

http://en.wikipedia.org/wiki/Template_method_pattern

Spring Hadoop

8. Cascading integration

SHDP provides basic support for Cascading library through the
or g. spri ngframewor k. dat a. hadoop. cascadi ng package - one can create FI ows or Cascades,
either through XML or/and Java and execute them, either in a simplistic manner or as part of a Spring
Batch job. In addition, dedicated Taps for Spring environments are available.

As Cascading is aimed at code configuration, typically one would configure the library programatically.
Such code can easily be integrated into Spring in various ways - through factory nethods or
@confi gur ati on and @ean (see this chapter for more information). In short one uses Java code (or
any JVM language for that matter) to create beans.

For example, looking at the official Cascading sample (Cascading for the Impatient, Part2) one can
simply call the Cascading setup method from within the Spring container (original vs updated):

public class Inpatient {
public static FlowDef createFl owDef(String docPath, String wcPath) {
/| create source and sink taps
Tap docTap = new Hf s(new TextDelim ted(true, "\t"), docPath);
Tap wecTap = new Hf s(new TextDelimted(true, "\t"), wcPath);

/'l specify a regex operation to split the "docunent" text lines into a token
stream

Fiel ds token = new Fiel ds("token");

Fields text = new Fields("text");

RegexSplitCGenerator splitter = new RegexSplitGenerator(token, "[\\[\\]\\(\
V). 1)

/'l only returns "token"

Pi pe docPi pe = new Each("token", text, splitter, Fields.RESULTS);

/| determine the word counts

Pi pe wcPi pe = new Pi pe("wc", docPipe);

wcPi pe = new G oupBy(wcPi pe, token);

wcPi pe = new Every(wcPi pe, Fields.ALL, new Count(), Fields.ALL);

/'l connect the taps, pipes, etc., into a flow

Fl owDef flowDef = Fl owDef.fl owDef().setNane("wc").addSour ce(docPi pe,
docTap) . addTai | Si nk(wcPi pe, wcTap);

return flowDef; }

The entire Cascading configuration (defining the Fl ow) is encapsulated within one method, which can
be called by the container:

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 34

http://www.cascading.org/
http://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/beans.html#beans-factory-class-static-factory-method
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-java
http://www.cascading.org/2012/07/09/cascading-for-the-impatient-part-2/
http://github.com/Cascading/Impatient/blob/5c19c2d02fcf26b7c63ca6548a9239a9a764f302/part2/src/main/java/impatient/Main.java#L57
http://github.com/spring-projects/spring-hadoop-samples/blob/6b2365ae80c84b6b037e18e1fe8749e839fcf33f/original-samples/cascading/src/main/java/impatient/Main.java#L67

Spring Hadoop

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: hdp="http://ww. spri ngframewor k. or g/ schema/ hadoop"
xm ns: c="http://ww. springfranmework. org/ schema/ c"
xm ns: p="http://ww. springfranmewor k. or g/ schema/ p"
xsi : schemaLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans http://
www. spri ngf ranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranewor k. or g/ schema/ hadoop htt p://ww. spri ngfranmewor k. or g/
schenma/ hadoop/ spri ng- hadoop. xsd
http://ww. springframework. org/ schema/ context http://ww. springframework. org/
schema/ cont ext/ spri ng- cont ext . xsd" >

<l-- factory-nmethod approach called with two paraneters available as property
pl acehol ders -->

<bean id="fl owDef" class="inpatient.Min" factory-
net hod="creat eFl owDef" c:_0="${in}" c:_1="${out}"/>

<hdp: cascadi ng-fl ow i d="wc" definition-ref="flowDef" wite-dot="dot/wc.dot"/>
<hdp: cascadi ng- cascade i d="cascade" flowref="wc"/>
<hdp: cascadi ng-runner unit-of-work-ref="cascade" run-at-startup="true"/>

</ beans>

Note that no jar needs to be setup - the Cascading namespace (in particular cascadi ng- f | ow, backed
by HadoopFl owFact or yBean) tries to automatically setup the resulting job classpath. By default, it
will automatically add the Cascading library and its dependency to Hadoop Di stri but edCache so
that when the job runs inside the Hadoop cluster, the jars are properly found. When using custom jars
(for example to add custom Cascading functions) or when running against a cluster that is already
provisioned, one can customize this behaviour through the j ar - set up, j ar andj ar - by- cl ass. For
Cascading users, these settings are the equivalent of the AppPr ops. set Appl i cati onJar d ass().

Furthermore, one can break down the configuration method in multiple pieces which is useful for
reusing the components between multiple flows/cascades. This goes hand in hand with Spring
@confi gurati on feature - see the example below that configures a Cascade pipes and taps as

individual beans (see the original example):

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual

35

http://github.com/cwensel/cascading.samples/

Spring Hadoop

@onfiguration

public class Cascadi ngAnal ysi sConfig {
/Il fields that act as placehol ders for externalized val ues
@/al ue(" ${cascade. sec}") private String sec;
@/al ue("${cascade. mi n}") private String m n;

@ean public Pipe tsPipe() {
Dat ePar ser dat eParser = new Dat eParser (new Fi el ds("ts"), "dd/ MW yyyy: HH nm ss
z');
return new Each("arrival rate", new Fields("time"), dateParser);

}

@ean public Pipe tsCountPipe() {
Pi pe tsCount Pi pe = new Pi pe("tsCount", tsPipe());
t sCount Pi pe = new GroupBy(tsCountPi pe, new Fields("ts"));
return new Every(tsCountPi pe, Fields. GROUP, new Count());
}

@ean public Pipe tnCountPipe() {
Pi pe tnPi pe = new Each(tsPi pe(),
new ExpressionFunction(new Fields("tn'), "ts - (ts % (60 *
1000))", long.class));
Pi pe tnCount Pi pe = new Pi pe("tnCount", tnPipe);
t nCount Pi pe = new GroupBy(tnCount Pi pe, new Fields("tnl));
return new Every(tnCountPi pe, Fields. GROUP, new Count());
}

@ean public Map<String, Tap> sinks(){
Tap tsSinkTap = new Hf s(new Text Li ne(), sec);
Tap tnSi nkTap = new Hf s(new TextLine(), mn);

return Cascades.tapsMap(Pi pe. pi pes(tsCount Pi pe(), tnCountPipe()),
Tap. t aps(tsSi nkTap, tnSinkTap));

}

@ean public String regex() {
return "AC[A T*) +[A 1F A4 TF ANLIATTOWT ANWI(A TF) (I8 1) [4 1AW
L A b B QA B
}

@ean public Fields fields() {
return new Fields("ip", "tine", "nethod", "event", "status", "size");

}

The class above creates several objects (all part of the Cascading package) (hamed after the methods)
which can be injected or wired just like any other bean (notice how the wiring is done between the beans

by point to their methods). One can mix and match (if needed) code and XML configurations inside the
same application:

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 36

Spring Hadoop

<l-- code configuration class -->
<bean cl ass="org. spri ngfranewor k. dat a. hadoop. cascadi ng. Cascadi ngAnal ysi sConfi g"/ >

<l-- Tap created through XM_ rather then code (using Spring's 3.1 c: nanespace)-->
<bean id="tap" class="cascadi ng.tap. hadoop. Hf s" c:fields-ref="fields" c:string-path-
val ue="${cascade. i nput}"/>

<I-- standard bean decl aration used to showcase the container flexibility -->
<l-- note the tap and sinks are inported fromthe Cascadi ngAnal ysi sConfi g bean -->
<bean i d="anal ysi sFl ow' cl ass="org. spri ngfranework. dat a. hadoop. cascadi ng. HadoopFl owFact or yBean" p: confi gura
ref =" hadoopConfi guration" p:source-ref="tap" p:sinks-ref="sinks">
<property name="tail s"><list>
<ref bean="t sCount Pi pe"/>
<ref bean="t nCount Pi pe"/ >
</list></property>
</ bean>
</list></property>
</ bean>

<hdp: cascadi ng- cascade fl ow="anal ysi sFl ow' />
<hdp: cascadi ng-runner unit-of-work-ref="cascade" run-at-startup="true"/>

The XML above, whose main purpose is to illustrate possible ways of configuring, uses SHDP classes
to create a Cascade with one nested Fl ow using the taps and sinks configured by the code class.
Additionally it also shows how the cascade is ran (through cascadi ng- r unner). The runner will trigger
the execution during the application start-up (notice the r un- at - st art up flag which is by default
f al se). Do note that the runner will not run unless triggered manually or if r un- at - st art up is set to
t r ue. Additionally the runner (as in fact do all runners in SHDP) allows one or multiple pr e and post
actions to be specified to be executed before and after each run. Typically other runners (such as other
jobs or scripts) can be specified but any JDK Cal | abl e can be passed in. For more information on
runners, see the dedicated chapter.

Whether XML or Java config is better is up to the user and is usually based on the type of the
configuration required. Java config suits Cascading better but note that the Fact or yBeans above
handle the lifecycle and some default configuration for both the FI owand Cascade objects. Either way,
whatever option is used, SHDP fully supports it.

8.1 Using the Cascading tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet (similar to CascadeRunner above)
for executing Cascade or Fl owinstances, on demand, as part of a batch or workflow. The declaration
is pretty straightforward:

<hdp: t askl et p: unit-of -work-ref="cascade" />

8.2 Using Scalding

There are quite a number of DSLs built on top of Cascading, most noteably Cascalog (written in Clojure)
and Scalding (written in Scala). This documentation will cover Scalding however the same concepts
can be applied across the board to all DSLs.

As with the rest of the DSLs, Scalding offers a simplified, fluent syntax for creating units of code that
build on top of Cascading. This in turn translates to Map Reduce jobs that get executed on Hadoop.
Once compiled, the DSL gets translated into actual JVM classes that get executed by Scalding through

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 37

https://github.com/nathanmarz/cascalog
https://github.com/twitter/scalding

Spring Hadoop

its own Tool instance (hamely com twi tt er. scal di ng. Tool). One has the option of either deploy
the Scalding jobs directly (by invoking the aforementioned Tool) or use Scalding's scal d. r b script
which does the same thing based on the various attributes passed to it. Both approaches can be used in
SHDP, the former through the Tool support (described below) and the latter by invoking the scal d. rb
script directly through the scripting feature.

For example, to run the tutorial examples (say Tutoriall), one can issue the following command:

scripts/scald.rb --local tutorial/Tutoriall.scala

which compiles Tutoriall, creates a bundled jar and runs it on a local Hadoop instance. When using
the Tool support, the compilation and the library provisioning are external tasks (just as in the case of
typical Hadoop jobs). The SHDP configuration to run the tutorial looks as follows:

<l-- the tool automatically is injected with 'hadoopConfiguration' -->
<hdp: t ool -runner id="scal di ng" tool -class="comtw tter.scal di ng. Tool ">
<hdp: arg value="tutorial/Tutorial1"/>
<hdp: arg val ue="--local "/>
</ hdp: t ool - runner >

8.3 Spring-specific local Taps

Why only local Tap?

Because Hadoop is designed as a distributed file-system (HDFS) and splitable resources. Non-
HDFS resources tend to not be cluster friendly: for example don't offer any notion of node locality,
true chucking or even scalability (as there are no copies, partial or not made). These being said,
the team is pursuing certain approaches to see whether they are viable or not. Feedback is of
course welcome.

Besides dedicated configuration support, SHDP also provides read-only Tap implementations useful
inside Spring environments. Currently they are meant for local use only such as testing or single-node
Hadoop setups.

The Taps in or g. spri ngf ramewor k. dat a. hadoop. cascadi ng. t ap. | ocal tap (pun intended)
into the rich resource support from Spring Framework and Spring Integration allowing data to flow easily
in and out of a Cascading flow.

Below is a list of the type of Taps available and their backing support.

Table 8.1. Local Taps

Tap Name Tap Type Backing Resource Description
Resource
Resour ceTap Source Spring Resour ce classpath, file-system, URL-

based or even in-memory content

MessageSour ceTap Source Spring Integration Inbound adapter for anything
MessageSource from arbitrary streams, FTP or
JDBC to RSS/Atom and Twitter

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 38

http://docs.spring.io/spring/docs/3.0.x/javadoc-api/org/springframework/core/io/Resource.html
http://docs.spring.io/spring/docs/3.1.x/spring-framework-reference/html/resources.html#resources-implementations
http://docs.spring.io/spring-integration/api/org/springframework/integration/core/MessageSource.html

Spring Hadoop

Tap Name Tap Type Backing Resource Description
Resource
MessageHandl er Tap Sink Spring Integration The opposite of MessageSour ceTap:
MessageHandler Outbound adapter for

Files, JMS, TCP, etc...

Note the Taps do not require any special configuration and are fully compatible with the existing
Cascading local Schenes. To wit:

<bean i d="cp-txt-

files" class="org.springfranework. dat a. hadoop. cascadi ng. t ap. | ocal . Resour ceTap" >
<const ruct or - ar g><bean cl ass="cascadi ng. schene. | ocal . Text Li ne"/></ const r uct or - ar g>
<construct or - ar g><val ue>cl asspat h: / dat a/ *. t xt </ val ue></ const ruct or - ar g>

</ bean>

The Tap above reads all the text files in the classpath, under dat a folder, through Cascading Text Li ne.
Simply wire that to a Cascading flow (as described in the previous section) and you are good to go.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 39

http://docs.spring.io/spring-integration/api/index.html?org/springframework/integration/core/MessageSource.html

Spring Hadoop

9. Using the runner classes

Spring for Apache Hadoop provides for each Hadoop interaction type, whether it is vanilla Map/Reduce,
Cascading, Hive or Pig, a runner, a dedicated class used for declarative (or programmatic) interaction.
The list below illustrates the existing runner classes for each type, their name and namespace element.

Table 9.1. Available Runners

Type Name Namespace Description
element
Map/ JobRunner j ob-runner Runner for Map/Reduce jobs,
Reduce Job whether vanilla M/R or streaming
Hadoop Tool Tool Runner |t ool -runner Runner for Hadoop Tool s

(whether stand-alone or as jars).

Hadoopjars JarRunner j ar-runner Runner for Hadoop jars.
Hive queries Hi veRunner | hive-runner Runner for executing Hive queries or scripts.
and scripts
Pig queries Pi gRunner pi g-runner Runner for executing Pig scripts.
and scripts
Cascading CascadeRunner - Runner for executing Cascading Cascades.
Cascades
JSR-223/ Hdf sScri pt Runner scri pt Runner for executing JVM 'scripting'
JVM scripts languages (implementing the JSR-223 API).

While most of the configuration depends on the underlying type, the runners share common attributes
and behaviour so one can use them in a predictive, consistent way. Below is a list of common features:

declaration does not imply execution

The runner allows a script, a job, a cascade to run but the execution can be triggered either
programmatically or by the container at start-up.

run-at-startup

Each runner can execute its action at start-up. By default, this flag is set to f al se. For multiple or on
demand execution (such as scheduling) use the Cal | abl e contract (see below).

JDK Cal | abl e interface

Each runnerimplements the JDK Cal | abl e interface. Thus one can inject the runner into other beans
or its own classes to trigger the execution (as many or as little times as she wants).

pr e and post actions

Each runner allows one or multiple, pre or/and post actions to be specified (to chain them together
such as executing a job after another or perfoming clean up). Typically other runners can be used
but any Cal | abl e can be specified. The actions will be executed before and after the main action,
in the declaration order. The runner uses a fail-safe behaviour meaning, any exception will interrupt
the run and will propagated immediately to the caller.

Spring for Apache Hadoop

1.1.0.RC1-cdh4 Reference Manual 40

Spring Hadoop

 consider Spring Batch

The runners are meant as a way to execute basic tasks. When multiple executions need to be
coordinated and the flow becomes non-trivial, we strongly recommend using Spring Batch which
provides all the features of the runners and more (a complete, mature framework for batch execution).

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 41

Spring Hadoop

10. Security Support

Spring for Apache Hadoop is aware of the security constraints of the running Hadoop environment and
allows its components to be configured as such. For clarity, this document breaks down security into
HDFS permissions and user impersonation (also known as secure Hadoop). The rest of this document
discusses each component and the impact (and usage) it has on the various SHDP features.

10.1 HDFS permissions

HDFS layer provides file permissions designed to be similar to those present in *nix OS. The official
guide explains the major components but in short, the access for each file (whether it's for reading,
writing or in case of directories accessing) can be restricted to certain users or groups. Depending on
the user identity (which is typically based on the host operating system), code executing against the
Hadoop cluster can see or/and interact with the file-system based on these permissions. Do note that
each HDFS or Fi | eSyst emimplementation can have slightly different semantics or implementation.

SHDP obeys the HDFS permissions, using the identity of the current user (by default) for interacting
with the file system. In particular, the Hdf sResour ceLoader considers when doing pattern matching,
only the files that it's supposed to see and does not perform any privileged action. It is possible however
to specify a different user, meaning the Resour ceLoader interacts with HDFS using that user's rights
- however this obeys the user impersonation rules. When using different users, it is recommended to
create separate Resour ceLoader instances (one per user) instead of assigning additional permissions
or groups to one user - this makes it easier to manage and wire the different HDFS views without having
to modify the ACLs. Note however that when using impersonation, the Resour ceLoader might (and
will typically) return restricted files that might not be consumed or seen by the callee.

10.2 User impersonation (Kerberos)

Securing a Hadoop cluster can be a difficult task - each machine can have a different set of users and
groups, each with different passwords. Hadoop relies on Kerberos, a ticket-based protocol for allowing
nodes to communicate over a non-secure network to prove their identity to one another in a secure
manner. Unfortunately there is not a lot of documentation on this topic out there. However there are
some resources to get you started.

SHDP does not require any extra configuration - it sSimply obeys the security system in place. By default,
when running inside a secure Hadoop, SHDP uses the current user (as expected). It also supports user
impersonation, that is, interacting with the Hadoop cluster with a different identity (this allows a superuser
to submit job or access hdfs on behalf of another user in a secure way, without leaking permissions).
The major MapReduce components, such as j ob, streani ng and t ool as well as pi g support user
impersonation through the user attribute. By default, this property is empty, meaning the current user
is used - however one can specify the different identity (also known as ugi) to be used by the target
component:

<hdp:job id="j obFromJoe" user="joe" .../>

Note that the user running the application (or the current user) must have the proper kerberos credentials
to be able to impersonate the target user (in this case joe).

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 42

http://hadoop.apache.org/common/docs/r1.0.3/hdfs_permissions_guide.html
http://en.wikipedia.org/wiki/Kerberos_%28protocol%29
http://hortonworks.com/blog/fine-tune-your-apache-hadoop-security-settings/
https://ccp.cloudera.com/display/CDHDOC/Configuring+Hadoop+Security+in+CDH3

Part Ill. Developing Spring for
Apache Hadoop Applications

This section provides some guidance on how one can use the Spring for Apache Hadoop project in
conjunction with other Spring projects, starting with the Spring Framework itself, then Spring Batch, and
then Spring Integration.

Spring Hadoop

11. Guidance and Examples

Spring for Apache Hadoop provides integration with the Spring Framework to create and run Hadoop
MapReduce, Hive, and Pig jobs as well as work with HDFS and HBase. If you have simple needs to
work with Hadoop, including basic scheduling, you can add the Spring for Apache Hadoop namespace
to your Spring based project and get going quickly using Hadoop.

As the complexity of your Hadoop application increases, you may want to use Spring Batch to regain
on the complexity of developing a large Hadoop application. Spring Batch provides an extension to the
Spring programming model to support common batch job scenarios characterized by the processing of
large amounts of data from flat files, databases and messaging systems. It also provides a workflow
style processing model, persistent tracking of steps within the workflow, event notification, as well
as administrative functionality to start/stop/restart a workflow. As Spring Batch was designed to be
extended, Spring for Apache Hadoop plugs into those extensibilty points, allowing for Hadoop related
processing to be a first class citizen in the Spring Batch processing model.

Another project of interest to Hadoop developers is Spring Integration. Spring Integration provides an
extension of the Spring programming model to support the well-known Enterprise Integration Patterns. It
enables lightweight messaging within Spring-based applications and supports integration with external
systems via declarative adapters. These adapters are of particular interest to Hadoop developers, as
they directly support common Hadoop use-cases such as polling a directory or FTP folder for the
presence of a file or group of files. Then once the files are present, a message is sent internally to the
application to do additional processing. This additional processing can be calling a Hadoop MapReduce
job directly or starting a more complex Spring Batch based workflow. Similarly, a step in a Spring Batch
workflow can invoke functionality in Spring Integration, for example to send a message though an email
adapter.

No matter if you use the Spring Batch project with the Spring Framework by itself or with additional
extentions such as Spring Batch and Spring Integration that focus on a particular domain, you will benefit
from the core values that Spring projects bring to the table, namely enabling modularity, reuse and
extensive support for unit and integration testing.

11.1 Scheduling

Spring Batch integrates with a variety of job schedulers and is not a scheduling framework. There
are many good enterprise schedulers available in both the commercial and open source spaces such
as Quartz, Tivoli, Control-M, etc. It is intended to work in conjunction with a scheduler, not replace a
scheduler. As a lightweight solution, you can use Spring's built in scheduling support that will give you
cron-like and other basic scheduling trigger functionality. See the How do | schedule a job with Spring
Batch? documention for more info. A middle ground it to use Spring's Quartz integration, see Using the
OpenSymphony Quartz Scheduler for more information.

11.2 Batch Job Listeners

Spring Batch lets you attach listeners at the job and step levels to perform additional processing. For
example, at the end of a job you can perform some notification or perhaps even start another Spring
Batch job. As a brief example, implement the interface JobExecutionListener and configure it into the
Spring Batch job as shown below.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 44

http://www.eaipatterns.com
http://docs.spring.io/spring-batch/faq.html#schedulers
http://docs.spring.io/spring-batch/faq.html#schedulers
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/scheduling.html#scheduling-quartz
http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/scheduling.html#scheduling-quartz
http://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/JobExecutionListener.html

Spring Hadoop

<bat ch:j ob id="j obl">
<batch: step id="inmport" next="wordcount">
<bat ch: taskl et ref="script-tasklet"/>
</ bat ch: st ep>

<bat ch: step i d="wordcount" >
<bat ch: t askl et ref="wordcount-tasklet" />
</ bat ch: st ep>
<bat ch:|i st ener s>
<batch:|istener ref="sinpleNotificatonListener"/>

</ batch:|isteners>

</ bat ch: j ob>

>

<bean id="sinpl eNotificatonListener" class="com nyconpany. myapp. Si npl eNoti fi cati onLi stener"/

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual

45

Part IV. Spring for Apache
Hadoop sample applications

Document structure

The sample applications have been moved into their own repository so they can be developed

independently of the Spring for Apache Hadoop release cycle. They can be found on GitHub https://
github.com/spring-projects/spring-hadoop-samples.

The wiki page for the Spring for Apache Hadoop project has more documentation for building and
running the examples.

https://github.com/spring-projects/spring-hadoop-samples
https://github.com/spring-projects/spring-hadoop-samples
https://github.com/spring-projects/spring-hadoop/wiki/Sample-Projects

Part V. Other Resources

In addition to this reference documentation, there are a number of other resources that may help you
learn how to use Hadoop and Spring framework. These additional, third-party resources are enumerated
in this section.

Spring Hadoop

12. Useful Links

Spring for Apache Hadoop - http://www.springframework.org/spring-data/hadoop

» Spring Data - http://www.springframework.org/spring-data

Spring Data Book - http://shop.oreilly.com/product/0636920024767.do

Spring - http://spring.io/blog/

Apache Hadoop - http://hadoop.apache.org/

Pivotal HD - http://gopivotal.com/pivotal-products/pivotal-data-fabric/pivotal-hd

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual

48

http://www.springframework.org/spring-data/hadoop
http://www.springframework.org/spring-data
http://shop.oreilly.com/product/0636920024767.do
http://spring.io/blog/
http://hadoop.apache.org/
http://gopivotal.com/pivotal-products/pivotal-data-fabric/pivotal-hd

Part VI. Appendices

Spring Hadoop

Appendix A. Using Spring for Apache
Hadoop with Amazon EMR

A popular option for creating on-demand Hadoop cluster is Amazon Elastic Map Reduce or Amazon
EMR service. The user can through the command-line, APl or a web Ul configure, start, stop and manage
a Hadoop cluster in the cloud without having to worry about the actual set-up or hardware resources used
by the cluster. However, as the setup is different then a locally available cluster, so does the interaction
between the application that want to use it and the target cluster. This section provides information on
how to setup Amazon EMR with Spring for Apache Hadoop so the changes between a using a local,
pseudo-distributed or owned cluster and EMR are minimal.

© Important
This chapter assumes the user is familiar with Amazon EMR and the cost associated with it and
its related services - we strongly recommend getting familiar with the official EMR documentation.

One of the big differences when using Amazon EMR versus a local cluster is the lack of access of the file
system server and the job tracker. This means submitting jobs or reading and writing to the file-system
isn't available out of the box - which is understandable for security reasons. If the cluster would be open,
if could be easily abused while charging its rightful owner. However, it is fairly straight-forward to get
access to both the file system and the job tracker so the deployment flow does not have to change.

Amazon EMR allows clusters to be created through the management console, through the API or the
command-line. This documentation will focus on the command-line but the setup is not limited to it - feel
free to adjust it according to your needs or preference. Make sure to properly setup the credentials so
that the S3 file-system can be properly accessed.

A.l Start up the cluster

© Important

Make sure you read the whole chapter before starting up the EMR cluster

A nice feature of Amazon EMR is starting a cluster for an indefinite period. That is rather then submitting
a job and creating the cluster until it finished, one can create a cluster (along side a job) but request to be
kept alive even if there is no work for it. This is easily done throughthe - - cr eat e - - al i ve parameters:

‘./el astic-mapreduce --create --alive

The output will be similar to this:

‘ Created job fl owJobFl ow D

One can verify the results in the console through the | i st command or through the web management
console. Depending on the cluster setup and the user account, the Hadoop cluster initialization should
be complete anywhere between 1 to 5 minutes. The cluster is ready once its state changes from
STARTI NG PROVI SI ONI NGto WAI TI NG

© Note

By default, each newly created cluster has a new public IP that is not typically reused. To simplify
the setup, one can use Amazon Elastic IP, that is a static, predefined IP, so that she knows

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 50

http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/pricing/
http://aws.amazon.com/documentation/elasticmapreduce/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/SignUp.html#emr-gsg-install-cli
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/SignUp.html#ConfigCredentials
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/Essentials.html#emr-gsg-creating-a-job-flow
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/using-instance-addressing.html

Spring Hadoop

before-hand the cluster address. Refer to this section inside the EMR documentation for more
information. As an alternative, one can use the EC2 API in combinatioon with the EMR API
to retrieve the private IP of address of the master node of her cluster or even programatically
configure and start the EMR cluster on demand without having to hard-code the private IPs.

However, to remotely access the cluster from outside (as oppose to just running a jar within the cluster),
one needs to tweak the cluster settings just a tiny bit - as mentioned below.

A.2 Open an SSH Tunnel as a SOCKS proxy

Due to security reasons, the EMR cluster is not exposed to the outside world and is bound only to
the machine internal IP. While you can open up the firewall to allow access (note that you also have
to do some port forwarding since again, Hadoop is bound to the cluster internal IP rather then all
available network cards), it is recommended to use a SSH tunnel instead. The SSH tunnel provides a
secure connection between your machine on the cluster preventing any snooping or man-in-the-middle
attacks. Further more it is quite easy to automate and be executed along side the cluster creation,
programmatically or through some script. The Amazon EMR docs have dedicated sections on SSH
Setup and Configuration and on opening a SSH Tunnel to the master node so please refer to them.
Make sure to setup the SSH tunnel as a SOCKS proxy, that is to redirect all calls to remote ports - this is
crucial when working with Hadoop (or other applications) that use a range of ports for communication.

A.3 Configuring Hadoop to use a SOCKS proxy

Once the tunnel or the SOCKS proxy is in place, one needs to configure Hadoop to use it. By
default, Hadoop makes connections directly to its target which is fine for regular use, but in this
case, we need to use the SOCKS proxy to pass through the firewall. One can do so through the
hadoop. rpc. socket . factory. cl ass. def aul t and hadoop. socks. server properties:

hadoop. r pc. socket . fact ory. cl ass. def aul t =or g. apache. hadoop. net . SocksSocket Fact ory
this configure assunes the SOCKS proxy is opened on |ocal port 6666
hadoop. socks. server =l ocal host : 6666

At this point, all Hadoop communication will go through the SOCKS proxy at localhost on port 6666.
The main advantage is that all the IPs, domain names, ports are resolved on the 'remote' side of the
proxy so one can just start using the remote cluster IPs. However, only the Hadoop client needs to use
the proxy - to avoid having the client configuration be read by the cluster nodes (which would mean
the nodes would try to use a SOCKS proxy on the remote side as well), make sure the master node
(and thus all its nodes) hadoop- si t e. xm marks the default network setting as final (see this blog
post for a detailed explanation):

<property>
<nane>hadoop. r pc. socket . factory. cl ass. def aul t </ nane>
<val ue>or g. apache. hadoop. net . St andar dSocket Fact or y</ val ue>
<final >true</final >

</ property>

Simply pass this configuration (and other options that you might have) to the master node using
a bootstrap action. One can find this file ready for usage, already deployed to Amazon S3 at s3://
dist.springframework.org/release/SHDP/emr-settings.xml. Simply pass the file to command-line used
for firing up the EMR cluster:

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 51

http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/environmentconfig_eip.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/API/Welcome.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/SignUp.html#emr-gsg-ssh-setup-config
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/SignUp.html#emr-gsg-ssh-setup-config
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/emr-ssh-tunnel.html
http://blog.cloudera.com/blog/2008/12/securing-a-hadoop-cluster-through-a-gateway/
http://blog.cloudera.com/blog/2008/12/securing-a-hadoop-cluster-through-a-gateway/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/Bootstrap.html
http://dist.springframework.org.s3.amazonaws.com/release/SHDP/emr-settings.xml
http://dist.springframework.org.s3.amazonaws.com/release/SHDP/emr-settings.xml

Spring Hadoop

.lelastic-mapreduce --create --alive --bootstrap-action s3://elasticmapreduce/ boot strap-
actions/ configure-hadoop --args "--site-config-file,s3://dist.springframework. org/rel ease/
SHDP/ ent - settings. xm "

© Note

For security reasons, we recommend copying the 'emr-settings.xml' file to one of your S3 buckets
and use that location instead.

A.4 Accessing the file-system

Amazon EMR offers Simple Storage Service, also known as S3 service, as means for durable read-
write storage for EMR. While the cluster is active, one can write additional data to HDFS but unless S3
is used, the data will be lost once the cluster shuts down. Note that when using an S3 location for the
first time, the proper access permissions needs to be setup. Accessing S3 is easier then the job tracker
- in fact the Hadoop distribution provides not one but two file-system implementations for S3:

Table A.1. Hadoop S3 File Systems
Name URI Prefix Access Method Description

S3 Native FS s3n:// S3 Native Native access to S3. The
recommended file-system as the
data is read/written in its native
format and can be used not just
by Hadoop but also other systems
without any translation. The down-
side is that it does not support
large files (5GB) out of the box
(though there is a work-around
through the multipart upload feature).

S3 Block FS s3:// Block Based The files are stored as blocks (similar
to the underlying structure in HDFS).

This is somewhat more efficient in

terms of renames and file sizes but

requires a dedicated bucket and is
not inter-operable with other S3 tools.

To access the data in S3 one can either use an HDFS file-system on top of it, which requires no extra
setup, or copy the data from S3 to the HDFS cluster using manual tools, distcp with S3, its dedicated
version s3distcp, Hadoop DistributedCache (which SHDP supports as well) or third-party tools such as
s3cmd.

For newbies and development we recommend accessing the S3 directly through the File-System
abstraction as in most cases, its performance is close to that of the data inside the native HDFS. When
dealing with data that is read multiple times, copying the data from S3 locally inside the cluster might
improve performance but we advice running some performance tests first.

A.5 Shutting down the cluster

Once the cluster is no longer needed for a longer period of time, one can shut it down fairly straight
forward:

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 52

http://aws.amazon.com/s3/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/emr-s3-acls.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/FileSystemConfig.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/Config_Multipart.html#Config_Multipart.title
http://wiki.apache.org/hadoop/AmazonS3#Running_bulk_copies_in_and_out_of_S3
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/UsingEMR_s3distcp.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/DistributedCache.html
http://s3tools.org/s3cmd
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/CleanUp.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/CleanUp.html

Spring Hadoop

./ elastic-mapreduce --term nate JobFl ow D

Note that the EMR cluster is billed by the hour and since the time is rounded upwards, starting and
shutting down the cluster repeateadly might end up being more expensive then just keeping it alive.

Consult the documentation for more information.

A.6 Example configuration

To put it all together, to use Amazon EMR one can use the following work-flow with SHDP:

» Start an alive cluster using the bootstrap action to guarantees the cluster does NOT use a socks

proxy. Open a SSH tunnel, in SOCKS mode, to the EMR cluster.

Start the cluster for an indefinite period. Once the server is up, create an SSH tunnel,in SOCKS mode,
to the remote cluster. This allows the client to communicate directly with the remote nodes as if they
are part of the same network.This step does not have to be repeated unless the cluster is terminated

- one can (and should) submit multiple jobs to it.

» Configure SHDP

» Once the cluster is up and the SSH tunnel/SOCKS proxy is in place, point SHDP to the new

configuration. The example below shows how the configuration can look like:
hadoop-context.xml

<beans xm ns="http://ww. springfranmewor k. or g/ schema/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: cont ext ="http://wwm. spri ngframewor k. or g/ schenma/ cont ext "

xm ns: hdp="htt p://ww. spri ngf ranmewor k. or g/ schena/ hadoop"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans http://
www. spri ngframewor k. or g/ schena/ beans/ spri ng- beans. xsd

http://ww. spri ngfranework. org/ schena/ cont ext http://ww. springfranework. org/schema/

cont ext/spring-cont ext . xsd

htt p: // ww. spri ngfranewor k. or g/ schena/ hadoop http://ww. spri ngfranewor k. or g/ schema/

hadoop/ spri ng- hadoop. xsd" >

<I-- property placehol der backed by hadoop. properties -->
<cont ext: property-pl acehol der | ocati on="hadoop. properties"/>

<I'-- Hadoop FileSystem using a pl acehol der and enr.properties -->

<hdp: configuration properties-location="enr.properties" file-systemuri="${hd.fs}" job-

tracker-uri="${hd.jt}/>

hadoop.properties

Amazon EMR

S3 bucket backing the HDFS S3 fs

hd. f s=s3n: // ny- wor ki ng- bucket /

job tracker pointing to the EMR internal |IP
hd. j t=10. 123. 123. 123: 9000

emr.properties

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual

53

http://aws.amazon.com/elasticmapreduce/faqs/#billing-2

Spring Hadoop

Amazon EMR

Use a SOCKS proxy

hadoop. r pc. socket . factory. cl ass. def aul t =or g. apache. hadoop. net . SocksSocket Fact ory
hadoop. socks. server =l ocal host : 6666

S3 credentials

for s3:// wuri

fs.s3. ansAccessKey !l d=XXXXXXXXIXHXHXHXIXIXXHXXKXKXK

fs.s3. awsSecr et Access Key =X HIIIIKIKHIIHIIIIKHKIIIIXKHKIHXHKKK

for s3n:// wuri
fs.s3n. awsAccessKey!l d=XXXXXXIKKXXXXXX
fs.s3n. awsSecr et Access Key =XXXXIIKRKXIXHXIIAIIIIKIIAIIKIIKHKIIHIIIKHXIIAIIKXKXX

Spring Hadoop is now ready to talk to your Amazon EMR cluster. Try it out!

© Note

The inquisitive reader might wonder why the example above uses two properties file,
hadoop. properti es and enr. properti es instead of just one. While one file is enough,
the example tries to isolate the EMR configuration into a separate configuration (especially as
it contains security credentials).

» Shutdown the tunnel and the cluster

Once the jobs submitted are completed, unless new jobs are shortly scheduled, one can shutdown
the cluster. Just like the first step, this is optional. Again, make sure you understand the billing process
first.

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 54

Spring Hadoop

Appendix B. Using Spring for Apache
Hadoop with EC2/Apache Whirr

As mentioned above, those interested in using on-demand Hadoop clusters can use Amazon Elastic
Map Reduce (or Amazon EMR) service. An alternative to that, for those that want maximum control over
the cluster, is to use Amazon Elastic Compute Cloud or EC2. EC2 is in fact the service on top of which
Amazon EMR runs and that is, a resizable, configurable compute capacity in the cloud.

© Important

This chapter assumes the user is familiar with Amazon EC2 and the cost associated with it and
its related services - we strongly recommend getting familiar with the official EC2 documentation.

Just like Amazon EMR, using EC2 means the Hadoop cluster (or whatever service you run on it) runs
in the cloud and thus 'development’ access to it, is different then when running the service in local
network. There are various tips and tools out there that can handle the initial provisioning and configure
the access to the cluster. Such a solution is Apache Whirr which is a set of libraries for running cloud
services. Though it provides a Java API as well, one can easily configure, start and stop services from
the command-line.

B.1 Setting up the Hadoop cluster on EC2 with Apache Whirr

The Whirr documentation provides more detail on how to interact with the various cloud providers out-
there through Whirr. In case of EC2, one needs Java 6 (which is required by Apache Hadoop), an
account on EC2 and an SSH client (available out of the box on *nix platforms and freely downloadable
(such as PUTTY) on Windows). Since Whirr does most of the heavy lifting, one needs to tell Whirr
what Cloud provider and account is used, either by setting some environment properties or through the
~/.whirr/credentials file:

whi rr. provi der =aws- ec2
whi rr.identity=your-aws-key
whirr.credenti al =your - aws- secr et

Now instruct Whirr to configure a Hadoop cluster on EC2 - just add the following properties to a
configuration file (say hadoop. pr operti es):

whi rr. cl ust er - name=nyhadoopcl ust er

whirr.instance-tenpl at es=1 hadoop-j obtracker +hadoop- nanmenode, 1 hadoop- dat anode+hadoop-
tasktracker

whi rr. provi der =aws- ec2

whirr.private-key-file=${sys:user.honme}/.ssh/id_rsa

whirr. public-key-file=${sys: user.hone}/.ssh/id_rsa. pub

The configuration above assumes the SSH keys for your user have been already generated. Now start
your Hadoop cluster:

bi n/whirr |aunch-cluster --config hadoop. properties

As with Amazon EMR, one cannot correct to the Hadoop cluster from outside - however Whirr provides
out of the box the feature to create an SSH tunnel to create a SOCKS proxy (on port 6666). When

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 55

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/documentation/ec2/
http://whirr.apache.org/
http://whirr.apache.org/docs/0.8.1/quick-start-guide.html

Spring Hadoop

a cluster is created, Whirr creates a script to launch the cluster which may be found in ~/ . whi rr/
cl ust er - name. Run it as a follows (in a new terminal window):

~/ . whi rr/ nyhadoopcl ust er/ hadoop- pr oxy. sh

At this point, one can just the SOCKS proxy configuration from the Amazon EMR section to configure
the Hadoop client.

To destroy the cluster, one can use the Amazon EMR console or Whirr itself:

bi n/whirr destroy-cluster --config hadoop. properties

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual 56

Spring Hadoop

Appendix C. Spring for Apache
Hadoop Schema

Spring for Apache Hadoop Schema

Spring for Apache Hadoop
1.1.0.RC1-cdh4 Reference Manual

57

Spring Hadoop

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schenma xm ns="http://ww. spri ngfranework. or g/ schena/ hadoop"
xm ns: xsd="http: // ww. w3. or g/ 2001/ XM_Schema"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: beans="htt p: //wwm. spri ngf ranmewor k. or g/ schema/ beans"

xm ns: tool =" http://ww. spri ngfranmewor k. org/ schena/t ool "

tar get Nanespace="ht t p: // www. spri ngf ramewor k. or g/ schena/ hadoop"
el ement For nDef aul t =" qual i fi ed"

attri but eFor nDef aul t ="unqual i fi ed"

version="1.0.0">

<xsd: i nport nanespace="http://ww. spri ngfranmework. org/schema/ beans" />
<xsd: i nport nanmespace="htt p://ww. spri ngfranework. org/ schema/tool" />

<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA]

Defines the configuration elenments for Spring Data Hadoop
]]1></ xsd: docunent at i on>

</ xsd: annot at i on>

<l-- comon attributes shared by Job executors
NOT nmeant for extensibility - do NOT rely on this type as it might be renpved in the
future -->
<xsd: conpl exType nane="j obRunner Type" >
<xsd:attribute nane="id" type="xsd:| D' use="optional ">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Bean id.]]></xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attribute>
<l-- the job reference -->
<xsd: attribute name="job-ref">
<xsd: annot at i on>
<xsd: docurment ati on source="j ava: or g. apache. hadoop. mapr educe. Job" ><! [CDATA|
Hadoop Job. Miltiple nanmes can be specified using comma (,) as a separator.]]></
xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. mapr educe. Job" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
</ xsd:attri bute>
<xsd:attribute name="wait-for-
conpl etion" type="xsd:string" use="optional" default="true">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Whet her to synchronously wait for the job(s) to finish (the default) or not.
]1></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attribute>
<xsd:attribute nane="verbose" type="xsd:string" use="optional" default="true"/>
<xsd:attribute name="kill-job-at-
shut down" type="xsd:string" use="optional" default="true">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Whet her the configured jobs should be '"killed when the application shuts down (default)
or not.
For |l ong-running or fire-and-forget jobs that |ive beyond the starting application, set
this to fal se.

Note that if '"wait-for-job' is true, this flag is considered to be true as otherw se the
application
cannot shut down (since it has to keep waiting for the job).
]1></ xsd: docunent ati on>
</ xsd: annot at i on>
</xsd:attribute>
<xsd:attribute nane="executor-ref" type="xsd:string" use="optional">

overd anmnnat at i o ANlS

	Spring for Apache Hadoop Reference Manual
	Table of Contents
	Preface
	Part I. Introduction
	1. Requirements
	2. Additional Resources

	Part II. Spring and Hadoop
	3. Hadoop Configuration, MapReduce, and Distributed Cache
	3.1 Using the Spring for Apache Hadoop Namespace
	3.2 Configuring Hadoop
	3.3 Creating a Hadoop Job
	Creating a Hadoop Streaming Job

	3.4 Running a Hadoop Job
	Using the Hadoop Job tasklet

	3.5 Running a Hadoop Tool
	Replacing Hadoop shell invocations with tool-runner
	Using the Hadoop Tool tasklet

	3.6 Running a Hadoop Jar
	Using the Hadoop Jar tasklet

	3.7 Configuring the Hadoop DistributedCache
	3.8 Map Reduce Generic Options

	4. Working with the Hadoop File System
	4.1 Configuring the file-system
	4.2 Using HDFS Resource Loader
	4.3 Scripting the Hadoop API
	Using scripts

	4.4 Scripting implicit variables
	Running scripts
	Using the Scripting tasklet

	4.5 File System Shell (FsShell)
	DistCp API

	5. Working with HBase
	5.1 Data Access Object (DAO) Support

	6. Hive integration
	6.1 Starting a Hive Server
	6.2 Using the Hive Thrift Client
	6.3 Using the Hive JDBC Client
	6.4 Running a Hive script or query
	Using the Hive tasklet

	6.5 Interacting with the Hive API

	7. Pig support
	7.1 Running a Pig script
	Using the Pig tasklet

	7.2 Interacting with the Pig API

	8. Cascading integration
	8.1 Using the Cascading tasklet
	8.2 Using Scalding
	8.3 Spring-specific local Taps

	9. Using the runner classes
	10. Security Support
	10.1 HDFS permissions
	10.2 User impersonation (Kerberos)

	Part III. Developing Spring for Apache Hadoop Applications
	11. Guidance and Examples
	11.1 Scheduling
	11.2 Batch Job Listeners

	Part IV. Spring for Apache Hadoop sample applications
	Part V. Other Resources
	12. Useful Links

	Part VI. Appendices
	Appendix A. Using Spring for Apache Hadoop with Amazon EMR
	A.1 Start up the cluster
	A.2 Open an SSH Tunnel as a SOCKS proxy
	A.3 Configuring Hadoop to use a SOCKS proxy
	A.4 Accessing the file-system
	A.5 Shutting down the cluster
	A.6 Example configuration

	Appendix B. Using Spring for Apache Hadoop with EC2/Apache Whirr
	B.1 Setting up the Hadoop cluster on EC2 with Apache Whirr

	Appendix C. Spring for Apache Hadoop Schema

