
Spring for Apache Hadoop Reference Manual

2.0.0.M6-hdp20

Costin Leau Elasticsearch , Thomas Risberg Pivotal , Janne Valkealahti Pivotal

Copyright ©

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual ii

Table of Contents

Preface .. v
I. Introduction ... 1

1. Requirements ... 2
2. Additional Resources .. 3

II. Spring and Hadoop .. 4
3. Hadoop Configuration, MapReduce, and Distributed Cache .. 5

3.1. Using the Spring for Apache Hadoop Namespace ... 5
3.2. Configuring Hadoop ... 6
3.3. Creating a Hadoop Job .. 9

Creating a Hadoop Streaming Job .. 10
3.4. Running a Hadoop Job .. 11

Using the Hadoop Job tasklet ... 12
3.5. Running a Hadoop Tool ... 12

Replacing Hadoop shell invocations with tool-runner 13
Using the Hadoop Tool tasklet .. 14

3.6. Running a Hadoop Jar ... 14
Using the Hadoop Jar tasklet .. 15

3.7. Configuring the Hadoop DistributedCache ... 15
3.8. Map Reduce Generic Options .. 16

4. Working with the Hadoop File System ... 17
4.1. Configuring the file-system ... 17
4.2. Using HDFS Resource Loader ... 18
4.3. Scripting the Hadoop API ... 20

Using scripts .. 22
4.4. Scripting implicit variables .. 22

Running scripts .. 23
Using the Scripting tasklet .. 23

4.5. File System Shell (FsShell) .. 24
DistCp API ... 25

5. Working with HBase ... 26
5.1. Data Access Object (DAO) Support .. 26

6. Hive integration .. 28
6.1. Starting a Hive Server ... 28
6.2. Using the Hive Thrift Client .. 28
6.3. Using the Hive JDBC Client ... 29
6.4. Running a Hive script or query ... 29

Using the Hive tasklet .. 30
6.5. Interacting with the Hive API .. 30

7. Pig support .. 32
7.1. Running a Pig script .. 32

Using the Pig tasklet .. 33
7.2. Interacting with the Pig API .. 33

8. Using the runner classes .. 34
9. Security Support ... 36

9.1. HDFS permissions ... 36
9.2. User impersonation (Kerberos) ... 36

10. Yarn Support .. 37

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual iii

10.1. Using the Spring for Apache Yarn Namespace .. 37
10.2. Using the Spring for Apache Yarn JavaConfig ... 39
10.3. Configuring Yarn .. 40
10.4. Local Resources .. 44
10.5. Container Environment ... 46
10.6. Application Client ... 47
10.7. Application Master ... 50
10.8. Application Container ... 52
10.9. Application Master Services .. 53

Basic Concepts .. 53
Using JSON ... 54
Converters ... 54

10.10. Application Master Service ... 55
10.11. Application Master Service Client .. 56
10.12. Using Spring Batch .. 58

Batch Jobs ... 58
Partitioning ... 60

Configuring Master ... 60
Configuring Container ... 61

10.13. Using Spring Boot Application Model ... 62
Auto Configuration .. 65
Application Files ... 65
Application Classpath ... 66

Simple Executable Jar .. 66
Simple Zip Archive ... 66

Container Runners ... 67
Custom Runner .. 67

Resource Localizing ... 67
Container as POJO .. 69
Configuration Properties ... 70

11. Testing Support .. 77
11.1. Testing MapReduce ... 77

Mini Clusters for MapReduce .. 77
Configuration .. 78
Simplified Testing ... 78
Wordcount Example ... 79

11.2. Testing Yarn .. 81
Mini Clusters for Yarn ... 81
Configuration .. 82
Simplified Testing ... 83
Multi Context Example .. 83

11.3. Testing Boot Based Applications ... 85
III. Developing Spring for Apache Hadoop Applications .. 88

12. Guidance and Examples ... 89
12.1. Scheduling .. 89
12.2. Batch Job Listeners ... 89

IV. Spring for Apache Hadoop sample applications .. 91
V. Other Resources .. 92

13. Useful Links ... 93
VI. Appendices ... 94

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual iv

A. Using Spring for Apache Hadoop with Amazon EMR ... 95
A.1. Start up the cluster .. 95
A.2. Open an SSH Tunnel as a SOCKS proxy ... 96
A.3. Configuring Hadoop to use a SOCKS proxy .. 96
A.4. Accessing the file-system .. 97
A.5. Shutting down the cluster .. 97
A.6. Example configuration ... 98

B. Using Spring for Apache Hadoop with EC2/Apache Whirr ... 100
B.1. Setting up the Hadoop cluster on EC2 with Apache Whirr 100

C. Spring for Apache Hadoop Schema .. 102

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual v

Preface
Spring for Apache Hadoop provides extensions to Spring, Spring Batch, and Spring Integration to build
manageable and robust pipeline solutions around Hadoop.

Spring for Apache Hadoop supports reading from and writing to HDFS, running various types of Hadoop
jobs (Java MapReduce, Streaming), scripting and HBase, Hive and Pig interactions. An important goal
is to provide excellent support for non-Java based developers to be productive using Spring for Apache
Hadoop and not have to write any Java code to use the core feature set.

Spring for Apache Hadoop also applies the familiar Spring programming model to Java MapReduce
jobs by providing support for dependency injection of simple jobs as well as a POJO based MapReduce
programming model that decouples your MapReduce classes from Hadoop specific details such as
base classes and data types.

This document assumes the reader already has a basic familiarity with the Spring Framework and
Hadoop concepts and APIs.

While every effort has been made to ensure that this documentation is comprehensive and there are
no errors, nevertheless some topics might require more explanation and some typos might have crept
in. If you do spot any mistakes or even more serious errors and you can spare a few cycles during
lunch, please do bring the error to the attention of the Spring for Apache Hadoop team by raising an
issue. Thank you.

Part I. Introduction
Spring for Apache Hadoop provides integration with the Spring Framework to create and run Hadoop
MapReduce, Hive, and Pig jobs as well as work with HDFS and HBase. If you have simple needs to work
with Hadoop, including basic scheduling, you can add the Spring for Apache Hadoop namespace to your
Spring based project and get going quickly using Hadoop. As the complexity of your Hadoop application
increases, you may want to use Spring Batch and Spring Integration to regain on the complexity of
developing a large Hadoop application.

This document is the reference guide for Spring for Apache Hadoop project (SHDP). It explains the
relationship between the Spring framework and Hadoop as well as related projects such as Spring Batch
and Spring Integration. The first part describes the integration with the Spring framework to define the
base concepts and semantics of the integration and how they can be used effectively. The second part
describes how you can build upon these base concepts and create workflow based solutions provided
by the integration with Spring Batch.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 2

1. Requirements

Spring for Apache Hadoop 2.0 requires JDK level 6.0 (just like Hadoop) and above, Spring Framework
3.2 and above and is by default built against Apache Hadoop 1.2.1.

Spring for Apache Hadoop 2.0 supports the following versions and distributions:

• Apache Hadoop 1.2.1

• Apache Hadoop 2.2.0 *

• Pivotal HD 1.1

• Cloudera CDH4 (CDH4.3.1)

• Cloudera CDH5 beta (2.2.0-cdh5.0.0-beta-1) *

• Hortonworks Data Platform 1.3

• Hortonworks Data Platform 2.0 *

* The distributions noted with and asterisk will include spring-yarn support in the build.

Any distribution compatible with Apache Hadoop 1.x or 2.2.x should be supported.

Note

Spring for Apache Hadoop is is certified to work on Pivotal HD 1.0 and 1.1, Hortonworks HDP
1.3 and Cloudera CDH 4.4 distributions.

Spring for Apache Hadoop 2.0 is tested daily against a number of Hadoop distributions. See the test
plan page for current status.

Instructions for setting up project builds using various supported distributions are provided on the Spring
for Apache Hadoop wiki - https://github.com/SpringSource/spring-hadoop/wiki

Regarding Hadoop-related projects, SDHP supports HBase 0.90.x, Hive 0.8.x and Pig 0.9.x and above.
As a rule of thumb, when using Hadoop-related projects, such as Hive or Pig, use the required Hadoop
version as a basis for discovering the supported versions.

To take full advantage of Spring for Apache Hadoop you need a running Hadoop cluster. If you don't
already have one in your environment, a good first step is to create a single-node cluster. To install
Hadoop 1.2.1, the "Getting Started" page from the official Apache documentation is a good general
guide. If you are running on Ubuntu, the tutorial from Michael G. Noll, "Running Hadoop On Ubuntu
Linux (Single-Node Cluster)" provides more details. It is also convenient to download a Virtual Machine
where Hadoop is setup and ready to go. Cloudera, Hortonworks and Pivotal all provide virtual machines
and provide VM downloads on their product pages. Additionally, the appendix provides information on
how to use Spring for Apache Hadoop and setup Hadoop with cloud providers, such as Amazon Web
Services.

http://www.springsource.org/about
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.gopivotal.com/
http://www.cloudera.com/
http://www.cloudera.com/
http://www.hortonworks.com/
http://www.hortonworks.com/
https://build.springsource.org/browse/SPRINGDATAHADOOP
https://build.springsource.org/browse/SPRINGDATAHADOOP
https://github.com/SpringSource/spring-hadoop/wiki
http://hbase.apache.org/
http://hive.apache.org/
http://pig.apache.org/
http://hadoop.apache.org/common/docs/stable/#Getting+Started
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 3

2. Additional Resources

While this documentation acts as a reference for Spring for Hadoop project, there are number of
resources that, while optional, complement this document by providing additional background and code
samples for the reader to try and experiment with:

• Spring for Apache Hadoop samples. Official repository full of SHDP samples demonstrating the
various project features.

• Spring Data Book. Guide to Spring Data projects, written by the committers behind them. Covers
Spring Data Hadoop stand-alone but in tandem with its siblings projects. All earnings from book sales
are donated to Creative Commons organization.

• Spring Data Book examples. Complete running samples for the Spring Data book. Note that
some of them are available inside Spring for Apache Hadoop samples as well.

https://github.com/SpringSource/spring-hadoop-samples/
http://shop.oreilly.com/product/0636920024767.do
http://creativecommons.org/about
https://github.com/SpringSource/spring-hadoop-samples/

Part II. Spring and Hadoop

Document structure
This part of the reference documentation explains the core functionality that Spring for Apache Hadoop
(SHDP) provides to any Spring based application.

Chapter 3, Hadoop Configuration, MapReduce, and Distributed Cache describes the Spring support for
bootstrapping, initializing and working with core Hadoop.

Chapter 4, Working with the Hadoop File System describes the Spring support for interacting with the
Hadoop file system.

Chapter 5, Working with HBase describes the Spring support for HBase.

Chapter 6, Hive integration describes the Hive integration in SHDP.

Chapter 7, Pig support describes the Pig support in Spring for Apache Hadoop.

Chapter 9, Security Support describes how to configure and interact with Hadoop in a secure
environment.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 5

3. Hadoop Configuration, MapReduce, and
Distributed Cache

One of the common tasks when using Hadoop is interacting with its runtime - whether it is a local setup or
a remote cluster, one needs to properly configure and bootstrap Hadoop in order to submit the required
jobs. This chapter will focus on how Spring for Apache Hadoop (SHDP) leverages Spring's lightweight
IoC container to simplify the interaction with Hadoop and make deployment, testing and provisioning
easier and more manageable.

3.1 Using the Spring for Apache Hadoop Namespace

To simplify configuration, SHDP provides a dedicated namespace for most of its components. However,
one can opt to configure the beans directly through the usual <bean> definition. For more information
about XML Schema-based configuration in Spring, see this appendix in the Spring Framework reference
documentation.

To use the SHDP namespace, one just needs to import it inside the configuration:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:❶hdp="❷http://www.springframework.org/schema/hadoop"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd

 http://www.springframework.org/schema/hadoop http://www.springframework.org/schema/

hadoop/spring-hadoop.xsd❸">

 <bean id ... >

 ❹<hdp:configuration ...>

</beans>

❶ Spring for Apache Hadoop namespace prefix. Any name can do but throughout the reference
documentation, hdp will be used.

❷ The namespace URI.

❸ The namespace URI location. Note that even though the location points to an external address
(which exists and is valid), Spring will resolve the schema locally as it is included in the Spring for
Apache Hadoop library.

❹ Declaration example for the Hadoop namespace. Notice the prefix usage.

Once imported, the namespace elements can be declared simply by using the aforementioned prefix.
Note that is possible to change the default namespace, for example from <beans> to <hdp>. This is
useful for configuration composed mainly of Hadoop components as it avoids declaring the prefix. To
achieve this, simply swap the namespace prefix declarations above:

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/xsd-config.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 6

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns="http://www.springframework.org/schema/hadoop"❶

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 ❷xmlns:beans="http://www.springframework.org/schema/beans"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans http://www.springframework.org/schema/

beans/spring-beans.xsd

 http://www.springframework.org/schema/hadoop http://www.springframework.org/schema/

hadoop/spring-hadoop.xsd">

 ❸<beans:bean id ... >

 ❹<configuration ...>

</beans:beans>

❶ The default namespace declaration for this XML file points to the Spring for Apache Hadoop
namespace.

❷ The beans namespace prefix declaration.

❸ Bean declaration using the <beans> namespace. Notice the prefix.

❹ Bean declaration using the <hdp> namespace. Notice the lack of prefix (as hdp is the default
namespace).

For the remainder of this doc, to improve readability, the XML examples may simply refer to the <hdp>
namespace without the namespace declaration, where possible.

3.2 Configuring Hadoop

In order to use Hadoop, one needs to first configure it namely by creating a Configuration object.
The configuration holds information about the job tracker, the input, output format and the various other
parameters of the map reduce job.

In its simplest form, the configuration definition is a one liner:

<hdp:configuration />

The declaration above defines a Configuration bean (to be precise a factory bean of type
ConfigurationFactoryBean) named, by default, hadoopConfiguration. The default name is
used, by conventions, by the other elements that require a configuration - this leads to simple and very
concise configurations as the main components can automatically wire themselves up without requiring
any specific configuration.

For scenarios where the defaults need to be tweaked, one can pass in additional configuration files:

<hdp:configuration resources="classpath:/custom-site.xml, classpath:/hq-site.xml">

In this example, two additional Hadoop configuration resources are added to the configuration.

Note

Note that the configuration makes use of Spring's Resource abstraction to locate the file. This
allows various search patterns to be used, depending on the running environment or the prefix
specified (if any) by the value - in this example the classpath is used.

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/resources.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 7

In addition to referencing configuration resources, one can tweak Hadoop settings directly through Java
Properties. This can be quite handy when just a few options need to be changed:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:hdp="http://www.springframework.org/schema/hadoop"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/hadoop http://www.springframework.org/

schema/hadoop/spring-hadoop.xsd">

 <hdp:configuration>

 fs.default.name=hdfs://localhost:9000

 hadoop.tmp.dir=/tmp/hadoop

 electric=sea

 </hdp:configuration>

</beans>

One can further customize the settings by avoiding the so called hard-coded values by externalizing
them so they can be replaced at runtime, based on the existing environment without touching the
configuration:

Note

Usual configuration parameters for fs.default.name, fs.defaultFS,
mapred.job.tracker and yarn.resourcemanager.address can be configured using tag
attributes file-system-uri, job-tracker-uri and rm-manager-uri respectively.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:hdp="http://www.springframework.org/schema/hadoop"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context http://www.springframework.org/

schema/context/spring-context.xsd

 http://www.springframework.org/schema/hadoop http://www.springframework.org/

schema/hadoop/spring-hadoop.xsd">

 <hdp:configuration>

 fs.default.name=${hd.fs}

 hadoop.tmp.dir=file://${java.io.tmpdir}

 hangar=${number:18}

 </hdp:configuration>

 <context:property-placeholder location="classpath:hadoop.properties" />

</beans>

Through Spring's property placeholder support, SpEL and the environment abstraction (available in
Spring 3.1). one can externalize environment specific properties from the main code base easing the
deployment across multiple machines. In the example above, the default file system is replaced based
on the properties available in hadoop.properties while the temp dir is determined dynamically
through SpEL. Both approaches offer a lot of flexbility in adapting to the running environment - in fact
we use this approach extensivly in the Spring for Apache Hadoop test suite to cope with the differences
between the different development boxes and the CI server.

http://static.springsource.org/spring/docs/3.0.x/reference/beans.html#beans-factory-placeholderconfigurer
http://static.springsource.org/spring/docs/3.0.x/reference/expressions.html
http://blog.springsource.com/2011/06/09/spring-framework-3-1-m2-released/

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 8

 Additionally, external Properties files can be loaded, Properties beans (typically declared through
Spring's util namespace). Along with the nested properties declaration, this allows customized
configurations to be easily declared:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:hdp="http://www.springframework.org/schema/hadoop"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:util="http://www.springframework.org/schema/util"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context http://www.springframework.org/

schema/context/spring-context.xsd

 http://www.springframework.org/schema/util http://www.springframework.org/schema/

util/spring-util.xsd

 http://www.springframework.org/schema/hadoop http://www.springframework.org/

schema/hadoop/spring-hadoop.xsd">

 <!-- merge the local properties, the props bean and the two properties files -->

 <hdp:configuration properties-ref="props" properties-location="cfg-1.properties,

 cfg-2.properties">

 star=chasing

 captain=eo

 </hdp:configuration>

 <util:properties id="props" location="props.properties"/>

</beans>

When merging several properties, ones defined locally win. In the example above the configuration
properties are the primary source, followed by the props bean followed by the external properties file
based on their defined order. While it's not typical for a configuration to refer to so many properties, the
example showcases the various options available.

Note
For more properties utilities, including using the System as a source or fallback, or control over
the merging order, consider using Spring's PropertiesFactoryBean (which is what Spring
for Apache Hadoop and util:properties use underneath).

It is possible to create configurations based on existing ones - this allows one to create dedicated
configurations, slightly different from the main ones, usable for certain jobs (such as streaming - more
on that below). Simply use the configuration-ref attribute to refer to the parent configuration - all
its properties will be inherited and overridden as specified by the child:

<!-- default name is 'hadoopConfiguration' -->

<hdp:configuration>

 fs.default.name=${hd.fs}

 hadoop.tmp.dir=file://${java.io.tmpdir}

</hdp:configuration>

<hdp:configuration id="custom" configuration-ref="hadoopConfiguration">

 fs.default.name=${custom.hd.fs}

</hdp:configuration>

...

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/xsd-config.html#xsd-config-body-schemas-util-properties
http://static.springsource.org/spring/docs/3.0.x/api/org/springframework/beans/factory/config/PropertiesFactoryBean.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 9

Make sure though that you specify a different name since otherwise, because both definitions will have
the same name, the Spring container will interpret this as being the same definition (and will usually
consider the last one found).

Another option worth mentioning is register-url-handler which, as the name implies,
automatically registers an URL handler in the running VM. This allows urls referrencing hdfs resource
(by using the hdfs prefix) to be properly resolved - if the handler is not registered, such an URL will
throw an exception since the VM does not know what hdfs means.

Note

Since only one URL handler can be registered per VM, at most once, this option is turned off by
default. Due to the reasons mentioned before, once enabled if it fails, it will log the error but will
not throw an exception. If your hdfs URLs stop working, make sure to investigate this aspect.

Last but not least a reminder that one can mix and match all these options to her preference. In
general, consider externalizing Hadoop configuration since it allows easier updates without interfering
with the application configuration. When dealing with multiple, similar configurations use configuration
composition as it tends to keep the definitions concise, in sync and easy to update.

Table 3.1. hdp:configuration attributes

Name Values Description

configuration-

ref

Bean
Reference

Reference to existing Configuration bean

properties-

ref

Bean
Reference

Reference to existing Properties bean

properties-

location

Comma
delimited list

List or Spring Resource paths

resources Comma
delimited list

List or Spring Resource paths

file-

system-uri

String The HDFS filesystem address. Equivalent to
fs.default.name and fs.defaultFS propertys.

job-

tracker-uri

String Job tracker address for HadoopV1.
Equivalent to mapred.job.tracker property.

rm-

manager-uri

String The Yarn Resource manager address for HadoopV2.
Equivalent to yarn.resourcemanager.address property.

3.3 Creating a Hadoop Job

Once the Hadoop configuration is taken care of, one needs to actually submit some work to it. SHDP
makes it easy to configure and run Hadoop jobs whether they are vanilla map-reduce type or streaming.
Let us start with an example:

<hdp:job id="mr-job"

 input-path="/input/" output-path="/ouput/"

 mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"

 reducer="org.apache.hadoop.examples.WordCount.IntSumReducer"/>

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 10

The declaration above creates a typical Hadoop Job: specifies its input and output, the mapper and the
reducer classes. Notice that there is no reference to the Hadoop configuration above - that's because,
if not specified, the default naming convention (hadoopConfiguration) will be used instead. Neither
is there to the key or value types - these two are automatically determined through a best-effort attempt
by analyzing the class information of the mapper and the reducer. Of course, these settings can be
overridden: the former through the configuration-ref element, the latter through key and value
attributes. There are plenty of options available not shown in the example (for simplicity) such as the
jar (specified directly or by class), sort or group comparator, the combiner, the partitioner, the codecs
to use or the input/output format just to name a few - they are supported, just take a look at the SHDP
schema (Appendix C, Spring for Apache Hadoop Schema) or simply trigger auto-completion (usually
CTRL+SPACE) in your IDE; if it supports XML namespaces and is properly configured it will display the
available elements. Additionally one can extend the default Hadoop configuration object and add any
special properties not available in the namespace or its backing bean (JobFactoryBean).

It is worth pointing out that per-job specific configurations are supported by specifying the custom
properties directly or referring to them (more information on the pattern is available here):

<hdp:job id="mr-job"

 input-path="/input/" output-path="/ouput/"

 mapper="mapper class" reducer="reducer class"

 jar-by-class="class used for jar detection"

 properties-location="classpath:special-job.properties">

 electric=sea

</hdp:job>

<hdp:job> provides additional properties, such as the generic options, however one that is worth
mentioning is jar which allows a job (and its dependencies) to be loaded entirely from a specified jar.
This is useful for isolating jobs and avoiding classpath and versioning collisions. Note that provisioning
of the jar into the cluster still depends on the target environment - see the aforementioned section for
more info (such as libs).

Creating a Hadoop Streaming Job

Hadoop Streaming job (or in short streaming), is a popular feature of Hadoop as it allows the creation
of Map/Reduce jobs with any executable or script (the equivalent of using the previous counting words
example is to use cat and wc commands). While it is rather easy to start up streaming from the
command line, doing so programatically, such as from a Java environment, can be challenging due to
the various number of parameters (and their ordering) that need to be parsed. SHDP simplifies such
a task - it's as easy and straightforward as declaring a job from the previous section; in fact most of
the attributes will be the same:

<hdp:streaming id="streaming"

 input-path="/input/" output-path="/ouput/"

 mapper="${path.cat}" reducer="${path.wc}"/>

Existing users might be wondering how they can pass the command line arguments (such as -D or
-cmdenv). While the former customize the Hadoop configuration (which has been convered in the
previous section), the latter are supported through the cmd-env element:

http://hadoop.apache.org/common/docs/current/streaming.html
http://en.wikipedia.org/wiki/Cat_%28Unix%29
http://en.wikipedia.org/wiki/Wc_%28Unix%29

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 11

<hdp:streaming id="streaming-env"

 input-path="/input/" output-path="/ouput/"

 mapper="${path.cat}" reducer="${path.wc}">

 <hdp:cmd-env>

 EXAMPLE_DIR=/home/example/dictionaries/

 ...

 </hdp:cmd-env>

</hdp:streaming>

Just like job, streaming supports the generic options; follow the link for more information.

3.4 Running a Hadoop Job

The jobs, after being created and configured, need to be submitted for execution to a Hadoop cluster. For
non-trivial cases, a coordinating, workflow solution such as Spring Batch is recommended . However for
basic job submission SHDP provides the job-runner element (backed by JobRunner class) which
submits several jobs sequentially (and waits by default for their completion):

<hdp:job-runner id="myjob-runner" pre-action="cleanup-script" post-action="export-

results" job-ref="myjob" run-at-startup="true"/>

<hdp:job id="myjob" input-path="/input/" output-path="/output/"

 mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"

 reducer="org.apache.hadoop.examples.WordCount.IntSumReducer" />

Multiple jobs can be specified and even nested if they are not used outside the runner:

<hdp:job-runner id="myjobs-runner" pre-action="cleanup-script" job-ref="myjob1,

 myjob2" run-at-startup="true"/>

<hdp:job id="myjob1" ... />

<hdp:streaming id="myjob2" ... />

One or multiple Map-Reduce jobs can be specified through the job attribute in the order of the execution.
The runner will trigger the execution during the application start-up (notice the run-at-startup flag
which is by default false). Do note that the runner will not run unless triggered manually or if run-
at-startup is set to true. Additionally the runner (as in fact do all runners in SHDP) allows one or
multiple pre and post actions to be specified to be executed before and after each run. Typically other
runners (such as other jobs or scripts) can be specified but any JDK Callable can be passed in. For
more information on runners, see the dedicated chapter.

Note
As the Hadoop job submission and execution (when wait-for-completion is true) is
blocking, JobRunner uses a JDK Executor to start (or stop) a job. The default implementation,
SyncTaskExecutor uses the calling thread to execute the job, mimicking the hadoop command
line behaviour. However, as the hadoop jobs are time-consuming, in some cases this can lead to
“application freeze”, preventing normal operations or even application shutdown from occuring
properly. Before going into production, it is recommended to double-check whether this strategy
is suitable or whether a throttled or pooled implementation is better. One can customize the
behaviour through the executor-ref parameter.

The job runner also allows running jobs to be cancelled (or killed) at shutdown. This applies only to jobs
that the runner waits for (wait-for-completion is true) using a different executor then the default
- that is, using a different thread then the calling one (since otherwise the calling thread has to wait for

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 12

the job to finish first before executing the next task). To customize this behaviour, one should set the
kill-job-at-shutdown attribute to false and/or change the executor-ref implementation.

Using the Hadoop Job tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hadoop jobs as a step
in a Spring Batch workflow. An example declaration is shown below:

<hdp:job-tasklet id="hadoop-tasklet" job-ref="mr-job" wait-for-completion="true" />

The tasklet above references a Hadoop job definition named "mr-job". By default, wait-for-
completion is true so that the tasklet will wait for the job to complete when it executes. Setting wait-
for-completion to false will submit the job to the Hadoop cluster but not wait for it to complete.

3.5 Running a Hadoop Tool

It is common for Hadoop utilities and libraries to be started from the command-line (ex: hadoop jar
some.jar). SHDP offers generic support for such cases provided that the packages in question are built
on top of Hadoop standard infrastructure, namely Tool and ToolRunner classes. As opposed to the
command-line usage, Tool instances benefit from Spring's IoC features; they can be parameterized,
created and destroyed on demand and have their properties (such as the Hadoop configuration) injected.

Consider the typical jar example - invoking a class with some (two in this case) arguments (notice that
the Hadoop configuration properties are passed as well):

bin/hadoop jar -conf hadoop-site.xml -jt darwin:50020 -Dproperty=value

 someJar.jar org.foo.SomeTool data/in.txt data/out.txt

Since SHDP has first-class support for configuring Hadoop, the so called generic options aren't
needed any more, even more so since typically there is only one Hadoop configuration per application.
Through tool-runner element (and its backing ToolRunner class) one typically just needs to specify
the Tool implementation and its arguments:

<hdp:tool-runner id="someTool" tool-class="org.foo.SomeTool" run-at-startup="true">

 <hdp:arg value="data/in.txt"/>

 <hdp:arg value="data/out.txt"/>

 property=value

</hdp:tool-runner>

Additionally the runner (just like the job runner) allows one or multiple pre and post actions to be
specified to be executed before and after each run. Typically other runners (such as other jobs or scripts)
can be specified but any JDK Callable can be passed in. Do note that the runner will not run unless
triggered manually or if run-at-startup is set to true. For more information on runners, see the
dedicated chapter.

The previous example assumes the Tool dependencies (such as its class) are available in the
classpath. If that is not the case, tool-runner allows a jar to be specified:

<hdp:tool-runner ... jar="myTool.jar">

 ...

</hdp:tool-runner>

The jar is used to instantiate and start the tool - in fact all its dependencies are loaded from the jar
meaning they no longer need to be part of the classpath. This mechanism provides proper isolation

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 13

between tools as each of them might depend on certain libraries with different versions; rather then
adding them all into the same app (which might be impossible due to versioning conflicts), one can
simply point to the different jars and be on her way. Note that when using a jar, if the main class (as
specified by the Main-Class entry) is the target Tool, one can skip specifying the tool as it will picked
up automatically.

Like the rest of the SHDP elements, tool-runner allows the passed Hadoop configuration (by default
hadoopConfiguration but specified in the example for clarity) to be customized accordingly; the
snippet only highlights the property initialization for simplicity but more options are available. Since
usually the Tool implementation has a default argument, one can use the tool-class attribute.
However it is possible to refer to another Tool instance or declare a nested one:

<hdp:tool-runner id="someTool" run-at-startup="true">

 <hdp:tool>

 <bean class="org.foo.AnotherTool" p:input="data/in.txt" p:output="data/out.txt"/>

 </hdp:tool>

</hdp:tool-runner>

This is quite convenient if the Tool class provides setters or richer constructors. Note that by default
the tool-runner does not execute the Tool until its definition is actually called - this behavior can be
changed through the run-at-startup attribute above.

Replacing Hadoop shell invocations with tool-runner

tool-runner is a nice way for migrating series or shell invocations or scripts into fully wired, managed
Java objects. Consider the following shell script:

hadoop jar job1.jar -files fullpath:props.properties -Dconfig=config.properties ...

hadoop jar job2.jar arg1 arg2...

...

hadoop jar job10.jar ...

Each job is fully contained in the specified jar, including all the dependencies (which might conflict with
the ones from other jobs). Additionally each invocation might provide some generic options or arguments
but for the most part all will share the same configuration (as they will execute against the same cluster).

The script can be fully ported to SHDP, through the tool-runner element:

<hdp:tool-runner id="job1" tool-

class="job1.Tool" jar="job1.jar" files="fullpath:props.properties" properties-

location="config.properties"/>

<hdp:tool-runner id="job2" jar="job2.jar">

 <hdp:arg value="arg1"/>

 <hdp:arg value="arg2"/>

</hdp:tool-runner>

<hdp:tool-runner id="job3" jar="job3.jar"/>

...

All the features have been explained in the previous sections but let us review what happens here.
As mentioned before, each tool gets autowired with the hadoopConfiguration; job1 goes beyond
this and uses its own properties instead. For the first jar, the Tool class is specified, however the
rest assume the jar Main-Classes implement the Tool interface; the namespace will discover them
automatically and use them accordingly. When needed (such as with job1), additional files or libs are
provisioned in the cluster. Same thing with the job arguments.

http://docs.oracle.com/javase/tutorial/deployment/jar/appman.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 14

However more things that go beyond scripting, can be applied to this configuration - each job can
have multiple properties loaded or declared inlined - not just from the local file system, but also from
the classpath or any url for that matter. In fact, the whole configuration can be externalized and
parameterized (through Spring's property placeholder and/or Environment abstraction). Moreover, each
job can be ran by itself (through the JobRunner) or as part of a workflow - either through Spring's
depends-on or the much more powerful Spring Batch and tool-tasklet.

Using the Hadoop Tool tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hadoop tasks as a step
in a Spring Batch workflow. The tasklet element supports the same configuration options as tool-runner
except for run-at-startup (which does not apply for a workflow):

<hdp:tool-tasklet id="tool-tasklet" tool-ref="some-tool" />

3.6 Running a Hadoop Jar

SHDP also provides support for executing vanilla Hadoop jars. Thus the famous WordCount example:

bin/hadoop jar hadoop-examples.jar wordcount /wordcount/input /wordcount/output

becomes

<hdp:jar-runner id="wordcount" jar="hadoop-examples.jar" run-at-startup="true">

 <hdp:arg value="wordcount"/>

 <hdp:arg value="/wordcount/input"/>

 <hdp:arg value="/wordcount/output"/>

</hdp:jar-runner>

Note
Just like the hadoop jar command, by default the jar support reads the jar's Main-Class if
none is specified. This can be customized through the main-class attribute.

Additionally the runner (just like the job runner) allows one or multiple pre and post actions to be
specified to be executed before and after each run. Typically other runners (such as other jobs or scripts)
can be specified but any JDK Callable can be passed in. Do note that the runner will not run unless
triggered manually or if run-at-startup is set to true. For more information on runners, see the
dedicated chapter.

The jar support provides a nice and easy migration path from jar invocations from the command-
line to SHDP (note that Hadoop generic options are also supported). Especially since SHDP enables
Hadoop Configuration objects, created during the jar execution, to automatically inherit the context
Hadoop configuration. In fact, just like other SHDP elements, the jar element allows configurations
properties to be declared locally, just for the jar run. So for example, if one would use the following
declaration:

<hdp:jar-runner id="wordcount" jar="hadoop-examples.jar" run-at-startup="true">

 <hdp:arg value="wordcount"/>

 ...

 speed=fast

</hdp:jar-runner>

inside the jar code, one could do the following:

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/new-in-3.1.html#d0e1313
http://hadoop.apache.org/common/docs/r1.0.3/mapred_tutorial.html#Example%3A+WordCount+v1.0

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 15

assert "fast".equals(new Configuration().get("speed"));

This enabled basic Hadoop jars to use, without changes, the enclosing application Hadoop
configuration.

And while we think it is a useful feature (that is why we added it in the first place), we strongly recommend
using the tool support instead or migrate to it; there are several reasons for this mainly because there
are no contracts to use, leading to very poor embeddability caused by:

• No standard Configuration injection

While SHDP does a best effort to pass the Hadoop configuration to the jar, there is no guarantee the
jar itself does not use a special initialization mechanism, ignoring the passed properties. After all, a
vanilla Configuration is not very useful so applications tend to provide custom code to address
this.

• System.exit() calls

Most jar examples out there (including WordCount) assume they are started from the command line
and among other things, call System.exit, to shut down the JVM, whether the code is succesful
or not. SHDP prevents this from happening (otherwise the entire application context would shutdown
abruptly) but it is a clear sign of poor code collaboration.

SHDP tries to use sensible defaults to provide the best integration experience possible but at the end
of the day, without any contract in place, there are no guarantees. Hence using the Tool interface is
a much better alternative.

Using the Hadoop Jar tasklet

Like for the rest of its tasks, for Spring Batch environments, SHDP provides a dedicated tasklet to
execute Hadoop jars as a step in a Spring Batch workflow. The tasklet element supports the same
configuration options as jar-runner except for run-at-startup (which does not apply for a workflow):

<hdp:jar-tasklet id="jar-tasklet" jar="some-jar.jar" />

3.7 Configuring the Hadoop DistributedCache

DistributedCache is a Hadoop facility for distributing application-specific, large, read-only files (text,
archives, jars and so on) efficiently. Applications specify the files to be cached via urls (hdfs://) using
DistributedCache and the framework will copy the necessary files to the slave nodes before any
tasks for the job are executed on that node. Its efficiency stems from the fact that the files are only
copied once per job and the ability to cache archives which are un-archived on the slaves. Note that
DistributedCache assumes that the files to be cached (and specified via hdfs:// urls) are already
present on the Hadoop FileSystem.

SHDP provides first-class configuration for the distributed cache through its cache element (backed by
DistributedCacheFactoryBean class), allowing files and archives to be easily distributed across
nodes:

<hdp:cache create-symlink="true">

 <hdp:classpath value="/cp/some-library.jar#library.jar" />

 <hdp:cache value="/cache/some-archive.tgz#main-archive" />

 <hdp:cache value="/cache/some-resource.res" />

 <hdp:local value="some-file.txt" />

</hdp:cache>

http://hadoop.apache.org/common/docs/stable/mapred_tutorial.html#DistributedCache

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 16

The definition above registers several resources with the cache (adding them to the job cache or
classpath) and creates symlinks for them. As described in the DistributedCache documentation,
the declaration format is (absolute-path#link-name). The link name is determined by the URI
fragment (the text following the # such as #library.jar or #main-archive above) - if no name is specified,
the cache bean will infer one based on the resource file name. Note that one does not have to specify
the hdfs://node:port prefix as these are automatically determined based on the configuration wired
into the bean; this prevents environment settings from being hard-coded into the configuration which
becomes portable. Additionally based on the resource extension, the definition differentiates between
archives (.tgz, .tar.gz, .zip and .tar) which will be uncompressed, and regular files that are
copied as-is. As with the rest of the namespace declarations, the definition above relies on defaults -
since it requires a Hadoop Configuration and FileSystem objects and none are specified (through
configuration-ref and file-system-ref) it falls back to the default naming and is wired with
the bean named hadoopConfiguration, creating the FileSystem automatically.

Warning
Clients setting up a classpath in the DistributedCache, running on Windows platforms should
set the System path.separator property to :. Otherwise the classpath will be set incorrectly
and will be ignored; see HADOOP-9123 bug report for more information.

There are multiple ways to change the path.separator System property - a quick one being
a simple script in Javascript (that uses the Rhino package bundled with the JDK) that runs
at start-up:

<hdp:script language="javascript" run-at-startup="true">

 // set System 'path.separator' to ':' - see HADOOP-9123

 java.lang.System.setProperty("path.separator", ":")

</hdp:script>

3.8 Map Reduce Generic Options

The job, streaming and tool all support a subset of generic options, specifically archives, files
and libs. libs is probably the most useful as it enriches a job classpath (typically with some jars)
- however the other two allow resources or archives to be copied throughout the cluster for the job to
consume. Whenver faced with provisioning issues, revisit these options as they can help up significantly.
Note that the fs, jt or conf options are not supported - these are designed for command-line usage,
for bootstrapping the application. This is no longer needed, as the SHDP offers first-class support for
defining and customizing Hadoop configurations.

http://hadoop.apache.org/common/docs/stable/mapred_tutorial.html#DistributedCache
https://issues.apache.org/jira/browse/HADOOP-9123
http://hadoop.apache.org/common/docs/stable/commands_manual.html#Generic+Options

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 17

4. Working with the Hadoop File System

A common task in Hadoop is interacting with its file system, whether for provisioning, adding new files
to be processed, parsing results, or performing cleanup. Hadoop offers several ways to achieve that:
one can use its Java API (namely FileSystem) or use the hadoop command line, in particular the file
system shell. However there is no middle ground, one either has to use the (somewhat verbose, full of
checked exceptions) API or fall back to the command line, outside the application. SHDP addresses this
issue by bridging the two worlds, exposing both the FileSystem and the fs shell through an intuitive,
easy-to-use Java API. Add your favorite JVM scripting language right inside your Spring for Apache
Hadoop application and you have a powerful combination.

4.1 Configuring the file-system

The Hadoop file-system, HDFS, can be accessed in various ways - this section will cover the most
popular protocols for interacting with HDFS and their pros and cons. SHDP does not enforce any specific
protocol to be used - in fact, as described in this section any FileSystem implementation can be used,
allowing even other implementations than HDFS to be used.

The table below describes the common HDFS APIs in use:

Table 4.1. HDFS APIs

File System Comm. Method Scheme / Prefix Read / Write Cross Version

HDFS RPC hdfs:// Read / Write Same HDFS
version only

HFTP HTTP hftp:// Read only Version
independent

WebHDFS HTTP (REST) webhdfs:// Read / Write Version
independent

What about FTP, Kosmos, S3 and the other file systems?

This chapter focuses on the core file-system protocols supported by Hadoop. S3 (see the
Appendix), FTP and the rest of the other FileSystem implementations are supported as well -
Spring for Apache Hadoop has no dependency on the underlying system rather just on the public
Hadoop API.

hdfs:// protocol should be familiar to most readers - most docs (and in fact the previous chapter as
well) mention it. It works out of the box and it's fairly efficient. However because it is RPC based, it
requires both the client and the Hadoop cluster to share the same version. Upgrading one without the
other causes serialization errors meaning the client cannot interact with the cluster. As an alternative
one can use hftp:// which is HTTP-based or its more secure brother hsftp:// (based on SSL)
which gives you a version independent protocol meaning you can use it to interact with clusters with
an unknown or different version than that of the client. hftp is read only (write operations will fail right
away) and it is typically used with disctp for reading data. webhdfs:// is one of the additions in
Hadoop 1.0 and is a mixture between hdfs and hftp protocol - it provides a version-independent,
read-write, REST-based protocol which means that you can read and write to/from Hadoop clusters

http://hadoop.apache.org/common/docs/stable/api/index.html?org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/common/docs/stable/file_system_shell.html
http://en.wikipedia.org/wiki/List_of_JVM_languages

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 18

no matter their version. Furthermore, since webhdfs:// is backed by a REST API, clients in other
languages can use it with minimal effort.

Note

Not all file systems work out of the box. For example WebHDFS needs to be enabled first in
the cluster (through dfs.webhdfs.enabled property, see this document for more information)
while the secure hftp, hsftp requires the SSL configuration (such as certificates) to be
specified. More about this (and how to use hftp/hsftp for proxying) in this page.

Once the scheme has been decided upon, one can specify it through the standard Hadoop configuration,
either through the Hadoop configuration files or its properties:

<hdp:configuration>

 fs.default.name=webhdfs://localhost

 ...

</hdp:configuration>

This instructs Hadoop (and automatically SHDP) what the default, implied file-system is. In SHDP,
one can create additional file-systems (potentially to connect to other clusters) and specify a different
scheme:

<!-- manually creates the default SHDP file-system named 'hadoopFs' -->

<hdp:file-system uri="webhdfs://localhost"/>

<!-- creates a different FileSystem instance -->

<hdp:file-system id="old-cluster" uri="hftp://old-cluster/"/>

As with the rest of the components, the file systems can be injected where needed - such as file shell
or inside scripts (see the next section).

4.2 Using HDFS Resource Loader

In Spring the ResourceLoader interface is meant to be implemented by objects that can return (i.e.
load) Resource instances.

public interface ResourceLoader {

 Resource getResource(String location);

}

All application contexts implement the ResourceLoader interface, and therefore all application
contexts may be used to obtain Resource instances.

When you call getResource() on a specific application context, and the location path specified
doesn't have a specific prefix, you will get back a Resource type that is appropriate to that particular
application context. For example, assume the following snippet of code was executed against a
ClassPathXmlApplicationContext instance:

Resource template = ctx.getResource("some/resource/path/myTemplate.txt");

What would be returned would be a ClassPathResource; if the same method was executed against
a FileSystemXmlApplicationContext instance, you'd get back a FileSystemResource. For a
WebApplicationContext, you'd get back a ServletContextResource, and so on.

As such, you can load resources in a fashion appropriate to the particular application context.

http://hadoop.apache.org/common/docs/r1.0.0/webhdfs.html#Document+Conventions
http://hadoop.apache.org/hdfs/docs/r0.21.0/hdfsproxy.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 19

On the other hand, you may also force ClassPathResource to be used, regardless of the application
context type, by specifying the special classpath: prefix:

Resource template = ctx.getResource("classpath:some/resource/path/myTemplate.txt");

Note

More information about the generic usage of resource loading, check the Spring Framework
Documentation.

Spring Hadoop is adding its own functionality into generic concept of resource loading. Resource
abstraction in Spring has always been a way to ease resource access in terms of not having a need
to know where there resource is and how it's accessed. This abstraction also goes beyond a single
resource by allowing to use patterns to access multiple resources.

Lets first see how HdfsResourceLoader is used manually.

<hdp:file-system />

<hdp:resource-loader id="loader" file-system-ref="hadoopFs" />

<hdp:resource-loader id="loaderWithUser" user="myuser" uri="hdfs://localhost:8020" />

In above configuration we created two beans, one with reference to existing Hadoop FileSystem
bean and one with impersonated user.

// get path '/tmp/file.txt'

Resource resource = loader.getResource("/tmp/file.txt");

// get path '/tmp/file.txt' with user impersonation

Resource resource = loaderWithUser.getResource("/tmp/file.txt");

// get path '/user/<current user>/file.txt'

Resource resource = loader.getResource("file.txt");

// get path '/user/myuser/file.txt'

Resource resource = loaderWithUser.getResource("file.txt");

// get all paths under '/tmp/'

Resource[] resources = loader.getResources("/tmp/*");

// get all paths under '/tmp/' recursively

Resource[] resources = loader.getResources("/tmp/**/*");

// get all paths under '/tmp/' using more complex ant path matching

Resource[] resources = loader.getResources("/tmp/?ile?.txt");

What would be returned in above examples would be instances of HdfsResources.

If there is a need for Spring Application Context to be aware of HdfsResourceLoader it needs to be
registered using hdp:resource-loader-registrar namespace tag.

<hdp:file-system />

<hdp:resource-loader file-system-ref="hadoopFs" handle-noprefix="false" />

<hdp:resource-loader-registrar />

Note

On default the HdfsResourceLoader will handle all resource paths without prefix. Attribute
handle-noprefix can be used to control this behaviour. If this attribute is set to false, non-
prefixed resource uris will be handled by Spring Application Context.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 20

// get 'default.txt' from current user's home directory

Resource[] resources = context.getResources("hdfs:default.txt");

// get all files from hdfs root

Resource[] resources = context.getResources("hdfs:/*");

// let context handle classpath prefix

Resource[] resources = context.getResources("classpath:cfg*properties");

What would be returned in above examples would be instances of HdfsResources and
ClassPathResource for the last one. If requesting resource paths without existing prefix, this example
would fall back into Spring Application Context. It may be advisable to let HdfsResourceLoader to
handle paths without prefix if your application doesn't rely on loading resources from underlying context
without prefixes.

Table 4.2. hdp:resource-loader attributes

Name Values Description

file-

system-ref

Bean
Reference

Reference to existing Hadoop FileSystem bean

use-codecs Boolean(defaults
to true)

Indicates whether to use (or not) the codecs found inside the
Hadoop configuration when accessing the resource input stream.

user String The security user (ugi) to use for impersonation at runtime.

uri String The underlying HDFS system URI.

handle-

noprefix

Boolean(defaults
to true)

Indicates if loader should handle resource paths without prefix.

Table 4.3. hdp:resource-loader-registrar attributes

Name Values Description

loader-ref Bean
Reference

Reference to existing Hdfs resource loader
bean. Default value is 'hadoopResourceLoader'.

4.3 Scripting the Hadoop API

Supported scripting languages

SHDP scripting supports any JSR-223 (also known as javax.scripting) compliant scripting
engine. Simply add the engine jar to the classpath and the application should be able to find it.
Most languages (such as Groovy or JRuby) provide JSR-233 support out of the box; for those that
do not see the scripting project that provides various adapters.

Since Hadoop is written in Java, accessing its APIs in a native way provides maximum control
and flexibility over the interaction with Hadoop. This holds true for working with its file systems;
in fact all the other tools that one might use are built upon these. The main entry point is the
org.apache.hadoop.fs.FileSystem abstract class which provides the foundation of most (if not
all) of the actual file system implementations out there. Whether one is using a local, remote or distributed
store through the FileSystem API she can query and manipulate the available resources or create
new ones. To do so however, one needs to write Java code, compile the classes and configure them
which is somewhat cumbersome especially when performing simple, straightforward operations (like
copy a file or delete a directory).

http://www.jcp.org/en/jsr/detail?id=223
http://java.net/projects/scripting

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 21

JVM scripting languages (such as Groovy, JRuby, Jython or Rhino to name just a few) provide a nice
solution to the Java language; they run on the JVM, can interact with the Java code with no or few
changes or restrictions and have a nicer, simpler, less ceremonial syntax; that is, there is no need to
define a class or a method - simply write the code that you want to execute and you are done. SHDP
combines the two, taking care of the configuration and the infrastructure so one can interact with the
Hadoop environment from her language of choice.

Let us take a look at a JavaScript example using Rhino (which is part of JDK 6 or higher, meaning one
does not need any extra libraries):

<beans xmlns="http://www.springframework.org/schema/beans" ...>

 <hdp:configuration .../>

 <hdp:script id="inlined-js" language="javascript" run-at-startup="true">

 try {load("nashorn:mozilla_compat.js");} catch (e) {} // for Java 8

 importPackage(java.util);

 name = UUID.randomUUID().toString()

 scriptName = "src/test/resources/test.properties"

 // fs - FileSystem instance based on 'hadoopConfiguration' bean

 // call FileSystem#copyFromLocal(Path, Path)

 fs.copyFromLocalFile(scriptName, name)

 // return the file length

 fs.getLength(name)

 </hdp:script>

</beans>

The script element, part of the SHDP namespace, builds on top of the scripting support in Spring
permitting script declarations to be evaluated and declared as normal bean definitions. Furthermore it
automatically exposes Hadoop-specific objects, based on the existing configuration, to the script such
as the FileSystem (more on that in the next section). As one can see, the script is fairly obvious: it
generates a random name (using the UUID class from java.util package) and then copies a local
file into HDFS under the random name. The last line returns the length of the copied file which becomes
the value of the declaring bean (in this case inlined-js) - note that this might vary based on the
scripting engine used.

Note
The attentive reader might have noticed that the arguments passed to the FileSystem object
are not of type Path but rather String. To avoid the creation of Path object, SHDP uses a
wrapper class (SimplerFileSystem) which automatically does the conversion so you don't
have to. For more information see the implicit variables section.

Note that for inlined scripts, one can use Spring's property placeholder configurer to automatically
expand variables at runtime. Using one of the examples seen before:

<beans ... >

 <context:property-placeholder location="classpath:hadoop.properties" />

 <hdp:script language="javascript" run-at-startup="true">

 ...

 tracker=${hd.fs}

 ...

 </hdp:script>

</beans>

http://groovy.codehaus.org/
http://jruby.org/
http://www.jython.org/
http://www.mozilla.org/rhino/

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 22

Notice how the script above relies on the property placeholder to expand ${hd.fs} with the values
from hadoop.properties file available in the classpath.

As you might have noticed, the script element defines a runner for JVM scripts. And just like the rest
of the SHDP runners, it allows one or multiple pre and post actions to be specified to be executed
before and after each run. Typically other runners (such as other jobs or scripts) can be specified but
any JDK Callable can be passed in. Do note that the runner will not run unless triggered manually or
if run-at-startup is set to true. For more information on runners, see the dedicated chapter.

Using scripts

Inlined scripting is quite handy for doing simple operations and coupled with the property expansion
is quite a powerful tool that can handle a variety of use cases. However when more logic is required
or the script is affected by XML formatting, encoding or syntax restrictions (such as Jython/Python for
which white-spaces are important) one should consider externalization. That is, rather than declaring
the script directly inside the XML, one can declare it in its own file. And speaking of Python, consider
the variation of the previous example:

<hdp:script location="org/company/basic-script.py" run-at-startup="true"/>

The definition does not bring any surprises but do notice there is no need to specify the language (as
in the case of a inlined declaration) since script extension (py) already provides that information. Just
for completeness, the basic-script.py looks as follows:

from java.util import UUID

from org.apache.hadoop.fs import Path

print "Home dir is " + str(fs.homeDirectory)

print "Work dir is " + str(fs.workingDirectory)

print "/user exists " + str(fs.exists("/user"))

name = UUID.randomUUID().toString()

scriptName = "src/test/resources/test.properties"

fs.copyFromLocalFile(scriptName, name)

print Path(name).makeQualified(fs)

4.4 Scripting implicit variables

To ease the interaction of the script with its enclosing context, SHDP binds by default the so-called
implicit variables. These are:

Table 4.4. Implicit variables

Name Type Description

cfgorg.apache.hadoop.conf.Configuration Hadoop Configuration (relies on
hadoopConfiguration bean or singleton type match)

cl java.lang.ClassLoader ClassLoader used for executing the script

ctxorg.springframework.context.ApplicationContextEnclosing application context

ctxRLorg.springframework.io.support.ResourcePatternResolverEnclosing application context ResourceLoader

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 23

Name Type Description

distcporg.springframework.data.hadoop.fs.DistributedCopyUtilProgrammatic access to DistCp

fsorg.apache.hadoop.fs.FileSystemHadoop File System (relies on 'hadoop-fs' bean or singleton
type match, falls back to creating one based on 'cfg')

fshorg.springframework.data.hadoop.fs.FsShellFile System shell, exposing hadoop 'fs' commands as an API

hdfsRLorg.springframework.data.hadoop.io.HdfsResourceLoaderHdfs resource loader (relies on 'hadoop-
resource-loader' or singleton type match, falls

back to creating one automatically based on 'cfg')

Note
If no Hadoop Configuration can be detected (either by name hadoopConfiguration or
by type), several log warnings will be made and none of the Hadoop-based variables (namely
cfg, distcp, fs, fsh, distcp or hdfsRL) will be bound.

As mentioned in the Description column, the variables are first looked (either by name or by type)
in the application context and, in case they are missing, created on the spot based on the existing
configuration. Note that it is possible to override or add new variables to the scripts through the
property sub-element that can set values or references to other beans:

<hdp:script location="org/company/basic-script.js" run-at-startup="true">

 <hdp:property name="foo" value="bar"/>

 <hdp:property name="ref" ref="some-bean"/>

</hdp:script>

Running scripts

The script namespace provides various options to adjust its behaviour depending on the script
content. By default the script is simply declared - that is, no execution occurs. One however can change
that so that the script gets evaluated at startup (as all the examples in this section do) through the
run-at-startup flag (which is by default false) or when invoked manually (through the Callable).
Similarily, by default the script gets evaluated on each run. However for scripts that are expensive and
return the same value every time one has various caching options, so the evaluation occurs only when
needed through the evaluate attribute:

Table 4.5. script attributes

Name Values Description

run-at-

startup

false(default),
true

Wether the script is executed at startup or not

evaluate ALWAYS(default),
IF_MODIFIED,

ONCE

Wether to actually evaluate the script when invoked or
used a previous value. ALWAYS means evaluate every time,
IF_MODIFIED evaluate if the backing resource (such as a

file) has been modified in the meantime and ONCE only once.

Using the Scripting tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute scripts.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 24

<script-tasklet id="script-tasklet">

 <script language="groovy">

 inputPath = "/user/gutenberg/input/word/"

 outputPath = "/user/gutenberg/output/word/"

 if (fsh.test(inputPath)) {

 fsh.rmr(inputPath)

 }

 if (fsh.test(outputPath)) {

 fsh.rmr(outputPath)

 }

 inputFile = "src/main/resources/data/nietzsche-chapter-1.txt"

 fsh.put(inputFile, inputPath)

 </script>

</script-tasklet>

The tasklet above embedds the script as a nested element. You can also declare a reference to another
script definition, using the script-ref attribute which allows you to externalize the scripting code to an
external resource.

<script-tasklet id="script-tasklet" script-ref="clean-up"/>

 <hdp:script id="clean-up" location="org/company/myapp/clean-up-wordcount.groovy"/>

4.5 File System Shell (FsShell)

A handy utility provided by the Hadoop distribution is the file system shell which allows UNIX-like
commands to be executed against HDFS. One can check for the existence of files, delete, move, copy
directories or files or set up permissions. However the utility is only available from the command-line
which makes it hard to use from/inside a Java application. To address this problem, SHDP provides
a lightweight, fully embeddable shell, called FsShell which mimics most of the commands available
from the command line: rather than dealing with System.in or System.out, one deals with objects.

Let us take a look at using FsShell by building on the previous scripting examples:

<hdp:script location="org/company/basic-script.groovy" run-at-startup="true"/>

name = UUID.randomUUID().toString()

scriptName = "src/test/resources/test.properties"

fs.copyFromLocalFile(scriptName, name)

// use the shell made available under variable fsh

dir = "script-dir"

if (!fsh.test(dir)) {

 fsh.mkdir(dir); fsh.cp(name, dir); fsh.chmodr(700, dir)

 println "File content is " + fsh.cat(dir + name).toString()

}

println fsh.ls(dir).toString()

fsh.rmr(dir)

As mentioned in the previous section, a FsShell instance is automatically created and configured for
scripts, under the name fsh. Notice how the entire block relies on the usual commands: test, mkdir,
cp and so on. Their semantics are exactly the same as in the command-line version however one has
access to a native Java API that returns actual objects (rather than Strings) making it easy to use
them programmatically whether in Java or another language. Furthermore, the class offers enhanced
methods (such as chmodr which stands for recursive chmod) and multiple overloaded methods taking
advantage of varargs so that multiple parameters can be specified. Consult the API for more information.

http://hadoop.apache.org/common/docs/stable/file_system_shell.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/varargs.html
http://static.springsource.org/spring-hadoop/docs/current/api/index.html?org/springframework/data/hadoop/fs/FsShell.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 25

To be as close as possible to the command-line shell, FsShell mimics even the messages being
displayed. Take a look at line 9 which prints the result of fsh.cat(). The method returns a
Collection of Hadoop Path objects (which one can use programatically). However when invoking
toString on the collection, the same printout as from the command-line shell is being displayed:

File content is some text

The same goes for the rest of the methods, such as ls. The same script in JRuby would look something
like this:

require 'java'

name = java.util.UUID.randomUUID().to_s

scriptName = "src/test/resources/test.properties"

$fs.copyFromLocalFile(scriptName, name)

use the shell

dir = "script-dir/"

...

print $fsh.ls(dir).to_s

which prints out something like this:

drwx------ - user supergroup 0 2012-01-26 14:08 /user/user/script-dir

-rw-r--r-- 3 user supergroup 344 2012-01-26 14:08 /user/user/script-

dir/520cf2f6-a0b6-427e-a232-2d5426c2bc4e

As you can see, not only can you reuse the existing tools and commands with Hadoop inside SHDP, but
you can also code against them in various scripting languages. And as you might have noticed, there is
no special configuration required - this is automatically inferred from the enclosing application context.

Note
The careful reader might have noticed that besides the syntax, there are some minor differences
in how the various languages interact with the java objects. For example the automatic toString
call called in Java for doing automatic String conversion is not necessarily supported (hence the
to_s in Ruby or str in Python). This is to be expected as each language has its own semantics
- for the most part these are easy to pick up but do pay attention to details.

DistCp API

Similar to the FsShell, SHDP provides a lightweight, fully embeddable DistCp version that builds
on top of the distcp from the Hadoop distro. The semantics and configuration options are the same
however, one can use it from within a Java application without having to use the command-line. See
the API for more information:

<hdp:script language="groovy">distcp.copy("${distcp.src}", "${distcp.dst}")</hdp:script>

The bean above triggers a distributed copy relying again on Spring's property placeholder variable
expansion for its source and destination.

http://hadoop.apache.org/common/docs/stable/distcp.html
http://static.springsource.org/spring-hadoop/docs/current/api/index.html?org/springframework/data/hadoop/fs/DistCp.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 26

5. Working with HBase

SHDP provides basic configuration for HBase through the hbase-configuration namespace
element (or its backing HbaseConfigurationFactoryBean).

<!-- default bean id is 'hbaseConfiguration' that uses the existing 'hadoopCconfiguration'

 object -->

<hdp:hbase-configuration configuration-ref="hadoopCconfiguration" />

The above declaration does more than easily create an HBase configuration object; it will also
manage the backing HBase connections: when the application context shuts down, so will any
HBase connections opened - this behavior can be adjusted through the stop-proxy and delete-
connection attributes:

<!-- delete associated connections but do not stop the proxies -->

<hdp:hbase-configuration stop-proxy="false" delete-connection="true">

 foo=bar

 property=value

</hdp:hbase-configuration>

Additionally, one can specify the ZooKeeper port used by the HBase server - this is especially useful
when connecting to a remote instance (note one can fully configure HBase including the ZooKeeper
host and port through properties; the attributes here act as shortcuts for easier declaration):

<!-- specify ZooKeeper host/port -->

<hdp:hbase-configuration zk-quorum="${hbase.host}" zk-port="${hbase.port}">

Notice that like with the other elements, one can specify additional properties specific to this
configuration. In fact hbase-configuration provides the same properties configuration knobs as
hadoop configuration:

<hdp:hbase-configuration properties-ref="some-props-bean" properties-location="classpath:/

conf/testing/hbase.properties"/>

5.1 Data Access Object (DAO) Support

One of the most popular and powerful feature in Spring Framework is the Data Access Object (or
DAO) support. It makes dealing with data access technologies easy and consistent allowing easy switch
or interconnection of the aforementioned persistent stores with minimal friction (no worrying about
catching exceptions, writing boiler-plate code or handling resource acquisition and disposal). Rather
than reiterating here the value proposal of the DAO support, we recommend the DAO section in the
Spring Framework reference documentation

SHDP provides the same functionality for Apache HBase through its
org.springframework.data.hadoop.hbase package: an HbaseTemplate along with several
callbacks such as TableCallback, RowMapper and ResultsExtractor that remove the low-level,
tedious details for finding the HBase table, run the query, prepare the scanner, analyze the results then
clean everything up, letting the developer focus on her actual job (users familiar with Spring should find
the class/method names quite familiar).

At the core of the DAO support lies HbaseTemplate - a high-level abstraction for interacting with
HBase. The template requires an HBase configuration, once it's set, the template is thread-safe and
can be reused across multiple instances at the same time:

http://hbase.apache.org
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/dao.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/jdbc.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 27

// default HBase configuration

<hdp:hbase-configuration/>

// wire hbase configuration (using default name 'hbaseConfiguration') into the template

<bean id="htemplate" class="org.springframework.data.hadoop.hbase.HbaseTemplate" p:configuration-

ref="hbaseConfiguration"/>

The template provides generic callbacks, for executing logic against the tables or doing result or row
extraction, but also utility methods (the so-called one-liners) for common operations. Below are some
examples of how the template usage looks like:

// writing to 'MyTable'

template.execute("MyTable", new TableCallback<Object>() {

 @Override

 public Object doInTable(HTable table) throws Throwable {

 Put p = new Put(Bytes.toBytes("SomeRow"));

 p.add(Bytes.toBytes("SomeColumn"), Bytes.toBytes("SomeQualifier"),

 Bytes.toBytes("AValue"));

 table.put(p);

 return null;

 }

});

// read each row from 'MyTable'

List<String> rows = template.find("MyTable", "SomeColumn", new RowMapper<String>() {

 @Override

 public String mapRow(Result result, int rowNum) throws Exception {

 return result.toString();

 }

}));

The first snippet showcases the generic TableCallback - the most generic of the callbacks, it does
the table lookup and resource cleanup so that the user code does not have to. Notice the callback
signature - any exception thrown by the HBase API is automatically caught, converted to Spring's DAO
exceptions and resource clean-up applied transparently. The second example, displays the dedicated
lookup methods - in this case find which, as the name implies, finds all the rows matching the given
criteria and allows user code to be executed against each of them (typically for doing some sort of type
conversion or mapping). If the entire result is required, then one can use ResultsExtractor instead
of RowMapper.

Besides the template, the package offers support for automatically binding HBase table to the current
thread through HbaseInterceptor and HbaseSynchronizationManager. That is, each class that
performs DAO operations on HBase can be wrapped by HbaseInterceptor so that each table in
use, once found, is bound to the thread so any subsequent call to it avoids the lookup. Once the call
ends, the table is automatically closed so there is no leakage between requests. Please refer to the
Javadocs for more information.

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/dao.html#dao-exceptions
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/dao.html#dao-exceptions
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/aop.html#aop-schema-advisors

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 28

6. Hive integration

When working with http://hive.apache.org from a Java environment, one can choose between the Thrift
client or using the Hive JDBC-like driver. Both have their pros and cons but no matter the choice, Spring
and SHDP support both of them.

6.1 Starting a Hive Server

SHDP provides a dedicated namespace element for starting a Hive server as a Thrift service (only when
using Hive 0.8 or higher). Simply specify the host, the port (the defaults are localhost and 10000
respectively) and you're good to go:

<!-- by default, the definition name is 'hive-server' -->

<hdp:hive-server host="some-other-host" port="10001" />

If needed the Hadoop configuration can be passed in or additional properties specified. In fact hiver-
server provides the same properties configuration knobs as hadoop configuration:

<hdp:hive-server host="some-other-host" port="10001" properties-location="classpath:hive-

dev.properties" configuration-ref="hadoopConfiguration">

 someproperty=somevalue

 hive.exec.scratchdir=/tmp/mydir

</hdp:hive-server>

The Hive server is bound to the enclosing application context life-cycle, that is it will automatically startup
and shutdown along-side the application context.

6.2 Using the Hive Thrift Client

Similar to the server, SHDP provides a dedicated namespace element for configuring a Hive client (that
is Hive accessing a server node through the Thrift). Likewise, simply specify the host, the port (the
defaults are localhost and 10000 respectively) and you're done:

<!-- by default, the definition name is 'hiveClientFactory' -->

<hdp:hive-client-factory host="some-other-host" port="10001" />

Note that since Thrift clients are not thread-safe, hive-client-factory returns a factory (named
org.springframework.data.hadoop.hive.HiveClientFactory) for creating HiveClient
new instances for each invocation. Furthermore, the client definition also allows Hive scripts (either
declared inlined or externally) to be executed during initialization, once the client connects; this is quite
useful for doing Hive specific initialization:

<hive-client-factory host="some-host" port="some-port" xmlns="http://

www.springframework.org/schema/hadoop">

 <hdp:script>

 DROP TABLE IF EXITS testHiveBatchTable;

 CREATE TABLE testHiveBatchTable (key int, value string);

 </hdp:script>

 <hdp:script location="classpath:org/company/hive/script.q">

 <arguments>ignore-case=true</arguments>

 </hdp:script>

</hive-client-factory>

http://hive.apache.org
http://thrift.apache.org/
http://hive.apache.org/docs/r0.7.1/api/org/apache/hadoop/hive/jdbc/package-summary.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 29

In the example above, two scripts are executed each time a new Hive client is created (if the scripts
need to be executed only once consider using a tasklet) by the factory. The first script is defined inline
while the second is read from the classpath and passed one parameter. For more information on using
parameters (or variables) in Hive scripts, see this section in the Hive manual.

6.3 Using the Hive JDBC Client

Another attractive option for accessing Hive is through its JDBC driver. This exposes Hive through the
JDBC API meaning one can use the standard API or its derived utilities to interact with Hive, such as
the rich JDBC support in Spring Framework.

Warning

Note that the JDBC driver is a work-in-progress and not all the JDBC features are available
(and probably never will since Hive cannot support all of them as it is not the typical relational
database). Do read the official documentation and examples.

SHDP does not offer any dedicated support for the JDBC integration - Spring Framework itself provides
the needed tools; simply configure Hive as you would with any other JDBC Driver:

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:c="http://www.springframework.org/schema/c"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context http://www.springframework.org/

schema/context/spring-context.xsd">

 <!-- basic Hive driver bean -->

 <bean id="hive-driver" class="org.apache.hadoop.hive.jdbc.HiveDriver"/>

 <!-- wrapping a basic datasource around the driver -->

 <!-- notice the 'c:' namespace (available in Spring 3.1+) for inlining constructor

 arguments,

 in this case the url (default is 'jdbc:hive://localhost:10000/default') -->

 <bean id="hive-ds" class="org.springframework.jdbc.datasource.SimpleDriverDataSource"

 c:driver-ref="hive-driver" c:url="${hive.url}"/>

 <!-- standard JdbcTemplate declaration -->

 <bean id="template" class="org.springframework.jdbc.core.JdbcTemplate" c:data-source-

ref="hive-ds"/>

 <context:property-placeholder location="hive.properties"/>

</beans>

And that is it! Following the example above, one can use the hive-ds DataSource bean to manually
get a hold of Connections or better yet, use Spring's JdbcTemplate as in the example above.

6.4 Running a Hive script or query

Like the rest of the Spring Hadoop components, a runner is provided out of the box for executing Hive
scripts, either inlined or from various locations through hive-runner element:

http://hive.apache.org/docs/r0.9.0/language_manual/var_substitution.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/jdbc.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/jdbc.html#jdbc-JdbcTemplate

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 30

<hdp:hive-runner id="hiveRunner" run-at-startup="true">

 <hdp:script>

 DROP TABLE IF EXITS testHiveBatchTable;

 CREATE TABLE testHiveBatchTable (key int, value string);

 </hdp:script>

 <hdp:script location="hive-scripts/script.q"/>

</hdp:hive-runner>

The runner will trigger the execution during the application start-up (notice the run-at-startup flag
which is by default false). Do note that the runner will not run unless triggered manually or if run-
at-startup is set to true. Additionally the runner (as in fact do all runners in SHDP) allows one or
multiple pre and post actions to be specified to be executed before and after each run. Typically other
runners (such as other jobs or scripts) can be specified but any JDK Callable can be passed in. For
more information on runners, see the dedicated chapter.

Using the Hive tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hive queries, on demand,
as part of a batch or workflow. The declaration is pretty straightforward:

<hdp:hive-tasklet id="hive-script">

 <hdp:script>

 DROP TABLE IF EXITS testHiveBatchTable;

 CREATE TABLE testHiveBatchTable (key int, value string);

 </hdp:script>

 <hdp:script location="classpath:org/company/hive/script.q" />

</hdp:hive-tasklet>

The tasklet above executes two scripts - one declared as part of the bean definition followed by another
located on the classpath.

6.5 Interacting with the Hive API

For those that need to programmatically interact with the Hive API, Spring for Apache Hadoop
provides a dedicated template, similar to the aforementioned JdbcTemplate. The template handles
the redundant, boiler-plate code, required for interacting with Hive such as creating a new HiveClient,
executing the queries, catching any exceptions and performing clean-up. One can programmatically
execute queries (and get the raw results or convert them to longs or ints) or scripts but also interact with
the Hive API through the HiveClientCallback. For example:

<hdp:hive-client-factory ... />

<!-- Hive template wires automatically to 'hiveClientFactory'-->

<hdp:hive-template />

<!-- wire hive template into a bean -->

<bean id="someBean" class="org.SomeClass" p:hive-template-ref="hiveTemplate"/>

http://en.wikipedia.org/wiki/Template_method_pattern

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 31

public class SomeClass {

 private HiveTemplate template;

 public void setHiveTemplate(HiveTemplate template) { this.template = template; }

 public List<String> getDbs() {

 return hiveTemplate.execute(new HiveClientCallback<List<String>>() {

 @Override

 public List<String> doInHive(HiveClient hiveClient) throws Exception {

 return hiveClient.get_all_databases();

 }

 }));

 }

}

The example above shows a basic container configuration wiring a HiveTemplate into a user class
which uses it to interact with the HiveClient Thrift API. Notice that the user does not have to handle
the lifecycle of the HiveClient instance or catch any exception (out of the many thrown by Hive itself
and the Thrift fabric) - these are handled automatically by the template which converts them, like the
rest of the Spring templates, into DataAccessExceptions. Thus the application only has to track only
one exception hierarchy across all data technologies instead of one per technology.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 32

7. Pig support

For Pig users, SHDP provides easy creation and configuration of PigServer instances for registering
and executing scripts either locally or remotely. In its simplest form, the declaration looks as follows:

<hdp:pig />

This will create a org.springframework.data.hadoop.pig.PigServerFactory instance,
named pigFactory, a factory that creates PigServer instances on demand configured with a default
PigContext, executing scripts in MapReduce mode. The factory is needed since PigServer is not
thread-safe and thus cannot be used by multiple objects at the same time. In typical scenarios however,
one might want to connect to a remote Hadoop tracker and register some scripts automatically so let
us take a look of how the configuration might look like:

<pig-factory exec-type="LOCAL" job-name="pig-script" configuration-

ref="hadoopConfiguration" properties-location="pig-dev.properties"

 xmlns="http://www.springframework.org/schema/hadoop">

 source=${pig.script.src}

 <script location="org/company/pig/script.pig">

 <arguments>electric=sea</arguments>

 </script>

 <script>

 A = LOAD 'src/test/resources/logs/apache_access.log' USING PigStorage() AS

 (name:chararray, age:int);

 B = FOREACH A GENERATE name;

 DUMP B;

 </script>

</pig-factory> />

The example exposes quite a few options so let us review them one by one. First the top-level pig
definition configures the pig instance: the execution type, the Hadoop configuration used and the job
name. Notice that additional properties can be specified (either by declaring them inlined or/and loading
them from an external file) - in fact, <hdp:pig-factory/> just like the rest of the libraries configuration
elements, supports common properties attributes as described in the hadoop configuration section.

The definition contains also two scripts: script.pig (read from the classpath) to which one pair of
arguments, relevant to the script, is passed (notice the use of property placeholder) but also an inlined
script, declared as part of the definition, without any arguments.

As you can tell, the pig-factory namespace offers several options pertaining to Pig configuration.

7.1 Running a Pig script

Like the rest of the Spring Hadoop components, a runner is provided out of the box for executing Pig
scripts, either inlined or from various locations through pig-runner element:

<hdp:pig-runner id="pigRunner" run-at-startup="true">

 <hdp:script>

 A = LOAD 'src/test/resources/logs/apache_access.log' USING PigStorage() AS

 (name:chararray, age:int);

 ...

 </hdp:script>

 <hdp:script location="pig-scripts/script.pig"/>

</hdp:pig-runner>

http://pig.apache.org

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 33

The runner will trigger the execution during the application start-up (notice the run-at-startup flag
which is by default false). Do note that the runner will not run unless triggered manually or if run-
at-startup is set to true. Additionally the runner (as in fact do all runners in SHDP) allows one or
multiple pre and post actions to be specified to be executed before and after each run. Typically other
runners (such as other jobs or scripts) can be specified but any JDK Callable can be passed in. For
more information on runners, see the dedicated chapter.

Using the Pig tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Pig queries, on demand,
as part of a batch or workflow. The declaration is pretty straightforward:

<hdp:pig-tasklet id="pig-script">

 <hdp:script location="org/company/pig/handsome.pig" />

</hdp:pig-tasklet>

The syntax of the scripts declaration is similar to that of the pig namespace.

7.2 Interacting with the Pig API

For those that need to programmatically interact directly with Pig , Spring for Apache Hadoop provides
a dedicated template, similar to the aforementioned HiveTemplate. The template handles the
redundant, boiler-plate code, required for interacting with Pig such as creating a new PigServer,
executing the scripts, catching any exceptions and performing clean-up. One can programmatically
execute scripts but also interact with the Hive API through the PigServerCallback. For example:

<hdp:pig-factory ... />

<!-- Pig template wires automatically to 'pigFactory'-->

<hdp:pig-template />

<!-- use component scanning-->

<context:component-scan base-package="some.pkg" />

public class SomeClass {

 @Inject

 private PigTemplate template;

 public Set<String> getDbs() {

 return pigTemplate.execute(new PigCallback<Set<String>() {

 @Override

 public Set<String> doInPig(PigServer pig) throws ExecException, IOException {

 return pig.getAliasKeySet();

 }

 });

 }

}

The example above shows a basic container configuration wiring a PigTemplate into a user class
which uses it to interact with the PigServer API. Notice that the user does not have to handle the
lifecycle of the PigServer instance or catch any exception - these are handled automatically by the
template which converts them, like the rest of the Spring templates, into DataAccessExceptions.
Thus the application only has to track only one exception hierarchy across all data technologies instead
of one per technology.

http://en.wikipedia.org/wiki/Template_method_pattern

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 34

8. Using the runner classes

Spring for Apache Hadoop provides for each Hadoop interaction type, whether it is vanilla Map/Reduce,
Hive or Pig, a runner, a dedicated class used for declarative (or programmatic) interaction. The list below
illustrates the existing runner classes for each type, their name and namespace element.

Table 8.1. Available Runners

Type Name Namespace
element

Description

Map/
Reduce Job

JobRunner job-runner Runner for Map/Reduce jobs,
whether vanilla M/R or streaming

Hadoop Tool ToolRunner tool-runner Runner for Hadoop Tools
(whether stand-alone or as jars).

Hadoop jars JarRunner jar-runner Runner for Hadoop jars.

Hive queries
and scripts

HiveRunner hive-runner Runner for executing Hive queries or scripts.

Pig queries
and scripts

PigRunner pig-runner Runner for executing Pig scripts.

JSR-223/
JVM scripts

HdfsScriptRunner script Runner for executing JVM 'scripting'
languages (implementing the JSR-223 API).

While most of the configuration depends on the underlying type, the runners share common attributes
and behaviour so one can use them in a predictive, consistent way. Below is a list of common features:

• declaration does not imply execution

The runner allows a script, a job to run but the execution can be triggered either programmatically
or by the container at start-up.

• run-at-startup

Each runner can execute its action at start-up. By default, this flag is set to false. For multiple or on
demand execution (such as scheduling) use the Callable contract (see below).

• JDK Callable interface

Each runner implements the JDK Callable interface. Thus one can inject the runner into other beans
or its own classes to trigger the execution (as many or as little times as she wants).

• pre and post actions

Each runner allows one or multiple, pre or/and post actions to be specified (to chain them together
such as executing a job after another or perfoming clean up). Typically other runners can be used
but any Callable can be specified. The actions will be executed before and after the main action,
in the declaration order. The runner uses a fail-safe behaviour meaning, any exception will interrupt
the run and will propagated immediately to the caller.

• consider Spring Batch

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 35

The runners are meant as a way to execute basic tasks. When multiple executions need to be
coordinated and the flow becomes non-trivial, we strongly recommend using Spring Batch which
provides all the features of the runners and more (a complete, mature framework for batch execution).

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 36

9. Security Support

Spring for Apache Hadoop is aware of the security constraints of the running Hadoop environment and
allows its components to be configured as such. For clarity, this document breaks down security into
HDFS permissions and user impersonation (also known as secure Hadoop). The rest of this document
discusses each component and the impact (and usage) it has on the various SHDP features.

9.1 HDFS permissions

HDFS layer provides file permissions designed to be similar to those present in *nix OS. The official
guide explains the major components but in short, the access for each file (whether it's for reading,
writing or in case of directories accessing) can be restricted to certain users or groups. Depending on
the user identity (which is typically based on the host operating system), code executing against the
Hadoop cluster can see or/and interact with the file-system based on these permissions. Do note that
each HDFS or FileSystem implementation can have slightly different semantics or implementation.

SHDP obeys the HDFS permissions, using the identity of the current user (by default) for interacting
with the file system. In particular, the HdfsResourceLoader considers when doing pattern matching,
only the files that it's supposed to see and does not perform any privileged action. It is possible however
to specify a different user, meaning the ResourceLoader interacts with HDFS using that user's rights
- however this obeys the user impersonation rules. When using different users, it is recommended to
create separate ResourceLoader instances (one per user) instead of assigning additional permissions
or groups to one user - this makes it easier to manage and wire the different HDFS views without having
to modify the ACLs. Note however that when using impersonation, the ResourceLoader might (and
will typically) return restricted files that might not be consumed or seen by the callee.

9.2 User impersonation (Kerberos)

Securing a Hadoop cluster can be a difficult task - each machine can have a different set of users and
groups, each with different passwords. Hadoop relies on Kerberos, a ticket-based protocol for allowing
nodes to communicate over a non-secure network to prove their identity to one another in a secure
manner. Unfortunately there is not a lot of documentation on this topic out there. However there are
some resources to get you started.

SHDP does not require any extra configuration - it simply obeys the security system in place. By default,
when running inside a secure Hadoop, SHDP uses the current user (as expected). It also supports user
impersonation, that is, interacting with the Hadoop cluster with a different identity (this allows a superuser
to submit job or access hdfs on behalf of another user in a secure way, without leaking permissions).
The major MapReduce components, such as job, streaming and tool as well as pig support user
impersonation through the user attribute. By default, this property is empty, meaning the current user
is used - however one can specify the different identity (also known as ugi) to be used by the target
component:

<hdp:job id="jobFromJoe" user="joe" .../>

Note that the user running the application (or the current user) must have the proper kerberos credentials
to be able to impersonate the target user (in this case joe).

http://hadoop.apache.org/common/docs/r1.0.3/hdfs_permissions_guide.html
http://en.wikipedia.org/wiki/Kerberos_%28protocol%29
http://hortonworks.com/blog/fine-tune-your-apache-hadoop-security-settings/
https://ccp.cloudera.com/display/CDHDOC/Configuring+Hadoop+Security+in+CDH3

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 37

10. Yarn Support

You've propbably seen a lot of topics around Yarn and next version of Hadoop's Map Reduce called
MapReduce Version 2. Originally Yarn was a component of MapReduce itself created to overcome some
performance issues in Hadoop's original design. The fundamental idea of MapReduce v2 is to split up the
two major functionalities of the JobTracker, resource management and job scheduling/monitoring, into
separate daemons. The idea is to have a global Resource Manager (RM) and per-application Application
Master (AM). An application is either a single job in the classical sense of Map-Reduce jobs or a group
of jobs.

Let's take a step back and see how original MapReduce Version 1 works. Job Tracker is a global
singleton entity responsible for managing resources like per node Task Trackers and job life-cycle. Task
Tracker is responsible for executing tasks from a Job Tracker and periodically reporting back the status
of the tasks. Naturally there is a much more going on behind the scenes but the main point of this is
that the Job Tracker has always been a bottleneck in terms of scalability. This is where Yarn steps
in by splitting the load away from a global resource management and job tracking into per application
masters. Global resource manager can then concentrate in its main task of handling the management
of resources.

Note
Yarn is usually referred as a synonym for MapReduce Version 2. This is not exactly true and it's
easier to understand the relationship between those two by saying that MapReduce Version 2
is an application running on top of Yarn.

As we just mentioned MapReduce Version 2 is an application running of top of Yarn. It is possible to
make similar custom Yarn based application which have nothing to do with MapReduce. Yarn itself
doesn't know that it is running MapReduce Version 2. While there's nothing wrong to do everything from
scratch one will soon realise that steps to learn how to work with Yarn are rather deep. This is where
Spring Hadoop support for Yarn steps in by trying to make things easier so that user could concentrate
on his own code and not having to worry about framework internals.

10.1 Using the Spring for Apache Yarn Namespace

To simplify configuration, SHDP provides a dedicated namespace for Yarn components. However, one
can opt to configure the beans directly through the usual <bean> definition. For more information about
XML Schema-based configuration in Spring, see this appendix in the Spring Framework reference
documentation.

To use the SHDP namespace, one just needs to import it inside the configuration:

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/xsd-config.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 38

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:❶yarn="❷http://www.springframework.org/schema/yarn"

 xmlns:❸yarn-int="❹http://www.springframework.org/schema/yarn/integration"

 xmlns:❺yarn-batch="❻http://www.springframework.org/schema/yarn/batch"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/yarn

 http://www.springframework.org/schema/yarn/spring-yarn.xsd❼

 http://www.springframework.org/schema/yarn/integration

 http://www.springframework.org/schema/yarn/integration/spring-yarn-integration.xsd❽

 http://www.springframework.org/schema/yarn/batch

 http://www.springframework.org/schema/yarn/batch/spring-yarn-batch.xsd❾">

 <bean id ... >

 ❿<yarn:configuration ...>

</beans>

❶ Spring for Apache Hadoop Yarn namespace prefix for core package. Any name can do but through
out the reference documentation, the yarn will be used.

❷ The namespace URI.

❸ Spring for Apache Hadoop Yarn namespace prefix for integration package. Any name can do but
through out the reference documentation, the yarn-int will be used.

❹ The namespace URI.

❺ Spring for Apache Hadoop Yarn namespace prefix for batch package. Any name can do but through
out the reference documentation, the yarn-batch will be used.

❻ The namespace URI.

❼ The namespace URI location. Note that even though the location points to an external address
(which exists and is valid), Spring will resolve the schema locally as it is included in the Spring for
Apache Hadoop Yarn library.

❽ The namespace URI location.

❾ The namespace URI location.

❿ Declaration example for the Yarn namespace. Notice the prefix usage.

Once declared, the namespace elements can be declared simply by appending the aforementioned
prefix. Note that is possible to change the default namespace, for example from <beans> to <yarn>.
This is useful for configuration composed mainly of Hadoop components as it avoids declaring the prefix.
To achieve this, simply swap the namespace prefix declaration above:

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 39

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns="http://www.springframework.org/schema/yarn"❶

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 ❷xmlns:beans="http://www.springframework.org/schema/beans"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/yarn

 http://www.springframework.org/schema/yarn/spring-yarn.xsd">

 ❸<beans:bean id ... >

 ❹<configuration ...>

</beans:beans>

❶ The default namespace declaration for this XML file points to the Spring for Apache Yarn
namespace.

❷ The beans namespace prefix declaration.

❸ Bean declaration using the <beans> namespace. Notice the prefix.

❹ Bean declaration using the <yarn> namespace. Notice the lack of prefix (as yarn is the default
namespace).

10.2 Using the Spring for Apache Yarn JavaConfig

It is also possible to work without XML configuration and rely on Annotation based configuration model.
XML and JavaConfig for Spring YARN are not full replacement for each others but we try to mimic the
behaviour as much as we can.

We basically rely on two concepts when working with JavaConfig. Firstly an annotation @EnableYarn is
used to activate different parts of a Spring Configuration depending on enable attribute. We can enable
configuration for CONTAINER, APPMASTER or CLIENT. Secondly when configuration is enabled
one can use SpringYarnConfigurerAdapter whose callback methods can be used to do further
configuration for components familiar from XML.

@Configuration

@EnableYarn(enable=Enable.CONTAINER)

public class ContainerConfiguration extends SpringYarnConfigurerAdapter {

 @Override

 public void configure(YarnContainerConfigurer container) throws Exception {

 container

 .containerClass(MultiContextContainer.class);

 }

}

In above example we enabled configuration for CONTAINER and used
SpringYarnConfigurerAdapter and its configure callback method for
YarnContainerConfigurer. In this method we instructed container class to be a
MultiContextContainer.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 40

@Configuration

@EnableYarn(enable=Enable.APPMASTER)

public class AppmasterConfiguration extends SpringYarnConfigurerAdapter {

 @Override

 public void configure(YarnAppmasterConfigurer master) throws Exception {

 master

 .withContainerRunner();

 }

}

In above example we enabled configuration for APPMASTER and because of this a callback method
for YarnAppmasterConfigurer is called automatically.

@Configuration

@EnableYarn(enable=Enable.CLIENT)

@PropertySource("classpath:hadoop.properties")

public class ClientConfiguration extends SpringYarnConfigurerAdapter {

 @Autowired

 private Environment env;

 @Override

 public void configure(YarnConfigConfigurer config) throws Exception {

 config

 .fileSystemUri(env.getProperty("hd.fs"))

 .resourceManagerAddress(env.getProperty("hd.rm"));

 }

 @Override

 public void configure(YarnClientConfigurer client) throws Exception {

 Properties arguments = new Properties();

 arguments.put("container-count", "4");

 client

 .appName("multi-context-jc")

 .withMasterRunner()

 .contextClass(AppmasterConfiguration.class)

 .arguments(arguments);

}

In above example we enabled configuration for CLIENT. Here one will get yet another callback for
YarnClientConfigurer. Additionally this shows how a Hadoop configuration can be customized
using a callback for YarnConfigConfigurer.

10.3 Configuring Yarn

In order to use Hadoop and Yarn, one needs to first configure it namely by creating a
YarnConfiguration object. The configuration holds information about the various parameters of the
Yarn system.

Note

Configuration for <yarn:configuration> looks very similar than <hdp:configuration>.
Reason for this is a simple separation for Hadoop's YarnConfiguration and JobConf
classes.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 41

In its simplest form, the configuration definition is a one liner:

<yarn:configuration />

The declaration above defines a YarnConfiguration bean (to be precise a factory bean of type
ConfigurationFactoryBean) named, by default, yarnConfiguration. The default name is used,
by conventions, by the other elements that require a configuration - this leads to simple and very concise
configurations as the main components can automatically wire themselves up without requiring any
specific configuration.

For scenarios where the defaults need to be tweaked, one can pass in additional configuration files:

<yarn:configuration resources="classpath:/custom-site.xml, classpath:/hq-site.xml">

In this example, two additional Hadoop configuration resources are added to the configuration.

Note

Note that the configuration makes use of Spring's Resource abstraction to locate the file. This
allows various search patterns to be used, depending on the running environment or the prefix
specified(if any) by the value - in this example the classpath is used.

In addition to referencing configuration resources, one can tweak Hadoop settings directly through Java
Properties. This can be quite handy when just a few options need to be changed:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:yarn="http://www.springframework.org/schema/yarn"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/yarn http://www.springframework.org/schema/yarn/

spring-yarn.xsd">

 <yarn:configuration>

 fs.defaultFS=hdfs://localhost:9000

 hadoop.tmp.dir=/tmp/hadoop

 electric=sea

 </yarn:configuration>

</beans>

One can further customize the settings by avoiding the so called hard-coded values by externalizing
them so they can be replaced at runtime, based on the existing environment without touching the
configuration:

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/resources.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 42

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:yarn="http://www.springframework.org/schema/yarn"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context http://www.springframework.org/schema/

context/spring-context.xsd

 http://www.springframework.org/schema/yarn http://www.springframework.org/schema/yarn/

spring-yarn.xsd">

 <yarn:configuration>

 fs.defaultFS=${hd.fs}

 hadoop.tmp.dir=file://${java.io.tmpdir}

 hangar=${number:18}

 </yarn:configuration>

 <context:property-placeholder location="classpath:hadoop.properties" />

</beans>

Through Spring's property placeholder support, SpEL and the environment abstraction (available in
Spring 3.1). one can externalize environment specific properties from the main code base easing the
deployment across multiple machines. In the example above, the default file system is replaced based
on the properties available in hadoop.properties while the temp dir is determined dynamically
through SpEL. Both approaches offer a lot of flexbility in adapting to the running environment - in fact
we use this approach extensivly in the Spring for Apache Hadoop test suite to cope with the differences
between the different development boxes and the CI server.

 Additionally, external Properties files can be loaded, Properties beans (typically declared through
Spring's util namespace). Along with the nested properties declaration, this allows customized
configurations to be easily declared:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:yarn="http://www.springframework.org/schema/yarn"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:util="http://www.springframework.org/schema/util"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context http://www.springframework.org/schema/

context/spring-context.xsd

 http://www.springframework.org/schema/util http://www.springframework.org/schema/util/

spring-util.xsd

 http://www.springframework.org/schema/yarn http://www.springframework.org/schema/yarn/

spring-yarn.xsd">

 <!-- merge the local properties, the props bean and the two properties files -->

 <yarn:configuration properties-ref="props" properties-location="cfg-1.properties,

 cfg-2.properties">

 star=chasing

 captain=eo

 </yarn:configuration>

 <util:properties id="props" location="props.properties"/>

</beans>

http://static.springsource.org/spring/docs/3.0.x/reference/beans.html#beans-factory-placeholderconfigurer
http://static.springsource.org/spring/docs/3.0.x/reference/expressions.html
http://blog.springsource.com/2011/06/09/spring-framework-3-1-m2-released/
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/xsd-config.html#xsd-config-body-schemas-util-properties

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 43

When merging several properties, ones defined locally win. In the example above the configuration
properties are the primary source, followed by the props bean followed by the external properties file
based on their defined order. While it's not typical for a configuration to refer to use so many properties,
the example showcases the various options available.

Note
For more properties utilities, including using the System as a source or fallback, or control over
the merging order, consider using Spring's PropertiesFactoryBean (which is what Spring
for Apache Hadoop Yarn and util:properties use underneath).

It is possible to create configuration based on existing ones - this allows one to create dedicated
configurations, slightly different from the main ones, usable for certain jobs (such as streaming - more
on that below). Simply use the configuration-ref attribute to refer to the parent configuration - all
its properties will be inherited and overridden as specified by the child:

<!-- default name is 'yarnConfiguration' -->

<yarn:configuration>

 fs.defaultFS=${hd.fs}

 hadoop.tmp.dir=file://${java.io.tmpdir}

</yarn:configuration>

<yarn:configuration id="custom" configuration-ref="yarnConfiguration">

 fs.defaultFS=${custom.hd.fs}

</yarn:configuration>

...

Make sure though you specify a different name since otherwise, since both definitions will have the
same name, the Spring container will interpret this as being the same definition (and will usually consider
the last one found).

Last but not least a reminder that one can mix and match all these options to her preference. In general,
consider externalizing configuration since it allows easier updates without interfering with the application
configuration. When dealing with multiple, similar configuration use configuration composition as it tends
to keep the definitions concise, in sync and easy to update.

Table 10.1. yarn:configuration attributes

Name Values Description

configuration-

ref

Bean
Reference

Reference to existing Configuration bean

properties-

ref

Bean
Reference

Reference to existing Properties bean

properties-

location

Comma
delimited list

List or Spring Resource paths

resources Comma
delimited list

List or Spring Resource paths

fs-uri String The HDFS filesystem address.
Equivalent to fs.defaultFS property.

http://static.springsource.org/spring/docs/3.0.x/api/org/springframework/beans/factory/config/PropertiesFactoryBean.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 44

Name Values Description

rm-address String The Yarn Resource manager address. Equivalent
to yarn.resourcemanager.address property.

scheduler-

address

String The Yarn Resource manager scheduler address. Equivalent
to yarn.resourcemanager.scheduler.address property.

10.4 Local Resources

When Application Master or any other Container is run in a hadoop cluster, there are usually
dependencies to various application and configuration files. These files needs to be localized into a
running Container by making a physical copy. Localization is a process where dependent files are copied
into node's directory structure and thus can be used within the Container itself. Yarn itself tries to provide
isolation in a way that multiple containers and applications would not clash.

In order to use local resources, one needs to create an implementation of ResourceLocalizer
interface. In its simplest form, resource localizer can be defined as:

<yarn:localresources>

 <yarn:hdfs path="/path/in/hdfs/my.jar"/>

</yarn:localresources>

The declaration above defines a ResourceLocalizer bean (to be precise a factory bean of type
LocalResourcesFactoryBean) named, by default, yarnLocalresources. The default name is used,
by conventions, by the other elements that require a reference to a resource localizer. It's explained
later how this reference is used when container launch context is defined.

It is also possible to define path as pattern. This makes it easier to pick up all or subset of files from
a directory.

<yarn:localresources>

 <yarn:hdfs path="/path/in/hdfs/*.jar"/>

</yarn:localresources>

Behind the scenes it's not enough to simple have a reference to file in a hdfs file system. Yarn itself
when localizing resources into container needs to do a consistency check for copied files. This is done
by checking file size and timestamp. This information needs to passed to yarn together with a file path.
Order to do this the one who defines these beans needs to ask this information from hdfs prior to sending
out resouce localizer request. This kind of behaviour exists to make sure that once localization is defined,
Container will fail fast if dependant files were replaced during the process.

On default the hdfs base address is coming from a Yarn configuration and ResourceLocalizer bean
will use configuration named yarnLocalresources. If there is a need to use something else than the
default bean, configuration parameter can be used to make a reference to other defined configurations.

<yarn:localresources configuration="yarnConfiguration">

 <yarn:hdfs path="/path/in/hdfs/my.jar"/>

</yarn:localresources>

For example, client defining a launch context for Application Master needs to access dependent hdfs
entries. The one defining and using ResourceLocalizer bean may have a different hdfs address
than the Node Manager preparing the Container. Effectively hdfs entry given to resource localizer needs
to be accessed from a Node Manager.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 45

To overcome this problem, parameters local and remote can be used to define a different hdfs base
entries.

<yarn:localresources local="hdfs://0.0.0.0:9000" remote="hdfs://10.10.10.10:9000">

 <yarn:hdfs path="/app/multi-context/multi-context-1.0.0.M1.jar"/>

 <yarn:hdfs path="/app/spring-yarn-core-1.0.0.BUILD-SNAPSHOT.jar"/>

</yarn:localresources>

Yarn resource localizer is using additional parameters to define entry type and visibility. Usage is
described below:

<yarn:localresources>

 <yarn:hdfs path="/path/in/hdfs/my.jar" type="FILE" visibility="APPLICATION"/>

</yarn:localresources>

For convenience it is possible to copy files into hdfs during the localization process using a yarn:copy
tag. Currently base staging directory is /syarn/staging/xx where xx is a unique identifier per application
instance.

<yarn:localresources>

 <yarn:copy src="file:/local/path/to/files/*jar" staging="true"/>

 <yarn:hdfs path="/*" staging="true"/>

</yarn:localresources>

Table 10.2. yarn:localresources attributes

Name Values Description

configuration Bean
Reference

A reference to configuration bean
name, default is yarnConfiguration

local HDFS
Base URL

Global default if not defined in entry level

remote HDFS
Base URL

Global default if not defined in entry level

type ARCHIVE,
FILE,

PATTERN

Global default if not defined in entry level

visibility PUBLIC,
PRIVATE,

APPLICATION

Global default if not defined in entry level

Table 10.3. yarn:hdfs attributes

Name Values Description

path HDFS Path Path in hdfs

local HDFS
Base URL

Path accessible by a running container

remote HDFS
Base URL

Path accessible by a client

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 46

Name Values Description

type ARCHIVE,
FILE(default),
PATTERN

ARCHIVE - automatically unarchived by the Node Manager,
FILE - regular file, PATTERN - hybrid between archive and file.

visibility PUBLIC,
PRIVATE,

APPLICATION(default)

PUBLIC - Shared by all users on the node, PRIVATE
- Shared among all applications of the same user
on the node, APPLICATION - Shared only among

containers of the same application on the node

staging true,
false(default)

Internal temporary stagind directory.

Table 10.4. yarn:copy attributes

Name Values Description

src Copy sources Comma delimited list of resource patterns

staging true,
false(default)

Internal temporary stagind directory.

10.5 Container Environment

One central concept in Yarn is to use environment variables which then can be read from a container.
While it's possible to read those variable at any time it is considered bad design if one chooce to do so.
Spring Yarn will pass variable into application before any business methods are executed, which makes
things more clearly and testing becomes much more easier.

<yarn:environment/>

The declaration above defines a Map bean (to be precise a factory bean of type
EnvironmentFactoryBean) named, by default, yarnEnvironment. The default name is used, by
conventions, by the other elements that require a reference to a environment variables.

For conveniance it is possible to define a classpath entry directly into an environment. Most likely one
is about to run some java code with libraries so classpath needs to be defined anyway.

<yarn:environment include-system-env="false">

 <yarn:classpath use-default-yarn-classpath="true" delimiter=":">

 ./*

 </yarn:classpath>

</yarn:environment>

If use-default-yarn-classpath parameter is set to true(default value) a default yarn entries will be added
to classpath automatically. Resulting entries are shown below:

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 47

$HADOOP_CONF_DIR:

$HADOOP_COMMON_HOME/*:

$HADOOP_COMMON_HOME/lib/*:

$HADOOP_COMMON_HOME/share/hadoop/common/*:

$HADOOP_COMMON_HOME/share/hadoop/common/lib/*:

$HADOOP_HDFS_HOME/*:

$HADOOP_HDFS_HOME/lib/*:

$HADOOP_HDFS_HOME/share/hadoop/hdfs/*:

$HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*:

$YARN_HOME/*:

$YARN_HOME/lib/*:

$HADOOP_YARN_HOME/share/hadoop/yarn/*:

$HADOOP_YARN_HOME/share/hadoop/yarn/lib/*

Note

Be carefull if passing environment variables between different systems. For example if running
a client on Windows and passing variables to Application Master running on Linux, execution
wrapper in Yarn may silently fail.

Table 10.5. yarn:environment attributes

Name Values Description

include-

system-env

true(default),
false

Defines whether system environment
variables are actually added to this bean.

Table 10.6. classpath attributes

Name Values Description

use-

default-

yarn-

classpath

true(default),
false

Defines whether default yarn entries are added to classpath.

delimiter Delimiter
string,

default is ":"

Defines delimiter used in a classpath string

10.6 Application Client

Client is always your entry point when interacting with a Yarn system whether one is about to submit a
new application instance or just querying Resource Manager for running application(s) status. Currently
support for client is very limited and a simple command to start Application Master can be defined. If
there is just a need to query Resource Manager, command definition is not needed.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 48

<yarn:client app-name="customAppName">

 <yarn:master-command>

 <![CDATA[

 /usr/local/java/bin/java

 org.springframework.yarn.am.CommandLineAppmasterRunner

 appmaster-context.xml

 yarnAppmaster

 container-count=2

 1><LOG_DIR>/AppMaster.stdout

 2><LOG_DIR>/AppMaster.stderr

]]>

 </yarn:master-command>

</yarn:client>

The declaration above defines a YarnClient bean (to be precise a factory bean of type
YarnClientFactoryBean) named, by default, yarnClient. It also defines a command launching an
Application Master using <master-command> entry which is also a way to define the raw commands.
If this yarnClient instance is used to submit an application, its name would come from a app-name
attribute.

<yarn:client app-name="customAppName">

 <yarn:master-runner/>

</yarn:client>

For a convinience entry <master-runner> can be used to define same command entries.

<yarn:client app-name="customAppName">

 <util:properties id="customArguments">

 container-count=2

 </util:properties>

 <yarn:master-runner

 command="java"

 context-file="appmaster-context.xml"

 bean-name="yarnAppmaster"

 arguments="customArguments"

 stdout="<LOG_DIR>/AppMaster.stdout"

 stderr="<LOG_DIR>/AppMaster.stderr" />

</yarn:client>

All previous three examples are effectively identical from Spring Yarn point of view.

Note

The <LOG_DIR> refers to Hadoop's dedicated log directory for the running container.

<yarn:client app-name="customAppName"

 configuration="customConfiguration"

 resource-localizer="customResources"

 environment="customEnv"

 priority="1"

 virtualcores="2"

 memory="11"

 queue="customqueue">

 <yarn:master-runner/>

</yarn:client>

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 49

If there is a need to change some of the parameters for the Application Master submission, memory and
virtualcores defines the container settings. For submission, queue and priority defines how
submission is actually done.

Table 10.7. yarn:client attributes

Name Values Description

app-name Name as
string, default

is empty

Yarn submitted application name

configuration Bean
Reference

A reference to configuration bean
name, default is yarnConfiguration

resourcelocalizer Bean
Reference

A reference to resource localizer bean
name, default is yarnLocalresources

environment Bean
Reference

A reference to environment bean
name, default is yarnEnvironment

template Bean
Reference

A reference to a bean implementing ClientRmOperations

memory Memory
as integer,

default is "64"

Amount of memory for appmaster resource

virtualcores Cores as
integer,

default is "1"

Number of appmaster resource virtual cores

priority Priority as
integer,

default is "0"

Submission priority

queue Queue string,
default is
"default"

Submission queue

Table 10.8. yarn:master-command

Name Values Description

Entry content List of
commands

Commands defined in this entry are
aggregated into a single command line

Table 10.9. yarn:master-runner attributes

Name Values Description

command Main
command as
string, default

is "java"

Command line first entry

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 50

Name Values Description

context-

file

Name of the
Spring context
file, default is
"appmaster-
context.xml"

Command line second entry

bean-name Name of the
Spring bean,

default is
"yarnAppmaster"

Command line third entry

arguments Reference
to Java's

Properties

Added to command line parameters
as key/value pairs separated by '='

stdout Stdout,
default is

"<LOG_DIR>/
AppMaster.stdout"

Appended with 1>

stderr Stderr,
default is

"<LOG_DIR>/
AppMaster.stderr"

Appended with 2>

10.7 Application Master

Application master is responsible for container allocation, launching and monitoring.

<yarn:master>

 <yarn:container-

allocator hosts="host1,host2" racks="rack1,rack2" virtualcores="1" memory="64" priority="0"/

>

 <yarn:container-launcher username="whoami"/>

 <yarn:container-command>

 <![CDATA[

 /usr/local/java/bin/java

 org.springframework.yarn.container.CommandLineContainerRunner

 container-context.xml

 1><LOG_DIR>/Container.stdout

 2><LOG_DIR>/Container.stderr

]]>

 </yarn:container-command>

</yarn:master>

The declaration above defines a YarnAppmaster bean (to be precise a bean of type
StaticAppmaster) named, by default, yarnAppmaster. It also defines a command launching a
Container(s) using <container-command> entry, parameters for allocation using <container-
allocator> entry and finally a launcher parameter using <container-launcher> entry.

Currently there is a simple implementation of StaticAppmaster which is able to allocate and launch
a number of containers. These containers are monitored by querying resource manager for container
execution completion.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 51

<yarn:master>

 <yarn:container-runner/>

</yarn:master>

For a convinience entry <container-runner> can be used to define same command entries.

<yarn:master>

 <util:properties id="customArguments">

 some-argument=myvalue

 </util:properties>

 <yarn:container-runner

 command="java"

 context-file="container-context.xml"

 bean-name="yarnContainer"

 arguments="customArguments"

 stdout="<LOG_DIR>/Container.stdout"

 stderr="<LOG_DIR>/Container.stderr" />

</yarn:master>

Table 10.10. yarn:master attributes

Name Values Description

configuration Bean
Reference

A reference to configuration bean
name, default is yarnConfiguration

resourcelocalizer Bean
Reference

A reference to resource localizer bean
name, default is yarnLocalresources

environment Bean
Reference

A reference to environment bean
name, default is yarnEnvironment

Table 10.11. yarn:container-allocator attributes

Name Values Description

hosts List of hosts Preferred hostname of nodes for allocation.

racks List of racks Preferred name of racks for allocation.

virtualcores Integer number of virtual cpu cores of the resource.

memory Integer,
as of MBs.

memory of the resource.

priority Integer Assigned priority of a request.

Table 10.12. yarn:container-launcher attributes

Name Values Description

username String Set the user to whom the container has been allocated.

Table 10.13. yarn:container-runner attributes

Name Values Description

command Main
command as

Command line first entry

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 52

Name Values Description

string, default
is "java"

context-

file

Name of the
Spring context
file, default is
"container-
context.xml"

Command line second entry

bean-name Name of the
Spring bean,

default is
"yarnContainer"

Command line third entry

arguments Reference
to Java's

Properties

Added to command line parameters
as key/value pairs separated by '='

stdout Stdout,
default is

"<LOG_DIR>/
Container.stdout"

Appended with 1>

stderr Stderr,
default is

"<LOG_DIR>/
Container.stderr"

Appended with 2>

10.8 Application Container

There is very little what Spring Yarn needs to know about the
Container in terms of its configuration. There is a simple contract between
org.springframework.yarn.container.CommandLineContainerRunner and a bean it's
trying to run on default. Default bean name is yarnContainer.

There is a simple interface org.springframework.yarn.container.YarnContainer which
container needs to implement.

public interface YarnContainer {

 void run();

 void setEnvironment(Map<String, String> environment);

 void setParameters(Properties parameters);

}

There are few different ways how Container can be defined in Spring xml configuration. Natively without
using namespaces bean can be defined with a correct name:

<bean id="yarnContainer" class="org.springframework.yarn.container.TestContainer">

Spring Yarn namespace will make it even more simpler. Below example just defines class which
implements needed interface.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 53

<yarn:container container-class="org.springframework.yarn.container.TestContainer"/>

It's possible to make a reference to existing bean. This is usefull if bean cannot be instantiated with
default constructor.

<bean id="testContainer" class="org.springframework.yarn.container.TestContainer"/>

<yarn:container container-ref="testContainer"/>

It's also possible to inline the bean definition.

<yarn:container>

 <bean class="org.springframework.yarn.container.TestContainer"/>

</yarn:container>

10.9 Application Master Services

It is fairly easy to create an application which launches a few containers and then leave those to do
their tasks. This is pretty much what Distributed Shell example application in Yarn is doing. In that
example a container is configured to run a simple shell command and Application Master only tracks
when containers have finished. If only need from a framework is to be able to fire and forget then
that's all you need, but most likely a real-world Yarn application will need some sort of collaboration
with Application Master. This communication is initiated either from Application Client or Application
Container.

Yarn framework itself doesn't define any kind of general communication API for Application Master.
There are APIs for communicating with Container Manager and Resource Manager which are used on
within a layer not necessarily exposed to a user. Spring Yarn defines a general framework to talk to
Application Master through an abstraction and currently a JSON based rpc system exists.

This chapter concentrates on developer concepts to create a custom services for Application Master,
configuration options for built-in services can be found from sections below - Appmaster Service and
Appmaster Service Client.

Basic Concepts

Having a communication framework between Application Master and Container/Client involves few
moving parts. Firstly there has to be some sort of service running on an Application Master. Secondly
user of this service needs to know where it is and how to connect to it. Thirtly, if not creating these
services from scratch, it'd be nice if some sort of abstraction already exist.

Contract for appmaster service is very simple, Application Master Service needs to implement
AppmasterService interface be registered with Spring application context. Actual appmaster instance
will then pick it up from a bean factory.

public interface AppmasterService {

 int getPort();

 boolean hasPort();

 String getHost();

}

Application Master Service framework currently provides integration for services acting as service for a
Client or a Container. Only difference between these two roles is how the Service Client gets notified

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 54

about the address of the service. For the Client this information is stored within the Hadoop Yarn
resource manager. For the Container this information is passed via environment within the launch
context.

<bean id="yarnAmservice" class="AppmasterServiceImpl" />

<bean id="yarnClientAmservice" class="AppmasterClientServiceImpl" />

Example above shows a default bean names, yarnAmservice and yarnClientAmservice respectively
recognised by Spring Yarn.

Interface AppmasterServiceClient is currently an empty interface just marking class to be a
appmaster service client.

public interface AppmasterServiceClient {

}

Using JSON

Default implementations can be used to exchange messages using a simple domain classes and actual
messages are converted into json and send over the transport.

<yarn-int:amservice

 service-impl="org.springframework.yarn.integration.ip.mind.TestService"

 default-port="1234"/>

<yarn-int:amservice-client

 service-

impl="org.springframework.yarn.integration.ip.mind.DefaultMindAppmasterServiceClient"

 host="localhost"

 port="1234"/>

@Autowired

AppmasterServiceClient appmasterServiceClient;

@Test

public void testServiceInterfaces() throws Exception {

 SimpleTestRequest request = new SimpleTestRequest();

 SimpleTestResponse response =

 (SimpleTestResponse) ((MindAppmasterServiceClient)appmasterServiceClient).

 doMindRequest(request);

 assertThat(response.stringField, is("echo:stringFieldValue"));

}

Converters

When default implementations for Application master services are exchanging messages, converters
are net registered automatically. There is a namespace tag converters to ease this configuration.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 55

<bean id="mapper"

 class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean" />

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">

 <constructor-arg ref="mapper"/>

 </bean>

</yarn-int:converter>

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">

 <constructor-arg ref="mapper"/>

 <constructor-arg value="org.springframework.yarn.batch.repository.bindings"/>

 </bean>

</yarn-int:converter>

10.10 Application Master Service

This section of this document is about configuration, more about general concepts for see a Section 10.9,
“Application Master Services”.

Currently Spring Yarn have support for services using Spring Integration tcp channels as a transport.

<bean id="mapper"

 class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean" />

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">

 <constructor-arg ref="mapper"/>

 </bean>

</yarn-int:converter>

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">

 <constructor-arg ref="mapper"/>

 <constructor-arg value="org.springframework.yarn.integration.ip.mind"/>

 </bean>

</yarn-int:converter>

<yarn-int:amservice

 service-impl="org.springframework.yarn.integration.ip.mind.TestService"/>

If there is a need to manually configure the server side dispatch channel, a little bit more configuration
is needed.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 56

<bean id="serializer"

 class="org.springframework.yarn.integration.ip.mind.MindRpcSerializer" />

<bean id="deserializer"

 class="org.springframework.yarn.integration.ip.mind.MindRpcSerializer" />

<bean id="socketSupport"

 class="org.springframework.yarn.integration.support.DefaultPortExposingTcpSocketSupport"

 />

<ip:tcp-connection-factory id="serverConnectionFactory"

 type="server"

 port="0"

 socket-support="socketSupport"

 serializer="serializer"

 deserializer="deserializer"/>

<ip:tcp-inbound-gateway id="inboundGateway"

 connection-factory="serverConnectionFactory"

 request-channel="serverChannel" />

<int:channel id="serverChannel" />

<yarn-int:amservice

 service-impl="org.springframework.yarn.integration.ip.mind.TestService"

 channel="serverChannel"

 socket-support="socketSupport"/>

Table 10.14. yarn-int:amservice attributes

Name Values Description

service-

impl

Class Name Full name of the class implementing a service

service-ref Bean
Reference

Reference to a bean name implementing a service

channel Spring Int
channel

Custom message dispatching channel

socket-

support

Socket support
reference

Custom socket support class

10.11 Application Master Service Client

This section of this document is about configuration, more about general concepts for see a Section 10.9,
“Application Master Services”.

Currently Spring Yarn have support for services using Spring Integration tcp channels as a transport.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 57

<bean id="mapper"

 class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean" />

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">

 <constructor-arg ref="mapper"/>

 </bean>

</yarn-int:converter>

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">

 <constructor-arg ref="mapper"/>

 <constructor-arg value="org.springframework.yarn.integration.ip.mind"/>

 </bean>

</yarn-int:converter>

<yarn-int:amservice-client

 service-

impl="org.springframework.yarn.integration.ip.mind.DefaultMindAppmasterServiceClient"

 host="${SHDP_AMSERVICE_HOST}"

 port="${SHDP_AMSERVICE_PORT}"/>

If there is a need to manually configure the server side dispatch channel, a little bit more configuration
is needed.

<bean id="serializer"

 class="org.springframework.yarn.integration.ip.mind.MindRpcSerializer" />

<bean id="deserializer"

 class="org.springframework.yarn.integration.ip.mind.MindRpcSerializer" />

<ip:tcp-connection-factory id="clientConnectionFactory"

 type="client"

 host="localhost"

 port="${SHDP_AMSERVICE_PORT}"

 serializer="serializer"

 deserializer="deserializer"/>

<ip:tcp-outbound-gateway id="outboundGateway"

 connection-factory="clientConnectionFactory"

 request-channel="clientRequestChannel"

 reply-channel="clientResponseChannel" />

<int:channel id="clientRequestChannel" />

<int:channel id="clientResponseChannel" >

 <int:queue />

</int:channel>

<yarn-int:amservice-client

 service-

impl="org.springframework.yarn.integration.ip.mind.DefaultMindAppmasterServiceClient"

 request-channel="clientRequestChannel"

 response-channel="clientResponseChannel"/>

Table 10.15. yarn-int:amservice-client attributes

Name Values Description

service-

impl

Class Name Full name of the class implementing a service client

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 58

Name Values Description

host Hostname Host of the running appmaster service

port Port Port of the running appmaster service

request-

channel

Reference
to Spring

Int request
channel

Custom channel

response-

channel

Reference
to Spring Int

response
channel

Custom channel

10.12 Using Spring Batch

In this chapter we assume you are fairly familiar with concepts using Spring Batch. Many batch
processing problems can be solved with single threaded, single process jobs, so it is always a good idea
to properly check if that meets your needs before thinking about more complex implementations. When
you are ready to start implementing a job with some parallel processing, Spring Batch offers a range
of options. At a high level there are two modes of parallel processing: single process, multi-threaded;
and multi-process.

Spring Hadoop contains a support for running Spring Batch jobs on a Hadoop cluster. For better parallel
processing Spring Batch partitioned steps can be executed on a Hadoop cluster as remote steps.

Batch Jobs

Starting point running a Spring Batch Job is always the Application Master whether a job is just simple
job with or without partitioning. In case partitioning is not used the whole job would be run within the
Application Master and no Containers would be launched. This may seem a bit odd to run something
on Hadoop without using Containers but one should remember that Application Master is also just a
resource allocated from a Hadoop cluster.

Order to run Spring Batch jobs on a Hadoop cluster, few constraints exists:

• Job Context - Application Master is the main entry point of running the job.

• Job Repository - Application Master needs to have access to a repository which is located either in-
memory or in a database. These are the two type natively supported by Spring Batch.

• Remote Steps - Due to nature how Spring Batch partitioning works, remote step needs an access
to a job repository.

Configuration for Spring Batch Jobs is very similar what is needed for normal batch configuration
because effectively that's what we are doing. Only difference is a way a job is launched which in this
case is automatically handled by Application Master. Implementation of a job launching logic is very
similar compared to CommandLineJobRunner found from a Spring Batch.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 59

<bean id="transactionManager" class="org.springframework.batch.support.transaction.ResourcelessTransactionManager"/

>

<bean id="jobRepository" class="org.springframework.batch.core.repository.support.MapJobRepositoryFactoryBean">

 <property name="transactionManager" ref="transactionManager"/>

</bean>

<bean id="jobLauncher" class="org.springframework.batch.core.launch.support.SimpleJobLauncher">

 <property name="jobRepository" ref="jobRepository"/>

</bean>

The declaration above define beans for JobRepository and JobLauncher. For simplisity we used
in-memory repository while it would be possible to switch into repository working with a database if
persistence is needed. A bean named jobLauncher is later used within the Application Master to
launch jobs.

<bean id="yarnEventPublisher" class="org.springframework.yarn.event.DefaultYarnEventPublisher"/

>

<yarn-batch:master/>

The declaration above defines BatchAppmaster bean named, by default, yarnAppmaster and
YarnEventPublisher bean named yarnEventPublisher which is not created automatically.

Final step to finalize our very simple batch configuration is to define the actual batch job.

<bean id="hello" class="org.springframework.yarn.examples.PrintTasklet">

 <property name="message" value="Hello"/>

</bean>

<batch:job id="job">

 <batch:step id="master">

 <batch:tasklet transaction-manager="transactionManager" ref="hello"/>

 </batch:step>

</batch:job>

The declaration above defines a simple job and tasklet. Job is named as job which is the default
job name searched by Application Master. It is possible to use different name by changing the launch
configuration.

Table 10.16. yarn-batch:master attributes

Name Values Description

configuration Bean
Reference

A reference to configuration bean
name, default is yarnConfiguration

resourcelocalizer Bean
Reference

A reference to resource localizer bean
name, default is yarnLocalresources

environment Bean
Reference

A reference to environment bean
name, default is yarnEnvironment

job-name Bean Name
Reference

A name reference to Spring Batch job, default is job

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 60

Name Values Description

job-

launcher

Bean
Reference

A reference to job launcher bean name, default
is jobLauncher. Target is a normal Spring
Batch bean implementing JobLauncher.

Partitioning

Let's take a quick look how Spring Batch partitioning is handled. Concept of running a partitioned
job involves three things, Remote steps, Partition Handler and a Partitioner. If we do a little bit of
oversimplification a remote step is like any other step from a user point of view. Spring Batch itself does
not contain implementations for any proprietary grid or remoting fabrics. Spring Batch does however
provide a useful implementation of PartitionHandler that executes Steps locally in separate threads
of execution, using the TaskExecutor strategy from Spring. Spring Hadoop provides implementation
to execute Steps remotely on a Hadoop cluster.

Note

For more background information about the Spring Batch Partitioning, read the Spring Batch
reference documentation.

Configuring Master

As we previously mentioned a step executed on a remote host also need to access a job repository.
If job repository would be based on a database instance, configuration could be similar on a container
compared to application master. In our configuration example the job repository is in-memory based
and remote steps needs access for it. Spring Yarn Batch contains implementation of a job repository
which is able to proxy request via json requests. Order to use that we need to enable application client
service which is exposing this service.

<bean id="jobRepositoryRemoteService" class="org.springframework.yarn.batch.repository.JobRepositoryRemoteService"

 >

 <property name="mapJobRepositoryFactoryBean" ref="&jobRepository"/>

</bean>

<bean id="batchService" class="org.springframework.yarn.batch.repository.BatchAppmasterService"

 >

 <property name="jobRepositoryRemoteService" ref="jobRepositoryRemoteService"/>

</bean>

<yarn-int:amservice service-ref="batchService"/>

he declaration above defines JobRepositoryRemoteService bean named
jobRepositoryRemoteService which is then connected into Application Master Service exposing
job repository via Spring Integration Tcp channels.

As job repository communication messages are exchanged via custom json messages, converters
needs to be defined.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 61

<bean id="mapper" class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean"

 />

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">

 <constructor-arg ref="mapper"/>

 </bean>

</yarn-int:converter>

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">

 <constructor-arg ref="mapper"/>

 <constructor-arg value="org.springframework.yarn.batch.repository.bindings"/>

 </bean>

</yarn-int:converter>

Configuring Container

Previously we made a choice to use in-memore job repository running inside the application master.
Now we need to talk to this repository via client service. We start by adding same converters as in
application master.

<bean id="mapper" class="org.springframework.yarn.integration.support.Jackson2ObjectMapperFactoryBean"

 />

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindObjectToHolderConverter">

 <constructor-arg ref="mapper"/>

 </bean>

</yarn-int:converter>

<yarn-int:converter>

 <bean class="org.springframework.yarn.integration.convert.MindHolderToObjectConverter">

 <constructor-arg ref="mapper"/>

 <constructor-arg value="org.springframework.yarn.batch.repository.bindings"/>

 </bean>

</yarn-int:converter>

We use general client implementation able to communicate with a service running on Application Master.

<yarn-int:amservice-client

 service-

impl="org.springframework.yarn.integration.ip.mind.DefaultMindAppmasterServiceClient"

 host="${SHDP_AMSERVICE_HOST}"

 port="${SHDP_AMSERVICE_PORT}" />

Remote step is just like any other step.

<bean id="hello" class="org.springframework.yarn.examples.PrintTasklet">

 <property name="message" value="Hello"/>

</bean>

<batch:step id="remoteStep">

 <batch:tasklet transaction-manager="transactionManager" start-limit="100" ref="hello"/>

</batch:step>

We need to have a way to locate the step from an application context. For this we can define a step
locator which is later configured into running container.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 62

<bean id="stepLocator" class="org.springframework.yarn.batch.partition.BeanFactoryStepLocator"/

>

Spring Hadoop contains a custom job repository implementation which is able to talk back to a remote
instance via custom json protocol.

<bean id="transactionManager" class="org.springframework.batch.support.transaction.ResourcelessTransactionManager"/

>

<bean id="jobRepository" class="org.springframework.yarn.batch.repository.RemoteJobRepositoryFactoryBean">

 <property name="transactionManager" ref="transactionManager"/>

 <property name="appmasterScOperations" ref="yarnAmserviceClient"/>

</bean>

<bean id="jobExplorer" class="org.springframework.yarn.batch.repository.RemoteJobExplorerFactoryBean">

 <property name="repositoryFactory" ref="&jobRepository" />

</bean>

Finally we define a Container understanding how to work with a remote steps.

<bean id="yarnContainer" class="org.springframework.yarn.batch.container.DefaultBatchYarnContainer">

 <property name="stepLocator" ref="stepLocator"/>

 <property name="jobExplorer" ref="jobExplorer"/>

 <property name="integrationServiceClient" ref="yarnAmserviceClient"/>

</bean>

10.13 Using Spring Boot Application Model

We have additional support for leveraging Spring Boot when creating applications using Spring YARN.
All dependencies for this exists in a sub-module named spring-yarn-boot which itself depends on
Spring Boot.

Spring Boot extensions in Spring YARN are used to ease following issues:

• Create a clear model how application is built, packaged and run on Hadoop YARN.

• Automatically configure components depending whether we are on Client, Appmaster or Container.

• Create an easy to use externalized configuration model based on Boot's
ConfigurationProperties.

Before we get into details let's go through how simple it is to create and deploy a custom application to
a Hadoop cluster. Notice that there are no need to use XML.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 63

@Configuration

@EnableAutoConfiguration

public class ContainerApplication {

 public static void main(String[] args) {

 SpringApplication.run(ContainerApplication.class, args);

 }

 @Bean

 public HelloPojo helloPojo() {

 return new HelloPojo();

 }

}

In above ContainerApplication, notice how we added @Configuration in a class level itself and
@Bean for a helloPojo() method.

@YarnContainer

public class HelloPojo {

 private static final Log log = LogFactory.getLog(HelloPojo.class);

 @Autowired

 private Configuration configuration;

 @OnYarnContainerStart

 public void publicVoidNoArgsMethod() {

 log.info("Hello from HelloPojo");

 log.info("About to list from hdfs root content");

 FsShell shell = new FsShell(configuration);

 for (FileStatus s : shell.ls(false, "/")) {

 log.info(s);

 }

 }

}

HelloPojo class is a simple POJO in a sense that it doesn't extend any Spring YARN base classes.
What we did in this class:

• We've added a class level@YarnContainer annotation.

• We've added a method level @OnYarnContainerStart annotation.

• We've @Autowired a Hadoop's Configuration class.

To demonstrate that we actually have some real functionality in this class, we simply use Spring
Hadoop's FsShell to list entries from a root of a HDFS file system. For this we need to have access
to Hadoop's Configuration which is prepared for you so that you can just autowire it.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 64

@EnableAutoConfiguration

public class ClientApplication {

 public static void main(String[] args) {

 SpringApplication.run(ClientApplication.class, args)

 .getBean(YarnClient.class)

 .submitApplication();

 }

}

• @EnableAutoConfiguration tells Spring Boot to start adding beans based on classpath setting,
other beans, and various property settings.

• Specific auto-configuration for Spring YARN components takes place since Spring YARN is on the
classpath.

The main() method uses Spring Boot's SpringApplication.run() method to launch an
application. From there we simply request a bean of type YarnClient and execute its
submitApplication() method. What happens next depends on application configuration, which we
go through later in this document.

@EnableAutoConfiguration

public class AppmasterApplication {

 public static void main(String[] args) {

 SpringApplication.run(AppmasterApplication.class, args);

 }

}

Application class for YarnAppmaster looks even simpler than what we just did for
ClientApplication. Again the main() method uses Spring Boot's SpringApplication.run()
method to launch an application.

In real life, you most likely need to start adding more custom functionality to your application component
and you'd do that by start adding more beans. To do that you need to define a Spring @Configuration
or @ComponentScan. AppmasterApplication would then act as your main starting point to define more
custom functionality.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 65

spring:

 hadoop:

 fsUri: hdfs://localhost:8020

 resourceManagerHost: localhost

 yarn:

 appName: yarn-boot-simple

 applicationDir: /app/yarn-boot-simple/

 client:

 files:

 - "file:build/libs/yarn-boot-simple-container-0.1.0.jar"

 - "file:build/libs/yarn-boot-simple-appmaster-0.1.0.jar"

 launchcontext:

 archiveFile: yarn-boot-simple-appmaster-0.1.0.jar

 appmaster:

 containerCount: 1

 launchcontext:

 archiveFile: yarn-boot-simple-container-0.1.0.jar

Final part for your application is its runtime configuration which glues all the components together which
then can be called as a Spring YARN application. This configuration act as source for Spring Boot's
@ConfigurationProperties and contains relevant configuration properties which cannot be auto-
discovered or otherwise needs to have an option to be overwritten by an end user.

You can then write your own defaults for your own environment. Because these
@ConfigurationProperties are resolved at runtime by Spring Boot, you even have an easy option
to overwrite these properties either by using command-line options or provide additional configuration
property files.

Auto Configuration

Spring Boot is heavily influenced by auto-configuration trying to predict what user wants to do. These
decisions are based on configuration properties, what's currently available from a classpath and
generally everything what auto-configurers are able to see.

Auto-configuration is able to see if it's currently running on a YARN cluster and can also differentiate
between YarnContainer and YarnAppmaster. Parts of the auto-configuration which cannot be
automatically detected are guarded by a flags in configuration properties which then allows end-user to
either enable or disable these functionalities.

Application Files

As we already mentioned Spring Boot creates a clear model how you would work with your application
files. Most likely what you need in your application is jar or zip file(s) having needed application code
and optional configuration properties to customize the application logic. Customization via an external
properties files makes it easier to change application functionality and reduce a need to hard-code
application logic.

Running an application on YARN needs an instance of YarnAppmaster and instances of
YarnContainers. Both of these containers will need a set of files and instructions how to execute a
container. Based on auto-configuration and configuration properties we will make few assumptions how
a container is executed.

We are fundamentally supporting three different type of combinations:

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 66

• If a container main archive file is a jar file we expect it to be packaged with Boot and be self container
executable jar archive.

• If a container main archive is a zip file we expect it to be packages with Boot. In this case we use a
special runner which knows how to run this exploded archive.

• User defines a main class to be run and everything this class will need is already setup.

More detailed functionality can be found from a below sections; the section called “Application
Classpath”, the section called “Container Runners” and the section called “Configuration Properties”.

Application Classpath

Let's go through as an examples how a classpath is configured on different use cases.

Simple Executable Jar

Running a container using an executable jar archive is the most simple scenario due to classpath
limitation imposed by a JVM. Everything needed for the classpath needs to be inside the archive itself.
Boot plugins for maven and gradle will greatly help to package all library dependencies into this archive.

spring:

 yarn:

 client:

 launchcontext:

 archiveFile: yarn-boot-appmaster-0.1.0.jar

 appmaster:

 launchcontext:

 archiveFile: yarn-boot-container-0.1.0.jar

Simple Zip Archive

Using a zip archive is basically needed in two use cases. In first case you want to re-use existing libraries
in YARN cluster for your classpath. In second case you want to add custom classpath entries from an
exploded zip archive.

spring:

 yarn:

 defaultYarnAppClasspath: "/path/to/hadoop/libs/*"

 appmaster:

 launchcontext:

 useDefaultYarnClasspath: true

 archiveFile: yarn-boot-container-0.1.0.zip

In above example you can have a zip archive which doesn't bundle all dependant Hadoop YARN
libraries. Default classpath entries are then resolved from defaultYarnAppClasspath property.

spring:

 yarn:

 appmaster:

 launchcontext:

 archiveFile: yarn-boot-container-0.1.0.zip

 classpath:

 - "./yarn-boot-container-0.1.0.zip/config"

 - "./yarn-boot-container-0.1.0.zip/lib"

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 67

In above example you needed to use custom classpath entries from an exploded zip archive.

Container Runners

Using a propertys spring.yarn.client.launchcontext.archiveFile and
spring.yarn.appmaster.launchcontext.archiveFile respectively, will indicate that
container is run based on an archive file and Boot runners are used. These runner classes are either
used manually when constructing an actual raw command for container or internally within an executable
jar archive.

However there are times when you may need to work on much lower level. Maybe you are having
trouble using an executable jar archive or Boot runner is not enough what you want to do. For this
use case you would use propertys spring.yarn.client.launchcontext.runnerClass and
spring.yarn.appmaster.launchcontext.runnerClass.

Custom Runner

spring:

 yarn:

 appmaster:

 launchcontext:

 runnerClass: com.example.MyMainClazz

Resource Localizing

Order for containers to use application files, a YARN resource localization process needs to do its tasks.
We have a few configuration properties which are used to determine which files are actually localized
into container's working directory.

spring:

 yarn:

 client:

 localizer:

 patterns:

 - "*appmaster*jar"

 - "*appmaster*zip"

 zipPattern: "*zip"

 propertiesNames: [application]

 propertiesSuffixes: [properties, yml]

 appmaster:

 localizer:

 patterns:

 - "*container*jar"

 - "*container*zip"

 zipPattern: "*zip"

 propertiesNames: [application]

 propertiesSuffixes: [properties, yml]

Above is an example which equals a default functionality when localized resources are chosen. For
example for a container we automatically choose all files matching a simple patterns *container*jar
and *container*zip. Additionally we choose configuration properties files matching names
application.properties and application.yml. Property zipPattern is used as an pattern to
instruct YARN resource localizer to triet file as an archive to be automatically exploded.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 68

If for some reason the default functionality and how it can be configured via configuration
properties is not suiteable, one can define a custom bean to change how things work. Interface
LocalResourcesSelector is used to find localized resources.

public interface LocalResourcesSelector {

 List<Entry> select(String dir);

}

Below you see a logic how a default BootLocalResourcesSelector is created during the auto-
configuration. You would then create a custom implementation and create it as a bean in your
Configuration class. You would not need to use any Conditionals but not how in auto-configuration we
use @ConditionalOnMissingBean to check if user have already created his own implementation.

@Configuration

@EnableConfigurationProperties({ SpringYarnAppmasterLocalizerProperties.class })

public static class LocalResourcesSelectorConfig {

 @Autowired

 private SpringYarnAppmasterLocalizerProperties syalp;

 @Bean

 @ConditionalOnMissingBean(LocalResourcesSelector.class)

 public LocalResourcesSelector localResourcesSelector() {

 BootLocalResourcesSelector selector = new BootLocalResourcesSelector(Mode.CONTAINER);

 if (StringUtils.hasText(syalp.getZipPattern())) {

 selector.setZipArchivePattern(syalp.getZipPattern());

 }

 if (syalp.getPropertiesNames() != null) {

 selector.setPropertiesNames(syalp.getPropertiesNames());

 }

 if (syalp.getPropertiesSuffixes() != null) {

 selector.setPropertiesSuffixes(syalp.getPropertiesSuffixes());

 }

 selector.addPatterns(syalp.getPatterns());

 return selector;

 }

}

Your configuration could then look like:

@EnableAutoConfiguration

public class AppmasterApplication {

 @Bean

 public LocalResourcesSelector localResourcesSelector() {

 return MyLocalResourcesSelector();

 }

 public static void main(String[] args) {

 SpringApplication.run(AppmasterApplication.class, args);

 }

}

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 69

Container as POJO

In Boot application model if YarnContainer is not explicitly defined it defaults to
DefaultYarnContainer which expects to find a POJO created as a bean having a specific
annotations instructing the actual functionality.

@YarnContainer is a stereotype annotation itself having a Spring's @Component defined in it. This is
automatically marking a class to be a candidate having a @YarnContainer functionality.

Within a POJO class we can use @OnYarnContainerStart annotation to mark a public method to act
as an activator for a method endpoint.

@OnYarnContainerStart

public void publicVoidNoArgsMethod() {

}

Returning type of int participates in a YarnContainer exit value.

@OnYarnContainerStart

public int publicIntNoArgsMethod() {

 return 0;

}

Returning type of boolean participates in a YarnContainer exit value where true would mean complete
and false failed container.

@OnYarnContainerStart

public boolean publicBooleanNoArgsMethod() {

 return true;

}

Returning type of String participates in a YarnContainer exit value by matching ExitStatus and
getting exit value from ExitCodeMapper.

@OnYarnContainerStart

public String publicVoidNoArgsMethod() {

 return "COMPLETE";

}

If method throws any Exception YarnContainer is marked as failed.

@OnYarnContainerStart

public void publicThrowsException() {

 throw new RuntimeExection("My Error");

}

Method parameter can be bound with @YarnEnvironments to get access to current YarnContainer
environment variables.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 70

@OnYarnContainerStart

public void publicVoidNoArgsMethod(@YarnEnvironments Map<String,String> env) {

}

Method parameter can be bound with @YarnEnvironment to get access to specific YarnContainer
environment variable.

@OnYarnContainerStart

public void publicVoidNoArgsMethod(@YarnEnvironment("key") String value) {

}

Method parameter can be bound with @YarnParameters to get access to current YarnContainer
arguments.

@OnYarnContainerStart

public void publicVoidNoArgsMethod(@YarnParameters Properties properties) {

}

Method parameter can be bound with @YarnParameter to get access to a specific YarnContainer
arguments.

@OnYarnContainerStart

public void publicVoidNoArgsMethod(@YarnParameter("key") String value) {

}

Configuration Properties

Configuration properties can be defined using various methods. See a Spring Boot dodumentation for
details.

Table 10.17. spring.hadoop configuration properties

Property Name Required Type Default Value

spring.hadoop.fsUri Yes String null

spring.hadoop.resourceManagerAddressNo String null

spring.hadoop.resourceManagerSchedulerAddressNo String null

spring.hadoop.resourceManagerHost No String null

spring.hadoop.resourceManagerPort No Integer 8032

spring.hadoop.resourceManagerSchedulerPortNo Integer 8030

spring.hadoop.fsUri

A hdfs file system uri for a namenode.

spring.hadoop.resourceManagerAddress

Address of a YARN resource manager.

spring.hadoop.resourceManagerSchedulerAddress

Address of a YARN resource manager scheduler.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 71

spring.hadoop.resourceManagerHost

Hostname of a YARN resource manager.

spring.hadoop.resourceManagerPort

Port of a YARN resource manager.

spring.hadoop.resourceManagerSchedulerPort

Port of a YARN resource manager scheduler. This property is only needed for an application master.

Table 10.18. spring.yarn configuration properties

Property Name Required Type Default Value

spring.yarn.applicationDir No String null

spring.yarn.applicationBaseDir No String null

spring.yarn.stagingDir No String /spring/staging

spring.yarn.appName No String null

spring.yarn.appType No String YARN

spring.yarn.defaultYarnAppClasspath No String null

spring.yarn.applicationDir

An application home directory in hdfs. If client copies files into a hdfs during an application
submission, files will end up in this directory. If this property is omitted, a staging directory will be
used instead.

spring.yarn.applicationBaseDir

An applications base directory where build-in application deployment functionality would create a
new application instance. For a normal application submit operation, this is not needed.

spring.yarn.stagingDir

A global staging base directory in hdfs.

spring.yarn.appName

Defines a registered application name visible from a YARN resource manager.

spring.yarn.appType

Defines a registered application type used in YARN resource manager.

spring.yarn.defaultYarnAppClasspath

Defines a default base YARN application classpath entries.

Table 10.19. spring.yarn.appmaster configuration properties

Property Name Required Type Default Value

spring.yarn.appmaster.appmasterClassNo Class null

spring.yarn.appmaster.containerCountNo Integer 1

spring.yarn.appmaster.keepContextAliveNo Boolean true

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 72

spring.yarn.appmaster.appmasterClass

Fully qualified classname which auto-configuration can automatically instantiate as a custom
application master.

spring.yarn.appmaster.containerCount

Property which is automatically kept in configuration as a hint which an application master can
choose to use when determing how many containers should be launched.

spring.yarn.appmaster.keepContextAlive

Setting for an application master runner to stop main thread to wait a latch before continuing. This
is needed in cases where main thread needs to wait event from other threads to be able to exit.

Table 10.20. spring.yarn.appmaster.launchcontext configuration properties

Property Name Required Type Default Value

spring.yarn.appmaster.launchcontext.archiveFileNo String null

spring.yarn.appmaster.launchcontext.runnerClassNo Class null

spring.yarn.appmaster.launchcontext.optionsNo List null

spring.yarn.appmaster.launchcontext.argumentsNo Map null

spring.yarn.appmaster.launchcontext.classpathNo List null

spring.yarn.appmaster.launchcontext.pathSeparatorNo String :

spring.yarn.appmaster.launchcontext.includeBaseDirectoryNo Boolean true

spring.yarn.appmaster.launchcontext.useDefaultYarnClasspathNo Boolean true

spring.yarn.appmaster.launchcontext.includeSystemEnvNo Boolean true

spring.yarn.appmaster.launchcontext.archiveFile

Indicates that a container main file is treated as executable jar or exploded zip.

spring.yarn.appmaster.launchcontext.runnerClass

Indicates a fully qualified class name for a container runner.

spring.yarn.appmaster.launchcontext.options

JVM system options.

spring.yarn.appmaster.launchcontext.arguments

Application arguments.

spring.yarn.appmaster.launchcontext.classpath

Additional classpath entries.

spring.yarn.appmaster.launchcontext.pathSeparator

Separator in a classpath.

spring.yarn.appmaster.launchcontext.includeBaseDirectory

If base directory should be added in a classpath.

spring.yarn.appmaster.launchcontext.useDefaultYarnClasspath

If default yarn application classpath should be added.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 73

spring.yarn.appmaster.launchcontext.includeSystemEnv

If system environment variables are added to a container environment.

Table 10.21. spring.yarn.appmaster.localizer configuration properties

Property Name Required Type Default Value

spring.yarn.appmaster.localizer.patternsNo List null

spring.yarn.appmaster.localizer.zipPatternNo String null

spring.yarn.appmaster.localizer.propertiesNamesNo List null

spring.yarn.appmaster.localizer.propertiesSuffixesNo List null

spring.yarn.appmaster.localizer.patterns

A simple patterns to choose localized files.

spring.yarn.appmaster.localizer.zipPattern

A simple pattern to mark a file as archive to be exploded.

spring.yarn.appmaster.localizer.propertiesNames

Base name of a configuration files.

spring.yarn.appmaster.localizer.propertiesSuffixes

Suffixes for a configuration files.

Table 10.22. spring.yarn.appmaster.resource configuration properties

Property Name Required Type Default Value

spring.yarn.appmaster.resource.priorityNo String null

spring.yarn.appmaster.resource.memoryNo String null

spring.yarn.appmaster.resource.virtualCoresNo String null

spring.yarn.appmaster.resource.priority

Container priority.

spring.yarn.appmaster.resource.memory

Container memory allocation.

spring.yarn.appmaster.resource.virtualCores

Container cpu allocation.

Table 10.23. spring.yarn.client configuration properties

Property Name Required Type Default Value

spring.yarn.client.files No List null

spring.yarn.client.priority No Integer null

spring.yarn.client.queue No String null

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 74

spring.yarn.client.files

Files to copy into hdfs during application submission.

spring.yarn.client.priority

Application priority.

spring.yarn.client.queue

Application submission queue.

Table 10.24. spring.yarn.client.launchcontext configuration properties

Property Name Required Type Default Value

spring.yarn.client.launchcontext.archiveFileNo String null

spring.yarn.client.launchcontext.runnerClassNo Class null

spring.yarn.client.launchcontext.optionsNo List null

spring.yarn.client.launchcontext.argumentsNo Map null

spring.yarn.client.launchcontext.classpathNo List null

spring.yarn.client.launchcontext.pathSeparatorNo String :

spring.yarn.client.launchcontext.includeBaseDirectoryNo Boolean true

spring.yarn.client.launchcontext.useDefaultYarnClasspathNo Boolean true

spring.yarn.client.launchcontext.includeSystemEnvNo Boolean true

spring.yarn.client.launchcontext.archiveFile

Indicates that a container main file is treated as executable jar or exploded zip.

spring.yarn.client.launchcontext.runnerClass

Indicates a fully qualified class name for a container runner.

spring.yarn.client.launchcontext.options

JVM system options.

spring.yarn.client.launchcontext.arguments

Application arguments.

spring.yarn.client.launchcontext.classpath

Additional classpath entries.

spring.yarn.client.launchcontext.pathSeparator

Separator in a classpath.

spring.yarn.client.launchcontext.includeBaseDirectory

If base directory should be added in a classpath.

spring.yarn.client.launchcontext.useDefaultYarnClasspath

If default yarn application classpath should be added.

spring.yarn.client.launchcontext.includeSystemEnv

If system environment variables are added to a container environment.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 75

Table 10.25. spring.yarn.client.localizer configuration properties

Property Name Required Type Default Value

spring.yarn.client.localizer.patternsNo List null

spring.yarn.client.localizer.zipPatternNo String null

spring.yarn.client.localizer.propertiesNamesNo List null

spring.yarn.client.localizer.propertiesSuffixesNo List null

spring.yarn.client.localizer.patterns

A simple patterns to choose localized files.

spring.yarn.client.localizer.zipPattern

A simple pattern to mark a file as archive to be exploded.

spring.yarn.client.localizer.propertiesNames

Base name of a configuration files.

spring.yarn.client.localizer.propertiesSuffixes

Suffixes for a configuration files.

Table 10.26. spring.yarn.client.resource configuration properties

Property Name Required Type Default Value

spring.yarn.client.resource.memory No String null

spring.yarn.client.resource.virtualCoresNo String null

spring.yarn.client.resource.memory

Application master memory allocation.

spring.yarn.client.resource.virtualCores

Application master cpu allocation.

Table 10.27. spring.yarn.container configuration properties

Property Name Required Type Default Value

spring.yarn.container.keepContextAliveNo Boolean true

spring.yarn.container.containerClassNo Class null

spring.yarn.container.keepContextAlive

Setting for an application container runner to stop main thread to wait a latch before continuing. This
is needed in cases where main thread needs to wait event from other threads to be able to exit.

spring.yarn.container.containerClass

Fully qualified classname which auto-configuration can automatically instantiate as a custom
container.

Table 10.28. spring.yarn.batch configuration properties

Property Name Required Type Default Value

spring.yarn.batch.name No String null

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 76

Property Name Required Type Default Value

spring.yarn.batch.enabled No Boolean false

spring.yarn.batch.jobs No List null

spring.yarn.batch.name

Comma-delimited list of search patterns to find jobs to run defined either locally in application context
or in job registry.

spring.yarn.batch.enabled

Indicates if batch processing on yarn is enabled.

spring.yarn.batch.jobs

Indicates a list of individual configuration properties for jobs.

Table 10.29. spring.yarn configuration properties

Property Name Required Type Default Value

spring.yarn.batch.jobs.name No String null

spring.yarn.batch.jobs.enabled No Boolean false

spring.yarn.batch.jobs.next No Boolean false

spring.yarn.batch.jobs.failNext No Boolean false

spring.yarn.batch.jobs.restart No Boolean false

spring.yarn.batch.jobs.failRestart No Boolean false

spring.yarn.batch.jobs.parameters No String null

Descriptions

spring.yarn.batch.jobs.name

Name of a job to configure.

spring.yarn.batch.jobs.enabled

Indicates if job is enabled.

spring.yarn.batch.jobs.next

Indicates if job parameters incrementer is used to prepare a job for next run.

spring.yarn.batch.jobs.failNext

Indicates if job execution should fail if job cannot be prepared for next execution.

spring.yarn.batch.jobs.restart

Indicates of job should be restarted.

spring.yarn.batch.jobs.failRestart

Indicates if job execution should fail if job cannot be restarted.

spring.yarn.batch.jobs.parameters

Defines a Map of additional job parameters. Keys and values are in normal format supported by
Batch.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 77

11. Testing Support

Hadoop testing has always been a cumbersome process especially if you try to do testing phase during
the normal project build process. Traditionally developers have had few options like running Hadoop
cluster either as a local or pseudo-distributed mode and then utilise that to run MapReduce jobs. Hadoop
project itself is using a lot of mini clusters during the tests which provides better tools to run your code
in an isolated environment.

Spring Hadoop and especially its Yarn module faced similar testing problems. Spring Hadoop provides
testing facilities order to make testing on Hadoop much easier especially if code relies on Spring Hadoop
itself. These testing facilities are also used internally to test Spring Hadoop, although some test cases
still rely on a running Hadoop instance on a host where project build is executed.

Two central concepts of testing using Spring Hadoop is, firstly fire up the mini cluster and secondly use
the configuration prepared by the mini cluster to talk to the Hadoop components. Now let's go through
the general testing facilities offered by Spring Hadoop.

Testing for MapReduce and Yarn in Spring Hadoop is separated into different packages mostly because
these two components doesn't have hard dependencies with each others. You will see a lot of similarities
when creating tests for MapReduce and Yarn.

11.1 Testing MapReduce

Mini Clusters for MapReduce

Mini clusters usually contain testing components from a Hadoop project itself. These are clusters for
MapReduce Job handling and HDFS which are all run within a same process. In Spring Hadoop
mini clusters are implementing interface HadoopCluster which provides methods for lifecycle
and configuration. Spring Hadoop provides transitive maven dependencies against different Hadoop
distributions and thus mini clusters are started using different implementations. This is mostly because
we want to support HadoopV1 and HadoopV2 at a same time. All this is handled automatically at runtime
so everything should be transparent to the end user.

public interface HadoopCluster {

 Configuration getConfiguration();

 void start() throws Exception;

 void stop();

 FileSystem getFileSystem() throws IOException;

}

Currently one implementation named StandaloneHadoopCluster exists which supports simple cluster
type where a number of nodes can be defined and then all the nodes will contain utilities for MapReduce
Job handling and HDFS.

There are few ways how this cluster can be started depending on a use case. It
is possible to use StandaloneHadoopCluster directly or configure and start it through
HadoopClusterFactoryBean. Existing HadoopClusterManager is used in unit tests to cache
running clusters.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 78

Note

It's advisable not to use HadoopClusterManager outside of tests because literally it is using
static fields to cache cluster references. This is a same concept used in Spring Test order to
cache application contexts between the unit tests within a jvm.

<bean id="hadoopCluster" class="org.springframework.data.hadoop.test.support.HadoopClusterFactoryBean">

 <property name="clusterId" value="HadoopClusterTests"/>

 <property name="autoStart" value="true"/>

 <property name="nodes" value="1"/>

</bean>

Example above defines a bean named hadoopCluster using a factory bean
HadoopClusterFactoryBean. It defines a simple one node cluster which is started automatically.

Configuration

Spring Hadoop components usually depend on Hadoop configuration which is then wired into these
components during the application context startup phase. This was explained in previous chapters so
we don't go through it again. However this is now a catch-22 because we need the configuration for the
context but it is not known until mini cluster has done its startup magic and prepared the configuration
with correct values reflecting current runtime status of the cluster itself. Solution for this is to use other
bean named ConfigurationDelegatingFactoryBean which will simply delegate the configuration
request into the running cluster.

<bean id="hadoopConfiguredConfiguration" class="org.springframework.data.hadoop.test.support.ConfigurationDelegatingFactoryBean">

 <property name="cluster" ref="hadoopCluster"/>

</bean>

<hdp:configuration id="hadoopConfiguration" configuration-

ref="hadoopConfiguredConfiguration"/>

In the above example we created a bean named hadoopConfiguredConfiguration using
ConfigurationDelegatingFactoryBean which simple delegates to hadoopCluster bean.
Returned bean hadoopConfiguredConfiguration is type of Hadoop's Configuration object so it could
be used as it is.

Latter part of the example show how Spring Hadoop namespace is used to create another
Configuration object which is using hadoopConfiguredConfiguration as a reference. This scenario
would make sense if there is a need to add additional configuration options into running configuration
used by other components. Usually it is suiteable to use cluster prepared configuration as it is.

Simplified Testing

It is perfecly all right to create your tests from scratch and for example create the cluster manually and
then get the runtime configuration from there. This just needs some boilerplate code in your context
configuration and unit test lifecycle.

Spring Hadoop adds additional facilities for the testing to make all this even easier.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 79

@RunWith(SpringJUnit4ClassRunner.class)

public abstract class AbstractHadoopClusterTests implements ApplicationContextAware {

 ...

}

@ContextConfiguration(loader=HadoopDelegatingSmartContextLoader.class)

@MiniHadoopCluster

public class ClusterBaseTestClassTests extends AbstractHadoopClusterTests {

 ...

}

Above example shows the AbstractHadoopClusterTests and how
ClusterBaseTestClassTests is prepared to be aware of a mini cluster.
HadoopDelegatingSmartContextLoader offers same base functionality as the default
DelegatingSmartContextLoader in a spring-test package. One additional thing what
HadoopDelegatingSmartContextLoader does is to automatically handle running clusters and
inject Configuration into the application context.

@MiniHadoopCluster(configName="hadoopConfiguration", clusterName="hadoopCluster", nodes=1,

 id="default")

Generally @MiniHadoopCluster annotation allows you to define injected bean name for mini cluster,
its Configurations and a number of nodes you like to have in a cluster.

Spring Hadoop testing is dependant of general facilities of Spring Test framework meaning that
everything what is cached during the test are reuseable withing other tests. One need to understand that
if Hadoop mini cluster and its Configuration is injected into an Application Context, caching happens
on a mercy of a Spring Testing meaning if a test Application Context is cached also mini cluster instance
is cached. While caching is always prefered, one needs to understant that if tests are expecting vanilla
environment to be present, test context should be dirtied using @DirtiesContext annotation.

Wordcount Example

Let's study a proper example of existing MapReduce Job which is executed and tested using Spring
Hadoop. This example is the Hadoop's classic wordcount. We don't go through all the details of this
example because we want to concentrate on testing specific code and configuration.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 80

<context:property-placeholder location="hadoop.properties" />

<hdp:job id="wordcountJob"

 input-path="${wordcount.input.path}"

 output-path="${wordcount.output.path}"

 libs="file:build/libs/mapreduce-examples-wordcount-*.jar"

 mapper="org.springframework.data.hadoop.examples.TokenizerMapper"

 reducer="org.springframework.data.hadoop.examples.IntSumReducer" />

<hdp:script id="setupScript" location="copy-files.groovy">

 <hdp:property name="localSourceFile" value="data/nietzsche-chapter-1.txt" />

 <hdp:property name="inputDir" value="${wordcount.input.path}" />

 <hdp:property name="outputDir" value="${wordcount.output.path}" />

</hdp:script>

<hdp:job-runner id="runner"

 run-at-startup="false"

 kill-job-at-shutdown="false"

 wait-for-completion="false"

 pre-action="setupScript"

 job-ref="wordcountJob" />

In above configuration example we can see few differences with the actual runtime configuration. Firstly
you can see that we didn't specify any kind of configuration for hadoop. This is because it's is injected
automatically by testing framework. Secondly because we want to explicitely wait the job to be run and
finished, kill-job-at-shutdown and wait-for-completion are set to false.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 81

@ContextConfiguration(loader=HadoopDelegatingSmartContextLoader.class)

@MiniHadoopCluster

public class WordcountTests extends AbstractMapReduceTests {

 @Test

 public void testWordcountJob() throws Exception {

 // run blocks and throws exception if job failed

 JobRunner runner = getApplicationContext().getBean("runner", JobRunner.class);

 Job wordcountJob = getApplicationContext().getBean("wordcountJob", Job.class);

 runner.call();

 JobStatus finishedStatus = waitFinishedStatus(wordcountJob, 60, TimeUnit.SECONDS);

 assertThat(finishedStatus, notNullValue());

 // get output files from a job

 Path[] outputFiles = getOutputFilePaths("/user/gutenberg/output/word/");

 assertEquals(1, outputFiles.length);

 assertThat(getFileSystem().getFileStatus(outputFiles[0]).getLen(), greaterThan(0l));

 // read through the file and check that line with

 // "themselves 6" was found

 boolean found = false;

 InputStream in = getFileSystem().open(outputFiles[0]);

 BufferedReader reader = new BufferedReader(new InputStreamReader(in));

 String line = null;

 while ((line = reader.readLine()) != null) {

 if (line.startsWith("themselves")) {

 assertThat(line, is("themselves\t6"));

 found = true;

 }

 }

 reader.close();

 assertThat("Keyword 'themselves' not found", found);

 }

}

In above unit test class we simply run the job defined in xml, explicitely wait it to finish and then check
the output content from HDFS by searching expected strings.

11.2 Testing Yarn

Mini Clusters for Yarn

Mini cluster usually contain testing components from a Hadoop project itself. These are
MiniYARNCluster for Resource Manager and MiniDFSCluster for Datanode and Namenode
which are all run within a same process. In Spring Hadoop mini clusters are implementing interface
YarnCluster which provides methods for lifecycle and configuration.

public interface YarnCluster {

 Configuration getConfiguration();

 void start() throws Exception;

 void stop();

 File getYarnWorkDir();

}

Currently one implementation named StandaloneYarnCluster exists which supports simple cluster
type where a number of nodes can be defined and then all the nodes will have Yarn Node Manager and
Hdfs Datanode, additionally a Yarn Resource Manager and Hdfs Namenode components are started.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 82

There are few ways how this cluster can be started depending on a use case. It is possible to use
StandaloneYarnCluster directly or configure and start it through YarnClusterFactoryBean.
Existing YarnClusterManager is used in unit tests to cache running clusters.

Note

It's advisable not to use YarnClusterManager outside of tests because literally it is using static
fields to cache cluster references. This is a same concept used in Spring Test order to cache
application contexts between the unit tests within a jvm.

<bean id="yarnCluster" class="org.springframework.yarn.test.support.YarnClusterFactoryBean">

 <property name="clusterId" value="YarnClusterTests"/>

 <property name="autoStart" value="true"/>

 <property name="nodes" value="1"/>

</bean>

Example above defines a bean named yarnCluster using a factory bean YarnClusterFactoryBean.
It defines a simple one node cluster which is started automatically. Cluster working directories would
then exist under below paths:

target/YarnClusterTests/

target/YarnClusterTests-dfs/

Note

We rely on base classes from a Hadoop distribution and target base directory is hardcoded in
Hadoop and is not configurable.

Configuration

Spring Yarn components usually depend on Hadoop configuration which is then wired into these
components during the application context startup phase. This was explained in previous chapters so
we don't go through it again. However this is now a catch-22 because we need the configuration for the
context but it is not known until mini cluster has done its startup magic and prepared the configuration
with correct values reflecting current runtime status of the cluster itself. Solution for this is to use other
factory bean class named ConfigurationDelegatingFactoryBean which will simple delegate the
configuration request into the running cluster.

<bean id="yarnConfiguredConfiguration" class="org.springframework.yarn.test.support.ConfigurationDelegatingFactoryBean">

 <property name="cluster" ref="yarnCluster"/>

</bean>

<yarn:configuration id="yarnConfiguration" configuration-

ref="yarnConfiguredConfiguration"/>

In the above example we created a bean named yarnConfiguredConfiguration using
ConfigurationDelegatingFactoryBean which simple delegates to yarnCluster bean. Returned
bean yarnConfiguredConfiguration is type of Hadoop's Configuration object so it could be used as
it is.

Latter part of the example show how Spring Yarn namespace is used to create another Configuration
object which is using yarnConfiguredConfiguration as a reference. This scenario would make sense
if there is a need to add additional configuration options into running configuration used by other
components. Usually it is suiteable to use cluster prepared configuration as it is.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 83

Simplified Testing

It is perfecly all right to create your tests from scratch and for example create the cluster manually and
then get the runtime configuration from there. This just needs some boilerplate code in your context
configuration and unit test lifecycle.

Spring Hadoop adds additional facilities for the testing to make all this even easier.

@RunWith(SpringJUnit4ClassRunner.class)

public abstract class AbstractYarnClusterTests implements ApplicationContextAware {

 ...

}

@ContextConfiguration(loader=YarnDelegatingSmartContextLoader.class)

@MiniYarnCluster

public class ClusterBaseTestClassTests extends AbstractYarnClusterTests {

 ...

}

Above example shows the AbstractYarnClusterTests and how ClusterBaseTestClassTests
is prepared to be aware of a mini cluster. YarnDelegatingSmartContextLoader offers same
base functionality as the default DelegatingSmartContextLoader in a spring-test package.
One additional thing what YarnDelegatingSmartContextLoader does is to automatically handle
running clusters and inject Configuration into the application context.

@MiniYarnCluster(configName="yarnConfiguration", clusterName="yarnCluster", nodes=1,

 id="default")

Generally @MiniYarnCluster annotation allows you to define injected bean names for mini cluster,
its Configurations and a number of nodes you like to have in a cluster.

Spring Hadoop Yarn testing is dependant of general facilities of Spring Test framework meaning that
everything what is cached during the test are reuseable withing other tests. One need to understand that
if Hadoop mini cluster and its Configuration is injected into an Application Context, caching happens
on a mercy of a Spring Testing meaning if a test Application Context is cached also mini cluster instance
is cached. While caching is always prefered, one needs to understant that if tests are expecting vanilla
environment to be present, test context should be dirtied using @DirtiesContext annotation.

Multi Context Example

Let's study a proper example of existing Spring Yarn application and how this is tested during the
build process. Multi Context Example is a simple Spring Yarn based application which simply launches
Application Master and four Containers and withing those containers a custom code is executed. In this
case simply a log message is written.

In real life there are different ways to test whether Hadoop Yarn application execution has been succesful
or not. The obvious method would be to check the application instance execution status reported by
Hadoop Yarn. Status of the execution doesn't always tell the whole truth so i.e. if application is about to
write something into HDFS as an output that could be used to check the proper outcome of an execution.

This example doesn't write anything into HDFS and anyway it would be out of scope of this document
for obvious reason. It is fairly straightforward to check file content from HDFS. One other interesting
method is simply to check to application log files that being the Application Master and Container logs.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 84

Test methods can check exceptions or expected log entries from a log files to determine whether test
is succesful or not.

In this chapter we don't go through how Multi Context Example is configured and what it actually does,
for that read the documentation about the examples. However we go through what needs to be done
order to test this example application using testing support offered by Spring Hadoop.

In this example we gave instructions to copy library dependencies into Hdfs and then those entries were
used within resouce localizer to tell Yarn to copy those files into Container working directory. During the
unit testing when mini cluster is launched there are no files present in Hdfs because cluster is initialized
from scratch. Furtunalety Spring Hadoop allows you to copy files into Hdfs during the localization process
from a local file system where Application Context is executed. Only thing we need is the actual library
files which can be assembled during the build process. Spring Hadoop Examples build system rely on
Gradle so collecting dependencies is an easy task.

<yarn:localresources>

 <yarn:hdfs path="/app/multi-context/*.jar"/>

 <yarn:hdfs path="/lib/*.jar"/>

</yarn:localresources>

Above configuration exists in application-context.xml and appmaster-context.xml files. This is a normal
application configuration expecting static files already be present in Hdfs. This is usually done to
minimize latency during the application submission and execution.

<yarn:localresources>

 <yarn:copy src="file:build/dependency-libs/*" dest="/lib/"/>

 <yarn:copy src="file:build/libs/*" dest="/app/multi-context/"/>

 <yarn:hdfs path="/app/multi-context/*.jar"/>

 <yarn:hdfs path="/lib/*.jar"/>

</yarn:localresources>

Above example is from MultiContextTest-context.xml which provides the runtime context configuration
talking with mini cluster during the test phase.

When we do context configuration for YarnClient during the testing phase all we need to do is to add
copy elements which will transfer needed libraries into Hdfs before the actual localization process will
fire up. When those files are copied into Hdfs running in a mini cluster we're basically in a same point
if using a real Hadoop cluster with existing files.

Note

Running tests which depends on copying files into Hdfs it is mandatory to use build system which
is able to prepare these files for you. You can't do this within IDE's which have its own ways to
execute unit tests.

The complete example of running the test, checking the application execution status and finally checking
the expected state of log files:

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 85

@ContextConfiguration(loader=YarnDelegatingSmartContextLoader.class)

@MiniYarnCluster

public class MultiContextTests extends AbstractYarnClusterTests {

 @Test

 @Timed(millis=70000)

 public void testAppSubmission() throws Exception {

 YarnApplicationState state = submitApplicationAndWait();

 assertNotNull(state);

 assertTrue(state.equals(YarnApplicationState.FINISHED));

 File workDir = getYarnCluster().getYarnWorkDir();

 PathMatchingResourcePatternResolver resolver = new

 PathMatchingResourcePatternResolver();

 String locationPattern = "file:" + workDir.getAbsolutePath() + "/**/*.std*";

 Resource[] resources = resolver.getResources(locationPattern);

 // appmaster and 4 containers should

 // make it 10 log files

 assertThat(resources, notNullValue());

 assertThat(resources.length, is(10));

 for (Resource res : resources) {

 File file = res.getFile();

 if (file.getName().endsWith("stdout")) {

 // there has to be some content in stdout file

 assertThat(file.length(), greaterThan(0l));

 if (file.getName().equals("Container.stdout")) {

 Scanner scanner = new Scanner(file);

 String content = scanner.useDelimiter("\\A").next();

 scanner.close();

 // this is what container will log in stdout

 assertThat(content, containsString("Hello from MultiContextBeanExample"));

 }

 } else if (file.getName().endsWith("stderr")) {

 // can't have anything in stderr files

 assertThat(file.length(), is(0l));

 }

 }

 }

}

11.3 Testing Boot Based Applications

In previous sections we showed a generic concepts of unit testing in Spring Hadoop and Spring YARN.
We also have a first class support for testing Spring Boot based applications made for YARN.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 86

@MiniYarnCluster

@ContextConfiguration(loader = YarnDelegatingSmartContextLoader.class, classes =

 EmptyConfig.class)

public class AppTests extends AbstractBootYarnClusterTests {

 @Test

 public void testApp() throws Exception {

 ApplicationInfo info = submitApplicationAndWait(ClientApplication.class, new

 String[0]);

 assertThat(info.getYarnApplicationState(), is(YarnApplicationState.FINISHED));

 List<Resource> resources = ContainerLogUtils.queryContainerLogs(

 getYarnCluster(), info.getApplicationId());

 assertThat(resources, notNullValue());

 assertThat(resources.size(), is(4));

 for (Resource res : resources) {

 File file = res.getFile();

 String content = ContainerLogUtils.getFileContent(file);

 if (file.getName().endsWith("stdout")) {

 assertThat(file.length(), greaterThan(0l));

 if (file.getName().equals("Container.stdout")) {

 assertThat(content, containsString("Hello from HelloPojo"));

 }

 } else if (file.getName().endsWith("stderr")) {

 assertThat("stderr with content: " + content, file.length(), is(0l));

 }

 }

 }

}

Let’s go through step by step what’s happening in this JUnit class. As already mentioned earlier we don’t
need any existing or running Hadoop instances, instead testing framework from Spring YARN provides
an easy way to fire up a mini cluster where your tests can be run in an isolated environment.

• @ContextConfiguration together with YarnDelegatingSmartContextLoader tells Spring to
prepare a testing context for a mini cluster. EmptyConfig is a simple helper class to use if there are
no additional configuration for tests.

• @MiniYarnCluster tells Spring to start a Hadoop’s mini cluster having components for HDFS and
YARN. Hadoop’s configuration from this minicluster is automatically injected into your testing context.

• AbstractBootYarnClusterTests is a class containing a lot of base functionality what you need
in your tests.

Then it’s time to deploy the application into a running minicluster

• submitApplicationAndWait() method simply runs your ClientApplication and expects it
to an application deployment. On default it will wait 60 seconds an application to finish and returns
an current state.

• We make sure that we have a correct application state

We use ContainerLogUtils to find our container logs files from a minicluster.

• We assert count of a log files

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 87

• We expect some specified content from log file

• We expect stderr files to be empty

Part III. Developing Spring for
Apache Hadoop Applications

This section provides some guidance on how one can use the Spring for Apache Hadoop project in
conjunction with other Spring projects, starting with the Spring Framework itself, then Spring Batch, and
then Spring Integration.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 89

12. Guidance and Examples

Spring for Apache Hadoop provides integration with the Spring Framework to create and run Hadoop
MapReduce, Hive, and Pig jobs as well as work with HDFS and HBase. If you have simple needs to
work with Hadoop, including basic scheduling, you can add the Spring for Apache Hadoop namespace
to your Spring based project and get going quickly using Hadoop.

As the complexity of your Hadoop application increases, you may want to use Spring Batch to regain
on the complexity of developing a large Hadoop application. Spring Batch provides an extension to the
Spring programming model to support common batch job scenarios characterized by the processing of
large amounts of data from flat files, databases and messaging systems. It also provides a workflow
style processing model, persistent tracking of steps within the workflow, event notification, as well
as administrative functionality to start/stop/restart a workflow. As Spring Batch was designed to be
extended, Spring for Apache Hadoop plugs into those extensibilty points, allowing for Hadoop related
processing to be a first class citizen in the Spring Batch processing model.

Another project of interest to Hadoop developers is Spring Integration. Spring Integration provides an
extension of the Spring programming model to support the well-known Enterprise Integration Patterns. It
enables lightweight messaging within Spring-based applications and supports integration with external
systems via declarative adapters. These adapters are of particular interest to Hadoop developers, as
they directly support common Hadoop use-cases such as polling a directory or FTP folder for the
presence of a file or group of files. Then once the files are present, a message is sent internally to the
application to do additional processing. This additional processing can be calling a Hadoop MapReduce
job directly or starting a more complex Spring Batch based workflow. Similarly, a step in a Spring Batch
workflow can invoke functionality in Spring Integration, for example to send a message though an email
adapter.

No matter if you use the Spring Batch project with the Spring Framework by itself or with additional
extentions such as Spring Batch and Spring Integration that focus on a particular domain, you will benefit
from the core values that Spring projects bring to the table, namely enabling modularity, reuse and
extensive support for unit and integration testing.

12.1 Scheduling

Spring Batch integrates with a variety of job schedulers and is not a scheduling framework. There
are many good enterprise schedulers available in both the commercial and open source spaces such
as Quartz, Tivoli, Control-M, etc. It is intended to work in conjunction with a scheduler, not replace
a scheduler. As a lightweight solution, you can use Spring's built in scheduling support that will give
you cron-like and other basic scheduling trigger functionality. See the Task Execution and Scheduling
documention for more info. A middle ground it to use Spring's Quartz integration, see Using the
OpenSymphony Quartz Scheduler for more information. The Spring Batch distribution contains an
example, but this documentation will be updated to provide some more directed examples with Hadoop,
check for updates on the main web site of Spring for Apache Hadoop.

12.2 Batch Job Listeners

Spring Batch lets you attach listeners at the job and step levels to perform additional processing. For
example, at the end of a job you can perform some notification or perhaps even start another Spring
Batch job. As a brief example, implement the interface JobExecutionListener and configure it into the
Spring Batch job as shown below.

http://www.eaipatterns.com
http://static.springsource.org/spring-batch/faq.html#schedulers
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/scheduling.html#scheduling-quartz
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/scheduling.html#scheduling-quartz
http://www.springsource.org/spring-data/hadoop
http://static.springsource.org/spring-batch/apidocs/org/springframework/batch/core/JobExecutionListener.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 90

<batch:job id="job1">

 <batch:step id="import" next="wordcount">

 <batch:tasklet ref="script-tasklet"/>

 </batch:step>

 <batch:step id="wordcount">

 <batch:tasklet ref="wordcount-tasklet" />

 </batch:step>

 <batch:listeners>

 <batch:listener ref="simpleNotificatonListener"/>

 </batch:listeners>

</batch:job>

<bean id="simpleNotificatonListener" class="com.mycompany.myapp.SimpleNotificationListener"/

>

Part IV. Spring for Apache
Hadoop sample applications

Document structure
The sample applications have been moved into their own repository so they can be developed
independently of the Spring for Apache Hadoop release cycle. They can be found on GitHub https://
github.com/SpringSource/spring-hadoop-samples.

The wiki page for the Spring for Apache Hadoop project has more documentation for building and
running the examples and there is also some instructions in the README file of each example.

https://github.com/SpringSource/spring-hadoop-samples
https://github.com/SpringSource/spring-hadoop-samples
https://github.com/SpringSource/spring-hadoop/wiki/Sample-Projects

Part V. Other Resources
In addition to this reference documentation, there are a number of other resources that may help you
learn how to use Hadoop and Spring framework. These additional, third-party resources are enumerated
in this section.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 93

13. Useful Links

• Spring for Apache Hadoop - Home Page

• Spring Data - Home Page

• Spring Data Book - Home Page

• SpringSource - Blog

• Apache Hadoop - Home Page

• Pivotal HD - Home Page

• Spring Hadoop Team on Twitter - Costin

http://www.springframework.org/spring-data/hadoop
http://www.springframework.org/spring-data
http://shop.oreilly.com/product/0636920024767.do
http://blog.springsource.com/
http://hadoop.apache.org/
http://gopivotal.com/pivotal-products/pivotal-data-fabric/pivotal-hd/
http://twitter.com/costinl

Part VI. Appendices

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 95

Appendix A. Using Spring for Apache
Hadoop with Amazon EMR
A popular option for creating on-demand Hadoop cluster is Amazon Elastic Map Reduce or Amazon
EMR service. The user can through the command-line, API or a web UI configure, start, stop and manage
a Hadoop cluster in the cloud without having to worry about the actual set-up or hardware resources used
by the cluster. However, as the setup is different then a locally available cluster, so does the interaction
between the application that want to use it and the target cluster. This section provides information on
how to setup Amazon EMR with Spring for Apache Hadoop so the changes between a using a local,
pseudo-distributed or owned cluster and EMR are minimal.

Important
This chapter assumes the user is familiar with Amazon EMR and the cost associated with it and
its related services - we strongly recommend getting familiar with the official EMR documentation.

One of the big differences when using Amazon EMR versus a local cluster is the lack of access of the file
system server and the job tracker. This means submitting jobs or reading and writing to the file-system
isn't available out of the box - which is understandable for security reasons. If the cluster would be open,
if could be easily abused while charging its rightful owner. However, it is fairly straight-forward to get
access to both the file system and the job tracker so the deployment flow does not have to change.

Amazon EMR allows clusters to be created through the management console, through the API or the
command-line. This documentation will focus on the command-line but the setup is not limited to it - feel
free to adjust it according to your needs or preference. Make sure to properly setup the credentials so
that the S3 file-system can be properly accessed.

A.1 Start up the cluster

Important
Make sure you read the whole chapter before starting up the EMR cluster

A nice feature of Amazon EMR is starting a cluster for an indefinite period. That is rather then submitting
a job and creating the cluster until it finished, one can create a cluster (along side a job) but request to be
kept alive even if there is no work for it. This is easily done through the --create --alive parameters:

./elastic-mapreduce --create --alive

The output will be similar to this:

Created job flowJobFlowID

One can verify the results in the console through the list command or through the web management
console. Depending on the cluster setup and the user account, the Hadoop cluster initialization should
be complete anywhere between 1 to 5 minutes. The cluster is ready once its state changes from
STARTING/PROVISIONING to WAITING.

Note
By default, each newly created cluster has a new public IP that is not typically reused. To simplify
the setup, one can use Amazon Elastic IP, that is a static, predefined IP, so that she knows

http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/pricing/
http://aws.amazon.com/documentation/elasticmapreduce/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/SignUp.html#emr-gsg-install-cli
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/SignUp.html#ConfigCredentials
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/Essentials.html#emr-gsg-creating-a-job-flow
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/using-instance-addressing.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 96

before-hand the cluster address. Refer to this section inside the EMR documentation for more
information. As an alternative, one can use the EC2 API in combinatioon with the EMR API
to retrieve the private IP of address of the master node of her cluster or even programatically
configure and start the EMR cluster on demand without having to hard-code the private IPs.

However, to remotely access the cluster from outside (as oppose to just running a jar within the cluster),
one needs to tweak the cluster settings just a tiny bit - as mentioned below.

A.2 Open an SSH Tunnel as a SOCKS proxy

Due to security reasons, the EMR cluster is not exposed to the outside world and is bound only to
the machine internal IP. While you can open up the firewall to allow access (note that you also have
to do some port forwarding since again, Hadoop is bound to the cluster internal IP rather then all
available network cards), it is recommended to use a SSH tunnel instead. The SSH tunnel provides a
secure connection between your machine on the cluster preventing any snooping or man-in-the-middle
attacks. Further more it is quite easy to automate and be executed along side the cluster creation,
programmatically or through some script. The Amazon EMR docs have dedicated sections on SSH
Setup and Configuration and on opening a SSH Tunnel to the master node so please refer to them.
Make sure to setup the SSH tunnel as a SOCKS proxy, that is to redirect all calls to remote ports - this is
crucial when working with Hadoop (or other applications) that use a range of ports for communication.

A.3 Configuring Hadoop to use a SOCKS proxy

Once the tunnel or the SOCKS proxy is in place, one needs to configure Hadoop to use it. By
default, Hadoop makes connections directly to its target which is fine for regular use, but in this
case, we need to use the SOCKS proxy to pass through the firewall. One can do so through the
hadoop.rpc.socket.factory.class.default and hadoop.socks.server properties:

hadoop.rpc.socket.factory.class.default=org.apache.hadoop.net.SocksSocketFactory

this configure assumes the SOCKS proxy is opened on local port 6666

hadoop.socks.server=localhost:6666

At this point, all Hadoop communication will go through the SOCKS proxy at localhost on port 6666.
The main advantage is that all the IPs, domain names, ports are resolved on the 'remote' side of the
proxy so one can just start using the remote cluster IPs. However, only the Hadoop client needs to use
the proxy - to avoid having the client configuration be read by the cluster nodes (which would mean
the nodes would try to use a SOCKS proxy on the remote side as well), make sure the master node
(and thus all its nodes) hadoop-site.xml marks the default network setting as final (see this blog
post for a detailed explanation):

<property>

 <name>hadoop.rpc.socket.factory.class.default</name>

 <value>org.apache.hadoop.net.StandardSocketFactory</value>

 <final>true</final>

</property>

Simply pass this configuration (and other options that you might have) to the master node using
a bootstrap action. One can find this file ready for usage, already deployed to Amazon S3 at s3://
dist.springframework.org/release/SHDP/emr-settings.xml. Simply pass the file to command-line used
for firing up the EMR cluster:

http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/environmentconfig_eip.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/API/Welcome.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/SignUp.html#emr-gsg-ssh-setup-config
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/SignUp.html#emr-gsg-ssh-setup-config
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/emr-ssh-tunnel.html
http://blog.cloudera.com/blog/2008/12/securing-a-hadoop-cluster-through-a-gateway/
http://blog.cloudera.com/blog/2008/12/securing-a-hadoop-cluster-through-a-gateway/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/Bootstrap.html
http://dist.springframework.org.s3.amazonaws.com/release/SHDP/emr-settings.xml
http://dist.springframework.org.s3.amazonaws.com/release/SHDP/emr-settings.xml

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 97

./elastic-mapreduce --create --alive --bootstrap-action s3://elasticmapreduce/bootstrap-

actions/configure-hadoop --args "--site-config-file,s3://dist.springframework.org/release/

SHDP/emr-settings.xml"

Note
For security reasons, we recommend copying the 'emr-settings.xml' file to one of your S3 buckets
and use that location instead.

A.4 Accessing the file-system

Amazon EMR offers Simple Storage Service, also known as S3 service, as means for durable read-
write storage for EMR. While the cluster is active, one can write additional data to HDFS but unless S3
is used, the data will be lost once the cluster shuts down. Note that when using an S3 location for the
first time, the proper access permissions needs to be setup. Accessing S3 is easier then the job tracker
- in fact the Hadoop distribution provides not one but two file-system implementations for S3:

Table A.1. Hadoop S3 File Systems

Name URI Prefix Access Method Description

S3 Native FS s3n:// S3 Native Native access to S3. The
recommended file-system as the
data is read/written in its native
format and can be used not just

by Hadoop but also other systems
without any translation. The down-

side is that it does not support
large files (5GB) out of the box
(though there is a work-around

through the multipart upload feature).

S3 Block FS s3:// Block Based The files are stored as blocks (similar
to the underlying structure in HDFS).

This is somewhat more efficient in
terms of renames and file sizes but
requires a dedicated bucket and is

not inter-operable with other S3 tools.

To access the data in S3 one can either use an HDFS file-system on top of it, which requires no extra
setup, or copy the data from S3 to the HDFS cluster using manual tools, distcp with S3, its dedicated
version s3distcp, Hadoop DistributedCache (which SHDP supports as well) or third-party tools such as
s3cmd.

For newbies and development we recommend accessing the S3 directly through the File-System
abstraction as in most cases, its performance is close to that of the data inside the native HDFS. When
dealing with data that is read multiple times, copying the data from S3 locally inside the cluster might
improve performance but we advice running some performance tests first.

A.5 Shutting down the cluster

Once the cluster is no longer needed for a longer period of time, one can shut it down fairly straight
forward:

http://aws.amazon.com/s3/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/emr-s3-acls.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/FileSystemConfig.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/Config_Multipart.html#Config_Multipart.title
http://wiki.apache.org/hadoop/AmazonS3#Running_bulk_copies_in_and_out_of_S3
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/UsingEMR_s3distcp.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/DistributedCache.html
http://s3tools.org/s3cmd
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/CleanUp.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/CleanUp.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 98

./elastic-mapreduce --terminate JobFlowID

Note that the EMR cluster is billed by the hour and since the time is rounded upwards, starting and
shutting down the cluster repeateadly might end up being more expensive then just keeping it alive.
Consult the documentation for more information.

A.6 Example configuration

To put it all together, to use Amazon EMR one can use the following work-flow with SHDP:

• Start an alive cluster using the bootstrap action to guarantees the cluster does NOT use a socks
proxy. Open a SSH tunnel, in SOCKS mode, to the EMR cluster.
Start the cluster for an indefinite period. Once the server is up, create an SSH tunnel,in SOCKS mode,
to the remote cluster. This allows the client to communicate directly with the remote nodes as if they
are part of the same network.This step does not have to be repeated unless the cluster is terminated
- one can (and should) submit multiple jobs to it.

• Configure SHDP

• Once the cluster is up and the SSH tunnel/SOCKS proxy is in place, point SHDP to the new
configuration. The example below shows how the configuration can look like:
hadoop-context.xml

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:hdp="http://www.springframework.org/schema/hadoop"

 xsi:schemaLocation="http://www.springframework.org/schema/beans http://

www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/context http://www.springframework.org/schema/

context/spring-context.xsd

 http://www.springframework.org/schema/hadoop http://www.springframework.org/schema/

hadoop/spring-hadoop.xsd">

<!-- property placeholder backed by hadoop.properties -->

<context:property-placeholder location="hadoop.properties"/>

<!-- Hadoop FileSystem using a placeholder and emr.properties -->

<hdp:configuration properties-location="emr.properties" file-system-uri="${hd.fs}" job-

tracker-uri="${hd.jt}/>

hadoop.properties

Amazon EMR

S3 bucket backing the HDFS S3 fs

hd.fs=s3n://my-working-bucket/

job tracker pointing to the EMR internal IP

hd.jt=10.123.123.123:9000

emr.properties

http://aws.amazon.com/elasticmapreduce/faqs/#billing-2

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 99

Amazon EMR

Use a SOCKS proxy

hadoop.rpc.socket.factory.class.default=org.apache.hadoop.net.SocksSocketFactory

hadoop.socks.server=localhost:6666

S3 credentials

for s3:// uri

fs.s3.awsAccessKeyId=XXXXXXXXXXXXXXXXXXXX

fs.s3.awsSecretAccessKey=XX

for s3n:// uri

fs.s3n.awsAccessKeyId=XXXXXXXXXXXXXXXXXXXX

fs.s3n.awsSecretAccessKey=XX

Spring Hadoop is now ready to talk to your Amazon EMR cluster. Try it out!

Note
The inquisitive reader might wonder why the example above uses two properties file,
hadoop.properties and emr.properties instead of just one. While one file is enough,
the example tries to isolate the EMR configuration into a separate configuration (especially as
it contains security credentials).

• Shutdown the tunnel and the cluster

Once the jobs submitted are completed, unless new jobs are shortly scheduled, one can shutdown
the cluster. Just like the first step, this is optional. Again, make sure you understand the billing process
first.

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 100

Appendix B. Using Spring for Apache
Hadoop with EC2/Apache Whirr
As mentioned above, those interested in using on-demand Hadoop clusters can use Amazon Elastic
Map Reduce (or Amazon EMR) service. An alternative to that, for those that want maximum control over
the cluster, is to use Amazon Elastic Compute Cloud or EC2. EC2 is in fact the service on top of which
Amazon EMR runs and that is, a resizable, configurable compute capacity in the cloud.

Important
This chapter assumes the user is familiar with Amazon EC2 and the cost associated with it and
its related services - we strongly recommend getting familiar with the official EC2 documentation.

Just like Amazon EMR, using EC2 means the Hadoop cluster (or whatever service you run on it) runs
in the cloud and thus 'development' access to it, is different then when running the service in local
network. There are various tips and tools out there that can handle the initial provisioning and configure
the access to the cluster. Such a solution is Apache Whirr which is a set of libraries for running cloud
services. Though it provides a Java API as well, one can easily configure, start and stop services from
the command-line.

B.1 Setting up the Hadoop cluster on EC2 with Apache Whirr

The Whirr documentation provides more detail on how to interact with the various cloud providers out-
there through Whirr. In case of EC2, one needs Java 6 (which is required by Apache Hadoop), an
account on EC2 and an SSH client (available out of the box on *nix platforms and freely downloadable
(such as PuTTY) on Windows). Since Whirr does most of the heavy lifting, one needs to tell Whirr
what Cloud provider and account is used, either by setting some environment properties or through the
~/.whirr/credentials file:

whirr.provider=aws-ec2

whirr.identity=your-aws-key

whirr.credential=your-aws-secret

Now instruct Whirr to configure a Hadoop cluster on EC2 - just add the following properties to a
configuration file (say hadoop.properties):

whirr.cluster-name=myhadoopcluster

whirr.instance-templates=1 hadoop-jobtracker+hadoop-namenode,1 hadoop-datanode+hadoop-

tasktracker

whirr.provider=aws-ec2

whirr.private-key-file=${sys:user.home}/.ssh/id_rsa

whirr.public-key-file=${sys:user.home}/.ssh/id_rsa.pub

The configuration above assumes the SSH keys for your user have been already generated. Now start
your Hadoop cluster:

bin/whirr launch-cluster --config hadoop.properties

As with Amazon EMR, one cannot correct to the Hadoop cluster from outside - however Whirr provides
out of the box the feature to create an SSH tunnel to create a SOCKS proxy (on port 6666). When

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/documentation/ec2/
http://whirr.apache.org/
http://whirr.apache.org/docs/0.8.1/quick-start-guide.html

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 101

a cluster is created, Whirr creates a script to launch the cluster which may be found in ~/.whirr/
cluster-name. Run it as a follows (in a new terminal window):

~/.whirr/myhadoopcluster/hadoop-proxy.sh

At this point, one can just the SOCKS proxy configuration from the Amazon EMR section to configure
the Hadoop client.

To destroy the cluster, one can use the Amazon EMR console or Whirr itself:

bin/whirr destroy-cluster --config hadoop.properties

Spring Hadoop

2.0.0.M6-hdp20
Spring for Apache Hadoop

Reference Manual 102

Appendix C. Spring for Apache
Hadoop Schema
Spring for Apache Hadoop Schema

FIXME: SHDP SCHEMA LOCATION/NAME CHANGED

	Spring for Apache Hadoop Reference Manual
	Table of Contents
	Preface
	Part I. Introduction
	1. Requirements
	2. Additional Resources

	Part II. Spring and Hadoop
	3. Hadoop Configuration, MapReduce, and Distributed Cache
	3.1 Using the Spring for Apache Hadoop Namespace
	3.2 Configuring Hadoop
	3.3 Creating a Hadoop Job
	Creating a Hadoop Streaming Job

	3.4 Running a Hadoop Job
	Using the Hadoop Job tasklet

	3.5 Running a Hadoop Tool
	Replacing Hadoop shell invocations with tool-runner
	Using the Hadoop Tool tasklet

	3.6 Running a Hadoop Jar
	Using the Hadoop Jar tasklet

	3.7 Configuring the Hadoop DistributedCache
	3.8 Map Reduce Generic Options

	4. Working with the Hadoop File System
	4.1 Configuring the file-system
	4.2 Using HDFS Resource Loader
	4.3 Scripting the Hadoop API
	Using scripts

	4.4 Scripting implicit variables
	Running scripts
	Using the Scripting tasklet

	4.5 File System Shell (FsShell)
	DistCp API

	5. Working with HBase
	5.1 Data Access Object (DAO) Support

	6. Hive integration
	6.1 Starting a Hive Server
	6.2 Using the Hive Thrift Client
	6.3 Using the Hive JDBC Client
	6.4 Running a Hive script or query
	Using the Hive tasklet

	6.5 Interacting with the Hive API

	7. Pig support
	7.1 Running a Pig script
	Using the Pig tasklet

	7.2 Interacting with the Pig API

	8. Using the runner classes
	9. Security Support
	9.1 HDFS permissions
	9.2 User impersonation (Kerberos)

	10. Yarn Support
	10.1 Using the Spring for Apache Yarn Namespace
	10.2 Using the Spring for Apache Yarn JavaConfig
	10.3 Configuring Yarn
	10.4 Local Resources
	10.5 Container Environment
	10.6 Application Client
	10.7 Application Master
	10.8 Application Container
	10.9 Application Master Services
	Basic Concepts
	Using JSON
	Converters

	10.10 Application Master Service
	10.11 Application Master Service Client
	10.12 Using Spring Batch
	Batch Jobs
	Partitioning
	Configuring Master
	Configuring Container

	10.13 Using Spring Boot Application Model
	Auto Configuration
	Application Files
	Application Classpath
	Simple Executable Jar
	Simple Zip Archive

	Container Runners
	Custom Runner

	Resource Localizing
	Container as POJO
	Configuration Properties

	11. Testing Support
	11.1 Testing MapReduce
	Mini Clusters for MapReduce
	Configuration
	Simplified Testing
	Wordcount Example

	11.2 Testing Yarn
	Mini Clusters for Yarn
	Configuration
	Simplified Testing
	Multi Context Example

	11.3 Testing Boot Based Applications

	Part III. Developing Spring for Apache Hadoop Applications
	12. Guidance and Examples
	12.1 Scheduling
	12.2 Batch Job Listeners

	Part IV. Spring for Apache Hadoop sample applications
	Part V. Other Resources
	13. Useful Links

	Part VI. Appendices
	Appendix A. Using Spring for Apache Hadoop with Amazon EMR
	A.1 Start up the cluster
	A.2 Open an SSH Tunnel as a SOCKS proxy
	A.3 Configuring Hadoop to use a SOCKS proxy
	A.4 Accessing the file-system
	A.5 Shutting down the cluster
	A.6 Example configuration

	Appendix B. Using Spring for Apache Hadoop with EC2/Apache Whirr
	B.1 Setting up the Hadoop cluster on EC2 with Apache Whirr

	Appendix C. Spring for Apache Hadoop Schema

