) spring

by Pivotal.

Spring for Apache Hadoop
- Reference Documentation

2.0.3.RELEASE-hdp20

Costin Leau Elasticsearch , Thomas Risberg Pivotal , Janne Valkealahti Pivotal

Copyright © 2011-2014 Spring by Pivotal

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring for Apache Hadoop

Table of Contents

1= 7= Lo %
I 01 oo [N o1 o] o H PP PSPPSR 1
I o [T =10 =T o £ PPN 2
2. AAAItIONAl RESOUITESiieiiiiiiieeeii ettt e et e e et e e e e et e e e eebeneeeene 4
1T o T aTo = U [o I =T [T o JS PN 5
3. Hadoop Configuration, MapReduce, and Distributed Cacheccc.ooiiiiiiiin. 6
3.1. Using the Spring for Apache Hadoop Namespacecovvvveviineiiiiiineeiiiineeeciie 6

G720 @10] 1110 18 [To [F=To 0T o PSP 7

3.3. Creating @ Hadoop JOD ...t 10
Creating a Hadoop Streaming JODc.oiviiiiiiiiii e 11

3.4. RUNning @ Hadoop JODcuuiiiiiiii e 12
Using the Hadoop Job tasklet ... 13

3.5. RUNNINg @ HAdOoOop TOOIc.uuiiiiiii e 13
Replacing Hadoop shell invocations with t 0ol -runnercccocceviiiiiiiieeinns 14

Using the Hadoop Tool taskIetooouiiiiiii e 15

3.6. RUNNING @ HAOOP JAI ...ouiiiiiiiieii e 15
Using the Hadoop Jar taskletcccoouiiiiiiiiiii e 16

3.7. Configuring the Hadoop Di stri butedCacheocoiiiiiiii e, 16

3.8. Map Reduce GeneriC OPLIONScceeuuiiiiiiie ettt eeaaans 17

4. Working with the Hadoop File SYStEM ..o 18
4.1. Configuring the file-SYStEMiii e 18

4.2. USiNg HDFS RESOUICE LOAUETuuiiiiiiiiiieiiiiie ettt 19

4.3. Scripting the Hadoop APl ... e e e 21

L0 LS o IR 1] o] £ T PP 23

4.4, Scripting implicit Variables ... 23
L0] T o To TE=To] 1] o NS 24

Using the Scripting taskIetoo e 24

4.5. File System Shell (FSShell)uiiiiii e 25
DISICP AP it 26

5. Writing and reading data using the Hadoop File Systemccooiiiiiiiiiiiiees 27
5.1, StOre ADSIIACHION ..uuiiiiiiii e 27

LAY 11T R = PN 27

File NAMING .o et e e 27

L1 L= L0 116 1Y 28

PartitioNiNg ...cvveieii e 28

Writer IMplementationsooouiiii e e 32

REAAING DALAeevuiiiiiiii e 32

T 01U A o] L] N 33

Reader IMplementationso 33

L6 To I o Lo [ol PSPPSR 33

5.2. Persisting POJO datasets using Kite SDKc.cooiiiiiiiiiiiiiiicciie e 34
Data FOIMALS ... et e e e et et e eaaeas 34

LU To Y o TP PPTTPPP 34

USING PArQUEL ..eiiiiiii et e e e e e e e e e et e e e e e aneees 35

Configuring the dataset SUPPOITcouiiiiiiiie et 35

WIHtING JAASELS ...t 36

R I=T= (o [oo o F= L= 1] £ 38

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation ii

Spring for Apache Hadoop

Partitioning dataSetScccueiiiiiieiii e 39

6. WOrKIiNg WIth HBASEiieiiiiiiii et et e e e 41
6.1. Data Access Object (DAO) SUPPOIT ...cceuuuiieiiiie ettt 41

4 11V L1 =T = o) o N 43
7.1, Starting @ HIVE SEIVETiiiii e 43

7.2. Using the Hive Thrift CHENT ..o 43

7.3. Using the Hive JDBC ClENLccuuiiii e e e e 44

7.4. RUNNING @ HIVE SCHPL OF QUETY ..eeiiiiiii ettt e e et e eaa e 44
UsinNg the Hive tasKIBt ... 45

7.5. Interacting with the HIVE APl e 45

T [0 JETU o] oL] o S PP PPT 47
8.1. RUNNING @ Pig SCHIPL «.euniiiii e 47
Using the Pig taskIetooeeiiiiii e 48

8.2. Interacting with the Pig AP ... 48

9. USING the TUNNET CIASSESvuiiiiiiiie ettt et e e e e e eens 49
10, SECUITY SUPPOI Lottt et et et e e e e e e e e et e e e e et e e et e e et e eetn e e eanaeean s eeannaaannaees 51
10.1. HDFS PEIMUSSIONSuietneiiieeti ettt e et ettt et e et e et e e et e e et e e et e e ean e e e e eennas 51
10.2. User impersonation (KErberoS)cuuuiiiiiiiiieiiii et 51

BT = 1 S o o T 52
11.1. Using the Spring for Apache Yarn NamesSpacec.ccooeuieiiiiiiiiiiiiiieii e 52
11.2. Using the Spring for Apache Yarn JavaConfigccccoovviiiiiiniiiiiiinci e, 54
5 T o o) To U1 o 2> 55
11.4. LOCAl RESOUICESiieeiiieieet ettt ettt et r e e e e e e s 59
11.5. Container ENVIFONMENTiiuiiiii i e e e e e e et e e e eanas 61
B G TR Y o o] o= 11T I 1 =T o | 62
11.7. APPLICAtION IMASTET ...enitiieii e ean s 65
11.8. ApPPlICatioN CONTAINETcouuuiiiiii ettt e s 67
11.9. Application MaSter SEIVICEScocuuiiiiiiiii it e e e e e e e eeen 67
BASIC CONCEPLS ..eeiiitiieii et ettt e e e et e e et e e e e eaa s 68

USING JSON ettt e ettt e e e et e e b e e e enanns 68

1001 11V7=T 1 (=] £ PP UPPR 69

11.10. Application MASLEI SEIVICEciuuiiiiiei e 69
11.11. Application Master Service CleNtcoouviiiiiiiiii e 70
11.12. USINg SPring BatChiiiiiiii e 72
BaCh JODS ... 72

[Va1 1[o] 11 o o R PP PP UPPPT 74

(7] a1 {To 8T aTe 1Y F= 1] (=] 74

Configuring CONTAINETuiiiit et ea e ean s 75

11.13. Using Spring Boot Application Model ..., 76
Y0 | (o I @o o) o [U] =1 (o] o P 79
APPLICAION FIlES ... e 79
Application ClasSPathocooiiiiiii 80

Simple EXecutable Jarcoooiiiiiii e 80

SIMple ZIp ArCRIVE ... 80

(7] g1 = 11 =Tl = (U o1 1T 81

CUSIOM RUNNET ..eiiiiii e 81

RESOUICE LOCANZING . .cvuiiiiieeiie et e e 81

ContaiNer @S POUJO ...t e 83
Configuration PrOPEItIESccivuiiiiii e e e e e e e e e eanaees 84
Controlling APPHCALIONS ... ccuuiiiieee e e 91

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation il

Spring for Apache Hadoop

LCT=T =T TR U Y- Vo = 92

Using Configuration Properti€socoeuuiiiiiiiiiieiiieeer e e 92

Using YarnPUuShAPPLICALIONooiiiuiiiiiiiieece e 93

Using YarnSubmitAppliCationcouieiiieiiie e 93

Using YarnInfoOAPPICAtIoONooouiiiii e 93

Using YarnKillAPPHCAtioNccouuiiiiiiiii e 94

2 =TT TS 10 o oY o 95
12.1. Testing MapPREAUCEiiiiiiiee e 95

Mini Clusters for MapREUCEuiiiiiiiieiii e 95

(@] 31T 81 r=\1 1o o [P 96

SIMPLIfIEA TESTNG ettt e e eeaas 96

WOrdcount EXAMPIE ... 97

2 I =11 T T - o o 99

MinNi CIUSTEIS TOF YAIN ..oeeiiiiiiiii et e e e e e e e 99

CONFIGUIALION oottt 100

Y 141 0] 1 1= o B I =1 1] o PPN 101

Multi CoNteXt EXAMPIE ... e 102

12.3. Testing Boot Based APPlICALIONSuviiiiiiiiiiiiii e 104

l1l. Developing Spring for Apache Hadoop AppPlICAtioNSccvuiiiiiiiiiiieie e 107
13. Guidance and EXamPIESooouiiiiii e 108
13,1, SChEAUIING ...ttt e e e e s 108

13.2. BatCh JOD LISTENEISoiiiiiiiiiii e e 108

IV. Spring for Apache Hadoop sample appliCationsoooouiiiiiiiiiiniii e 110
RV @ 1 1T g o LT To U o 111
L4, USETUL LINKS .ottt ettt e e et e e e e e e 112

A Y o] o 1=] o [o [ol 2SR 113
A. Using Spring for Apache Hadoop with Amazon EMRccoiiiiiiiiiiiiiiiie e 114

AL Start Up the CIUSTENeie e e 114

A.2. Open an SSH Tunnel as @ SOCKS PrOXYcceuueieruieiiieeiiieieieaeieeeiae e eeneeeens 115

A.3. Configuring Hadoop to use @ SOCKS PrOXYc.uuiieiiiiiiieiiiiinieeeiiie e ee e 115

A.4. Accessing the file-SYStEM ..o 116

A.5. Shutting down the CIUSTETiie e 116

A.6. Example CONfIQUIALIONiiiiiiiieiii e 117

B. Using Spring for Apache Hadoop with EC2/Apache WHhIrrcccoveviiiiii i 119

B.1. Setting up the Hadoop cluster on EC2 with Apache Whirrcccooiiiiins 119

C. Spring for Apache Hadoop SChemM@ooiiiiiiiiiiiiie e 121

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation iv

Spring for Apache Hadoop

Preface

Spring for Apache Hadoop provides extensions to Spring, Spring Batch, and Spring Integration to build
manageable and robust pipeline solutions around Hadoop.

Spring for Apache Hadoop supports reading from and writing to HDFS, running various types of Hadoop
jobs (Java MapReduce, Streaming), scripting and HBase, Hive and Pig interactions. An important goal
is to provide excellent support for non-Java based developers to be productive using Spring for Apache
Hadoop and not have to write any Java code to use the core feature set.

Spring for Apache Hadoop also applies the familiar Spring programming model to Java MapReduce
jobs by providing support for dependency injection of simple jobs as well as a POJO based MapReduce
programming model that decouples your MapReduce classes from Hadoop specific details such as
base classes and data types.

This document assumes the reader already has a basic familiarity with the Spring Framework and
Hadoop concepts and APIs.

While every effort has been made to ensure that this documentation is comprehensive and there are
no errors, nevertheless some topics might require more explanation and some typos might have crept
in. If you do spot any mistakes or even more serious errors and you can spare a few cycles during
lunch, please do bring the error to the attention of the Spring for Apache Hadoop team by raising an
issue. Thank you.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation %

Part I. Introduction

Spring for Apache Hadoop provides integration with the Spring Framework to create and run Hadoop
MapReduce, Hive, and Pig jobs as well as work with HDFS and HBase. If you have simple needs to work
with Hadoop, including basic scheduling, you can add the Spring for Apache Hadoop nhamespace to your
Spring based project and get going quickly using Hadoop. As the complexity of your Hadoop application
increases, you may want to use Spring Batch and Spring Integration to regain on the complexity of
developing a large Hadoop application.

This document is the reference guide for Spring for Apache Hadoop project (SHDP). It explains the
relationship between the Spring framework and Hadoop as well as related projects such as Spring Batch
and Spring Integration. The first part describes the integration with the Spring framework to define the
base concepts and semantics of the integration and how they can be used effectively. The second part
describes how you can build upon these base concepts and create workflow based solutions provided
by the integration with Spring Batch.

Spring for Apache Hadoop

1. Requirements

Spring for Apache Hadoop 2.0 is built and tested with JDK 7.0 (generated jars are usable in JDK 6.0
and above), Spring Framework 4.0 and is by default built against Apache Hadoop 2.2.0.

Spring for Apache Hadoop 2.0 supports the following versions and distributions:
* Apache Hadoop 1.2.1
» Apache Hadoop 2.2.0 *

» Apache Hadoop 2.4.0 *

» Pivotal HD 1.1

 Pivotal HD 2.0 *

» Cloudera CDH4 (CDH4.6.0)

» Cloudera CDH5 (2.3.0-cdh5.0.0) *

* Hortonworks Data Platform 1.3

» Hortonworks Data Platform 2.0 *

» Hortonworks Data Platform 2.1 *

* The distributions noted with and asterisk will include spring-yarn support in the build.

Any distribution compatible with Apache Hadoop 1.x or 2.2.x should be supported.

© Note

Spring for Apache Hadoop has been certified to work on Pivotal HD 1.0 and 1.1, Hortonworks
HDP 1.3 and Cloudera CDH 4.4 distributions. Further certifications will be done soon now that
Spring for Apache 2.0 has reached GA.

Spring for Apache Hadoop 2.0 is tested daily against a number of Hadoop distributions. See the test
plan page for current status.

Instructions for setting up project builds using various supported distributions are provided on the Spring
for Apache Hadoop wiki - https://github.com/spring-projects/spring-hadoop/wiki

Regarding Hadoop-related projects, SDHP supports HBase 0.94.11, Hive 0.10.0 and Pig 0.10.1 and
above. As a rule of thumb, when using Hadoop-related projects, such as Hive or Pig, use the required
Hadoop version as a basis for discovering the supported versions.

To take full advantage of Spring for Apache Hadoop you need a running Hadoop cluster. If you
don't already have one in your environment, a good first step is to create a single-node cluster. To
install the most recent stable verision of Hadoop, the "Getting Started" page from the official Apache
documentation is a good general guide. There should be a link for "Single Node Setup".

It is also convenient to download a Virtual Machine where Hadoop is setup and ready to go. Cloudera,
Hortonworks and Pivotal all provide virtual machines and provide VM downloads on their product pages.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 2

http://projects.spring.io/spring-framework/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.gopivotal.com/
http://www.gopivotal.com/
http://www.cloudera.com/
http://www.cloudera.com/
http://www.hortonworks.com/
http://www.hortonworks.com/
http://www.hortonworks.com/
https://build.spring.io/browse/SPRINGDATAHADOOP
https://build.spring.io/browse/SPRINGDATAHADOOP
https://github.com/spring-projects/spring-hadoop/wiki
http://hbase.apache.org/
http://hive.apache.org/
http://pig.apache.org/
http://hadoop.apache.org/common/docs/stable/#Getting+Started

Spring for Apache Hadoop

Additionally, the appendix provides information on how to use Spring for Apache Hadoop and setup
Hadoop with cloud providers, such as Amazon Web Services.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 3

Spring for Apache Hadoop

2. Additional Resources

While this documentation acts as a reference for Spring for Hadoop project, there are number of
resources that, while optional, complement this document by providing additional background and code
samples for the reader to try and experiment with:

» Spring for Apache Hadoop samples. Official repository full of SHDP samples demonstrating the
various project features.

» Spring Data Book. Guide to Spring Data projects, written by the committers behind them. Covers
Spring Data Hadoop stand-alone but in tandem with its siblings projects. All author royalties from book
sales are donated to Creative Commons organization.

» Spring Data Book examples. Complete running samples for the Spring Data book. Note that
some of them are available inside Spring for Apache Hadoop samples as well.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 4

https://github.com/spring-projects/spring-hadoop-samples/
http://shop.oreilly.com/product/0636920024767.do
http://creativecommons.org/about
https://github.com/spring-projects/spring-data-book/tree/master/hadoop

Part Il. Spring and Hadoop

Document structure

This part of the reference documentation explains the core functionality that Spring for Apache Hadoop
(SHDP) provides to any Spring based application.

Chapter 3, Hadoop Configuration, MapReduce, and Distributed Cache describes the Spring support for
bootstrapping, initializing and working with core Hadoop.

Chapter 4, Working with the Hadoop File System describes the Spring support for interacting with the
Hadoop file system.

Chapter 6, Working with HBase describes the Spring support for HBase.
Chapter 7, Hive integration describes the Hive integration in SHDP.
Chapter 8, Pig support describes the Pig support in Spring for Apache Hadoop.

Chapter 10, Security Support describes how to configure and interact with Hadoop in a secure
environment.

Spring for Apache Hadoop

3. Hadoop Configuration, MapReduce, and
Distributed Cache

One of the common tasks when using Hadoop is interacting with its runtime - whether it is a local setup or
a remote cluster, one needs to properly configure and bootstrap Hadoop in order to submit the required
jobs. This chapter will focus on how Spring for Apache Hadoop (SHDP) leverages Spring's lightweight
loC container to simplify the interaction with Hadoop and make deployment, testing and provisioning
easier and more manageable.

3.1 Using the Spring for Apache Hadoop Namespace

To simplify configuration, SHDP provides a dedicated namespace for most of its components. However,
one can opt to configure the beans directly through the usual <bean> definition. For more information
about XML Schema-based configuration in Spring, see this appendix in the Spring Framework reference
documentation.

To use the SHDP namespace, one just needs to import it inside the configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: Ohdp="0htt p: // ww. spri ngf ramewor k. or g/ schema/ hadoop"
xsi : schemaLocat i on="
http://ww. springframework. or g/ schema/ beans http://ww. spri ngfranework. org/ schema/
beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ hadoop http://ww. springframework. or g/ schema/

hadoop/ spri ng- hadoop. xsd" >

<bean id ... >
O<hdp: configuration ...>
</ beans>

0 Spring for Apache Hadoop namespace prefix. Any name can do but throughout the reference
documentation, hdp will be used.

O The namespace URI.

0 The namespace URI location. Note that even though the location points to an external address
(which exists and is valid), Spring will resolve the schema locally as it is included in the Spring for
Apache Hadoop library.

O Declaration example for the Hadoop namespace. Notice the prefix usage.

Once imported, the namespace elements can be declared simply by using the aforementioned prefix.
Note that is possible to change the default namespace, for example from <beans> to <hdp>. This is
useful for configuration composed mainly of Hadoop components as it avoids declaring the prefix. To
achieve this, simply swap the namespace prefix declarations above:

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 6

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/xsd-config.html

Spring for Apache Hadoop

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns="http://wwmv. spri ngfranmewor k. or g/ schema/ hadoop" [
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
Oxm ns: beans="htt p: //ww. spri ngframewor k. or g/ schenma/ beans”
xsi : schemalLocati on="
http://ww. springframework. or g/ scherma/ beans http://ww. spri ngfranework. org/ schema/
beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ hadoop http://ww. spri ngframework. or g/ schema/
hadoop/ spri ng- hadoop. xsd" >

O<beans: bean id ... >

O<configuration ...>

</ beans: beans>

0 The default namespace declaration for this XML file points to the Spring for Apache Hadoop
namespace.

0 The beans namespace prefix declaration.

Bean declaration using the <beans> namespace. Notice the prefix.

O Bean declaration using the <hdp> namespace. Notice the lack of prefix (as hdp is the default
namespace).

O

For the remainder of this doc, to improve readability, the XML examples may simply refer to the <hdp>
namespace without the namespace declaration, where possible.

3.2 Configuring Hadoop

In order to use Hadoop, one needs to first configure it namely by creating a Conf i gur at i on object.
The configuration holds information about the job tracker, the input, output format and the various other
parameters of the map reduce job.

In its simplest form, the configuration definition is a one liner:

<hdp: configuration />

The declaration above defines a Confi gurati on bean (to be precise a factory bean of type
Conf i gur ati onFact or yBean) named, by default, hadoopConf i gur ati on. The default name is
used, by conventions, by the other elements that require a configuration - this leads to simple and very
concise configurations as the main components can automatically wire themselves up without requiring
any specific configuration.

For scenarios where the defaults need to be tweaked, one can pass in additional configuration files:

<hdp: configurati on resources="cl asspath:/customsite.xm, classpath:/hg-site.xm">

In this example, two additional Hadoop configuration resources are added to the configuration.

© Note

Note that the configuration makes use of Spring's _Resour ce_abstraction to locate the file. This
allows various search patterns to be used, depending on the running environment or the prefix
specified (if any) by the value - in this example the classpath is used.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 7

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/resources.html

Spring for Apache Hadoop

In addition to referencing configuration resources, one can tweak Hadoop settings directly through Java
Properti es. This can be quite handy when just a few options need to be changed:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: hdp="htt p: // ww. spri ngf ramewor k. or g/ schena/ hadoop"
xsi : schemaLocati on="htt p://wmv spri ngfranmewor k. or g/ schema/ beans http://
www. spri ngframewor k. or g/ schena/ beans/ spri ng- beans. xsd

http://ww. springframework. or g/ scherma/ hadoop http://ww. spri ngfranework. or g/

schema/ hadoop/ spri ng- hadoop. xsd" >

<hdp: confi gurati on>
fs.defaul t. name=hdfs:/ /1 ocal host: 9000
hadoop. t np. di r =/ t np/ hadoop
el ectric=sea
</ hdp: confi gurati on>
</ beans>

One can further customize the settings by avoiding the so called hard-coded values by externalizing
them so they can be replaced at runtime, based on the existing environment without touching the
configuration:

© Note

Usual configuration parameters for fs.defaul t. nane, fs.defaul tFS,
mapr ed. j ob. tracker andyar n. r esour cemanager . addr ess can be configured using tag
attributes file-system-uri, job-tracker-uri and rm-manager-uri respectively.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: hdp="htt p://ww. spri ngframewor k. or g/ schena/ hadoop"
xm ns: cont ext ="htt p://ww. spri ngfranmewor k. or g/ schena/ cont ext "
xsi:schemalLocation="http://wwmv springframewor k. or g/ schema/ beans http://
www. spri ngf ranewor k. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ cont ext http://ww. springfranmework. org/
schema/ cont ext/ spri ng- cont ext. xsd
http://ww. springframework. or g/ schema/ hadoop http://ww. spri ngfranmework. org/
schema/ hadoop/ spri ng- hadoop. xsd" >

<hdp: confi gurati on>
fs.defaul t.name=${hd. f s}
hadoop. tnp.dir=file://${java.io.tnpdir}
hangar =${ nunber : 18}

</ hdp: confi gurati on>

<cont ext: property-pl acehol der | ocati on="cl asspat h: hadoop. properties" />
</ beans>

Through Spring's property placeholder support, SpEL and the environment abstraction (available in
Spring 3.1). one can externalize environment specific properties from the main code base easing the
deployment across multiple machines. In the example above, the default file system is replaced based
on the properties available in hadoop. properti es while the temp dir is determined dynamically
through SpEL. Both approaches offer a lot of flexbility in adapting to the running environment - in fact
we use this approach extensivly in the Spring for Apache Hadoop test suite to cope with the differences
between the different development boxes and the CI server.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 8

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/expressions.html
http://spring.io/blog/2011/06/09/spring-framework-3-1-m2-released/

Spring for Apache Hadoop

Additionally, external Pr oper t i es files can be loaded, Pr oper t i es beans (typically declared through
Spring's util namespace). Along with the nested properties declaration, this allows customized
configurations to be easily declared:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: hdp="http://ww. spri ngframework. or g/ schema/ hadoop"
xm ns: context ="http://wwm. spri ngframework. or g/ schema/ cont ext "
xm ns:util="http://ww. springfranmework. org/schema/util"
xsi : schemaLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans http://
www. spri ngf ranewor k. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. spri ngfranewor k. or g/ schema/ cont ext http://ww. spri ngfranmewor k. or g/
schema/ cont ext/ spri ng- cont ext . xsd
http://ww. springframework. org/ schema/util http://ww. springfranework. org/ schema/
util/spring-util.xsd
http://ww. springfranmewor k. or g/ schema/ hadoop http://ww. spri ngframewor k. or g/
schema/ hadoop/ spri ng- hadoop. xsd" >

<l-- nerge the local properties, the props bean and the two properties files -->

<hdp: configuration properties-ref="props" properties-|ocation="cfg-1.properties
cfg-2. properties">
st ar=chasi ng
capt ai n=eo
</ hdp: confi gurati on>

<util:properties id="props" |ocation="props.properties"/>
</ beans>

When merging several properties, ones defined locally win. In the example above the configuration
properties are the primary source, followed by the pr ops bean followed by the external properties file
based on their defined order. While it's not typical for a configuration to refer to so many properties, the
example showcases the various options available.

© Note

For more properties utilities, including using the System as a source or fallback, or control over
the merging order, consider using Spring's Properti esFact oryBean (which is what Spring
for Apache Hadoop and uti | : properti es use underneath).

It is possible to create configurations based on existing ones - this allows one to create dedicated
configurations, slightly different from the main ones, usable for certain jobs (such as streaming - more
on that below). Simply use the conf i gur ati on-r ef attribute to refer to the parent configuration - all
its properties will be inherited and overridden as specified by the child:

<l-- default nanme is 'hadoopConfiguration' -->
<hdp: confi gurati on>

fs.defaul t.name=${hd. f s}

hadoop. tnp.dir=file://${java.io.tnpdir}
</ hdp: confi gurati on>

<hdp: configurati on id="custom' configuration-ref="hadoopConfi guration">
fs.defaul t. name=${cust om hd. f s}
</ hdp: confi gurati on>

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 9

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/xsd-config.html#xsd-config-body-schemas-util-properties
http://docs.spring.io/spring/docs/3.0.x/api/org/springframework/beans/factory/config/PropertiesFactoryBean.html

Spring for Apache Hadoop

Make sure though that you specify a different name since otherwise, because both definitions will have
the same name, the Spring container will interpret this as being the same definition (and will usually
consider the last one found).

Another option worth mentioning is regi ster-url-handl er which, as the name implies,
automatically registers an URL handler in the running VM. This allows urls referrencing hdfs resource
(by using the hdf s prefix) to be properly resolved - if the handler is not registered, such an URL will
throw an exception since the VM does not know what hdf s means.

© Note

Since only one URL handler can be registered per VM, at most once, this option is turned off by
default. Due to the reasons mentioned before, once enabled if it fails, it will log the error but will
not throw an exception. If your hdf s URLSs stop working, make sure to investigate this aspect.

Last but not least a reminder that one can mix and match all these options to her preference. In
general, consider externalizing Hadoop configuration since it allows easier updates without interfering
with the application configuration. When dealing with multiple, similar configurations use configuration
composition as it tends to keep the definitions concise, in sync and easy to update.

Table 3.1. hdp: confi gur at i on attributes

Name Values Description
configuration- Bean Reference to existing Configuration bean
ref Reference
properties- Bean Reference to existing Properties bean
r ef Reference
properties- Comma List or Spring Resource paths
| ocation delimited list
resources Comma List or Spring Resource paths
delimited list
file- String The HDFS filesystem address. Equivalent to
systemuri fs.default.name and fs.defaultFS propertys.
j ob- String Job tracker address for HadoopV1.
tracker-uri Equivalent to mapred.job.tracker property.
rm String The Yarn Resource manager address for HadoopV?2.
nmanager - uri Equivalent to yarn.resourcemanager.address property.

3.3 Creating a Hadoop Job

Once the Hadoop configuration is taken care of, one needs to actually submit some work to it. SHDP
makes it easy to configure and run Hadoop jobs whether they are vanilla map-reduce type or streaming.
Let us start with an example:

<hdp: job id="nr-job"
i nput - pat h="/1i nput/" out put - pat h="/ ouput /"
mapper =" or g. apache. hadoop. exanpl es. Wr dCount . Tokeni zer Mapper "
reducer ="or g. apache. hadoop. exanpl es. Wr dCount . | nt SunReducer"/ >

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 10

Spring for Apache Hadoop

The declaration above creates a typical Hadoop Job: specifies its input and output, the mapper and the
reducer classes. Notice that there is no reference to the Hadoop configuration above - that's because,
if not specified, the default naming convention (hadoopConf i gur at i on) will be used instead. Neither
is there to the key or value types - these two are automatically determined through a best-effort attempt
by analyzing the class information of the mapper and the reducer. Of course, these settings can be
overridden: the former through the conf i gur ati on-ref element, the latter through key and val ue
attributes. There are plenty of options available not shown in the example (for simplicity) such as the
jar (specified directly or by class), sort or group comparator, the combiner, the partitioner, the codecs
to use or the input/output format just to name a few - they are supported, just take a look at the SHDP
schema (Appendix C, Spring for Apache Hadoop Schema) or simply trigger auto-completion (usually
CTRL+SPACE) in your IDE; if it supports XML namespaces and is properly configured it will display the
available elements. Additionally one can extend the default Hadoop configuration object and add any
special properties not available in the namespace or its backing bean (JobFact or yBean).

It is worth pointing out that per-job specific configurations are supported by specifying the custom
properties directly or referring to them (more information on the pattern is available here):

<hdp: job id="nr-job"
i nput - pat h="/1input/" out put - pat h="/ ouput /"
mapper =" mapper cl ass" reducer="reducer class"
jar-by-class="cl ass used for jar detection"
properties-locati on="cl asspat h: speci al -j ob. properties">
el ectric=sea
</ hdp: j ob>

<hdp: j ob> provides additional properties, such as the generic options, however one that is worth
mentioning is j ar which allows a job (and its dependencies) to be loaded entirely from a specified jar.
This is useful for isolating jobs and avoiding classpath and versioning collisions. Note that provisioning
of the jar into the cluster still depends on the target environment - see the aforementioned section for
more info (such as | i bs).

Creating a Hadoop Streaming Job

Hadoop Streaming job (or in short streaming), is a popular feature of Hadoop as it allows the creation
of Map/Reduce jobs with any executable or script (the equivalent of using the previous counting words
example is to use _cat and wc_ commands). While it is rather easy to start up streaming from the
command line, doing so programatically, such as from a Java environment, can be challenging due to
the various number of parameters (and their ordering) that need to be parsed. SHDP simplifies such
a task - it's as easy and straightforward as declaring a j ob from the previous section; in fact most of
the attributes will be the same:

<hdp: stream ng i d="stream ng"
i nput - pat h="/1input/" out put - pat h="/ ouput /"
mapper =" ${path.cat}" reducer="${path. w}"/>

Existing users might be wondering how they can pass the command line arguments (such as - D or
- cndenv). While the former customize the Hadoop configuration (which has been convered in the
previous section), the latter are supported through the cnd- env element:

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 11

http://hadoop.apache.org/common/docs/current/streaming.html
http://en.wikipedia.org/wiki/Cat_%28Unix%29
http://en.wikipedia.org/wiki/Wc_%28Unix%29

Spring for Apache Hadoop

<hdp: streami ng i d="stream ng-env"
i nput - pat h="/i nput/" out put - pat h="/ ouput / "
mapper ="${pat h. cat}" reducer="${path. wc}" >
<hdp: cmd- env>
EXAMPLE_DI R=/ hone/ exanpl e/ di cti onari es/

</ hdp: cmd- env>
</ hdp: st r eanmi ng>

Just like j ob, st reani ng supports the generic options; follow the link for more information.

3.4 Running a Hadoop Job

The jobs, after being created and configured, need to be submitted for execution to a Hadoop cluster. For
non-trivial cases, a coordinating, workflow solution such as Spring Batch is recommended . However for
basic job submission SHDP provides the j ob- r unner element (backed by JobRunner class) which
submits several jobs sequentially (and waits by default for their completion):

<hdp: j ob-runner id="nmnyjob-runner" pre-action="cl eanup-script" post-action="export-
resul ts" job-ref="nyjob" run-at-startup="true"/>

<hdp:job id="mnyjob" input-path="/input/" output-path="/output/"
mapper =" or g. apache. hadoop. exanpl es. Wr dCount . Tokeni zer Mapper "
reducer ="org. apache. hadoop. exanpl es. Wr dCount . | nt SunReducer" />

Multiple jobs can be specified and even nested if they are not used outside the runner:

<hdp: j ob-runner id="nmnyjobs-runner" pre-action="cl eanup-script" job-ref="mnyjobl
nyj ob2" run-at-startup="true"/>

<hdp: job id="nmyjobl" ... />
<hdp: streanmi ng i d="nyjob2" ... />

One or multiple Map-Reduce jobs can be specified through the j ob attribute in the order of the execution.
The runner will trigger the execution during the application start-up (notice the r un- at - st art up flag
which is by default f al se). Do note that the runner will not run unless triggered manually or if r un-
at-startup is settotrue. Additionally the runner (as in fact do all runners in SHDP) allows one or
multiple pr e and post actions to be specified to be executed before and after each run. Typically other
runners (such as other jobs or scripts) can be specified but any JDK Cal | abl e can be passed in. For
more information on runners, see the dedicated chapter.

© Note

As the Hadoop job submission and execution (when wait-for-conpl etion is true) is
blocking, JobRunner uses a JDK Execut or to start (or stop) a job. The default implementation,
SyncTaskExecut or uses the calling thread to execute the job, mimicking the hadoop command
line behaviour. However, as the hadoop jobs are time-consuming, in some cases this can lead to
“application freeze”, preventing normal operations or even application shutdown from occuring
properly. Before going into production, it is recommended to double-check whether this strategy
is suitable or whether a throttled or pooled implementation is better. One can customize the
behaviour through the execut or - r ef parameter.

The job runner also allows running jobs to be cancelled (or killed) at shutdown. This applies only to jobs
that the runner waits for (wai t - f or - conpl et i onist r ue) using a different executor then the default
- that is, using a different thread then the calling one (since otherwise the calling thread has to wait for

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 12

Spring for Apache Hadoop

the job to finish first before executing the next task). To customize this behaviour, one should set the
kill -] ob-at-shut down attribute to f al se and/or change the execut or - r ef implementation.

Using the Hadoop Job tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hadoop jobs as a step
in a Spring Batch workflow. An example declaration is shown below:

<hdp: j ob-t askl et id="hadoop-tasklet" job-ref="nr-job" wait-for-conpletion="true" />

The tasklet above references a Hadoop job definition named "mr-job". By default, wai t - f or -
conpl eti on is true so that the tasklet will wait for the job to complete when it executes. Setting wai t -
for-conpl eti on tofal se will submit the job to the Hadoop cluster but not wait for it to complete.

3.5 Running a Hadoop Tool

It is common for Hadoop utilities and libraries to be started from the command-line (ex: hadoop | ar
some.jar). SHDP offers generic support for such cases provided that the packages in question are built
on top of Hadoop standard infrastructure, namely Tool and Tool Runner classes. As opposed to the
command-line usage, Tool instances benefit from Spring's 10C features; they can be parameterized,
created and destroyed on demand and have their properties (such as the Hadoop configuration) injected.

Consider the typical j ar example - invoking a class with some (two in this case) arguments (notice that
the Hadoop configuration properties are passed as well):

bi n/ hadoop jar -conf hadoop-site.xm -jt darw n: 50020 - Dproperty=val ue
soneJar.jar org.foo. SoneTool data/in.txt data/out.txt

Since SHDP has first-class support for configuring Hadoop, the so called generi ¢ opti ons aren't
needed any more, even more so since typically there is only one Hadoop configuration per application.
Throught ool - runner element (and its backing Tool Runner class) one typically just needs to specify
the Tool implementation and its arguments:

<hdp: t ool -runner id="soneTool" tool-class="org.foo.SonmeTool " run-at-startup="true">
<hdp: arg value="data/in.txt"/>
<hdp: arg val ue="data/out.txt"/>

property=val ue
</ hdp: t ool - runner >

Additionally the runner (just like the job runner) allows one or multiple pr e and post actions to be
specified to be executed before and after each run. Typically other runners (such as other jobs or scripts)
can be specified but any JDK Cal | abl e can be passed in. Do note that the runner will not run unless
triggered manually or if run- at - start up is set to t r ue. For more information on runners, see the
dedicated chapter.

The previous example assumes the Tool dependencies (such as its class) are available in the
classpath. If that is not the case, t ool - r unner allows a jar to be specified:

<hdp:tool -runner ... jar="nyTool.jar">

</ hdp: t ool - runner >

The jar is used to instantiate and start the tool - in fact all its dependencies are loaded from the jar
meaning they no longer need to be part of the classpath. This mechanism provides proper isolation

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 13

Spring for Apache Hadoop

between tools as each of them might depend on certain libraries with different versions; rather then
adding them all into the same app (which might be impossible due to versioning conflicts), one can
simply point to the different jars and be on her way. Note that when using a jar, if the main class (as
specified by the Main-Class entry) is the target Tool , one can skip specifying the tool as it will picked
up automatically.

Like the rest of the SHDP elements, t ool - r unner allows the passed Hadoop configuration (by default
hadoopConfi gur ati on but specified in the example for clarity) to be customized accordingly; the
snippet only highlights the property initialization for simplicity but more options are available. Since
usually the Tool implementation has a default argument, one can use the t ool - cl ass attribute.
However it is possible to refer to another Tool instance or declare a nested one:

<hdp: t ool -runner id="someTool " run-at-startup="true">
<hdp: t ool >
<bean cl ass="org. f00. Anot her Tool " p:input="data/in.txt" p:output="data/out.txt"/>
</ hdp: t ool >
</ hdp: t ool - runner >

This is quite convenient if the Tool class provides setters or richer constructors. Note that by default
thet ool - runner does not execute the Tool until its definition is actually called - this behavior can be
changed through the r un- at - st ar t up attribute above.

Replacing Hadoop shell invocations with t ool - r unner

t ool - runner is a nice way for migrating series or shell invocations or scripts into fully wired, managed
Java objects. Consider the following shell script:

hadoop jar jobl.jar -files fullpath:props.properties -Dconfig=config.properties ...
hadoop jar job2.jar argl arg2..

hadoop jar joblO.jar ...

Each job is fully contained in the specified jar, including all the dependencies (which might conflict with
the ones from other jobs). Additionally each invocation might provide some generic options or arguments
but for the most part all will share the same configuration (as they will execute against the same cluster).

The script can be fully ported to SHDP, through the t ool - r unner element:

<hdp: t ool -runner id="jobl" tool -
cl ass="j obl. Tool" jar="jobl.jar" files="full path:props.properties" properties-
| ocation="config. properties"/>
<hdp: t ool -runner id="job2" jar="job2.jar">
<hdp: arg val ue="argl"/>
<hdp: arg val ue="arg2"/>
</ hdp: t ool - runner >
<hdp: t ool -runner id="job3" jar="job3.jar"/>

All the features have been explained in the previous sections but let us review what happens here.
As mentioned before, each tool gets autowired with the hadoopConf i gur ati on; j ob1 goes beyond
this and uses its own properties instead. For the first jar, the Tool class is specified, however the
rest assume the jar Main-Classes implement the Tool interface; the namespace will discover them
automatically and use them accordingly. When needed (such as with j ob1), additional files or libs are
provisioned in the cluster. Same thing with the job arguments.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 14

http://docs.oracle.com/javase/tutorial/deployment/jar/appman.html

Spring for Apache Hadoop

However more things that go beyond scripting, can be applied to this configuration - each job can
have multiple properties loaded or declared inlined - not just from the local file system, but also from
the classpath or any url for that matter. In fact, the whole configuration can be externalized and
parameterized (through Spring's property placeholder and/or Environment abstraction). Moreover, each
job can be ran by itself (through the JobRunner) or as part of a workflow - either through Spring's
depends- on or the much more powerful Spring Batch and t ool -t askl et .

Using the Hadoop Tool tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hadoop tasks as a step
in a Spring Batch workflow. The tasklet element supports the same configuration options as tool-runner
except for run- at - st ar t up (which does not apply for a workflow):

<hdp: t ool -t askl et id="tool -tasklet" tool-ref="some-tool" />

3.6 Running a Hadoop Jar

SHDP also provides support for executing vanilla Hadoop jars. Thus the famous WordCount example:

bi n/ hadoop jar hadoop- exanpl es.jar wordcount /wordcount/input /wordcount/out put

becomes

<hdp:j ar-runner id="wordcount" jar="hadoop-exanples.jar" run-at-startup="true">
<hdp: arg val ue="wordcount"/ >
<hdp: arg val ue="/wordcount/input"/>
<hdp: arg val ue="/wor dcount/ out put"/ >

</ hdp:j ar-runner >

@ Note

Just like the hadoop j ar command, by default the jar support reads the jar's Mai n- Cl ass if
none is specified. This can be customized through the rmai n- cl ass attribute.

Additionally the runner (just like the job runner) allows one or multiple pr e and post actions to be
specified to be executed before and after each run. Typically other runners (such as other jobs or scripts)
can be specified but any JDK Cal | abl e can be passed in. Do note that the runner will not run unless
triggered manually or if run- at - st art up is set to t r ue. For more information on runners, see the
dedicated chapter.

The j ar support provides a nice and easy migration path from jar invocations from the command-
line to SHDP (note that Hadoop generic options are also supported). Especially since SHDP enables
Hadoop Confi gur at i on objects, created during the jar execution, to automatically inherit the context
Hadoop configuration. In fact, just like other SHDP elements, the j ar element allows configurations
properties to be declared locally, just for the jar run. So for example, if one would use the following
declaration:

<hdp:j ar-runner id="wordcount" jar="hadoop-exanples.jar" run-at-startup="true">
<hdp: arg val ue="wordcount"/ >

speed=f ast
</ hdp:j ar - runner >

inside the jar code, one could do the following:

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 15

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://docs.spring.io/spring/docs/3.1.x/spring-framework-reference/html/new-in-3.1.html#d0e1313
http://hadoop.apache.org/common/docs/r1.0.3/mapred_tutorial.html#Example%3A+WordCount+v1.0

Spring for Apache Hadoop

assert "fast".equal s(new Configuration().get("speed"));

This enabled basic Hadoop jars to use, without changes, the enclosing application Hadoop
configuration.

And while we think it is a useful feature (that is why we added it in the first place), we strongly recommend
using the tool support instead or migrate to it; there are several reasons for this mainly because there
are no contracts to use, leading to very poor embeddability caused by:

» No standard Conf i gur at i on injection

While SHDP does a best effort to pass the Hadoop configuration to the jar, there is no guarantee the
jar itself does not use a special initialization mechanism, ignoring the passed properties. After all, a
vanilla Conf i gur ati on is not very useful so applications tend to provide custom code to address
this.

e Systemexit() calls

Most jar examples out there (including Wor dCount) assume they are started from the command line
and among other things, call Syst em exi t, to shut down the JVM, whether the code is succesful
or not. SHDP prevents this from happening (otherwise the entire application context would shutdown
abruptly) but it is a clear sign of poor code collaboration.
SHDP tries to use sensible defaults to provide the best integration experience possible but at the end
of the day, without any contract in place, there are no guarantees. Hence using the Tool interface is
a much better alternative.

Using the Hadoop Jar tasklet

Like for the rest of its tasks, for Spring Batch environments, SHDP provides a dedicated tasklet to
execute Hadoop jars as a step in a Spring Batch workflow. The tasklet element supports the same
configuration options as jar-runner except for r un- at - st ar t up (which does not apply for a workflow):

<hdp:jar-tasklet id="jar-tasklet" jar="some-jar.jar" />

3.7 Configuring the Hadoop Di stri but edCache

DistributedCache is a Hadoop facility for distributing application-specific, large, read-only files (text,
archives, jars and so on) efficiently. Applications specify the files to be cached via urls (hdf s: / /) using
Di stri but edCache and the framework will copy the necessary files to the slave nodes before any
tasks for the job are executed on that node. Its efficiency stems from the fact that the files are only
copied once per job and the ability to cache archives which are un-archived on the slaves. Note that
Di stri but edCache assumes that the files to be cached (and specified via hdfs:// urls) are already
present on the Hadoop Fi | eSyst em

SHDP provides first-class configuration for the distributed cache through its cache element (backed by
Di stri but edCacheFact or yBean class), allowing files and archives to be easily distributed across
nodes:

<hdp: cache create-symink="true">
<hdp: cl asspat h val ue="/cp/some-library.jar#library.jar" />
<hdp: cache val ue="/cache/ sone- ar chi ve. t gz#mai n- archi ve" />
<hdp: cache val ue="/cache/ sone-resource.res" />
<hdp: | ocal val ue="sonme-file.txt" />

</ hdp: cache>

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 16

http://hadoop.apache.org/common/docs/stable/mapred_tutorial.html#DistributedCache

Spring for Apache Hadoop

The definition above registers several resources with the cache (adding them to the job cache or
classpath) and creates symlinks for them. As described in the Di stri but edCache documentation,
the declaration format is (absol ut e- pat h#l i nk- nane). The link name is determined by the URI
fragment (the text following the # such as #library.jar or #main-archive above) - if no name is specified,
the cache bean will infer one based on the resource file name. Note that one does not have to specify
the hdf s: / / node: port prefix as these are automatically determined based on the configuration wired
into the bean; this prevents environment settings from being hard-coded into the configuration which
becomes portable. Additionally based on the resource extension, the definition differentiates between
archives (.tgz, .tar. gz, .zip and . tar) which will be uncompressed, and regular files that are
copied as-is. As with the rest of the namespace declarations, the definition above relies on defaults -
since it requires a Hadoop Conf i gur at i on and Fi | eSyst emobjects and none are specified (through
configuration-ref andfil e-systemref)itfalls back to the default naming and is wired with
the bean named hadoopConfiguration, creating the Fi | eSyst emautomatically.

©® Warning

Clients setting up a classpath in the Di st ri but edCache, running on Windows platforms should
set the Syst empat h. separ at or property to : . Otherwise the classpath will be set incorrectly
and will be ignored; see HADOOP-9123 bug report for more information.

There are multiple ways to change the pat h. separ at or Syst emproperty - a quick one being
a simple scri pt in Javascript (that uses the Rhino package bundled with the JDK) that runs
at start-up:

<hdp: script | anguage="j avascript" run-at-startup="true">
/] set System'path.separator' to ':' - see HADOOP-9123
java. |l ang. System set Property("path. separator", ":")

</ hdp: scri pt >

3.8 Map Reduce Generic Options

The j ob, st reamni ng and t ool all support a subset of generic options, specifically ar chi ves, fil es
and | i bs. | i bs is probably the most useful as it enriches a job classpath (typically with some jars)
- however the other two allow resources or archives to be copied throughout the cluster for the job to
consume. Whenver faced with provisioning issues, revisit these options as they can help up significantly.
Note that the f s, j t or conf options are not supported - these are designed for command-line usage,
for bootstrapping the application. This is no longer needed, as the SHDP offers first-class support for
defining and customizing Hadoop configurations.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 17

http://hadoop.apache.org/common/docs/stable/mapred_tutorial.html#DistributedCache
https://issues.apache.org/jira/browse/HADOOP-9123
http://hadoop.apache.org/common/docs/stable/commands_manual.html#Generic+Options

Spring for Apache Hadoop

4. Working with the Hadoop File System

A common task in Hadoop is interacting with its file system, whether for provisioning, adding new files
to be processed, parsing results, or performing cleanup. Hadoop offers several ways to achieve that:
one can use its Java APl (namely Fi | eSyst en) or use the hadoop command line, in particular the file
system shell. However there is no middle ground, one either has to use the (somewhat verbose, full of
checked exceptions) API or fall back to the command line, outside the application. SHDP addresses this
issue by bridging the two worlds, exposing both the Fi | eSyst emand the fs shell through an intuitive,
easy-to-use Java API. Add your favorite JVM scripting language right inside your Spring for Apache
Hadoop application and you have a powerful combination.

4.1 Configuring the file-system

The Hadoop file-system, HDFS, can be accessed in various ways - this section will cover the most
popular protocols for interacting with HDFS and their pros and cons. SHDP does not enforce any specific
protocol to be used - in fact, as described in this section any Fi | eSyst emimplementation can be used,
allowing even other implementations than HDFS to be used.

The table below describes the common HDFS APIs in use:

Table 4.1. HDFS APIs

File System Comm. Method Scheme / Prefix Read / Write Cross Version
HDFS RPC hdf s: // Read / Write Same HDFS
version only
HFTP HTTP hftp:// Read only Version
independent
WebHDFS HTTP (REST) webhdf s: // Read / Write Version
independent

What about FTP, Kosmos, S3 and the other file systems?

This chapter focuses on the core file-system protocols supported by Hadoop. S3 (see the
Appendix), FTP and the rest of the other Fi | eSyst emimplementations are supported as well -
Spring for Apache Hadoop has no dependency on the underlying system rather just on the public
Hadoop API.

hdf s: // protocol should be familiar to most readers - most docs (and in fact the previous chapter as
well) mention it. It works out of the box and it's fairly efficient. However because it is RPC based, it
requires both the client and the Hadoop cluster to share the same version. Upgrading one without the
other causes serialization errors meaning the client cannot interact with the cluster. As an alternative
one can use hftp:// which is HTTP-based or its more secure brother hsftp:// (based on SSL)
which gives you a version independent protocol meaning you can use it to interact with clusters with
an unknown or different version than that of the client. hf t p is read only (write operations will fail right
away) and it is typically used with di sct p for reading data. webhdf s: // is one of the additions in
Hadoop 1.0 and is a mixture between hdf s and hft p protocol - it provides a version-independent,
read-write, REST-based protocol which means that you can read and write to/from Hadoop clusters

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 18

http://hadoop.apache.org/common/docs/stable/api/index.html?org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/common/docs/stable/file_system_shell.html
http://en.wikipedia.org/wiki/List_of_JVM_languages

Spring for Apache Hadoop

no matter their version. Furthermore, since webhdf s:// is backed by a REST API, clients in other
languages can use it with minimal effort.

© Note

Not all file systems work out of the box. For example WebHDFS needs to be enabled first in
the cluster (through df s. webhdf s. enabl ed property, see this document for more information)
while the secure hftp, hsftp requires the SSL configuration (such as certificates) to be
specified. More about this (and how to use hf t p/ hsf t p for proxying) in this page.

Once the scheme has been decided upon, one can specify it through the standard Hadoop configuration,
either through the Hadoop configuration files or its properties:

<hdp: confi gur ati on>
fs. defaul t. name=webhdfs://| ocal host

</ hdp: confi gurati on>

This instructs Hadoop (and automatically SHDP) what the default, implied file-system is. In SHDP,
one can create additional file-systems (potentially to connect to other clusters) and specify a different
scheme:

<I-- manual ly creates the default SHDP fil e-system naned ' hadoopFs' -->
<hdp: fil e-systemuri="webhdfs://|ocal host"/>

<l-- creates a different FileSysteminstance -->
<hdp: file-systemid="old-cluster" uri="hftp://old-cluster/"/>

As with the rest of the components, the file systems can be injected where needed - such as file shell
or inside scripts (see the next section).

4.2 Using HDFS Resource Loader

In Spring the Resour ceLoader interface is meant to be implemented by objects that can return (i.e.
load) Resource instances.

public interface ResourceLoader {
Resour ce get Resource(String |ocation);

}

All application contexts implement the Resour ceLoader interface, and therefore all application
contexts may be used to obtain Resource instances.

When you call get Resour ce() on a specific application context, and the location path specified
doesn't have a specific prefix, you will get back a Resour ce type that is appropriate to that particular
application context. For example, assume the following snippet of code was executed against a
Cl assPat hXm Appl i cati onCont ext instance:

Resource tenpl ate = ctx. get Resource("sone/resource/ path/ nyTenpl ate. txt");

What would be returned would be a Cl assPat hResour ce; if the same method was executed against
aFil eSystemXm Appl i cati onCont ext instance, you'd get back a Fi | eSyst enResour ce. For a
WebAppl i cati onCont ext, you'd get back a Ser vl et Cont ext Resour ce, and so on.

As such, you can load resources in a fashion appropriate to the particular application context.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 19

http://hadoop.apache.org/common/docs/r1.0.0/webhdfs.html#Document+Conventions
http://hadoop.apache.org/hdfs/docs/r0.21.0/hdfsproxy.html

Spring for Apache Hadoop

On the other hand, you may also force Cl assPat hResour ce to be used, regardless of the application
context type, by specifying the special cl asspat h: prefix:

‘ Resource tenplate = ctx. get Resource("cl asspat h: sone/ resource/ pat h/ myTenpl ate.txt");

© Note

More information about the generic usage of resource loading, check the Spring Framework
Documentation.

Spring Hadoop is adding its own functionality into generic concept of resource loading. Resour ce
abstraction in Spring has always been a way to ease resource access in terms of not having a need
to know where there resource is and how it's accessed. This abstraction also goes beyond a single
resource by allowing to use patterns to access multiple resources.

Lets first see how Hdf sResour ceLoader is used manually.

<hdp: file-system/>
<hdp: resour ce-| oader id="|oader" file-systemref="hadoopFs" />
<hdp: resource-| oader id="|oaderWthUser" user="nmyuser" uri="hdfs://|ocal host: 8020" />

In above configuration we created two beans, one with reference to existing Hadoop Fil eSystem
bean and one with impersonated user.

/] get path '/tnp/file.txt'

Resource resource = | oader.get Resource("/tnp/file.txt");
/] get path '/tnp/file.txt' with user inpersonation
Resource resource = | oader Wt hUser. get Resource("/tnp/file.txt");

/] get path '/user/<current user>/file.txt'

Resource resource = | oader.getResource("file.txt");
/'l get path '/user/nyuser/file.txt'
Resource resource = | oader WthUser. get Resource("file.txt");

/'l get all paths under '/tnp/'

Resource[] resources = | oader. get Resources("/tnp/*");

/1 get all paths under '/tnp/' recursively

Resource[] resources = | oader.get Resources("/tnp/**/*");

/'l get all paths under '/tnp/' using nore conplex ant path matching
Resource[] resources = | oader.getResources("/tnp/?ile?. txt");

What would be returned in above examples would be instances of Hdf sResour ces.

If there is a need for Spring Application Context to be aware of Hdf sResour ceLoader it needs to be
registered using hdp: r esour ce- | oader - r egi st rar namespace tag.

<hdp: file-system />
<hdp: resour ce-| oader fil e-systemref="hadoopFs" handl e- noprefi x="fal se" />
<hdp: resour ce-| oader-registrar />

© Note

On default the Hdf sResour ceLoader will handle all resource paths without prefix. Attribute
handl e- nopr ef i x can be used to control this behaviour. If this attribute is set to false, non-
prefixed resource uris will be handled by Spring Application Context.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 20

Spring for Apache Hadoop

/] get 'default.txt' fromcurrent user's honme directory

Resource[] resources = context.getResources("hdfs:default.txt");

/1 get all files from hdfs root

Resource[] resources = context.getResources("hdfs:/*");

/1 let context handle classpath prefix

Resource[] resources = context.getResources("cl asspath: cfg*properties");

What would be returned in above examples would be instances of Hdf sResources and
Cl assPat hResour ce for the last one. If requesting resource paths without existing prefix, this example
would fall back into Spring Application Context. It may be advisable to let Hdf sResour ceLoader to
handle paths without prefix if your application doesn't rely on loading resources from underlying context
without prefixes.

Table 4.2. hdp: r esour ce- | oader attributes

Name Values Description
file- Bean Reference to existing Hadoop FileSystem bean
systemr ef Reference

use- codecs Boolean(defaults Indicates whether to use (or not) the codecs found inside the

to true) Hadoop configuration when accessing the resource input stream.
user String The security user (ugi) to use for impersonation at runtime.
uri String The underlying HDFS system URI.
handl e- Boolean(defaults Indicates if loader should handle resource paths without prefix.
nopr efi x to true)

Table 4.3. hdp: resour ce- | oader -r egi st rar attributes

Name Values Description
| oader - r ef Bean Reference to existing Hdfs resource loader
Reference bean. Default value is 'hadoopResourcelLoader".

4.3 Scripting the Hadoop API

Supported scripting languages

SHDP scripting supports any JSR-223 (also known as j avax. scri pti ng) compliant scripting
engine. Simply add the engine jar to the classpath and the application should be able to find it.
Most languages (such as Groovy or JRuby) provide JSR-233 support out of the box; for those that
do not see the scripting project that provides various adapters.

Since Hadoop is written in Java, accessing its APIs in a native way provides maximum control
and flexibility over the interaction with Hadoop. This holds true for working with its file systems;
in fact all the other tools that one might use are built upon these. The main entry point is the
or g. apache. hadoop. f s. Fi | eSyst emabstract class which provides the foundation of most (if not
all) of the actual file system implementations out there. Whether one is using a local, remote or distributed
store through the Fi | eSyst emAPI she can query and manipulate the available resources or create
new ones. To do so however, one needs to write Java code, compile the classes and configure them
which is somewhat cumbersome especially when performing simple, straightforward operations (like
copy a file or delete a directory).

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 21

http://www.jcp.org/en/jsr/detail?id=223
http://java.net/projects/scripting

Spring for Apache Hadoop

JVM scripting languages (such as Groovy, JRuby, Jython or Rhino to name just a few) provide a nice
solution to the Java language; they run on the JVM, can interact with the Java code with no or few
changes or restrictions and have a nicer, simpler, less ceremonial syntax; that is, there is no need to
define a class or a method - simply write the code that you want to execute and you are done. SHDP
combines the two, taking care of the configuration and the infrastructure so one can interact with the
Hadoop environment from her language of choice.

Let us take a look at a JavaScript example using Rhino (which is part of JDK 6 or higher, meaning one
does not need any extra libraries):

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans" ...>
<hdp: configuration .../>

<hdp: script id="inlined-js" |anguage="javascript" run-at-startup="true">
try {load("nashorn: nozilla_conpat.js");} catch (e) {} // for Java 8
i nport Package(java.util);

nane = UUl D. randomJUl D().toString()
scriptNane = "src/test/resources/test. properties"”
/]l fs - FileSysteminstance based on 'hadoopConfiguration' bean
/1 call FileSystemicopyFroniocal (Path, Path)
fs.copyFroniLocal Fil e(scri pt Name, nane)
/1 return the file length
fs. get Lengt h(nane)
</ hdp: scri pt>

</ beans>

The scri pt element, part of the SHDP namespace, builds on top of the scripting support in Spring
permitting script declarations to be evaluated and declared as normal bean definitions. Furthermore it
automatically exposes Hadoop-specific objects, based on the existing configuration, to the script such
as the Fi | eSyst em(more on that in the next section). As one can see, the script is fairly obvious: it
generates a random name (using the UUI D class from j ava. uti | package) and then copies a local
file into HDFS under the random name. The last line returns the length of the copied file which becomes
the value of the declaring bean (in this case i nl i ned- j s) - note that this might vary based on the
scripting engine used.

© Note

The attentive reader might have noticed that the arguments passed to the Fi | eSyst emobject
are not of type Pat h but rather St ri ng. To avoid the creation of Pat h object, SHDP uses a
wrapper class (Si npl er Fi | eSyst em) which automatically does the conversion so you don't
have to. For more information see the implicit variables section.

Note that for inlined scripts, one can use Spring's property placeholder configurer to automatically
expand variables at runtime. Using one of the examples seen before:

<beans ... >
<cont ext : property-pl acehol der | ocati on="cl asspat h: hadoop. properties" />

<hdp: script | anguage="j avascript" run-at-startup="true">
tracker=${hd. f s}

</ hdp: scri pt >
</ beans>

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 22

http://groovy.codehaus.org/
http://jruby.org/
http://www.jython.org/
http://www.mozilla.org/rhino/

Spring for Apache Hadoop

Notice how the script above relies on the property placeholder to expand ${ hd. f s} with the values
from hadoop. properti es file available in the classpath.

As you might have noticed, the scri pt element defines a runner for JVM scripts. And just like the rest
of the SHDP runners, it allows one or multiple pr e and post actions to be specified to be executed
before and after each run. Typically other runners (such as other jobs or scripts) can be specified but
any JDK Cal | abl e can be passed in. Do note that the runner will not run unless triggered manually or
if run-at -startupissettotrue. For more information on runners, see the dedicated chapter.

Using scripts

Inlined scripting is quite handy for doing simple operations and coupled with the property expansion
is quite a powerful tool that can handle a variety of use cases. However when more logic is required
or the script is affected by XML formatting, encoding or syntax restrictions (such as Jython/Python for
which white-spaces are important) one should consider externalization. That is, rather than declaring
the script directly inside the XML, one can declare it in its own file. And speaking of Python, consider
the variation of the previous example:

<hdp: script | ocation="org/conpany/basic-script.py" run-at-startup="true"/>

The definition does not bring any surprises but do notice there is no need to specify the language (as
in the case of a inlined declaration) since script extension (py) already provides that information. Just
for completeness, the basi c- scri pt . py looks as follows:

fromjava.util inport UU D
from org. apache. hadoop. fs inport Path

print "Home dir is " + str(fs.homeDirectory)
print "Work dir is " + str(fs.workingDirectory)
print "/user exists " + str(fs.exists("/user"))

nanme = UUl D. randomJUl D().toString()

scriptNane = "src/test/resources/test. properties"”
fs.copyFroniocal Fil e(scri pt Nanme, nane)

print Path(nane). makeQualified(fs)

4.4 Scripting implicit variables

To ease the interaction of the script with its enclosing context, SHDP binds by default the so-called
implicit variables. These are:

Table 4.4. Implicit variables

Name Type Description

or g. @fgche. hadoop. conf. Confi gurati on Hadoop Configuration (relies on
hadoopConfiguration bean or singleton type match)

cl java.lang. C assLoader ClassLoader used for executing the script

or g. spri ngtx amewor k. cont ext . Appl i cat i onCont exiiclosing application context

org. spri ngfrabeRor k. i 0. support. Resour cePatBnetasiRes appl@ation context ResourceLoader

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 23

Spring for Apache Hadoop

Name Type Description

or g. spri ngf r aiewr k. dat a. hadoop. f s. Di st ri but edd@mghmmatic access to DistCp

or ds apache. hadoop. f s. Fi | eBgdoepFile System (relies on 'hadoop-fs' bean or singleton
type match, falls back to creating one based on ‘cfg’)

or g. sprifslyf r amewor k. dat a. hadoopilé Syse8hehéll, exposing hadoop 'fs' commands as an API

or g. spri ngf rmafieRior k. dat a. hadoop. i|o. HIf sResoddisaksadee loader (relies on 'hadoop-

resource-loader' or singleton type match, falls
back to creating one automatically based on 'cfg’)

© Note

If no Hadoop Confi gurati on can be detected (either by name hadoopConfi gurati on or
by type), several log warnings will be made and none of the Hadoop-based variables (hamely
cfg,distcp,fs,fsh,distcp orhdf sRL) will be bound.

As mentioned in the Description column, the variables are first looked (either by name or by type)
in the application context and, in case they are missing, created on the spot based on the existing
configuration. Note that it is possible to override or add new variables to the scripts through the
pr operty sub-element that can set values or references to other beans:

<hdp: script | ocation="org/conmpany/basic-script.js" run-at-startup="true">
<hdp: property name="foo0" val ue="bar"/>
<hdp: property name="ref" ref="sone-bean"/>

</ hdp: scri pt >

Running scripts

The scri pt namespace provides various options to adjust its behaviour depending on the script
content. By default the script is simply declared - that is, no execution occurs. One however can change
that so that the script gets evaluated at startup (as all the examples in this section do) through the
run- at - st art up flag (which is by default f al se) or when invoked manually (through the Cal | abl e).
Similarily, by default the script gets evaluated on each run. However for scripts that are expensive and
return the same value every time one has various caching options, so the evaluation occurs only when
needed through the eval uat e attribute:

Table 4.5. scri pt attributes

Name Values Description
run-at - f al se(default), Wether the script is executed at startup or not
startup true
eval uate ALWAYS(default), Wether to actually evaluate the script when invoked or
| F_MODI FI ED, used a previous value. ALWAYS means evaluate every time,
ONCE | F_MODI FI ED evaluate if the backing resource (such as a
file) has been modified in the meantime and ONCE only once.

Using the Scripting tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute scripts.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 24

Spring for Apache Hadoop

<script-tasklet id="script-tasklet">
<script |anguage="groovy">
i nput Path = "/user/gutenberg/input/word/"
out put Path = "/user/ gut enber g/ out put/word/"
if (fsh.test(inputPath)) {
fsh. ror (i nput Pat h)
}
if (fsh.test(outputPath)) {
fsh. rnr (out put Pat h)

}
inputFile = "src/main/resources/datal ni et zsche-chapter-1.txt"
fsh. put (i nputFile, inputPath)

</ scri pt>

</script-tasklet>

The tasklet above embedds the script as a nested element. You can also declare a reference to another
script definition, using the script-ref attribute which allows you to externalize the scripting code to an
external resource.

<script-tasklet id="script-tasklet" script-ref="clean-up"/>
<hdp: script id="clean-up" |ocation="org/conpany/ myapp/ cl ean- up-wor dcount. groovy"/>

4.5 File System Shell (FsShell)

A handy utility provided by the Hadoop distribution is the file system shell which allows UNIX-like
commands to be executed against HDFS. One can check for the existence of files, delete, move, copy
directories or files or set up permissions. However the utility is only available from the command-line
which makes it hard to use from/inside a Java application. To address this problem, SHDP provides
a lightweight, fully embeddable shell, called FsShel | which mimics most of the commands available
from the command line: rather than dealing with Syst em i n or Syst em out , one deals with objects.

Let us take a look at using FsShel | by building on the previous scripting examples:

<hdp: script | ocation="org/conpany/basic-script.groovy" run-at-startup="true"/>

nane = UUl D. randomJUl D().toString()
scriptNanme = "src/test/resources/test. properties"”
fs.copyFroniLocal Fi |l e(scri pt Name, nane)

/'l use the shell made avail abl e under variable fsh

dir = "script-dir"

if (!fsh.test(dir)) {
fsh.nkdir(dir); fsh.cp(nanme, dir); fsh.chnmodr (700, dir)
println "File content is " + fsh.cat(dir + name).toString()

}
println fsh.Is(dir).toString()
fsh.rmr(dir)

As mentioned in the previous section, a FsShel | instance is automatically created and configured for
scripts, under the name fsh. Notice how the entire block relies on the usual commands: t est , nkdi r,
cp and so on. Their semantics are exactly the same as in the command-line version however one has
access to a native Java API that returns actual objects (rather than St ri ngs) making it easy to use
them programmatically whether in Java or another language. Furthermore, the class offers enhanced
methods (such as chnodr which stands for recursive chnod) and multiple overloaded methods taking
advantage of varargs so that multiple parameters can be specified. Consult the API for more information.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 25

http://hadoop.apache.org/common/docs/stable/file_system_shell.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/varargs.html
http://docs.spring.io/spring-hadoop/docs/current/api/index.html?org/springframework/data/hadoop/fs/FsShell.html

Spring for Apache Hadoop

To be as close as possible to the command-line shell, FsShel | mimics even the messages being
displayed. Take a look at line 9 which prints the result of fsh. cat (). The method returns a
Col I ect i on of Hadoop Pat h objects (which one can use programatically). However when invoking
t oSt ri ng on the collection, the same printout as from the command-line shell is being displayed:

File content is sone text

The same goes for the rest of the methods, such as | s. The same script in JRuby would look something
like this:

require 'java

name = java.util.UU D.randomuUl D().to_s
scriptNanme = "src/test/resources/test. properties"”
$f s. copyFronlLocal Fi |l e(scri pt Namre, nane)

use the shel
dir = "script-dir/"

print $fsh.ls(dir).to_s

which prints out something like this:

dr wx- - - - - - - user super gr oup 0 2012-01-26 14:08 /user/user/script-dir
STWTr--r-- 3 user super gr oup 344 2012-01-26 14:08 /user/user/script-
di r/ 520cf 2f 6- aOb6- 427e- a232- 2d5426¢c2bc4e

As you can see, not only can you reuse the existing tools and commands with Hadoop inside SHDP, but
you can also code against them in various scripting languages. And as you might have noticed, there is
no special configuration required - this is automatically inferred from the enclosing application context.

© Note

The careful reader might have noticed that besides the syntax, there are some minor differences
in how the various languages interact with the java objects. For example the automatict oSt ri ng
call called in Java for doing automatic St r i ng conversion is not necessarily supported (hence the
t o_s in Ruby or st r in Python). This is to be expected as each language has its own semantics
- for the most part these are easy to pick up but do pay attention to details.

DistCp API

Similar to the FsShel | , SHDP provides a lightweight, fully embeddable Di st Cp version that builds
on top of the di st cp from the Hadoop distro. The semantics and configuration options are the same
however, one can use it from within a Java application without having to use the command-line. See
the API for more information:

<hdp: scri pt | anguage="groovy" >di stcp. copy("${di stcp.src}", "${distcp.dst}")</hdp:script>

The bean above triggers a distributed copy relying again on Spring's property placeholder variable
expansion for its source and destination.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 26

http://hadoop.apache.org/common/docs/stable/distcp.html
http://docs.spring.io/spring-hadoop/docs/current/api/index.html?org/springframework/data/hadoop/fs/DistCp.html

Spring for Apache Hadoop

5. Writing and reading data using the Hadoop File
System

The Store sub-project of Spring for Apache Hadoop provides abstractions for writing and reading
various types of data residing in HDFS. We currently support different file types either via our own store
accessors or by using the Dataset support in Kite SDK.

Currently, the Store sub-project doesn’t have an XML namespace or javaconfig based configuration
classes as it's considered to be a foundational library. However, this may change in future releases.

5.1 Store Abstraction

Native store abstractions provide various writer and reader interfaces so that the end user don't have to
worry about the underlying implementation actually doing the work on files in HDFS. Implementations
are usually strongly typed and provides constructors and setters for additional setup to work with naming,
compression codecs and everything else defining the behaviour. Interfaces are meant to be used from
integration components which don’t need to know the internal workings of writers and readers.

Writing Data

Main interface writing into a store is a Dat aW i t er which have one method wr i t e which simply writes
an entity and the backing implementation will handle the rest.

public interface DataWiter<T> {
void wite(T entity) throws | OException;

}

The Dat aSt oreW i t er interface adds methods to close and flush a writer. Some of the writers have
a property to close a stream after an idle time has been reached but generally this interface is meant
for programmatic control of these operations.

public interface DataStoreWiter<T> extends DataWiter<T> Flushable, C oseable {
}

File Naming

Different file naming strategies are used to automatically determine the name of a file to be used. Writers
without additional naming configuration will usually use a given base path as is. As soon as any type
of a strategy is configured, given base path is considered to be a base directory and the name of the
file is resolved by file naming strategies.

For example, if defined base path is “/t np/ pat h” and the Stati cFi | eNam ngStrat egy with
“dat a” parameter is used then the actual file path resolved would be “/t np/ pat h/ dat a” .

Path path = new Path("/tnp/path");

Configuration config = new Configuration();

TextFileWiter witer = new TextFileWiter(config, path, null);

StaticFil eNam ngStrategy fileNam ngStrategy = new StaticFil eNam ngStrategy("data")
witer.setFileNam ngStrategy(fileNam ngStrategy);

At first look this may feel a little complicated, but it will make sense after more file naming strategies
are added. These will also provide facilities for using writers in parallel, or for a re-launched

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 27

Spring for Apache Hadoop

writer to be able to create a new file based on already existing files in the directry. For example,
Rol I'i ngFi | eNani ngSt r at egy will add a simple increasing value to a file name and will try to initialize
itself with the correct position.

Built-in strategies currently supported are StaticFil eNam ngStrat egy,
Rol | i ngFi | eNami ngSt r at egy, Uui dFi | eNam ngSt r at egy and CodecFi | eNam ngStr at egy.
Chai nedFi | eNam ngSt rat egy can be used to chain multiple strategies together where each
individual strategy will provide its own part.

File Rollover

File rolling strategy is used to determine a condition in a writer when a current stream should
be automatically closed and the next file should be opened. This is usually done together with
Rol | i ngFi | eNami ngSt r at egy to rollover when a certain file size limit has been reached.

Currently, only one strategy Si zeRol | over St r at egy is supported.
Partitioning

Partitioning is a concept of choosing a target file on demand either based on content to be written or any
other information available to a writer at the time of the write operation. While it would be perfectly alright
to use multiple writers manually, the framework already does all the heavy lifting around partitioning. We
work through interfaces and provide a generic default implementation still allowing to plug a customized
version if there’s a need for it.

PartitionStrategy is a strategy interface defining PartitionResol ver and
Partiti onKeyResol ver.

public interface PartitionStrategy<T, K> {
PartitionResol ver<K> getPartitionResol ver();
Partiti onKeyResol ver<T, K> getPartitionKeyResol ver();

}

Partiti onResol ver is an interface used to resolve arbitrary partition keys into a path. We don't force
any specific partition key type in the interface level itself but usually the implementation needs to be
aware of its type.

public interface PartitionResol ver<kK> {
Pat h resol vePat h(K partitionKey);
}

Partiti onKeyResol ver isaninterface which is responsible for creating a partition key from an entity.
This is needed because writer interfaces allow us to write entities without an explicit partition key.

public interface PartitionKeyResol ver<T, K> {
K resol vePartitionKey(T entity);
}

PartitionDataStoreWiter is an extension of Dat aSt oreW it er adding a method to write an
entity with a partition key. In this context the partition key is something what the partition strategy is
able to use.

public interface PartitionDataStoreWiter<T, K> extends DataStoreWiter<T> {
void wite(T entity, K partitionKey) throws | CExcepti on;

}

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 28

Spring for Apache Hadoop

DefaultPartitionStrategy

Defaul tPartitionStrategy is a generic default implementation meant to be used together
with an expression using Spring's SpEL expression language. Partiti onResol ver used in
Defaul tPartitionStrategy expects partition key to be a type of Map<String,Object> and
partition key created by Partiti onKeyResol ver is a Defaul t Partiti onKey which itself is a
Map<String,Object>.

In order to make it easy to work with SpEL and partitioning, map values can be directly accessed with
keys and additional partitioning methods has been registered.

Partition Path Expression
SpEL expression is evaluated against a partition key passed into a HDFS writer.
Accessing Properties

If partition key is a type of Map any property given to a SpEL expression is automatically resolved from
a map.

Custom Methods

In addition to normal SpEL functionality, a few custom methods have been added to make it easier to
build partition paths. These custom methods can be used to work with normal partition concepts like
date formatting, lists, ranges and hashes.

path

path(String... paths)

You can concatenate paths together with a/ delimiter. This method can be used to make the expression
less verbose than using a native SpEL functionality to combine path parts together. To create a path
partl/part2, expression 'partl' + /' + 'part2' is equivalent to path(‘partl’,'part2").

Parameters

paths. Any number of path parts

Return Value

Concatenated value of paths delimited with / .
dateFormat

dat eFormat (String pattern)

dateFormat (String pattern, Long epoch)

dateFormat (String pattern, Date date)

dateFormat (String pattern, String datestring)

dateFormat (String pattern, String datestring, String datefornat)

Creates a path using date formatting. Internally this method delegates to Si npl eDat eFor mat and
needs a Date and a pattern.

Method signature with three parameters can be used to create a custom Dat e object which is then
passed to Si npl eDat eFor mat conversion using a dateformat pattern. This is useful in use cases

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 29

Spring for Apache Hadoop

where partition should be based on a date or time string found from a payload content itself. Default
dateformat pattern if omitted is yyyy-MM-dd.

Parameters

pattern. Pattern compatible with SimpleDateFormat to produce a final output.

epoch. Timestamp as Long which is converted into a Date.

date. A Date to be formatted.

dateformat. Secondary pattern to convert datestring into a Date.

datestring. Date as a String

Return Value

A path part representation which can be a simple file or directory name or a directory structure.

list

i st(Object source, List<List<Cbject>> |ists)

Creates a partition path part by matching a source against a lists denoted by lists.

Lets assume that data is being written and it's possible to extract an appid from the
content. We can automatically do a list based partition by using a partition method list(appid,
{{'ATO3''APP1''/APP2''/APP3},{4TO6','/APP4' 'APP5''/APP6'}}). This method would create three
partitions, 1TO3_list, 4TO6_list and list. The latter is used if no match is found from partition lists passed
to lists.

Parameters

source. An Object to be matched against lists.

lists. A definition of list of lists.

Return Value

A path part prefixed with a matched key i.e. XXX_list or list if no match.

range

range(Obj ect source, List<Object> |ist)

Creates a partition path part by matching a source against a list denoted by list using a simple binary
search.

The partition method takes source as first argument and a list as the second argument. Behind the
scenes this is using the JVM's binarySearch which works on an Object level so we can pass in anything.
Remember that meaningful range match only works if passed in Object and types in list are of same type
like | nt eger . Range is defined by a binarySearch itself so mostly it is to match against an upper bound

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 30

Spring for Apache Hadoop

except the last range in a list. Having a list of {1000,3000,5000} means that everything above 3000 will
be matched with 5000. If that is an issue then simply adding Integer.MAX_VALUE as last range would
overflow everything above 5000 into a new partition. Created partitions would then be 1000_range,
3000_range and 5000_range.

Parameters

source. An Object to be matched against list.

list. A definition of list.

Return Value

A path part prefixed with a matched key i.e. XXX_range.

hash

hash(Obj ect source, int bucketcount)

Creates a partition path part by calculating hashkey using source's hashCode and bucketcount. Using
a partition method hash(timestamp,2) would then create partitions named 0_hash, 1_hash and 2_hash.
Number suffixed with _hash is simply calculated using Object.hashCode() % bucketcount.

Parameters

source. An Object which hashCode will be used.
bucketcount. A number of buckets

Return Value

A path part prefixed with a hash key i.e. XXX_hash.
Creating a Custom Partition Strategy

Creating a custom partition strategy is as easy as just implementing needed interfaces. Custom strategy
may be needed in use cases where it is just not feasible to use SpEL expressions. This will then give
total flexibility to implement partitioning as needed.

Below sample demonstrates how a simple customer id could be used as a base for partitioning.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 31

Spring for Apache Hadoop

public class CustonerPartitionStrategy inplenents PartitionStrategy<String, String> {

CustonerPartitionResol ver partitionResol ver = new CustonerPartitionResol ver();
Cust onmer Partiti onKeyResol ver keyResol ver = new Cust omer Partiti onKeyResol ver ();

@verride
public PartitionResolver<String> getPartitionResolver() {
return partitionResol ver;

}

@verride
public PartitionKeyResol ver<String, String> getPartitionKeyResolver() {
return keyResol ver;
}
}

public class CustonerPartitionResol ver inplenents PartitionResol ver<String> {

@verride
public Path resol vePath(String partitionKey) {
return new Pat h(partitionKey);
}
}

public class CustonerPartitionKeyResol ver inplenments PartitionKeyResolver<String, String>

{

@verride
public String resol vePartitionKey(String entity) {
if (entity.startsWth("custonerl")) {
return "customnerl";
} else if (entity.startsWth("custonmer2")) {
return "custoner2";
} else if (entity.startsWth("custoner3")) {
return "custoner3";

}

return null;

Writer Implementations
We provide a number of writer implementations to be used based on the type of file to write.

 TextFileWiter. an implementation meant to write a simple text data where entities are
separated by a delimiter. Simple example for this is a text file with line terminations.

* DelimtedTextFil eWiter. anextension atop of Text Fi | eW it er where written entity itself
is also delimited. Simple example for this is a csv file.

e Text SequenceFi | eWit er. asimilarimplementationto Text Fi | eW i t er except that backing
file is a Hadoop's SequencekFi | e.

e PartitionTextFileWiter. wraps multiple TextFileWiters providing automatic
partitioning functionality.

Reading Data

Main interface reading from a store is a Dat aReader .

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 32

Spring for Apache Hadoop

public interface DataReader<T> {
T read() throws | OException;
}

Dat aSt or eReader is an extension of Dat aReader providing close method for a reader.

public interface DataStoreReader<T> ext ends Dat aReader <T>, C oseable {
}

Input Splits

Some of the HDFS storage and file formats can be read using an input splits instead of reading a whole
file at once. This is a fundamental concept in Hadoop’s MapReduce to parallelize data processing.
Instead of reading a lot of small files, which would be a source of a Hadoop’s “small file problem”, one
large file can be used. However one need to remember that not all file formats support input splitting
especially when compression is used.

Support for reading input split is denoted via a Split interface which simply mark starting and ending
positions.

public interface Split {
long getStart();
| ong getLength();
| ong get End();

}

Interface Splitter defines an contract how Split's are calculate from a given path.

public interface Splitter {
Li st<Split> getSplits(Path path) throws | CExcepti on;
}

We provide few generic Splitter implementations to construct Split’s.
StaticlLengthSplitter isused to splitinput file with a given length.

StaticBl ockSplitter is used to split input by used HDFS file block size. It's also possible to split
further down the road within the blocks itself.

Sl opBl ockSplitter isanextensionof St ati cBl ockSpli tter which tries to estimate how much a
split can overflow to a next block to taggle unnecessary overhead if last file block is very small compared
to an actual split size.

Reader Implementations

We provide a number of reader implementations to be used based on the type of file to read.

» Text Fi | eReader . used to read data written by a Text Fi | eWiter.

» DelimtedText Fil eReader. used to read data writte by aDel i mi t edTextFil eWiter.

» Text SequenceFi | eReader. used to read data written by a Text SequenceFi | eWiter.

Using Codecs

Supported compression codecs are denoted via an interface Codecl nf o which simply defines if codec
supports splitting, what is it's fully qualified java class and what is its default file suffix.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 33

Spring for Apache Hadoop

public interface Codeclnfo {
bool ean i sSplittable();
String get Codecd ass();
String getDefaul t Suffix();

}

Codecs provides an enum for easy access to supported codecs.

» GZIP - org. apache. hadoop. i 0. conpress. &i pCodec

SNAPPY - or g. apache. hadoop. i 0. conpr ess. SnappyCodec

BZIP2 - or g. apache. hadoop. i 0. conpr ess. BZi p2Codec

LZO - com hadoop. conpressi on. | zo. LzoCodec (non-splittable)

SLZO - com hadoop. conpr essi on. | zo. LzoCodec (splittable)

5.2 Persisting POJO datasets using Kite SDK

One common requirement is to persist a large number of POJOs in serialized form using HDFS. The
Kite SDK project provides a Kite Data Module that provides an API for working with datasets stored in
HDFS. We are using this functionality and provide a some simple helper classes to aid in configuration
and use in a Spring environment.

Data Formats

The Kite SDK project provides support for writing data using both the Avro and Parquet data formats.
The data format you choose to use influences the data types you can use in your POJO classes. We'll
discuss the basics of the Java type mapping for the two data formats but we recommend that you consult
each project's documentation for additional details.

© Note

Currently, you can't provide your own schema. This is something that we are considering
changing in upcomming releases. We are also planning to provide better mapping support in line
with the support we currently provide for NoSQL stores like MongoDB.

Using Avro

When using Avro as the data format the schema generation is based on reflection of thet POJO class
used. Primitive data types and their corresponding wrapper classes are mapped to the corresponding
Avro data type. More complex types, as well as the POJO itself, are mapped to a record type consisting
of one or more fields.

The table below shows the mapping from some common types:

Table 5.1. Some common Java to Avro data types mapping

Java type Avro type Comment
String string

int / Integer int 32-bit signed integer

long / Long long 64-bit signed integer

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 34

http://kitesdk.org/
http://avro.apache.org/
http://parquet.io/

Spring for Apache Hadoop

Java type Avro type Comment
float / Float float 32-bit floating point
double / Double double 64-bit floating point
boolean / Boolean boolean
byte]] bytes byte array
java.util.Date record

Using Parquet

When using Parquet as the data format the schema generation is based on reflection of thet POJO class
used. The POJO class must be a proper JavaBean and not have any nested types. We only support
primitive data types and their corresponding wrapper classes plus byte arrays. We do rely on the Avro-
to-Parquet mapping support that the Kite SDK uses, so the schema will be generated by Avro.

@ Note

The Parquet support we currently povide is considered experimental. We are planning to relax
a lot of the restrictions on the POJO class in upcoming releases.

The table below shows the mapping from some common types:

Table 5.2. Some common Java to Parquet data types mapping

Javatype Parquet type Comment
String BINARY/UTF8
int / Integer INT32 32-bit signed integer
long / Long INT64 64-bit signed integer
float / Float FLOAT 32-bit floating point
double / Double DOUBLE 64-bit floating point
boolean / Boolean BOOLEAN
byte[] BINARY/BYTE_ARRAY byte array

Configuring the dataset support

In order to use the dataset support you need to configure the following classes:

» Dat aset Reposi t oryFact ory that needs a or g. apache. hadoop. conf. Confi gurati on so
we know how to connect to HDFS and a base path where the data will be written.

» Dat aset Defi ni ti on that defines the dataset you are writing. Configuration options include the
POJO class that is being stored, the type of format to use (Avro or Parquet). You can also specify
whether to allow null values for all fields (default is false) and an optional partition strategy to use for
the dataset (see below for partitioning).

The following example shows a simple configuration class:

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 35

Spring for Apache Hadoop

@Configuration
@ npor t Resour ce(" hadoop- cont ext . xm ")
public class DatasetConfig {

private @\utow red org.apache. hadoop. conf. Confi gurati on hadoopConfi gurati on;

@Bean
publ i c Dat aset Reposi t oryFact ory dat aset RepositoryFactory() {

}

Dat aset Reposi toryFactory dat aset RepositoryFactory = new Dat aset Reposi toryFactory();
dat aset Reposi t or yFact ory. set Conf (hadoopConf i gurati on);

dat aset Reposi t oryFact ory. set BasePat h("/ user/spring");

return dataset RepositoryFactory;

@ean
public DatasetDefinition filelnfoDatasetDefinition() {

Dat aset Definiti on definition = new DatasetDefinition();
definition.setFornmat (For mats. AVRO. get Nane()) ;
definition.setTargetd ass(Filelnfo.class);
definition.setAll ow\ullVal ues(false);

return definition;

Writing datasets

To write datasets to Hadoop you should use either the AvroPoj oDat aset St oreWiter or the
Par quet Dat aset St oreW i t er depending on the data format you want to use.

o

Tip

To mark your fields as nullable use the @Nul | abl e annotation
(org. apache. avro. refl ect. Nul | abl e). This will result in the schema defining your field
as a union of null and your datatype.

We are using a Fi | el nf o POJO that we have defined to hold some information based on the files we
read from our local file system. The dataset will be stored in a directory that is the name of the class
using lowercase, so in this case it would be fileinfo. This directory is placed inside the basePath specified
in the configuration of the Dat aset Reposi t oryFactory.:

Spring for Apache Hadoop

2.0.3.RELEASE-hdp20 - Reference Documentation 36

Spring for Apache Hadoop

package org. springframewor k. sanpl es. hadoop. dat aset ;
i nport org.apache. avro.reflect. Null abl e;

public class Filelnfo {
private String nane;
private @wull able String path;
private |ong size;
private |ong nodified;

public Filelnfo(String nane, String path, |ong size, |ong nodified) {
this. name = name;

this.path = path;

this.size = size;

this.nodified = nodified;

}

public Filelnfo() {
}

public String get Name() {
return name;

}

public String getPath() {
return path;

}

public |ong getSize() {
return size;

}

public |l ong getMdified() {
return nodifi ed;
}
}

To create a writer add the following bean definition to your configuration class:

@ean
public DataStoreWiter<Filelnfo> dataStoreWiter() {
return new AvroPoj oDat aset StoreWiter<Fil el nfo>(Filelnfo.class,
dat aset Reposi toryFactory(), filelnfoDatasetDefinition());

Next, have your class use the writer bean:

private DataStoreWiter<Filelnfo> witer;

@\ut owi r ed
public void setDataStoreWiter(DataStoreWiter dataStoreWiter) {
this.witer = dataStoreWiter;

Now we can use the writer, it will be opened automatically once we start writing to it:

Filelnfo filelnfo = new Filelnfo(file.getNane(),
file.getParent(), (int)file.length(), file.lastMdified());
witer.wite(filelnfo);

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 37

Spring for Apache Hadoop

Once we are done writing we should close the writer:

try {
witer.close();
} catch (1 OException e) {
throw new StoreException("Error closing Filelnfo",

}

e);

We should now have dataset containing all the FileIlnfo entries ina/ user/ spri ng/ deno/fil einfo
directory:

$ hdfs dfs -Is /user/spring/*
Found 2 itens

dr wxr - xr - x - spring supergroup
fileinfol.metadata

STWr--r-- 3 spring supergroup 13824695 2014-06-09 17:10 /user/spring/
fileinfol/ 6876f 250- 010a- 404a- b8c8- 0celee759206. avro

0 2014-06-09 17:09 /user/spring/

The . met adat a directory contains dataset information including the Avro schema:

Reading datasets

$ hdfs dfs -cat /user/spring/fileinfo/.netadatal/schena.avsc
{
"type" "record",
"nane" "Fil el nfo",
"nanmespace" "org. springfranmewor k. sanpl es. hadoop. dat aset "
"fields" [{
"name" "nanme",
"type" “string"
b A
"nane" "pat h",
"type" ["null", "string"],
"defaul t" nul |
oA
"nane" "size",
"type" "l ong"
oA
"nane" "modi fied",
"type" "l ong"
}l
}

To read datasets to Hadoop we use the Dat aset Tenpl at e class.

To create a Dat aset Tenpl at e add the following bean definition to your configuration class:

@ean

publ i c Dataset Operations dataset Operations() {
Dat aset Tenpl at e dat aset Operati ons =
dat aset Qper ati ons. set Dat aset Reposi t or yFact or y(dat aset Reposi toryFactory());
return dataset Qperations

new Dat aset Tenpl ate() ;

Next, have your class use the Dat aset Tenpl at e:

2.0.3.RELEASE-hdp20

Spring for Apache Hadoop
- Reference Documentation

Spring for Apache Hadoop

private Dataset Operati ons dataset Operati ons;

@\ut owi r ed
public voi d set Dat aset Oper ati ons(Dat aset Operati ons dat aset Operations) ({
t hi s. dat aset Operati ons = dat aset Oper ati ons;

}

Now we can read and count the entries using a Recor dCal | back callback interface that gets called
once per retrieved record:

final Atom cLong count = new Atom cLong();
dat aset Operations. read(Fil el nfo. class, new RecordCal | back<Fi | el nfo>() {
@verride
public void dol nRecord(Filelnfo record) {
count . get Andl ncrement () ;
}
)5

Systemout.printIn("File count: " + count.get());

Partitioning datasets

To create datasets that are partitioned on one or more data fields we use the
PartitionStrategy. Buil der class that the Kite SDK project provides.

Dat aset Definition definition = new DatasetDefinition();
definition.setPartitionStrategy(new PartitionStrategy.Builder().year("nodified").build());

This option lets you specify one or more paths that will be used to partition the files that the data is
written to based on the content of the data. You can use any of the Fi el dPartiti oners that are
available for the Kite SDK project. We simply use what is specified to create the corresponding partition
strategy. The following partitioning functions are available:

» year, month, day, hour, minute creates partitions based on the value of a timestamp and creates
directories named like "YEAR=2014" (works well with fields of datatype long)

« specify function plus field name like:

year ("ti nestanp")

« optionally, specify a partition name to replace the default one:

year ("ti nestanp", "YY")

» dateformat creates partitions based on a timestamp and a dateformat expression provided - creates
directories based on the name provided (works well with fields of datatype long)

« specify function plus field name, a name for the partition and the date format like:

dat eFormat ("ti mestanp”, "Y-M, "yyyyMV')

 range creates partitions based on a field value and the upper bounds for each bucket that is specified
(works well with fields of datatype int and string)

« specify function plus field name and the upper bounds for each partition bucket like:

range("age", 20, 50, 80, Integer.MAX_ VALUE)

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 39

Spring for Apache Hadoop

« identity creates partitions based on the exact value of a field (works well with fields of datatype string,
long and int)

 specify function plus field name, a name for the partition, the type of the field (String or Integer) and
the number of values/buckets for the partition like:

identity("region", "R', String.class, 10)

» hash creates partitions based on the hash calculated from the value of a field divided into a number
of buckets that is specified (works well with all data types)

« specify function plus field name and number of buckets like:

hash("| ast name", 10)

Multiple expressions can be specified by simply chaining them like:

identity("region", "R', String.class, 10).year("tinestanmp").nmonth("ti mestanmp")

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 40

Spring for Apache Hadoop

6. Working with HBase

SHDP provides basic configuration for HBase through the hbase- confi gurati on namespace
element (or its backing HbaseConf i gur at i onFact or yBean).

<I-- default bean id is 'hbaseConfiguration' that uses the existing 'hadoopCconfiguration
object -->
<hdp: hbase- confi gurati on confi gurati on-ref="hadoopCconfi gurati on" />

The above declaration does more than easily create an HBase configuration object; it will also
manage the backing HBase connections: when the application context shuts down, so will any
HBase connections opened - this behavior can be adjusted through the st op- pr oxy and del et e-
connect i on attributes:

<l-- del ete associated connections but do not stop the proxies -->
<hdp: hbase-confi gurati on stop-proxy="fal se" del ete-connecti on="true">
f oo=bar

property=val ue
</ hdp: hbase- confi gurati on>

Additionally, one can specify the ZooKeeper port used by the HBase server - this is especially useful
when connecting to a remote instance (note one can fully configure HBase including the ZooKeeper
host and port through properties; the attributes here act as shortcuts for easier declaration):

<l-- specify ZooKeeper host/port -->
<hdp: hbase- confi guration zk-quorum="${hbase. host}" zk-port="%${hbase. port}">

Notice that like with the other elements, one can specify additional properties specific to this
configuration. In fact hbase- confi gur at i on provides the same properties configuration knobs as
hadoop configuration:

<hdp: hbase-confi gurati on properties-ref="sone- props-bean" properties-|ocati on="cl asspath:/
conf/testing/ hbase. properties"/>

6.1 Data Access Object (DAQO) Support

One of the most popular and powerful feature in Spring Framework is the Data Access Object (or
DAO) support. It makes dealing with data access technologies easy and consistent allowing easy switch
or interconnection of the aforementioned persistent stores with minimal friction (no worrying about
catching exceptions, writing boiler-plate code or handling resource acquisition and disposal). Rather
than reiterating here the value proposal of the DAO support, we recommend the DAQO section in the
Spring Framework reference documentation

SHDP provides the same functionality for Apache HBase through its
org. spri ngfranmewor k. dat a. hadoop. hbase package: an HoaseTenpl at e along with several
callbacks such as Tabl eCal | back, Rowvapper and Resul t sExt r act or that remove the low-level,
tedious details for finding the HBase table, run the query, prepare the scanner, analyze the results then
clean everything up, letting the developer focus on her actual job (users familiar with Spring should find
the class/method names quite familiar).

At the core of the DAO support lies HbaseTenpl at e - a high-level abstraction for interacting with
HBase. The template requires an HBase configuration, once it's set, the template is thread-safe and
can be reused across multiple instances at the same time:

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 41

http://hbase.apache.org
http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/dao.html
http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/jdbc.html

Spring for Apache Hadoop

/] default HBase configuration
<hdp: hbase- confi gurati on/ >

/'l wire hbase configuration (using default nane 'hbaseConfiguration') into the tenplate
<bean i d="htenpl ate" cl ass="org. springframewor k. dat a. hadoop. hbase. HbaseTenpl ate" p: confi gurati on-
ref ="hbaseConfi guration"/>

The template provides generic callbacks, for executing logic against the tables or doing result or row
extraction, but also utility methods (the so-called one-liners) for common operations. Below are some
examples of how the template usage looks like:

/'l witing to ' MyTabl e’
tenpl at e. execut e(" MyTabl e", new Tabl eCal | back<Cbj ect >() {
@verride
public Object dolnTabl e(HTabl e table) throws Throwabl e {
Put p = new Put (Bytes.toBytes("SomeRow'));
p. add(Byt es. t oByt es(" SonmeCol um"), Bytes.toBytes("SoneQualifier"),
Byt es. t oByt es("Aval ue"));
tabl e. put (p);
return null;
}
b

/'l read each row from' My/Tabl e’
List<String> rows = tenplate.find("MTable", "SoneColum", new Rowivapper<String>() {
@verride
public String mapRow(Result result, int rowNum) throws Exception {
return result.toString();
}
)

The first snippet showcases the generic Tabl eCal | back - the most generic of the callbacks, it does
the table lookup and resource cleanup so that the user code does not have to. Notice the callback
signature - any exception thrown by the HBase API is automatically caught, converted to Spring's DAO
exceptions and resource clean-up applied transparently. The second example, displays the dedicated
lookup methods - in this case f i nd which, as the name implies, finds all the rows matching the given
criteria and allows user code to be executed against each of them (typically for doing some sort of type
conversion or mapping). If the entire result is required, then one can use Resul t sExt r act or instead
of Rowvapper .

Besides the template, the package offers support for automatically binding HBase table to the current
thread through Hbasel nt er cept or and HbaseSynchr oni zat i onManager . Thatis, each class that
performs DAO operations on HBase can be wrapped by Hbasel nt er cept or so that each table in
use, once found, is bound to the thread so any subsequent call to it avoids the lookup. Once the call
ends, the table is automatically closed so there is no leakage between requests. Please refer to the
Javadocs for more information.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 42

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/dao.html#dao-exceptions
http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/dao.html#dao-exceptions
http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/aop.html#aop-schema-advisors

Spring for Apache Hadoop

7. Hive integration

When working with http://hive.apache.org from a Java environment, one can choose between the Thrift
client or using the Hive JDBC-like driver. Both have their pros and cons but no matter the choice, Spring
and SHDP support both of them.

7.1 Starting a Hive Server

SHDP provides a dedicated namespace element for starting a Hive server as a Thrift service (only when
using Hive 0.8 or higher). Simply specify the host, the port (the defaults are | ocal host and 10000
respectively) and you're good to go:

<I-- by default, the definition name is 'hive-server' -->
<hdp: hi ve-server host="sone-ot her-host" port="10001" />

If needed the Hadoop configuration can be passed in or additional properties specified. In fact hi ver -
server provides the same properties configuration knobs as hadoop configuration:

<hdp: hi ve-server host="sone-ot her-host" port="10001" properties-Ilocati on="cl asspat h: hi ve-
dev. properties" configuration-ref="hadoopConfi guration">

sonepr opert y=soneval ue

hi ve. exec. scrat chdi r=/tnp/ mydir
</ hdp: hi ve- server >

The Hive server is bound to the enclosing application context life-cycle, that is it will automatically startup
and shutdown along-side the application context.

7.2 Using the Hive Thrift Client

Similar to the server, SHDP provides a dedicated namespace element for configuring a Hive client (that
is Hive accessing a server node through the Thrift). Likewise, simply specify the host, the port (the
defaults are | ocal host and 10000 respectively) and you're done:

<l-- by default, the definition name is 'hiveCientFactory' -->
<hdp: hi ve-client-factory host="sone-other-host" port="10001" />

Note that since Thrift clients are not thread-safe, hi ve-cl i ent - f act ory returns a factory (named
org. spri ngfranmewor k. dat a. hadoop. hi ve. Hi veC i ent Fact ory) for creating Hi ved i ent
new instances for each invocation. Furthermore, the client definition also allows Hive scripts (either
declared inlined or externally) to be executed during initialization, once the client connects; this is quite
useful for doing Hive specific initialization:

<hive-client-factory host="some-host" port="some-port" xm ns="http://
www. spri ngf ramewor k. or g/ schema/ hadoop” >
<hdp: scri pt >
DROP TABLE | F EXITS testHi veBat chTabl e
CREATE TABLE testHiveBatchTabl e (key int, value string)
</ hdp: scri pt >
<hdp: script | ocation="cl asspath: org/ conpany/ hi ve/ script.q">
<ar gunment s>i gnor e- case=t r ue</ ar gunent s>
</ hdp: scri pt >
</ hive-client-factory>

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 43

http://hive.apache.org
http://thrift.apache.org/
http://hive.apache.org/docs/r0.7.1/api/org/apache/hadoop/hive/jdbc/package-summary.html

Spring for Apache Hadoop

In the example above, two scripts are executed each time a new Hive client is created (if the scripts
need to be executed only once consider using a tasklet) by the factory. The first script is defined inline
while the second is read from the classpath and passed one parameter. For more information on using
parameters (or variables) in Hive scripts, see this section in the Hive manual.

7.3 Using the Hive JDBC Client

Another attractive option for accessing Hive is through its JDBC driver. This exposes Hive through the
JDBC API meaning one can use the standard API or its derived utilities to interact with Hive, such as
the rich JDBC support in Spring Framework.

© Warning

Note that the JDBC driver is a work-in-progress and not all the JDBC features are available
(and probably never will since Hive cannot support all of them as it is not the typical relational
database). Do read the official documentation and examples.

SHDP does not offer any dedicated support for the JDBC integration - Spring Framework itself provides
the needed tools; simply configure Hive as you would with any other JDBC Dr i ver :

<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns:c="http://ww. springfranmework. org/ schema/c"

xm ns: cont ext ="htt p://ww. spri ngfranmewor k. or g/ schena/ cont ext "

xsi:schemaLocati on="http://wmv springframewor k. or g/ schema/ beans http://

www. spri ngf ranewor k. or g/ schenma/ beans/ spri ng- beans. xsd

http://ww. springfranmework. org/ schema/ cont ext http://ww. springfranmework. org/

schema/ cont ext/ spri ng- cont ext. xsd" >

<!-- basic Hive driver bean -->
<bean id="hive-driver" class="org. apache. hadoop. hi ve. jdbc. Hi veDriver"/>

<I-- wrapping a basic datasource around the driver -->
<l-- notice the 'c:' nanespace (available in Spring 3.1+) for inlining constructor
argunent s,

in this case the url (default is 'jdbc:hive://local host: 10000/ default') -->
<bean id="hive-ds" class="org.springfranework.jdbc. datasource. Si npl eDri ver Dat aSour ce"
c:driver-ref="hive-driver" c:url="%{hive.url}"/>

<l-- standard JdbcTenpl ate decl aration -->
<bean i d="tenpl ate" class="org.springframework.jdbc.core.JdbcTenpl ate" c: data-source-
ref="hive-ds"/>

<cont ext : property-pl acehol der | ocati on="hive. properties"/>
</ beans>

And that is it! Following the example above, one can use the hi ve- ds Dat aSour ce bean to manually
get a hold of Connect i ons or better yet, use Spring's JdbcTenpl at e as in the example above.

7.4 Running a Hive script or query

Like the rest of the Spring Hadoop components, a runner is provided out of the box for executing Hive
scripts, either inlined or from various locations through hi ve-r unner element:

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 44

http://hive.apache.org/docs/r0.9.0/language_manual/var_substitution.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/jdbc.html
http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/jdbc.html#jdbc-JdbcTemplate

Spring for Apache Hadoop

<hdp: hi ve-runner id="hi veRunner" run-at-startup="true">
<hdp: scri pt >
DROP TABLE | F EXI TS test Hi veBat chTabl e
CREATE TABLE test Hi veBat chTabl e (key int, value string)
</ hdp: scri pt >
<hdp: scri pt | ocation="hive-scripts/script.q"/>
</ hdp: hi ve-runner >

The runner will trigger the execution during the application start-up (notice the r un- at - st ar t up flag
which is by default f al se). Do note that the runner will not run unless triggered manually or if r un-
at-startup is settotrue. Additionally the runner (as in fact do all runners in SHDP) allows one or
multiple pr e and post actions to be specified to be executed before and after each run. Typically other
runners (such as other jobs or scripts) can be specified but any JDK Cal | abl e can be passed in. For
more information on runners, see the dedicated chapter.

Using the Hive tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Hive queries, on demand,
as part of a batch or workflow. The declaration is pretty straightforward:

<hdp: hi ve-taskl et id="hive-script">
<hdp: scri pt >
DROP TABLE | F EXI TS test Hi veBat chTabl e
CREATE TABLE test Hi veBat chTabl e (key int, value string)
</ hdp: scri pt >
<hdp: script | ocation="cl asspath: org/ conpany/ hi ve/script.q" />
</ hdp: hi ve-t askl et >

The tasklet above executes two scripts - one declared as part of the bean definition followed by another
located on the classpath.

7.5 Interacting with the Hive API

For those that need to programmatically interact with the Hive API, Spring for Apache Hadoop
provides a dedicated template, similar to the aforementioned JdbcTenpl at e. The template handles
the redundant, boiler-plate code, required for interacting with Hive such as creatinganew H ved i ent ,
executing the queries, catching any exceptions and performing clean-up. One can programmatically
execute queries (and get the raw results or convert them to longs or ints) or scripts but also interact with
the Hive API through the Hi veCl i ent Cal | back. For example:

<hdp: hi ve-client-factory ... />
<I-- Hve tenplate wires automatically to 'hiveCientFactory'-->
<hdp: hi ve-tenpl ate />

<l-- wire hive tenplate into a bean -->
<bean i d="soneBean" cl ass="org. Somed ass" p: hi ve-tenpl ate-ref="hiveTenpl ate"/>

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 45

http://en.wikipedia.org/wiki/Template_method_pattern

Spring for Apache Hadoop

public class Sonmed ass {
private Hi veTenpl ate tenpl ate;

public void setH veTenpl ate(H veTenpl ate tenplate) { this.tenplate = tenpl ate; }

public List<String> getDbs() {
return hiveTenpl at e. execut e(new H ved i ent Cal | back<Li st <Stri ng>>() {
@verride
public List<String> dolnH ve(Hi veCient hiveCient) throws Exception {
return hiveCient.get_all_databases();
}
)

The example above shows a basic container configuration wiring a Hi veTenpl at e into a user class
which uses it to interact with the Hi veCl i ent Thrift API. Notice that the user does not have to handle
the lifecycle of the Hi veC i ent instance or catch any exception (out of the many thrown by Hive itself
and the Thrift fabric) - these are handled automatically by the template which converts them, like the
rest of the Spring templates, into Dat aAccessExcept i ons. Thus the application only has to track only
one exception hierarchy across all data technologies instead of one per technology.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 46

Spring for Apache Hadoop

8. Pig support

For Pig users, SHDP provides easy creation and configuration of Pi gSer ver instances for registering
and executing scripts either locally or remotely. In its simplest form, the declaration looks as follows:

<hdp: pig />

This will create a org. springfranmework. dat a. hadoop. pi g. Pi gSer ver Fact ory instance,
named pi gFact ory, afactory that creates Pi gSer ver instances on demand configured with a default
Pi gCont ext , executing scripts in MapReduce mode. The factory is needed since Pi gSer ver is not
thread-safe and thus cannot be used by multiple objects at the same time. In typical scenarios however,
one might want to connect to a remote Hadoop tracker and register some scripts automatically so let
us take a look of how the configuration might look like:

<pi g-factory exec-type="LOCAL" job-nane="pig-script" configuration-
ref ="hadoopConfi gurati on" properties-I|ocati on="pi g-dev. properties"
xm ns="htt p: //ww. spri ngf ramewor k. or g/ schena/ hadoop" >
sour ce=${ pi g. scri pt.src}
<script | ocation="org/conpany/pig/script.pig">
<ar gunent s>el ectri c=sea</ ar gunent s>
</ scri pt>
<scri pt >
A = LOAD 'src/test/resources/| ogs/apache_access.log' USING Pi gStorage() AS
(nane: chararray, age:int);
B = FOREACH A GENERATE nane
DUVP B
</ scri pt>
</ pig-factory> />

The example exposes quite a few options so let us review them one by one. First the top-level pig
definition configures the pig instance: the execution type, the Hadoop configuration used and the job
name. Notice that additional properties can be specified (either by declaring them inlined or/and loading
them from an external file) - in fact, <hdp: pi g- f act or y/ > just like the rest of the libraries configuration
elements, supports common properties attributes as described in the hadoop configuration section.

The definition contains also two scripts: scri pt. pi g (read from the classpath) to which one pair of
arguments, relevant to the script, is passed (notice the use of property placeholder) but also an inlined
script, declared as part of the definition, without any arguments.

As you can tell, the pi g- f act or y namespace offers several options pertaining to Pig configuration.
8.1 Running a Pig script

Like the rest of the Spring Hadoop components, a runner is provided out of the box for executing Pig
scripts, either inlined or from various locations through pi g- r unner element:

<hdp: pi g-runner id="pi gRunner" run-at-startup="true">
<hdp: scri pt >
A = LOAD 'src/test/resources/| ogs/ apache_access. |l og' USI NG Pi gStorage() AS
(nane: chararray, age:int);

</ hdp: scri pt >
<hdp: script | ocation="pig-scripts/script.pig"/>
</ hdp: pi g- runner >

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation a7

http://pig.apache.org

Spring for Apache Hadoop

The runner will trigger the execution during the application start-up (notice the r un- at - st art up flag
which is by default f al se). Do note that the runner will not run unless triggered manually or if r un-
at-startup is settotrue. Additionally the runner (as in fact do all runners in SHDP) allows one or
multiple pr e and post actions to be specified to be executed before and after each run. Typically other
runners (such as other jobs or scripts) can be specified but any JDK Cal | abl e can be passed in. For
more information on runners, see the dedicated chapter.

Using the Pig tasklet

For Spring Batch environments, SHDP provides a dedicated tasklet to execute Pig queries, on demand,
as part of a batch or workflow. The declaration is pretty straightforward:

<hdp: pi g-taskl et id="pig-script">
<hdp: script | ocation="org/conpany/ pi g/ handson®e. pi g" />
</ hdp: pi g-t askl et >

The syntax of the scripts declaration is similar to that of the pi g namespace.

8.2 Interacting with the Pig API

For those that need to programmatically interact directly with Pig , Spring for Apache Hadoop provides
a dedicated template, similar to the aforementioned Hi veTenpl at e. The template handles the
redundant, boiler-plate code, required for interacting with Pig such as creating a new Pi gSer ver,
executing the scripts, catching any exceptions and performing clean-up. One can programmatically
execute scripts but also interact with the Hive API through the Pi gSer ver Cal | back. For example:

<hdp: pi g-factory ... />
<l-- Pig tenplate wires automatically to 'pigFactory'-->
<hdp: pi g-tenpl ate />

<l-- use conponent scanni ng-->
<cont ext : conponent - scan base- package="sone. pkg" />

public class Sonmed ass {
@ nj ect
private PigTenpl ate tenpl ate;

public Set<String> getDbs() {
return pigTenpl at e. execut e(new Pi gCal | back<Set <String>() {
@verride
public Set<String> dol nPi g(Pi gServer pig) throws ExecException, |OException {
return pig.getAliasKeySet();
}
b

The example above shows a basic container configuration wiring a Pi gTenpl at e into a user class
which uses it to interact with the Pi gSer ver API. Notice that the user does not have to handle the
lifecycle of the Pi gSer ver instance or catch any exception - these are handled automatically by the
template which converts them, like the rest of the Spring templates, into Dat aAccessExcepti ons.
Thus the application only has to track only one exception hierarchy across all data technologies instead
of one per technology.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 48

http://en.wikipedia.org/wiki/Template_method_pattern

Spring for Apache Hadoop

9. Using the runner classes

Spring for Apache Hadoop provides for each Hadoop interaction type, whether it is vanilla Map/Reduce,
Hive or Pig, a runner, a dedicated class used for declarative (or programmatic) interaction. The list below
illustrates the existing runner classes for each type, their name and namespace element.

Table 9.1. Available Runners

Type Name Namespace Description
element
Map/ JobRunner j ob-runner Runner for Map/Reduce jobs,
Reduce Job whether vanilla M/R or streaming
Hadoop Tool Tool Runner |t ool -runner Runner for Hadoop Tool s

(whether stand-alone or as jars).

Hadoopjars JarRunner j ar-runner Runner for Hadoop jars.

Hive queries Hi veRunner | hive-runner Runner for executing Hive queries or scripts.
and scripts

Pig queries Pi gRunner pi g- runner Runner for executing Pig scripts.

and scripts

JSR-223/ Hdf sScri pt Runner scri pt Runner for executing JVM 'scripting'
JVM scripts languages (implementing the JSR-223 API).

While most of the configuration depends on the underlying type, the runners share common attributes
and behaviour so one can use them in a predictive, consistent way. Below is a list of common features:

* declaration does not imply execution

The runner allows a script, a job to run but the execution can be triggered either programmatically
or by the container at start-up.

e run-at-startup

Each runner can execute its action at start-up. By default, this flag is set to f al se. For multiple or on
demand execution (such as scheduling) use the Cal | abl e contract (see below).

* JDK Cal | abl e interface

Each runnerimplements the JDK Cal | abl e interface. Thus one can inject the runner into other beans
or its own classes to trigger the execution (as many or as little times as she wants).

e pre and post actions

Each runner allows one or multiple, pre or/and post actions to be specified (to chain them together
such as executing a job after another or perfoming clean up). Typically other runners can be used
but any Cal | abl e can be specified. The actions will be executed before and after the main action,
in the declaration order. The runner uses a fail-safe behaviour meaning, any exception will interrupt
the run and will propagated immediately to the caller.

 consider Spring Batch

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 49

Spring for Apache Hadoop

The runners are meant as a way to execute basic tasks. When multiple executions need to be
coordinated and the flow becomes non-trivial, we strongly recommend using Spring Batch which
provides all the features of the runners and more (a complete, mature framework for batch execution).

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 50

Spring for Apache Hadoop

10. Security Support

Spring for Apache Hadoop is aware of the security constraints of the running Hadoop environment and
allows its components to be configured as such. For clarity, this document breaks down security into
HDFS permissions and user impersonation (also known as secure Hadoop). The rest of this document
discusses each component and the impact (and usage) it has on the various SHDP features.

10.1 HDFS permissions

HDFS layer provides file permissions designed to be similar to those present in *nix OS. The official
guide explains the major components but in short, the access for each file (whether it's for reading,
writing or in case of directories accessing) can be restricted to certain users or groups. Depending on
the user identity (which is typically based on the host operating system), code executing against the
Hadoop cluster can see or/and interact with the file-system based on these permissions. Do note that
each HDFS or Fi | eSyst emimplementation can have slightly different semantics or implementation.

SHDP obeys the HDFS permissions, using the identity of the current user (by default) for interacting
with the file system. In particular, the Hdf sResour ceLoader considers when doing pattern matching,
only the files that it's supposed to see and does not perform any privileged action. It is possible however
to specify a different user, meaning the Resour ceLoader interacts with HDFS using that user's rights
- however this obeys the user impersonation rules. When using different users, it is recommended to
create separate Resour ceLoader instances (one per user) instead of assigning additional permissions
or groups to one user - this makes it easier to manage and wire the different HDFS views without having
to modify the ACLs. Note however that when using impersonation, the Resour ceLoader might (and
will typically) return restricted files that might not be consumed or seen by the callee.

10.2 User impersonation (Kerberos)

Securing a Hadoop cluster can be a difficult task - each machine can have a different set of users and
groups, each with different passwords. Hadoop relies on Kerberos, a ticket-based protocol for allowing
nodes to communicate over a non-secure network to prove their identity to one another in a secure
manner. Unfortunately there is not a lot of documentation on this topic out there. However there are
some resources to get you started.

SHDP does not require any extra configuration - it sSimply obeys the security system in place. By default,
when running inside a secure Hadoop, SHDP uses the current user (as expected). It also supports user
impersonation, that is, interacting with the Hadoop cluster with a different identity (this allows a superuser
to submit job or access hdfs on behalf of another user in a secure way, without leaking permissions).
The major MapReduce components, such as j ob, streani ng and t ool as well as pi g support user
impersonation through the user attribute. By default, this property is empty, meaning the current user
is used - however one can specify the different identity (also known as ugi) to be used by the target
component:

<hdp:job id="j obFromJoe" user="joe" .../>

Note that the user running the application (or the current user) must have the proper kerberos credentials
to be able to impersonate the target user (in this case joe).

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 51

http://hadoop.apache.org/common/docs/r1.0.3/hdfs_permissions_guide.html
http://en.wikipedia.org/wiki/Kerberos_%28protocol%29
http://hortonworks.com/blog/fine-tune-your-apache-hadoop-security-settings/
https://ccp.cloudera.com/display/CDHDOC/Configuring+Hadoop+Security+in+CDH3

Spring for Apache Hadoop

11. Yarn Support

You've propbably seen a lot of topics around Yarn and next version of Hadoop's Map Reduce called
MapReduce Version 2. Originally Yarn was a component of MapReduce itself created to overcome some
performance issues in Hadoop's original design. The fundamental idea of MapReduce v2 is to split up the
two major functionalities of the JobTracker, resource management and job scheduling/monitoring, into
separate daemons. The idea is to have a global Resource Manager (RM) and per-application Application
Master (AM). An application is either a single job in the classical sense of Map-Reduce jobs or a group
of jobs.

Let's take a step back and see how original MapReduce Version 1 works. Job Tracker is a global
singleton entity responsible for managing resources like per node Task Trackers and job life-cycle. Task
Tracker is responsible for executing tasks from a Job Tracker and periodically reporting back the status
of the tasks. Naturally there is a much more going on behind the scenes but the main point of this is
that the Job Tracker has always been a bottleneck in terms of scalability. This is where Yarn steps
in by splitting the load away from a global resource management and job tracking into per application
masters. Global resource manager can then concentrate in its main task of handling the management
of resources.

© Note

Yarn is usually referred as a synonym for MapReduce Version 2. This is not exactly true and it's
easier to understand the relationship between those two by saying that MapReduce Version 2
is an application running on top of Yarn.

As we just mentioned MapReduce Version 2 is an application running of top of Yarn. It is possible to
make similar custom Yarn based application which have nothing to do with MapReduce. Yarn itself
doesn't know that it is running MapReduce Version 2. While there's nothing wrong to do everything from
scratch one will soon realise that steps to learn how to work with Yarn are rather deep. This is where
Spring Hadoop support for Yarn steps in by trying to make things easier so that user could concentrate
on his own code and not having to worry about framework internals.

11.1 Using the Spring for Apache Yarn Namespace

To simplify configuration, SHDP provides a dedicated namespace for Yarn components. However, one
can opt to configure the beans directly through the usual <bean> definition. For more information about
XML Schema-based configuration in Spring, see this appendix in the Spring Framework reference
documentation.

To use the SHDP namespace, one just needs to import it inside the configuration:

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 52

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/xsd-config.html

Spring for Apache Hadoop

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: Oyar n="[0ht t p: / / ww. spri ngf ramewor k. or g/ schema/ yar n"
xm ns: Oyarn-int ="0Ohttp://ww. springfranmework. org/ schema/yarn/integration"
xm ns: Oyar n- bat ch="0ht t p: / / ww. spri ngf ramewor k. or g/ schena/ yar n/ bat ch"
xsi : schenaLocat i on="
http://ww. springframework. or g/ schema/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranmework. org/ schema/ yarn
http://ww. springfranmework. org/ schema/ yarn/ spri ng-yarn. xsdJ
http://ww. springframework. org/ schema/ yarn/integration
http://ww. springframework. org/ schema/ yarn/integration/spring-yarn-integration.xsd
http://ww. springframework. or g/ schema/ yar n/ bat ch
http: //ww. spri ngfranewor k. or g/ schena/ yar n/ bat ch/ spri ng- yar n- bat ch. xsdO" >

<bean id ... >
O<yarn: configuration ...>
</ beans>

O Spring for Apache Hadoop Yarn namespace prefix for core package. Any name can do but through
out the reference documentation, the yar n will be used.

0 The namespace URI.

O Spring for Apache Hadoop Yarn namespace prefix for integration package. Any name can do but
through out the reference documentation, the yar n- i nt will be used.

0 The namespace URI.

0 Spring for Apache Hadoop Yarn namespace prefix for batch package. Any name can do but through
out the reference documentation, the yar n- bat ch will be used.

O The namespace URI.

O The namespace URI location. Note that even though the location points to an external address
(which exists and is valid), Spring will resolve the schema locally as it is included in the Spring for
Apache Hadoop Yarn library.

0 The namespace URI location.

O The namespace URI location.

O Declaration example for the Yarn namespace. Notice the prefix usage.

Once declared, the namespace elements can be declared simply by appending the aforementioned
prefix. Note that is possible to change the default namespace, for example from <beans> to <yar n>.
This is useful for configuration composed mainly of Hadoop components as it avoids declaring the prefix.
To achieve this, simply swap the namespace prefix declaration above:

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 53

Spring for Apache Hadoop

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns="http://ww. spri ngfranework. or g/ schena/ yarn" I
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance”
Oxm ns: beans="htt p: //ww. spri ngframewor k. or g/ schenma/ beans”
xsi : schemalLocati on="
http://ww. springfranmework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ yarn
http://ww. springframework. or g/ schema/ yar n/ spri ng-yarn. xsd" >

O<beans: bean id ... >

O<configuration ...>

</ beans: beans>

0 The default namespace declaration for this XML file points to the Spring for Apache Yarn
namespace.

O The beans namespace prefix declaration.

Bean declaration using the <beans> namespace. Notice the prefix.

0 Bean declaration using the <yar n> namespace. Notice the lack of prefix (as yar n is the default
namespace).

O

11.2 Using the Spring for Apache Yarn JavaConfig

Itis also possible to work without XML configuration and rely on Annotation based configuration model.
XML and JavaConfig for Spring YARN are not full replacement for each others but we try to mimic the
behaviour as much as we can.

We basically rely on two concepts when working with JavaConfig. Firstly an annotation @nabl eYar n is
used to activate different parts of a Spring Configuration depending on enable attribute. We can enable
configuration for CONTAINER, APPMASTER or CLIENT. Secondly when configuration is enabled
one can use Spri ngYar nConf i gur er Adapt er whose callback methods can be used to do further
configuration for components familiar from XML.

@onfiguration
@Enabl eYar n(enabl e=Enabl e. CONTAI NER)
public class Contai ner Configuration extends SpringYarnConfi gurerAdapter {

@verride
public void configure(YarnContai ner Configurer container) throws Exception {
cont ai ner
.cont ai ner Gl ass(Mul ti Cont ext Cont ai ner. cl ass);

In above example we enabled configuration for CONTAINER and used
Spri ngYar nConfi gur er Adapt er and its configure callback method for
Yar nCont ai ner Configurer. In this method we instructed container class to be a
Mul ti Cont ext Cont ai ner.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 54

Spring for Apache Hadoop

@Configuration
@nabl eYar n(enabl e=Enabl e. APPVASTER)
public class Appraster Configuration extends SpringYarnConfigurerAdapter {

@verride

public void configure(YarnAppnmast er Configurer master) throws Exception {
mast er
. wi t hCont ai ner Runner () ;

In above example we enabled configuration for APPMASTER and because of this a callback method
for Yar nApprast er Conf i gur er is called automatically.

@Configuration

@nabl eYar n(enabl e=Enabl e. CLI ENT)

@°r opertySour ce("cl asspat h: hadoop. properties")

public class CientConfiguration extends SpringYarnConfigurerAdapter {

@\ut owi r ed
private Environment env;

@verride
public void configure(YarnConfigConfigurer config) throws Exception {
config
.fileSystenlri (env.getProperty("hd.fs"))
. resour ceManager Addr ess(env. get Property("hd.rni));

@verride
public void configure(YarnCientConfigurer client) throws Exception {

Properties argunents = new Properties();
argunent s. put ("cont ai ner-count", "4");
client
.appNane("nul ti-context-jc")
. W t hMast er Runner ()
. cont ext Cl ass(Appnast er Conf i gur ati on. cl ass)
.argunent s(argunents) ;

In above example we enabled configuration for CLIENT. Here one will get yet another callback for
Yar nCl i ent Confi gur er . Additionally this shows how a Hadoop configuration can be customized
using a callback for Yar nConf i gConf i gurer.

11.3 Configuring Yarn

In order to use Hadoop and Yarn, one needs to first configure it namely by creating a
Yar nConf i gur at i on object. The configuration holds information about the various parameters of the

Yarn system.

© Note

Configuration for <yar n: conf i gur at i on> looks very similar than <hdp: confi gur ati on>.
Reason for this is a simple separation for Hadoop's Yar nConfi gurati on and JobConf
classes.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 55

Spring for Apache Hadoop

In its simplest form, the configuration definition is a one liner:

<yarn:configuration />

The declaration above defines a Yar nConfi gur ati on bean (to be precise a factory bean of type
Confi gur ati onFact or yBean) named, by default, yar nConf i gur at i on. The default name is used,
by conventions, by the other elements that require a configuration - this leads to simple and very concise
configurations as the main components can automatically wire themselves up without requiring any
specific configuration.

For scenarios where the defaults need to be tweaked, one can pass in additional configuration files:

<yarn:configuration resources="cl asspath:/customsite.xm , classpath:/hg-site.xm">

In this example, two additional Hadoop configuration resources are added to the configuration.

© Note

Note that the configuration makes use of Spring's Resour ce abstraction to locate the file. This
allows various search patterns to be used, depending on the running environment or the prefix
specified(if any) by the value - in this example the classpath is used.

In addition to referencing configuration resources, one can tweak Hadoop settings directly through Java
Properti es. This can be quite handy when just a few options need to be changed:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns:yarn="http://ww. springfranmewor k. or g/ schema/ yarn"

xsi : schemaLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans http://
www. spri ngf ranewor k. or g/ schenma/ beans/ spri ng- beans. xsd

http://ww. spri ngfranewor k. or g/ schema/ yarn http://ww. springfranmewor k. or g/ schema/ yar n/

spring-yarn. xsd">

<yarn: confi gurati on>
fs.defaul t FS=hdfs://| ocal host: 9000
hadoop. t nmp. di r =/ t np/ hadoop
el ectric=sea
</ yarn: configuration>
</ beans>

One can further customize the settings by avoiding the so called hard-coded values by externalizing
them so they can be replaced at runtime, based on the existing environment without touching the
configuration:

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 56

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/resources.html

Spring for Apache Hadoop

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:yarn="http://ww. springfranework. org/ schema/ yarn"
xm ns: cont ext ="http://wwmv springfranmewor k. or g/ schema/ cont ext "
xsi : schemaLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans http://
www. spri ngf ranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http: //ww. spri ngfranewor k. or g/ schema/ cont ext http://ww. springfranmewor k. or g/ schema/
cont ext/spri ng-cont ext . xsd
http://ww. springframework. org/ schema/ yarn http://ww. springfranework. org/ schema/ yarn/
spring-yarn. xsd">

<yar n: confi gurati on>
fs.defaul t FS=${ hd. f s}
hadoop. tnp.dir=file://${java.io.tnpdir}
hangar =${ nunber : 18}

</ yarn: configuration>

<cont ext: property-pl acehol der | ocati on="cl asspat h: hadoop. properties" />
</ beans>

Through Spring's property placeholder support, SpEL and the environment abstraction (available in
Spring 3.1). one can externalize environment specific properties from the main code base easing the
deployment across multiple machines. In the example above, the default file system is replaced based
on the properties available in hadoop. properti es while the temp dir is determined dynamically
through SpEL. Both approaches offer a lot of flexbility in adapting to the running environment - in fact
we use this approach extensivly in the Spring for Apache Hadoop test suite to cope with the differences
between the different development boxes and the CI server.

Additionally, external Pr oper t i es files can be loaded, Pr oper t i es beans (typically declared through
Spring's util namespace). Along with the nested properties declaration, this allows customized
configurations to be easily declared:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:yarn="http://ww. springframework. org/ schema/ yarn"
xm ns: context="http://ww. springframework. or g/ schema/ cont ext "
xm ns: util="http://ww.springfranmework. org/schema/util"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans http://
www. spri ngf ranewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext http://ww. springfranmework. org/ schema/
cont ext/spring-cont ext. xsd
http://ww. springframework. org/ schema/util http://ww. springfranework. org/schema/util/
spring-util.xsd
http://ww. springfranmewor k. org/ schema/yarn http://ww. springframework. or g/ schema/ yar n/
spring-yarn. xsd" >

<l-- nerge the local properties, the props bean and the two properties files -->
<yarn:configuration properties-ref="props" properties-|ocation="cfg-1.properties
cfg-2. properties">
st ar =chasi ng
capt ai n=eo
</ yarn: configuration>

<util:properties id="props" |ocation="props.properties"/>
</ beans>

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 57

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/expressions.html
http://spring.io/blog/2011/06/09/spring-framework-3-1-m2-released/
http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/xsd-config.html#xsd-config-body-schemas-util-properties

Spring for Apache Hadoop

When merging several properties, ones defined locally win. In the example above the configuration
properties are the primary source, followed by the pr ops bean followed by the external properties file
based on their defined order. While it's not typical for a configuration to refer to use so many properties,
the example showcases the various options available.

@ Note

For more properties utilities, including using the System as a source or fallback, or control over
the merging order, consider using Spring's Properti esFact or yBean (which is what Spring
for Apache Hadoop Yarn and ut i | : properti es use underneath).

It is possible to create configuration based on existing ones - this allows one to create dedicated
configurations, slightly different from the main ones, usable for certain jobs (such as streaming - more
on that below). Simply use the confi gur ati on-r ef attribute to refer to the parent configuration - all
its properties will be inherited and overridden as specified by the child:

<l-- default name is 'yarnConfiguration' -->
<yarn: configuration>

fs. def aul t FS=${ hd. f s}

hadoop. tnp.dir=file://${java.io.tnpdir}
</yarn: configuration>

<yarn:configuration id="custom' configuration-ref="yarnConfiguration">
fs. defaul t FS=${ cust om hd. f s}
</ yarn: configuration>

Make sure though you specify a different name since otherwise, since both definitions will have the
same name, the Spring container will interpret this as being the same definition (and will usually consider
the last one found).

Last but not least a reminder that one can mix and match all these options to her preference. In general,
consider externalizing configuration since it allows easier updates without interfering with the application
configuration. When dealing with multiple, similar configuration use configuration composition as it tends
to keep the definitions concise, in sync and easy to update.

Table 11.1. yar n: conf i gur at i on attributes

Name Values Description
configuration- Bean Reference to existing Configuration bean
ref Reference
properties- Bean Reference to existing Properties bean
r ef Reference
properties- Comma List or Spring Resource paths
| ocati on delimited list
resources Comma List or Spring Resource paths
delimited list
fs-uri String The HDFS filesystem address.
Equivalent to fs.defaultFS property.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 58

http://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/beans/factory/config/PropertiesFactoryBean.html

Spring for Apache Hadoop

Name Values Description

rm addr ess String The Yarn Resource manager address. Equivalent
to yarn.resourcemanager.address property.

schedul er - String The Yarn Resource manager scheduler address. Equivalent
addr ess to yarn.resourcemanager.scheduler.address property.

11.4 Local Resources

When Application Master or any other Container is run in a hadoop cluster, there are usually
dependencies to various application and configuration files. These files needs to be localized into a
running Container by making a physical copy. Localization is a process where dependent files are copied
into node's directory structure and thus can be used within the Container itself. Yarn itself tries to provide
isolation in a way that multiple containers and applications would not clash.

In order to use local resources, one needs to create an implementation of Resour celLocal i zer
interface. In its simplest form, resource localizer can be defined as:

<yarn:| ocal resour ces>
<yarn: hdfs path="/path/in/hdfs/ny.jar"/>
</yarn:| ocal resources>

The declaration above defines a Resour ceLocal i zer bean (to be precise a factory bean of type
Local Resour cesFact or yBean) named, by default, yarnLocalresources. The default name is used,
by conventions, by the other elements that require a reference to a resource localizer. It's explained
later how this reference is used when container launch context is defined.

It is also possible to define path as pattern. This makes it easier to pick up all or subset of files from
a directory.

<yarn: | ocal resour ces>
<yarn: hdfs path="/path/in/hdfs/*.jar"/>
</yarn:| ocal resources>

Behind the scenes it's not enough to simple have a reference to file in a hdfs file system. Yarn itself
when localizing resources into container needs to do a consistency check for copied files. This is done
by checking file size and timestamp. This information needs to passed to yarn together with a file path.
Order to do this the one who defines these beans needs to ask this information from hdfs prior to sending
out resouce localizer request. This kind of behaviour exists to make sure that once localization is defined,
Container will fail fast if dependant files were replaced during the process.

On default the hdfs base address is coming from a Yarn configuration and Resour ceLocal i zer bean
will use configuration named yarnLocalresources. If there is a need to use something else than the
default bean, configuration parameter can be used to make a reference to other defined configurations.

<yarn:| ocal resources configuration="yarnConfiguration">
<yarn: hdfs path="/path/in/hdfs/ny.jar"/>
</yarn:| ocal resources>

For example, client defining a launch context for Application Master needs to access dependent hdfs
entries. Effectively hdfs entry given to resource localizer needs to be accessed from a Node Manager.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 59

Spring for Apache Hadoop

Yarn resource localizer is using additional parameters to define entry type and visibility. Usage is
described below:

<yarn: | ocal resour ces>
<yarn: hdfs path="/path/in/hdfs/ny.jar" type="FILE" visibility="APPLI CATI ON'/>
</yarn:| ocal resources>

For convenience it is possible to copy files into hdfs during the localization process using a yarn:copy
tag. Currently base staging directory is /syarn/staging/xx where xx is a unique identifier per application
instance.

<yarn:| ocal resour ces>
<yarn:copy src="file:/local/path/to/files/*jar" staging="true"/>
<yarn: hdfs path="/*" stagi ng="true"/>

</yarn:|ocal resources>

Table 11.2. yar n: | ocal r esour ces attributes

Name Values Description
configuration Bean A reference to configuration bean
Reference name, default is yarnConfiguration
type ARCHI VE, Global default if not defined in entry level
FI LE,
PATTERN
visibility PUBLI C, Global default if not defined in entry level
PRI VATE,
APPLI CATI ON

Table 11.3. yar n: hdf s attributes

Name Values Description
pat h HDFS Path Path in hdfs
type ARCHI VE, ARCHI VE - automatically unarchived by the Node Manager,
FI LE(default), FI LE - regular file, PATTERN - hybrid between archive and file.
PATTERN
visibility PUBLI C, PUBLI C- Shared by all users on the node, PRI VATE
PRI VATE, - Shared among all applications of the same user

APPL| CATI ON(default) on the node, APPLI CATI ON - Shared only among
containers of the same application on the node

st agi ng true, Internal temporary stagind directory.
f al se(default)

Table 11.4. yar n: copy attributes

Name Values Description
src Copy sources Comma delimited list of resource patterns
st agi ng true, Internal temporary stagind directory.

f al se(default)

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 60

Spring for Apache Hadoop

11.5 Container Environment

One central concept in Yarn is to use environment variables which then can be read from a container.
While it's possible to read those variable at any time it is considered bad design if one chooce to do so.
Spring Yarn will pass variable into application before any business methods are executed, which makes
things more clearly and testing becomes much more easier.

<yarn: envi ronnment />

The declaration above defines a Map bean (to be precise a factory bean of type
Envi r onnent Fact or yBean) named, by default, yarnEnvironment. The default name is used, by
conventions, by the other elements that require a reference to a environment variables.

For conveniance it is possible to define a classpath entry directly into an environment. Most likely one
is about to run some java code with libraries so classpath needs to be defined anyway.

<yarn:envi ronnent include-I|ocal -system env="fal se">
<yarn:cl asspat h use-yarn-app-cl asspath="true" delimter=":">
*
</ yarn: cl asspat h>
</yarn: envi ronnent >

If use-yarn-app-classpath parameter is set to true(default value) a default yarn entries will be added
to classpath automatically. These entries are on default resolved from a normal Hadoop Yarn
Confi gur at i on using its yarn.application.classpath property or if site-yarn-app-classpath has a any
content entries are resolved from there.

© Note

Be carefull if passing environment variables between different systems. For example if running
a client on Windows and passing variables to Application Master running on Linux, execution
wrapper in Yarn may silently fail.

Table 11.5. yar n: envi r onnent attributes

Name Values Description
i ncl ude- true, Defines whether system environment
| ocal - f al se(default) variables are actually added to this bean.
system env

Table 11.6. cl asspat h attributes

Name Values Description
use-yarn- f al se(default), Defines whether default yarn entries are added to classpath.
app- true
cl asspat h
use- f al se(default), Defines whether default mr entries are added to classpath.
mapr educe- true
app-
cl asspat h

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 61

Spring for Apache Hadoop

Name Values Description
site- Classpath Defines a comma delimited list of default
yar n- app- entries yarn application classpath entries.
cl asspath
site- Classpath Defines a comma delimited list of
mapr educe- entries default mr application classpath entries.
app-
cl asspath
delimter Delimiter Defines delimiter used in a classpath string
string,
default is ":"

11.6 Application Client

Client is always your entry point when interacting with a Yarn system whether one is about to submit a
new application instance or just querying Resource Manager for running application(s) status. Currently
support for client is very limited and a simple command to start Application Master can be defined. If
there is just a need to query Resource Manager, command definition is not needed.

<yarn:client app-nane="customAppNane" >
<yar n: mast er - comrand>
<! [CDATA[
/usr/|ocal/javal bin/java
org. spri ngfranmewor k. yarn. am ConmandLi neAppnmast er Runner
appmnast er - cont ext . xm
yar nAppmast er
cont ai ner - count =2
1><LOG Dl R>/ AppMast er . st dout
2><L0OG DI R>/ AppMast er . st derr
11>
</ yarn: mast er - command>
</yarn:client>

The declaration above defines a Yarnd ient bean (to be precise a factory bean of type
Yar nCl i ent Fact or yBean) named, by default, yarnClient. It also defines a command launching an
Application Master using <mast er - command> entry which is also a way to define the raw commands.
If this yarnClient instance is used to submit an application, its name would come from a app-name
attribute.

<yarn:client app-nane="customAppNane" >
<yarn: master-runner/>
</yarn:client>

For a convinience entry <mast er - r unner > can be used to define same command entries.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 62

Spring for Apache Hadoop

<yarn:client app-nane="customAppNane" >
<util:properties id="customArgunents"”>
cont ai ner - count =2
</util:properties>
<yar n: nast er - r unner
comand="j ava"
context-fil e="appnaster-context.xm"
bean- name="yar nAppnast er "
ar gunent s="cust omAr gunent s"
st dout =" <LOG_DI R>/ AppMast er . st dout "
stderr="<LOG DI R>/ AppMast er.stderr" />
</yarn:client>

All previous three examples are effectively identical from Spring Yarn point of view.

© Note

The <LOG_DIR> refers to Hadoop's dedicated log directory for the running container.

<yarn:client app-nane="customAppNane"
configurati on="custonConfiguration"
resource-| ocal i zer =" cust onResour ces"
envi ronment =" cust onEnv"
priority="1"
virtual cores="2"
menory="11"
queue="cust ongueue" >
<yar n: nast er - runner/ >
</yarn:client>

If there is a need to change some of the parameters for the Application Master submission, menor y and
vi rt ual cor es defines the container settings. For submission, queue and pri ority defines how
submission is actually done.

Table 11.7. yar n: cl i ent attributes

Name Values Description
app- name Name as Yarn submitted application name
string, default
is empty
configuration Bean A reference to configuration bean
Reference name, default is yarnConfiguration
resour ce- Bean A reference to resource localizer bean
| ocal i zer Reference name, default is yarnLocalresources
envi r onnent Bean A reference to environment bean
Reference name, default is yarnEnvironment
tenpl at e Bean A reference to a bean implementing Cl i ent RnOper ati ons
Reference
nenory Memory Amount of memory for appmaster resource
as integer,
default is "64"

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 63

Spring for Apache Hadoop

Name Values Description
virtual cores Cores as Number of appmaster resource virtual cores
integer,
default is "1"
priority Priority as Submission priority
integer,
default is "0"
gueue Queue string, Submission queue
default is
"default"
Table 11.8. yar n: nast er - command
Name Values Description
Entry content List of Commands defined in this entry are
commands aggregated into a single command line

Table 11.9. yar n: mast er - runner attributes

Name Values Description

conmand Main Command line first entry
command as
string, default

is "java"

cont ext - Name of the Command line second entry
file Spring context
file, default is

"appmaster-

context.xml"

bean- nane Name of the Command line third entry
Spring bean,

default is
"yarnAppmaster"

argunent s Reference Added to command line parameters
to Java's as key/value pairs separated by '='

Properties

st dout Stdout, Appended with 1>
default is

"<LOG_DIR>/

AppMaster.stdout

stderr Stderr, Appended with 2>
default is

"<LOG_DIR>/

AppMaster.stderr

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation

64

Spring for Apache Hadoop

11.7 Application Master

Application master is responsible for container allocation, launching and monitoring.

<yar n: nast er >
<yarn:contai ner-all ocator virtual cores="1" nenory="64" priority="0"/>
<yar n: cont ai ner - | auncher user nane="whoani "/ >
<yar n: cont ai ner - conmand>
<! [CDATA[
/usr/|ocal/javal bin/java
or g. spri ngf ramewor k. yar n. cont ai ner. ConmandLi neCont ai ner Runner
cont ai ner - cont ext . xm
1><LOG DI R>/ Cont ai ner . st dout
2><LOG DI R>/ Cont ai ner. stderr
11>
</ yar n: cont ai ner - conand>
</yarn: mast er >

The declaration above defines a YarnAppnaster bean (to be precise a bean of type
St ati cAppnast er) named, by default, yarnAppmaster. It also defines a command launching a
Container(s) using <cont ai ner - conmand> entry, parameters for allocation using <cont ai ner -
al | ocat or > entry and finally a launcher parameter using <cont ai ner - | auncher > entry.

Currently there is a simple implementation of St at i cAppnast er which is able to allocate and launch
a number of containers. These containers are monitored by querying resource manager for container
execution completion.

<yarn: mast er >
<yarn: cont ai ner-runner/ >
</yarn: mast er >

For a convinience entry <cont ai ner - r unner > can be used to define same command entries.

<yarn: mast er >
<util:properties id="customArgunents">
sone- ar gunent =nyval ue
</util:properties>
<yar n: cont ai ner - r unner
command="j ava"
context-file="container-context.xm"
bean- name="yar nCont ai ner"
ar gunent s="cust omAr gunent s"
st dout =" <LOG_DI R>/ Cont ai ner. st dout"
stderr="<LOG DI R>/ Cont ai ner. stderr" />
</yarn: mast er >

Table 11.10. yar n: mast er attributes

Name Values Description
configuration Bean A reference to configuration bean
Reference name, default is yarnConfiguration
resour ce- Bean A reference to resource localizer bean
| ocal i zer Reference name, default is yarnLocalresources
envi ronnent Bean A reference to environment bean
Reference name, default is yarnEnvironment

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 65

Spring for Apache Hadoop

Table 11.11. yar n:

cont ai ner - al | ocat or attributes

Name Values Description
virtual cores Integer number of virtual cpu cores of the resource.
menory Integer, memory of the resource.
as of MBs.
priority Integer Assigned priority of a request.
| ocality Boolean If set to true indicates that resources

Table 11.12. yar n:

Name

Values

are not relaxed. Default is FALSE.

cont ai ner - | auncher attributes

Description

user nane

String

Set the user to whom the container has been allocated.

Table 11.13. yar n:

cont ai ner-runner attributes

Name

Values

Description

conmand

Main
command as
string, default

is "java"

Command line first entry

cont ext -
file

bean- nane

argunents

st dout

stderr

Name of the
Spring context
file, default is

"container-

context.xml"

Name of the
Spring bean,
default is
"yarnContainer"

Reference
to Java's
Properties

Stdout,
default is
"<LOG_DIR>/

Container.stdout'

Stderr,
default is
"<LOG_DIR>/

Container.stderr"

Command line second entry

Command line third entry

Added to command line parameters
as keyl/value pairs separated by '='

Appended with 1>

Appended with 2>

2.0.3.RELEASE-hdp20

Spring for Apache Hadoop
- Reference Documentation

66

Spring for Apache Hadoop

11.8 Application Container

There is very little what Spring Yarn needs to know about the
Container in terms of its configuration. There is a simple contract between
or g. spri ngframewor k. yar n. cont ai ner. ConmandLi neCont ai ner Runner and a bean it's
trying to run on default. Default bean name is yarnContainer.

There is a simple interface or g. spri ngframewor k. yar n. cont ai ner. Yar nCont ai ner which
container needs to implement.

public interface YarnContainer {
void run();
voi d set Envi ronment (Map<String, String> environnent);
voi d set Paraneters(Properties paraneters);

There are few different ways how Container can be defined in Spring xml configuration. Natively without
using namespaces bean can be defined with a correct name:

<bean i d="yarnContai ner" class="org.springframework.yarn. contai ner. Test Cont ai ner" >

Spring Yarn namespace will make it even more simpler. Below example just defines class which
implements needed interface.

<yarn:cont ai ner contai ner-class="org. springfranmework. yarn. contai ner. Test Cont ai ner"/>

It's possible to make a reference to existing bean. This is usefull if bean cannot be instantiated with
default constructor.

<bean i d="test Container" class="org.springfranmework.yarn. contai ner. Test Cont ai ner"/>
<yar n: cont ai ner contai ner-ref="test Container"/>

It's also possible to inline the bean definition.

<yarn: cont ai ner >
<bean cl ass="org. spri ngfranewor k. yarn. cont ai ner. Test Cont ai ner"/ >
</ yarn: cont ai ner >

11.9 Application Master Services

It is fairly easy to create an application which launches a few containers and then leave those to do
their tasks. This is pretty much what Distributed Shell example application in Yarn is doing. In that
example a container is configured to run a simple shell command and Application Master only tracks
when containers have finished. If only need from a framework is to be able to fire and forget then
that's all you need, but most likely a real-world Yarn application will need some sort of collaboration
with Application Master. This communication is initiated either from Application Client or Application
Container.

Yarn framework itself doesn't define any kind of general communication API for Application Master.
There are APIs for communicating with Container Manager and Resource Manager which are used on

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 67

Spring for Apache Hadoop

within a layer not necessarily exposed to a user. Spring Yarn defines a general framework to talk to
Application Master through an abstraction and currently a JSON based rpc system exists.

This chapter concentrates on developer concepts to create a custom services for Application Master,
configuration options for built-in services can be found from sections below - Appmaster Service and
Appmaster Service Client.

Basic Concepts

Having a communication framework between Application Master and Container/Client involves few
moving parts. Firstly there has to be some sort of service running on an Application Master. Secondly
user of this service needs to know where it is and how to connect to it. Thirtly, if not creating these
services from scratch, it'd be nice if some sort of abstraction already exist.

Contract for appmaster service is very simple, Application Master Service needs to implement
Appnast er Ser vi ce interface be registered with Spring application context. Actual appmaster instance
will then pick it up from a bean factory.

public interface AppnasterService {
int getPort();
bool ean hasPort();
String getHost();

}

Application Master Service framework currently provides integration for services acting as service for a
Client or a Container. Only difference between these two roles is how the Service Client gets notified
about the address of the service. For the Client this information is stored within the Hadoop Yarn
resource manager. For the Container this information is passed via environment within the launch
context.

<bean i d="yarnAnservi ce" class="Appnaster Servicelnpl" />
<bean i d="yarnC i ent Anmservi ce" class="AppmasterC ientServicelnmpl" />

Example above shows a default bean names, yarnAmservice and yarnClientAmservice respectively
recognised by Spring Yarn.

Interface Apprast er Servi ced i ent is currently an empty interface just marking class to be a
appmaster service client.

public interface AppmasterServiceCient {

}

Using JSON

Default implementations can be used to exchange messages using a simple domain classes and actual
messages are converted into json and send over the transport.

<yarn-int:anservice
servi ce-inpl ="org. springfranmework. yarn.integration.ip.nnd. TestService"
defaul t-port="1234"/>
<yarn-int:anservice-client
servi ce-
i npl =" org. springfranework.yarn.integration.ip.m nd. Defaul t M ndAppnast er Servi ced i ent"
host ="| ocal host "
port="1234"/>

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 68

Spring for Apache Hadoop

@\ut owi r ed
Apprest er Servi ced i ent appnast er Servi ced i ent;

@est
public void testServicelnterfaces() throws Exception {
Si npl eTest Request request = new Si npl eTest Request () ;
Si npl eTest Response response =
(Si npl eTest Response) ((M ndAppnast er Servi ceCl i ent) appmast er Servi ceCl i ent).
doM ndRequest (request) ;
assert That (response. stringField, is("echo:stringFieldvalue"));

Converters

When default implementations for Application master services are exchanging messages, converters
are net registered automatically. There is a namespace tag converters to ease this configuration.

<bean i d="mapper"
cl ass="org. springframewor k. yarn.integration. support.Jackson2Cbj ect Mapper Fact or yBean" />

<yarn-int:converter>
<bean cl ass="org. spri ngframework.yarn.integration.convert.M ndCbj ect ToHol der Converter">
<constructor-arg ref="mapper"/>
</ bean>
</yarn-int:converter>

<yarn-int:converter>
<bean cl ass="org. spri ngframework.yarn.integration.convert.M ndHol der ToObj ect Converter">
<constructor-arg ref="mapper"/>
<constructor-arg val ue="org. springfranework. yarn. bat ch. reposi tory. bi ndi ngs"/>
</ bean>
</yarn-int:converter>

11.10 Application Master Service

This section of this document is about configuration, more about general concepts for see a Section 11.9,
“Application Master Services”.

Currently Spring Yarn have support for services using Spring Integration tcp channels as a transport.

<bean i d="nmapper"
cl ass="org. springframewor k. yarn.integration. support.Jackson2Cbj ect Mapper Fact or yBean" />

<yarn-int:converter>
<bean cl ass="org. springframework.yarn.integration.convert.M ndCbj ect ToHol der Converter">
<constructor-arg ref="mapper"/>
</ bean>
</yarn-int:converter>

<yarn-int:converter>
<bean cl ass="org. springframework.yarn.integration.convert.M ndHol der ToObj ect Converter">
<constructor-arg ref="mapper"/>
<constructor-arg val ue="org. springfranmework.yarn.integration.ip.nind"/>
</ bean>
</yarn-int:converter>

<yarn-int:anservice
servi ce-inpl ="org. springframewor k. yarn.integration.ip.mnd. Test Service"/>

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 69

Spring for Apache Hadoop

If there is a need to manually configure the server side dispatch channel, a little bit more configuration
is needed.

<bean id="serializer"

cl ass="org. springframework.yarn.integration.ip.mnd.MndRpcSerializer" />
<bean i d="deserializer"

cl ass="org. springframework. yarn.integration.ip.mnd.MndRpcSerializer" />
<bean i d="socket Support"

cl ass="org. springframework.yarn.integration. support. Defaul t Port Exposi ngTcpSocket Support*"
/>

<i p:tcp-connection-factory i d="serverConnecti onFactory"
type="server"
port="0"
socket - support =" socket Support "
serializer="serializer"
deserializer="deserializer"/>

<i p: t cp-i nbound- gat eway i d="i nboundGat eway"
connection-factory="server Connecti onFact ory"
request - channel =" ser ver Channel " />

<int:channel id="serverChannel" />

<yarn-int:anservice
servi ce-inpl ="org. springframework. yarn.integration.ip.mnd. TestService"
channel =" server Channel "
socket - support =" socket Support "/ >

Table 11.14. yarn-i nt: anmser vi ce attributes

Name Values Description
servi ce- Class Name Full name of the class implementing a service
i mpl
servi ce-ref Bean Reference to a bean name implementing a service
Reference
channel Spring Int Custom message dispatching channel
channel
socket - Socket support Custom socket support class
suppor t reference

11.11 Application Master Service Client

This section of this document is about configuration, more about general concepts for see a Section 11.9,
“Application Master Services”.

Currently Spring Yarn have support for services using Spring Integration tcp channels as a transport.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 70

Spring for Apache Hadoop

<bean i d="mapper"
cl ass="org. spri ngfranmewor k. yarn.integration. support.Jackson2Cbj ect Mapper Fact or yBean" />

<yarn-int:converter>
<bean cl ass="org. spri ngfranework. yarn.integration.convert.M ndObj ect ToHol der Converter">
<constructor-arg ref="mapper"/>
</ bean>
</yarn-int:converter>

<yarn-int:converter>
<bean cl ass="org. spri ngfranework. yarn.integration.convert.M ndHol der ToObj ect Converter">
<constructor-arg ref="mapper"/>
<constructor-arg val ue="org. springfranework. yarn.integration.ip.nnd"/>
</ bean>
</yarn-int:converter>

<yarn-int:anservice-client
servi ce-

i mpl =" org. springframework. yarn.integration.ip.mnd. DefaultM ndAppmast er Servi ceClient"
host =" ${ SHDP_AMSERVI CE_HOST} "
port ="${ SHDP_AVMSERVI CE_PORT} "/ >

If there is a need to manually configure the server side dispatch channel, a little bit more configuration
is needed.

<bean id="serializer"

cl ass="org. springframework. yarn.integration.ip.mnd.MndRpcSerializer" />
<bean id="deserializer"

cl ass="org. springframework.yarn.integration.ip.mnd.MndRpcSerializer" />

<i p: tcp-connection-factory id="clientConnectionFactory"
type="client"
host ="1 ocal host "
por t =" ${ SHDP_AMSERVI CE_PORT} "
serializer="serializer"
deserial i zer="deserial i zer"/>

<i p: t cp- out bound- gat eway i d=" out boundGat eway"
connection-factory="client ConnectionFactory"
request - channel ="cl i ent Request Channel "
repl y-channel =" cl i ent ResponseChannel " />

<

nt: channel id="clientRequest Channel" />
nt: channel id="clientResponseChannel" >
<i nt:queue />
</int:channel >

<

<yarn-int:anservice-client
servi ce-

i mpl =" org. springframework. yarn.integration.ip.mnd. DefaultM ndAppmast er Servi ceClient"
request - channel ="cl i ent Request Channel "
response- channel ="cl i ent ResponseChannel "/ >

Table 11.15. yarn-i nt: amservi ce-cl i ent attributes

Name Values Description
servi ce- Class Name Full name of the class implementing a service client
i mpl

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 71

Spring for Apache Hadoop

Name Values Description
host Hostname Host of the running appmaster service
port Port Port of the running appmaster service
request - Reference Custom channel
channel to Spring
Int request
channel
response- Reference Custom channel
channel to Spring Int
response
channel

11.12 Using Spring Batch

In this chapter we assume you are fairly familiar with concepts using Spring Batch. Many batch
processing problems can be solved with single threaded, single process jobs, so it is always a good idea
to properly check if that meets your needs before thinking about more complex implementations. When
you are ready to start implementing a job with some parallel processing, Spring Batch offers a range
of options. At a high level there are two modes of parallel processing: single process, multi-threaded,;
and multi-process.

Spring Hadoop contains a support for running Spring Batch jobs on a Hadoop cluster. For better parallel
processing Spring Batch partitioned steps can be executed on a Hadoop cluster as remote steps.

Batch Jobs

Starting point running a Spring Batch Job is always the Application Master whether a job is just simple
job with or without partitioning. In case partitioning is not used the whole job would be run within the
Application Master and no Containers would be launched. This may seem a bit odd to run something
on Hadoop without using Containers but one should remember that Application Master is also just a
resource allocated from a Hadoop cluster.

Order to run Spring Batch jobs on a Hadoop cluster, few constraints exists:
» Job Context - Application Master is the main entry point of running the job.

» Job Repository - Application Master needs to have access to a repository which is located either in-
memory or in a database. These are the two type natively supported by Spring Batch.

* Remote Steps - Due to nature how Spring Batch partitioning works, remote step needs an access
to a job repository.

Configuration for Spring Batch Jobs is very similar what is needed for normal batch configuration
because effectively that's what we are doing. Only difference is a way a job is launched which in this
case is automatically handled by Application Master. Implementation of a job launching logic is very
similar compared to CommandLi neJobRunner found from a Spring Batch.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 72

Spring for Apache Hadoop

<bean i d="transactionManager" class="org. springfranework. batch. support.transacti on. Resourcel essTransacti onM
>

<bean i d="j obRepository" class="org.springframework. batch. core.repository. support. MapJobRepositoryFact oryBe
<property nane="transacti onManager" ref="transacti onManager"/>
</ bean>

<bean i d="jobLauncher" cl ass="org. spri ngfranework. bat ch. core. | aunch. support. Si npl eJobLauncher" >
<property nane="j obRepository" ref="jobRepository"/>
</ bean>

The declaration above define beans for JobReposi t ory and JobLauncher . For simplisity we used
in-memory repository while it would be possible to switch into repository working with a database if
persistence is needed. A bean named j obLauncher is later used within the Application Master to
launch jobs.

<bean i d="yar nEvent Publ i sher" cl ass="org. spri ngfranmework. yarn. event. Def aul t Yar nEvent Publ i sher"/
>

<yarn- bat ch: master/ >

The declaration above defines Bat chAppmast er bean named, by default, yar nApprmast er and
Yar nEvent Publ i sher bean named yar nEvent Publ i sher which is not created automatically.

Final step to finalize our very simple batch configuration is to define the actual batch job.

<bean id="hell 0" class="org.springfranmework.yarn. exanpl es. Pri nt Taskl et" >
<property nane="nessage" val ue="Hello0"/>
</ bean>

<bat ch:job id="job">
<batch: step i d="master">
<bat ch: t askl et transacti on-manager="transacti onManager" ref="hello"/>
</ bat ch: st ep>
</ bat ch: j ob>

The declaration above defines a simple job and tasklet. Job is named as j ob which is the default
job name searched by Application Master. It is possible to use different name by changing the launch
configuration.

Table 11.16. yar n- bat ch: mast er attributes

Name Values Description
configuration Bean A reference to configuration bean
Reference name, default is yarnConfiguration
resour ce- Bean A reference to resource localizer bean
| ocal i zer Reference name, default is yarnLocalresources
envi ronnent Bean A reference to environment bean
Reference name, default is yarnEnvironment
j ob- nane Bean Name A name reference to Spring Batch job, default is job
Reference

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 73

Spring for Apache Hadoop

Name Values Description
j ob- Bean A reference to job launcher bean name, default
| auncher Reference is jobLauncher. Target is a normal Spring
Batch bean implementing JobLauncher .

Partitioning

Let's take a quick look how Spring Batch partitioning is handled. Concept of running a partitioned
job involves three things, Remote steps, Partition Handler and a Partitioner. If we do a little bit of
oversimplification a remote step is like any other step from a user point of view. Spring Batch itself does
not contain implementations for any proprietary grid or remoting fabrics. Spring Batch does however
provide a useful implementation of Par t i t i onHandl er that executes Steps locally in separate threads
of execution, using the TaskExecut or strategy from Spring. Spring Hadoop provides implementation
to execute Steps remotely on a Hadoop cluster.

© Note

For more background information about the Spring Batch Partitioning, read the Spring Batch
reference documentation.

Configuring Master

As we previously mentioned a step executed on a remote host also need to access a job repository.
If job repository would be based on a database instance, configuration could be similar on a container
compared to application master. In our configuration example the job repository is in-memory based
and remote steps needs access for it. Spring Yarn Batch contains implementation of a job repository
which is able to proxy request via json requests. Order to use that we need to enable application client
service which is exposing this service.

<bean i d="] obReposit oryRenpt eServi ce" class="org. spri ngframework. yarn. bat ch. repository. JobRepositoryRenpteS
>

<property nane="mapJobRepositoryFactoryBean" ref="&anp;jobRepository"/>
</ bean>

<bean i d="bat chServi ce" class="org. springfranework. yarn. batch. repository. Bat chAppmast er Servi ce"
>

<property nane="j obRepositoryRenoteService" ref="jobRepositoryRenoteService"/>
</ bean>

<yarn-int:anservi ce service-ref="batchService"/>

he declaration above defines JobReposi t or yRenot eSer vi ce bean named
j obReposi t or yRenot eSer vi ce which is then connected into Application Master Service exposing
job repository via Spring Integration Tcp channels.

As job repository communication messages are exchanged via custom json messages, converters
needs to be defined.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 74

Spring for Apache Hadoop

<bean i d="mapper" class="org.springfranmework.yarn.integration.support.Jackson20bj ect Mapper Fact or yBean"
/>

<yarn-int:converter>
<bean cl ass="org. spri ngfranework. yarn.integration.convert.M ndObj ect ToHol der Converter">
<constructor-arg ref="mapper"/>
</ bean>
</yarn-int:converter>

<yarn-int:converter>
<bean cl ass="org. spri ngfranework. yarn.integration.convert.M ndHol der ToObj ect Converter">
<constructor-arg ref="mapper"/>
<constructor-arg val ue="org. springfranework. yarn. bat ch. reposi tory. bi ndi ngs"/ >
</ bean>
</yarn-int:converter>

Configuring Container

Previously we made a choice to use in-memore job repository running inside the application master.
Now we need to talk to this repository via client service. We start by adding same converters as in
application master.

<bean i d="mapper" class="org.springfranmework.yarn.integration.support.Jackson20bj ect Mapper Fact or yBean"
/>

<yarn-int:converter>
<bean cl ass="org. spri ngframework.yarn.integration.convert.M ndCbj ect ToHol der Converter">
<constructor-arg ref="mapper"/>
</ bean>
</yarn-int:converter>

<yarn-int:converter>
<bean cl ass="org. spri ngframework.yarn.integration.convert.M ndHol der ToObj ect Converter">
<constructor-arg ref="mapper"/>
<constructor-arg val ue="org. springfranework. yarn. bat ch. reposi tory. bi ndi ngs"/>
</ bean>
</yarn-int:converter>

We use general clientimplementation able to communicate with a service running on Application Master.

<yarn-int:anservice-client
servi ce-

i mpl =" org. springframework. yarn.integration.ip.mnd. DefaultM ndAppmast er Servi ceClient"
host =" ${ SHDP_AMSERVI CE_HOST} "
port ="${ SHDP_AVSERVI CE_PORT}" />

Remote step is just like any other step.

<bean id="hell 0" class="org.springfranework. yarn. exanpl es. Pri nt Taskl et">
<property nane="nmessage" val ue="Hello"/>
</ bean>

<bat ch: step i d="renot eSt ep" >
<bat ch: t askl et transaction-nmanager="transacti onManager" start-Iimit="100" ref="hello"/>
</ bat ch: st ep>

We need to have a way to locate the step from an application context. For this we can define a step
locator which is later configured into running container.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 75

Spring for Apache Hadoop

<bean i d="stepLocator" class="org.springfranework.yarn. batch. partition. BeanFactoryStepLocator"/
>

Spring Hadoop contains a custom job repository implementation which is able to talk back to a remote
instance via custom json protocol.

<bean i d="transacti onManager" class="org. springfranmework. batch. support.transacti on. Resourcel essTransacti onM
>

<bean i d="j obRepository" class="org.springframework.yarn. batch. repository. Renbot eJobReposi t oryFact or yBean" >
<property nanme="transacti onManager" ref="transacti onManager"/>
<property nane="appnast er ScOper ati ons" ref="yarnAmservi ced ient"/>

</ bean>

<bean i d="j obExpl orer" class="org.springfranework. yarn. batch. repository. Renot eJobExpl or er Fact or yBean" >
<property nane="repositoryFactory" ref="&anp;jobRepository" />
</ bean>

Finally we define a Container understanding how to work with a remote steps.

<bean i d="yarnContai ner" class="org. springfranework.yarn. batch. cont ai ner. Def aul t Bat chYar nCont ai ner" >
<property nane="stepLocator" ref="stepLocator"/>
<property nanme="j obExpl orer" ref="jobExplorer"/>
<property nane="integrationServiceC ient" ref="yarnAnserviceCient"/>

</ bean>

11.13 Using Spring Boot Application Model

We have additional support for leveraging Spring Boot when creating applications using Spring YARN.
All dependencies for this exists in a sub-module named spri ng- yar n- boot which itself depends on
Spring Boot.

Spring Boot extensions in Spring YARN are used to ease following issues:

» Create a clear model how application is built, packaged and run on Hadoop YARN.

» Automatically configure components depending whether we are on Client, Appmaster or Container.

« Create an easy to wuse externalized configuration model based on Boot's
ConfigurationProperties.

Before we get into details let's go through how simple it is to create and deploy a custom application to
a Hadoop cluster. Notice that there are no need to use XML.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 76

Spring for Apache Hadoop

@Configuration
@nabl eAut oConfi gurati on
public class ContainerApplication {

public static void main(String[] args) {
Spri ngAppl i cation. run(Cont ai ner Appl i cati on. cl ass, args);
}

@Bean
public Hell oPojo helloPojo() {
return new Hel | oPoj o();

}

In above Cont ai ner Appl i cat i on, notice how we added @Conf i gur at i on in aclass level itself and
@Bean for a hel | oPoj o() method.

@/ar nConponent
public class HelloPojo {

private static final Log | og = LogFactory. get Log(Hel | oPoj 0. cl ass);

@\ut owi r ed
private Configuration configuration;

@nCont ai ner St art

public void publicVoi dNoArgsMet hod() ({
log.info("Hello from Hel | oPoj 0");
I og.info("About to |ist fromhdfs root content");

FsShel |l shell = new FsShell (configuration);

for (FileStatus s : shell.ls(false, "/")) {
| og.info(s);

}

}

Hel | oPoj o class is a simple POJO in a sense that it doesn't extend any Spring YARN base classes.
What we did in this class:

* We've added a class level@/ar nConponent annotation.
» We've added a method level @ Cont ai ner St art annotation.
» We've @\ut owi r ed a Hadoop's Configuration class.

To demonstrate that we actually have some real functionality in this class, we simply use Spring
Hadoop's FsShel | to list entries from a root of a HDFS file system. For this we need to have access
to Hadoop's Configuration which is prepared for you so that you can just autowire it.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 77

Spring for Apache Hadoop

@Enabl eAut oConf i gurati on
public class dientApplication {

public static void main(String[] args) {
SpringApplication.run(ClientApplication.class, args)
.getBean(Yarnd i ent.cl ass)
. submi t Appl i cation();

* @nabl eAut oConfi gur ati on tells Spring Boot to start adding beans based on classpath setting,
other beans, and various property settings.

 Specific auto-configuration for Spring YARN components takes place since Spring YARN is on the
classpath.

The nmain() method uses Spring Boot's SpringApplication.run() method to launch an
application. From there we simply request a bean of type YarnClient and execute its
submi t Appl i cati on() method. What happens next depends on application configuration, which we
go through later in this document.

@Enabl eAut oConf i gurati on
public class AppmasterApplication {

public static void main(String[] args) {
Spri ngApplication. run(Appmast er Appl i cati on. cl ass, args);
}

Application class for YarnAppmaster looks even simpler than what we just did for
Cl i ent Appl i cati on. Again the mai n() method uses Spring Boot's Spri ngAppl i cati on. run()
method to launch an application.

In real life, you most likely need to start adding more custom functionality to your application component
and you'd do that by start adding more beans. To do that you need to define a Spring @onf i gur ati on
or @onponent Scan. AppmasterApplication would then act as your main starting point to define more
custom functionality.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 78

Spring for Apache Hadoop

spring:
hadoop:
fsUri: hdfs://Iocal host: 8020
resour ceManager Host : | ocal host
yarn:
appNane: yar n-boot - si npl e
applicationDir: /app/yarn-boot-sinple/
client:
files:
- "file:build/libs/yarn-boot-sinple-container-0.1.0.jar"
- "file:build/libs/yarn-boot-sinpl e-appmaster-0.1.0.jar"
| aunchcont ext :
archiveFi |l e: yarn-boot-si npl e-appmaster-0.1.0.jar
appnast er:
cont ai nerCount: 1
| aunchcont ext :
archi veFi | e: yarn-boot-sinpl e-container-0.1.0.jar

Final part for your application is its runtime configuration which glues all the components together which
then can be called as a Spring YARN application. This configuration act as source for Spring Boot's
@confi gurati onProperties and contains relevant configuration properties which cannot be auto-
discovered or otherwise needs to have an option to be overwritten by an end user.

You can then write your own defaults for your own environment. Because these
@confi gurati onProperti es are resolved at runtime by Spring Boot, you even have an easy option
to overwrite these properties either by using command-line options or provide additional configuration
property files.

Auto Configuration

Spring Boot is heavily influenced by auto-configuration trying to predict what user wants to do. These
decisions are based on configuration properties, what's currently available from a classpath and
generally everything what auto-configurers are able to see.

Auto-configuration is able to see if it's currently running on a YARN cluster and can also differentiate
between YarnContainer and YarnAppmaster. Parts of the auto-configuration which cannot be
automatically detected are guarded by a flags in configuration properties which then allows end-user to
either enable or disable these functionalities.

Application Files

As we already mentioned Spring Boot creates a clear model how you would work with your application
files. Most likely what you need in your application is jar or zip file(s) having needed application code
and optional configuration properties to customize the application logic. Customization via an external
properties files makes it easier to change application functionality and reduce a need to hard-code
application logic.

Running an application on YARN needs an instance of YarnAppmaster and instances of
YarnContainers. Both of these containers will need a set of files and instructions how to execute a
container. Based on auto-configuration and configuration properties we will make few assumptions how
a container is executed.

We are fundamentally supporting three different type of combinations:

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 79

Spring for Apache Hadoop

« If a container main archive file is a jar file we expect it to be packaged with Boot and be self container
executable jar archive.

* If a container main archive is a zip file we expect it to be packages with Boot. In this case we use a
special runner which knows how to run this exploded archive.

» User defines a main class to be run and everything this class will need is already setup.

More detailed functionality can be found from a below sections; the section called “Application
Classpath”, the section called “Container Runners” and the section called “Configuration Properties”.

Application Classpath
Let's go through as an examples how a classpath is configured on different use cases.
Simple Executable Jar

Running a container using an executable jar archive is the most simple scenario due to classpath
limitation imposed by a JVM. Everything needed for the classpath needs to be inside the archive itself.
Boot plugins for maven and gradle will greatly help to package all library dependencies into this archive.

sSpring:
yarn:
client:
| aunchcont ext :
archiveFi |l e: yarn-boot-appmaster-0.1.0.jar
appnast er:
| aunchcont ext :
archiveFil e: yarn-boot-container-0.1.0.jar

Simple Zip Archive

Using a zip archive is basically needed in two use cases. In first case you want to re-use existing libraries
in YARN cluster for your classpath. In second case you want to add custom classpath entries from an
exploded zip archive.

spring:
yarn:
si t eYar nAppCl asspat h: "/ path/to/ hadoop/|ibs/*"
appnast er:
| aunchcont ext :
useYar nAppCl asspat h: true
archi veFi | e: yarn-boot-container-0.1.0.zip

In above example you can have a zip archive which doesn't bundle all dependant Hadoop YARN
libraries. Default classpath entries are then resolved from si t eYar nAppCl asspat h property.

Spring:
yarn:
appmast er:
| aunchcont ext :
archi veFi | e: yarn-boot-container-0.1.0.zip
cont ai ner AppCl asspat h:
- ".lyarn-boot-container-0.1.0. zi p/ confi g"
- ".lyarn-boot-container-0.1.0.zip/lib"

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 80

Spring for Apache Hadoop

In above example you needed to use custom classpath entries from an exploded zip archive.
Container Runners

Using a propertys spring.yarn.client.|aunchcontext.archiveFile and
spring.yarn. appmaster. | aunchcont ext. archiveFil e respectively, will indicate that
container is run based on an archive file and Boot runners are used. These runner classes are either
used manually when constructing an actual raw command for container or internally within an executable
jar archive.

However there are times when you may need to work on much lower level. Maybe you are having
trouble using an executable jar archive or Boot runner is not enough what you want to do. For this
use case you would use propertys spring.yarn.client.|aunchcontext.runnerd ass and
spring. yarn. appnmast er. | aunchcont ext. runner d ass.

Custom Runner

spring:
yarn:
appnast er:
| aunchcont ext :
runner Cl ass: com exanpl e. \yMai nCl azz

Resource Localizing

Order for containers to use application files, a YARN resource localization process needs to do its tasks.
We have a few configuration properties which are used to determine which files are actually localized
into container's working directory.

spring:
yarn:
client:
| ocal i zer:
patterns:
- "*appmaster*jar"
- "*appmaster*zip"
zi pPattern: "*zip"
properti esNanes: [application]
propertiesSuffixes: [properties, ym]
appnast er :
| ocal i zer:

patterns:
- "*container*jar"
- "*container*zip"
zi pPattern: "*zip"
properti esNanes: [application]
propertiesSuffixes: [properties, ym]

Above is an example which equals a default functionality when localized resources are chosen. For
example for a container we automatically choose all files matching a simple patterns * cont ai ner *j ar
and *cont ai ner*zi p. Additionally we choose configuration properties files matching names
application. properties and application.ynl . Property zipPattern is used as an pattern to
instruct YARN resource localizer to triet file as an archive to be automatically exploded.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 81

Spring for Apache Hadoop

If for some reason the default functionality and how it can be configured via configuration
properties is not suiteable, one can define a custom bean to change how things work. Interface
Local Resour cesSel ect or is used to find localized resources.

public interface Local ResourcesSel ector {
Li st<Entry> select(String dir);

Below you see a logic how a default Boot Local Resour cesSel ect or is created during the auto-
configuration. You would then create a custom implementation and create it as a bean in your
Configuration class. You would not need to use any Conditionals but not how in auto-configuration we
use @ondi ti onal OnM ssi ngBean to check if user have already created his own implementation.

@Configuration
@Enabl eConfi gurati onProperties({ SpringYarnAppnasterLocalizerProperties.class })
public static class Local ResourcesSel ect or Config {

@\ut owi r ed
private SpringYarnAppmasterLocal i zer Properties syal p;

@Bean
@Condi ti onal OnM ssi ngBean(Local Resour cesSel ect or . cl ass)
publ i c Local ResourcesSel ector | ocal ResourcesSel ector() {
Boot Local Resour cesSel ect or sel ector = new Boot Local Resour cesSel ect or (Mbde. CONTAI NER) ;
if (StringUtils.hasText(syal p.getZi pPattern())) {
sel ector. set Zi pArchi vePatt ern(syal p. get Zi pPattern());
}
if (syalp.getPropertiesNanes() != null) {
sel ector. set Properti esNanmes(syal p. get Properti esNanes());
}
if (syalp.getPropertiesSuffixes() !'= null) {
sel ector. set Properti esSuffixes(syal p. getPropertiesSuffixes());
}
sel ector. addPat t er ns(syal p. get Patterns());
return sel ector;

Your configuration could then look like:

@nabl eAut oConfi gurati on
public class AppnasterApplication {

@ean
publ i c Local ResourcesSel ector | ocal ResourcesSel ector() {
return MyLocal ResourcesSel ector();

public static void main(String[] args) {
Spri ngApplication. run(Appmast er Appl i cati on. cl ass, args);

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 82

Spring for Apache Hadoop

Container as POJO

In Boot application model if YarnContainer is not explicity defined it defaults to
Def aul t Yar nCont ai ner which expects to find a PQJO created as a bean having a specific
annotations instructing the actual functionality.

@rar nConponent is a stereotype annotation itself having a Spring's @Conponent defined in it. This is
automatically marking a class to be a candidate having a @/ar nConponent functionality.

Within a PQJO class we can use @nCont ai ner St art annotation to mark a public method to act as
an activator for a method endpoint.

@nCont ai ner St art
public void publicVoi dNoArgsMet hod() {

}

Returning type of i nt participates in a YarnContainer exit value.

@nCont ai ner St art
public int publiclntNoArgsMethod() {
return O;

}

Returning type of bool ean participates in a YarnContainer exit value where true would mean complete
and false failed container.

@nCont ai ner St art
publ i c bool ean publ i cBool eanNoAr gsMet hod() {
return true;

}

Returning type of Stri ng participates in a YarnContainer exit value by matching Exi t St at us and
getting exit value from Exi t CodeMapper .

@nCont ai ner St art
public String publicStringNoArgsMet hod() {
return "COVPLETE";

}

If method throws any Except i on YarnContainer is marked as failed.

@nCont ai ner St art
public void publicThrowsException() {
throw new Runti neExection("My Error");

}

Method parameter can be bound with @ar nEnvi r onment s to get access to current YarnContainer
environment variables.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 83

Spring for Apache Hadoop

@nCont ai ner St art
public void publicVoi dEnvi ronnent sArgsMet hod(@ar nEnvi ronnents Map<String, String> env) {

}

Method parameter can be bound with @rar nEnvi r onment to get access to specific YarnContainer
environment variable.

@nCont ai ner St art
public voi d publicVoi dEnvi ronment Ar gsMet hod(@ar nEnvi ronnent ("key") String val ue) {

}

Method parameter can be bound with @ar nPar anet er s to get access to current YarnContainer
arguments.

@nCont ai ner St art
public voi d publicVoi dPar anet er sAr gsMet hod(@/ar nPar anet ers Properties properties) {

}

Method parameter can be bound with @ar nPar anet er to get access to a specific YarnContainer
arguments.

@nCont ai ner St ar t
public void publicVoi dPar anet er Ar gsMet hod(@ar nPar anet er (“key") String val ue) {

}

Configuration Properties

Configuration properties can be defined using various methods. See a Spring Boot dodumentation for
details.

Table 11.17. spri ng. hadoop configuration properties

Property Name Required Type Default Value
spring. hadoop. fsUri Yes String null
spri ng. hadoop. r esour ceManager Addr essNo String null
spri ng. hadoop. r esour ceManager Schedul HbAddr ess String null
spri ng. hadoop. r esour ceManager Host No String null
spri ng. hadoop. r esour ceManager Por t No Integer 8032
spri ng. hadoop. r esour ceManager Schedul HpPor t Integer 8030
spri ng. hadoop. r esour ces No List null

spring. hadoop. fsUri
A hdfs file system uri for a namenode.

spring. hadoop. r esour ceManager Addr ess
Address of a YARN resource manager.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 84

Spring for Apache Hadoop

spri ng. hadoop. r esour ceManager Schedul er Addr ess
Address of a YARN resource manager scheduler.

spri ng. hadoop. r esour ceManager Host
Hostname of a YARN resource manager.

spri ng. hadoop. r esour ceManager Port
Port of a YARN resource manager.

spri ng. hadoop. r esour ceManager Schedul er Por t
Port of a YARN resource manager scheduler. This property is only needed for an application master.

spring. hadoop. r esour ces
List of Spring resource locations to be initialized in Hadoop configuration. These resources should be
in Hadoop's own site xml format and location format can be anything Spring supports. For example,
classpath:/myentry.xml from a classpath or file:/myentry.xml from a file system.

Table 11.18. spri ng. yar n configuration properties

Property Name Required Type Default Value
spring.yarn.applicationDr No String null
spring.yarn. applicati onBaseDir No String null
spring. yarn. applicati onVersion No String null
spring.yarn. stagi nghi r No String [spring/staging
spring. yarn. appNane No String null
spring. yarn. appType No String YARN
spring. yarn. siteYarnAppC asspat h No String null
spring. yarn. siteMapr educeAppCl asspat No String null

spring.yarn.applicationDr
An application home directory in hdfs. If client copies files into a hdfs during an application
submission, files will end up in this directory. If this property is omitted, a staging directory will be
used instead.

spring.yarn. applicati onBaseDir
An applications base directory where build-in application deployment functionality would create a
new application instance. For a normal application submit operation, this is not needed.

spring. yarn. applicati onVersion
An application version identifier used together with appli cati onBaseDir in deployment
scenarios where appl i cati onDi r cannot be hard coded.

spring.yarn. stagi nghir
A global staging base directory in hdfs.

spring. yarn. appNane
Defines a registered application name visible from a YARN resource manager.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 85

Spring for Apache Hadoop

spring. yarn. appType
Defines a registered application type used in YARN resource manager.

spring.yarn. siteYarnAppC asspath
Defines a default base YARN application classpath entries.

spring. yarn. siteMapreduceAppd asspat h
Defines a default base MR application classpath entries.

Table 11.19. spri ng. yar n. appmast er configuration properties

Property Name Required Type
spring. yarn. appmast er. appmast er Cl assNo Class
spring. yarn. appmast er. cont ai ner Count No Integer
spring. yarn. appmast er. keepCont ext Al i Me Boolean

spring. yarn. appmast er. appmast er 0 ass

Default Value

null

1

true

Fully qualified classname which auto-configuration can automatically instantiate as a custom

application master.

spring. yarn. appnast er. cont ai ner Count

Property which is automatically kept in configuration as a hint which an application master can

choose to use when determing how many containers should be launched.

spring. yarn. appmast er. keepCont ext Al i ve

Setting for an application master runner to stop main thread to wait a latch before continuing. This

is needed in cases where main thread needs to wait event from other threads to be able to exit.

Table 11.20. spri ng. yar n. appnast er . | aunchcont ext configuration properties

Property Name Required Type Default Value
spring. yarn. appmast er. | aunchcont ext . Bochi veFil e String null
spring. yarn. appmast er . | aunchcont ext . Nonner d ass Class null
spring. yarn. appmast er. | aunchcont ext . Npt i ons List null
spring. yarn. appmast er. | aunchcont ext . Bogunent s Map null
spring. yarn. appmast er. | aunchcont ext . Nont ai ner AppC dsisipat h null
spring. yarn. appmast er. | aunchcont ext . Nat hSepar at or String

spring. yarn. appnmast er. | aunchcont ext . Nocl udeBaseDi Beokany true
spring. yarn. appnmast er. | aunchcont ext . NseYar nAppCl aBspleah true
spring. yarn. appnmast er. | aunchcont ext . NeeMapr educeABpQleasspat h true
spring. yarn. appnmast er. | aunchcont ext . Nocl udeSyst enBoulean true
spring. yarn. appnmast er. | aunchcont ext.Nocal ity Boolean false

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation

86

Spring for Apache Hadoop

spring. yarn. appnmaster. | aunchcont ext. archiveFil e
Indicates that a container main file is treated as executable jar or exploded zip.

spring. yarn. appmast er. | aunchcont ext . runner d ass
Indicates a fully qualified class nhame for a container runner.

spring.yarn. appmaster. | aunchcont ext. opti ons
JVM system options.

spring.yarn. appmast er. | aunchcont ext. ar gunment s
Application arguments.

spring. yarn. appnmast er. | aunchcont ext. cont ai ner AppCl asspat h
Additional classpath entries.

spring. yarn. appmast er. | aunchcont ext . pat hSepar at or
Separator in a classpath.

spring.yarn. appmaster. | aunchcont ext.incl udeBaseDirectory
If base directory should be added in a classpath.

spring.yarn. appmast er. | aunchcont ext . useYar nAppCl asspat h
If default yarn application classpath should be added.

spring. yarn. appnmast er. | aunchcont ext . useMapr educeAppCl asspat h
If default mr application classpath should be added.

spring. yarn. appmast er. | aunchcont ext . i ncl udeSyst entEnv
If system environment variables are added to a container environment.

spring.yarn. appmaster.|launchcontext.locality
If set to true indicates that resources are not relaxed.

Table 11.21. spri ng. yarn. appnast er. | ocal i zer configuration properties

Property Name Required Type Default Value
spring.yarn. appnmaster.|ocalizer. pattBons List null
spring. yarn.appnmaster.|ocalizer.zi pPabtern String null
spring. yarn. appnmaster.|ocalizer. proplpti esNanes List null
spring. yarn. appnmaster.|ocalizer. proplptiesSuffixes List null

spring.yarn. appnmaster.|ocalizer.patterns
A simple patterns to choose localized files.

spring. yarn. appnmaster.|localizer.zipPattern
A simple pattern to mark a file as archive to be exploded.

spring. yarn. appmaster. | ocalizer. properti esNanmes
Base name of a configuration files.

spring.yarn. appmaster.|ocalizer.propertiesSuffixes
Suffixes for a configuration files.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 87

Spring for Apache Hadoop

Table 11.22. spri ng. yar n. appnast er . r esour ce configuration properties

Property Name Required Type Default Value
spring. yarn. apprmast er. resource. pri or Nby String null
spring. yarn. appmast er. resour ce. menor Mo String null
spring. yarn. appmast er. resource. vi rt uslbCor es String null

spring.yarn. apprmaster.resource.priority
Container priority.

Spring.yarn. appmast er.resource. menory
Container memory allocation.

spring.yarn. appmast er. resource. virtual Cores
Container cpu allocation.

Table 11.23. spri ng. yarn. cl i ent configuration properties

Property Name Required Type Default Value
spring.yarn.client.files No List null
spring.yarn.client.priority No Integer null
spring.yarn.client.queue No String null
spring.yarn.client.clientC ass No Class null
spring.yarn.client.startup.action No String null

spring.yarn.client.files
Files to copy into hdfs during application submission.

spring.yarn.client.priority
Application priority.

spring.yarn.client.queue
Application submission queue.

spring.yarn.client.clientC ass
Fully qualified classname which auto-configuration can automatically instantiate as a custom client.

spring.yarn.client.startup.action
Default action to perform on Yar nCl i ent . Currently only one action named submit is supported.
This action is simply calling subni t Appl i cati on method on Yar nCl i ent .

Table 11.24. spri ng. yarn. cl i ent. | aunchcont ext configuration properties

Property Name Required Type Default Value
spring.yarn.client.|aunchcont ext. arcNbveFil e String null
spring.yarn.client.|aunchcontext.runNerd ass Class null

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 88

Spring for Apache Hadoop

Property Name Required Type Default Value
spring.yarn.client.|aunchcont ext. optNons List null
spring.yarn.client.|aunchcont ext. ar ghioent s Map null
spring.yarn.client.|aunchcont ext.conlNai ner AppC assplash null
spring.yarn.client.|aunchcont ext. pat NSepar at or String
spring.yarn.client.|aunchcont ext.i ncNodeBaseDi r ecBoolgan true
spring.yarn.client.|aunchcont ext.useMar nAppCl asspBbblean true
spring.yarn.client.|launchcont ext. useNapreduceAppCBaslkepat h true
spring.yarn.client.|aunchcont ext.i ncNodeSyst enEnvBoolean true

spring.yarn.client.|aunchcontext.archiveFile
Indicates that a container main file is treated as executable jar or exploded zip.

spring.yarn.client.launchcontext.runnerC ass
Indicates a fully qualified class name for a container runner.

spring.yarn.client.|aunchcont ext.options
JVM system options.

spring.yarn.client.|aunchcont ext. argunents
Application arguments.

spring.yarn.client.|aunchcont ext. contai ner Appd asspath
Additional classpath entries.

spring.yarn.client.launchcont ext. pat hSepar at or
Separator in a classpath.

spring.yarn.client.launchcontext.includeBaseDirectory
If base directory should be added in a classpath.

spring.yarn.client.launchcontext.useYarnAppC asspath
If default yarn application classpath should be added.

spring.yarn.client.|aunchcont ext.useMapreduceAppCl asspath
If default mr application classpath should be added.

spring.yarn.client.launchcontext.includeSystenknv
If system environment variables are added to a container environment.

Table 11.25. spri ng. yarn. client. | ocal i zer configuration properties

Property Name Required Type Default Value
spring.yarn.client.localizer.patternbNo List null
spring.yarn.client.|ocalizer.zipPattRbn String null
spring.yarn.client.|ocalizer.propertNesNanmes List null

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 89

Spring for Apache Hadoop

Property Name Required Type

Default Value

spring.yarn.client.|ocalizer.propertNesSuffixes List

null

spring.yarn.client.|localizer.patterns
A simple patterns to choose localized files.

spring.yarn.client.localizer.zipPattern
A simple pattern to mark a file as archive to be exploded.

spring.yarn.client.localizer.propertiesNanes
Base name of a configuration files.

spring.yarn.client.localizer.propertiesSuffixes
Suffixes for a configuration files.

Table 11.26. spri ng. yarn. cl i ent. r esour ce configuration properties

Property Name Required Type
spring.yarn.client.resource. menory No String
spring.yarn.client.resource. virtual (ibes String

spring.yarn.client.resource. menory
Application master memory allocation.

spring.yarn.client.resource.virtual Cores
Application master cpu allocation.

Table 11.27. spri ng. yar n. cont ai ner configuration properties

Default Value
null

null

Property Name Required Type Default Value
spring. yarn. cont ai ner. keepCont ext Al i Me Boolean true
spring. yarn. cont ai ner. cont ai ner Cl assNo Class null

spring. yarn. cont ai ner. keepCont ext Al i ve

Setting for an application container runner to stop main thread to wait a latch before continuing. This
is needed in cases where main thread needs to wait event from other threads to be able to exit.

spring.yarn. contai ner. containerC ass

Fully qualified classname which auto-configuration can automatically instantiate as a custom

container.

Table 11.28. spri ng. yar n. bat ch configuration properties

Property Name Required Type Default Value
spring. yarn. bat ch. nane No String null
spring. yarn. bat ch. enabl ed No Boolean false
spring. yarn. batch. jobs No List null

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation

90

Spring for Apache Hadoop

spring. yarn. bat ch. nane
Comma-delimited list of search patterns to find jobs to run defined either locally in application context
or in job registry.

spri ng. yarn. bat ch. enabl ed
Indicates if batch processing on yarn is enabled.

spring. yarn. batch. jobs
Indicates a list of individual configuration properties for jobs.

Table 11.29. spri ng. yar n configuration properties

Property Name Required Type Default Value
spring. yarn. batch. j obs. nane No String null
spring. yarn. batch. j obs. enabl ed No Boolean false
spring. yarn. bat ch. j obs. next No Boolean false
spring.yarn. batch.jobs. fail Next No Boolean false
spring.yarn. batch.jobs.restart No Boolean false
spring.yarn. batch.jobs.failRestart No Boolean false
spring. yarn. batch. jobs. paraneters No String null

Descriptions

spring. yarn. batch. j obs. nane
Name of a job to configure.

spring. yarn. bat ch. j obs. enabl ed
Indicates if job is enabled.

spring. yarn. bat ch. j obs. next
Indicates if job parameters incrementer is used to prepare a job for next run.

spring.yarn. batch. jobs. fail Next
Indicates if job execution should fail if job cannot be prepared for next execution.

spring.yarn. batch.jobs.restart
Indicates of job should be restarted.

spring.yarn. batch.jobs.fail Restart
Indicates if job execution should fall if job cannot be restarted.

spring.yarn. batch. jobs. paraneters
Defines a Map of additional job parameters. Keys and values are in normal format supported by
Batch.

Controlling Applications

We've already talked about how resources are localized into a running container. These resources are
always localized from a HDFS file system which effectively means that the whole process of getting
application files into a newly launched YARN application is a two phase process; firstly files are copied
into HDFS and secondly files are localized from a HDFS.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 91

Spring for Apache Hadoop

When application instance is submitted into YARN, there are two ways how these application files can
be handled. First which is the most obvious is to just copy all the necessary files into a known location in
HDFS and then instruct YARN to localize files from there. Second method is to split this into two different
stages, first install application files into HDFS and then submit application from there. At first there seem
to be no difference with these two ways to handle application deployment. However if files are always
copied into HDFS when application is submitted, you need a physical access to those files. This may not
always be possible so it's easier if you have a change to prepare these files by first installing application
into HDFS and then just send a submit command to a YARN resource manager.

To ease a process of handling a full application life cycle, few utility classes exist which are meant to
be used with Spring Boot. These classes are considered to be a foundational Boot application classes,
not a ready packaged Boot executable jars. Instead you would use these from your own application
whether that application is a Boot or other Spring based application.

Generic Usage

Internally these applications are executed using a Spri ngAppl i cati onBui | der and a dedicated
Spring Application Context. This allows to isolate Boot application instance from your current context
if you have one. One fundamental idea in these applications is to make it possible to work with
Spring profiles and Boot configuration properties. If your existing application is already using profiles
and configuration properties, simply launching a new Boot would most likely derive those settings
automatically which is something what you may not want.

Abst ract C i ent Appl i cati on which all these built-in applications are based on contains methods
to work with Spring profiles and additional configuration properties.

Let's go through all this using an example:
Using Configuration Properties

Below sample is pretty much a similar from all other examples except of two settings,
applicationBaseDir andcl i ent d ass. Property appl i cati onBaseDi r defines where in HDFS
a new app will be installed. Def aul t Appl i cati onYarnCl i ent defined using cl i ent Cl ass adds
better functionality to guard against starting app which doesn't exist or not overwriting existing apps in
HDFS.

Spring:

hadoop
fsUi: hdfs://Iocal host: 8020
resour ceManager Host : | ocal host

yarn:
appType: GS
appNane: gs-yarn-appnode
appl i cationBaseDir: /app/
applicationDir: /app/gs-yarn-appnodel/

client:
clientC ass: org.springfranmework.yarn.client.DefaultApplicationYarnCient
files:

- "file:build/libs/gs-yarn-appnodel -container-0.1.0.jar"
- "file:build/libs/gs-yarn-appnodel -apprmaster-0.1.0.jar"
| aunchcont ext :
archi veFi | e: gs-yarn-appnodel - appmaster-0.1.0.j ar
appnast er:
cont ai nerCount: 1
| aunchcont ext :
archiveFi |l e: gs-yarn-appnodel -container-0.1.0.jar

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 92

Spring for Apache Hadoop

Using YarnPushApplication

YarnPushApplication is used to push your application into HDFS.

public void dolnstall () {
Yar nPushAppl i cati on app = new Yar nPushApplication();
app. appl i cati onVersi on("versionl");
Properties instanceProperties = new Properties();

i nst anceProperties. set Property("spring.yarn.applicationVersion", "versionl");
app. configFile("application.properties", instanceProperties);
app. run();

In above example we simply created a Yar nPushAppl i cati on, set its appl i cati onVer si on
and executed a run method. We also instructed YarnPushApplication to write used
appl i cati onVer si on into a configuration file named application.properties so that it'd be available
to an application itself.

Using YarnSubmitApplication

YarnSubmitApplication is used to submit your application from HDFS into YARN.

public void doSubmit() {
Yar nSubmi t Appl i cati on app = new Yar nSubmi t Application();
app. appl i cati onVersi on("versionl");
Applicationld applicationld = app.run();

}

In above example we simply created a Yar nSubmi t Appl i cati on, set its appl i cati onVer si on
and executed a run method.

Using YarnIinfoApplication

YarninfoApplication is used to query application info from a YARN Resource Manager and HDFS.

public void doLi st Pushed() ({
Yar nl nf oAppl i cati on app = new Yarnl nf oApplication();
Properties appProperties = new Properties();

appProperties.setProperty("spring.yarn.internal.YarnlnfoApplication.operation", "PUSHED");
app. appProperties(appProperties);
String info = app.run();
System out . println(info);

}

public void doListSubmtted() {
Yar nl nf oAppl i cati on app = new Yarnl nf oApplication();
Properties appProperties = new Properties();

appProperties. setProperty("spring.yarn.internal.YarnlnfoApplication.operation", "SUBM TTED");
appProperties. setProperty("spring.yarn.internal.YarnlnfoApplication.verbose", "true");
appProperties.setProperty("spring.yarn.internal.YarnlnfoApplication.type", "GS");
app. appProperties(appProperties);
String info = app.run();
System out . println(info);

In above example we simply created a Yar nl nf oAppl i cat i on, and used it to list installed and running
applications. By adding appPr operti es will make Boot to pick these properties after every other

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 93

Spring for Apache Hadoop

source of configuration properties but still allows to pass command-line options to override everything
which is a normal way in Boot.

Using YarnKillApplication

YarnKillApplication is used to kill running application instances.

public void doKill () {
YarnKi | | Application app = new YarnKill Application();
Properties appProperties = new Properties();

appProperties.setProperty("spring.yarn.internal.YarnKill Application.applicationld", "application_139505803
app. appProperties(appProperties);
String info = app.run();
System out. println(info);
}

In above example we simply created a Yar nKi | | Appl i cati on, and used it to send a application kill
request into a YARN resource manager.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 94

Spring for Apache Hadoop

12. Testing Support

Hadoop testing has always been a cumbersome process especially if you try to do testing phase during
the normal project build process. Traditionally developers have had few options like running Hadoop
cluster either as a local or pseudo-distributed mode and then utilise that to run MapReduce jobs. Hadoop
project itself is using a lot of mini clusters during the tests which provides better tools to run your code
in an isolated environment.

Spring Hadoop and especially its Yarn module faced similar testing problems. Spring Hadoop provides
testing facilities order to make testing on Hadoop much easier especially if code relies on Spring Hadoop
itself. These testing facilities are also used internally to test Spring Hadoop, although some test cases
still rely on a running Hadoop instance on a host where project build is executed.

Two central concepts of testing using Spring Hadoop is, firstly fire up the mini cluster and secondly use
the configuration prepared by the mini cluster to talk to the Hadoop components. Now let's go through
the general testing facilities offered by Spring Hadoop.

Testing for MapReduce and Yarn in Spring Hadoop is separated into different packages mostly because
these two components doesn't have hard dependencies with each others. You will see a lot of similarities
when creating tests for MapReduce and Yarn.

12.1 Testing MapReduce

Mini Clusters for MapReduce

Mini clusters usually contain testing components from a Hadoop project itself. These are clusters for
MapReduce Job handling and HDFS which are all run within a same process. In Spring Hadoop
mini clusters are implementing interface Hadoopd ust er which provides methods for lifecycle
and configuration. Spring Hadoop provides transitive maven dependencies against different Hadoop
distributions and thus mini clusters are started using different implementations. This is mostly because
we want to support HadoopV1 and HadoopV2 at a same time. All this is handled automatically at runtime
so everything should be transparent to the end user.

public interface Hadoopd uster {
Confi guration get Configuration();
void start() throws Exception;
voi d stop();
Fil eSystem get Fi | eSysten{) throws | CExcepti on;

Currently one implementation named StandaloneHadoopCluster exists which supports simple cluster
type where a number of nodes can be defined and then all the nodes will contain utilities for MapReduce
Job handling and HDFS.

There are few ways how this cluster can be started depending on a use case. It
is possible to use Standal oneHadoopd uster directly or configure and start it through
Hadoopd ust er Fact or yBean. Existing HadoopC ust er Manager is used in unit tests to cache
running clusters.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 95

Spring for Apache Hadoop

© Note

It's advisable not to use Hadoopd ust er Manager outside of tests because literally it is using
static fields to cache cluster references. This is a same concept used in Spring Test order to
cache application contexts between the unit tests within a jvm.

<bean i d="hadoopC uster" class="org.springfranework. dat a. hadoop. t est. support. HadoopCl ust er Fact or yBean" >
<property nane="clusterld" val ue="HadoopCl uster Tests"/>
<property nanme="autoStart" val ue="true"/>

</ bean>

Example above defines a bean named hadoopCluster using a factory bean
Hadoopd ust er Fact or yBean. It defines a simple one node cluster which is started automatically.

Configuration

Spring Hadoop components usually depend on Hadoop configuration which is then wired into these
components during the application context startup phase. This was explained in previous chapters so
we don't go through it again. However this is now a catch-22 because we need the configuration for the
context but it is not known until mini cluster has done its startup magic and prepared the configuration
with correct values reflecting current runtime status of the cluster itself. Solution for this is to use other
bean named Conf i gur ati onDel egat i ngFact or yBean which will simply delegate the configuration
request into the running cluster.

<bean i d="hadoopConfi gur edConfi guration" class="org.springframework. dat a. hadoop. t est. support. Confi gurati onD
<property nanme="cl uster" ref="hadoopCd uster"/>
</ bean>

<hdp: configurati on i d="hadoopConfi guration" configuration-
ref =" hadoopConfi gur edConfi guration"/>

In the above example we created a bean named hadoopConfiguredConfiguration using
Confi gurati onDel egati ngFact oryBean which simple delegates to hadoopCluster bean.
Returned bean hadoopConfiguredConfiguration is type of Hadoop's Conf i gur at i on object so it could
be used as it is.

Latter part of the example show how Spring Hadoop namespace is used to create another
Conf i gur at i on object which is using hadoopConfiguredConfiguration as a reference. This scenario
would make sense if there is a need to add additional configuration options into running configuration
used by other components. Usually it is suiteable to use cluster prepared configuration as it is.

Simplified Testing

It is perfecly all right to create your tests from scratch and for example create the cluster manually and
then get the runtime configuration from there. This just needs some boilerplate code in your context
configuration and unit test lifecycle.

Spring Hadoop adds additional facilities for the testing to make all this even easier.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 96

Spring for Apache Hadoop

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
public abstract class Abstract Hadoopd usterTests inpl enents ApplicationContext Anare {

}

@ont ext Confi gurati on(| oader =HadoopDel egat i ngSmar t Cont ext Loader . cl ass)
@M ni Hadoopd ust er
public class O usterBaseTestd assTests extends Abstract Hadoopd uster Tests {

}

Above example shows the Abst ract HadoopCl ust er Test s and how
Cl usterBaseTest Cl assTests is prepared to be aware of a mini cluster.
HadoopDel egat i ngSmart Cont ext Loader offers same base functionality as the default
Del egati ngSnmart Cont ext Loader in a spring-test package. One additional thing what
HadoopDel egat i ngSmar t Cont ext Loader does is to automatically handle running clusters and
inject Conf i gur ati on into the application context.

@M ni Hadoopd ust er (conf i gName="hadoopConfi gurati on", clusterNanme="hadoopCl uster", nodes=1,
id="default")

Generally @ ni Hadoopd ust er annotation allows you to define injected bean name for mini cluster,
its Configurations and a humber of nodes you like to have in a cluster.

Spring Hadoop testing is dependant of general facilities of Spring Test framework meaning that
everything what is cached during the test are reuseable withing other tests. One need to understand that
if Hadoop mini cluster and its Conf i gur at i on is injected into an Application Context, caching happens
on a mercy of a Spring Testing meaning if a test Application Context is cached also mini cluster instance
is cached. While caching is always prefered, one needs to understant that if tests are expecting vanilla
environment to be present, test context should be dirtied using @i rt i esCont ext annotation.

Wordcount Example
Let's study a proper example of existing MapReduce Job which is executed and tested using Spring

Hadoop. This example is the Hadoop's classic wordcount. We don't go through all the details of this
example because we want to concentrate on testing specific code and configuration.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 97

Spring for Apache Hadoop

<cont ext : property-pl acehol der | ocati on="hadoop. properties" />

<hdp: j ob i d="wor dcount Job"
i nput - pat h="${ wor dcount . i nput . pat h} "
out put - pat h="${ wor dcount . out put . pat h} "
l'ibs="file:build/libs/mapreduce-exanpl es-wordcount-*.jar"
mapper =" or g. spri ngf ramewor k. dat a. hadoop. exanpl es. Tokeni zer Mapper "
reducer =" org. spri ngf ranewor k. dat a. hadoop. exanpl es. | nt SunReducer" />

<hdp: script id="setupScript" |ocation="copy-files.groovy">

<hdp: property nanme="inputDir" val ue="${wordcount.input.path}" />
<hdp: property name="out putDi r" val ue="${wordcount . out put.path}" />
</ hdp: scri pt >

<hdp: j ob-runner id="runner"
run-at-startup="fal se"
ki ll-job-at-shutdown="fal se"
wai t-for-conpl eti on="fal se"
pre-action="setupScri pt"
j ob-ref="wordcount Job" />

<hdp: property nane="| ocal SourceFi |l e" val ue="dat a/ ni et zsche-chapter-1.txt"

/>

In above configuration example we can see few differences with the actual runtime configuration. Firstly
you can see that we didn't specify any kind of configuration for hadoop. This is because it's is injected
automatically by testing framework. Secondly because we want to explicitely wait the job to be run and

finished, kill-job-at-shutdown and wait-for-completion are set to false.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation

98

Spring for Apache Hadoop

@Cont ext Confi gurati on(| oader =HadoopDel egat i ngSmar t Cont ext Loader . cl ass)
@M ni Hadoopd ust er
public class Wrdcount Tests extends Abstract MapReduceTests {
@est
public void testWrdcountJob() throws Exception {
/'l run bl ocks and throws exception if job failed
JobRunner runner = get ApplicationContext().getBean("runner", JobRunner.cl ass);
Job wordcount Job = get Appl i cati onCont ext (). get Bean("wor dcount Job", Job. cl ass);

runner.call ();

JobStatus finishedStatus = waitFi ni shedStat us(wordcountJob, 60, TineUnit.SECONDS);
assert That (fi ni shedSt atus, not Nul | Val ue());

/] get output files froma job

Path[] outputFiles = getQutputFilePaths("/user/gutenberg/output/word/");

assert Equal s(1, outputFiles.|ength);

assert That (get Fil eSysten{().getFil eStatus(outputFiles[0]).getLen(), greaterThan(O0l));

/'l read through the file and check that line with
/'l "thensel ves 6" was found
bool ean found = fal se;
I nput Streamin = getFil eSysten().open(outputFiles[0]);
Buf f er edReader reader = new BufferedReader (new | nput St reanReader (in));
String line = null;
while ((line = reader.readLine()) != null) {
if (line.startsWth("thensel ves")) {
assert That (1ine, is("themselves\t6"));
found = true;
}
}

reader . cl ose();
assert That ("Keyword 't hensel ves' not found", found);

In above unit test class we simply run the job defined in xml, explicitely wait it to finish and then check
the output content from HDFS by searching expected strings.

12.2 Testing Yarn

Mini Clusters for Yarn

Mini cluster usually contain testing components from a Hadoop project itself. These are
M ni YARNC! ust er for Resource Manager and M ni DFSC ust er for Datanode and Namenode
which are all run within a same process. In Spring Hadoop mini clusters are implementing interface
Yar nCl ust er which provides methods for lifecycle and configuration.

public interface YarnC uster {
Confi guration getConfiguration();
void start() throws Exception;
voi d stop();
File get YarnWorkDir ();

Currently one implementation named St andal oneYar nCl ust er exists which supports simple cluster
type where a number of nodes can be defined and then all the nodes will have Yarn Node Manager and
Hdfs Datanode, additionally a Yarn Resource Manager and Hdfs Namenode components are started.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 99

Spring for Apache Hadoop

There are few ways how this cluster can be started depending on a use case. It is possible to use
St andal oneYar nCl ust er directly or configure and start it through Yar nCl ust er Fact or yBean.
Existing Yar nCl ust er Manager is used in unit tests to cache running clusters.

© Note

It's advisable not to use Yar nCl ust er Manager outside of tests because literally it is using static
fields to cache cluster references. This is a same concept used in Spring Test order to cache
application contexts between the unit tests within a jvm.

<bean id="yarnCl uster" class="org.springfranework.yarn.test.support. YarnCl usterFactoryBean">
<property name="cl usterld" val ue="YarnC usterTests"/>
<property nane="autoStart" val ue="true"/>
<property nane="nodes" val ue="1"/>

</ bean>

Example above defines a bean named yarnCluster using a factory bean Yar nCl ust er Fact or yBean.
It defines a simple one node cluster which is started automatically. Cluster working directories would
then exist under below paths:

target/ YarnCd ust er Tests/
target/ YarnC ust er Test s-df s/

@ Note

We rely on base classes from a Hadoop distribution and target base directory is hardcoded in
Hadoop and is not configurable.

Configuration

Spring Yarn components usually depend on Hadoop configuration which is then wired into these
components during the application context startup phase. This was explained in previous chapters so
we don't go through it again. However this is now a catch-22 because we need the configuration for the
context but it is not known until mini cluster has done its startup magic and prepared the configuration
with correct values reflecting current runtime status of the cluster itself. Solution for this is to use other
factory bean class named Conf i gur ati onDel egat i ngFact or yBean which will simple delegate the
configuration request into the running cluster.

<bean i d="yar nConfi guredConfigurati on" class="org.springfranmework.yarn.test.support.ConfigurationDel egati ng
<property nanme="cluster" ref="yarnC uster"/>
</ bean>

<yarn: configuration id="yarnConfiguration" configuration-
ref ="yarnConfi guredConfi guration"/>

In the above example we created a bean named yarnConfiguredConfiguration using
Confi gurati onDel egat i ngFact or yBean which simple delegates to yarnCluster bean. Returned
bean yarnConfiguredConfiguration is type of Hadoop's Conf i gur at i on object so it could be used as
it is.

Latter part of the example show how Spring Yarn namespace is used to create another Conf i gur ati on
object which is using yarnConfiguredConfiguration as a reference. This scenario would make sense
if there is a need to add additional configuration options into running configuration used by other
components. Usually it is suiteable to use cluster prepared configuration as it is.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 100

Spring for Apache Hadoop

Simplified Testing

It is perfecly all right to create your tests from scratch and for example create the cluster manually and
then get the runtime configuration from there. This just needs some boilerplate code in your context
configuration and unit test lifecycle.

Spring Hadoop adds additional facilities for the testing to make all this even easier.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
public abstract class AbstractYarnC usterTests inplenments Applicati onContext Anare {

}

@Cont ext Confi gurati on(| oader =Yar nDel egat i ngSmar t Cont ext Loader . cl ass)
@ ni Yar nC ust er
public class C usterBaseTest Ol assTests extends AbstractYarnC usterTests {

}

Above example shows the Abst r act Yar nC ust er Test s and how Cl ust er BaseTest Cl assTest s
is prepared to be aware of a mini cluster. Yar nDel egat i ngSnart Cont ext Loader offers same
base functionality as the default Del egati ngSmart Cont ext Loader in a spring-test package.
One additional thing what Yar nDel egat i ngSnar t Cont ext Loader does is to automatically handle
running clusters and inject Conf i gur at i on into the application context.

@M ni Yar nCl ust er (confi gNane="yar nConfi guration", clusterNane="yarnC uster", nodes=1,
id="default")

Generally @M ni Yar nCl ust er annotation allows you to define injected bean names for mini cluster,
its Configurations and a humber of nodes you like to have in a cluster.

Spring Hadoop Yarn testing is dependant of general facilities of Spring Test framework meaning that
everything what is cached during the test are reuseable withing other tests. One need to understand that
if Hadoop mini cluster and its Conf i gur at i on is injected into an Application Context, caching happens
on a mercy of a Spring Testing meaning if a test Application Context is cached also mini cluster instance
is cached. While caching is always prefered, one needs to understant that if tests are expecting vanilla
environment to be present, test context should be dirtied using @i rt i esCont ext annotation.

Spring Test Context configuration works exactly like you'd work with any other Spring Test based tests.
It defaults on finding xml based config and fall back to Annotation based config. For example if one is
working with JavaConfig a simple static configuration class can be used within the test class.

For test cases where additional context configuration is not needed a simple helper annotation
@M ni Yar nCl ust er Test can be used.

@ ni Yar nd ust er Test
public class ActivatorTests extends AbstractBoot YarnCl usterTests {

@rest
public void test Sonethi ng(){

}

}

In above example a simple test case was created using annontation @MiniYarnClusterTest. Behind a
scenes it's using junit and prepares a YARN minicluster for you and injects needed configuration for you.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 101

Spring for Apache Hadoop

Drawback of using a composed annotation like this is that the @Configuration is then applied from an
annotation class itself and user can't no longer add a static @Configuration class in a test class itself
and expect Spring to pick it up from there which is a normal behaviour in Spring testing support. If
user wants to use a simple composed annotation and use a custom @Configuration, one can simply
duplicate functionality of this @MiniYarnClusterTest annotation.

@Ret ent i on(Ret ent i onPol i cy. RUNTI MVE)

@rar get (El ement Type. TYPE)

@ont ext Confi gurati on(| oader =Yar nDel egat i ngSnar t Cont ext Loader . cl ass)
@ ni Yar nd ust er

public @nterface CustonmM ni Yar nd ust er Test {

@Configuration
public static class Config {
@ean
public String myCustonBean() {
return "myCust onBean";
}
}

}

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@ust oM ni Yar nC ust er Test
public class ConposedAnnot ati onTests {

@\ut owi r ed
private ApplicationContext ctx;

@est
public void testBean() {
assert True(ct x. cont ai nsBean(" myCust onBean")) ;

}

In above example a custom composed annotation @CustomMiniYarnClusterTest was created and then
used within a test class. This a great way to put your configuration is one place and still keep your test
class relatively non-verbose.

Multi Context Example

Let's study a proper example of existing Spring Yarn application and how this is tested during the
build process. Multi Context Example is a simple Spring Yarn based application which simply launches
Application Master and four Containers and withing those containers a custom code is executed. In this
case simply a log message is written.

In real life there are different ways to test whether Hadoop Yarn application execution has been succesful
or not. The obvious method would be to check the application instance execution status reported by
Hadoop Yarn. Status of the execution doesn't always tell the whole truth so i.e. if application is about to
write something into HDFS as an output that could be used to check the proper outcome of an execution.

This example doesn't write anything into HDFS and anyway it would be out of scope of this document
for obvious reason. It is fairly straightforward to check file content from HDFS. One other interesting
method is simply to check to application log files that being the Application Master and Container logs.
Test methods can check exceptions or expected log entries from a log files to determine whether test
is succesful or not.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 102

Spring for Apache Hadoop

In this chapter we don't go through how Multi Context Example is configured and what it actually does,
for that read the documentation about the examples. However we go through what needs to be done
order to test this example application using testing support offered by Spring Hadoop.

In this example we gave instructions to copy library dependencies into Hdfs and then those entries were
used within resouce localizer to tell Yarn to copy those files into Container working directory. During the
unit testing when mini cluster is launched there are no files present in Hdfs because cluster is initialized
from scratch. Furtunalety Spring Hadoop allows you to copy files into Hdfs during the localization process
from a local file system where Application Context is executed. Only thing we need is the actual library
files which can be assembled during the build process. Spring Hadoop Examples build system rely on
Gradle so collecting dependencies is an easy task.

<yarn: | ocal resour ces>
<yarn: hdfs path="/app/multi-context/*.jar"/>
<yarn: hdfs path="/lib/*.jar"/>
</yarn:| ocal resources>

Above configuration exists in application-context.xml and appmaster-context.xml files. This is a normal
application configuration expecting static files already be present in Hdfs. This is usually done to
minimize latency during the application submission and execution.

<yarn:| ocal resour ces>
<yarn:copy src="file: buil d/ dependency-Ilibs/*" dest="/lib/"/>
<yarn:copy src="file:build/libs/*" dest="/app/nmulti-context/"/>
<yarn: hdfs path="/app/multi-context/*.jar"/>
<yarn: hdfs path="/lib/*.jar"/>

</yarn:| ocal resources>

Above example is from MultiContextTest-context.xml which provides the runtime context configuration
talking with mini cluster during the test phase.

When we do context configuration for YarnClient during the testing phase all we need to do is to add
copy elements which will transfer needed libraries into Hdfs before the actual localization process will
fire up. When those files are copied into Hdfs running in a mini cluster we're basically in a same point
if using a real Hadoop cluster with existing files.

© Note

Running tests which depends on copying files into Hdfs it is mandatory to use build system which
is able to prepare these files for you. You can't do this within IDE's which have its own ways to
execute unit tests.

The complete example of running the test, checking the application execution status and finally checking
the expected state of log files:

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 103

Spring for Apache Hadoop

@ont ext Confi gurati on(| oader =Yar nDel egat i ngSmart Cont ext Loader . cl ass)
@M ni Yar nCl ust er
public class MiltiContextTests extends Abstract Yarnd usterTests {
@rest
@i med(m | I'i s=70000)
public void testAppSubmi ssion() throws Exception {
Yar nAppl i cationState state = submit Applicati onAndWait();
assertNot Nul | (state);
assert True(state. equal s(YarnApplicationState. FI Nl SHED)) ;

File workDir = getYarnC uster().getYarnWrkDir();

Pat hivat chi ngResour cePat t er nResol ver resol ver = new

Pat hMat chi ngResour cePat t er nResol ver ()
String locationPattern = "file:" + workDir.get AbsolutePath() + "/**/* std*"
Resource[] resources = resol ver. get Resources(| ocationPattern);

/| apprmaster and 4 containers should
/1 make it 10 log files
assert That (resources, notNull Val ue());
assert That (resources. |l ength, is(10));

for (Resource res : resources) {
File file = res.getFile();
if (file.getNanme().endsWth("stdout")) {
/'l there has to be sone content in stdout file
assertThat (file.length(), greaterThan(O0l));
if (file.getNanme().equal s("Container.stdout")) {
Scanner scanner = new Scanner (file);
String content = scanner.useDelimter("\\A").next();
scanner. cl ose();
/'l this is what container will |og in stdout
assert That (content, containsString("Hello from Milti Cont ext BeanExanpl e"));
}
} else if (file.getName().endsWth("stderr")) {
/'l can't have anything in stderr files
assertThat (file.length(), is(0l));

12.3 Testing Boot Based Applications

In previous sections we showed a generic concepts of unit testing in Spring Hadoop and Spring YARN.
We also have a first class support for testing Spring Boot based applications made for YARN.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 104

Spring for Apache Hadoop

@V ni Yar nd ust er Test
public class AppTests extends Abstract Boot Yar nC ust er Tests {

@est
public void testApp() throws Exception {
Applicationlnfo info = submitApplicati onAndWait(C ientApplication.class, new
String[0]);
assert That (i nf o. get YarnApplicationState(), is(YarnApplicationState.FI N SHED));

Li st <Resource> resources = Contai nerLogUtils.queryCont ai nerLogs(
get YarnCluster (), info.getApplicationld());

assert That (resources, notNul | Val ue());

assert That (resources.size(), is(4));

for (Resource res : resources) {
File file = res.getFile();
String content = ContainerLogUtils.getFileContent(file);
if (file.getNanme().endsWth("stdout")) {
assertThat (file.length(), greaterThan(0l));
if (file.getNane().equal s("Container.stdout")) {
assert That (content, containsString("Hello from Hell oPojo"));

}
} else if (file.getName().endsWth("stderr")) {
assertThat ("stderr with content: " + content, file.length(), is(0l));

}
}
}

Let's go through step by step what's happening in this JUnit class. As already mentioned earlier we don’t
need any existing or running Hadoop instances, instead testing framework from Spring YARN provides
an easy way to fire up a mini cluster where your tests can be run in an isolated environment.

e @Cont ext Confi gur ati on together with Yar nDel egat i ngSnart Cont ext Loader tells Spring to
prepare a testing context for a mini cluster. Enpt yConf i g is a simple helper class to use if there are
no additional configuration for tests.

e @M ni Yar nd ust er tells Spring to start a Hadoop’s mini cluster having components for HDFS and
YARN. Hadoop’s configuration from this minicluster is automatically injected into your testing context.

e @M ni YarnCl usterTest is basically a replacement of @ niYarnC uster and
@Cont ext Confi gur ati on having an empty context configuration.

» Abst ract Boot Yar nCl ust er Test s is a class containing a lot of base functionality what you need
in your tests.

Then it's time to deploy the application into a running minicluster

» submi t Appl i cati onAndWai t () method simply runs your C i ent Appl i cati on and expects it
to an application deployment. On default it will wait 60 seconds an application to finish and returns
an current state.

» We make sure that we have a correct application state
We use Cont ai ner LogUt i | s to find our container logs files from a minicluster.

» We assert count of a log files

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 105

Spring for Apache Hadoop

» We expect some specified content from log file

» We expect stderr files to be empty

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 106

Part Ill. Developing Spring for
Apache Hadoop Applications

This section provides some guidance on how one can use the Spring for Apache Hadoop project in
conjunction with other Spring projects, starting with the Spring Framework itself, then Spring Batch, and
then Spring Integration.

Spring for Apache Hadoop

13. Guidance and Examples

Spring for Apache Hadoop provides integration with the Spring Framework to create and run Hadoop
MapReduce, Hive, and Pig jobs as well as work with HDFS and HBase. If you have simple needs to
work with Hadoop, including basic scheduling, you can add the Spring for Apache Hadoop namespace
to your Spring based project and get going quickly using Hadoop.

As the complexity of your Hadoop application increases, you may want to use Spring Batch to regain
on the complexity of developing a large Hadoop application. Spring Batch provides an extension to the
Spring programming model to support common batch job scenarios characterized by the processing of
large amounts of data from flat files, databases and messaging systems. It also provides a workflow
style processing model, persistent tracking of steps within the workflow, event notification, as well
as administrative functionality to start/stop/restart a workflow. As Spring Batch was designed to be
extended, Spring for Apache Hadoop plugs into those extensibilty points, allowing for Hadoop related
processing to be a first class citizen in the Spring Batch processing model.

Another project of interest to Hadoop developers is Spring Integration. Spring Integration provides an
extension of the Spring programming model to support the well-known Enterprise Integration Patterns. It
enables lightweight messaging within Spring-based applications and supports integration with external
systems via declarative adapters. These adapters are of particular interest to Hadoop developers, as
they directly support common Hadoop use-cases such as polling a directory or FTP folder for the
presence of a file or group of files. Then once the files are present, a message is sent internally to the
application to do additional processing. This additional processing can be calling a Hadoop MapReduce
job directly or starting a more complex Spring Batch based workflow. Similarly, a step in a Spring Batch
workflow can invoke functionality in Spring Integration, for example to send a message though an email
adapter.

No matter if you use the Spring Batch project with the Spring Framework by itself or with additional
extentions such as Spring Batch and Spring Integration that focus on a particular domain, you will benefit
from the core values that Spring projects bring to the table, namely enabling modularity, reuse and
extensive support for unit and integration testing.

13.1 Scheduling

Spring Batch integrates with a variety of job schedulers and is not a scheduling framework. There
are many good enterprise schedulers available in both the commercial and open source spaces such
as Quartz, Tivoli, Control-M, etc. It is intended to work in conjunction with a scheduler, not replace
a scheduler. As a lightweight solution, you can use Spring's built in scheduling support that will give
you cron-like and other basic scheduling trigger functionality. See the Task Execution and Scheduling
documention for more info. A middle ground it to use Spring's Quartz integration, see Using the
OpenSymphony Quartz Scheduler for more information. The Spring Batch distribution contains an
example, but this documentation will be updated to provide some more directed examples with Hadoop,
check for updates on the main web site of Spring for Apache Hadoop.

13.2 Batch Job Listeners

Spring Batch lets you attach listeners at the job and step levels to perform additional processing. For
example, at the end of a job you can perform some notification or perhaps even start another Spring
Batch job. As a brief example, implement the interface JobExecutionListener and configure it into the
Spring Batch job as shown below.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 108

http://www.eaipatterns.com
http://docs.spring.io/spring-batch/faq.html#schedulers
http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/scheduling.html#scheduling-quartz
http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/scheduling.html#scheduling-quartz
http://projects.spring.io/spring-hadoop/
http://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/JobExecutionListener.html

Spring for Apache Hadoop

<batch:job id="jobl">
<bat ch: step id="inport" next="wordcount">
<batch:tasklet ref="script-tasklet"/>
</ bat ch: st ep>

<bat ch: step i d="wordcount">
<bat ch: t askl et ref="wordcount-tasklet" />
</ bat ch: st ep>

<batch:|i st eners>
<batch:|istener ref="sinpleNotificatonListener"/>
</ batch:|i steners>

</ bat ch: j ob>

<bean i d="sinpl eNotificatonListener" class="com myconpany. nyapp. Si npl eNoti fi cati onLi stener"/
>

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 109

Part IV. Spring for Apache
Hadoop sample applications

Document structure

The sample applications have been moved into their own repository so they can be developed

independently of the Spring for Apache Hadoop release cycle. They can be found on GitHub https://
github.com/spring-projects/spring-hadoop-samples/.

The wiki page for the Spring for Apache Hadoop project has more documentation for building and
running the examples and there is also some instructions in the README file of each example.

https://github.com/spring-projects/spring-hadoop-samples/
https://github.com/spring-projects/spring-hadoop-samples/
https://github.com/spring-projects/spring-hadoop/wiki/Sample-Projects

Part V. Other Resources

In addition to this reference documentation, there are a number of other resources that may help you
learn how to use Hadoop and Spring framework. These additional, third-party resources are enumerated
in this section.

Spring for Apache Hadoop

14. Useful Links

Spring for Apache Hadoop - Home Page

» Spring Data - Home Page

Spring Data Book - Home Page

» Spring - Blog

Apache Hadoop - Home Page

Pivotal HD - Home Page

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 112

http://www.springframework.org/spring-data/hadoop
http://projects.spring.io/spring-data/
http://shop.oreilly.com/product/0636920024767.do
http://blog.spring.io/
http://hadoop.apache.org/
http://www.gopivotal.com/big-data/pivotal-hd

Part VI. Appendices

Spring for Apache Hadoop

Appendix A. Using Spring for Apache
Hadoop with Amazon EMR

A popular option for creating on-demand Hadoop cluster is Amazon Elastic Map Reduce or Amazon
EMR service. The user can through the command-line, APl or a web Ul configure, start, stop and manage
a Hadoop cluster in the cloud without having to worry about the actual set-up or hardware resources used
by the cluster. However, as the setup is different then a locally available cluster, so does the interaction
between the application that want to use it and the target cluster. This section provides information on
how to setup Amazon EMR with Spring for Apache Hadoop so the changes between a using a local,
pseudo-distributed or owned cluster and EMR are minimal.

© Important
This chapter assumes the user is familiar with Amazon EMR and the cost associated with it and
its related services - we strongly recommend getting familiar with the official EMR documentation.

One of the big differences when using Amazon EMR versus a local cluster is the lack of access of the file
system server and the job tracker. This means submitting jobs or reading and writing to the file-system
isn't available out of the box - which is understandable for security reasons. If the cluster would be open,
if could be easily abused while charging its rightful owner. However, it is fairly straight-forward to get
access to both the file system and the job tracker so the deployment flow does not have to change.

Amazon EMR allows clusters to be created through the management console, through the API or the
command-line. This documentation will focus on the command-line but the setup is not limited to it - feel
free to adjust it according to your needs or preference. Make sure to properly setup the credentials so
that the S3 file-system can be properly accessed.

A.l Start up the cluster

© Important

Make sure you read the whole chapter before starting up the EMR cluster

A nice feature of Amazon EMR is starting a cluster for an indefinite period. That is rather then submitting
a job and creating the cluster until it finished, one can create a cluster (along side a job) but request to be
kept alive even if there is no work for it. This is easily done throughthe - - cr eat e - - al i ve parameters:

‘./el astic-mapreduce --create --alive

The output will be similar to this:

‘ Created job fl owJobFl ow D

One can verify the results in the console through the | i st command or through the web management
console. Depending on the cluster setup and the user account, the Hadoop cluster initialization should
be complete anywhere between 1 to 5 minutes. The cluster is ready once its state changes from
STARTI NG PROVI SI ONI NGto WAI TI NG

© Note

By default, each newly created cluster has a new public IP that is not typically reused. To simplify
the setup, one can use Amazon Elastic IP, that is a static, predefined IP, so that she knows

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 114

http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/pricing/
http://aws.amazon.com/documentation/elasticmapreduce/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/SignUp.html#emr-gsg-install-cli
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/SignUp.html#ConfigCredentials
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/Essentials.html#emr-gsg-creating-a-job-flow
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/using-instance-addressing.html

Spring for Apache Hadoop

before-hand the cluster address. Refer to this section inside the EMR documentation for more
information. As an alternative, one can use the EC2 API in combinatioon with the EMR API
to retrieve the private IP of address of the master node of her cluster or even programatically
configure and start the EMR cluster on demand without having to hard-code the private IPs.

However, to remotely access the cluster from outside (as oppose to just running a jar within the cluster),
one needs to tweak the cluster settings just a tiny bit - as mentioned below.

A.2 Open an SSH Tunnel as a SOCKS proxy

Due to security reasons, the EMR cluster is not exposed to the outside world and is bound only to
the machine internal IP. While you can open up the firewall to allow access (note that you also have
to do some port forwarding since again, Hadoop is bound to the cluster internal IP rather then all
available network cards), it is recommended to use a SSH tunnel instead. The SSH tunnel provides a
secure connection between your machine on the cluster preventing any snooping or man-in-the-middle
attacks. Further more it is quite easy to automate and be executed along side the cluster creation,
programmatically or through some script. The Amazon EMR docs have dedicated sections on SSH
Setup and Configuration and on opening a SSH Tunnel to the master node so please refer to them.
Make sure to setup the SSH tunnel as a SOCKS proxy, that is to redirect all calls to remote ports - this is
crucial when working with Hadoop (or other applications) that use a range of ports for communication.

A.3 Configuring Hadoop to use a SOCKS proxy

Once the tunnel or the SOCKS proxy is in place, one needs to configure Hadoop to use it. By
default, Hadoop makes connections directly to its target which is fine for regular use, but in this
case, we need to use the SOCKS proxy to pass through the firewall. One can do so through the
hadoop. rpc. socket . factory. cl ass. def aul t and hadoop. socks. server properties:

hadoop. r pc. socket . fact ory. cl ass. def aul t =or g. apache. hadoop. net . SocksSocket Fact ory
this configure assunes the SOCKS proxy is opened on |ocal port 6666
hadoop. socks. server =l ocal host : 6666

At this point, all Hadoop communication will go through the SOCKS proxy at localhost on port 6666.
The main advantage is that all the IPs, domain names, ports are resolved on the 'remote' side of the
proxy so one can just start using the remote cluster IPs. However, only the Hadoop client needs to use
the proxy - to avoid having the client configuration be read by the cluster nodes (which would mean
the nodes would try to use a SOCKS proxy on the remote side as well), make sure the master node
(and thus all its nodes) hadoop- si t e. xm marks the default network setting as final (see this blog
post for a detailed explanation):

<property>
<nane>hadoop. r pc. socket . factory. cl ass. def aul t </ nane>
<val ue>or g. apache. hadoop. net . St andar dSocket Fact or y</ val ue>
<final >true</final >

</ property>

Simply pass this configuration (and other options that you might have) to the master node using
a bootstrap action. One can find this file ready for usage, already deployed to Amazon S3 at s3://
dist.springframework.org/release/SHDP/emr-settings.xml. Simply pass the file to command-line used
for firing up the EMR cluster:

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 115

http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/environmentconfig_eip.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/API/Welcome.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/SignUp.html#emr-gsg-ssh-setup-config
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/SignUp.html#emr-gsg-ssh-setup-config
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/emr-ssh-tunnel.html
http://blog.cloudera.com/blog/2008/12/securing-a-hadoop-cluster-through-a-gateway/
http://blog.cloudera.com/blog/2008/12/securing-a-hadoop-cluster-through-a-gateway/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/Bootstrap.html
http://dist.springframework.org.s3.amazonaws.com/release/SHDP/emr-settings.xml
http://dist.springframework.org.s3.amazonaws.com/release/SHDP/emr-settings.xml

Spring for Apache Hadoop

.lelastic-mapreduce --create --alive --bootstrap-action s3://elasticmapreduce/ boot strap-
actions/ configure-hadoop --args "--site-config-file,s3://dist.springframework. org/rel ease/
SHDP/ ent - settings. xm "

© Note

For security reasons, we recommend copying the 'emr-settings.xml' file to one of your S3 buckets
and use that location instead.

A.4 Accessing the file-system

Amazon EMR offers Simple Storage Service, also known as S3 service, as means for durable read-
write storage for EMR. While the cluster is active, one can write additional data to HDFS but unless S3
is used, the data will be lost once the cluster shuts down. Note that when using an S3 location for the
first time, the proper access permissions needs to be setup. Accessing S3 is easier then the job tracker
- in fact the Hadoop distribution provides not one but two file-system implementations for S3:

Table A.1. Hadoop S3 File Systems
Name URI Prefix Access Method Description

S3 Native FS s3n:// S3 Native Native access to S3. The
recommended file-system as the
data is read/written in its native
format and can be used not just
by Hadoop but also other systems
without any translation. The down-
side is that it does not support
large files (5GB) out of the box
(though there is a work-around
through the multipart upload feature).

S3 Block FS s3:// Block Based The files are stored as blocks (similar
to the underlying structure in HDFS).

This is somewhat more efficient in

terms of renames and file sizes but

requires a dedicated bucket and is
not inter-operable with other S3 tools.

To access the data in S3 one can either use an HDFS file-system on top of it, which requires no extra
setup, or copy the data from S3 to the HDFS cluster using manual tools, distcp with S3, its dedicated
version s3distcp, Hadoop DistributedCache (which SHDP supports as well) or third-party tools such as
s3cmd.

For newbies and development we recommend accessing the S3 directly through the File-System
abstraction as in most cases, its performance is close to that of the data inside the native HDFS. When
dealing with data that is read multiple times, copying the data from S3 locally inside the cluster might
improve performance but we advice running some performance tests first.

A.5 Shutting down the cluster

Once the cluster is no longer needed for a longer period of time, one can shut it down fairly straight
forward:

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 116

http://aws.amazon.com/s3/
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/emr-s3-acls.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/FileSystemConfig.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/Config_Multipart.html#Config_Multipart.title
http://wiki.apache.org/hadoop/AmazonS3#Running_bulk_copies_in_and_out_of_S3
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/UsingEMR_s3distcp.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/DistributedCache.html
http://s3tools.org/s3cmd
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/CleanUp.html
http://docs.amazonwebservices.com/ElasticMapReduce/latest/GettingStartedGuide/CleanUp.html

Spring for Apache Hadoop

./ elastic-mapreduce --term nate JobFl ow D

Note that the EMR cluster is billed by the hour and since the time is rounded upwards, starting and
shutting down the cluster repeateadly might end up being more expensive then just keeping it alive.
Consult the documentation for more information.

A.6 Example configuration

To put it all together, to use Amazon EMR one can use the following work-flow with SHDP:

» Start an alive cluster using the bootstrap action to guarantees the cluster does NOT use a socks
proxy. Open a SSH tunnel, in SOCKS mode, to the EMR cluster.
Start the cluster for an indefinite period. Once the server is up, create an SSH tunnel,in SOCKS mode,
to the remote cluster. This allows the client to communicate directly with the remote nodes as if they
are part of the same network.This step does not have to be repeated unless the cluster is terminated
- one can (and should) submit multiple jobs to it.

» Configure SHDP

» Once the cluster is up and the SSH tunnel/SOCKS proxy is in place, point SHDP to the new
configuration. The example below shows how the configuration can look like:
hadoop-context.xml

<beans xm ns="http://ww. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="http://wwm. spri ngframewor k. or g/ schenma/ cont ext "
xm ns: hdp="htt p://ww. spri ngf ranmewor k. or g/ schena/ hadoop"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans http://
www. spri ngframewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. spri ngfranework. org/ schena/ cont ext http://ww. springfranework. org/schema/
cont ext/spring-cont ext . xsd
htt p: // ww. spri ngfranewor k. or g/ schena/ hadoop http://ww. spri ngfranewor k. or g/ schema/
hadoop/ spri ng- hadoop. xsd" >

<I-- property placehol der backed by hadoop. properties -->
<cont ext: property-pl acehol der | ocati on="hadoop. properties"/>

<I'-- Hadoop FileSystem using a pl acehol der and enr.properties -->
<hdp: configuration properties-location="enr.properties" file-systemuri="${hd.fs}" job-
tracker-uri="${hd.jt}/>

hadoop.properties

Amazon EMR

S3 bucket backing the HDFS S3 fs

hd. f s=s3n: // ny- wor ki ng- bucket /

job tracker pointing to the EMR internal |IP
hd. j t=10. 123. 123. 123: 9000

emr.properties

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 117

http://aws.amazon.com/elasticmapreduce/faqs/#billing-2

Spring for Apache Hadoop

Amazon EMR

Use a SOCKS proxy

hadoop. r pc. socket . factory. cl ass. def aul t =or g. apache. hadoop. net . SocksSocket Fact ory
hadoop. socks. server =l ocal host : 6666

S3 credentials

for s3:// wuri

fs.s3. ansAccessKey !l d=XXXXXXXXIXHXHXHXIXIXXHXXKXKXK

fs.s3. awsSecr et Access Key =X HIIIIKIKHIIHIIIIKHKIIIIXKHKIHXHKKK

for s3n:// wuri
fs.s3n. awsAccessKey!l d=XXXXXXIKKXXXXXX
fs.s3n. awsSecr et Access Key =XXXXIIKRKXIXHXIIAIIIIKIIAIIKIIKHKIIHIIIKHXIIAIIKXKXX

Spring Hadoop is now ready to talk to your Amazon EMR cluster. Try it out!

© Note

The inquisitive reader might wonder why the example above uses two properties file,
hadoop. properti es and enr. properti es instead of just one. While one file is enough,
the example tries to isolate the EMR configuration into a separate configuration (especially as
it contains security credentials).

» Shutdown the tunnel and the cluster

Once the jobs submitted are completed, unless new jobs are shortly scheduled, one can shutdown
the cluster. Just like the first step, this is optional. Again, make sure you understand the billing process
first.

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 118

Spring for Apache Hadoop

Appendix B. Using Spring for Apache
Hadoop with EC2/Apache Whirr

As mentioned above, those interested in using on-demand Hadoop clusters can use Amazon Elastic
Map Reduce (or Amazon EMR) service. An alternative to that, for those that want maximum control over
the cluster, is to use Amazon Elastic Compute Cloud or EC2. EC2 is in fact the service on top of which
Amazon EMR runs and that is, a resizable, configurable compute capacity in the cloud.

© Important

This chapter assumes the user is familiar with Amazon EC2 and the cost associated with it and
its related services - we strongly recommend getting familiar with the official EC2 documentation.

Just like Amazon EMR, using EC2 means the Hadoop cluster (or whatever service you run on it) runs
in the cloud and thus 'development’ access to it, is different then when running the service in local
network. There are various tips and tools out there that can handle the initial provisioning and configure
the access to the cluster. Such a solution is Apache Whirr which is a set of libraries for running cloud
services. Though it provides a Java API as well, one can easily configure, start and stop services from
the command-line.

B.1 Setting up the Hadoop cluster on EC2 with Apache Whirr

The Whirr documentation provides more detail on how to interact with the various cloud providers out-
there through Whirr. In case of EC2, one needs Java 6 (which is required by Apache Hadoop), an
account on EC2 and an SSH client (available out of the box on *nix platforms and freely downloadable
(such as PUTTY) on Windows). Since Whirr does most of the heavy lifting, one needs to tell Whirr
what Cloud provider and account is used, either by setting some environment properties or through the
~/.whirr/credentials file:

whi rr. provi der =aws- ec2
whi rr.identity=your-aws-key
whirr.credenti al =your - aws- secr et

Now instruct Whirr to configure a Hadoop cluster on EC2 - just add the following properties to a
configuration file (say hadoop. pr operti es):

whi rr. cl ust er - name=nyhadoopcl ust er

whirr.instance-tenpl at es=1 hadoop-j obtracker +hadoop- nanmenode, 1 hadoop- dat anode+hadoop-
tasktracker

whi rr. provi der =aws- ec2

whirr.private-key-file=${sys:user.honme}/.ssh/id_rsa

whirr. public-key-file=${sys: user.hone}/.ssh/id_rsa. pub

The configuration above assumes the SSH keys for your user have been already generated. Now start
your Hadoop cluster:

bi n/whirr |aunch-cluster --config hadoop. properties

As with Amazon EMR, one cannot correct to the Hadoop cluster from outside - however Whirr provides
out of the box the feature to create an SSH tunnel to create a SOCKS proxy (on port 6666). When

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 119

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/documentation/ec2/
http://whirr.apache.org/
http://whirr.apache.org/docs/0.8.1/quick-start-guide.html

Spring for Apache Hadoop

a cluster is created, Whirr creates a script to launch the cluster which may be found in ~/ . whi rr/
cl ust er - name. Run it as a follows (in a new terminal window):

~/ . whi rr/ nyhadoopcl ust er/ hadoop- pr oxy. sh

At this point, one can just the SOCKS proxy configuration from the Amazon EMR section to configure
the Hadoop client.

To destroy the cluster, one can use the Amazon EMR console or Whirr itself:

bi n/whirr destroy-cluster --config hadoop. properties

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 120

Spring for Apache Hadoop

Appendix C. Spring for Apache
Hadoop Schema

Spring for Apache Hadoop Schema

Spring for Apache Hadoop
2.0.3.RELEASE-hdp20 - Reference Documentation 121

Spring for Apache Hadoop

NY

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schenma xm ns="http://ww. spri ngfranework. or g/ schena/ hadoop"
xm ns: xsd="http: // ww. w3. or g/ 2001/ XM_Schema"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xm ns: beans="htt p: //wwm. spri ngf ranmewor k. or g/ schema/ beans"

xm ns: tool =" http://ww. spri ngfranmewor k. org/ schena/t ool "

tar get Nanespace="ht t p: // www. spri ngf ramewor k. or g/ schena/ hadoop"
el ement For nDef aul t =" qual i fi ed"

attri but eFor nDef aul t ="unqual i fi ed"

version="1.0.0">

<xsd: i nport nanespace="http://ww. spri ngfranmework. org/schema/ beans" />
<xsd: i nport nanmespace="htt p://ww. spri ngfranework. org/ schema/tool" />

<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA]

Defines the configuration elenments for Spring Data Hadoop
]]1></ xsd: docunent at i on>

</ xsd: annot at i on>

<l-- comon attributes shared by Job executors
NOT nmeant for extensibility - do NOT rely on this type as it might be renpved in the
future -->
<xsd: conpl exType nane="j obRunner Type" >
<xsd:attribute nane="id" type="xsd:| D' use="optional ">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Bean id.]]></xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attribute>
<l-- the job reference -->
<xsd: attribute name="job-ref">
<xsd: annot at i on>
<xsd: docurment ati on source="j ava: or g. apache. hadoop. mapr educe. Job" ><! [CDATA|
Hadoop Job. Miltiple nanmes can be specified using comma (,) as a separator.]]></
xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on ki nd="ref">
<t ool : expect ed-type type="org. apache. hadoop. mapr educe. Job" />
</tool : annot at i on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
</ xsd:attri bute>
<xsd:attribute name="wait-for-
conpl etion" type="xsd:string" use="optional" default="true">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Whet her to synchronously wait for the job(s) to finish (the default) or not.
]1></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attribute>
<xsd:attribute nane="verbose" type="xsd:string" use="optional" default="true"/>
<xsd:attribute name="kill-job-at-
shut down" type="xsd:string" use="optional" default="true">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Whet her the configured jobs should be '"killed when the application shuts down (default)
or not.
For |l ong-running or fire-and-forget jobs that |ive beyond the starting application, set
this to fal se.

Note that if '"wait-for-job' is true, this flag is considered to be true as otherw se the
application
cannot shut down (since it has to keep waiting for the job).
]1></ xsd: docunent ati on>
</ xsd: annot at i on>
</xsd:attribute>
<xsd:attribute nane="executor-ref" type="xsd:string" use="optional">

overd anmnnat at i o ANlS

	Spring for Apache Hadoop - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. Requirements
	2. Additional Resources

	Part II. Spring and Hadoop
	3. Hadoop Configuration, MapReduce, and Distributed Cache
	3.1 Using the Spring for Apache Hadoop Namespace
	3.2 Configuring Hadoop
	3.3 Creating a Hadoop Job
	Creating a Hadoop Streaming Job

	3.4 Running a Hadoop Job
	Using the Hadoop Job tasklet

	3.5 Running a Hadoop Tool
	Replacing Hadoop shell invocations with tool-runner
	Using the Hadoop Tool tasklet

	3.6 Running a Hadoop Jar
	Using the Hadoop Jar tasklet

	3.7 Configuring the Hadoop DistributedCache
	3.8 Map Reduce Generic Options

	4. Working with the Hadoop File System
	4.1 Configuring the file-system
	4.2 Using HDFS Resource Loader
	4.3 Scripting the Hadoop API
	Using scripts

	4.4 Scripting implicit variables
	Running scripts
	Using the Scripting tasklet

	4.5 File System Shell (FsShell)
	DistCp API

	5. Writing and reading data using the Hadoop File System
	5.1 Store Abstraction
	Writing Data
	File Naming
	File Rollover
	Partitioning
	DefaultPartitionStrategy
	Partition Path Expression
	Accessing Properties
	Custom Methods
	path
	Parameters
	Return Value

	dateFormat
	Parameters
	Return Value

	list
	Parameters
	Return Value

	range
	Parameters
	Return Value

	hash
	Parameters
	Return Value

	Creating a Custom Partition Strategy

	Writer Implementations

	Reading Data
	Input Splits
	Reader Implementations

	Using Codecs

	5.2 Persisting POJO datasets using Kite SDK
	Data Formats
	Using Avro
	Using Parquet

	Configuring the dataset support
	Writing datasets
	Reading datasets
	Partitioning datasets

	6. Working with HBase
	6.1 Data Access Object (DAO) Support

	7. Hive integration
	7.1 Starting a Hive Server
	7.2 Using the Hive Thrift Client
	7.3 Using the Hive JDBC Client
	7.4 Running a Hive script or query
	Using the Hive tasklet

	7.5 Interacting with the Hive API

	8. Pig support
	8.1 Running a Pig script
	Using the Pig tasklet

	8.2 Interacting with the Pig API

	9. Using the runner classes
	10. Security Support
	10.1 HDFS permissions
	10.2 User impersonation (Kerberos)

	11. Yarn Support
	11.1 Using the Spring for Apache Yarn Namespace
	11.2 Using the Spring for Apache Yarn JavaConfig
	11.3 Configuring Yarn
	11.4 Local Resources
	11.5 Container Environment
	11.6 Application Client
	11.7 Application Master
	11.8 Application Container
	11.9 Application Master Services
	Basic Concepts
	Using JSON
	Converters

	11.10 Application Master Service
	11.11 Application Master Service Client
	11.12 Using Spring Batch
	Batch Jobs
	Partitioning
	Configuring Master
	Configuring Container

	11.13 Using Spring Boot Application Model
	Auto Configuration
	Application Files
	Application Classpath
	Simple Executable Jar
	Simple Zip Archive

	Container Runners
	Custom Runner

	Resource Localizing
	Container as POJO
	Configuration Properties
	Controlling Applications
	Generic Usage
	Using Configuration Properties
	Using YarnPushApplication
	Using YarnSubmitApplication
	Using YarnInfoApplication
	Using YarnKillApplication

	12. Testing Support
	12.1 Testing MapReduce
	Mini Clusters for MapReduce
	Configuration
	Simplified Testing
	Wordcount Example

	12.2 Testing Yarn
	Mini Clusters for Yarn
	Configuration
	Simplified Testing
	Multi Context Example

	12.3 Testing Boot Based Applications

	Part III. Developing Spring for Apache Hadoop Applications
	13. Guidance and Examples
	13.1 Scheduling
	13.2 Batch Job Listeners

	Part IV. Spring for Apache Hadoop sample applications
	Part V. Other Resources
	14. Useful Links

	Part VI. Appendices
	Appendix A. Using Spring for Apache Hadoop with Amazon EMR
	A.1 Start up the cluster
	A.2 Open an SSH Tunnel as a SOCKS proxy
	A.3 Configuring Hadoop to use a SOCKS proxy
	A.4 Accessing the file-system
	A.5 Shutting down the cluster
	A.6 Example configuration

	Appendix B. Using Spring for Apache Hadoop with EC2/Apache Whirr
	B.1 Setting up the Hadoop cluster on EC2 with Apache Whirr

	Appendix C. Spring for Apache Hadoop Schema

