Spring HATEOAS - Reference
Documentation

Oliver Gierke, Greg Turnquist, Jay Bryant

Version 1.0.0.M1, 2019-03-05

Table of Contents

1. Preface
1.1. Migrating to Spring HATEOAS 1.0
1.1.1. The changes
Representation models
1.1.2. The migration script
2. Fundamentals
2.1. Links
2.2. URI templates
2.3. Link relations
2.3.1. IANA link relations
2.4. Representation models
2.4.1. Item resource representation model
2.4.2. Collection resource representation model
2.5. Affordances
3. Media types
3.1. HAL - Hypertext Application Language
3.1.1. Configuring link rendering
3.1.2. Using the CurieProvider API
3.2. HAL-FORMS
3.3. Collection+JSON
3.4. UBER - Uniform Basis for Exchanging Representations
3.5. Registering a custom media type
3.5.1. Custom media type configuration
3.5.2. Recommendations
4. Server-side support
4.1. Building links
Building Links that Point to Methods
4.2. Building links in Spring MVC
4.3. Building links in Spring WebFlux
4.4. Using the EntityLinks interface
4.5. Representation model assembler
4.6. Using the RelProvider API
5. Configuration
5.1. Using @EnableHypermediaSupport
6. Client-side Support
6.1. Traverson
6.1.1. EntityModel<T> vs. CollectionModel<T>

6.2. Using LinkDiscoverer Instances

0 N 3 o g1 U R WD DN

N DN DN N DN DN DN DN DNDNDDNDNDDNDNDN R = = = = s
© © 00 00 N J U1 b W W W N =R = O 0 00 0 U U b= DD N DN

This project provides some APIs to ease creating REST representations that
follow the HATEOAS principle when working with Spring and especially Spring
MVC. The core problem it tries to address is link creation and representation
assembly.

© 2012-2019 The original authors.

Copies of this document may be made for your own use and for distribution to
others, provided that you do not charge any fee for such copies and further
provided that each copy contains this Copyright Notice, whether distributed in print
or electronically.

NOTE

http://en.wikipedia.org/wiki/HATEOAS

Chapter 1. Preface

1.1. Migrating to Spring HATEOAS 1.0

For 1.0 we took the chance to re-evaluate some of the design and package structure choices we had
made for the 0.x branch. There had been an incredible amount of feedback on it and the major
version bump seemed to be the most natural place to refactor those.

1.1.1. The changes

The biggest changes in package structure were driven by the introduction of a hypermedia type
registration API to support additional media types in Spring HATEOAS. This lead to the clear
separation of client and server APIs (packages named respectively) as well as media type
implementations in the package mediatype.

The easiest way to get your code base upgraded to the new API is by using the migration script.
Before we jump to that, here are the changes at a quick glance.

Representation models

The ResourceSupport/Resource/Resources/PagedResources group of classes never really felt
appropriately named. After all, these types do not actually manifest resources but rather
representation models that can be enriched with hypermedia information and affordances. Here’s
how new names map to the old ones:

» ResourceSupport is now RepresentationModel

* Resource is now EntityModel

* Resources is now CollectionModel

* PagedResources is now PagedModel
Consequently, ResourceAssembler has been renamed to RepresentationModelAssembler and its
methods toResource(::*) and toResources(::*) have been renamed to tolModel(:::) and

toCollectionModel(:--) respectively. Also the name changes have been reflected in the classes
contained in TypeReferences.

* RepresentationModel.getlLinks() now exposes a Links instance (over a List<Link>) as that
exposes additional API to concatenate and merge different Links instances using various
strategies. Also it has been turned into a self-bound generic type to allow the methods that add
links to the instance return the instance itself.

* The LinkDiscoverer API has been moved to the client package.
* The LinkBuilder and EntityLinks APIs have been moved to the server package.

* ControllerLinkBuilder has been moved into server.mvc and deprecated to be replaced by
WebMvcLinkBuilder.

* VndError has been moved to the mediatype.vnderror package.

1.1.2. The migration script

You can find a script to run from your application root that will update all import statements and
static method references to Spring HATEOAS types that moved in our source code repository.
Simply download that, run it from your project root. By default it will inspect all Java source files
and replace the legacy Spring HATEOAS type references with the new ones.

Example 1. Sample application of the migration script

$./migrate-to-1.0.sh
Migrating Spring HATEOAS references to 1.0 for files : *.java

Adapting ./src/main/java/:

Done!

Note that the script will not necessarily be able to entirely fix all changes, but it should cover the
most important refactorings.

Now verify the changes made to the files in your favorite Git client and commit as appropriate. In
case you find method or type references unmigrated, please open a ticket in out issue tracker.

https://github.com/spring-projects/spring-hateoas/tree/master/etc

Chapter 2. Fundamentals

This section covers the basics of Spring HATEOAS and its fundamental domain abstractions.

2.1. Links

The fundamental idea of hypermedia is to enrich the representation of a resource with hypermedia
elements. The simplest form of that are links. They indicate a client that it can navigate to a certain
resource. The semantics of a related resource are defined in a so called link relation. You might
have seen this in the header of an HTML file already:

Example 2. A link in an HTML document

<link href="theme.css" rel="stylesheet" type="text/css" />

As you can see the link points to a resource theme.css and indicates that it is a style sheet. Links
often carry additional information, like the media type that the resource pointed to will return.
However, the fundamental building blocks of a link are its reference and relation.

Spring HATEOAS let’s you work with links through its immutable Link value type. Its constructor
take both an hypertext reference and a link relation, the latter being defaulted to the IANA link
relation self. Read more on the latter in Link relations.

Example 3. Using links

Link link = new Link("/something");
assertThat(link.getHref()).isEqualTo("/something");
assertThat(link.getRel()).isEqualTo(IanalinkRelations.SELF);

link = new Link("/something", "my-rel");
assertThat(link.getHref()).isEqualTo("/something");
assertThat(link.getRel()).isEqualTo(LinkRelation.of("my-rel"));

Link exposes other attributes as defined in RFC-5988. You can set them by calling the corresponding
wither method on a Link instance.

Find more information on how to create links pointing to Spring MVC and Spring WebFlux
controllers in Building links.

2.2. URI templates

For a Spring HATEOAS Link, the hypertext reference can not only be a URI, but also a URI template
according to RFC-6570. A URI template contains so called template variables and allows expansion
of these parameters. This allows clients to turn parameterized templates into URIs without having

https://tools.ietf.org/html/rfc5988
https://tools.ietf.org/html/rfc6570

to know about the structure of the final URI, it only needs to know about the names or the
variables.

Example 4. Using links with templated URIs

Link link = new Link("/{segment}/something{?parameter}");
assertThat(link.isTemplated()).isTrue(); @
assertThat(link.getVariableNames()).contains("segment”, "parameter"); @

Map<String, Object> values = new HashMap<>();
values.put("segment", "path");
values.put("parameter", 42);

assertThat(link.expand(values).getHref()) ®
.isEqualTo("/path/something?parameter=42");

@ The Link instance indicates that is templated, i.e. it contains a URI template.
@ It exposes the parameters contained in the template.

® It allows expansion of the parameters.

URI templates can be constructed manually and template variables added later on.

Example 5. Working with URI templates

UriTemplate template = new UriTemplate("/{segment}/something")
.with(new TemplateVariable("parameter", VariableType.REQUEST_PARAM);

assertThat(template.toString()).isEqualTo("/{segment}/something{?parameter}");

2.3. Link relations

To indicate the relationship of target resource to the current one so called link relations are used.
Spring HATEOAS provides a LinkRelation type to easily create String-based instances of it.

2.3.1. IANA link relations

The Internet Assigned Numbers Authority contains a set of predefined link relations. They can be
referred to via IanalinkRelations.

https://www.iana.org/assignments/link-relations/link-relations.xhtml

Example 6. Using IANA link relations

Link 1ink = new Link("/some-resource"), IanalinkRelations.NEXT);

assertThat(link.getRel()).isEqualTo(LinkRelation.of("next"));
assertThat(IanalLinkRelation.isIanaRel(link.getRel())).isTrue();

2.4. Representation models

To easily create hypermedia enriched representations, Spring HATEOAS provides a set of classes
with RepresentationModel at their root. It’s basically a container for a collection of Links and has
convenient methods to add those to the model. The models can later be rendered into various
media type formats that will define how the hypermedia elements look in the representation. For
more information on this, have a look at Media types

Example 7. The RepresentationModel class hierarchy

class RepresentationModel
class EntityModel

class CollectionModel
class PagedModel

EntityModel -|> RepresentationModel
CollectionModel -|> RepresentationModel
PagedModel -|> CollectionModel

The default way to work with a RepresentationModel is to create a subclass of it to contain all the
properties the representation is supposed to contain, create instances of that class, populate the
properties and enrich it with links.

Example 8. A sample representation model type

class PersonModel extends RepresentationModel<PersonModel> {

String firstname, lastname;

}

The generic self-typing is necessary to let RepresentationModel.add(:+) return instances of itself. The
model type can now be used like this:

Example 9. Using the person representation model

PersonModel model = new PersonModel();
model.firstname = "Dave";

model.lastname = "Matthews";

model.add(new Link("http://myhost/people/42"));

If you returned such an instance from a Spring MVC or WebFlux controller and the client sent an
Accept header set to application/hal+json, the response would look as follows:

Example 10. The HAL representation generated for the person representation model

{
" links" : {
"self" : {
"href" : "http://myhost/people/42"
}
b
"firstname" : "Dave",
"lastname" : "Matthews"
}

2.4.1. Item resource representation model

For a resource that’s backed by a singular object or concept, a convenience EntityModel type exists.
Instead of creating a custom model type for each concept, you can just reuse an already existing
type and wrap instances of it into the EntityModel.

Example 11. Using EntityModel to wrap existing objects

Person person = new Person("Dave", "Matthews");
EntityModel<Person> model = new EntityModel<>(person);

2.4.2. Collection resource representation model

For resources that a conceptually collections, a CollectionModel is available. Its elements can either
be simple objects or RepresentationModel instances in turn.

Example 12. Using EntityModel to wrap existing objects

Collection<Person> people = Collections.singleton(new Person("Dave", "Matthews"));
CollectionModel<Person> model = new CollectionModel<>(people);

2.5. Affordances

The affordances of the environment are what it offers ... what it provides or
furnishes, either for good or ill. The verb 'to afford' is found in the
dictionary, but the noun 'affordance’ is not. I have made it up.

— James J. Gibson, The Ecological Approach to Visual Perception (page 126)

REST-based resources provide not just data but controls. The last ingredient to form a flexible
service are detailed affordances on how to use the various controls.

Because affordances are associated with links, Spring HATEOAS provides an API to attach as many
related methods as needed to a link. The following code shows how to take a self link and associate
two more affordances:

Example 13. Connecting affordances to GET /employees/{id}

@GetMapping("/employees/{id}")
public EntityModel<Employee> findOne(@PathVariable Integer id) {

(lass<EmployeeController> controllerClass = EmployeeController.class;

// Start the affordance with the "self" link, i.e. this method.
Link findOneLink = 1linkTo(methodOn(controllerClass).findOne(id)).withSelfRel();
®

// Return the affordance + a link back to the entire collection resource.
return new EntityModel<>(EMPLOYEES.get(id), //
findOneLink //
.andAffordance(afford(methodOn(controllerClass).updateEmployee(null, id

) @
.andAffordance(afford(methodOn(controllerClass).partiallyUpdateEmployee
(null, id)))); ®
}
@ Create the self link.
@ Associate the updateEmployee method with the self link.
® Associate the partiallyUpdateEmployee method with the self link.

Using .andAffordance(afford(::-)), you can use the controller’s methods to connect a PUT and a
PATCH operation to a GET operation.

Imagine that the related methods afforded above looking like this:
Example 14. updateEmpoyee method that responds to PUT /employees/{id}
@PutMapping("/employees/{id}")

public ResponseEntity<?> updateEmployee(//
@RequestBody EntityModel<Employee> employee, @PathVariable Integer id)

Example 15. partiallyUpdateEmployee method that responds to PATCH /employees/{id}

@PatchMapping("/employees/{id}")
public ResponseEntity<?> partiallyUpdateEmployee(//
@RequestBody EntityModel<Employee> employee, @PathVariable Integer id)

There are many media types that support rendering affordances. Unfortunately, HAL isn’t one of
them.

A HAL document for GET /employees/{id} would look like this:

Example 16. HAL document with no affordances

{
"firstname" : "Frodo",
"lastname" : "Baggins",
“role" : "ring bearer",
"_links" : {
"self" : {
"href" : "http://localhost:8080/employees/1"
}
}
}

HAL supports providing links, but nothing else. While powerful, it doesn’t let you show clients what
inputs are required by its various operations. Nor does it show what HTTP methods are supported.

However, HAL-FORMS (application/prs.hal-forms+json), is a backwards compatible extension of
HAL s that adds _templates. This affordance-aware media type can fill in what’s missing.

The same resource above will render the following HAL-FORMS document:

Example 17. HAL-FORMS document with affordances

Unresolved directive in fundamentals.adoc - include::../../../src/docs/resources/
org/springframework/hateoas/docs/mediatype/hal/forms/hal-forms-sample-with-notes.
json[]

@ The _templates attribute provided by HAL-FORMS with affordance-based information.
@ The updateEmployee method’s @PutMapping annotation is translated to put.

® The method’s @RequestBody input type is used to find domain properties.

@ For POST and PUT, all attributes are required.

® The second affordance is named after the partiallyUpdateEmployee method.

® @PatchMapping is translated into patch.

@ For PATCH, attributes are not required.

This rich document, consumable by any HAL-FORMS aware client includes enough extra details for
full interaction with the resource.

In fact, this type of document makes it easy to write custom client-side code to generate an HTML
form:

10

https://rwcbook.github.io/hal-forms/

<form method="put" action="http://localhost:8080/employees/1">
<input type="text" id="firstName" name="firstName"/>
<input type="text" id="lastName" name="lastName" />
<input type="text" id="role" name="role" />
<input type="submit" value="Submit" />
</form>

Letting hypermedia drive web forms for users reduces the need for the client to know about the
domain.

By trading in domain knowledge and instead adding protocol support for HAL-FORMS, clients can
become flexible and receptive to server-side changes. No need to update your client every time a
domain change is made on the server.

HAL-FORMS only supports affordances against the self link, but other

IMPORTANT affordance-aware media types may not have the same restriction. In general,
don’t define affordances based on one particular media type.

11

Chapter 3. Media types

3.1. HAL - Hypertext Application Language

JSON Hypertext Application Language or HAL is one of the simplest and most widely adopted
hypermedia media types adopted when not discussing specific web stacks.

It was the first spec-based media type adopted by Spring HATEAOS.

3.1.1. Configuring link rendering

In HAL, the _links entry is a JSON object. The property names are link relations and each value is
either a link object or an array of link objects.

For a given link relation that has two or more links, the spec is clear on representation:

Example 18. HAL document with two links associated with one relation

Unresolved directive in mediatypes.adoc - include::../../../src/docs/resources/or
g/springframework/hateoas/docs/mediatype/hal/hal-multiple-entry-link-relation.jso
n[]

But if there is only one link for a given relation, the spec is ambiguous. You could render that as
either a single object or as 1-item array.

By default, Spring HATEOAS uses the most terse approach and renders a single-link relation like
this:

Example 19. HAL document with single link rendered as an object

Unresolved directive in mediatypes.adoc - include::../../../src/docs/resources/or
g/springframework/hateoas/docs/mediatype/hal/hal-single-entry-link-relation-objec
t.json[]

Some users prefer to not switch between arrays and objects when consuming HAL. They would
prefer this type of rendering:

Example 20. HAL with single link rendered as an array

Unresolved directive in mediatypes.adoc - include::../../../src/docs/resources/or
g/springframework/hateoas/docs/mediatype/hal/hal-single-entry-link-relation-array

.json[]

12

https://tools.ietf.org/html/draft-kelly-json-hal-08
https://tools.ietf.org/html/draft-kelly-json-hal-07#section-4.1.1

If you wish to customize this policy, all you have to do is inject a HalConfiguration bean into your
application configuration. There are multiple choices.

Example 21. Global HAL single-link rendering policy

public HalConfiguration globalPolicy() {
return new HalConfiguration() //
.withRenderSingleLinks(RenderSinglelLinks.AS_ARRAY); @®

@ Override Spring HATEOAS’s default by rendering ALL single-link relations as arrays.
If you prefer to only override some particular link relations, you can create a HalConfiguration bean
like this:

Example 22. Link relation-based HAL single-link rendering policy

public HalConfiguration linkRelationBasedPolicy() {
return new HalConfiguration() //
.withRenderSingleLinksFor(//
IanalinkRelations.ITEM, RenderSinglelinks.AS_ARRAY) @
.withRenderSingleLinksFor(//
LinkRelation.of("prev"), RenderSinglelinks.AS_SINGLE); @

@ Always render item link relations as an array.

@ Render prev link relations as an object when there is only one link.

If neither of these match your needs, you can use an Ant-style path patterns:

Example 23. Pattern-based HAL single-link rendering policy

public HalConfiguration patternBasedPolicy() {
return new HalConfiguration() //
.withRenderSingleLinksFor(//
"http*", RenderSinglelLinks.AS_ARRAY); @

@ Render all link relations that start with http as an array.

NOTE The pattern-based approach uses Spring’s AntPathMatcher.

13

All of these HalConfiguration withers can be combined to form one comprehensive policy. Be sure to
test your API extensively to avoid surprises.

3.1.2. Using the CurieProvider API

The Web Linking RFC describes registered and extension link relation types. Registered rels are
well-known strings registered with the IANA registry of link relation types. Extension rel URIs can
be used by applications that do not wish to register a relation type. Each one is a URI that uniquely
identifies the relation type. The rel URI can be serialized as a compact URI or Curie. For example, a
curie of ex:persons stands for the link relation type example.com/rels/persons if ex is defined as
example.com/rels/{rel}. If curies are used, the base URI must be present in the response scope.

The rel values created by the default RelProvider are extension relation types and, as a result, must
be URIs, which can cause a lot of overhead. The CurieProvider API takes care of that: It lets you
define a base URI as a URI template and a prefix that stands for that base URL If a CurieProvider is
present, the RelProvider prepends all rel values with the curie prefix. Furthermore a curies link is
automatically added to the HAL resource.

The following configuration defines a default curie provider:

(type= {HypermediaType.HAL})
public class Config {

public CurieProvider curieProvider() {
return new DefaultCurieProvider("ex", new UriTemplate(
"http://www.example.com/rels/{rel}"));
}
}

Note that now the ex: prefix automatically appears before all rel values that are not registered with
IANA, as in ex:orders. Clients can use the curies link to resolve a curie to its full form. The following
example shows how to do so:

Unresolved directive in mediatypes.adoc - include::../../../src/docs/resources/or
g/springframework/hateoas/docs/mediatype/hal/hal-with-curies.json[]

Since the purpose of the CurieProvider API is to allow for automatic curie creation, you can define
only one CurieProvider bean per application scope.

14

http://tools.ietf.org/html/rfc5988=section-4
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.w3.org/TR/curie
http://example.com/rels/persons
http://example.com/rels/persons
http://example.com/rels/persons
http://example.com/rels/persons
http://example.com/rels/persons
http://example.com/rels/{rel}
http://example.com/rels/{rel}
http://example.com/rels/{rel}
http://example.com/rels/{rel}
http://example.com/rels/{rel}

3.2. HAL-FORMS

HAL-FORMS is designed to add runtime FORM support to the HAL media type.

HAL-FORMS "looks like HAL." However, it is important to keep in mind that
HAL-FORMS is not the same as HAL — the two should not be thought of as
interchangeable in any way.

— Mike Amundsen, HAL-FORMS spec

To enable this media type, put the following configuration in your code:

Example 24. HAL-FORMS enabled application

(type = HypermediaType.HAL_FORMS)
public class HalFormsApplication {

}

Anytime a client supplies an Accept header with application/prs.hal-forms+json, you can expect
something like this:

Example 25. HAL-FORMS sample document

Unresolved directive in mediatypes.adoc - include::../../../src/docs/resources/or
g/springframework/hateoas/docs/mediatype/hal/forms/hal-forms-sample.jsonl]

Checkout the HAL-FORMS spec to understand the details of the _templates attribute. Read about
the Affordances API to augment your controllers with this extra metadata.

As for single-item (EntityModel) and aggregate root collections (CollectionModel), Spring HATEOAS
renders them identically to HAL documents.

3.3. Collection+JSON

Collection+]SON is a JSON spec registered with IANA-approved media type
application/vnd.collection+json.

Collection+]SON 1is a JSON-based read/write hypermedia-type designed to
support management and querying of simple collections.

— Mike Amundsen, Collection+JSON spec

Collection+]SON provides a uniform way to represent both single item resources as well as

15

https://rwcbook.github.io/hal-forms/
https://rwcbook.github.io/hal-forms/
http://amundsen.com/media-types/collection/format/
http://amundsen.com/media-types/collection/

collections.
To enable this media type, put the following configuration in your code:

Example 26. Collection+]SON enabled application

(type = HypermediaType.COLLECTION_JSON)
public class Collection]sonApplication {

}

This configuration will make your application respond to requests that have an Accept header of
application/vnd.collection+json as shown below.

The following example from the spec shows a single item:

Example 27. Collection+JSON single item example

Unresolved directive in mediatypes.adoc - include::../../../src/docs/resources/or
g/springframework/hateoas/docs/mediatype/collectionjson/spec-part3.json[]

@ The self link is stored in the document’s href attribute.
@ The document’s top 1inks section contains collection-level links (minus the self link).

® The items section contains a collection of data. Since this is a single-item document, it only
has one entry.

@ The data section contains actual content. It's made up of properties.

® The item’s individual 1inks.

The previous fragment was lifted from the spec. When Spring HATEOAS
renders an EntityModel, it will:

e Put the self link into both the document’s href attribute and the item-
IMPORTANT level href attribute.

* Put the rest of the model’s links into both the top-level links as well as
the item-level 1inks.

» Extract the properties from the EntityModel and turn them into

When rendering a collection of resources, the document is almost the same, except there will be
multiple entries inside the items JSON array, one for each entry.

Spring HATEOAS more specifically will:

* Put the entire collection’s self link into the top-level href attribute.

16

* The CollectionModel links (minus self) will be put into the top-level links.

* Each item-level href will contain the corresponding self link for each entry from the
CollectionModel.content collection.

» Each item-level links will contain all other links for each entry from CollectionModel.content.

3.4. UBER - Uniform Basis for Exchanging
Representations

UBER is an experimental JSON spec

The UBER document format is a minimal read/write hypermedia type
designed to support simple state transfers and ad-hoc hypermedia-based
transitions.

— Mike Amundsen, UBER spec

UBER provides a uniform way to represent both single item resources as well as collections.
To enable this media type, put the following configuration in your code:

Example 28. UBER+JSON enabled application

(type = HypermediaType.UBER)
public class UberApplication {

}

This configuration will make your application respond to requests using the Accept header
application/vnd.amundsen-uber+json as show below:

Example 29. UBER sample document

Unresolved directive in mediatypes.adoc - include::../../../src/docs/resources/or
g/springframework/hateoas/docs/mediatype/uber/uber-sample.json|]

This media type is still under development as is the spec itself. Feel free to open a ticket if you run
into issues using it.

UBER media type is not associated in any way with Uber Technologies Inc., the

NOTE . .
ride sharing company.

17

http://uberhypermedia.org/
https://github.com/spring-projects/spring-hateoas/issues

3.5. Registering a custom media type

Spring HATEOAS allows to integrate support for custom media types through a set of SPIs, that third
parties can implement. The building blocks of an such an implementations are:

1. Some form of Jackson ObjectMapper customization. In its most simple case that’s a Jackson
Module implementation.

2. A LinkDiscoverer implementation so that the client side support is able to detect links in
representations generated.

3. Some configuration infrastructure that will allow Spring HATEOAS to find the custom
implementation and pick up its configuration.

3.5.1. Custom media type configuration

Custom media type implementations are picked up through Spring’s SpringFactories mechanism,
similar to the Java ServicelLoader API. Each media type implementation needs to ship with a
spring.factories in META-INF containing an implementation class entry for the
org.springframework.hateoas.config.MediaTypeConfigurationProvider key:

Example 30. An example MediaTypeConfigurationProvider declaration

org.springframework.hateoas.config.MediaTypeConfigurationProvider=\
com.acme.mymediatype.MyMediaTypeConfigurationProvider

That implementation class could then look as follows:

18

Example 31. An example MediaTypeConfigurationProvider implementation in META-INF/spring.factories

class MyMediaTypeConfigurationProvider
implements MediaTypeConfigurationProvider {

public Class<? extends HypermediaMappingInformation> getConfiguration() {
return MyMediaTypeConfiguration.class; @®
}

public boolean supportsAny(Collection<MediaType> mediaTypes) {
return mediaTypes.contains(MediaTypes.HAL_JSON); @
}
}

The configuration class needs to have a default constructor and expose two methods:

® A method returning a Spring configuration class that will be included in the application
bootstrap when Spring HATEOAS is activated (either implicitly via Spring Boot auto-
configuration or via @EnableHypermediaSupport).

@ A callback method that will get the application selected media types to activate passed. This
allows the media type implementation to control, when it it will be activated.

The configuration class has to implement HypermediaMappingInformation. It could look as simple as
this:

19

class MyMediaTypeConfiguration implements HypermediaMappingInformation {

public List<MediaType> getMediaTypes() {
return MediaType.parse("application/vnd-acme-media-type") @

}

public Module getJacksonModule() {
return new Jackson2MediaTypeModule(); @
}

MyLinkDiscoverer myLinkDiscoverer() {
return new MyLinkDiscoverer(); ®
}
}

@ The configuration class returns the media type it wants to get Spring MVC / Spring WebFlux
support set up.

@ It overrides getJacksonModule() to provide custom serializers to create the media type
specific representations.

® It also declares a custom LinkDiscoverer implementation for client side support.

The Jackson module usually declares Serializer and Deserializer implementations for the
representation model types RepresentationModel, EntityModel, CollectionModel and PagedModel. In
case you need further customization of the Jackson ObjectMapper (like a custom
HandlerInstantiator), you can alternatively override configureObjectMapper(::-).

3.5.2. Recommendations

The preferred way to implement media type representations is by providing a type hierarchy that
matches the expected format and can be serialized by Jackson as is. In the Serializer and
Deserializer implementations registered for RepresentationModel, convert the instances into the
media type specific model types and then lookup the Jackson serializer for those.

The media types supported by default use the same configuration mechanism as third party
implementations would. So it’s worth studying the implementations in the mediatype package.

20

https://github.com/spring-projects/spring-hateoas/tree/master/src/main/java/org/springframework/hateoas/mediatype
https://github.com/spring-projects/spring-hateoas/tree/master/src/main/java/org/springframework/hateoas/mediatype
https://github.com/spring-projects/spring-hateoas/tree/master/src/main/java/org/springframework/hateoas/mediatype

Chapter 4. Server-side support

4.1. Building links

Now we have the domain vocabulary in place, but the main challenge remains: how to create the
actual URIs to be wrapped into Link instances in a less fragile way. Right now, we would have to
duplicate URI strings all over the place. Doing so is brittle and unmaintainable.

Assume you have your Spring MVC controllers implemented as follows:

class PersonController {

(Il/peoplell)
HttpEntity<PersonModel> showAll() { --- }

(value = "/{person}", method = RequestMethod.GET)
HttpEntity<PersonModel> show(Long person) { -+ }
+

We see two conventions here. The first is a collection resource that is exposed through @GetMapping
annotation of the controller method, with individual elements of that collection exposed as direct
sub resources. The collection resource might be exposed at a simple URI (as just shown) or more
complex ones (such as /people/{id}/addresses). Suppose you would like to link to the collection
resource of all people. Following the approach from up above would cause two problems:

* To create an absolute URI, you would need to look up the protocol, hostname, port, servlet base,
and other values. This is cumbersome and requires ugly manual string concatenation code.

* You probably do not want to concatenate the /people on top of your base URI, because you
would then have to maintain the information in multiple places. If you change the mapping,
you then have to change all the clients pointing to it.

Spring HATEOAS now provides a WebMvcLinkBuilder that lets you create links by pointing to
controller classes. The following example shows how to do so:

import static org.sfw.hateoas.server.mvc.WebMvcLinkBuilder.*;
Link link = linkTo(PersonController.class).withRel("people");

assertThat(link.getRel()).isEqualTo(LinkRelation.of("people"));
assertThat(link.getHref()).endsWith("/people");

The WebMvcLinkBuilder uses Spring’s ServletUriComponentsBuilder under the hood to obtain the basic

21

URI information from the current request. Assuming your application runs at localhost:8080/your-
app, this is exactly the URI on top of which you are constructing additional parts. The builder now
inspects the given controller class for its root mapping and, thus, ends up with localhost:8080/your-
app/people. You can also build more nested links as well. The following example shows how to do
so:

Person person = new Person(1L, "Dave", "Matthews");

// /person / 1

Link link = TlinkTo(PersonController.class).slash(person.getId()).withSelfRel();
assertThat(link.getRel(), is(IanalinkRelation.SELF.value()));
assertThat(link.getHref(), endsWith("/people/1"));

The builder also allows creating URI instances to build up (for example, response header values):

HttpHeaders headers = new HttpHeaders();
headers.setlLocation(linkTo(PersonController.class).slash(person).toUri());

return new ResponseEntity<PersonModel>(headers, HttpStatus.CREATED);

Building Links that Point to Methods

As of version 0.4, you can even build links that point to methods or create dummy controller
method invocations. The first approach is to hand a Method instance to the WebMvcLinkBuilder. The
following example shows how to do so:

Method method = PersonController.class.getMethod("show", Long.class);
Link 1link = linkTo(method, 2L).withSelfRel();

assertThat(link.getHref()).endsWith("/people/2"));

This is still a bit dissatisfying, as we have to first get a Method instance, which throws an exception
and is generally quite cumbersome. At least we do not repeat the mapping. An even better
approach is to have a dummy method invocation of the target method on a controller proxy, which
we can create byi using the methodOn(--) helper. The following example shows how to do so:

Link link = 1inkTo(methodOn(PersonController.class).show(2L)).withSelfRel();

assertThat(link.getHref()).endsWith("/people/2");

22

http://localhost:8080/your-app
http://localhost:8080/your-app
http://localhost:8080/your-app
http://localhost:8080/your-app/people
http://localhost:8080/your-app/people
http://localhost:8080/your-app/people
http://localhost:8080/your-app/people
http://localhost:8080/your-app/people
http://localhost:8080/your-app/people

methodOn(:++) creates a proxy of the controller class that records the method invocation and exposes
it in a proxy created for the return type of the method. This allows the fluent expression of the
method for which we want to obtain the mapping. However, there are a few constraints on the
methods that can be obtained byusing this technique:

* The return type has to be capable of proxying, as we need to expose the method invocation on
it.

* The parameters handed into the methods are generally neglected (except the ones referred to
through @PathVariable, because they make up the URI).

4.2. Building links in Spring MVC

4.3. Building links in Spring WebFlux

TODO

4.4. Using the EntitylLinks interface

So far, we have created links by pointing to the web-framework implementations (that is, the
Spring MVC controllers) and inspected the mapping. In many cases, these classes essentially read
and write representations backed by a model class.

The EntityLinks interface now exposes an API to look up a Link or LinkBuilder based on the model
types. The methods essentially return links that point either to the collection resource (such as
/people) or to a single resource (such as /people/1). The following example shows how to use
EntityLinks:

EntityLinks links = -;
LinkBuilder builder = links.linkFor(Customer.class);
Link 1link = 1links.linkToItemResource(Customer.class, 1L);

EntityLinks is available for dependency injection by activating either @EnableHypermediaSupprt or
@EnableEntityLinks in your Spring MVC configuration. Activating this functionality causes all the
Spring MVC controllers available in the current ApplicationContext to be inspected for the
@ExposesResourceFor(:-+) annotation. The annotation exposes which model type the controller
manages. Beyond that, we assume that you follow the URI mapping convention of a class level base
mapping and assume that you have controller methods handling an appended /{id}. The following
example shows an implementation of an EntityLinks-capable controller:

23

(Order.class)
class OrderController {

("/orders")
ResponseEntity orders(:++) { -+ }

(||/{_id}")
ResponseEntity order()y e gy e
}

The controller exposes that it manages Order instances and exposes handler methods that are
mapped to our convention. When youy enable EntitylLinks through @EnableEntitylLinks in your
Spring MVC configuration, you can create links to the controller, as follows:

class PaymentController {
private final EntityLinks entityLinks;
PaymentController(EntityLinks entityLinks) {
this.entitylinks = entityLinks;
}

()
ResponseEntity payment(Long orderId) {

Link Tink = entityLinks.linkToItemResource(Order.class, orderld);

You can then refer to the Order instances without referring to the OrderController.

4.5. Representation model assembler

As the mapping from an entity to a representation model must be used in multiple places, it makes
sense to create a dedicated class responsible for doing so. The conversion contains very custom
steps but also a few boilerplate steps:

1. Instantiation of the model class

2. Adding a link with a rel of self pointing to the resource that gets rendered.

Spring HATEOAS now provides a RepresentationModelAssemblerSupport base class that helps reduce

24

the amount of code you need to write. The following example shows how to use it:

class PersonModelAssembler extends RepresentationModelAssemblerSupport<Person,
PersonModel> {

public PersonModelAssembler() {
super (PersonController.class, PersonModel.class);

}

public PersonModel toModel(Person person) {

PersonModel resource = createResource(person);
// +++ do further mapping
return resource;

}
}

Setting the class up as we did in the preceding example gives you the following benefits:

» There are a handful of createModelWithId(:-*) methods that let you create an instance of the
resource and have a Link with a rel of self added to it. The href of that link is determined by the
configured controller’s request mapping plus the ID of the entity (for example, /people/1).

* The resource type gets instantiated by reflection and expects a no-arg constructor. If you want
to use a dedicated constructor or avoid the reflection performance overhead, you can override
instantiateModel(:-+).

You can then use the assembler to either assemble a RepresentationModel or a CollectionModel. The
following example creates a CollectionModel of PersonModel instances:

Person person = new Person(::);
Iterable<Person> people = Collections.singletonList(person);

PersonModelAssembler assembler = new PersonModelAssembler();
PersonModel model = assembler.toModel(person);
CollectionModel<PersonModel> model = assembler.toCollectionModel(people);

4.6. Using the RelProvider API

When building links, you usually need to determine the relation type to be used for the link. In
most cases, the relation type is directly associated with a (domain) type. We encapsulate the
detailed algorithm to look up the relation types behind a RelProvider API that lets you determine
the relation types for single and collection resources. The algorithm for looking up the relation type
follows:

25

If the type is annotated with @Relation, we use the values configured in the annotation.

If not, we default to the uncapitalized simple class name plus an appended List for the
collection rel.

If the EVO inflector JAR is in the classpath, we use the plural of the single resource rel provided
by the pluralizing algorithm.

@Controller classes annotated with @ExposesResourcefFor (see [fundamentals.obtaining-
links.entity-links] for details) transparently look up the relation types for the type configured in
the annotation, so that you can use relProvider.getItemResourceRelFor(MyController.class) and
get the relation type of the domain type exposed.

A RelProvider is automatically exposed as a Spring bean when you use @EnableHypermediaSupport.
You can plug in custom providers by implementing the interface and exposing them as Spring
beans in turn.

26

https://github.com/atteo/evo-inflector

Chapter 5. Configuration

This section describes how to configure Spring HATEOAS.

5.1. Using @EnableHypermediaSupport

To let the RepresentationModel subtypes be rendered according to the specification of various
hypermedia representations types, you can activate support for a particular hypermedia
representation format through @EnableHypermediaSupport. The annotation takes a HypermediaType
enumeration as its argument. Currently, we support HAL as well as a default rendering. Using the
annotation triggers the following:

* It registers necessary Jackson modules to render EntityModel and CollectionModel in the
hypermedia specific format.

» If JSONPath is on the classpath, it automatically registers a LinkDiscoverer instance to look up
links by their rel in plain JSON representations (see Using LinkDiscoverer Instances).

* By default, it enables @EnableEntitylLinks (see [fundamentals.obtaining-links.entity-links]) and
automatically picks wup EntityLinks implementations and bundles them into a
DelegatingEntityLinks instance that you can autowire.

* It automatically picks up all RelProvider implementations in the ApplicationContext and bundles
them into a DelegatingRelProvider that you can autowire. It registers providers to consider
@Relation on domain types as well as Spring MVC controllers. If the EVO inflector is on the
classpath, collection rel values are derived by using the pluralizing algorithm implemented in
the library (see [spis.rel-provider]).

27

http://tools.ietf.org/html/draft-kelly-json-hal
https://github.com/atteo/evo-inflector

Chapter 6. Client-side Support

This section describes Spring HATEOAS’s support for clients.

6.1. Traverson

Spring HATEOAS provides an API for client-side service traversal. It is inspired by the Traverson
JavaScript library. The following example shows how to use it:

Map<String, Object> parameters = new HashMap<>();
parameters.put("user", 27);

Traverson traverson = new Traverson(new URI("http://localhost:8080/api/"),
MediaTypes.HAL_JSON);
String name = traverson.follow("movies", "movie", "actor").
withTemplateParameters(parameters).
toObject("$.name");

You can set up a Traverson instance by pointing it to a REST server and configuring the media types
you want to set as Accept headers. You can then define the relation names you want to discover and
follow. Relation names can either be simple names or JSONPath expressions (starting with an §).

The sample then hands a parameter map into the execution. The parameters are used to expand
URIs (which are templated) found during the traversal. The traversal is concluded by accessing the
representation of the final traversal. In the preceding example, we evaluate a JSONPath expression
to access the actor’s name.

The preceding example is the simplest version of traversal, where the rel values are strings and, at
each hop, the same template parameters are applied.

There are more options to customize template parameters at each level. The following example
shows these options.

ParameterizedTypeReference<EntityModel<Item>> resourceParameterizedTypeReference = new
ParameterizedTypeReference<EntityModel<Item>>() {};

EntityModel<Item> itemResource = traverson.//
follow(rel("items").withParameter("projection”, "noImages")).//
follow("$. embedded.items[0]. links.self.href").//
toObject(resourceParameterizedTypeReference);

The static rel(::+) function is a convenient way to define a single Hop. Using .withParameter (key,
value) makes it simple to specify URI template variables.

28

https://blog.codecentric.de/en/2013/11/traverson/
https://blog.codecentric.de/en/2013/11/traverson/

.withParameter() returns a new Hop object that is chainable. You can string together
NOTE as many .withParameter as you like. The result is a single Hop definition. The
following example shows one way to do so:

ParameterizedTypeReference<EntityModel<Item>> resourceParameterizedTypeReference =
new ParameterizedTypeReference<EntityModel<Item>>() {};

Map<String, Object> params = Collections.singletonMap("projection”, "noImages");

EntityModel<Item> itemResource = traverson.//
follow(rel("items").withParameters(params)).//
follow("$. embedded.items[@]. links.self.href").//
toObject(resourceParameterizedTypeReference);

You can also load an entire Map of parameters by using .withParameters(Map).

follow() is chainable, meaning you can string together multiple hops, as shown in
NOTE the preceding examples. You can either put multiple string-based rel values
(follow("items", "item")) or a single hop with specific parameters.

6.1.1. EntityModel<T> vs. CollectionModel<T>

The examples shown so far demonstrate how to sidestep Java’s type erasure and convert a single
JSON-formatted resource into a EntityModel<Item> object. However, what if you get a collection like
an _embedded HAL collection? You can do so with only one slight tweak, as the following example
shows:

CollectionModelType<Item> collectionModelType =
TypeReferences.CollectionModelType<Item>() {};

CollectionModel<Item> itemResource = traverson.//
follow(rel("items")).//
toObject(collectionModelType);

Instead of fetching a single resource, this one deserializes a collection into CollectionModel.

6.2. Using LinkDiscoverer Instances

When working with hypermedia enabled representations, a common task is to find a link with a
particular relation type in it. Spring HATEOAS provides JSONPath-based implementations of the
LinkDiscoverer interface for either the default representation rendering or HAL out of the box.
When using @EnableHypermediaSupport, we automatically expose an instance supporting the
configured hypermedia type as a Spring bean.

29

https://code.google.com/p/json-path

Alternatively, you can setup and use an instance as follows:

String content = "{'_links' : { 'foo' : { 'href' : '/foo/bar" }}}";
LinkDiscoverer discoverer = new HallLinkDiscoverer();
Link link = discoverer.findLinkWithRel("foo", content);

assertThat(link.getRel(), is("foo"));
assertThat(link.getHref(), is("/foo/bar"));

30

	Spring HATEOAS - Reference Documentation
	Table of Contents
	Chapter 1. Preface
	1.1. Migrating to Spring HATEOAS 1.0
	1.1.1. The changes
	Representation models

	1.1.2. The migration script

	Chapter 2. Fundamentals
	2.1. Links
	2.2. URI templates
	2.3. Link relations
	2.3.1. IANA link relations

	2.4. � Representation models
	2.4.1. Item resource representation model
	2.4.2. Collection resource representation model

	2.5. Affordances

	Chapter 3. Media types
	3.1. HAL – Hypertext Application Language
	3.1.1. Configuring link rendering
	3.1.2. � Using the CurieProvider API

	3.2. HAL-FORMS
	3.3. Collection+JSON
	3.4. UBER - Uniform Basis for Exchanging Representations
	3.5. Registering a custom media type
	3.5.1. Custom media type configuration
	3.5.2. Recommendations

	Chapter 4. Server-side support
	4.1. � � Building links
	Building Links that Point to Methods

	4.2. Building links in Spring MVC
	4.3. Building links in Spring WebFlux
	4.4. � Using the EntityLinks interface
	4.5. � Representation model assembler
	4.6. � Using the RelProvider API

	Chapter 5. Configuration
	5.1. Using @EnableHypermediaSupport

	Chapter 6. Client-side Support
	6.1. Traverson
	6.1.1. EntityModel<T> vs. CollectionModel<T>

	6.2. Using LinkDiscoverer Instances

