
Spring Integration Reference Manual
Mark Fisher

Marius Bogoevici
Iwein Fuld

Jonas Partner

1.0.0

© SpringSource Inc., 2008

Table of Contents
1. Spring Integration Overview ..1

1.1. Background ...1
1.2. Goals and Principles ...1
1.3. Main Components ..2

Message ...2
Message Channel ..3
Message Endpoint ..3

1.4. Message Endpoints ...4
Transformer ...4
Filter ..4
Router ..5
Splitter ...5
Aggregator ...5
Service Activator ..6
Channel Adapter ...6

2. Message Construction ...8
2.1. The Message Interface ..8
2.2. Message Headers ...8
2.3. Message Implementations ...9
2.4. The MessageBuilder Helper Class ...10

3. Message Channels ...12
3.1. The MessageChannel Interface ..12

PollableChannel ...12
SubscribableChannel ..12

3.2. Message Channel Implementations ..13
PublishSubscribeChannel ..13
QueueChannel ..13
PriorityChannel ..13
RendezvousChannel ...14
DirectChannel ..14
ThreadLocalChannel ...15

3.3. Channel Interceptors ...15
3.4. MessageChannelTemplate ..16
3.5. Configuring Message Channels ...16

DirectChannel Configuration ...17
QueueChannel Configuration ..17
PublishSubscribeChannel Configuration ..17
PriorityChannel Configuration ...18
RendezvousChannel Configuration ..18
ThreadLocalChannel Configuration ...18

Spring Integration

1.0.0 Spring Integration Reference ii

4. Message Endpoints ...20
4.1. Message Handler ..20
4.2. Event-Driven Consumer ...20
4.3. Polling Consumer ...21
4.4. Namespace Support ..22

5. Service Activator ..25
5.1. Introduction ...25
5.2. The <service-activator/> Element ..25

6. Channel Adapter ...26
6.1. The <inbound-channel-adapter> element ...26
6.2. The <outbound-channel-adapter/> element ..26

7. Router ..28
7.1. Router Implementations ..28

PayloadTypeRouter ..28
RecipientListRouter ..28

7.2. The <router> element ...28
7.3. The @Router Annotation ..29

8. Message Filter ..30
8.1. Introduction ...30
8.2. The <filter> Element ..30

9. Transformer ..32
9.1. Introduction ...32
9.2. The <transformer> Element ..32
9.3. The @Transformer Annotation ...32

10. Splitter ...34
10.1. Introduction ...34
10.2. Functionality ..34
10.3. Programming model ...34
10.4. Configuring a Splitter using XML ...35
10.5. Configuring a Splitter with Annotations ...35

11. Aggregator ...36
11.1. Introduction ...36
11.2. Functionality ..36
11.3. Programming model ...36
11.4. Configuring an Aggregator with XML ...38
11.5. Configuring an Aggregator with Annotations ...40

12. Resequencer ...41
12.1. Introduction ...41
12.2. Functionality ..41
12.3. Configuring a Resequencer with XML ...41

13. Message Handler Chain ...43
13.1. Introduction ...43
13.2. The <chain> Element ...43

14. Inbound Messaging Gateways ..44
14.1. SimpleMessagingGateway ..44

Spring Integration

1.0.0 Spring Integration Reference iii

14.2. GatewayProxyFactoryBean ...44
15. Messaging Bridge ...46

15.1. Introduction ...46
15.2. The <bridge> Element ..46

16. File Support ..48
16.1. Introduction ...48
16.2. Reading Files ...48
16.3. Writing files ...49
16.4. File Transformers ...50

17. JMS Support ...51
17.1. Inbound Channel Adapter ...51
17.2. Message-Driven Channel Adapter ...52
17.3. Outbound Channel Adapter ...52
17.4. Inbound Gateway ...53
17.5. Outbound Gateway ...54
17.6. JMS Samples ...54

18. Web Services Support ...55
18.1. Outbound Web Service Gateways ..55
18.2. Web Service Namespace Support ..55

19. RMI Support ...56
19.1. Introduction ...56
19.2. Outbound RMI ...56
19.3. Inbound RMI ...56
19.4. RMI namespace support ...56

20. HttpInvoker Support ..58
20.1. Introduction ...58
20.2. HttpInvoker Inbound Gateway ..58
20.3. HttpInvoker Outbound Gateway ..59
20.4. HttpInvoker Namespace Support ...59

21. Mail Support ...61
21.1. Mail-Sending Channel Adapter ...61
21.2. Mail-Receiving Channel Adapter ..61
21.3. Mail Namespace Support ..62

22. Stream Support ...64
22.1. Introduction ...64
22.2. Reading from streams ...64
22.3. Writing to streams ..64
22.4. Stream namespace support ..65

23. Spring ApplicationEvent Support ...66
24. Dealing with XML Payloads ..67

24.1. Introduction ...67
24.2. Transforming xml payloads ...67
24.3. Namespace support for xml transformers ...68
24.4. Splitting xml messages ...70
24.5. Routing xml messages using XPath ...70

Spring Integration

Manual

24.6. Selecting xml messages using XPath ...71
24.7. XPath components namespace support ...71

25. Security in Spring Integration ..74
25.1. Introduction ...74
25.2. Securing channels ...74

A. Spring Integration Samples ...76
A.1. The Cafe Sample ...76
A.2. The xml messaging sample ..80

B. Configuration ...81
B.1. Introduction ..81
B.2. Namespace Support ...81
B.3. Configuring the Task Scheduler ..82
B.4. Error Handling ..83
B.5. Annotation Support ..84

C. Additional Resources ..87
C.1. Spring Integration Home ..87

Spring Integration

1.0.0 Spring Integration Reference v

1. Spring Integration Overview

1.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic
cross-cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Developers benefit from the consistency of this model and especially the
fact that it is based upon well-established best practices such as programming to interfaces and favoring
composition over inheritance. Spring's simplified abstractions and powerful support libraries boost
developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is a new member of the Spring portfolio motivated by these same goals and principles.
It extends the Spring programming model into the messaging domain and builds upon Spring's existing
enterprise integration support to provide an even higher level of abstraction. It supports message-driven
architectures where inversion of control applies to runtime concerns, such as when certain business logic
should execute and where the response should be sent. It supports routing and transformation of messages
so that different transports and different data formats can be integrated without impacting testability. In
other words, the messaging and integration concerns are handled by the framework, so business
components are further isolated from the infrastructure and developers are relieved of complex integration
responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean"
elements, and of course direct usage of the underlying API. That API is based upon well-defined strategy
interfaces and non-invasive, delegating adapters. Spring Integration's design is inspired by the recognition
of a strong affinity between common patterns within Spring and the well-known Enterprise Integration
Patterns as described in the book of the same name by Gregor Hohpe and Bobby Woolf (Addison
Wesley, 2004). Developers who have read that book should be immediately comfortable with the Spring
Integration concepts and terminology.

1.2 Goals and Principles

Spring Integration is motivated by the following goals:

• Provide a simple model for implementing complex enterprise integration solutions.

Spring Integration

1.0.0 Spring Integration Reference 1

http://www.eaipatterns.com
http://www.eaipatterns.com

• Facilitate asynchronous, message-driven behavior within a Spring-based application.

• Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

• Components should be loosely coupled for modularity and testability.

• The framework should enforce separation of concerns between business logic and integration logic.

• Extension points should be abstract in nature but within well-defined boundaries to promote reuse and
portability.

1.3 Main Components

From the vertical perspective, a layered architecture facilitates separation of concerns, and interface-based
contracts between layers promote loose coupling. Spring-based applications are typically designed this
way, and the Spring framework and portfolio provide a strong foundation for following this best practice
for the full-stack of an enterprise application. Message-driven architectures add a horizontal perspective,
yet these same goals are still relevant. Just as "layered architecture" is an extremely generic and abstract
paradigm, messaging systems typically follow the similarly abstract "pipes-and-filters" model. The
"filters" represent any component that is capable of producing and/or consuming messages, and the
"pipes" transport the messages between filters so that the components themselves remain loosely-coupled.
It is important to note that these two high-level paradigms are not mutually exclusive. The underlying
messaging infrastructure that supports the "pipes" should still be encapsulated in a layer whose contracts
are defined as interfaces. Likewise, the "filters" themselves would typically be managed within a layer
that is logically above the application's service layer, interacting with those services through interfaces
much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and headers. The payload can be of
any type and the headers hold commonly required information such as id, timestamp, expiration, and
return address. Headers are also used for passing values to and from connected transports. For example,
when creating a Message from a received File, the file name may be stored in a header to be accessed by
downstream components. Likewise, if a Message's content is ultimately going to be sent by an outbound
Mail adapter, the various properties (to, from, cc, subject, etc.) may be configured as Message header
values by an upstream component. Developers can also store any arbitrary key-value pairs in the headers.

Spring Integration

1.0.0 Spring Integration Reference 2

Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages to
a channel, and consumers receive Messages from a channel. The Message Channel therefore decouples
the messaging components, and also provides a convenient point for interception and monitoring of
Messages.

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a
Point-to-Point channel, at most one consumer can receive each Message sent to the channel.
Publish/Subscribe channels, on the other hand, will attempt to broadcast each Message to all of its
subscribers. Spring Integration supports both of these.

Whereas "Point-to-Point" and "Publish/Subscribe" define the two options for how many consumers will
ultimately receive each Message, there is another important consideration: should the channel buffer
messages? In Spring Integration, Pollable Channels are capable of buffering Messages within a queue.
The advantage of buffering is that it allows for throttling the inbound Messages and thereby prevents
overloading a consumer. However, as the name suggests, this also adds some complexity, since a
consumer can only receive the Messages from such a channel if a poller is configured. On the other hand,
a consumer connected to a Subscribable Channel is simply Message-driven. The variety of channel
implementations available in Spring Integration will be discussed in detail in Section 3.2, “Message
Channel Implementations”.

Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise integration

Spring Integration

Manual

solutions through inversion of control. This means that you should not have to implement consumers and
producers directly, and you should not even have to build Messages and invoke send or receive operations
on a Message Channel. Instead, you should be able to focus on your specific domain model with an
implementation based on plain Objects. Then, by providing declarative configuration, you can "connect"
your domain-specific code to the messaging infrastructure provided by Spring Integration. The
components responsible for these connections are Message Endpoints. This does not mean that you will
necessarily connect your existing application code directly. Any real-world enterprise integration solution
will require some amount of code focused upon integration concerns such as routing and transformation.
The important thing is to achieve separation of concerns between such integration logic and business
logic. In other words, as with the Model-View-Controller paradigm for web applications, the goal should
be to provide a thin but dedicated layer that translates inbound requests into service layer invocations, and
then translates service layer return values into outbound replies. The next section will provide an
overview of the Message Endpoint types that handle these responsibilities, and in upcoming chapters, you
will see how Spring Integration's declarative configuration options provide a non-invasive way to use
each of these.

1.4 Message Endpoints

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint's primary role is to connect application code to the messaging framework and to do so in a
non-invasive manner. In other words, the application code should ideally have no awareness of the
Message objects or the Message Channels. This is similar to the role of a Controller in the MVC
paradigm. Just as a Controller handles HTTP requests, the Message Endpoint handles Messages. Just as
Controllers are mapped to URL patterns, Message Endpoints are mapped to Message Channels. The goal
is the same in both cases: isolate application code from the infrastructure. These concepts are discussed at
length along with all of the patterns that follow in the Enterprise Integration Patterns book. Here, we
provide only a high-level description of the main endpoint types supported by Spring Integration and their
roles. The chapters that follow will elaborate and provide sample code as well as configuration examples.

Transformer

A Message Transformer is responsible for converting a Message's content or structure and returning the
modified Message. Probably the most common type of transformer is one that converts the payload of the
Message from one format to another (e.g. from XML Document to java.lang.String). Similarly, a
transformer may be used to add, remove, or modify the Message's header values.

Filter

A Message Filter determines whether a Message should be passed to an output channel at all. This simply
requires a boolean test method that may check for a particular payload content type, a property value, the
presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if not it will be
dropped (or for a more severe implementation, an Exception could be thrown). Message Filters are often

Spring Integration

1.0.0 Spring Integration Reference 4

http://www.eaipatterns.com

used in conjunction with a Publish Subscribe channel, where multiple consumers may receive the same
Message and use the filter to narrow down the set of Messages to be processed based on some criteria.

Note
Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters architectural
pattern with this specific endpoint type that selectively narrows down the Messages flowing
between two channels. The Pipes-and-Filters concept of "filter" matches more closely with
Spring Integration's Message Endpoint: any component that can be connected to Message
Channel(s) in order to send and/or receive Messages.

Router

A Message Router is responsible for deciding what channel or channels should receive the Message next
(if any). Typically the decision is based upon the Message's content and/or metadata available in the
Message Headers. A Message Router is often used as a dynamic alternative to a statically configured
output channel on a Service Activator or other endpoint capable of sending reply Messages. Likewise, a
Message Router provides a proactive alternative to the reactive Message Filters used by multiple
subscribers as described above.

Splitter

A Splitter is another type of Message Endpoint whose responsibility is to accept a Message from its input
channel, split that Message into multiple Messages, and then send each of those to its output channel.
This is typically used for dividing a "composite" payload object into a group of Messages containing the
sub-divided payloads.

Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives
multiple Messages and combines them into a single Message. In fact, Aggregators are often downstream
consumers in a pipeline that includes a Splitter. Technically, the Aggregator is more complex than a
Splitter, because it is required to maintain state (the Messages to-be-aggregated), to decide when the

Spring Integration

Manual

complete group of Messages is available, and to timeout if necessary. Furthermore, in case of a timeout,
the Aggregator needs to know whether to send the partial results or to discard them to a separate channel.
Spring Integration provides a CompletionStrategy as well as configurable settings for timeout,
whether to send partial results upon timeout, and the discard channel.

Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system. The
input Message Channel must be configured, and if the service method to be invoked is capable of
returning a value, an output Message Channel may also be provided.

Note
The output channel is optional, since each Message may also provide its own 'Return
Address' header. This same rule applies for all consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message,
extracting the request Message's payload and converting if necessary (if the method does not expect a
Message-typed parameter). Whenever the service object's method returns a value, that return value will
likewise be converted to a reply Message if necessary (if it's not already a Message). That reply Message
is sent to the output channel. If no output channel has been configured, then the reply will be sent to the
channel specified in the Message's "return address" if available.

A request-reply "Service Activator" endpoint connects a target object's method to input and output
Message Channels.

Channel Adapter

A Channel Adapter is an endpoint that connects a Message Channel to some other system or transport.
Channel Adapters may be either inbound or outbound. Typically, the Channel Adapter will do some
mapping between the Message and whatever object or resource is received-from or sent-to the other
system (File, HTTP Request, JMS Message, etc). Depending on the transport, the Channel Adapter may
also populate or extract Message header values. Spring Integration provides a number of Channel
Adapters, and they will be described in upcoming chapters.

Spring Integration

1.0.0 Spring Integration Reference 6

An inbound "Channel Adapter" endpoint connects a source system to a MessageChannel.

An outbound "Channel Adapter" endpoint connects a MessageChannel to a target system.

Spring Integration

Manual

2. Message Construction
The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message also includes headers containing user-extensible properties as key-value
pairs.

2.1 The Message Interface

Here is the definition of the Message interface:

public interface Message<T> {

T getPayload();

MessageHeaders getHeaders();

}

The Message is obviously a very important part of the API. By encapsulating the data in a generic
wrapper, the messaging system can pass it around without any knowledge of the data's type. As an
application evolves to support new types, or when the types themselves are modified and/or extended, the
messaging system will not be affected by such changes. On the other hand, when some component in the
messaging system does require access to information about the Message, such metadata can typically be
stored to and retrieved from the metadata in the Message Headers.

2.2 Message Headers

Just as Spring Integration allows any Object to be used as the payload of a Message, it also supports any
Object types as header values. In fact, the MessageHeaders class implements the java.util.Map
interface:

public final class MessageHeaders implements Map<String, Object>, Serializable {
...

}

Note
Even though the MessageHeaders implements Map, it is effectively a read-only
implementation. Any attempt to put a value in the Map will result in an
UnsupportedOperationException. The same applies for remove and clear. Since
Messages may be passed to multiple consumers, the structure of the Map cannot be modified.
Likewise, the Message's payload Object can not be set after the initial creation. However, the
mutability of the header values themselves (or the payload Object) is intentionally left as a
decision for the framework user.

Spring Integration

1.0.0 Spring Integration Reference 8

As an implementation of Map, the headers can obviously be retrieved by calling get(..) with the name
of the header. Alternatively, you can provide the expected Class as an additional parameter. Even better,
when retrieving one of the pre-defined values, convenient getters are available. Here is an example of
each of these three options:

Object someValue = message.getHeaders().get("someKey");

CustomerId customerId = message.getHeaders().get("customerId", CustomerId.class);

Long timestamp = message.getHeaders().getTimestamp();

The following Message headers are pre-defined:

Table 2.1. Pre-defined Message Headers

Header Name Header Type

ID java.util.UUID

TIMESTAMP java.lang.Long

EXPIRATION_DATE java.lang.Long

CORRELATION_ID java.lang.Object

REPLY_CHANNEL java.lang.Object (can be a String or
MessageChannel)

SEQUENCE_NUMBER java.lang.Integer

SEQUENCE_SIZE java.lang.Integer

PRIORITY MessagePriority (an enum)

Many inbound and outbound adapter implementations will also provide and/or expect certain headers,
and additional user-defined headers can also be configured.

2.3 Message Implementations

The base implementation of the Message interface is GenericMessage<T>, and it provides two
constructors:

new GenericMessage<T>(T payload);

new GenericMessage<T>(T payload, Map<String, Object> headers)

When a Message is created, a random unique id will be generated. The constructor that accepts a Map of
headers will copy the provided headers to the newly created Message.

Spring Integration

1.0.0 Spring Integration Reference 9

There are also two convenient subclasses available: StringMessage and ErrorMessage. The
former accepts a String as its payload:

StringMessage message = new StringMessage("hello world");

String s = message.getPayload();

And, the latter accepts any Throwable object as its payload:

ErrorMessage message = new ErrorMessage(someThrowable);

Throwable t = message.getPayload();

Notice that these implementations take advantage of the fact that the GenericMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the
Message payload Object.

2.4 The MessageBuilder Helper Class

You may notice that the Message interface defines retrieval methods for its payload and headers but no
setters. The reason for this is that a Message cannot be modified after its initial creation. Therefore, when
a Message instance is sent to multiple consumers (e.g. through a Publish Subscribe Channel), if one of
those consumers needs to send a reply with a different payload type, it will need to create a new Message.
As a result, the other consumers are not affected by those changes. Keep in mind, that multiple consumers
may access the same payload instance or header value, and whether such an instance is itself immutable is
a decision left to the developer. In other words, the contract for Messages is similar to that of an
unmodifiable Collection, and the MessageHeaders' map further exemplifies that; even though the
MessageHeaders class implements java.util.Map, any attempt to invoke a put operation (or 'remove'
or 'clear') on the MessageHeaders will result in an UnsupportedOperationException.

Rather than requiring the creation and population of a Map to pass into the GenericMessage constructor,
Spring Integration does provide a far more convenient way to construct Messages: MessageBuilder.
The MessageBuilder provides two factory methods for creating Messages from either an existing
Message or with a payload Object. When building from an existing Message, the headers and payload of
that Message will be copied to the new Message:

Message<String> message1 = MessageBuilder.withPayload("test")
.setHeader("foo", "bar")
.build();

Message<String> message2 = MessageBuilder.fromMessage(message1).build();

assertEquals("test", message2.getPayload());
assertEquals("bar", message2.getHeaders().get("foo"));

If you need to create a Message with a new payload but still want to copy the headers from an existing
Message, you can use one of the 'copy' methods.

Message<String> message3 = MessageBuilder.withPayload("test3")
.copyHeaders(message1.getHeaders())
.build();

Spring Integration

Manual

Message<String> message4 = MessageBuilder.withPayload("test4")
.setHeader("foo", 123)
.copyHeadersIfAbsent(message1.getHeaders())
.build();

assertEquals("bar", message3.getHeaders().get("foo"));
assertEquals(123, message4.getHeaders().get("foo"));

Notice that the copyHeadersIfAbsent does not overwrite existing values. Also, in the second
example above, you can see how to set any user-defined header with setHeader. Finally, there are set
methods available for the predefined headers as well as a non-destructive method for setting any header
(MessageHeaders also defines constants for the pre-defined header names).

Message<Integer> importantMessage = MessageBuilder.withPayload(99)
.setPriority(MessagePriority.HIGHEST)
.build();

assertEquals(MessagePriority.HIGHEST, importantMessage.getHeaders().getPriority());

Message<Integer> anotherMessage = MessageBuilder.fromMessage(importantMessage)
.setHeaderIfAbsent(MessageHeaders.PRIORITY, MessagePriority.LOW)
.build();

assertEquals(MessagePriority.HIGHEST, anotherMessage.getHeaders().getPriority());

The MessagePriority is only considered when using a PriorityChannel (as described in the
next chapter). It is defined as an enum with five possible values:

public enum MessagePriority {
HIGHEST,
HIGH,
NORMAL,
LOW,
LOWEST

}

Spring Integration

1.0.0 Spring Integration Reference 11

3. Message Channels
While the Message plays the crucial role of encapsulating data, it is the MessageChannel that
decouples message producers from message consumers.

3.1 The MessageChannel Interface

Spring Integration's top-level MessageChannel interface is defined as follows.

public interface MessageChannel {

String getName();

boolean send(Message message);

boolean send(Message message, long timeout);
}

When sending a message, the return value will be true if the message is sent successfully. If the send call
times out or is interrupted, then it will return false.

PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are two
sub-interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior. Here
is the definition of PollableChannel.

public interface PollableChannel extends MessageChannel {

Message<?> receive();

Message<?> receive(long timeout);

List<Message<?>> clear();

List<Message<?>> purge(MessageSelector selector);

}

Similar to the send methods, when receiving a message, the return value will be null in the case of a
timeout or interrupt.

SubscribableChannel

The SubscribableChannel base interface is implemented by channels that send Messages directly
to their subscribed consumers. Therefore, they do not provide receive methods for polling, but instead
define methods for handling those subscribers:

public interface SubscribableChannel extends MessageChannel {

boolean subscribe(MessageConsumer consumer);

Spring Integration

1.0.0 Spring Integration Reference 12

boolean unsubscribe(MessageConsumer consumer);

}

3.2 Message Channel Implementations

Spring Integration provides several different Message Channel implementations. Each is briefly described
in the sections below.

PublishSubscribeChannel

The PublishSubscribeChannel implementation broadcasts any Message sent to it to all of its
subscribed consumers. This is most often used for sending Event Messages whose primary role is
notification as opposed to Document Messages which are generally intended to be processed by a single
consumer. Note that the PublishSubscribeChannel is intended for sending only. Since it
broadcasts to its subscribers directly when its send(Message) method is invoked, consumers cannot
poll for Messages (it does not implement PollableChannel and therefore has no receive()
method). Instead, any subscriber must be a MessageConsumer itself, and the subscriber's
send(Message) method will be invoked in turn.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike, the PublishSubscribeChannel, the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a default
no-argument constructor (providing an essentially unbounded capacity of Integer.MAX_VALUE) as
well as a constructor that accepts the queue capacity:

public QueueChannel(int capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the
send() method will return immediately even if no receiver is ready to handle the message. If the queue
has reached capacity, then the sender will block until room is available. Likewise, a receive call will
return immediately if a message is available on the queue, but if the queue is empty, then a receive call
may block until either a message is available or the timeout elapses. In either case, it is possible to force
an immediate return regardless of the queue's state by passing a timeout value of 0. Note however, that
calling the no-arg versions of send() and receive() will block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-in/first-out (FIFO) ordering, the PriorityChannel is an
alternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority is determined by the 'priority' header within each message. However,

Spring Integration

1.0.0 Spring Integration Reference 13

for custom priority determination logic, a comparator of type Comparator<Message<?>> can be
provided to the PriorityChannel's constructor.

RendezvousChannel

The RendezvousChannel enables a "direct-handoff" scenario where a sender will block until another
party invokes the channel's receive() method or vice-versa. Internally, this implementation is quite
similar to the QueueChannel except that it uses a SynchronousQueue (a zero-capacity
implementation of BlockingQueue). This works well in situations where the sender and receiver are
operating in different threads but simply dropping the message in a queue asynchronously is too
dangerous. For example, the sender's thread could roll back a transaction if the send operation times out,
whereas with a QueueChannel, the message would have been stored to the internal queue and
potentially never received.

The RendezvousChannel is also useful for implementing request-reply operations. The sender can
create a temporary, anonymous instance of RendezvousChannel which it then sets as the
'replyChannel' header when building a Message. After sending that Message, the sender can immediately
call receive (optionally providing a timeout value) in order to block while waiting for a reply Message.

DirectChannel

The DirectChannel has point-to-point semantics, but otherwise is more similar to the
PublishSubscribeChannel than any of the queue-based channel implementations described above.
It implements the SubscribableChannel interface instead of the PollableChannel interface, so
it dispatches Messages directly to a subscriber. As a point-to-point channel, however, it differs from the
PublishSubscribeChannel in that it will only send each Message to a single subscribed
MessageConsumer. Its primary purpose is to enable a single thread to perform the operations on "both
sides" of the channel. For example, if a consumer is subscribed to a DirectChannel, then sending a
Message to that channel will trigger invocation of that consumer's onMessage(Message) method
directly in the sender's thread. The key motivation for providing a channel implementation with this
behavior is to support transactions that must span across the channel while still benefiting from the
abstraction and loose coupling that the channel provides. If the send call is invoked within the scope of a
transaction, then the outcome of the consumer's invocation (e.g. updating a database record) can play a
role in determining the ultimate result of that transaction (commit or rollback).

Note
Since the DirectChannel is the simplest option and does not add any additional overhead
that would be required for scheduling and managing the threads of a poller, it is the default
channel type within Spring Integration. The general idea is to define the channels for an
application and then to consider which of those needs to provide buffering to throttle input,
and to modify those to be queue-based PollableChannels. Likewise, if a channel needs
to broadcast messages, it should not be a DirectChannel but rather a
PublishSubscribeChannel. Below you will see how these can be configured.

Spring Integration

Manual

ThreadLocalChannel

The final channel implementation type is ThreadLocalChannel. This channel also delegates to a
queue internally, but the queue is bound to the current thread. That way the thread that sends to the
channel will later be able to receive those same Messages, but no other thread would be able to access
them. While probably the least common type of channel, this is useful for situations where
DirectChannels are being used to enforce a single thread of operation but any reply Messages should
be sent to a "terminal" channel. If that terminal channel is a ThreadLocalChannel, the original
sending thread can collect its replies from it.

3.3 Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and capture
meaningful information about the messages passing through the system in a non-invasive way. Since the
Messages are being sent to and received from MessageChannels, those channels provide an
opportunity for intercepting the send and receive operations. The ChannelInterceptor strategy
interface provides methods for each of those operations:

public interface ChannelInterceptor {

Message<?> preSend(Message<?> message, MessageChannel channel);

void postSend(Message<?> message, MessageChannel channel, boolean sent);

boolean preReceive(MessageChannel channel);

Message<?> postReceive(Message<?> message, MessageChannel channel);
}

After implementing the interface, registering the interceptor with a channel is just a matter of calling:

channel.addInterceptor(someChannelInterceptor);

The methods that return a Message instance can be used for transforming the Message or can return 'null'
to prevent further processing (of course, any of the methods can throw an Exception). Also, the
preReceive method can return 'false' to prevent the receive operation from proceeding.

Because it is rarely necessary to implement all of the interceptor methods, a
ChannelInterceptorAdapter class is also available for sub-classing. It provides no-op methods
(the void method is empty, the Message returning methods return the Message parameter as-is, and the
boolean method returns true). Therefore, it is often easiest to extend that class and just implement the
method(s) that you need as in the following example.

public class CountingChannelInterceptor extends ChannelInterceptorAdapter {

private final AtomicInteger sendCount = new AtomicInteger();

@Override
public Message<?> preSend(Message<?> message, MessageChannel channel) {

sendCount.incrementAndGet();
return message;

Spring Integration

1.0.0 Spring Integration Reference 15

}
}

Note
Keep in mind that receive() calls are only relevant for PollableChannels. In fact
the SubscribableChannel interface does not even define a receive() method. The
reason for this is that when a Message is sent to a SubscribableChannel it will be sent
directly to one or more subscribers depending on the type of channel (e.g. a
PublishSubscribeChannel sends to all of its subscribers). Therefore, the preReceive(..)
and postReceive(..) interceptor methods are only invoked when the interceptor is
applied to a PollableChannel.

3.4 MessageChannelTemplate

As you will see when the endpoints and their various configuration options are introduced, Spring
Integration provides a foundation for messaging components that enables non-invasive invocation of your
application code from the messaging system. However, sometimes it is necessary to invoke the messaging
system from your application code. For convenience when implementing such use-cases, Spring
Integration provides a MessageChannelTemplate that supports a variety of operations across the
Message Channels, including request/reply scenarios. For example, it is possible to send a request and
wait for a reply.

MessageChannelTemplate template = new MessageChannelTemplate();

Message reply = template.sendAndReceive(new StringMessage("test"), someChannel);

In that example, a temporary anonymous channel would be created internally by the template. The
'sendTimeout' and 'receiveTimeout' properties may also be set on the template, and other exchange types
are also supported.

public boolean send(final Message<?> message, final MessageChannel channel) { ... }

public Message<?> sendAndReceive(final Message<?> request, final MessageChannel channel) { .. }

public Message<?> receive(final PollableChannel<?> channel) { ... }

3.5 Configuring Message Channels

To create a Message Channel instance, you can use the 'channel' element:

<channel id="exampleChannel"/>

The default channel type is Point to Point. To create a Publish Subscribe channel, use the
"publish-subscribe-channel" element:

<publish-subscribe-channel id="exampleChannel"/>

Spring Integration

Manual

To create a Datatype Channel that only accepts messages containing a certain payload type, provide the
fully-qualified class name in the channel element's datatype attribute:

<channel id="numberChannel" datatype="java.lang.Number"/>

Note that the type check passes for any type that is assignable to the channel's datatype. In other words,
the "numberChannel" above would accept messages whose payload is java.lang.Integer or
java.lang.Double. Multiple types can be provided as a comma-delimited list:

<channel id="stringOrNumberChannel" datatype="java.lang.String,java.lang.Number"/>

When using the "channel" element without any sub-elements, it will create a DirectChannel instance
(a SubscribableChannel).

However, you can also provide a variety of "queue" sub-elements to create the channel types (as
described in Section 3.2, “Message Channel Implementations”). Examples of each are shown below.

DirectChannel Configuration

As mentioned above, DirectChannel is the default type.

<channel id="exampleChannel"/>

QueueChannel Configuration

To create a QueueChannel, use the "queue" sub-element. You may specify the channel's capacity:

<channel id="exampleChannel">
<queue capacity="25"/>

</channel>

Note
If you do not provide a value for the 'capacity' attribute on this <queue/> sub-element, the
resulting queue will be unbounded. To avoid issues such as OutOfMemoryErrors, it's highly
recommended to set an explicit value for a bounded queue.

PublishSubscribeChannel Configuration

To create a PublishSubscribeChannel, use the "publish-subscribe-channel" element. When using
this element, you can also specify the "task-executor" used for publishing Messages (if none is specified it
simply publishes in the sender's thread):

<publish-subscribe-channel id="exampleChannel" task-executor="someTaskExecutor"/>

If you are providing a Resequencer or Aggregator downstream from a PublishSubscribeChannel,
then you can set the 'apply-sequence' property for the channel. That will indicate that the channel should

Spring Integration

1.0.0 Spring Integration Reference 17

http://www.eaipatterns.com/DatatypeChannel.html

set the sequence-size and sequence-number Message headers prior to passing the Messages along. For
example, if there are 5 subscribers, the sequence-size would be set to 5, and the Messages would have
sequence-number header values ranging from 1 to 5. This value is 'false' by default.

<publish-subscribe-channel id="exampleChannel" apply-sequence="true"/>

PriorityChannel Configuration

To create a PriorityChannel, use the "priority-queue" sub-element:

<channel id="exampleChannel">
<priority-queue capacity="20"/>

</channel>

By default, the channel will consult the MessagePriority header of the message. However, a custom
Comparator reference may be provided instead. Also, note that the PriorityChannel (like the
other types) does support the "datatype" attribute. As with the QueueChannel, it also supports a "capacity"
attribute. The following example demonstrates all of these:

<channel id="exampleChannel" datatype="example.Widget">
<priority-queue comparator="widgetComparator"

capacity="10"/>
</channel>

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does not
provide any additional configuration options.

<channel id="exampleChannel"/>
<rendezvous-queue/>

</channel>

ThreadLocalChannel Configuration

The ThreadLocalChannel does not provide any additional configuration options.

<thread-local-channel id="exampleChannel"/>

Message channels may also have interceptors as described in Section 3.3, “Channel Interceptors”. One or
more <interceptor> elements can be added as sub-elements of <channel> (or the more specific element
types). Provide the "ref" attribute to reference any Spring-managed object that implements the
ChannelInterceptor interface:

<channel id="exampleChannel">
<interceptors>

<ref bean="trafficMonitoringInterceptor"/>
</interceptors>

</channel>

Spring Integration

Manual

In general, it is a good idea to define the interceptor implementations in a separate location since they
usually provide common behavior that can be reused across multiple channels.

Spring Integration

1.0.0 Spring Integration Reference 19

4. Message Endpoints
As mentioned in the overview, Message Endpoints are responsible for connecting the various messaging
components to channels. Over the next several chapters, you will see a number of different components
that consume Messages. Some of these are also capable of sending reply Messages. Sending Messages is
quite straightforward. As shown above in Chapter 3, Message Channels, it's easy to send a Message to a
Message Channel. However, receiving is a bit more complicated. The main reason is that there are two
types of consumers: Polling Consumers and Event-Driven Consumers.

Of the two, Event-Driven Consumers are much simpler. Without any need to manage and schedule a
separate poller thread, they are essentially just listeners with a callback method. When connecting to one
of Spring Integration's subscribable Message Channels, this simple option works great. However, when
connecting to a buffering, pollable Message Channel, some component has to schedule and manage the
polling thread(s). Spring Integration provides two different endpoint implementations to accommodate
these two types of consumers. Therefore, the consumers themselves can simply implement the callback
interface. When polling is required, the endpoint acts as a "container" for the consumer instance. The
benefit is similar to that of using a container for hosting Message-Driven Beans, but since these
consumers are simply Spring-managed Objects running within an ApplicationContext, it more closely
resembles Spring's own MessageListener containers.

4.1 Message Handler

Spring Integration's MessageHandler interface is implemented by many of the components within the
framework. In other words, this is not part of the public API, and a developer would not typically
implement MessageHandler directly. Nevertheless, it is used by a Message Consumer for actually
handling the consumed Messages, and so being aware of this strategy interface does help in terms of
understanding the overall role of a consumer. The interface is defined as follows:

public interface MessageHandler {

void handleMessage(Message<?> message);

}

Despite its simplicity, this provides the foundation for most of the components that will be covered in the
following chapters (Routers, Transformers, Splitters, Aggregators, Service Activators, etc). Those
components each perform very different functionality with the Messages they handle, but the
requirements for actually receiving a Message are the same, and the choice between polling and
event-driven behavior is also the same. Spring Integration provides two endpoint implementations that
"host" these callback-based handlers and allow them to be connected to Message Channels.

4.2 Event-Driven Consumer

Because it is the simpler of the two, we will cover the Event-Driven Consumer endpoint first. You may

Spring Integration

1.0.0 Spring Integration Reference 20

http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html

recall that the SubscribableChannel interface provides a subscribe() method and that the
method accepts a MessageHandler parameter (as shown in the section called “SubscribableChannel”):

subscribableChannel.subscribe(messageHandler);

Since a handler that is subscribed to a channel does not have to actively poll that channel, this is an
Event-Driven Consumer, and the implementation provided by Spring Integration accepts a a
SubscribableChannel and a MessageHandler:

SubscribableChannel channel = (SubscribableChannel) context.getBean("exampleSubscribableChannel");

EventDrivenConsumer consumer = new EventDrivenConsumer(channel, exampleHandler);

4.3 Polling Consumer

Spring Integration also provides a PollingConsumer, and it can be instantiated in the same way
except that the channel must implement PollableChannel:

PollableChannel channel = (PollableChannel) context.getBean("examplePollableChannel");

PollingConsumer consumer = new PollingConsumer(channel, exampleHandler);

There are many other configuration options for the Polling Consumer. For example, the trigger is a
required property:

PollingConsumer consumer = new PollingConsumer(channel, handler);

consumer.setTrigger(new IntervalTrigger(30, TimeUnit.SECONDS));

Spring Integration currently provides two implementations of the Trigger interface:
IntervalTrigger and CronTrigger. The IntervalTrigger is typically defined with a simple
interval (in milliseconds), but also supports an 'initialDelay' property and a boolean 'fixedRate' property
(the default is false - i.e. fixed delay):

IntervalTrigger trigger = new IntervalTrigger(1000);
trigger.setInitialDelay(5000);
trigger.setFixedRate(true);

The CronTrigger simply requires the cron expression (see the Javadoc for details):

CronTrigger trigger = new CronTrigger("*/10 * * * * MON-FRI");

In addition to the trigger, several other polling-related configuration properties may be specified:

PollingConsumer consumer = new PollingConsumer(channel, handler);

consumer.setMaxMessagesPerPoll(10);

consumer.setReceiveTimeout(5000);

A Polling Consumer may even delegate to a Spring TaskExecutor and participate in Spring-managed

Spring Integration

1.0.0 Spring Integration Reference 21

transactions. The following example shows the configuration of both:

PollingConsumer consumer = new PollingConsumer(channel, handler);

TaskExecutor taskExecutor = (TaskExecutor) context.getBean("exampleExecutor");
consumer.setTaskExecutor(taskExecutor);

PlatformTransactionManager txManager = (PlatformTransationManager) context.getBean("exampleTxManager");
consumer.setTransactionManager(txManager);

The examples above show dependency lookups, but keep in mind that these consumers will most often be
configured as Spring bean definitions. In fact, Spring Integration also provides a FactoryBean that
creates the appropriate consumer type based on the type of channel, and there is full XML namespace
support to even further hide those details. The namespace-based configuration will be featured as each
component type is introduced.

Note
Many of the MessageHandler implementations are also capable of generating reply
Messages. As mentioned above, sending Messages is trivial when compared to the Message
reception. Nevertheless, when and how many reply Messages are sent depends on the handler
type. For example, an Aggregator waits for a number of Messages to arrive and is often
configured as a downstream consumer for a Splitter which may generate multiple replies for
each Message it handles. When using the namespace configuration, you do not strictly need
to know all of the details, but it still might be worth knowing that several of these
components share a common base class, the
AbstractReplyProducingMessageHandler, and it provides a
setOutputChannel(..) method.

4.4 Namespace Support

Throughout the reference manual, you will see specific configuration examples for endpoint elements,
such as router, transformer, service-activator, and so on. Most of these will support an "input-channel"
attribute and many will support an "output-channel" attribute. After being parsed, these endpoint elements
produce an instance of either the PollingConsumer or the EventDrivenConsumer depending on
the type of the "input-channel" that is referenced: PollableChannel or SubscribableChannel
respectively. When the channel is pollable, then the polling behavior is determined based on the endpoint
element's "poller" sub-element. For example, a simple interval-based poller with a 1-second interval
would be configured like this:

<transformer input-channel="pollable"
ref="transformer"
output-channel="output">

<poller>
<interval-trigger interval="1000"/>

</poller>
</transformer>

For a poller based on a Cron expression, use the "cron-trigger" child element instead:

Spring Integration

Manual

<transformer input-channel="pollable"
ref="transformer"
output-channel="output">

<poller>
<cron-trigger expression="*/10 * * * * MON-FRI"/>

</poller>
</transformer>

If the input channel is a PollableChannel, then the poller configuration is required. Specifically, as
mentioned above, the 'trigger' is a required property of the PollingConsumer class. Therefore, if you omit
the "poller" sub-element for a Polling Consumer endpoint's configuration, an Exception will be thrown.
However, it is also possible to create top-level pollers in which case only a "ref" is required:

<poller id="weekdayPoller">
<cron-trigger expression="*/10 * * * * MON-FRI"/>

</poller>

<transformer input-channel="pollable"
ref="transformer"
output-channel="output">

<poller ref="weekdayPoller"/>
</transformer>

In fact, to simplify the configuration, you can define a global default poller. A single top-level poller
within an ApplicationContext may have the default attribute with a value of "true". In that case, any
endpoint with a PollableChannel for its input-channel that is defined within the same ApplicationContext
and has no explicitly configured 'poller' sub-element will use that default.

<poller id="defaultPoller" default="true" max-messages-per-poll="5">
<interval-trigger interval="3" time-unit="SECONDS"/>

</poller>

<!-- No <poller/> sub-element is necessary since there is a default -->
<transformer input-channel="pollable"

ref="transformer"
output-channel="output"/>

Spring Integration also provides transaction support for the pollers so that each receive-and-forward
operation can be performed as an atomic unit-of-work. To configure transactions for a poller, simply add
the <transactional/> sub-element. The attributes for this element should be familiar to anyone who has
experience with Spring's Transaction management:

<poller>
<interval-trigger interval="1000"/>
<transactional transaction-manager="txManager"

propagation="REQUIRES_NEW"
isolation="REPEATABLE_READ"
timeout="10000"
read-only="false"/>

</poller>

The polling threads may be executed by any instance of Spring's TaskExecutor abstraction. This
enables concurrency for an endpoint or group of endpoints. As a convenience, there is also namespace
support for creating a simple thread pool executor. The <thread-pool-task-executor/> element defines
attributes for common concurrency settings such as core-size, max-size, and queue-capacity. Configuring
a thread-pooling executor can make a substantial difference in how the endpoint performs under load.

Spring Integration

1.0.0 Spring Integration Reference 23

These settings are available per-endpoint since the performance of an endpoint is one of the major factors
to consider (the other major factor being the expected volume on the channel to which the endpoint
subscribes). To enable concurrency for a polling endpoint that is configured with the XML namespace
support, provide the 'task-executor' reference on its <poller/> element and then provide one or more of the
properties shown below:

<poller task-executor="pool"/>
<interval-trigger interval="5" time-unit="SECONDS"/>

</poller>

<thread-pool-task-executor id="pool"
core-size="5"
max-size="25"
queue-capacity="20"
keep-alive-seconds="120"/>

If no 'task-executor' is provided, the consumer's handler will be invoked in the caller's thread. Note that
the "caller" is usually the MessageBus' task scheduler. Also, keep in mind that the 'task-executor' attribute
can provide a reference to any implementation of Spring's TaskExecutor interface by specifying the
bean name. The thread pool elements is simply provided for convenience.

Spring Integration

Manual

5. Service Activator

5.1 Introduction

The Service Activator is the endpoint type for connecting any Spring-managed Object to an input channel
so that it may play the role of a service. If the service produces output, it may also be connected to an
output channel. Alternatively, an output producing service may be located at the end of a processing
pipeline or message flow in which case, the inbound Message's "replyChannel" header can be used. This
is the default behavior if no output channel is defined, and as with most of the configuration options you'll
see here, the same behavior actually applies for most of the other components we have seen.

5.2 The <service-activator/> Element

To create a Service Activator, use the 'service-activator' element with the 'input-channel' and 'ref'
attributes:

<service-activator input-channel="exampleChannel" ref="exampleHandler"/>

The configuration above assumes that "exampleHandler" either contains a single method annotated with
the @ServiceActivator annotation or that it contains only one public method at all. To delegate to an
explicitly defined method of any object, simply add the "method" attribute.

<service-activator input-channel="exampleChannel" ref="somePojo" method="someMethod"/>

In either case, when the service method returns a non-null value, the endpoint will attempt to send the
reply message to an appropriate reply channel. To determine the reply channel, it will first check if an
"output-channel" was provided in the endpoint configuration:

<service-activator input-channel="exampleChannel" output-channel="replyChannel"
ref="somePojo" method="someMethod"/>

If no "output-channel" is available, it will then check the Message's RETURN_ADDRESS header value. If
that value is available, it will then check its type. If it is a MessageChannel, the reply message will be
sent to that channel. If it is a String, then the endpoint will attempt to resolve the channel name to a
channel instance. If the channel cannot be resolved, then a ChannelResolutionException will be
thrown.

Spring Integration

1.0.0 Spring Integration Reference 25

6. Channel Adapter
A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to a
Message Channel. Spring Integration provides a number of adapters out of the box to support various
transports, such as JMS, File, etc. Those will be discussed in upcoming chapters of this reference guide.
However, this chapter focuses on the simple but flexible Method-invoking Channel Adapter support.
There is an inbound and outbound adapter, and each may be configured with XML elements provided in
the core namespace.

6.1 The <inbound-channel-adapter> element

An "inbound-channel-adapter" element can invoke any method on a Spring-managed Object and send a
non-null return value to a MessageChannel after converting it to a Message. When the adapter's
subscription is activated, a poller will attempt to receive messages from the source. The poller will be
scheduled with the TaskScheduler according to the provided configuration. To configure the polling
'interval' or 'cronExpression' for an individual channel-adapter's schedule, provide a 'poller' element with
either an 'interval-trigger' (in milliseconds) or 'cron-trigger' sub-element:

<inbound-channel-adapter ref="source1" method="method1" channel="channel1">
<poller>

<interval-trigger interval="5000"/>
</poller>

</inbound-channel-adapter>

<inbound-channel-adapter ref="source2" method="method2" channel="channel2">
<poller>

<cron-trigger expression="30 * * * * MON-FRI"/>
</poller>

</channel-adapter>

6.2 The <outbound-channel-adapter/> element

An "outbound-channel-adapter" element can also connect a MessageChannel to any method that
should be invoked with the payload of any Message sent to that channel.

<outbound-channel-adapter channel="channel1" ref="target1" method="method1"/>

If the channel being adapted is a PollableChannel, provide a poller sub-element:

<outbound-channel-adapter channel="channel2" ref="target2" method="method2">
<poller>

<interval-trigger interval="3000"/>
</poller>

</outbound-channel-adapter>

Any Channel Adapter can be created without a "channel" reference in which case it will implicitly create
an instance of DirectChannel. The created channel's name will match the "id" attribute of the
<inbound-channel-adapter/> or <outbound-channel-adapter element. Therefore, if the "channel" is not

Spring Integration

1.0.0 Spring Integration Reference 26

provided, the "id" is required.

Spring Integration

1.0.0 Spring Integration Reference 27

7. Router

7.1 Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will require Spring
Integration's options for delegating to POJOs using the XML namespace support and/or Annotations.
Both of these are discussed below, but first we present a couple implementations that are available
out-of-the-box since they fulfill generic, but common, requirements.

PayloadTypeRouter

A PayloadTypeRouter will send Messages to the channel as defined by payload-type mappings.

<bean id="payloadTypeRouter" class="org.springframework.integration.router.PayloadTypeRouter">
<property name="payloadTypeChannelMap">

<map>
<entry key="java.lang.String" value-ref="stringChannel"/>
<entry key="java.lang.Integer" value-ref="integerChannel"/>

</map>
</property>

</bean>

RecipientListRouter

A RecipientListRouter will send each received Message to a statically-defined list of Message
Channels:

<bean id="recipientListRouter" class="org.springframework.integration.router.RecipientListRouter">
<property name="channels">

<list>
<ref bean="channel1"/>
<ref bean="channel2"/>
<ref bean="channel3"/>

</list>
</property>

</bean>

Note
The router implementations share some common properties, such as "defaultOutputChannel"
and "resolutionRequired". If "resolutionRequired" is set to "true", and the router is unable to
determine a target channel (e.g. there is no matching payload for a PayloadTypeRouter and
no "defaultOutputChannel" has been specified), then an Exception will be thrown.

7.2 The <router> element

Spring Integration

1.0.0 Spring Integration Reference 28

The "router" element provides a simple way to connect a router to an input channel, and also accepts the
optional default output channel. The "ref" may provide the bean name to one of the implementations
described above:

<router ref="payloadTypeRouter" input-channel="input1" default-output-channel="defaultOutput1"/>

<router ref="recipientListRouter" input-channel="input2" default-output-channel="defaultOutput2"/>

Alternatively, the "ref" may point to a simple Object that contains the @Router annotation (see below), or
the "ref" may be combined with an explicit "method" name. When specifying a "method", the same
behavior applies as described in the @Router annotation section below.

<router input-channel="input" ref="somePojo" method="someMethod"/>

7.3 The @Router Annotation

When using the @Router annotation, the annotated method can return either the MessageChannel or
String type. In the case of the latter, the endpoint will resolve the channel name as it does for the
default output. Additionally, the method can return either a single value or a collection. When a collection
is returned, the reply message will be sent to multiple channels. To summarize, the following method
signatures are all valid.

@Router
public MessageChannel route(Message message) {...}

@Router
public List<MessageChannel> route(Message message) {...}

@Router
public String route(Foo payload) {...}

@Router
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a common requirement is to route based on metadata available
within the message header as either a property or attribute. Rather than requiring use of the Message
type as the method parameter, the @Router annotation may also use the same @Header parameter
annotation that was introduced above.

@Router
public List<String> route(@Header("orderStatus") OrderStatus status)

Note
For routing of XML-based Messages, including XPath support, see Chapter 24, Dealing with
XML Payloads.

Spring Integration

1.0.0 Spring Integration Reference 29

8. Message Filter

8.1 Introduction

Message Filters are used to decide whether a Message should be passed along or dropped based on some
criteria such as a Message Header value or even content within the Message itself. Therefore, a Message
Filter is similar to a router, except that for each Message received from the filter's input channel, that
same Message may or may not be sent to the filter's output channel. Unlike the router, it makes no
decision regarding which Message Channel to send to but only decides whether to send.

In Spring Integration, a Message Filter may be configured as a Message Endpoint that delegates to some
implementation of the MessageSelector interface. That interface is itself quite simple:

public interface MessageSelector {

boolean accept(Message<?> message);

}

The MessageFilter constructor accepts a selector instance:

MessageFilter filter = new MessageFilter(someSelector);

8.2 The <filter> Element

The <filter> element is used to create a Message-selecting endpoint. In addition to "input-channel" and
"output-channel" attributes, it requires a "ref". The "ref" may point to a MessageSelector implementation:

<filter input-channel="input" ref="selector" output-channel="output"/>

<bean id="selector" class="example.MessageSelectorImpl"/>

Alternatively, the "method" attribute can be added at which point the "ref" may refer to any object. The
referenced method may expect either the Message type or the payload type of inbound Messages. The
return value of the method must be a boolean value. Any time the method returns 'true', the Message will
be passed along to the output-channel. Otherwise, it will be dropped.

<filter input-channel="input" output-channel="output"
ref="exampleObject" method="someBooleanReturningMethod"/>

<bean id="exampleObject" class="example.SomeObject"/>

Note
A common usage for Message Filters is in conjunction with a publish/subscribe channel.
Many filter endpoints may be subscribed to the same channel, and they decide whether or not
to pass the Message for the next endpoint which could be any of the supported types (e.g.

Spring Integration

1.0.0 Spring Integration Reference 30

Service Activator). This provides a reactive alternative to the more proactive approach of
using a Message Router with a single point-to-point input channel and multiple output
channels.

Spring Integration

1.0.0 Spring Integration Reference 31

9. Transformer

9.1 Introduction

Message Transformers play a very important role in enabling the loose-coupling of Message Producers
and Message Consumers. Rather than requiring every Message-producing component to know what type
is expected by the next consumer, Transformers can be added between those components. Generic
transformers, such as one that converts a String to an XML Document, are also highly reusable.

For some systems, it may be best to provide a Canonical Data Model, but Spring Integration's general
philosophy is not to require any particular format. Rather, for maximum flexibility, Spring Integration
aims to provide the simplest possible model for extension. As with the other endpoint types, the use of
declarative configuration in XML and/or Annotations enables simple POJOs to be adapted for the role of
Message Transformers. These configuration options will be described below.

Note
For the same reason of maximizing flexibility, Spring does not require XML-based Message
payloads. Nevertheless, the framework does provide some convenient Transformers for
dealing with XML-based payloads if that is indeed the right choice for your application. For
more information on those transformers, see Chapter 24, Dealing with XML Payloads.

9.2 The <transformer> Element

The <transformer> element is used to create a Message-transforming endpoint. In addition to
"input-channel" and "output-channel" attributes, it requires a "ref". The "ref" may either point to an
Object that contains the @Transformer annotation on a single method (see below) or it may be combined
with an explicit method name value provided via the "method" attribute.

The method that is used for transformation may expect either the Message type or the payload type of
inbound Messages. The return value of the method can be any type. If the return value is itself a
Message, that will be passed along to the transformer's output channel. If the return value is null, then
no reply Message will be sent (effectively the same behavior as a Message Filter). Otherwise, the return
value will be sent as the payload of a Message.

9.3 The @Transformer Annotation

The @Transformer annotation can also be added to methods that expect either the Message type or
the message payload type. The return value will be handled in the exact same way as described above in
the section describing the <transformer> element.

Spring Integration

1.0.0 Spring Integration Reference 32

http://www.eaipatterns.com/CanonicalDataModel.html

@Transformer
Order generateOrder(String productId) {

return new Order(productId);
}

Transformer methods may also accept the @Header and @Headers annotations. For example, one of
those annotations may complement the payload Object as an additional parameter:

@Transformer
Order generateOrder(String productId, @Header("customerName") String customer) {

return new Order(productId, customer);
}

Spring Integration

1.0.0 Spring Integration Reference 33

10. Splitter

10.1 Introduction

The Splitter is a component whose role is to partition a message in several parts, and send the resulting
messages to be processed independently. Very often, they are upstream producers in a pipeline that
includes an Aggregator.

10.2 Functionality

10.3 Programming model

The API for performing splitting consists from one base class, AbstractMessageSplitter, which is a
MessageConsumer implementation, encapsulating features which are common to splitters, such as filling
in the appropriate message headers CORRELATION_ID, SEQUENCE_SIZE, and
SEQUENCE_NUMBER on the messages that are produced. This allows to track down the messages and
the results of their processing (in a typical scenario, these headers would be copied over to the messages
that are produced by the various transforming endpoints), and use them, for example, in a Composed
Message Processor scenario.

An excerpt from AbstractMessageSplitter can be seen below:

public abstract class AbstractMessageSplitter
extends AbstractReplyProducingMessageConsumer {

...
protected abstract Object splitMessage(Message<?> message);

}

For implementing a specific Splitter in an application, a developer can extend AbstractMessageSplitter
and implement the splitMessage method, thus defining the actual logic for splitting the messages. The
return value can be one of the following:

• a Collection (or subclass thereof) or an array of Message objects - in this case the messages will be sent
as such (after the CORRELATION_ID, SEQUENCE_SIZE and SEQUENCE_NUMBER will be
populated). Using this approach gives more control to the developer, for example for populating
custom message headers as part of the splitting process.

• a Collection (or subclass thereof) or an array of non-Message objects - works like the prior case, except
that each collection element will be used as a Message payload. Using this approach allows to focus on
the

Spring Integration

1.0.0 Spring Integration Reference 34

• a Message or non-Message object (but not a Collection or an Array) - it works like the previous cases,
except that there is a single message to be sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a method
that accepts a single argument and has a return value. In this case, the return value of the method will be
interpreted as described above. The input argument might either be a Message or a simple POJO. In the
latter case, the splitter will receive the payload of the incoming message.

10.4 Configuring a Splitter using XML

A splitter can be configured through XML as follows:

<channel id="inputChannel"/>

<splitter id="splitter" ❶
ref="splitterBean" ❷
method="split" ❸
input-channel="inputChannel" ❹
output-channel="outputChannel" ❺/>

<channel id="outputChannel"/>

<beans:bean id="splitterBean" class="sample.PojoSplitter"/>

❶ The id of the splitter is optional.
❷ A reference to a bean defined in the application context. The bean must implement the splitting

logic as described in the section above. Required.
❸ The method (defined on the bean specified above) that implements the splitting logic. Optional.
❹ The input channel of the splitter. Required.
❺ The channel where the splitter will send the results of splitting the incoming message. Optional

(because incoming messages can specify a reply channel themselves).

10.5 Configuring a Splitter with Annotations

The @Splitter annotation is applicable to methods that expect either the Message type or the
message payload type, and the return values of the method should be a collection of any type. If the
returned values are not actual Message objects, then each of them will be sent as the payload of a
message. Those messages will be sent to the output channel as designated for the endpoint on which the
@Splitter is defined.

@Splitter
List<LineItem> extractItems(Order order) {

return order.getItems()
}

Spring Integration

1.0.0 Spring Integration Reference 35

11. Aggregator

11.1 Introduction

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Consumer that receives
multiple Messages and combines them into a single Message. In fact, Aggregators are often downstream
consumers in a pipeline that includes a Splitter.

Technically, the Aggregator is more complex than a Splitter, because it is required to maintain state (the
Messages to-be-aggregated), to decide when the complete group of Messages is available, and to timeout
if necessary. Furthermore, in case of a timeout, the Aggregator needs to know whether to send the partial
results or to discard them to a separate channel.

11.2 Functionality

The Aggregator combines a group of related messages, by storing and grouping them, until the group is
deemed complete. At that point, the Aggregator will create a single message by processing the whole
group, and will send the result message further.

As messages might arrive with a certain delay (or certain messages from the group might not arrive at
all), the Aggregator can specify a timeout (counted from the moment when the first message in the group
has arrived), and whether, in the case of a timeout, the group should be discarded, or the Aggregator
should merely attempt to create a single message out of what has arrived so far. An important aspect of
implementing an Aggregator is providing the logic that has to be executed when the aggregation (creation
of a single message out of many) takes place.

In Spring Integration, the grouping of the messages for Aggregation is done based on their
CORRELATION_ID message header (i.e. the messages with the same CORRELATION_ID will be
grouped together).

An important concern with respect to the timeout is, what happens if late messages arrive after the
aggregation has taken place? In this case, a configuration option allows the user to decide whether they
should be discarded or not.

11.3 Programming model

The Aggregation API consists of a number of classes:

• The base class AbstractMessageAggregator and its subclass
MethodInvokingMessageAggregator

Spring Integration

1.0.0 Spring Integration Reference 36

• The CompletionStrategy interface and its default implementation
SequenceSizeCompletionStrategy

The AbstractMessageAggregator is a MessageConsumer implementation, encapsulating the
common functionalities of an Aggregator, which are: storing messages until the message sequence to
aggregate is complete (and grouping them according to their CORRELATION_ID), and implementing
the timeout functionality. The responsibility of deciding whether the message sequence is complete is
delegated to a CompletionStrategy instance.

A brief highlight of the base AbstractMessageAggregator (the responsibility of implementing the
aggregateMessages method is left to the developer):

public abstract class AbstractMessageAggregator
extends AbstractMessageBarrierConsumer {

private volatile CompletionStrategy completionStrategy
= new SequenceSizeCompletionStrategy();

....

protected abstract Message<?> aggregateMessages(List<Message<?>> messages);

}

For implementing a specific aggregator object for an application, a developer can extend
AbstractMessageAggregator and implement the aggregateMessages method. However,
there are better suited (which reads, less coupled to the API) solutions for implementing the aggregation
logic, which can be configured easily either through XML or through annotations.

In general, any ordinary Java class (i.e. POJO) can implement the aggregation algorithm. For doing so, it
must provide a method that accepts as an argument a single java.util.List (parametrized lists are supported
as well). This method will be invoked for aggregating messages, as follows:

• if the argument is a parametrized java.util.List, and the parameter type is assignable to Message, then
the whole list of messages accumulated for aggregation will be sent to the aggregator

• if the argument is a non-parametrized java.util.List or the parameter type is not assignable to Message,
then the method will receive the payloads of the accumulated messages

• if the return type is not assignable to Message, then it will be treated as the payload for a Message that
will be created automatically by the framework.

Note

In the interest of code simplicity, and promoting best practices such as low coupling,
testability, etc., the preferred way of implementing the aggregation logic is through a POJO,
and using the XML or annotation support for setting it up in the application.

The CompletionStrategy interface is defined as follows:

Spring Integration

1.0.0 Spring Integration Reference 37

public interface CompletionStrategy {

boolean isComplete(List<Message<?>> messages);

}

In general, any ordinary Java class (i.e. POJO) can implement the completion decision mechanism. For
doing so, it must provide a method that accepts as an argument a single java.util.List (parametrized lists
are supported as well), and returns a boolean value. This method will be invoked after the arrival of a new
message, to decide whether the group is complete or not, as follows:

• if the argument is a parametrized java.util.List, and the parameter type is assignable to Message, then
the whole list of messages accumulated in the group will be sent to the method

• if the argument is a non-parametrized java.util.List or the parameter type is not assignable to Message,
then the method will receive the payloads of the accumulated messages

• the method must return true if the message group is complete and ready for aggregation, and false
otherwise.

Spring Integration provides an out-of-the box implementation for CompletionStrategy, the
SequenceSizeCompletionStrategy This implementation uses the SEQUENCE_NUMBER and
SEQUENCE_SIZE of the arriving messages for deciding when a message group is complete and ready to
be aggregated.

11.4 Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator via XML through the <aggregator/>
element. A completely defined sample on how to define such an element is presented below, as well as it:

<channel id="inputChannel"/>

<aggregator id="completelyDefinedAggregator" ❶
input-channel="inputChannel" ❷
output-channel="outputChannel" ❸
discard-channel="discardChannel" ❹
ref="aggregatorBean" ❺
method="add" ❻
completion-strategy="completionStrategyBean" ❼
completion-strategy-method="checkCompleteness" ❽
timeout="42" ❾
send-partial-result-on-timeout="true" ❿
reaper-interval="135" 11

tracked-correlation-id-capacity="99" 12

send-timeout="86420000" 13 />

<channel id="outputChannel"/>

<bean id="aggregatorBean" class="sample.PojoAggregator"/>

<bean id="completionStrategyBean" class="sample.PojoCompletionStrategy"/>

Spring Integration

Manual

❶ The id of the aggregator is optional.
❷ The input channel of the aggregator. Required.
❸ The channel where the aggregator will send the aggregation results. Optional (because incoming

messages can specify a reply channel themselves).
❹ The channel where the aggregator will send the messages that timed out (if

send-partial-results-on-timeout is false). Optional.
❺ A reference to a bean defined in the application context. The bean must implement the aggregation

logic as described above. Required.
❻ A method defined on the bean referenced by ref, that implements the message aggregation

algorithm. Optional, with restrictions (see above).
❼ A reference to a bean that implements the decision algorithm as to whether a given message group is

complete. The bean can be an implementation of the CompletionStrategy interface or a POJO. In the
latter case the completion-strategy-method attribute must be defined as well. Optional (by default,
the aggregator .

❽ A method defined on the bean referenced by completion-strategy, that implements the
completion decision algorithm. Optional, with restrictions (requires completion-strategy to
be present).

❾ The timeout for aggregating messages (counted from the arrival of the first message). Optional.
❿ Whether upon the expiration of the timeout, the aggregator shall try to aggregate the already arrived

messages. Optional (false by default).
11 The interval (in milliseconds) at which a reaper task is executed, checking if there are any timed out

groups. Optional.
12 The capacity of the correlation id tracker. Remembers the already processed correlation ids,

preventing the formation of new groups for messages that arrive after their group has been already
processed (aggregated or discarded). Optional.

13 The timeout for sending out messages. Optional.

An implementation of the aggregator bean, for example, looks as follows:

public class PojoAggregator {

public Long add(List<Long> results) {
long total = 0l;
for (long partialResult: results) {
total += partialResult;

}
return total;

}

}

An implementation of the completion strategy bean for the example above may be as follows:

public class PojoCompletionStrategy {
...
public boolean checkCompleteness(List<Long> numbers) {

int sum = 0;
for (long number: numbers) {
sum += number;

}
return sum >= maxValue;

}

Spring Integration

1.0.0 Spring Integration Reference 39

}

Wherever it makes sense, the completion strategy method and the aggregator method can be combined in
a single bean.

11.5 Configuring an Aggregator with Annotations

An aggregator configured using annotations can look like this.

public class Waiter {
...

@Aggregator #
public Delivery aggregatingMethod(List<OrderItem> items) {

...
}

@CompletionStrategy #
public boolean completionChecker(List<Message<?>> messages) {

...
}

}

❶ An annotation indicating that this method shall be used as an aggregator. Must be specified if this
class will be used as an aggregator.

❷ An annotation indicating that this method shall be used as the completion strategy of an aggregator.
If not present of the method, the aggregator will use the SequenceSizeCompletionStrategy.

All the configuration options provided by xml element are available for the @Aggregator annotation.

The aggregator can be either referenced explicitly from XML or, if the @MessageEndpoint is defined on
the class, detected automatically through classpath scanning.

Spring Integration

Manual

12. Resequencer

12.1 Introduction

Related to the Aggregator, albeit different from a functional standpoint, is the Resequencer.

12.2 Functionality

The Resequencer works in a similar way to the Aggregator, in the sense that it uses the
CORRELATION_ID to store messages in groups, the difference being that all what the Resequencer
does, is to release them in the order of their SEQUENCE_NUMBER.

With respect to that, the user might opt to release all messages at once (after the whole sequence,
according to the SEQUENCE_SIZE, has been released), or as soon as a valid sequence is available.
Another option is to set a timeout, deciding whether to drop the whole sequence if the timeout has
expired, and not all messages have arrived, or to release the messages accumulated so far, in the
appropriate order.

12.3 Configuring a Resequencer with XML

Configuring a resequencer requires only including the appropriate element in XML.

A sample resequencer configuration is shown below.

<channel id="inputChannel"/>

<channel id="outputChannel"/>

<resequencer id="completelyDefinedResequencer" #
input-channel="inputChannel" #
output-channel="outputChannel" #
discard-channel="discardChannel" #
release-partial-sequences="true" #
timeout="42" #
send-partial-result-on-timeout="true" #
reaper-interval="135" #
tracked-correlation-id-capacity="99" #
send-timeout="86420000" # />

❶ The id of the resequencer is optional.
❷ The input channel of the resequencer. Required.
❸ The channel where the resequencer will send the reordered messages. Optional.
❹ The channel where the resequencer will send the messages that timed out (if

send-partial-result-on-timeout is false). Optional.

Spring Integration

1.0.0 Spring Integration Reference 41

❺ Whether to send out ordered sequences as soon as they are available, or only after the whole
message group arrives. Optional (true by default).

❻ The timeout for reordering message sequences (counted from the arrival of the first message).
Optional.

❼ Whether, upon the expiration of the timeout, the ordered group shall be sent out (even if some of the
messages are missing). Optional (false by default).

❽ The interval (in milliseconds) at which a reaper task is executed, checking if there are any timed out
groups. Optional.

❾ The capacity of the correlation id tracker. Remembers the already processed correlation ids,
preventing the formation of new groups for messages that arrive after their group has been already
processed (reordered or discarded). Optional.

❿ The timeout for sending out messages. Optional.

Note
Since there is no custom behaviour to be implemented in Java classes for resequencers, there
is no annotation support for it.

Spring Integration

1.0.0 Spring Integration Reference 42

13. Message Handler Chain

13.1 Introduction

The MessageHandlerChain is an implementation of MessageHandler that can be configured as a
single Message Endpoint while actually delegating to a chain of other handlers, such as Filters,
Transformers, Splitters, and so on. This can lead to a much simpler configuration when several handlers
need to be connected in a fixed, linear progression. For example, it is fairly common to provide a
Transformer before other components. Similarly, when providing a Filter before some other component
in a chain, you are essentially creating a Selective Consumer. In either case, the chain only requires a
single input-channel and a single output-channel as opposed to the configuration of channels for each
individual component.

Tip
Spring Integration's Filter provides a boolean property 'throwExceptionOnRejection'. When
providing multiple Selective Consumers on the same point-to-point channel with different
acceptance criteria, this value should be set to 'true' (the default is false) so that the dispatcher
will know that the Message was rejected and as a result will attempt to pass the Message on
to other subscribers. If the Exception were not thrown, then it would appear to the dispatcher
as if the Message had been passed on successfully even though the Filter had dropped the
Message to prevent further processing.

The handler chain simplifies configuration while internally maintaining the same degree of loose coupling
between components, and it is trivial to modify the configuration if at some point a non-linear
arrangement is required.

13.2 The <chain> Element

The <chain> element provides an 'input-channel' attribute, and if the last element in the chain is capable
of producing reply messages, it may optionally provide an 'output-channel' attribute. The sub-elements
are then filters, transformers, splitters, and service-activators. The last element may be a router.

<chain input-channel="input" output-channel="output">
<filter ref="someSelector" throw-exception-on-rejection="true"/>
<header-enricher error-channel="customErrorChannel">

<header name="foo" value="bar"/>
</header-enricher>
<service-activator ref="someService" method="someMethod"/>

</chain>

Spring Integration

1.0.0 Spring Integration Reference 43

http://www.eaipatterns.com/MessageSelector.html

14. Inbound Messaging Gateways

14.1 SimpleMessagingGateway

Even though the MessageChannelTemplate is fairly straightforward, it does not hide the details of
messaging from your application code. To support working with plain Objects instead of messages,
Spring Integration provides SimpleMessagingGateway with the following methods:

public void send(Object object) { ... }

public Object receive() { ... }

public Object sendAndReceive(Object object) { ... }

Message<?> sendAndReceiveMessage(Object object);

It enables configuration of a request and/or reply channel and delegates to instances of the
InboundMessageMapper and OutboundMessageMapper strategy interfaces.

SimpleMessagingGateway gateway = new SimpleMessagingGateway(inboundMapper, outboundMapper);
gateway.setRequestChannel(requestChannel);
gateway.setReplyChannel(replyChannel);
Object result = gateway.sendAndReceive("test");

14.2 GatewayProxyFactoryBean

Working with Objects instead of Messages is an improvement. However, it would be even better to have
no dependency on the Spring Integration API at all - including the gateway class. For that reason, Spring
Integration also provides a GatewayProxyFactoryBean that generates a proxy for any interface and
internally invokes the gateway methods shown above. Namespace support is also provided as
demonstrated by the following example.

<gateway id="fooService"
service-interface="org.example.FooService"
default-request-channel="requestChannel"
default-reply-channel="replyChannel"/>

Then, the "fooService" can be injected into other beans, and the code that invokes the methods on that
proxied instance of the FooService interface has no awareness of the Spring Integration API. The general
approach is similar to that of Spring Remoting (RMI, HttpInvoker, etc.). See the "Samples" Appendix for
an example that uses this "gateway" element.

The reason that the attributes on the 'gateway' element are named 'default-request-channel' and
'default-reply-channel' is that you may also provide per-method channel references by using the
@Gateway annotation.

public interface Cafe {

@Gateway(requestChannel="orders")
void placeOrder(Order order);

Spring Integration

1.0.0 Spring Integration Reference 44

}

Spring Integration

1.0.0 Spring Integration Reference 45

15. Messaging Bridge

15.1 Introduction

A Messaging Bridge is a relatively trivial endpoint that simply connects two Message Channels or
Channel Adapters. For example, you may want to connect a PollableChannel to a
SubscribableChannel so that the subscribing endpoints do not have to worry about any polling
configuration. Instead, the Messaging Bridge provides the polling configuration.

By providing an intermediary poller between two channels, a Messaging Bridge can be used to throttle
inbound Messages. The poller's trigger will determine the rate at which messages arrive on the second
channel, and the poller's "maxMessagesPerPoll" property will enforce a limit on the throughput.

Another valid use for a Messaging Bridge is to connect two different systems. In such a scenario, Spring
Integration's role would be limited to making the connection between these systems and managing a
poller if necessary. It is probably more common to have at least a Transformer between the two systems
to translate between their formats, and in that case, the channels would be provided as the 'input-channel'
and 'output-channel' of a Transformer endpoint. If data format translation is not required, the Messaging
Bridge may indeed be sufficient.

15.2 The <bridge> Element

The <bridge> element is used to create a Messaging Bridge between two Message Channels or Channel
Adapters. Simply provide the "input-channel" and "output-channel" attributes:

<bridge input-channel="input" output-channel="output"/>

As mentioned above, a common use case for the Messaging Bridge is to connect a PollableChannel
to a SubscribableChannel, and when performing this role, the Messaging Bridge may also serve as
a throttler:

<bridge input-channel="pollable" output-channel="subscribable">
<poller max-messages-per-poll="10">

<interval-trigger interval="5" time-unit="SECONDS"/>
</poller>

</bridge>

Connecting Channel Adapters is just as easy. Here is a simple echo example between the "stdin" and
"stdout" adapters from Spring Integration's "stream" namespace.

<stream:stdin-channel-adapter id="stdin"/>

<stream:stdout-channel-adapter id="stdout"/>

<bridge id="echo" input-channel="stdin" output-channel="stdout"/>

Of course, the configuration would be similar for other (potentially more useful) Channel Adapter

Spring Integration

1.0.0 Spring Integration Reference 46

bridges, such as File to JMS, or Mail to File. The various Channel Adapters will be discussed in
upcoming chapters.

Spring Integration

1.0.0 Spring Integration Reference 47

16. File Support

16.1 Introduction

Spring Integration File extends the Spring Integration Core with dedicated vocabulary to deal with
reading, writing and transforming files. There is a namespace that enables elements that define channel
adapters dedicated to files and support for transformers that transform files into strings or byte arrays.

This section will explain the workings of FileReadingMessageSource,
FileWritingMessageHandler and how to configure them as beans. Also the support for dealing
with files through file specific implementations of Transformer will be discussed. Finally the file
specific namespace will be explained.

16.2 Reading Files

A FileReadingMessageSource can be used to consume files from the filesystem. This is an
implementation of MessageSource that creates messages from a file system directory.

<bean id="pollableFileSource"
class="org.springframework.integration.file.FileReadingMessageSource"
p:inputDirectory="file:${input.directory.property}"/>

To prevent creating messages for certain files, you may supply a {@link FileListFilter}. By default, an
AcceptOnceFileListFilter is used. This filter ensures files are picked up only once from the
directory.

<bean id="pollableFileSource"
class="org.springframework.integration.file.FileReadingMessageSource"
p:inputDirectory="file:${input.directory.property}"
p:filter-ref="customFilterBean"/>

A common problem with reading files is that a file may be detected before it is ready. The default
AcceptOnceFileListFilter does not prevent this. In most cases, this can be prevented if the
file-writing process renames each file as soon as it is ready for reading. A pattern-matching filter that
accepts only files that are ready (e.g. based on a known suffix), composed with the default
AcceptOnceFileListFilter allows for this.

<bean id="pollableFileSource"
class="org.springframework.integration.file.FileReadingMessageSource"
p:inputDirectory="file:${input.directory.property}"
p:filter-ref="compositeFilter"/>

<bean id="compositeFilter" class="org.springframework.integration.file.CompositeFileListFilter">
<constructor-arg>

<list>
<bean class="org.springframework.integration.file.AcceptOnceFileListFilter" />
<bean class="org.springframework.integration.file.PatternMatchingFileListFilter">

<constructor-arg value="^test.*$"/>
</bean>

Spring Integration

1.0.0 Spring Integration Reference 48

</list>
</constructor-arg>

</bean>

The configuration can be simplified using the file specific namespace. To do this use the following
template.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:integration="http://www.springframework.org/schema/integration"
xmlns:file="http://www.springframework.org/schema/integration/file"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/file
http://www.springframework.org/schema/integration/file/spring-integration-file-1.0.xsd">

</beans>

Within this namespace you can reduce the FileReadingMessageSource and wrap it in an
InboundChannelAdapter like this:

<file:inbound-channel-adapter id="filesIn"
directory="file:${input.directory.property}"/> (1)

<file:inbound-channel-adapter id="filesIn"
directory="file:${input.directory.property}"
filter="customFilterBean" /> (2)

<file:inbound-channel-adapter id="filesIn"
directory="file:${input.directory.property}"
filename-pattern="^test.*$" /> (3)

Where (1) is relying on the default filter that just prevents duplication, (2) is using a custom filter and (3)
is using the filename-pattern attribute to add a Pattern based filter to the
FileReadingMessageSource

16.3 Writing files

To write messages to the file system you can use a FileWritingMessageHandler . This class can
deal with File or byte[] payloads and otherwise invokes the toString() method on the payload to establish
the contents of the File. In its simplest form the FileWritingMessageHandler just needs a parent
directory for the files.

Additionally, you can configure the encoding and the charset that will be used in case of a fallback on the
toString() method.

To make things easier you can configure the FileWritingMessageHandler as part of an outbound channel
adapter using the namespace.

<file:outbound-channel-adapter id="filesOut" directory="file:${input.directory.property}"/>

If you have more elaborate requirements to the payload to file conversion you could extend the
FileWritingMessageHandler, but a much better option is to rely on a Transformer

Spring Integration

1.0.0 Spring Integration Reference 49

16.4 File Transformers

To transform data read from the file system to objects and the other way around you need to do some
work. Contrary to FileReadingMessageSource and to a lesser extent
FileWritingMessageHandler it is very likely that you will need your own mechanism to get the
job done. For this you can implement the Transformer interface. Or extend the
AbstractFilePayloadTransformer for inbound messages. Some obvious implementations
have been provided.

FileToByteArrayTransformer transforms Files into byte[]s using FileCopyUtils . It is
often better to use a sequence of transformers than to put all transformations in a single class, in that case
the File to byte[] conversion might be a logical first step.

FileToStringTransformer will convert Files to Strings as the name suggests. This is mainly
useful for debugging.

To configure File specific transformers you can use the appropriate elements from the file namespace.

<file-to-bytes-transformer input-channel="intput" output-channel="output" delete-files="true"/>

The delete-files option signals the transformer to delete the File after the transformation is done. This is in
no way a replacement for using the AcceptOnceFileListFilter with the PollableFileSource in a
multi-threaded environment (e.g. Spring Integration in general).

Spring Integration

Manual

17. JMS Support
Spring Integration provides Channel Adapters for receiving and sending JMS messages. There are
actually two JMS-based inbound Channel Adapters. The first uses Spring's JmsTemplate to receive
based on a polling period. The second is "message-driven" and relies upon a Spring MessageListener
container. There is also an outbound Channel Adapter which uses the JmsTemplate to convert and
send a JMS Message on demand.

Whereas the JMS Channel Adapters are intended for unidirectional Messaging (send-only or
receive-only), Spring Integration also provides inbound and outbound JMS Gateways for request/reply
operations. The inbound gateway relies on one of Spring's MessageListener container implementations
for Message-driven reception that is also capable of sending a return value to the "reply-to" Destination as
provided by the received Message. The outbound Gateway sends a JMS Message to a
"request-destination" and then receives a reply Message. The "reply-destination" reference (or
"reply-destination-name") can be configured explicitly or else the outbound gateway will use a JMS
TemporaryQueue.

17.1 Inbound Channel Adapter

The inbound Channel Adapter requires a reference to either a single JmsTemplate instance or both
ConnectionFactory and Destination (a 'destinationName' can be provided in place of the
'destination' reference). The following example defines an inbound Channel Adapter with a
Destination reference.

<jms:inbound-channel-adapter id="jmsIn" destination="inQueue" channel="exampleChannel">
<integration:poller>

<integration:interval-trigger interval="30" time-unit="SECONDS"/>
</integration:poller>

</jms:inbound-channel-adapter>

Note
All of the JMS adapters that require a reference to the ConnectionFactory will automatically
look for a bean named "connectionFactory" by default. That is why you don't see a
"connection-factory" attribute in many of the examples. However, if your JMS
ConnectionFactory has a different bean name, then you will need to provide that attribute.

If 'extract-payload' is set to true (which is the default), the received JMS Message will be passed through
the MessageConverter. When relying on the default SimpleMessageConverter, this means that the
resulting Spring Integration Message will have the JMS Message's body as its payload. A JMS
TextMessage will produce a String-based payload, a JMS BytesMessage will produce a byte array
payload, and a JMS ObjectMessage's Serializable instance will become the Spring Integration Message's
payload. If instead you prefer to have the raw JMS Message as the Spring Integration Message's payload,
then set 'extract-payload' to false.

Spring Integration

1.0.0 Spring Integration Reference 51

<jms:inbound-channel-adapter id="jmsIn"
destination="inQueue"
channel="exampleChannel"
extract-payload="false"/>

<integration:poller>
<integration:interval-trigger interval="30" time-unit="SECONDS"/>

</integration:poller>
</jms:inbound-channel-adapter>

17.2 Message-Driven Channel Adapter

The "message-driven-channel-adapter" requires a reference to either an instance of a Spring
MessageListener container (any subclass of AbstractMessageListenerContainer) or both
ConnectionFactory and Destination (a 'destinationName' can be provided in place of the
'destination' reference). The following example defines a message-driven Channel Adapter with a
Destination reference.

<jms:message-driven-channel-adapter id="jmsIn" destination="inQueue" channel="exampleChannel"/>

Note
The Message-Driven adapter also accepts several properties that pertain to the
MessageListener container. These values are only considered if you do not provide an actual
'container' reference. In that case, an instance of DefaultMessageListenerContainer will be
created and configured based on these properties. For example, you can specify the
"transaction-manager" reference, the "concurrent-consumers" value, and several other
property references and values. Refer to the JavaDoc and Spring Integration's JMS Schema
(spring-integration-jms-1.0.xsd) for more detail.

The 'extract-payload' property has the same effect as described above, and once again its default value is
'true'. Of course, the poller sub-element is not required (not accepted actually) for a message-driven
Channel Adapter. For most usage scenarios, the message-driven approach is better since the Messages
will be passed along to the Spring Integration Message Channel as soon as they are received from the
underlying JMS consumer.

17.3 Outbound Channel Adapter

The JmsSendingMessageHandler implements the MessageHandler interface and is capable of
converting Spring Integration Messages to JMS messages and then sending to a JMS destination. It
requires either a 'jmsTemplate' reference or both 'connectionFactory' and 'destination' references (again,
the 'destinationName' may be provided in place of the 'destination'). As with the inbound Channel
Adapter, the easiest way to configure this adapter is with the namespace support. The following
configuration will produce an adapter that receives Spring Integration Messages from the
"exampleChannel" and then converts those into JMS Messages and sends them to the JMS Destination
reference whose bean name is "outQueue".

Spring Integration

1.0.0 Spring Integration Reference 52

<jms:outbound-channel-adapter id="jmsOut" destination="outQueue" channel="exampleChannel"/>

As with the inbound Channel Adapters, there is an 'extract-payload' property. However, the meaning is
reversed for the outbound adapter. Rather than applying to the JMS Message, the boolean property
applies to the Spring Integration Message payload. In other words, the decision is whether to pass the
Spring Integration Message itself as the JMS Message body or whether to pass the Spring Integration
Message's payload as the JMS Message body. The default value is once again 'true'. Therefore, if you pass
a Spring Integration Message whose payload is a String, a JMS TextMessage will be created. If on the
other hand you want to send the actual Spring Integration Message to another system via JMS, then
simply set this to 'false'.

Note
Regardless of the boolean value for payload extraction, the Spring Integration
MessageHeaders will map to JMS properties as long as you are relying on the default
converter or provide a reference to another instance of HeaderMappingMessageConverter
(the same holds true for 'inbound' adapters except that in those cases, it's the JMS properties
mapping to Spring Integration MessageHeaders).

17.4 Inbound Gateway

Spring Integration's message-driven JMS inbound-gateway delegates to a MessageListener
container, supports dynamically adjusting concurrent consumers, and can also handle replies. The
inbound gateway requires references to a ConnectionFactory, and a request Destination (or
'requestDestinationName'). The following example defines a JMS "inbound-gateway" that receives from
the JMS queue referenced by the bean id "inQueue" and sends to the Spring Integration channel named
"exampleChannel".

<jms:inbound-gateway id="jmsInGateway"
request-destination="inQueue"
request-channel="exampleChannel"/>

Since the gateways provide request/reply behavior instead of unidirectional send or receive, they also
have two distinct properties for the "payload extraction" (as discussed above for the Channel Adapters'
'extract-payload' setting). For an inbound-gateway, the 'extract-request-payload' property determines
whether the received JMS Message body will be extracted. If 'false', the JMS Message itself will become
the Spring Integration Message payload. The default is 'true'.

Similarly, for an inbound-gateway the 'extract-reply-payload' property applies to the Spring Integration
Message that is going to be converted into a reply JMS Message. If you want to pass the whole Spring
Integration Message (as the body of a JMS ObjectMessage) then set this to 'false'. By default, it is also
'true' such that the Spring Integration Message payload will be converted into a JMS Message (e.g. String
payload becomes a JMS TextMessage).

Spring Integration

Manual

17.5 Outbound Gateway

The outbound Gateway creates JMS Messages from Spring Integration Messages and then sends to a
'request-destination'. It will then handle the JMS reply Message either by using a selector to receive from
the 'reply-destination' that you configure, or if no 'reply-destination' is provided, it will create JMS
TemporaryQueues. Notice that the "reply-channel" is also provided.

<jms:outbound-gateway id="jmsOutGateway"
request-destination="outQueue"
request-channel="outboundJmsRequests"
reply-channel="jmsReplies"/>

The 'outbound-gateway' payload extraction properties are inversely related to those of the
'inbound-gateway' (see the discussion above). That means that the 'extract-request-payload' property value
applies to the Spring Integration Message that is being converted into a JMS Message to be sent as a
request, and the 'extract-reply-payload' property value applies to the JMS Message that is received as a
reply and then converted into a Spring Integration Message to be subsequently sent to the 'reply-channel'
as shown in the example configuration above.

Note
For all of these JMS adapters, you can also specify your own "message-converter" reference.
Simply provide the bean name of an instance of MessageConverter that is available
within the same ApplicationContext. Note, however, that when you provide your own
MessageConverter instance, the default HeaderMappingMessageConverter will not be used.
This means that the 'extract-request-payload' and 'extract-reply-payload' properties will have
no effect. Of course, you can provide a reference to your own instance of
HeaderMappingMessageConverter. It simply delegates to a MessageConverter while also
mapping the Spring Integration MessageHeaders to JMS Message properties and vice-versa.

17.6 JMS Samples

To experiment with these JMS adapters, check out the samples available within the "jms" package of the
"org.springframework.integration.samples" module (in the distribution). There are two samples included.
One provides inbound and outbound Channel Adapters, and the other provides inbound and outbound
Gateways. They are configured to run with an embedded ActiveMQ process, but the "common.xml" file
can easily be modified to support either a different JMS provider or a standalone ActiveMQ process. In
other words, you can split the configuration so that the inbound and outbound adapters are running in
separate JVMs. If you have ActiveMQ installed, simply modify the "brokerURL" property within the
configuration to use "tcp://localhost:61616" for example (instead of "vm://localhost").

Spring Integration

1.0.0 Spring Integration Reference 54

18. Web Services Support

18.1 Outbound Web Service Gateways

To invoke a Web Service upon sending a message to a channel, there are two options - both of which
build upon the Spring Web Services project: SimpleWebServiceOutboundGateway and
MarshallingWebServiceOutboundGateway. The former will accept either a String or
javax.xml.transform.Source as the message payload. The latter provides support for any
implementation of the Marshaller and Unmarshaller interfaces. Both require the URI of the Web
Service to be called.

simpleGateway = new SimpleWebServiceOutboundGateway(uri);

marshallingGateway = new MarshallingWebServiceOutboundGateway(uri, marshaller);

For more detail on the inner workings, see the Spring Web Services reference guide's chapter covering
client access as well as the chapter covering Object/XML mapping.

18.2 Web Service Namespace Support

To configure an outbound Web Service Gateway, use the "outbound-gateway" element from the "ws"
namespace:

<ws:outbound-gateway id="simpleGateway"
request-channel="inputChannel"
uri="http://example.org"/>

To use Spring OXM Marshallers and/or Unmarshallers, provide bean references:

<ws:outbound-gateway id="marshallingGateway"
request-channel="requestChannel"
uri="http://example.org"
marshaller="someMarshaller"
unmarshaller="someUnmarshaller"/>

Note
Most Marshaller implementations also implement the Unmarshaller interface. When
using such a Marshaller, only the "marshaller" attribute is necessary. Even when using a
Marshaller, you may also provide a reference for the "request-callback".

For either gateway type, the "message-factory" attribute can also be configured with a reference to any
Spring Web Services WebServiceMessageFactory implementation.

Spring Integration

1.0.0 Spring Integration Reference 55

http://static.springframework.org/spring-ws/sites/1.5/
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

19. RMI Support

19.1 Introduction

This Chapter explains how to use RMI specific channel adapters to distribute a system over multiple
JVMs. The first section will deal with sending messages over RMI. The second section shows how to
receive messages over RMI. The last section shows how to define rmi channel adapters through the
namespace support

19.2 Outbound RMI

To send messages from a channel over RMI, simply define an RmiOutboundGateway. This gateway
will use Spring's RmiProxyFactoryBean internally to create a proxy for a remote gateway. Note that to
invoke a remote interface that doesn't use Spring Integration you should use a service activator in
combination with Spring's RmiProxyFactoryBean.

To configure the outbound gateway write a bean definition like this:

<bean id="rmiOutGateway" class=org.spf.integration.rmi.RmiOutboundGateway>
<constructor-arg value="rmi://host"/>
<property name="replyChannel" value="replies"/>

</bean>

19.3 Inbound RMI

To receive messages over RMI you need to use a RmiInboundGateway. This gateway can be
configured like this

<bean id="rmiOutGateway" class=org.spf.integration.rmi.RmiInboundGateway>
<property name="requestChannel" value="requests"/>

</bean>

19.4 RMI namespace support

To configure the inbound gateway you can choose to use the namespace support for it. The following
code snippet shows the different configuration options that are supported.

<rmi:inbound-gateway id="gatewayWithDefaults" request-channel="testChannel"/>

<rmi:inbound-gateway id="gatewayWithCustomProperties" request-channel="testChannel"
expect-reply="false" request-timeout="123" reply-timeout="456"/>

Spring Integration

1.0.0 Spring Integration Reference 56

<rmi:inbound-gateway id="gatewayWithHost" request-channel="testChannel"
registry-host="localhost"/>

<rmi:inbound-gateway id="gatewayWithPort" request-channel="testChannel"
registry-port="1234"/>

<rmi:inbound-gateway id="gatewayWithExecutorRef" request-channel="testChannel"
remote-invocation-executor="invocationExecutor"/>

To configure the outbound gateway you can use the namespace support as well. The following code
snippet shows the different configuration for an outbound rmi gateway.

<rmi:outbound-gateway id="gateway"
request-channel="localChannel"
remote-channel="testChannel"
host="localhost"/>

Spring Integration

1.0.0 Spring Integration Reference 57

20. HttpInvoker Support

20.1 Introduction

HttpInvoker is a Spring-specific remoting option that essentially enables Remote Procedure Calls (RPC)
over HTTP. In order to accomplish this, an outbound representation of a method invocation is serialized
using standard Java serialization and then passed within an HTTP POST request. After being invoked on
the target system, the method's return value is then serialized and written to the HTTP response. There are
two main requirements. First, you must be using Spring on both sides since the marshalling to and from
HTTP requests and responses is handled by the client-side invoker and server-side exporter. Second, the
Objects that you are passing must implement Serializable and be available on both the client and
server.

While traditional RPC provides physical decoupling, it does not offer nearly the same degree of logical
decoupling as a messaging-based system. In other words, both participants in an RPC-based invocation
must be aware of a specific interface and specific argument types. Interestingly, in Spring Integration, the
"parameter" being sent is a Spring Integration Message, and the interface is an internal detail of Spring
Integration's implementation. Therefore, the RPC mechanism is being used as a transport so that from the
end user's perspective, it is not necessary to consider the interface and argument types. It's just another
adapter to enable messaging between two systems.

20.2 HttpInvoker Inbound Gateway

To receive messages over http you need to use an HttpInvokerInboundGateway. Here is an
example bean definition:

<bean id="inboundGateway"
class="org.springframework.integration.httpinvoker.HttpInvokerInboundGateway">

<property name="requestChannel" ref="requestChannel"/>
<property name="replyChannel" ref="replyChannel"/>
<property name="requestTimeout" value="30000"/>
<property name="replyTimeout" value="10000"/>

</bean>

Because the inbound gateway must be able to receive HTTP requests, it must be configured within a
Servlet container. The easiest way to do this is to provide a servlet definition in web.xml:

<servlet>
<servlet-name>inboundGateway</servlet-name>
<servlet-class>org.springframework.web.context.support.HttpRequestHandlerServlet</servlet-class>

</servlet>

Notice that the servlet name matches the bean name.

Note
If you are running within a Spring MVC application and using the
BeanNameHandlerMapping, then the servlet definition is not necessary. In that case, the bean

Spring Integration

1.0.0 Spring Integration Reference 58

name for your gateway can be matched against the URL path just like a Spring MVC
Controller bean.

20.3 HttpInvoker Outbound Gateway

To configure the HttpInvokerOutboundGateway write a bean definition like this:

<bean id="outboundGateway"
class="org.springframework.integration.httpinvoker.HttpInvokerOutboundGateway">

<property name="replyChannel" ref="replyChannel"/>
</bean>

The outbound gateway is a MessageHandler and can therefore be registered with either a
PollingConsumer or EventDrivenConsumer. The URL must match that defined by an inbound
HttpInvoker Gateway as described in the previous section.

20.4 HttpInvoker Namespace Support

Spring Integration provides an "httpinvoker" namespace and schema definition. To include it in your
configuration, simply provide the following URI within a namespace declaration:
'http://www.springframework.org/schema/integration/httpinvoker'. The schema location should then map
to
'http://www.springframework.org/schema/integration/httpinvoker/spring-integration-httpinvoker-1.0.xsd'.

To configure the inbound gateway you can choose to use the namespace support for it. The following
code snippet shows the different configuration options that are supported.

<httpinvoker:inbound-gateway id="inboundGateway"
request-channel="requestChannel"
request-timeout="10000"
expect-reply="false"
reply-timeout="30000"/>

Note
A 'reply-channel' may also be provided, but it is recommended to rely on the temporary
anonymous channel that will be created automatically for handling replies.

To configure the outbound gateway you can use the namespace support as well. The following code
snippet shows the different configuration for an outbound HttpInvoker gateway. Only the 'url' and
'request-channel' are required.

<httpinvoker:outbound-gateway id="outboundGateway"
url="http://localhost:8080/example"
request-channel="requestChannel"
request-timeout="5000"
reply-channel="replyChannel"

Spring Integration

1.0.0 Spring Integration Reference 59

reply-timeout="10000"/>

Spring Integration

Manual

21. Mail Support

21.1 Mail-Sending Channel Adapter

Spring Integration provides support for outbound email with the MailSendingMessageHandler. It
delegates to a configured instance of Spring's JavaMailSender:

JavaMailSender mailSender = (JavaMailSender) context.getBean("mailSender");

MailSendingMessageHandler mailSendingHandler = new MailSendingMessageHandler(mailSender);

MailSendingMessageHandler various mapping strategies use Spring's MailMessage
abstraction. If the received Message's payload is already a MailMessage instance, it will be sent directly.
Therefore, it is generally recommended to precede this consumer with a Transformer for non-trivial
MailMessage construction requirements. However, a few simple Message mapping strategies are
supported out-of-the-box. For example, if the message payload is a byte array, then that will be mapped to
an attachment. If the payload is neither a MailMessage or byte array, then a MailMessage will be created
with text content corresponding to the value returned from the Spring Integration Message payload's
toString() method. For simple text-based emails, simply provide a String-based Message payload.

The outbound MailMessage may also be configured with certain values from the MessageHeaders. If
available, values will be mapped to the outbound mail's properties, such as the recipients (TO, CC, and
BCC), the from/reply-to, and the subject. The header names are defined by the following constants:

MailHeaders.SUBJECT
MailHeaders.TO
MailHeaders.CC
MailHeaders.BCC
MailHeaders.FROM
MailHeaders.REPLY_TO

21.2 Mail-Receiving Channel Adapter

Spring Integration also provides support for inbound email with the
MailReceivingMessageSource. It delegates to a configured instance of Spring Integration's own
MailReceiver interface, and there are two implementations: Pop3MailReceiver and
ImapMailReceiver. The easiest way to instantiate either of these is by passing the 'uri' for a Mail
store to the receiver's constructor. For example:

MailReceiver receiver = new Pop3MailReceiver("pop3://usr:pwd@localhost/INBOX");

Another option for receiving mail is the IMAP "idle" command (if supported by the mail server you are
using). Spring Integration provides the ImapIdleChannelAdapter which is itself a
Message-producing endpoint. It delegates to an instance of the ImapMailReceiver but enables
asynchronous reception of Mail Messages. There are examples in the next section of configuring both

Spring Integration

1.0.0 Spring Integration Reference 61

types of inbound Channel Adapter with Spring Integration's namespace support in the 'mail' schema.

21.3 Mail Namespace Support

Spring Integration provides a namespace for mail-related configuration. To use it, configure the following
schema locations.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:mail="http://www.springframework.org/schema/integration/mail"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration/mail
http://www.springframework.org/schema/integration/mail/spring-integration-mail-1.0.xsd">

To configure an outbound Channel Adapter, provide the channel to receive from, and the MailSender:

<mail:outbound-channel-adapter channel="outboundMail"
mail-sender="mailSender"/>

Alternatively, provide the host, username, and password:

<mail:outbound-channel-adapter channel="outboundMail"
host="somehost" username="someuser" password="somepassword"/>

Note
Keep in mind, as with any outbound Channel Adapter, if the referenced channel is a
PollableChannel, a <poller> sub-element should be provided with either an interval-trigger or
cron-trigger.

To configure an inbound Channel Adapter, you have the choice between polling or event-driven
(assuming your mail server supports IMAP IDLE - if not, then polling is the only option). A polling
Channel Adapter simply requires the store URI and the channel to send inbound Messages to. The URI
may begin with "pop3" or "imap":

<mail:inbound-channel-adapter channel="mailIn"
store-uri="imap://usr:pwd@imap.example.com/INBOX">

<poller max-messages-per-poll="3">
<interval-trigger interval="30" time-unit="SECONDS"/>

</poller>
</mail:inbound-channel-adapter>

If you do have IMAP idle support, then you may want to configure the "imap-idle-channel-adapter"
element instead. Since the "idle" command enables event-driven notifications, no poller is necessary for
this adapter. It will send a Message to the specified channel as soon as it receives the notification that new
mail is available:

<mail:imap-idle-channel-adapter channel="mailIn"
store-uri="imaps://usr:pwd@imap.example.com:993/INBOX"/>

Spring Integration

1.0.0 Spring Integration Reference 62

When using the namespace support, a header-enricher Message Transformer is also available. This
simplifies the application of the headers mentioned above to any Message prior to sending to the
Mail-sending Channel Adapter. Also, note that a boolean value c

<mail:header-enricher subject="Example Mail"
to="to@example.org"
cc="cc@example.org"
bcc="bcc@example.org"
from="from@example.org"
reply-to="replyTo@example.org"
overwrite="false"/>

Spring Integration

Manual

22. Stream Support

22.1 Introduction

In many cases application data is obtained from a stream. It is not recommended to send a reference to a
Stream as a message payload to a consumer. Instead messages are created from data that is read from an
input stream and message payloads are written to an output stream one by one.

22.2 Reading from streams

Spring Integration provides two adapters for streams. Both ByteStreamReadingMessageSource
and CharacterStreamReadingMessageSource implement MessageSource. By configuring
one of these within a channel-adapter element, the polling period can be configured, and the Message Bus
can automatically detect and schedule them. The byte stream version requires an InputStream, and the
character stream version requires a Reader as the single constructor argument. The
ByteStreamReadingMessageSource also accepts the 'bytesPerMessage' property to determine
how many bytes it will attempt to read into each Message. The default value is 1024

<bean class="org.springframework.integration.stream.ByteStreamReadingMessageSource">
<constructor-arg ref="someInputStream"/>
<property name="bytesPerMessage" value="2048"/>

</bean>

<bean class="org.springframework.integration.stream.CharacterStreamReadingMessageSource">
<constructor-arg ref="someReader"/>

</bean>

22.3 Writing to streams

For target streams, there are also two implementations: ByteStreamWritingMessageHandler and
CharacterStreamWritingMessageHandler. Each requires a single constructor argument -
OutputStream for byte streams or Writer for character streams, and each provides a second
constructor that adds the optional 'bufferSize'. Since both of these ultimately implement the
MessageHandler interface, they can be referenced from a channel-adapter configuration as described
in more detail in Chapter 6, Channel Adapter.

<bean class="org.springframework.integration.stream.ByteStreamWritingMessageHandler">
<constructor-arg ref="someOutputStream"/>
<constructor-arg value="1024"/>

</bean>

<bean class="org.springframework.integration.stream.CharacterStreamWritingMessageHandler">
<constructor-arg ref="someWriter"/>

</bean>

Spring Integration

1.0.0 Spring Integration Reference 64

22.4 Stream namespace support

To reduce the configuration needed for stream related channel adapters there is a namespace defined. The
following schema locations are needed to use it.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/integration/stream"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration/stream
http://www.springframework.org/schema/integration/stream/spring-integration-stream-1.0.xsd">

To configure the inbound channel adapter the following code snippet shows the different configuration
options that are supported.

<stdin-channel-adapter id="adapterWithDefaultCharset"/>

<stdin-channel-adapter id="adapterWithProvidedCharset" charset="UTF-8"/>

To configure the outbound channel adapter you can use the namespace support as well. The following
code snippet shows the different configuration for an outbound channel adapters.

<stdout-channel-adapter id="stdoutAdapterWithDefaultCharset" channel="testChannel"/>

<stdout-channel-adapter id="stdoutAdapterWithProvidedCharset" charset="UTF-8" channel="testChannel"/>

<stderr-channel-adapter id="stderrAdapter" channel="testChannel"/>

<stdout-channel-adapter id="newlineAdapter" append-newline="true" channel="testChannel"/>

Spring Integration

1.0.0 Spring Integration Reference 65

23. Spring ApplicationEvent Support
Spring Integration also provides support for inbound and outbound ApplicationEvents. To receive
events and send to a channel, simply define an instance of Spring Integration's
ApplicationEventListeningChannelAdapter. This class in an implementation of Spring's
ApplicationListener interface. By default it will pass all received events as Spring Integration
Messages. To limit based on the type of event, configure the list of event types that you want to receive
with the 'eventTypes' property.

To send Spring ApplicationEvents, create an instance of the
ApplicationEventPublishingMessageHandler and register it within an endpoint. This
implementation of the MessageHandler interface also implements Spring's
ApplicationEventPublisherAware interface and thus acts as a bridge between Spring
Integration Messages and ApplicationEvents.

Spring Integration

1.0.0 Spring Integration Reference 66

24. Dealing with XML Payloads

24.1 Introduction

Spring Integration's XML support extends the Spring Integration Core with implementations of splitter,
transformer, selector and router designed to make working with xml messages in Spring Integration
simple. The provided messaging components are designed to work with xml represented in a range of
formats including instances of java.lang.String, org.w3c.dom.Document and
javax.xml.transform.Source. It should be noted however that where a DOM representation is
required, for example in order to evaluate an XPath expression, the String payload will be converted
into the required type and then converted back again to String. Components that require an instance of
DocumentBuilder will create a namespace aware instance if one is not provided. Where greater
control of the document being created is required an appropriately configured instance of
DocumentBuilder should be provided.

24.2 Transforming xml payloads

This section will explain the workings of XmlPayloadUnmarshallingTransformer,
XmlPayloadMarshallingTransformer, XsltPayloadTransformer and how to configure
them as beans. All of the provided xml transformers extend AbstractPayloadTransformer and
therefore implement Transformer. When configuring xml transformers as beans in Spring Integration
you would normally configure the transformer in conjunction with either a
MessageTransformingChannelInterceptor or a MessageTransformingConsumer.
This allows the transformer to be used as either an interceptor, which transforms the message as it is sent
or received to the channel, or as an endpoint. Finally the namespace support will be discussed which
allows for the simple configuration of the transformers as MessageEndpoint instances.

XmlPayloadUnmarshallingTransformer allows an xml Source to be unmarshalled using
implementations of Spring OXM Unmarshaller. Spring OXM provides several implementations
supporting marshalling and unmarshalling using JAXB, Castor and JiBX amongst others. Since the
unmarshaller requires an instance of Source where the message payload is not currently an instance of
Source, conversion will be attempted. Currently String and org.w3c.dom.Document payloads
are supported. Custom conversion to a Source is also supported by injecting an implementation of
SourceFactory.

<bean id="unmarshallingTransformer"
class="org.springframework.integration.xml.transformer.XmlPayloadUnmarshallingTransformer">

<constructor-arg>
<bean class="org.springframework.oxm.jaxb.Jaxb1Marshaller">

<property name="contextPath" value="org.example" />
</bean>

</constructor-arg>
</bean>

Spring Integration

1.0.0 Spring Integration Reference 67

The XmlPayloadMarshallingTransformer allows an object graph to be converted into xml
using a Spring OXM Marshaller. By default the XmlPayloadMarshallingTransformer will
return a DomResult. However the type of result can be controlled by configuring an alternative
ResultFactory such as StringResultFactory. In many cases it will be more convenient to
transform the payload into an alternative xml format. To achieve this configure a
ResultTransformer. Two implementations are provided, one which converts to String and
another which converts to Document.

<bean id="marshallingTransformer"
class="org.springframework.integration.xml.transformer.XmlPayloadMarshallingTransformer">

<constructor-arg>
<bean class="org.springframework.oxm.jaxb.Jaxb1Marshaller">

<property name="contextPath" value="org.example" />
</bean>

</constructor-arg>
<constructor-arg>

<bean class="org.springframework.integration.xml.transformer.ResultToDocumentTransformer" />
</constructor-arg>

</bean>

XsltPayloadTransformer transforms xml payloads using xsl. The transformer requires an instance
of either Resource or Templates. Passing in a Templates instance allows for greater configuration
of the TransformerFactory used to create the template instance. As in the case of
XmlPayloadMarshallingTransformer by default XsltPayloadTransformer will create a
message with a Result payload. This can be customised by providing a ResultFactory and/or a
ResultTransformer.

<bean id="xsltPayloadTransformer"
class="org.springframework.integration.xml.transformer.XsltPayloadTransformer">

<constructor-arg value="classpath:org/example/xsl/transform.xsl" />
<constructor-arg>

<bean class="org.springframework.integration.xml.transformer.ResultToDocumentTransformer" />
</constructor-arg>

</bean>

24.3 Namespace support for xml transformers

Namespace support for all xml transformers is provided in the Spring Integration xml namespace, a
template for which can be seen below. The namespace support for transformers creates an instance of
either SubscribingConsumerEndpoint or PollingConsumerEndpoint according to the type
of the provided input channel. The namespace support is designed to reduce the amount of xml
configuration by allowing the creation of an endpoint and transformer using one element.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:integration="http://www.springframework.org/schema/integration"
xmlns:si-xml="http://www.springframework.org/schema/integration/xml"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/xml

Spring Integration

1.0.0 Spring Integration Reference 68

http://www.springframework.org/schema/integration/xml/spring-integration-xml-1.0.xsd">
</beans>

The namespace support for XmlPayloadUnmarshallingTransformer is shown below. Since the
namespace is now creating an instance of MessageEndpoint rather than a transformer a poller can
also be nested within the element to control the polling of the input channel.

<si-xml:unmarshalling-transformer id="defaultUnmarshaller"
input-channel="input"
output-channel="output"
unmarshaller="unmarshaller"/>

<si-xml:unmarshalling-transformer id="unmarshallerWithPoller"
input-channel="input"
output-channel="output"
unmarshaller="unmarshaller">
<si:poller>

<si:interval-trigger interval="2000"/>
</si:poller>

<si-xml:unmarshalling-transformer/>

The namespace support for the marshalling transformer requires an input channel, output channel and a
reference to a marshaller. The optional result-type attribute can be used to control the type of result
created, valid values are StringResult or DomResult (the default). Where the provided result types are not
sufficient a reference to a custom implementation of ResultFactory can be provided as an alternative
to setting the result-type attribute using the result-factory attrbitue. An optional result-transformer can
also be specified in order to convert the created Result after marshalling.

<si-xml:marshalling-transformer
input-channel="marshallingTransformerStringResultFactory"
output-channel="output"
marshaller="marshaller"
result-type="StringResult" />

<si-xml:marshalling-transformer
input-channel="marshallingTransformerWithResultTransformer"
output-channel="output"
marshaller="marshaller"
result-transformer="resultTransformer" />

<bean id="resultTransformer"
class="org.springframework.integration.xml.transformer.ResultToStringTransformer"/>

Namespace support for the XsltPayloadTransformer allows either a resource to be passed in in
order to create the Templates instance or alternatively a precreated Templates instance can be
passed in as a reference. In common with the marshalling transformer the type of the result output can be
controlled by specifying either the result-factory or result-type attribute. A result-transfomer attribute can
also be used to reference an implementation of ResultTransfomer where conversion of the result is
required before sending.

<si-xml:xslt-transformer id="xsltTransformerWithResource"
input-channel="withResourceIn"
output-channel="output"
xsl-resource="org/springframework/integration/xml/config/test.xsl"/>

<si-xml:xslt-transformer id="xsltTransformerWithTemplatesAndResultTransformer"
input-channel="withTemplatesAndResultTransformerIn"
output-channel="output"
xsl-templates="templates"

Spring Integration

Manual

result-transformer="resultTransformer"/>

24.4 Splitting xml messages

XPathMessageSplitter supports messages with either String or Document payloads. The
splitter uses the provided XPath expression to split the payload into a number of nodes. By default this
will result in each Node instance becoming the payload of a new message. Where it is preferred that each
message be a Document the createDocuments flag can be set. Where a String payload is passed in
the payload will be converted then split before being converted back to a number of String messages. The
XPath splitter implements MessageConsumer and should therefore be configured in conjunction with
an appropriate endpoint.

<bean id="splittingEndpoint"
class="org.springframework.integration.endpoint.SubscribingConsumerEndpoint">

<constructor-arg>
<bean class="org.springframework.integration.xml.splitter.XPathMessageSplitter">

<constructor-arg value="/order/items" />
<property name="documentBuilder" ref="customisedDocumentBuilder" />
<property name="outputChannel" ref="orderItemsChannel" />

</bean>
</constructor-arg>

<constructor-arg ref="orderChannel" />
</bean>

24.5 Routing xml messages using XPath

Two Router implementations based on XPath are provided XPathSingleChannelRouter and
XPathMultiChannelRouter. The implementations differ in respect to how many channels any
given message may be routed to, exactly one in the case of the single channel version or zero or more in
the case of the multichannel router. Both evaluate an XPath expression against the xml payload of the
message, supported payload types by default are Node, Document and String. For other payload
types a custom implementation of XmlPayloadConverter can be provided. The router
implementations use ChannelNameResolver to convert the result(s) of the XPath expression to a
channel name. By default a BeanFactoryChannelName strategy will be used, this means that the
string returned by the XPath evaluation should correspond directly to the name of a channel. Where this is
not the case an alternative implementation of ChannelNameResolver can be used. Where there is a
simple mapping from Xpath result to channel name the provided MapBasedChannelName can be
used.

<!-- Expects a channel for each value of order type to exist -->
<bean id="singleChannelRoutingEndpoint"

class="org.springframework.integration.endpoint.SubscribingConsumerEndpoint">
<constructor-arg>

<bean class="org.springframework.integration.xml.router.XPathSingleChannelRouter">
<constructor-arg value="/order/@type" />

</bean>
</constructor-arg>

<constructor-arg ref="orderChannel" />
</bean>

Spring Integration

1.0.0 Spring Integration Reference 70

<!-- Multi channel router which uses a map channel resolver to resolve the channel name
based on the XPath evaluation result Since the router is multi channel it may deliver
message to one or both of the configured channels -->

<bean id="multiChannelRoutingEndpoint"
class="org.springframework.integration.endpoint.SubscribingConsumerEndpoint">

<constructor-arg>
<bean class="org.springframework.integration.xml.router.XPathMultiChannelRouter">

<constructor-arg value="/order/recipient" />
<property name="channelResolver">

<bean class="org.springframework.integration.channel.MapBasedChannelResolver">
<constructor-arg>

<map>
<entry key="accounts"

value-ref="accountConfirmationChannel" />
<entry key="humanResources"

value-ref="humanResourcesConfirmationChannel" />
</map>

</constructor-arg>
</bean>

</property>
</bean>

</constructor-arg>
<constructor-arg ref="orderChannel" />

</bean>

24.6 Selecting xml messages using XPath

Two MessageSelector implementations are provided, BooleanTestXPathMessageSelector
and StringValueTestXPathMessageSelector. BooleanTestXPathMessageSelector
requires an XPathExpression which evaluates to a boolean, for example boolean(/one/two) which will
only select messages which have an element named two which is a child of a root element named one.
StringValueTestXPathMessageSelector evaluates any XPath expression as a String and
compares the result with the provided value.

<!-- Interceptor which rejects messages that do not have a root element order -->
<bean id="orderSelectingInterceptor"

class="org.springframework.integration.channel.interceptor.MessageSelectingInterceptor">
<constructor-arg>

<bean class="org.springframework.integration.xml.selector.BooleanTestXPathMessageSelector">
<constructor-arg value="boolean(/order)" />

</bean>
</constructor-arg>

</bean>

<!-- Interceptor which rejects messages that are not version one orders -->
<bean id="versionOneOrderSelectingInterceptor"

class="org.springframework.integration.channel.interceptor.MessageSelectingInterceptor">
<constructor-arg>

<bean class="org.springframework.integration.xml.selector.StringValueTestXPathMessageSelector">
<constructor-arg value="/order/@version" index="0"/>
<constructor-arg value="1" index="1"/>

</bean>
</constructor-arg>

</bean>

24.7 XPath components namespace support

Spring Integration

Manual

All XPath based components have namespace support allowing them to be configured as instances of
MessageEndpoint with the exception of the XPath selectors which are not designed to act as
endpoints. Each component allows the XPath to either be referenced at the top level or configured via a
nested xpath-expression element. So the following configurations of an xpath-selector are all valid and
represent the general form of XPath namespace support. All forms of XPath expression result in the
creation of an XPathExpression using the Spring XPathExpressionFactory

<si-xml:xpath-selector id="xpathRefSelector"
xpath-expression="refToXpathExpression"
evaluation-result-type="boolean" />

<si-xml:xpath-selector id="selectorWithNoNS" evaluation-result-type="boolean" >
<si-xml:xpath-expression expression="/name"/>

</si-xml:xpath-selector>

<si-xml:xpath-selector id="selectorWithOneNS" evaluation-result-type="boolean" >
<si-xml:xpath-expression expression="/ns1:name"

ns-prefix="ns1" ns-uri="www.example.org" />
</si-xml:xpath-selector>

<si-xml:xpath-selector id="selectorWithTwoNS" evaluation-result-type="boolean" >
<si-xml:xpath-expression expression="/ns1:name/ns2:type">

<map>
<entry key="ns1" value="www.example.org/one" />
<entry key="ns2" value="www.example.org/two" />

</map>
</si-xml:xpath-expression>

</si-xml:xpath-selector>

<si-xml:xpath-selector id="selectorWithNamespaceMapRef" evaluation-result-type="boolean" >
<si-xml:xpath-expression expression="/ns1:name/ns2:type"

namespace-map="defaultNamespaces"/>
</si-xml:xpath-selector>

<util:map id="defaultNamespaces">
<util:entry key="ns1" value="www.example.org/one" />
<util:entry key="ns2" value="www.example.org/two" />

</util:map>

XPath splitter namespace support allows the creation of a MessageEndpoint with an input channel and
output channel.

<!-- Split the order into items creating a new message for each item node -->
<si-xml:xpath-splitter id="orderItemSplitter"

input-channel="orderChannel"
output-channel="orderItemsChannel">

<si-xml:xpath-expression expression="/order/items"/>
</si-xml:xpath-selector>

<!-- Split the order into items creating a new document for each item-->
<si-xml:xpath-splitter id="orderItemDocumentSplitter"

input-channel="orderChannel"
output-channel="orderItemsChannel"
create-documents="true">

<si-xml:xpath-expression expression="/order/items"/>
<si:poller>

<si:interval-trigger interval="2000"/>
</si:poller>

</si-xml:xpath-selector>

Spring Integration

1.0.0 Spring Integration Reference 72

XPath router namespace support allows for the creation of a MessageEndpoint with an input channel but
no output channel since the output channel is determined dynamically. The multi-channel attribute causes
the creation of a multi channel router capable of routing a single message to many channels when true and
a single channel router when false.

<!-- route the message according to exactly one order type channel -->
<si-xml:xpath-router id="orderTypeRouter" input-channel="orderChannel" multi-channel="false">

<si-xml:xpath-expression expression="/order/type"/>
</si-xml:xpath-selector>

<!-- route the order to all responders-->
<si-xml:xpath-router id="responderRouter" input-channel="orderChannel" multi-channel="true">

<si-xml:xpath-expression expression="/request/responders"/>
<si:poller>

<si:interval-trigger interval="2000"/>
</si:poller>

</si-xml:xpath-selector>

Spring Integration

Manual

25. Security in Spring Integration

25.1 Introduction

Spring Integration provides integration with the Spring Security project to allow role based security
checks to be applied to channel send and receive invocations.

25.2 Securing channels

Spring Integration provides the interceptor ChannelSecurityInterceptor, which extends
AbstractSecurityInterceptor and intercepts send and receive calls on the channel. Access
decisions are then made with reference to ChannelInvocationDefinitionSource which
provides the definition of the send and receive security constraints. The interceptor requires that a valid
SecurityContext has been established by authenticating with Spring Security, see the Spring
Security reference documentation for details.

Namespace support is provided to allow easy configuration of security constraints. This consists of the
secured channels tag which allows definition of one or more channel name patterns in conjunction with a
definition of the security configuration for send and receive. The pattern is a
java.util.regexp.Pattern.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/integration"

xmlns:si-security="http://www.springframework.org/schema/integration/security"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:security="http://www.springframework.org/schema/security"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-2.0.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/security
http://www.springframework.org/schema/integration/security/spring-integration-security-1.0.xsd">

<si-security:secured-channels>
<si-security:access-policy pattern="admin.*" send-access="ROLE_ADMIN"/>
<si-security:access-policy pattern="user.*" receive-access="ROLE_USER"/>

</si-security:secured-channels>

By default the secured-channels namespace element expects a bean named authenticationManager which
implements AuthenticationManager and a bean named accessDecisionManager which
implements AccessDecisionManager. Where this is not the case references to the appropriate beans
can be configured as attributes of the secured-channels element as below.

<si-security:secured-channels access-decision-manager="customAccessDecisionManager"
authentication-manager="customAuthenticationManager">

<si-security:access-policy pattern="admin.*" send-access="ROLE_ADMIN"/>
<si-security:access-policy pattern="user.*" receive-access="ROLE_USER"/>

Spring Integration

1.0.0 Spring Integration Reference 74

http://static.springframework.org/spring-security/site/

</si-security:secured-channels>

Spring Integration

1.0.0 Spring Integration Reference 75

Appendix A. Spring Integration
Samples

A.1 The Cafe Sample

In this section, we will review a sample application that is included in the Spring Integration distribution.
This sample is inspired by one of the samples featured in Gregor Hohpe's Ramblings.

The domain is that of a Cafe, and the basic flow is depicted in the following diagram:

The Order object may contain multiple OrderItems. Once the order is placed, a Splitter will break
the composite order message into a single message per drink. Each of these is then processed by a Router
that determines whether the drink is hot or cold (checking the OrderItem object's 'isIced' property).
Finally the Barista prepares each drink, but hot and cold drink preparation are handled by two distinct
methods: 'prepareHotDrink' and 'prepareColdDrink'. The prepared drinks are then sent to the Waiter
where they are aggregated into a Delivery object.

Here is the XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/integration"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:stream="http://www.springframework.org/schema/integration/stream"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/stream
http://www.springframework.org/schema/integration/stream/spring-integration-stream-1.0.xsd">

<gateway id="cafe" service-interface="org.springframework.integration.samples.cafe.Cafe"/>

<channel id="orders"/>
<splitter input-channel="orders" ref="orderSplitter" method="split" output-channel="drinks"/>

<channel id="drinks"/>
<router input-channel="drinks" ref="drinkRouter" method="resolveOrderItemChannel"/>

<channel id="coldDrinks">
<queue capacity="10"/>

</channel>
<service-activator input-channel="coldDrinks" ref="barista"

Spring Integration

1.0.0 Spring Integration Reference 76

http://www.eaipatterns.com/ramblings.html

method="prepareColdDrink" output-channel="preparedDrinks"/>

<channel id="hotDrinks">
<queue capacity="10"/>

</channel>
<service-activator input-channel="hotDrinks" ref="barista"

method="prepareHotDrink" output-channel="preparedDrinks"/>

<channel id="preparedDrinks"/>
<aggregator input-channel="preparedDrinks" ref="waiter"

method="prepareDelivery" output-channel="deliveries"/>

<stream:stdout-channel-adapter id="deliveries"/>

<beans:bean id="orderSplitter"
class="org.springframework.integration.samples.cafe.xml.OrderSplitter"/>

<beans:bean id="drinkRouter"
class="org.springframework.integration.samples.cafe.xml.DrinkRouter"/>

<beans:bean id="barista" class="org.springframework.integration.samples.cafe.xml.Barista"/>

<beans:bean id="waiter" class="org.springframework.integration.samples.cafe.xml.Waiter"/>

<poller id="poller" default="true">
<interval-trigger interval="1000"/>

</poller>

</beans:beans>

As you can see, each Message Endpoint is connected to input and/or output channels. Each endpoint will
manage its own Lifecycle (by default endpoints start automatically upon initialization - to prevent that
add the "auto-startup" attribute with a value of "false"). Most importantly, notice that the objects are
simple POJOs with strongly typed method arguments. For example, here is the Splitter:

public class OrderSplitter {

public List<OrderItem> split(Order order) {
return order.getItems();

}
}

In the case of the Router, the return value does not have to be a MessageChannel instance (although it
can be). As you see in this example, a String-value representing the channel name is returned instead.

public class DrinkRouter {

public String resolveOrderItemChannel(OrderItem orderItem) {
return (orderItem.isIced()) ? "coldDrinks" : "hotDrinks";

}
}

Now turning back to the XML, you see that there are two <service-activator> elements. Each of these is
delegating to the same Barista instance but different methods: 'prepareHotDrink' or 'prepareColdDrink'
corresponding to the two channels where order items have been routed.

public class Barista {

private long hotDrinkDelay = 5000;
private long coldDrinkDelay = 1000;

private AtomicInteger hotDrinkCounter = new AtomicInteger();
private AtomicInteger coldDrinkCounter = new AtomicInteger();

Spring Integration

1.0.0 Spring Integration Reference 77

public void setHotDrinkDelay(long hotDrinkDelay) {
this.hotDrinkDelay = hotDrinkDelay;

}

public void setColdDrinkDelay(long coldDrinkDelay) {
this.coldDrinkDelay = coldDrinkDelay;

}

public Drink prepareHotDrink(OrderItem orderItem) {
try {

Thread.sleep(this.hotDrinkDelay);
System.out.println(Thread.currentThread().getName()

+ " prepared hot drink #" + hotDrinkCounter.incrementAndGet()
+ " for order #" + orderItem.getOrder().getNumber() + ": " + orderItem);

return new Drink(orderItem.getOrder().getNumber(), orderItem.getDrinkType(),
orderItem.isIced(), orderItem.getShots());

}
catch (InterruptedException e) {

Thread.currentThread().interrupt();
return null;

}
}

public Drink prepareColdDrink(OrderItem orderItem) {
try {

Thread.sleep(this.coldDrinkDelay);
System.out.println(Thread.currentThread().getName()

+ " prepared cold drink #" + coldDrinkCounter.incrementAndGet()
+ " for order #" + orderItem.getOrder().getNumber() + ": " + orderItem);

return new Drink(orderItem.getOrder().getNumber(), orderItem.getDrinkType(),
orderItem.isIced(), orderItem.getShots());

}
catch (InterruptedException e) {

Thread.currentThread().interrupt();
return null;

}
}

}

As you can see from the code excerpt above, the barista methods have different delays (the hot drinks
take 5 times as long to prepare). This simulates work being completed at different rates. When the
CafeDemo 'main' method runs, it will loop 100 times sending a single hot drink and a single cold drink
each time. It actually sends the messages by invoking the 'placeOrder' method on the Cafe interface.
Above, you will see that the <gateway> element is specified in the configuration file. This triggers the
creation of a proxy that implements the given 'service-interface' and connects it to a channel. The channel
name is provided on the @Gateway annotation of the Cafe interface.

public interface Cafe {

@Gateway(requestChannel="orders")
void placeOrder(Order order);

}

Finally, have a look at the main() method of the CafeDemo itself.

public static void main(String[] args) {
AbstractApplicationContext context = null;
if (args.length > 0) {

context = new FileSystemXmlApplicationContext(args);
}

Spring Integration

Manual

else {
context = new ClassPathXmlApplicationContext("cafeDemo.xml", CafeDemo.class);

}
Cafe cafe = (Cafe) context.getBean("cafe");
for (int i = 1; i <= 100; i++) {

Order order = new Order(i);
order.addItem(DrinkType.LATTE, 2, false);
order.addItem(DrinkType.MOCHA, 3, true);
cafe.placeOrder(order);

}
}

To run this demo, go to the "samples" directory within the root of the Spring Integration distribution. On
Unix/Mac you can run 'cafeDemo.sh', and on Windows you can run 'cafeDemo.bat'. Each of these will by
default create a Spring ApplicationContext from the 'cafeDemo.xml' file that is in the
"spring-integration-samples" JAR and hence on the classpath (it is the same as the XML above).
However, a copy of that file is also available within the "samples" directory, so that you can provide the
file name as a command line argument to either 'cafeDemo.sh' or 'cafeDemo.bat'. This will allow you to
experiment with the configuration and immediately run the demo with your changes. It is probably a good
idea to first copy the original file so that you can make as many changes as you want and still refer back
to the original to compare.

When you run cafeDemo, you will see that the cold drinks are initially prepared more quickly than the hot
drinks. Because there is an aggregator, the cold drinks are effectively limited by the rate of the hot drink
preparation. This is to be expected based on their respective delays of 1000 and 5000 milliseconds.
However, by configuring a poller with a concurrent task executor, you can dramatically change the
results. For example, you could use a thread pool executor with 5 workers for the hot drink barista while
keeping the cold drink barista as it is:

<service-activator input-channel="hotDrinks"
ref="barista"
method="prepareHotDrink"
output-channel="preparedDrinks"/>

<service-activator input-channel="hotDrinks"
ref="barista"
method="prepareHotDrink"
output-channel="preparedDrinks">

<poller task-executor="pool">
<interval-trigger interval="1000"/>

</poller>
</service-activator>

<thread-pool-task-executor id="pool" core-size="5"/>

Also, notice that the worker thread name is displayed with each invocation. You will see that the hot
drinks are prepared by the task-executor threads. If you provide a much shorter poller interval (such as
100 milliseconds), then you will notice that occasionally it throttles the input by forcing the
task-scheduler (the caller) to invoke the operation.

In addition to experimenting with the poller's concurrency settings, you can also add the 'transactional'
sub-element. If you want to explore the sample in more detail, the source JAR is available in the "src"
directory: 'org.springframework.integration.samples-sources-1.0.0.jar'.

Spring Integration

1.0.0 Spring Integration Reference 79

A.2 The xml messaging sample

The xml messaging sample in org.springframework.integration.samples.xml illustrates how to use some
of the provided components which deal with xml payloads. The sample uses the idea of processing an
order for books represented as xml.

First the order is split into a number of messages, each one representing a single order item using the
XPath splitter component.

<si-xml:xpath-splitter id="orderItemSplitter" input-channel="ordersChannel"
output-channel="stockCheckerChannel" create-documents="true">

<si-xml:xpath-expression expression="/orderNs:order/orderNs:orderItem" namespace-map="orderNamespaceMap" />
</si-xml:xpath-splitter>

A service activator is then used to pass the message into a stock checker POJO. The order item document
is enriched with information from the stock checker about order item stock level. This enriched order item
message is then used to route the message. In the case where the order item is in stock the message is
routed to the warehouse. The XPath router makes use of a MapBasedChannelResolver which maps
the XPath evaluation result to a channel reference.

<si-xml:xpath-router id="instockRouter" channel-resolver="mapChannelResolver"
input-channel="orderRoutingChannel" resolution-required="true">

<si-xml:xpath-expression expression="/orderNs:orderItem/@in-stock" namespace-map="orderNamespaceMap" />
</si-xml:xpath-router>

<bean id="mapChannelResolver"
class="org.springframework.integration.channel.MapBasedChannelResolver">
<property name="channelMap">

<map>
<entry key="true" value-ref="warehouseDispatchChannel" />
<entry key="false" value-ref="outOfStockChannel" />

</map>
</property>

</bean>

Where the order item is not in stock the message is transformed using xslt into a format suitable for
sending to the supplier.

<si-xml:xslt-transformer input-channel="outOfStockChannel" output-channel="resupplyOrderChannel"
xsl-resource="classpath:org/springframework/integration/samples/xml/bigBooksSupplierTransformer.xsl"/>

Spring Integration

Manual

Appendix B. Configuration

B.1 Introduction

Spring Integration offers a number of configuration options. Which option you choose depends upon your
particular needs and at what level you prefer to work. As with the Spring framework in general, it is also
possible to mix and match the various techniques according to the particular problem at hand. For
example, you may choose the XSD-based namespace for the majority of configuration combined with a
handful of objects that are configured with annotations. As much as possible, the two provide consistent
naming. XML elements defined by the XSD schema will match the names of annotations, and the
attributes of those XML elements will match the names of annotation properties. Direct usage of the API
is of course always an option, but we expect that most users will choose one of the higher-level options,
or a combination of the namespace-based and annotation-driven configuration.

B.2 Namespace Support

Spring Integration components can be configured with XML elements that map directly to the
terminology and concepts of enterprise integration. In many cases, the element names match those of the
Enterprise Integration Patterns.

To enable Spring Integration's core namespace support within your Spring configuration files, add the
following namespace reference and schema mapping in your top-level 'beans' element:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:integration="http://www.springframework.org/schema/integration"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd">

You can choose any name after "xmlns:"; integration is used here for clarity, but you might prefer a
shorter abbreviation. Of course if you are using an XML-editor or IDE support, then the availability of
auto-completion may convince you to keep the longer name for clarity. Alternatively, you can create
configuration files that use the Spring Integration schema as the primary namespace:

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd">

When using this alternative, no prefix is necessary for the Spring Integration elements. On the other hand,
if you want to define a generic Spring "bean" within the same configuration file, then a prefix would be

Spring Integration

1.0.0 Spring Integration Reference 81

http://www.eaipatterns.com

required for the bean element (<beans:bean ... />). Since it is generally a good idea to modularize the
configuration files themselves based on responsibility and/or architectural layer, you may find it
appropriate to use the latter approach in the integration-focused configuration files, since generic beans
are seldom necessary within those same files. For purposes of this documentation, we will assume the
"integration" namespace is primary.

Many other namespaces are provided within the Spring Integration distribution. In fact, each adapter type
(JMS, File, etc.) that provides namespace support defines its elements within a separate schema. In order
to use these elements, simply add the necessary namespaces with an "xmlns" entry and the corresponding
"schemaLocation" mapping. For example, the following root element shows several of these namespace
declarations:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:integration="http://www.springframework.org/schema/integration"
xmlns:file="http://www.springframework.org/schema/integration/file"
xmlns:jms="http://www.springframework.org/schema/integration/jms"
xmlns:mail="http://www.springframework.org/schema/integration/mail"
xmlns:rmi="http://www.springframework.org/schema/integration/rmi"
xmlns:ws="http://www.springframework.org/schema/integration/ws"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/integration/file
http://www.springframework.org/schema/integration/file/spring-integration-file-1.0.xsd
http://www.springframework.org/schema/integration/jms
http://www.springframework.org/schema/integration/jms/spring-integration-jms-1.0.xsd
http://www.springframework.org/schema/integration/mail
http://www.springframework.org/schema/integration/mail/spring-integration-mail-1.0.xsd
http://www.springframework.org/schema/integration/rmi
http://www.springframework.org/schema/integration/rmi/spring-integration-rmi-1.0.xsd
http://www.springframework.org/schema/integration/ws
http://www.springframework.org/schema/integration/ws/spring-integration-ws-1.0.xsd">

...
</beans>

The reference manual provides specific examples of the various elements in their corresponding chapters.
Here, the main thing to recognize is the consistency of the naming for each namespace URI and schema
location.

B.3 Configuring the Task Scheduler

In Spring Integration, the ApplicationContext plays the central role of a Message Bus, and there are only
a couple configuration options to be aware of. First, you may want to control the central TaskScheduler
instance. You can do so by providing a single bean with the name "taskScheduler". This is also defined as
a constant:

IntegrationContextUtils.TASK_SCHEDULER_BEAN_NAME

By default Spring Integration uses the SimpleTaskScheduler implementation. That in turn just
delegates to any instance of Spring's TaskExecutor abstraction. Therefore, it's rather trivial to supply
your own configuration. The "taskScheduler" bean is then responsible for managing all pollers. The

Spring Integration

1.0.0 Spring Integration Reference 82

TaskScheduler will startup automatically by default. If you provide your own instance of
SimpleTaskScheduler however, you can set the 'autoStartup' property to false instead.

When the endpoints are concurrency-enabled with their own 'taskExecutor' reference, the invocation of
the handling methods will happen within that executor's thread pool and not the main scheduler pool.
However, when no task-executor is provided for an endpoint's poller, it will be invoked in the dispatcher's
thread (with the exception of subscribable channels where the subscribers will be invoked directly). The
next section will describe what happens if Exceptions occur within the asynchronous invocations.

B.4 Error Handling

As described in the overview at the very beginning of this manual, one of the main motivations behind a
Message-oriented framework like Spring Integration is to promote loose-coupling between components.
The Message Channel plays an important role in that producers and consumers do not have to know about
each other. However, the advantages also have some drawbacks. Some things become more complicated
in a very loosely coupled environment, and one example is error handling.

When sending a Message to a channel, the component that ultimately handles that Message may or may
not be operating within the same thread as the sender. If using a simple default DirectChannel (with the
<channel> element that has no <queue> sub-element), the handling will be in the same thread. In that
case, if an Exception is thrown, it will be catch-able by the sender (or it may propagate past the sender if
it is an uncaught RuntimeException). So far, everything is fine. This is the same behavior as an
Exception-throwing operation in a normal call stack. However, when adding the asynchronous aspect,
things become much more complicated. For instance, if the 'channel' element does provide a 'queue'
sub-element, then the component that handles the Message will be operating in a different thread than the
sender. The sender may have dropped the Message and moved on to other things. There is no way for the
Exception to be thrown directly back to that sender using standard Exception throwing techniques.
Instead, to handle errors for asynchronous processes requires an asynchronous error-handling mechanism
as well.

Spring Integration supports error handling for its components by publishing errors to a Message Channel.
Specifically, the Exception will become the payload of a Spring Integration Message. That Message will
then be sent to a Message Channel that is resolved in a way that is very similar to the 'replyChannel'
resolution. First, if the request Message being handled at the time the Exception occurred contains an
'errorChannel' header (the header name is defined in the constant:
MessageHeaders.ERROR_CHANNEL), the ErrorMessage will be sent to that channel. Otherwise, the
error handler will send to a "global" channel whose bean name is "errorChannel" (this is also defined as a
constant: IntegrationContextUtils.ERROR_CHANNEL_BEAN_NAME).

Whenever relying on Spring Integration's XML namespace support, a default "errorChannel" bean will be
created behind the scenes. However, you can just as easily define your own if you want to control the
settings.

<channel id="errorChannel" capacity="500"/>

Spring Integration

Manual

The most important thing to understand here is that the Messaging-based error handling will only apply to
Exceptions that are thrown by a Spring Integration task that is executing within a TaskExecutor. This
does not apply to Exceptions thrown by a handler that is operating within the same thread as the sender
(e.g. through a DirectChannel as described above). However, when Exceptions occur in a scheduled
poller task's execution, those exceptions will be wrapped in ErrorMessages and sent to the
'errorChannel' by default. To enable global error handling, simply register a handler on that channel. For
example, you can configure Spring Integration's ErrorMessageExceptionTypeRouter as the
handler of an endpoint that is subscribed to the 'errorChannel'. That router can then spread the error
messages across multiple channels based on Exception type.

B.5 Annotation Support

In addition to the XML namespace support for configuring Message Endpoints, it is also possible to use
annotations. First, Spring Integration provides the class-level @MessageEndpoint as a stereotype
annotation meaning that is itself annotated with Spring's @Component annotation and therefore is
recognized automatically as a bean definition when using Spring component-scanning.

Even more importantly are the various Method-level annotations that indicate the annotated method is
capable of handling a message. The following example demonstrates both:

@MessageEndpoint
public class FooService {

@ServiceActivator
public void processMessage(Message message) {

...
}

}

Exactly what it means for the method to "handle" the Message depends on the particular annotation. The
following are available with Spring Integration, and the behavior of each is described in its own chapter
or section within this reference: @Transformer, @Router, @Splitter, @Aggregator, @ServiceActivator,
and @ChannelAdapter.

Note
The @MessageEndpoint is not required. If you want to configure a POJO reference from the
"ref" attribute of a <service-activator/> element, it is sufficient to provide the method-level
annotations.

In most cases, the annotated handler method should not require the Message type as its parameter.
Instead, the method parameter type can match the message's payload type.

public class FooService {

@Handler
public void bar(Foo foo) {

...
}

Spring Integration

1.0.0 Spring Integration Reference 84

}

When the method parameter should be mapped from a value in the MessageHeader, another option is
to use the parameter-level @Header annotation. In general, methods annotated with the Spring
Integration annotations can either accept the Message itself, the message payload, or a header value
(with @Header) as the parameter. In fact, the method can accept a combination, such as:

public class FooService {

@ServiceActivator
public void bar(String payload, @Header("x") int valueX, @Header("y") int valueY) {

...
}

}

There is also a @Headers annotation that provides all of the Message headers as a Map:

public class FooService {

@ServiceActivator
public void bar(String payload, @Headers Map<String, Object> headerMap) {

...
}

}

For several of these annotations, when a Message-handling method returns a non-null value, the endpoint
will attempt to send a reply. This is consistent across both configuration options (namespace and
annotations) in that the such an endpoint's output channel will be used if available, and the message
header's REPLY_CHANNEL value will be the fallback.

In addition to the examples shown here, these annotations also support inputChannel and outputChannel
properties.

public class FooService {

@ServiceActivator(inputChannel="input", outputChannel="output")
public void bar(String payload, @Headers Map<String, Object> headerMap) {

...
}

}

That provides a pure annotation-driven alternative to the XML configuration. However, it is generally
recommended to use XML for the endpoints, since it is easier to keep track of the overall configuration in
a single, external location (and besides the XML configuration is not very verbose). If you do prefer to
provide channels with the annotations however, you just need to enable a BeanPostProcessor. The
following element should be added:

<annotation-config/>

Note
When configuring the "inputChannel" and "outputChannel" with annotations, the

Spring Integration

Manual

"inputChannel" must be a reference to a SubscribableChannel instance. Otherwise, it
would be necessary to also provide the full poller configuration via annotations, and those
settings (e.g. the trigger for scheduling the poller) should be externalized rather than
hard-coded within an annotation. If the input channel that you want to receive Messages from
is indeed a PollableChannel instance, one option to consider is the Messaging Bridge.
Spring Integration's "bridge" element can be used to connect a PollableChannel directly to a
SubscribableChannel. Then, the polling metadata is externally configured, but the annotation
option is still available. For more detail see Chapter 15, Messaging Bridge.

Spring Integration

1.0.0 Spring Integration Reference 86

Appendix C. Additional Resources

C.1 Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home at
http://www.springframework.org. That site serves as a hub of information and is the best place to find
up-to-date announcements about the project as well as links to articles, blogs, and new sample
applications.

Spring Integration

1.0.0 Spring Integration Reference 87

http://www.springframework.org/spring-integration
http://www.springframework.org

	Spring Integration Reference Manual
	Table of Contents
	1. Spring Integration Overview
	1.1 Background
	1.2 Goals and Principles
	1.3 Main Components
	Message
	Message Channel
	Message Endpoint

	1.4 Message Endpoints
	Transformer
	Filter
	Router
	Splitter
	Aggregator
	Service Activator
	Channel Adapter

	2. Message Construction
	2.1 The Message Interface
	2.2 Message Headers
	2.3 Message Implementations
	2.4 The MessageBuilder Helper Class

	3. Message Channels
	3.1 The MessageChannel Interface
	PollableChannel
	SubscribableChannel

	3.2 Message Channel Implementations
	PublishSubscribeChannel
	QueueChannel
	PriorityChannel
	RendezvousChannel
	DirectChannel
	ThreadLocalChannel

	3.3 Channel Interceptors
	3.4 MessageChannelTemplate
	3.5 Configuring Message Channels
	DirectChannel Configuration
	QueueChannel Configuration
	PublishSubscribeChannel Configuration
	PriorityChannel Configuration
	RendezvousChannel Configuration
	ThreadLocalChannel Configuration

	4. Message Endpoints
	4.1 Message Handler
	4.2 Event-Driven Consumer
	4.3 Polling Consumer
	4.4 Namespace Support

	5. Service Activator
	5.1 Introduction
	5.2 The <service-activator/> Element

	6. Channel Adapter
	6.1 The <inbound-channel-adapter> element
	6.2 The <outbound-channel-adapter/> element

	7. Router
	7.1 Router Implementations
	PayloadTypeRouter
	RecipientListRouter

	7.2 The <router> element
	7.3 The @Router Annotation

	8. Message Filter
	8.1 Introduction
	8.2 The <filter> Element

	9. Transformer
	9.1 Introduction
	9.2 The <transformer> Element
	9.3 The @Transformer Annotation

	10. Splitter
	10.1 Introduction
	10.2 Functionality
	10.3 Programming model
	10.4 Configuring a Splitter using XML
	10.5 Configuring a Splitter with Annotations

	11. Aggregator
	11.1 Introduction
	11.2 Functionality
	11.3 Programming model
	11.4 Configuring an Aggregator with XML
	11.5 Configuring an Aggregator with Annotations

	12. Resequencer
	12.1 Introduction
	12.2 Functionality
	12.3 Configuring a Resequencer with XML

	13. Message Handler Chain
	13.1 Introduction
	13.2 The <chain> Element

	14. Inbound Messaging Gateways
	14.1 SimpleMessagingGateway
	14.2 GatewayProxyFactoryBean

	15. Messaging Bridge
	15.1 Introduction
	15.2 The <bridge> Element

	16. File Support
	16.1 Introduction
	16.2 Reading Files
	16.3 Writing files
	16.4 File Transformers

	17. JMS Support
	17.1 Inbound Channel Adapter
	17.2 Message-Driven Channel Adapter
	17.3 Outbound Channel Adapter
	17.4 Inbound Gateway
	17.5 Outbound Gateway
	17.6 JMS Samples

	18. Web Services Support
	18.1 Outbound Web Service Gateways
	18.2 Web Service Namespace Support

	19. RMI Support
	19.1 Introduction
	19.2 Outbound RMI
	19.3 Inbound RMI
	19.4 RMI namespace support

	20. HttpInvoker Support
	20.1 Introduction
	20.2 HttpInvoker Inbound Gateway
	20.3 HttpInvoker Outbound Gateway
	20.4 HttpInvoker Namespace Support

	21. Mail Support
	21.1 Mail-Sending Channel Adapter
	21.2 Mail-Receiving Channel Adapter
	21.3 Mail Namespace Support

	22. Stream Support
	22.1 Introduction
	22.2 Reading from streams
	22.3 Writing to streams
	22.4 Stream namespace support

	23. Spring ApplicationEvent Support
	24. Dealing with XML Payloads
	24.1 Introduction
	24.2 Transforming xml payloads
	24.3 Namespace support for xml transformers
	24.4 Splitting xml messages
	24.5 Routing xml messages using XPath
	24.6 Selecting xml messages using XPath
	24.7 XPath components namespace support

	25. Security in Spring Integration
	25.1 Introduction
	25.2 Securing channels

	Appendix A. Spring Integration Samples
	A.1 The Cafe Sample
	A.2 The xml messaging sample

	Appendix B. Configuration
	B.1 Introduction
	B.2 Namespace Support
	B.3 Configuring the Task Scheduler
	B.4 Error Handling
	B.5 Annotation Support

	Appendix C. Additional Resources
	C.1 Spring Integration Home

