
Spring Integration Reference Manual
Mark Fisher

1.0.0.m2 (Milestone 2)

Copyright © SpringSource Inc., 2008

Table of Contents
1. Spring Integration Overview ..1

1.1. Background ...1
1.2. Goals and Principles ...1
1.3. Main Components ..2

Message ...2
Message Channel ..2
Message Endpoint ..3
Message Router ..3
Channel Adapter ...3
Message Bus ..3

2. The Core API ...4
2.1. Message ..4
2.2. MessageChannel ..5
2.3. ChannelInterceptor ...5
2.4. MessageHandler ...6
2.5. MessageBus ...7
2.6. MessageEndpoint ...9
2.7. MessageSelector ..10

3. Channel Adapters ..11
3.1. Introduction ...11
3.2. JMS Adapters ..11
3.3. File Adapters ...12
3.4. Mail Adapters ..12
3.5. Stream Adapters ...13
3.6. ApplicationEvent Adapters ...13

4. Configuration ...14
4.1. Introduction ...14
4.2. Namespace Support ..14

Configuring Message Channels ...15
Configuring Message Endpoints ..16
Configuring the Message Bus ..17
Configuring Channel Adapters ..18
Enabling Annotation-Driven Configuration ..19

4.3. Annotations ...19
5. Spring Integration Samples ..22

5.1. The Cafe Sample ..22
6. Additional Resources ..26

6.1. Spring Integration Home ...26

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference ii

1. Spring Integration Overview

1.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic
cross-cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Developers benefit from the consistency of this model and especially the
fact that it is based upon well-established best practices such as programming to interfaces and favoring
composition over inheritance. Spring's simplified abstractions and powerful support libraries boost
developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is a new member of the Spring portfolio motivated by these same goals and principles.
It extends the Spring programming model into the messaging domain and builds upon Spring's existing
enterprise integration support to provide an even higher level of abstraction. It supports message-driven
architectures where inversion of control applies to runtime concerns, such as when certain business logic
should execute and where the response should be sent. It supports routing and transformation of messages
so that different transports and different data formats can be integrated without impacting testability. In
other words, the messaging and integration concerns are handled by the framework, so business
components are further isolated from the infrastructure and developers are relieved of complex integration
responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean"
elements, and of course direct usage of the underlying API. That API is based upon well-defined strategy
interfaces and non-invasive, delegating adapters. Spring Integration's design is inspired by the recognition
of a strong affinity between common patterns within Spring and the well-known Enterprise Integration
Patterns [http://www.eaipatterns.com] as described in the book of the same name by Gregor Hohpe and
Bobby Woolf (Addison Wesley, 2003). Developers who have read that book should be immediately
comfortable with the Spring Integration concepts and terminology.

1.2 Goals and Principles

Spring Integration is motivated by the following goals:

• Provide a simple model for implementing complex enterprise integration solutions.

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 1

http://www.eaipatterns.com
http://www.eaipatterns.com
http://www.eaipatterns.com

• Facilitate asynchronous, message-driven behavior within a Spring-based application.

• Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

• Components should be loosely coupled for modularity and testability.

• The framework should enforce separation of concerns between business logic and integration logic.

• Extension points should be abstract in nature but within well-defined boundaries to promote reuse and
portability.

1.3 Main Components

From the vertical perspective, a layered architecture facilitates separation of concerns, and interface-based
contracts between layers promote loose coupling. Spring-based applications are typically designed this
way, and the Spring framework and portfolio provide a strong foundation for following this best practice
for the full-stack of an enterprise application. Message-driven architectures add a horizontal perspective,
yet these same goals are still relevant. Just as "layered architecture" is an extremely generic and abstract
paradigm, messaging systems typically follow the similarly abstract "pipes-and-filters" model. The
"filters" represent any component that is capable of producing and/or consuming messages, and the
"pipes" transport the messages between filters so that the components themselves remain loosely-coupled.
It is important to note that these two high-level paradigms are not mutually exclusive. The underlying
messaging infrastructure that supports the "pipes" should still be encapsulated in a layer whose contracts
are defined as interfaces. Likewise, the "filters" themselves would typically be managed within a layer
that is logically above the application's service layer, interacting with those services through interfaces
much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and header and has a unique
identifier. The payload can be of any type and the header holds commonly required information such as
timestamp, expiration, and return address. Developers can also store any arbitrary key-value properties or
attributes in the header.

Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages to
a MessageChannel, and consumers receive Messages from a MessageChannel. The send and receive
methods both come in two forms: one that blocks indefinitely and one that accepts a timeout (for an
immediate return, specify a timeout value of 0). There are two main types of channels: Point-to-Point

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 2

channels where typically a single consumer will receive the Message and Publish-Subscribe channels
where all subscribers should receive the Message.

Message Endpoint

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. The endpoint's primary role
is to connect application code to the messaging framework and to do so in a non-invasive manner. In
other words, the application code should have no awareness of the messaging framework. This is similar
to the role of a Controller in the MVC paradigm. Just as a Controller handles HTTP requests, the endpoint
handles Messages. Just as Controllers are mapped to URL patterns, endpoints are mapped to Message
Channels. The goal is the same in both cases: isolate application code from the infrastructure. In Spring
Integration, the Message Endpoint "hosts" and delegates to a MessageHandler strategy interface as
described in Section 2.4, “MessageHandler”.

Message Router

A Message Router is a particular type of MessageHandler that is capable of receiving a Message and
then deciding what channel or channels should receive the Message next. Typically the decision is based
upon the Message's content and/or metadata. A Message Router is often used as a dynamic alternative to
configuring the input and output channels for an endpoint.

Channel Adapter

A Channel Adapter is used to connect components to a Message Channel when those components are not
themselves Message Endpoints. These adapters provide a mechanism for connecting to external systems,
such as JMS queues or a File system. Channel Adapters may be configured for input and/or output. An
input (source) adapter will receive (or poll for) data, convert that data to a Message, and then send that
Message to its Message Channel. An output (target) adapter is simply another type of
MessageHandler, but when it receives a Message, it will convert it to the target's expected type and
then "send" it (publish to a JMS queue, write to a File, etc.).

Message Bus

The Message Bus acts as a registry for Message Channels and Message Endpoints. It also encapsulates
the complexity of message retrieval and dispatching. Essentially, the Message Bus forms a logical
extension of the Spring application context into the messaging domain. For example, it will automatically
detect Message Channel and Message Endpoint components from within the application context. It
handles the scheduling of pollers, the creation of thread pools, and the lifecycle management of all
messaging components that can be initialized, started, and stopped. The Message Bus is the primary
example of inversion of control within Spring Integration.

Spring Integration

Manual

2. The Core API

2.1 Message

The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message also includes a header containing user-extensible properties as key-value
pairs. Here is the definition of the Message interface:

public interface Message<T> {
Object getId();
MessageHeader getHeader();
T getPayload();
boolean isExpired();

}

And the header provides the following properties:

Table 2.1. Properties of the MessageHeader

Property Name Property Type

timestamp java.util.Date

expiration java.util.Date

correlationId java.lang.Object

returnAddress java.lang.Object (can be a String or
MessageChannel)

sequenceNumber int

sequenceSize int

priority int

properties java.util.Properties

attributes Map<String,Object>

The base implementation of the Message interface is GenericMessage<T>, and it provides three
constructors:

new GenericMessage<T>(Object id, T payload);
new GenericMessage<T>(T payload);
new GenericMessage<T>(T payload, MessageHeader headerToCopy)

When no id is provided, a random unique id will be generated. The constructor that accepts a
MessageHeader will copy properties, attributes, and any 'returnAddress' from the provided header.

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 4

There are also two convenient subclasses available currently: StringMessage and ErrorMessage.
The latter accepts any Throwable object as its payload.

The Message is obviously a very important part of the API. By encapsulating the data in a generic
wrapper, the messaging system can pass it around without any knowledge of the data's type. As the
system evolves to support new types, or when the types themselves are modified and/or extended, the
messaging system will not be affected by such changes. On the other hand, when some component in the
messaging system does require access to information about the Message, such metadata can typically be
stored to and retrieved from the metadata in the header (the 'properties' and 'attributes').

2.2 MessageChannel

While the Message plays the crucial role of encapsulating data, it is the MessageChannel that
decouples message producers from message consumers. Spring Integration's MessageChannel
interface is defined as follows.

public interface MessageChannel {
String getName();
void setName(String name);
DispatcherPolicy getDispatcherPolicy();
boolean send(Message message);
boolean send(Message message, long timeout);
Message receive();
Message receive(long timeout);
List<Message<?>> clear();
List<Message<?>> purge(MessageSelector selector);

}

When sending a message, the return value will be true if the message is sent successfully. If the send call
times out or is interrupted, then it will return false. Likewise when receiving a message, the return value
will be null in the case of a timeout or interrupt. The SimpleChannel implementation wraps a queue.
It provides a no-argument constructor as well as a constructor that accepts the queue capacity:

public SimpleChannel(int capacity)

Specifying a capacity of 0 will create a "direct-handoff" channel where a sender will block until the
channel's receive() method is called. Otherwise a channel that has not reached its capacity limit will
store messages in its internal queue, and the send() method will return immediately even if no receiver
is ready to handle the message.

Whereas the SimpleChannel enforces first-in/first-out (FIFO) ordering, the PriorityChannel is
an alternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority is determined by the 'priority' property within each message's header.
However, for custom priority determination logic, a comparator of type Comparator<Message<?>>
can be provided to the PriorityChannel's constructor.

2.3 ChannelInterceptor

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 5

One of the advantages of a messaging architecture is the ability to provide common behavior and capture
meaningful information about the messages passing through the system in a non-invasive way. Since the
Messages are being sent to and received from MessageChannels, those channels provide an
opportunity for intercepting the send and receive operations. The ChannelInterceptor strategy
interface provides methods for each of those operations:

public interface ChannelInterceptor {
boolean preSend(Message<?> message, MessageChannel channel);
void postSend(Message<?> message, MessageChannel channel, boolean sent);
boolean preReceive(MessageChannel channel);
void postReceive(Message<?> message, MessageChannel channel);

}

After implementing the interface, registering the interceptor with a channel is just a matter of calling:

channel.addInterceptor(someChannelInterceptor);

The methods that return a boolean value can return 'false' to prevent the send or receive operation
from proceeding (send would return 'false' and receive would return 'null').

Because it is rarely necessary to implement all of the interceptor methods, a
ChannelInterceptorAdapter class is also available for sub-classing. It provides no-op methods
(the void methods are empty, and the boolean methods return true). Therefore, it is often easiest to
extend that class and just implement the method(s) that you need as in the following example.

public class CountingChannelInterceptor extends ChannelInterceptorAdapter {

private final AtomicInteger sendCount = new AtomicInteger();

@Override
public boolean preSend(Message<?> message, MessageChannel channel) {

sendCount.incrementAndGet();
return true;

}
}

2.4 MessageHandler

So far we have seen that generic message objects are sent-to and received-from simple channel objects.
Here is Spring Integration's callback interface for handling the Messages:

public interface MessageHandler {
Message<?> handle(Message<?> message);

}

The handler plays an important role, since it is typically responsible for translating between the generic
Message objects and the domain objects or primitive values expected by business components that
consume the message payload. That said, developers will rarely need to implement this interface directly.
While that option will always be available, we will soon discuss the higher-level configuration options
including both annotation-driven techniques and XML-based configuration with convenient namespace

Spring Integration

Manual

support.

2.5 MessageBus

There is a rather obvious gap in what we have reviewed thus far. The MessageChannel provides a
receive() method that returns a Message, and the MessageHandler provides a handle()
method that accepts a Message, but how do the messages get passed from the channel to the handler?
As mentioned earlier, the MessageBus provides a runtime form of inversion of control, and so the short
answer is: you don't need to worry about it. Nevertheless since this is a reference guide, we will explore
this in a bit of detail.

The MessageBus is an example of a mediator. It performs a number of roles - mostly by delegating to
other strategies. One of its fundamental responsibilities is to manage registration of the
MessageChannels and MessageHandlers. It provides the following methods:

public void registerChannel(String name, MessageChannel channel)
public void registerHandler(String name, MessageHandler handler, Subscription subscription)
public void registerHandler(String name, MessageHandler handler, Subscription subscription,

ConcurrencyPolicy concurrencyPolicy)

As those method signatures reveal, the message bus is handling several of the concerns here so that the
channel and handler objects can be as simple as possible. These responsibilities include the creation and
lifecycle management of message dispatchers, the activation of handler subscriptions, and the
configuration of thread pools. The bus coordinates all of that behavior based upon the metadata provided
via these registration methods, and typically developers will not even use this API directly since the
metadata can be provided in XML and/or annotations. We will briefly take a look at each of those
metadata objects.

The bus creates and manages dispatchers that pull messages from a channel in order to push those
messages to handlers subscribed to that channel. Each channel has a DispatcherPolicy that contains
metadata for configuring those dispatchers:

Table 2.2. Properties of the DispatcherPolicy

Property Name Default Value Description

publishSubscribe false whether the dispatcher should
attempt to publish to all of its
handlers (rather than just one)

maxMessagesPerTask 1 maximum number of messages
to retrieve per poll

receiveTimeout 1000 (milliseconds) how long to block on the receive
call (0 for no blocking, -1 for
indefinite block)

rejectionLimit 5 maximum number of attempts to

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 7

Property Name Default Value Description

invoke handlers (e.g. no threads
available)

retryInterval 1000 (milliseconds) amount of time to wait between
successive attempts to invoke
handlers

shouldFailOnRejectionLimit true whether to throw a
MessageDeliveryException
if the 'rejectionLimit' is reached -
if this is set to 'false', then such
undeliverable messages would be
dropped silently

The bus registers handlers with a channel's dispatcher based upon the Subscription metadata
provided to the registerHandler() method.

Table 2.3. Properties of the Subscription

Property Name Description

channel the channel instance to subscribe to (an object
reference)

channelName the name of the channel to subscribe to - only used
as a fallback if 'channel' is null

schedule the scheduling metadata (see below)

The scheduling metadata is provided as an implementation of the Schedule interface. This is an
abstraction designed to allow extensibility of schedulers for messaging tasks. Currently, there is a single
implementation called PollingSchedule that provides the following properties:

Table 2.4. Properties of the PollingSchedule

Property Name Default Value Description

period N/A the delay interval between each
poll

initialDelay 0 the delay prior to the first poll

timeUnit TimeUnit.MILLISECONDS time unit for 'period' and
'initialDelay'

fixedRate false 'false' indicates fixed-delay (no
backlog)

Spring Integration

Manual

The PollingSchedule constructor requires the 'period' value.

The ConcurrencyPolicy is an optional parameter to provide when registering a handler. When the
MessageBus registers a handler, it will use these properties to configure that handler's thread pool.
These parameters are configurable on a per-handler basis since handlers may have different performance
characteristics and may have different expectations with regard to the volume of throughput. The
following table lists the available properties and their default values:

Table 2.5. Properties of the ConcurrencyPolicy

Property Name Default Value Description

coreSize 1 the core size of the thread pool

maxSize 10 the maximum size the thread
pool can reach when under
demand

queueCapacity 0 capacity of the queue which
defers an increase of the pool
size

keepAliveSeconds 60 how long added threads (beyond
core size) should remain idle
before being removed from the
pool

2.6 MessageEndpoint

When MessageHandlers are registered with the MessageBus, the bus assigns the handler to a
dispatcher based on the provided schedule as described above. Internally, the bus is creating and
registering an instance that implements the MessageEndpoint interface. This is where other handler
metadata enters the picture (e.g. the concurrency settings). Basically, you can consider the endpoint to be
a composite handler built from a simple implementation of the MessageHandler along with its
metadata. In fact, the MessageEndpoint does extend the MessageHandler interface.

public interface MessageEndpoint extends MessageHandler {
String getName();
Subscription getSubscription();
ConcurrencyPolicy getConcurrencyPolicy();

}

When using the API, it's simpler to register handlers with metadata and leave the message endpoint as an
internal responsibility of the bus. However, it is possible to create endpoints directly. Spring Integration
provides a single implementation: DefaultMessageEndpoint.

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 9

2.7 MessageSelector

As described above, when a MessageHandler is registered with the message bus, it is hosted by an
endpoint and thereby subscribed to a channel. Often it is necessary to provide additional dynamic logic to
determine what messages the handler should receive. The MessageSelector strategy interface fulfills
that role.

public interface MessageSelector {
boolean accept(Message<?> message);

}

A MessageEndpoint can be configured with zero or more selectors, and will only receive messages
that are accepted by each selector. Even though the interface is simple to implement, a couple common
selector implementations are provided. For example, the PayloadTypeSelector provides similar
functionality to Datatype Channels (as described in the section called “Configuring Message Channels”)
except that in this case the type-matching can be done by the endpoint rather than the channel.

PayloadTypeSelector selector = new PayloadTypeSelector(String.class, Integer.class);
assertTrue(selector.accept(new StringMessage("example")));
assertTrue(selector.accept(new GenericMessage<Integer>(123)));
assertFalse(selector.accept(new GenericMessage<SomeObject>(someObject)));

Another simple but useful MessageSelector provided out-of-the-box is the
UnexpiredMessageSelector. As the name suggests, it only accepts messages that have not yet
expired.

Essentially, using a selector provides reactive routing whereas the Datatype Channel and Message Router
provide proactive routing. However, selectors accommodate additional uses. For example, the
MessageChannel's 'purge' method accepts a selector:

channel.purge(someSelector);

There is even a ChannelPurger utility class whose purge operation is a good candidate for Spring's
JMX support:

ChannelPurger purger = new ChannelPurger(channel, new ExampleMessageSelector());
purger.purge();

Implementations of MessageSelector might provide opportunities for reuse on channels in addition
to endpoints. For that reason, Spring Integration provides a simple selector-wrapping
ChannelInterceptor that accepts one or more selectors in its constructor.

MessageSelectingInterceptor interceptor = new MessageSelectingInterceptor(selector1, selector2);
channel.addInterceptor(interceptor);

Spring Integration

Manual

3. Channel Adapters

3.1 Introduction

Channel Adapters are the components responsible for interacting with external systems or other
components that are external to the messaging system. As the name implies, the interaction consists of
adapting the external system or component to send-to and/or receive-from a MessageChannel. Within
Spring Integration, there is a distinction between source adapters and target adapters. In the 1.0
Milestone 2 release, Spring Integration includes source and target adapters for JMS, Files, Streams, and
Spring ApplicationEvents as well as a target adapter for sending e-mail.

3.2 JMS Adapters

Spring Integration provides two adapters for accepting JMS messages: JmsPollingSourceAdapter
and JmsMessageDrivenSourceAdapter. The former uses Spring's JmsTemplate to receive
based on a polling period. The latter configures and delegates to an instance of Spring's
DefaultMessageListenerContainer.

The JmsPollingSourceAdapter requires a reference to either a single JmsTemplate instance or
both ConnectionFactory and Destination (a 'destinationName' can be provided in place of the
'destination' reference). The JmsPollingSourceAdapter also requires a 'channel' property that
should be a reference to a MessageChannel instance. The adapter accepts additional properties such
as: period, initialDelay, maxMessagesPerTask, and sendTimeout. The following example defines a JMS
source adapter that polls every 5 seconds and then sends to the "exampleChannel":

<bean class="org.springframework.integration.adapter.jms.JmsPollingSourceAdapter">
<constructor-arg ref="jmsTemplate"/>
<property name="channel" ref="exampleChannel"/>
<property name="period" value="5000"/>

</bean>

In most cases, Spring Integration's message-driven JMS adapter is more appropriate since it delegates to a
MessageListener container and supports dynamically adjusting concurrent consumers. The
JmsMessageDrivenSourceAdapter requires references to a MessageChannel, a
ConnectionFactory, and a Destination (or 'destinationName'). The following example defines a
JMS message-driven source adapter that receives from the JMS queue called "exampleQueue" and then
sends to the Spring Integration channel named "exampleChannel":

<bean class="org.springframework.integration.adapter.jms.JmsMessageDrivenSourceAdapter">
<property name="connectionFactory" ref="connectionFactory"/>
<property name="destinationName" value="exampleQueue"/>
<property name="channel" ref="exampleChannel"/>

</bean>

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 11

For both source adapter types, Spring's MessageConverter strategy is used to convert the JMS
message into a plain Java object, and then Spring Integration's MessageMapper strategy is used to
convert from the plain object to a Message.

The JmsTargetAdapter is a MessageHandler implementation that is capable of mapping Spring
Integration Messages to JMS messages and then sending to a JMS destination. It requires either a
'jmsTemplate' reference or both 'connectionFactory' and 'destination' references (again, the
'destinationName' may be provided in place of the 'destination). In the section called “Configuring
Channel Adapters”, you will see how to configure a JMS target adapter with Spring Integration's
namespace support.

3.3 File Adapters

The FileSourceAdapter extends the generic PollingSourceAdapter (just as the polling JMS
adapter does). It requires the following constructor arguments:

public FileSourceAdapter(File directory, MessageChannel channel, int period)

Optional properties include 'initialDelay' and 'maxMessagesPerTask'.

The FileTargetAdapter constructor only requires the 'directory' argument. The target adapter also
accepts an implementation of the FileNameGenerator strategy that defines the following method:

String generateFileName(Message message)

As with the JMS adapters, the most convenient way to configure File adapters is with the namespace
support. For examples, see the section called “Configuring Channel Adapters”.

3.4 Mail Adapters

Spring Integration currently provides support for outbound email only with the MailTargetAdapter.
This adapter delegates to a configured instance of Spring's JavaMailSender, and its various mapping
strategies use Spring's MailMessage abstraction. By default text-based mails are created when the
handled message has a String-based payload. If the message payload is a byte array, then that will be
mapped to an attachment.

The adapter also delegates to a MailHeaderGenerator for providing the mail's properties, such as
the recipients (TO, CC, and BCC), the from/reply-to, and the subject.

public interface MailHeaderGenerator {
void populateMailMessageHeader(MailMessage mailMessage, Message<?> message);

}

A static implementation is available out-of-the-box, but typically most of the properties would need to be

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 12

dynamically generated based on the message itself. The following is an example of a configured mail
adapter.

<bean id="mailTargetAdapter" class="org.springframework.integration.adapter.mail.MailTargetAdapter">
<property name="mailSender" ref="javaMailSender"/>
<property name="headerGenerator" ref="dynamicMailMessageHeaderGenerator"/>

</bean>

3.5 Stream Adapters

Spring Integration also provides adapters for streams. Both ByteStreamSourceAdapter and
CharacterStreamSourceAdapter extend the PolllingSourceAdapter so that the polling
period can be configured, and the Message Bus can automatically detect and schedule them. Both require
an InputStream as the single constructor argument. The ByteStreamSourceAdapter also
accepts the 'bytesPerMessage' property to determine how many bytes it will attempt to read into each
Message.

For target streams, there are also two implementations: ByteStreamTargetAdapter and
CharacterStreamTargetAdapter. Each defines a constructor that requires an OutputStream,
and each provides a second constructor that adds the optional 'bufferSize' property. Since both of these
ultimately implement the MessageHandler interface, they can be referenced from an endpoint
configuration as will be described in more detail in the section called “Configuring Message Endpoints”.

3.6 ApplicationEvent Adapters

Spring ApplicationEvents can also be integrated as either a source or target for Spring Integration
message channels. To receive the events and send to a channel, simply define an instance of Spring
Integration's ApplicationEventSourceAdapter (as with all source adapters, if a MessageBus
is defined, it will automatically detect the event source adapter). The
ApplicationEventSourceAdapter implements Spring's ApplicationListener interface.
By default it will pass all received events as Spring Integration Messages. To limit based on the type of
event, configure the list of event types that you want to receive with the 'eventTypes' property.

To send Spring ApplicationEvents, register an instance of the
ApplicationEventTargetAdapter class as the handler of an endpoint (such configuration will be
described in detail in the section called “Configuring Message Endpoints”). This adapter implements
Spring's ApplicationEventPublisherAware interface and thus acts as a bridge between Spring
Integration Messages and ApplicationEvents.

Spring Integration

Manual

4. Configuration

4.1 Introduction

Spring Integration offers a number of configuration options. Which option you choose depends upon your
particular needs and at what level you prefer to work. As with the Spring framework in general, it is also
possible to mix and match the various techniques according to the particular problem at hand. For
example, you may choose the XSD-based namespace for the majority of configuration combined with a
handful of objects that are configured with annotations. Of course, it is also possible to always stick with
a single approach. The main point is that these are options for configuration motivated by the need to
support a user community with a wide range of preferences. That said, there has also been a concerted
effort to provide consistent naming so that, for example, the XML elements defined by the XSD schema
will match the names of annotations, and the attributes of those XML elements will match the names of
annotation properties. Direct usage of the API is yet another option and is described in detail in Chapter 2,
The Core API. We expect that most users will choose one of the higher-level options, such as the
namespace-based or annotation-driven configuration.

4.2 Namespace Support

Spring Integration components can be configured with XML elements that map directly to the
terminology and concepts of enterprise integration. In many cases, the element names match those of the
Enterprise Integration Patterns [http://www.eaipatterns.com].

To enable Spring Integration's namespace support within your Spring configuration files, add the
following namespace reference and schema mapping in your top-level 'beans' element:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:integration="http://www.springframework.org/schema/integration"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd">

You can choose any name after "xmlns:"; integration is used here for clarity, but you might prefer a
shorter abbreviation. Of course if you are using an XML-editor or IDE support, then the availability of
auto-completion may convince you to keep the longer name for clarity. Alternatively, you can create
configuration files that use the Spring Integration schema as the primary namespace:

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd">

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 14

http://www.eaipatterns.com
http://www.eaipatterns.com

When using this alternative, no prefix is necessary for the Spring Integration elements. On the other hand,
if you want to define a generic Spring "bean" within the same configuration file, then a prefix would be
required for the bean element (<beans:bean ... />). Since it is generally a good idea to modularize the
configuration files themselves based on responsibility and/or architectural layer, you may find it
appropriate to use the latter approach in the integration-focused configuration files, since generic beans
are seldom necessary within those same files. For purposes of this documentation, we will assume the
"integration" namespace is primary.

Configuring Message Channels

To create a Message Channel instance, use the 'channel' element:

<channel id="exampleChannel"/>

You can also specify the channel's capacity:

<channel id="exampleChannel" capacity="100"/>

The default channel type is Point to Point. To create a Publish Subscribe channel, provide a value of true
for the 'publish-subscribe' attribute of the channel element:

<channel id="exampleChannel" publish-subscribe="true"/>

When the MessageBus detects and registers channels, it will establish a dispatcher for each channel.
The default dispatcher settings were previously displayed in Table 2.2, “Properties of the
DispatcherPolicy”. To customize these settings for a particular channel, add the 'dispatcher-policy'
sub-element and provide one or more of the attributes shown below:

<channel id="exampleChannel" publish-subscribe="true">
<dispatcher-policy max-messages-per-task="25"

receive-timeout="10"
rejection-limit="3"
retry-interval="500"
should-fail-on-rejection-limit="false"/>

</channel>

To create a Datatype Channel [http://www.eaipatterns.com/DatatypeChannel.html] that only accepts
messages containing a certain payload type, provide the fully-qualified class name in the channel
element's datatype attribute:

<channel id="numberChannel" datatype="java.lang.Number"/>

Note that the type check passes for any type that is assignable to the channel's datatype. In other words,
the "numberChannel" above would accept messages whose payload is java.lang.Integer or
java.lang.Double. Multiple types can be provided as a comma-delimited list:

<channel id="stringOrNumberChannel" datatype="java.lang.String,java.lang.Number"/>

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 15

http://www.eaipatterns.com/DatatypeChannel.html
http://www.eaipatterns.com/DatatypeChannel.html

Message channels may also have interceptors as described in Section 2.3, “ChannelInterceptor”. One or
more <interceptor> elements can be added as sub-elements of <channel>. Provide the "ref" attribute to
reference any Spring-managed object that implements the ChannelInterceptor interface:

<channel id="exampleChannel">
<interceptor ref="trafficMonitoringInterceptor"/>

</channel>

In general, it is a good idea to define the interceptor implementations in a separate location since they
usually provide common behavior that can be reused across multiple channels.

Configuring Message Endpoints

To create a Message Endpoint instance, use the 'endpoint' element with the 'input-channel' and
'handler-ref' attributes:

<endpoint input-channel="exampleChannel" handler-ref="exampleHandler"/>

The configuration above assumes that "exampleHandler" is an actual implementation of the
MessageHandler interface as described in Section 2.4, “MessageHandler”. To delegate to an arbitrary
method of any object, simply add the "handler-method" attribute.

<endpoint input-channel="exampleChannel" handler-ref="somePojo" handler-method="someMethod"/>

In either case (MessageHandler or arbitrary object/method), when the handling method returns a
non-null value, the endpoint will attempt to send the reply message to an appropriate reply channel. To
determine the reply channel, it will first check for a value in the message header's 'returnAddress'
property. If that value is available, it will then check its type. If it is a MessageChannel, the reply
message will be sent to that channel. If it is a String, then the endpoint will attempt to resolve the
channel by performing a lookup in the ChannelRegistry. If the message header does not contain a
'returnAddress' property at all, then it will fallback to its own 'defaultOutputChannelName' property. If
neither is available, then a MessageHandlingException will be thrown. To configure the default
output channel when using the XML namespace, provide the 'default-output-channel' attribute:

<endpoint input-channel="exampleChannel"
handler-ref="somePojo"
handler-method="someMethod"
default-output-channel="replyChannel"/>

Endpoint's also support MessageSelectors as described in Section 2.7, “MessageSelector”. To
configure selectors with namespace support, simply add one or more <selector> sub-elements to the
endpoint definition:

<endpoint id="endpoint" input-channel="channel" handler-ref="handler">
<selector ref="exampleSelector"/>

</endpoint>

Spring Integration

Manual

When the MessageBus registers the endpoint, it will activate the subscription by assigning the endpoint
to the input channel's dispatcher. The dispatcher is capable of handling multiple endpoint subscriptions
for its channel and delegates to a scheduler for managing the tasks that pull messages from the channel
and push them to the endpoints. To configure the polling period for an individual endpoint's schedule,
provide a 'schedule' sub-element with the 'period' in milliseconds:

<endpoint input-channel="exampleChannel" handler-ref="exampleHandler"/>
<schedule period="3000"/>

</endpoint>

Note
Individual endpoint schedules only apply for "Point-to-Point" channels, since in that case
only a single subscriber needs to receive the message. On the other hand, when a Spring
Integration channel is configured as a "Publish-Subscribe" channel, then the dispatcher will
drive all endpoint notifications according to its own default schedule, and any 'schedule'
element configured for those endpoints will be ignored.

One of the most important configuration options for endpoints is the concurrency policy. Each endpoint is
capable of managing a thread pool for its handler, and the values you provide for that pool's core and max
size can make a substantial difference in how the handler performs under load. These settings are
available per-endpoint since the performance characteristics of an endpoint's handler is one of the major
factors to consider (the other major factor being the expected volume on the channel to which the
endpoint subscribes). To enable concurrency for an endpoint that is configured with the XML namespace
support, provide the 'concurrency' sub-element and one or more of the properties shown below:

<endpoint input-channel="exampleChannel" handler-ref="exampleHandler"/>
<concurrency core="5" max="25" queue-capacity="20" keep-alive="120"/>

</endpoint>

Recall the default concurrency policy values as listed in Table 2.5, “Properties of the
ConcurrencyPolicy”.

Tip
The default queue capacity of 0 triggers the creation of a SynchronousQueue. In many
cases, this is preferable since the direct handoff eliminates the chance of a message handling
task being "stuck" in the queue (thread pool executors will favor adding to the queue rather
than increasing the pool size). Specifically, whenever a dispatcher for a Point-to-Point
channel has more than one subscribed endpoint, a task that is rejected due to an exhausted
thread pool can be handled immediately by another endpoint whose pool has one or more
threads available. On the other hand, when a particular channel/endpoint may be expecting
bursts of activity, setting a queue capacity value might be the best way to accommodate the
volume.

Configuring the Message Bus

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 17

As described in Section 2.5, “MessageBus”, the MessageBus plays a central role. Nevertheless, its
configuration is quite simple since it is primarily concerned with managing internal details based on the
configuration of channels and endpoints. The bus is aware of its host application context, and therefore is
also capable of auto-detecting the channels and endpoints. Typically, the MessageBus can be
configured with a single empty element:

<message-bus/>

The Message Bus provides default error handling for its components in the form of a configurable error
channel, and the 'message-bus' element accepts a reference with its 'error-channel' attribute:

<message-bus error-channel="errorChannel"/>

<channel id="errorChannel" publish-subscribe="true" capacity="500"/>

When exceptions occur in an endpoint's execution of its MessageHandler callback, those exceptions
will be wrapped in ErrorMessages and sent to the Message Bus' 'errorChannel' by default. To enable
global error handling, simply register a handler on that channel. For example, you can configure Spring
Integration's PayloadTypeRouter as the handler of an endpoint that is subscribed to the
'errorChannel'. That router can then spread the error messages across multiple channels based on
Exception type.

The 'message-bus' element accepts two more optional attributes. First is the size of the dispatcher thread
pool. The dispatcher threads are responsible for polling channels and then passing the messages to
handlers. When the endpoints are concurrency-enabled as described in the previous section, the
invocation of the handling methods will happen within the handler thread pool and not the dispatcher
pool. Finally, the Message Bus is capable of automatically creating channel instances (with default
settings) if an endpoint registers a subscription by providing the name of a channel that the bus does not
recognize.

<message-bus dispatcher-pool-size="25" auto-create-channels="true"/>

Configuring Channel Adapters

The most convenient way to configure Channel Adapters is by using the namespace support. The
following examples demonstrate the namespace-based configuration of source and target adapters (Spring
Integration 1.0 M1 includes namespace support for JMS and Files):

<jms-source connection-factory="connectionFactory" destination="inputQueue" channel="inputChannel1"/

<jms-target connection-factory="connectionFactory" destination="outputQueue" channel="outputChannel1"/>

<file-source directory="/tmp/input" channel="inputChannel2" poll-period="10000"/>

<file-target directory="/tmp/output" channel="outputChannel2"/>

Spring Integration

Manual

Enabling Annotation-Driven Configuration

The next section will describe Spring Integration's support for annotation-driven configuration. To enable
those features, add this single element to the XML-based configuration:

<annotation-driven/>

4.3 Annotations

In addition to the XML namespace support for configuring Message Endpoints, it is also possible to use
annotations. The class-level @MessageEndpoint annotation indicates that the annotated class is
capable of being registered as an endpoint, and the method-level @Handler annotation indicates that the
annotated method is capable of handling a message.

@MessageEndpoint(input="fooChannel")
public class FooService {

@Handler
public void processMessage(Message message) {

...
}

}

In most cases, the annotated handler method should not require the Message type as its parameter.
Instead, the method parameter type can match the message's payload type.

@MessageEndpoint(input="fooChannel")
public class FooService {

@Handler
public void processFoo(Foo foo) {

...
}

}

As described in the previous section, when the handler method returns a non-null value, the endpoint will
attempt to send a reply. This is consistent across both configuration options (namespace and annotations)
in that the message header's 'replyChannelName' property will be used if available, and the endpoint's
default output is the fallback. To configure the default output for an annotation-driven endpoint, provide
the 'defaultOutput' attribute on the @MessageEndpoint.

@MessageEndpoint(input="exampleChannel", defaultOutput="replyChannel")

Finally, just as the 'schedule' sub-element and its 'period' attribute can be provided for a namespace-based
endpoint, the 'pollPeriod' attribute can be provided on the @MessageEndpoint.

@MessageEndpoint(input="exampleChannel", pollPeriod=3000)

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 19

Two additional annotations are supported, and both act as a special form of handler method: @Router
and @Splitter. As with the @Handler annotation, methods annotated with either of these two
annotations can either accept the Message itself or the message payload type as the parameter. When
using the @Router annotation, the annotated method can return either the MessageChannel or
String type. In the case of the latter, the endpoint will resolve the channel name as it does for the
default output. Additionally, the method can return either a single value or a collection. When a collection
is returned, the reply message will be sent to multiple channels. To summarize, the following method
signatures are all valid.

@Router
public MessageChannel route(Message message) {...}

@Router
public List<MessageChannel> route(Message message) {...}

@Router
public String route(Foo payload) {...}

@Router
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a common requirement is to route based on metadata available
within the message header as either a property or attribute. Rather than requiring use of the Message
type as the method parameter, the @Router annotation may also map to either a property or attribute
name.

@Router(property="customerType")
public String route(String customerType)

@Router(attribute="orderStatus")
public List<String> route(OrderStatus status)

The @Splitter annotation is also applicable to methods that expect either the Message type or the
message payload type, and the return values of the method should be a collection of any type. If the
returned values are not actual Message objects, then each of them will be sent as the payload of a
message. The @Splitter annotation expects a 'channel' attribute that specifies the channel name to
which those messages should be sent.

@Splitter(channel="exampleChannel")
List<LineItem> extractItems(Order order) {

return order.getItems()
}

The @Publisher annotation is a convenience for sending messages with AOP after-returning advice.
For example, each time the following method is invoked, its return value will be sent to the "fooChannel":

@Publisher(channel="fooChannel")
public String foo() {

return "bar";
}

Spring Integration

Manual

Similarly, the @Subscriber annotation triggers the retrieval of messages from a channel, and the
payload of each message will then be sent as input to an arbitrary method. This is one of the simplest
ways to configure asynchronous, event-driven behavior:

@Subscriber(channel="fooChannel")
public void log(String foo) {

System.out.println(foo);
}

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 21

5. Spring Integration Samples

5.1 The Cafe Sample

In this section, we will review a sample application that is included in the Spring Integration Milestone 1
release. This sample is inspired by one of the samples featured in Gregor Hohpe's Ramblings
[http://www.eaipatterns.com/ramblings.html].

The domain is that of a Cafe, and the basic flow is depicted in the following diagram:

The DrinkOrder object may contain multiple Drinks. Once the order is placed, a Splitter will break
the composite order message into a single message per drink. Each of these is then processed by a Router
that determines whether the drink is hot or cold (checking the Drink object's 'isIced' property). Finally
the Barista prepares each drink, but hot and cold drink preparation are handled by two distinct
methods: 'prepareHotDrink' and 'prepareColdDrink'.

Here is the XML configuration:

<beans:beans xmlns="http://www.springframework.org/schema/integration"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration-1.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd">

<message-bus/>
<annotation-driven/>

<context:component-scan base-package="org.springframework.integration.samples.cafe"/>

<channel id="orders"/>
<channel id="drinks"/>
<channel id="coldDrinks"/>
<channel id="hotDrinks"/>

<endpoint input-channel="coldDrinks" handler-ref="barista" handler-method="prepareColdDrink"/>
<endpoint input-channel="hotDrinks" handler-ref="barista" handler-method="prepareHotDrink"/>

<beans:bean id="cafe" class="org.springframework.integration.samples.cafe.Cafe">
<beans:property name="orderChannel" ref="orders"/>

</beans:bean>

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 22

http://www.eaipatterns.com/ramblings.html
http://www.eaipatterns.com/ramblings.html

</beans:beans>

Notice that the Message Bus is defined. It will automatically detect and register all channels and
endpoints. The 'annotation-driven' element will enable the detection of the splitter and router - both of
which carry the @MessageEndpoint annotation. That annotation extends Spring's "stereotype"
annotations (by relying on the @Component meta-annotation), and so all classes carrying the endpoint
annotation are capable of being detected by the component-scanner.

@MessageEndpoint(input="orders")
public class OrderSplitter {

@Splitter(channel="drinks")
public List<Drink> split(DrinkOrder order) {

return order.getDrinks();
}

}

@MessageEndpoint(input="drinks")
public class DrinkRouter {

@Router
public String resolveDrinkChannel(Drink drink) {

return (drink.isIced()) ? "coldDrinks" : "hotDrinks";
}

}

Now turning back to the XML, you see that there are two <endpoint> elements. Each of these is
delegating to the same Barista instance but different methods. The 'barista' could have been defined in
the XML, but instead the @Component annotation is applied:

@Component
public class Barista {

private long hotDrinkDelay = 1000;
private long coldDrinkDelay = 700;

private AtomicInteger hotDrinkCounter = new AtomicInteger();
private AtomicInteger coldDrinkCounter = new AtomicInteger();

public void setHotDrinkDelay(long hotDrinkDelay) {
this.hotDrinkDelay = hotDrinkDelay;

}

public void setColdDrinkDelay(long coldDrinkDelay) {
this.coldDrinkDelay = coldDrinkDelay;

}

public void prepareHotDrink(Drink drink) {
try {

Thread.sleep(this.hotDrinkDelay);
} catch (InterruptedException e) {

Thread.currentThread().interrupt();
}
System.out.println("prepared hot drink #" + hotDrinkCounter.incrementAndGet() + ": " + drink);

}

public void prepareColdDrink(Drink drink) {
try {

Thread.sleep(this.coldDrinkDelay);

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 23

} catch (InterruptedException e) {
Thread.currentThread().interrupt();

}
System.out.println("prepared cold drink #" + coldDrinkCounter.incrementAndGet() + ": " + drink);

}
}

As you can see from the code excerpt above, the barista methods have different delays. This simulates
work being completed at different rates. When the CafeDemo 'main' method runs, it will loop 100 times
sending a single hot drink and a single cold drink each time.

public static void main(String[] args) {
AbstractApplicationContext context = null;
if(args.length > 0) {

context = new FileSystemXmlApplicationContext(args);
}
else {

context = new ClassPathXmlApplicationContext("cafeDemo.xml", CafeDemo.class);
}
context.start();
Cafe cafe = (Cafe) context.getBean("cafe");
DrinkOrder order = new DrinkOrder();
Drink hotDoubleLatte = new Drink(DrinkType.LATTE, 2, false);
Drink icedTripleMocha = new Drink(DrinkType.MOCHA, 3, true);
order.addDrink(hotDoubleLatte);
order.addDrink(icedTripleMocha);
for (int i = 0; i < 100; i++) {

cafe.placeOrder(order);
}

}

To run this demo, go to the "samples" directory within the root of the Spring Integration distribution. On
Unix/Mac you can run 'cafeDemo.sh', and on Windows you can run 'cafeDemo.bat'. Each of these will by
default create a Spring ApplicationContext from the 'cafeDemo.xml' file that is in the
"spring-integration-samples" JAR and hence on the classpath (it is the same as the XML above).
However, a copy of that file is also available within the "samples" directory, so that you can provide the
file name as a command line argument to either 'cafeDemo.sh' or 'cafeDemo.bat'. This will allow you to
experiment with the configuration and immediately run the demo with your changes. It is probably a good
idea to first copy the original file so that you can make as many changes as you want and still refer back
to the original to compare.

When you run cafeDemo, you will see that all 100 cold drinks are prepared in roughly the same amount
of time as only 70 of the hot drinks. This is to be expected based on their respective delays of 700 and
1000 milliseconds. However, by configuring the endpoint concurrency, you can dramatically change the
results. For example, on my machine, the following single modification causes all 100 hot drinks to be
prepared before the 4th cold drink is ready:

<endpoint input-channel="coldDrinks" handler-ref="barista" handler-method="prepareColdDrink"/>

<endpoint input-channel="hotDrinks" handler-ref="barista" handler-method="prepareHotDrink">
<concurrency core="25" max="50"/>

</endpoint>

Spring Integration

Manual

In addition to experimenting with the 'concurrency' settings, you can also try adding the 'schedule'
sub-element as described in the section called “Configuring Message Endpoints”. Additionally, you can
experiment with the channel's configuration, such as adding a 'dispatcher-policy' as described in the
section called “Configuring Message Channels”. If you want to explore the sample in more detail, the
source JAR is available in the "dist" directory: 'spring-integration-samples-sources-1.0.0.m1.jar'.

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 25

6. Additional Resources

6.1 Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home
[http://www.springframework.org/spring-integration] at http://www.springframework.org. That site
serves as a hub of information and is the best place to find up-to-date announcements about the project as
well as links to articles, blogs, and new sample applications.

Spring Integration

1.0.0.m2 (Milestone 2) Spring Integration Reference 26

http://www.springframework.org/spring-integration
http://www.springframework.org/spring-integration
http://www.springframework.org

	Spring Integration Reference Manual
	Table of Contents
	1. Spring Integration Overview
	1.1 Background
	1.2 Goals and Principles
	1.3 Main Components
	Message
	Message Channel
	Message Endpoint
	Message Router
	Channel Adapter
	Message Bus

	2. The Core API
	2.1 Message
	2.2 MessageChannel
	2.3 ChannelInterceptor
	2.4 MessageHandler
	2.5 MessageBus
	2.6 MessageEndpoint
	2.7 MessageSelector

	3. Channel Adapters
	3.1 Introduction
	3.2 JMS Adapters
	3.3 File Adapters
	3.4 Mail Adapters
	3.5 Stream Adapters
	3.6 ApplicationEvent Adapters

	4. Configuration
	4.1 Introduction
	4.2 Namespace Support
	Configuring Message Channels
	Configuring Message Endpoints
	Configuring the Message Bus
	Configuring Channel Adapters
	Enabling Annotation-Driven Configuration

	4.3 Annotations

	5. Spring Integration Samples
	5.1 The Cafe Sample

	6. Additional Resources
	6.1 Spring Integration Home

