Spring Integration Reference Manual

Mark Fisher

&) spring

u r c

1.0.0.m2 (Milestone 2)

Copyright © SpringSource Inc., 2008

Spring Integration

Table of Contents

1. Spring INtegration OVEIVIEWeiiiieeeiiiiiiieiee e e e e e et eee e e e e e s e s e e e e aeessaanereeeeeaaeesaaansnenees 1
O 2 T o 1 011 o PSPPI 1

1.2. GOAlS AN PrINCIPIES ...ttt e e e s 1

1.3. Main COMPONENES ...uvvviiiiieeeiiiiiiieee et e e e e s s et e e e e e e e e e st te e e e e e e e s s santbbeereeaeesssansnrraneeeaeeas 2
IVIESSATE ...ttt e e e nrnnnnnrnnnrnnnrne 2

S 0T O 7= PP 2

MESSA0E ENAPOINT ...ttt ettt e e e e st e e annn e e s 3

IMIESSAgE ROULESeeutetiiititttititit ettt sttt bttt essssesnennes 3

ChannEl AQAPLESccoi it e e e e s e et e e e e e e e s s santaaereeaeeeeaannes 3

MESSAGE BUSeivieiuiiiiiiiiiiiitit e rnnnrne 3

B2 14T T O] £ N PRI 4
2.0 MBSSAOE ...eeiteieiiee e ettt e e et e e e e e et et e e e e e e e r e et e e e e e e e nrnrn s 4

2.2. MessageChannel ... 5

2.3, ChannE INEEICEPLOLvviieieeiee e e i et e e e et e e e e s e e e e e e e e e s s st n e e e e e e e e s e eenenreeees 5

2.4, MESSAOEHBNUIES ...ttt e e 6

2.5, MESSAGEBUSciiieiiiiiie et e ettt e e et e e e et r e e e et eeearraaaaaaeanes 7

2.6. MESSAgEENCPOINTeeiieiiiie ettt e e e e e e e 9

2.7. MESSAGESE ECLONiiiiiiiie ettt e e e e e e e e e et e e e e e e e s s st b b e e e e e e e e e eentbraees 10

3. ChannEl AGBPLEIS ...ttt e et e e st r e e e st e e e e e a b e e e e anrnreeeane 11
G300 T 1 1 [F o 1 o o SR 11

3.2, IMS AGADIES .ottt e e e e e e e e e e e e s ——aa e e e e e a s 11

3.3 F R AUAPRLEIS .ot 12

G Y = 1 AN =0 = £ SR 12

3.5, SIrEAM AQBPLEN'S ...ttt e s s e e e e e e e eeeeane 13

3.6. ApplicatioNEVENt AQAPLEIS ...t e e e e e e e e e raees 13

4. CONFIGQUIBLION ...uetiiie ittt ettt ettt e e ettt e e e st e e e st b e e e aasb b e e e e enbbe e e e e anbne e e e e nneeee s 14
g I 1 11 (0o (1 o o OO PSERR 14

4.2, NaMESPACE SUPPOIT .eeveeeeeeeeeeeeeeeeeteeeseeeeeeeaesesesssessaesesesesssessssssssssessssssssssssssssssssssnmnnnns 14
Configuring Message ChanNElSoooiiiiiieiiiie e 15
Configuring Message ENAPOINEScuviiiiiieiiiiciiiieiee et e e e e 16
Configuring the MESSBgE BUScuviiiiiiiiiiee e 17
Configuring Channel Adapters ... 18

Enabling Annotation-Driven Configurationcccceoiuieeeiniiiee e 19

G TN o1 o =1 o] SRR 19

5. Spring INtegration SAMPIESccoiiiiiiiei e s e e e e e e s e e e e e e e e e et raaeeeaaeeas 22
5.1, The Caf@ SAMPIE ...ttt e e e e e et eeeeeaae 22

6. AAAItiONal RESDUITEScoiiveieeiiiiiieeeiiiie et e e s sttt e ettt e e e et e e e e ssbb e e e e s nb e e e e e annteeeeannseeeeeanns 26
6.1. SPring INtegration HOMEoouuiiiiiiiiiie ettt 26

1.0.0.m2 (Milestone 2) Spring Integration Reference

Spring Integration

1. Spring Integration Overview

1.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic
cross-cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Developers benefit from the consistency of this model and especially the
fact that it is based upon well-established best practices such as programming to interfaces and favoring
composition over inheritance. Spring's simplified abstractions and powerful support libraries boost
developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is a new member of the Spring portfolio motivated by these same goals and principles.
It extends the Spring programming model into the messaging domain and builds upon Spring's existing
enterprise integration support to provide an even higher level of abstraction. It supports message-driven
architectures where inversion of control applies to runtime concerns, such as when certain business logic
should execute and wher e the response should be sent. It supports routing and transformation of messages
so that different transports and different data formats can be integrated without impacting testability. In
other words, the messaging and integration concerns are handled by the framework, so business
components are further isolated from the infrastructure and developers are relieved of complex integration
responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean"
elements, and of course direct usage of the underlying API. That API is based upon well-defined strategy
interfaces and non-invasive, delegating adapters. Spring Integration’'s design is inspired by the recognition
of a strong affinity between common patterns within Spring and the well-known Enterprise Integration
Patterns [http://www.eaipatterns.com] as described in the book of the same name by Gregor Hohpe and
Bobby Woolf (Addison Wesley, 2003). Developers who have read that book should be immediately
comfortable with the Spring Integration concepts and terminology .

1.2 Goals and Principles

Spring Integration is motivated by the following goals:

* Provide asimple model for implementing complex enterprise integration solutions.

1.0.0.m2 (Milestone 2) Spring Integration Reference 1

http://www.eaipatterns.com
http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

 Facilitate asynchronous, message-driven behavior within a Spring-based application.

» Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

» Components should be loosely coupled for modularity and testability.

» The framework should enforce separation of concerns between business logic and integration logic.

» Extension points should be abstract in nature but within well-defined boundaries to promote reuse and
portability.

1.3 Main Components

From the vertical perspective, alayered architecture facilitates separation of concerns, and interface-based
contracts between layers promate loose coupling. Spring-based applications are typicaly designed this
way, and the Spring framework and portfolio provide a strong foundation for following this best practice
for the full-stack of an enterprise application. Message-driven architectures add a horizontal perspective,
yet these same goals are still relevant. Just as "layered architecture” is an extremely generic and abstract
paradigm, messaging systems typically follow the similarly abstract "pipes-and-filters’ model. The
"filters" represent any component that is capable of producing and/or consuming messages, and the
"pipes’ transport the messages between filters so that the components themsel ves remain |oosely-coupl ed.
It is important to note that these two high-level paradigms are not mutually exclusive. The underlying
messaging infrastructure that supports the "pipes" should still be encapsulated in a layer whose contracts
are defined as interfaces. Likewise, the "filters' themselves would typically be managed within a layer
that is logically above the application's service layer, interacting with those services through interfaces
much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and header and has a unique
identifier. The payload can be of any type and the header holds commonly required information such as
timestamp, expiration, and return address. Devel opers can aso store any arbitrary key-value properties or
attributes in the header.

Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages to
a MessageChannel, and consumers receive Messages from a MessageChannel. The send and receive
methods both come in two forms: one that blocks indefinitely and one that accepts a timeout (for an
immediate return, specify a timeout value of 0). There are two main types of channels: Point-to-Point

1.0.0.m2 (Milestone 2) Spring Integration Reference 2

Spring Integration

channels where typicaly a single consumer will receive the Message and Publish-Subscribe channels
where all subscribers should receive the Message.

Message Endpoint

A Message Endpoint represents the "filter" of a pipes-and-filters architecture. The endpoint's primary role
is to connect application code to the messaging framework and to do so in a non-invasive manner. In
other words, the application code should have no awareness of the messaging framework. Thisis similar
to the role of a Controller in the MV C paradigm. Just as a Controller handles HTTP requests, the endpoint
handles Messages. Just as Controllers are mapped to URL patterns, endpoints are mapped to Message
Channels. The goal is the same in both cases: isolate application code from the infrastructure. In Spring
Integration, the Message Endpoint "hosts' and delegates to a MessageHand| er strategy interface as
described in Section 2.4, “MessageHandler”.

Message Router

A Message Router is a particular type of MessageHandl er that is capable of receiving a Message and
then deciding what channel or channels should receive the Message next. Typically the decision is based
upon the Message's content and/or metadata. A Message Router is often used as a dynamic aternative to
configuring the input and output channels for an endpoint.

Channel Adapter

A Channel Adapter is used to connect components to a Message Channel when those components are not
themselves Message Endpoints. These adapters provide a mechanism for connecting to externa systems,
such as IMS queues or a File system. Channel Adapters may be configured for input and/or output. An
input (source) adapter will receive (or poll for) data, convert that data to a Message, and then send that
Message to its Message Channel. An output (target) adapter is simply another type of
MessageHandl er, but when it receives a Message, it will convert it to the target's expected type and
then "send" it (publish to aJM S queue, writeto aFile, etc.).

Message Bus

The Message Bus acts as a registry for Message Channels and Message Endpoints. It also encapsulates
the complexity of message retrieval and dispatching. Essentially, the Message Bus forms a logical
extension of the Spring application context into the messaging domain. For example, it will automatically
detect Message Channel and Message Endpoint components from within the application context. It
handles the scheduling of pollers, the creation of thread pools, and the lifecycle management of all
messaging components that can be initialized, started, and stopped. The Message Bus is the primary
example of inversion of control within Spring Integration.

Manud

Spring Integration

2. The Core API

2.1 Message

The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message aso includes a header containing user-extensible properties as key-value
pairs. Here is the definition of the Message interface:

public interface Message<T> {
oj ect getld();
MessageHeader get Header () ;
T get Payl oad();
bool ean i sExpi red();

}

And the header provides the following properties:

Table 2.1. Properties of the MessageHeader

Property Name Property Type

timestamp java.util.Date

expiration javauutil.Date

correlationld java.lang.Object

returnAddress javalang.Object (can be a String or
M essageChannel)

sequenceNumber int

sequenceSize int

priority int

properties java.util.Properties

attributes Map<String,Object>

The base implementation of the Message interface is Gener i cMessage<T>, and it provides three
constructors:

new Generi cMessage<T>(Object id, T payload);
new Generi cMessage<T>(T payl oad);
new Ceneri cMessage<T>(T payl oad, MessageHeader header ToCopy)

When no id is provided, a random unique id will be generated. The constructor that accepts a
MessageHeader will copy properties, attributes, and any 'returnAddress from the provided header.

1.0.0.m2 (Milestone 2) Spring Integration Reference 4

Spring Integration

There are also two convenient subclasses available currently: St ri ngMessage and Er r or Message.
The latter accepts any Thr owabl e object asits payload.

The Message is obviously a very important part of the APl. By encapsulating the data in a generic
wrapper, the messaging system can pass it around without any knowledge of the datas type. As the
system evolves to support new types, or when the types themselves are modified and/or extended, the
messaging system will not be affected by such changes. On the other hand, when some component in the
messaging system does require access to information about the Message, such metadata can typically be
stored to and retrieved from the metadata in the header (the 'properties’ and 'attributes).

2.2 MessageChannel

While the Message plays the crucia role of encapsulating data, it is the MessageChannel that

decouples message producers from message consumers. Spring Integration's MessageChannel
interface is defined as follows.

public interface MessageChannel {
String get Nanme()
voi d set Name(String nane)
Di spat cher Pol i cy get Di spat cher Policy();
bool ean send(Message nessage);
bool ean send(Message nessage, |ong tineout);
Message receive();
Message receive(long timeout);
Li st <Message<?>> clear();
Li st <Message<?>> pur ge(MessageSel ector sel ector);

}

When sending a message, the return value will be true if the message is sent successfully. If the send call
times out or is interrupted, then it will return false. Likewise when receiving a message, the return value
will be null in the case of atimeout or interrupt. The Si npl eChannel implementation wraps a queue.
It provides a no-argument constructor as well as a constructor that accepts the queue capacity:

publ i c Si mpl eChannel (i nt capacity)

Specifying a capacity of 0 will create a "direct-handoff" channel where a sender will block until the
channel'sr ecei ve() method is called. Otherwise a channel that has not reached its capacity limit will
store messages in its internal queue, and the send() method will return immediately even if no receiver
is ready to handle the message.

Whereas the Si npl eChannel enforces first-inffirst-out (FIFO) ordering, the Pri ori t yChannel is
an alternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority is determined by the 'pri ori t y' property within each message's header.
However, for custom priority determination logic, a comparator of type Conpar at or <Message<?>>
can be provided tothe Pri or i t yChannel 's constructor.

2.3 Channelinterceptor

1.0.0.m2 (Milestone 2) Spring Integration Reference 5

Spring Integration

One of the advantages of a messaging architecture is the ability to provide common behavior and capture
meaningful information about the messages passing through the system in a non-invasive way. Since the
Messages are being sent to and received from MessageChannel s, those channels provide an
opportunity for intercepting the send and receive operations. The Channel | nt er cept or strategy
interface provides methods for each of those operations.

public interface Channel I nterceptor {
bool ean preSend(Message<?> nessage, MessageChannel channel);
voi d post Send(Message<?> nessage, MessageChannel channel, bool ean sent);
bool ean preRecei ve(MessageChannel channel);
voi d post Recei ve(Message<?> message, MessageChannel channel);

}
After implementing the interface, registering the interceptor with a channel isjust amatter of caling:

channel . addl nt er cept or (sonmeChannel | nt erceptor) ;

The methods that return a bool ean value can return 'f al se' to prevent the send or receive operation
from proceeding (send would return 'false’ and receive would return 'null*).

Because it is rarely necessary to implement al of the interceptor methods, a
Channel | nt er cept or Adapt er classis aso available for sub-classing. It provides no-op methods
(the voi d methods are empty, and the bool ean methods return t r ue). Therefore, it is often easiest to
extend that class and just implement the method(s) that you need as in the following example.

public class CountingChannel | nterceptor extends Channel | nterceptor Adapter {
private final Atomclnteger sendCount = new Atoni clnteger();

@verride

publ i c bool ean preSend(Message<?> nessage, MessageChannel channel) {
sendCount . i ncr ement AndCet () ;
return true;

2.4 MessageHandler

So far we have seen that generic message objects are sent-to and received-from simple channel aobjects.
Hereis Spring Integration's callback interface for handling the Messages:

public interface MessageHandl er {
Message<?> handl e(Message<?> nessage) ;
}

The handler plays an important role, since it is typicaly responsible for translating between the generic
Message objects and the domain objects or primitive values expected by business components that
consume the message payload. That said, developers will rarely need to implement this interface directly.
While that option will always be available, we will soon discuss the higher-level configuration options
including both annotation-driven techniques and XML-based configuration with convenient namespace

Manud

Spring Integration

support.

2.5 MessageBus

There is a rather obvious gap in what we have reviewed thus far. The MessageChannel provides a
recei ve() method that returns a Message, and the MessageHandl er provides a handl e()
method that accepts a Message, but how do the messages get passed from the channel to the handler?
As mentioned earlier, the MessageBus provides aruntime form of inversion of control, and so the short
answer is: you don't need to worry about it. Nevertheless since this is a reference guide, we will explore
thisin abit of detail.

The MessageBus is an example of a mediator. It performs a number of roles - mostly by delegating to
other dtrategies. One of its fundamental responsibilities is to manage registration of the
MessageChannel s and MessageHandl er s. It provides the following methods:

public void registerChannel (String name, MessageChannel channel)

public void registerHandl er(String nane, MessageHandl er handl er, Subscription subscription)

public void registerHandl er(String nane, MessageHandl er handl er, Subscription subscription,
ConcurrencyPol i cy concurrencyPolicy)

As those method signatures reveal, the message bus is handling several of the concerns here so that the
channel and handler objects can be as simple as possible. These responsibilities include the creation and
lifecycle management of message dispatchers, the activation of handler subscriptions, and the
configuration of thread pools. The bus coordinates al of that behavior based upon the metadata provided
via these registration methods, and typicaly developers will not even use this API directly since the
metadata can be provided in XML and/or annotations. We will briefly take a look at each of those
metadata objects.

The bus creates and manages dispatchers that pull messages from a channel in order to push those
messages to handlers subscribed to that channel. Each channel hasa Di spat cher Pol i cy that contains
metadata for configuring those dispatchers:

Table 2.2. Properties of the DispatcherPolicy

Property Name Default Value Description

publishSubscribe fase whether the dispatcher should
attempt to publish to al of its
handlers (rather than just one)

maxM essagesPer Task 1 maximum number of messages
to retrieve per poll

receiveTimeout 1000 (milliseconds) how long to block on the receive
cal (0 for no blocking, -1 for
indefinite block)

rejectionLimit 5 maximum number of attempts to

1.0.0.m2 (Milestone 2) Spring Integration Reference 7

Spring Integration

Property Name Default Value Description
invoke handlers (e.g. no threads
available)
retrylnterval 1000 (milliseconds) amount of time to wait between
successive attempts to invoke
handlers
shouldFailOnRejectionLimit true whether to throw a

MessageDel i ver yExcepti on
if the 'rgjectionLimit’ is reached -

if this is set to 'fase, then such
undeliverable messages would be
dropped silently

The bus registers handlers with a channel's dispatcher based upon the Subscri pti on metadata
provided to ther egi st er Handl er () method.

Table 2.3. Properties of the Subscription

Property Name Description
channel the channel instance to subscribe to (an object
reference)
channelName the name of the channel to subscribe to - only used

as afallback if ‘channel’ is null

schedule the scheduling metadata (see below)

The scheduling metadata is provided as an implementation of the Schedul e interface. This is an
abstraction designed to allow extensibility of schedulers for messaging tasks. Currently, there is a single
implementation called Pol | i ngSchedul e that provides the following properties:

Table 2.4. Properties of the PollingSchedule

Property Name Default Value Description

period N/A the delay interval between each
poll

initialDelay 0 the delay prior to the first poll

timeUnit TimeUnit. MILLISECONDS time wunit for ‘'period and
‘initial Delay’

fixedRate false 'false’ indicates fixed-delay (no
backlog)

Manud

Spring Integration

ThePol | i ngSchedul e constructor requires the 'period' value.

The ConcurrencyPol i cy is an optional parameter to provide when registering a handler. When the
MessageBus registers a handler, it will use these properties to configure that handler's thread pool.
These parameters are configurable on a per-handler basis since handlers may have different performance
characteristics and may have different expectations with regard to the volume of throughput. The
following table lists the available properties and their default values:

Table 2.5. Properties of the ConcurrencyPolicy

Property Name Default Value Description

coreSize 1 the core size of the thread pool

maxSize 10 the maximum size the thread
pool can reach when under
demand

gueueCapacity 0 capacity of the queue which
defers an increase of the pool
size

keepAliveSeconds 60 how long added threads (beyond

core size) should remain idle
before being removed from the
pool

2.6 MessageEndpoint

When MessageHandl| er s are registered with the MessageBus, the bus assigns the handler to a
dispatcher based on the provided schedule as described above. Internally, the bus is creating and
registering an instance that implements the MessageEndpoi nt interface. This is where other handler
metadata enters the picture (e.g. the concurrency settings). Basically, you can consider the endpoint to be
a composite handler built from a simple implementation of the MessageHandl er aong with its
metadata. In fact, the MessageEndpoi nt does extend the MessageHand| er interface.

public interface MessageEndpoi nt extends MessageHandl er {
String get Name();
Subscri ption get Subscription();
Concur rencyPol i cy get ConcurrencyPolicy();

When using the API, it's simpler to register handlers with metadata and leave the message endpoint as an
internal responsibility of the bus. However, it is possible to create endpoints directly. Spring Integration
provides asingle implementation: Def aul t MessageEndpoi nt .

1.0.0.m2 (Milestone 2) Spring Integration Reference 9

Spring Integration

2.7 MessageSelector

As described above, when a MessageHand| er is registered with the message bus, it is hosted by an
endpoint and thereby subscribed to a channel. Often it is necessary to provide additional dynamic logic to
determine what messages the handler should receive. The MessageSel ect or strategy interface fulfills
that role.

public interface MessageSel ector {
bool ean accept (Message<?> nmessage) ;
}

A MessageEndpoi nt can be configured with zero or more selectors, and will only receive messages
that are accepted by each selector. Even though the interface is simple to implement, a couple common
selector implementations are provided. For example, the Payl oadTypeSel ect or provides similar
functionality to Datatype Channels (as described in the section called “ Configuring Message Channels’)
except that in this case the type-matching can be done by the endpoint rather than the channel.

Payl oadTypeSel ect or sel ector = new Payl oadTypeSel ector (String. cl ass, Integer.class);
assert True(sel ector. accept (new Stri ngMessage("exanple")));

assert True(sel ector. accept (new Generi cMessage<| nt eger >(123)));

assert Fal se(sel ector. accept (new Generi cMessage<SoneObj ect >(sonelbj ect)));

Another simple but useful MessageSel ect or provided out-of-the-box is the
Unexpi redMessageSel ect or . As the name suggests, it only accepts messages that have not yet
expired.

Essentially, using a selector provides reactive routing whereas the Datatype Channel and Message Router
provide proactive routing. However, selectors accommodate additional uses. For example, the
MessageChannel 's'purge’ method accepts a selector:

channel . pur ge(soneSel ector) ;

There is even a Channel Pur ger utility class whose purge operation is a good candidate for Spring's
JMX support:

Channel Purger purger = new Channel Purger (channel, new Exanpl eMessageSel ector());
purger. purge();

Implementations of MessageSel ect or might provide opportunities for reuse on channels in addition
to endpoints. For that reason, Spring Integration provides a simple selector-wrapping
Channel | nt er cept or that accepts one or more selectors in its constructor.

MessageSel ecti ngl nterceptor interceptor = new MessageSel ecti ngl nterceptor(selectorl, selector?2);
channel . addl nt ercept or (i nterceptor);

Manud

Spring Integration

3. Channel Adapters

3.1 Introduction

Channel Adapters are the components responsible for interacting with external systems or other
components that are external to the messaging system. As the name implies, the interaction consists of
adapting the external system or component to send-to and/or receive-from a MessageChannel . Within
Spring Integration, there is a distinction between source adapters and target adapters. In the 1.0
Milestone 2 release, Spring Integration includes source and target adapters for IMS, Files, Streams, and
Spring ApplicationEvents as well as atarget adapter for sending e-mail.

3.2 JMS Adapters

Spring Integration provides two adapters for accepting IMS messages: JnsPol | i ngSour ceAdapt er
and JnsMessageDri venSour ceAdapt er. The former uses Spring's JnsTenpl at e to receive
based on a polling period. The latter configures and delegates to an instance of Spring's
Def aul t Messageli st ener Cont ai ner.

The JnsPol | i ngSour ceAdapt er requires a reference to either asingle Jns Tenpl at e instance or
both Connect i onFact ory and Dest i nat i on (a 'destinationName' can be provided in place of the
‘destination’ reference). The JnsPol | i ngSour ceAdapt er aso requires a ‘channel’ property that
should be a reference to a MessageChannel instance. The adapter accepts additional properties such
as. period, initialDelay, maxMessagesPerTask, and sendTimeout. The following example defines a IMS
source adapter that polls every 5 seconds and then sends to the "exampleChannel":

<bean cl ass="org. spri ngframework.integration. adapter.jnms.JnmsPol|ingSourceAdapter">
<constructor-arg ref="jnsTenpl ate"/>
<property nanme="channel " ref="exanpl eChannel "/ >
<property nanme="period" val ue="5000"/>

</ bean>

In most cases, Spring Integration's message-driven JM S adapter is more appropriate since it delegatesto a
Messageli st ener container and supports dynamically adjusting concurrent consumers. The
JnsMessageDri venSour ceAdapt er requires references to a MessageChannel, a
Connecti onFact ory,andaDest i nat i on (or 'destinationName'). The following example defines a
JMS message-driven source adapter that receives from the IMS queue called "exampleQueue" and then
sends to the Spring Integration channel nhamed "exampleChannel":

<bean cl ass="org. springframework.integrati on. adapter.jns.JnmsMessageDri venSour ceAdapt er ">
<property nanme="connectionFactory" ref="connecti onFactory"/>
<property nanme="destinati onName" val ue="exanpl eQueue"/>
<property nanme="channel " ref="exanpl eChannel "/ >

</ bean>

1.0.0.m2 (Milestone 2) Spring Integration Reference 11

Spring Integration

For both source adapter types, Spring's MessageConvert er strategy is used to convert the IMS
message into a plain Java object, and then Spring Integration's MessageMapper strategy is used to
convert from the plain object to aMessage.

The JnsTar get Adapt er isaMessageHandl er implementation that is capable of mapping Spring
Integration Messages to JMS messages and then sending to a JMS destination. It requires either a
‘imsTemplate’ reference or both ‘connectionFactory' and 'destination’ references (again, the
‘destinationName’ may be provided in place of the 'destination). In the section called “Configuring
Channel Adapters’, you will see how to configure a JMS target adapter with Spring Integration's
namespace support.

3.3 File Adapters

The Fi | eSour ceAdapt er extends the generic Pol | i ngSour ceAdapt er (just as the polling IMS
adapter does). It requires the following constructor arguments:

public Fil eSourceAdapter(File directory, MessageChannel channel, int period)
Optional propertiesinclude 'initial Delay' and 'maxM essagesPerTask'.

The Fi | eTar get Adapt er constructor only requires the 'directory’ argument. The target adapter also
accepts an implementation of the Fi | eNanmeGener at or strategy that defines the following method:

String generat eFi | eNane(Message nessage)

As with the IMS adapters, the most convenient way to configure File adapters is with the namespace
support. For examples, see the section called “ Configuring Channel Adapters’.

3.4 Mail Adapters

Spring Integration currently provides support for outbound email only with the Mai | Tar get Adapt er .
This adapter delegates to a configured instance of Spring's JavaMai | Sender , and its various mapping
strategies use Spring's Mai | Message abstraction. By default text-based mails are created when the
handled message has a String-based payload. If the message payload is a byte array, then that will be
mapped to an attachment.

The adapter also delegates to a Mai | Header Gener at or for providing the mail's properties, such as
the recipients (TO, CC, and BCC), the from/reply-to, and the subject.

public interface Mil Header Generator {
voi d popul at eMni | MessageHeader (Mai | Message mai | Message, Message<?> nessage) ;

}

A static implementation is avail able out-of-the-box, but typically most of the properties would need to be

1.0.0.m2 (Milestone 2) Spring Integration Reference 12

Spring Integration

dynamically generated based on the message itself. The following is an example of a configured mail
adapter.

<bean i d="nmi | Tar get Adapter" class="org. springfranework.integration.adapter. mail.Mil Target Adapter">

<property name="nmai | Sender" ref="javaMil Sender"/>
<property name="header Generator" ref="dynam cMai | MessageHeader Generator"/>
</ bean>

3.5 Stream Adapters

Spring Integration also provides adapters for streams. Both Byt eSt r eanSour ceAdapt er and
Char act er St r eanSour ceAdapt er extend the Pol | | i ngSour ceAdapt er so that the polling
period can be configured, and the Message Bus can automatically detect and schedule them. Both require
an | nput St r eam as the single constructor argument. The Byt eSt r eanSour ceAdapt er aso
accepts the 'bytesPerMessage’ property to determine how many bytes it will attempt to read into each
Message.

For target streams, there are also two implementations. Byt eStreanilar get Adapt er and
Char act er St r eanilar get Adapt er . Each defines a constructor that requires an Qut put St r eam
and each provides a second constructor that adds the optional 'bufferSize' property. Since both of these
ultimately implement the MessageHand!l er interface, they can be referenced from an endpoint
configuration as will be described in more detail in the section called “ Configuring Message Endpoints”.

3.6 ApplicationEvent Adapters

Spring Appl i cati onEvent s can aso be integrated as either a source or target for Spring Integration
message channels. To receive the events and send to a channel, simply define an instance of Spring
Integration's Appl i cat i onEvent Sour ceAdapt er (as with all source adapters, if a MessageBus
is defined, it will automatically detect the event source adapter). The
Appl i cati onEvent Sour ceAdapt er implements Spring's Appl i cati onLi st ener interface.
By default it will pass al received events as Spring Integration Messages. To limit based on the type of
event, configure the list of event types that you want to receive with the 'eventTypes' property.

To send Spring Appl i cationEvents, register an instance of the
Appl i cati onEvent Tar get Adapt er classasthe handler of an endpoint (such configuration will be
described in detail in the section caled “Configuring Message Endpoints’). This adapter implements
Spring's Appl i cat i onEvent Publ i sher Awar e interface and thus acts as a bridge between Spring
Integration Messages and Appl i cati onEvent s.

Manud

Spring Integration

4. Configuration

4.1 Introduction

Spring Integration offers a number of configuration options. Which option you choose depends upon your
particular needs and at what level you prefer to work. As with the Spring framework in general, it is aso
possible to mix and match the various techniques according to the particular problem at hand. For
example, you may choose the X SD-based namespace for the mgjority of configuration combined with a
handful of objects that are configured with annotations. Of course, it is also possible to always stick with
a single approach. The main point is that these are options for configuration motivated by the need to
support a user community with a wide range of preferences. That said, there has also been a concerted
effort to provide consistent naming so that, for example, the XML elements defined by the XSD schema
will match the names of annotations, and the attributes of those XML elements will match the names of
annotation properties. Direct usage of the APl is yet another option and is described in detail in Chapter 2,
The Core API. We expect that most users will choose one of the higher-level options, such as the
namespace-based or annotation-driven configuration.

4.2 Namespace Support

Spring Integration components can be configured with XML elements that map directly to the
terminology and concepts of enterprise integration. In many cases, the element names match those of the
Enterprise Integration Patterns [http://www.eai patterns.com].

To enable Spring Integration's namespace support within your Spring configuration files, add the
following namespace reference and schema mapping in your top-level 'beans' element:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:integration="http://wwm. springframework. org/schema/integration"
Xsi : schemaLocati on="htt p: //ww. spri ngf ranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springframework. org/ schema/ i nt egrati on
http://ww. springfranmewor k. org/ schema/ i ntegration/spring-integration-1.0.xsd">

You can choose any name after "xmins:"; integration is used here for clarity, but you might prefer a
shorter abbreviation. Of course if you are using an XML-editor or IDE support, then the availability of
auto-completion may convince you to keep the longer name for clarity. Alternatively, you can create
configuration files that use the Spring Integration schema as the primary namespace:

<beans: beans xm ns="http://ww. spri ngfranework. org/ schema/ i nt egration"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: beans="htt p: //ww. spri ngfranewor k. or g/ schena/ beans"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http: //wwv. spri ngfranmewor k. org/ schema/ i ntegration
http://ww. springfranmework. org/ schema/ i ntegration/spring-integration-1.0.xsd">

1.0.0.m2 (Milestone 2) Spring Integration Reference 14

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration

When using this alternative, no prefix is necessary for the Spring Integration elements. On the other hand,
if you want to define a generic Spring "bean" within the same configuration file, then a prefix would be
required for the bean element (<beans.bean ... />). Since it is generally a good idea to modularize the
configuration files themselves based on responsibility and/or architectural layer, you may find it
appropriate to use the latter approach in the integration-focused configuration files, since generic beans
are seldom necessary within those same files. For purposes of this documentation, we will assume the
"integration” namespace is primary.

Configuring Message Channels

To create a Message Channel instance, use the ‘channel’ element:

<channel id="exanpl eChannel "/>

Y ou can also specify the channel's capacity:

<channel id="exanpl eChannel" capacity="100"/>

The default channel type is Point to Point. To create a Publish Subscribe channel, provide avalue of true
for the "publish-subscribe' attribute of the channel element:

<channel id="exanpl eChannel" publish-subscribe="true"/>

When the MessageBus detects and registers channels, it will establish a dispatcher for each channel.
The default dispatcher settings were previously displayed in Table 2.2, “Properties of the
DispatcherPolicy”. To customize these settings for a particular channel, add the ‘dispatcher-policy'
sub-element and provide one or more of the attributes shown below:

<channel id="exanpl eChannel" publish-subscribe="true">
<di spat cher - pol i cy max- messages- per-task="25"
recei ve-tineout =" 10"

retry-interval ="500"
shoul d-fail-on-rejection-limt="fal se"/>
</ channel >

To create a Datatype Channd [http://www.eal patterns.com/DatatypeChannel.html] that only accepts
messages containing a certain payload type, provide the fully-qualified class name in the channel
element'sdat at ype attribute:

<channel id="nunberChannel" datatype="java.| ang. Number"/>

Note that the type check passes for any type that is assignable to the channel's datatype. In other words,
the "numberChannel" above would accept messages whose payload is j ava. | ang. | nt eger or
j ava. | ang. Doubl e. Multiple types can be provided as a comma-delimited list:

<channel id="stringO Nunber Channel" datatype="java.l ang. String,java.| ang. Nunber"/>

1.0.0.m2 (Milestone 2) Spring Integration Reference 15

http://www.eaipatterns.com/DatatypeChannel.html
http://www.eaipatterns.com/DatatypeChannel.html

Spring Integration

Message channels may also have interceptors as described in Section 2.3, “Channellnterceptor”. One or
more <interceptor> elements can be added as sub-elements of <channel>. Provide the "ref" attribute to
reference any Spring-managed object that implementsthe Channel | nt er cept or interface:

<channel id="exanpl eChannel ">
<interceptor ref="trafficMonitoringlnterceptor"/>
</ channel >

In generdl, it is a good idea to define the interceptor implementations in a separate location since they
usually provide common behavior that can be reused across multiple channels.

Configuring Message Endpoints

To create a Message Endpoint instance, use the 'endpoint’ element with the ‘input-channel' and
'handler-ref' attributes:

<endpoi nt input-channel =" exanpl eChannel " handl er - r ef =" exanpl eHandl er"/ >

The configuration above assumes that "exampleHandler” is an actual implementation of the
MessageHandl er interface as described in Section 2.4, “MessageHandler”. To delegate to an arbitrary
method of any object, smply add the "handler-method" attribute.

<endpoi nt i nput - channel =" exanpl eChannel " handl er -r ef =" somePoj 0" handl er - met hod="someMet hod"/ >

In either case (MessageHandl| er or arbitrary object/method), when the handling method returns a
non-null value, the endpoint will attempt to send the reply message to an appropriate reply channel. To
determine the reply channel, it will first check for a value in the message header's 'r et ur nAddr ess'
property. If that value is available, it will then check its type. If it is a MessageChannel , the reply
message will be sent to that channel. If it isa St ri ng, then the endpoint will attempt to resolve the
channel by performing a lookup in the Channel Regi st ry. If the message header does not contain a
‘returnAddress property at al, then it will fallback to its own 'defaultOutputChannelName' property. If
neither is available, then a MessageHand| i ngExcept i on will be thrown. To configure the default
output channel when using the XML namespace, provide the 'default-output-channel' attribute:

<endpoi nt i nput-channel =" exanpl eChannel "
handl er - r ef =" sonePoj o"
handl er - net hod="someMet hod"
def aul t - out put - channel ="r epl yChannel "/ >

Endpoint's also support MessageSel ect ors as described in Section 2.7, “MessageSelector”. To
configure selectors with namespace support, smply add one or more <selector> sub-elements to the
endpoint definition:

<endpoi nt i d="endpoi nt" input-channel ="channel" handl er-ref="handl er">

<sel ector ref="exanpl eSel ector"/>
</ endpoi nt >

Manud

Spring Integration

When the MessageBus registers the endpoint, it will activate the subscription by assigning the endpoint
to the input channel's dispatcher. The dispatcher is capable of handling multiple endpoint subscriptions
for its channel and delegates to a scheduler for managing the tasks that pull messages from the channel
and push them to the endpoints. To configure the polling period for an individual endpoint's schedule,
provide a 'schedule' sub-element with the 'period' in milliseconds:

<endpoi nt i nput - channel =" exanpl eChannel " handl er - r ef =" exanpl eHandl er"/ >
<schedul e peri od="3000"/>
</ endpoi nt >

Note

Individual endpoint schedules only apply for "Point-to-Point" channels, since in that case
only a single subscriber needs to receive the message. On the other hand, when a Spring
Integration channel is configured as a "Publish-Subscribe" channel, then the dispatcher will
drive al endpoint notifications according to its own default schedule, and any 'schedule
element configured for those endpoints will be ignored.

One of the most important configuration options for endpointsis the concurrency policy. Each endpoint is
capable of managing a thread pool for its handler, and the values you provide for that pool's core and max
size can make a substantia difference in how the handler performs under load. These settings are
available per-endpoint since the performance characteristics of an endpoint's handler is one of the major
factors to consider (the other magjor factor being the expected volume on the channel to which the
endpoint subscribes). To enable concurrency for an endpoint that is configured with the XML namespace
support, provide the ‘concurrency' sub-element and one or more of the properties shown below:

<endpoi nt i nput-channel =" exanpl eChannel " handl er - r ef =" exanpl eHandl er "/ >
<concurrency core="5" max="25" queue-capacity="20" keep-alive="120"/>
</ endpoi nt >

Recall the default concurrency policy values as listed in Table 2.5, “Properties of the
ConcurrencyPolicy”.

Tip

The default queue capacity of O triggers the creation of a Synchr onousQueue. In many
cases, thisis preferable since the direct handoff eliminates the chance of a message handling
task being "stuck" in the queue (thread pool executors will favor adding to the queue rather
than increasing the pool size). Specificaly, whenever a dispatcher for a Point-to-Point
channel has more than one subscribed endpoint, a task that is rejected due to an exhausted
thread pool can be handled immediately by another endpoint whose pool has one or more
threads available. On the other hand, when a particular channel/endpoint may be expecting
bursts of activity, setting a queue capacity value might be the best way to accommodate the
volume.

Configuring the Message Bus

1.0.0.m2 (Milestone 2) Spring Integration Reference 17

Spring Integration

As described in Section 2.5, “MessageBus’, the MessageBus plays a central role. Nevertheless, its
configuration is quite simple since it is primarily concerned with managing internal details based on the
configuration of channels and endpoints. The bus is aware of its host application context, and therefore is
also capable of auto-detecting the channels and endpoints. Typicaly, the MessageBus can be
configured with a single empty element:

<message- bus/ >

The Message Bus provides default error handling for its components in the form of a configurable error
channel, and the 'message-bus' element accepts a reference with its 'error-channel’ attribute:

<nmessage- bus error-channel ="error Channel "/ >

<channel id="error Channel" publish-subscribe="true" capacity="500"/>

When exceptions occur in an endpoint's execution of its MessageHandl er calback, those exceptions
will be wrapped in Er r or Messages and sent to the Message Bus ‘errorChannel’ by default. To enable
global error handling, simply register a handler on that channel. For example, you can configure Spring
Integration's Payl oadTypeRout er as the handler of an endpoint that is subscribed to the
‘errorChannel’. That router can then spread the error messages across multiple channels based on
Excepti on type.

The 'message-bus' element accepts two more optional attributes. First is the size of the dispatcher thread
pool. The dispatcher threads are responsible for polling channels and then passing the messages to
handlers. When the endpoints are concurrency-enabled as described in the previous section, the
invocation of the handling methods will happen within the handler thread pool and not the dispatcher
pool. Finally, the Message Bus is capable of automatically creating channel instances (with default
settings) if an endpoint registers a subscription by providing the name of a channel that the bus does not
recognize.

<message- bus di spat cher-pool -si ze="25" aut o-creat e-channel s="true"/>

Configuring Channel Adapters

The most convenient way to configure Channel Adapters is by using the namespace support. The
following examples demonstrate the namespace-based configuration of source and target adapters (Spring
Integration 1.0 M1 includes namespace support for IMS and Files):

<j ms-source connection-factory="connecti onFactory" destinati on="i nput Queue" channel ="i nput Channel 1"/
<jms-target connection-factory="connecti onFactory" destinati on="out put Queue" channel =" out put Channel 1"/ >
<file-source directory="/tnp/input" channel ="i nput Channel 2" pol | - peri od="10000"/>

<file-target directory="/tnp/output" channel ="out put Channel 2"/ >

Manud

Spring Integration

Enabling Annotation-Driven Configuration

The next section will describe Spring Integration's support for annotation-driven configuration. To enable
those features, add this single element to the XML-based configuration:

<annot ati on-driven/ >

4.3 Annotations

In addition to the XML namespace support for configuring Message Endpoints, it is also possible to use
annotations. The class-level @/kssageEndpoi nt annotation indicates that the annotated class is
capable of being registered as an endpoint, and the method-level @Handl er annotation indicates that the
annotated method is capable of handling a message.

@kssageEndpoi nt (i nput ="fooChannel ")
public class FooService {

@Handl er
public void processMessage(Message message) {

}

In most cases, the annotated handler method should not require the Message type as its parameter.
Instead, the method parameter type can match the message's payload type.

@kssageEndpoi nt (i nput ="f ooChannel ")
public class FooService {

@Handl er
public void processFoo(Foo foo) {

}

As described in the previous section, when the handler method returns a non-null value, the endpoint will
attempt to send areply. Thisis consistent across both configuration options (namespace and annotations)
in that the message header's 'replyChannelName' property will be used if available, and the endpoint's
default output is the fallback. To configure the default output for an annotation-driven endpoint, provide
the 'defaultOutput’ attribute on the @vessageEndpoi nt .

@essageEndpoi nt (i nput =" exanpl eChannel *, def aul t Qut put ="repl yChannel ")

Finally, just as the 'schedule’ sub-element and its 'period’ attribute can be provided for a namespace-based
endpoint, the 'pollPeriod' attribute can be provided on the @k ssageEndpoi nt .

@kssageEndpoi nt (i nput ="exanpl eChannel *, pol | Peri od=3000)

1.0.0.m2 (Milestone 2) Spring Integration Reference 19

Spring Integration

Two additional annotations are supported, and both act as a special form of handler method: @Rout er
and @plitter. As with the @andl er annotation, methods annotated with either of these two
annotations can either accept the Message itself or the message payload type as the parameter. When
using the @Rout er annotation, the annotated method can return either the MessageChannel or
St ri ng type. In the case of the latter, the endpoint will resolve the channel name as it does for the
default output. Additionally, the method can return either asingle value or a collection. When a collection
is returned, the reply message will be sent to multiple channels. To summarize, the following method
signatures are al valid.

@rout er
publ i c MessageChannel route(Message nessage) {...}

@Rout er
publ i c List<MessageChannel > rout e(Message nessage) {...}

@Rout er
public String route(Foo payload) {...}

@Rout er
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a common requirement is to route based on metadata available
within the message header as either a property or attribute. Rather than requiring use of the Message
type as the method parameter, the @Rout er annotation may also map to either a property or attribute
name.

@Rout er (property="cust omer Type")
public String route(String customerType)

@Rout er (attri bute="order St at us")
public List<String> route(OrderStatus status)

The @bpl i tt er annotation is also applicable to methods that expect either the Message type or the
message payload type, and the return values of the method should be a collection of any type. If the
returned values are not actual Message objects, then each of them will be sent as the payload of a
message. The @bpl i tt er annotation expects a 'channel’ attribute that specifies the channel name to
which those messages should be sent.

@pl itter(channel =" exanpl eChannel ")

Li st<Li neltenr extractltens(Order order) {
return order.getltens()

}

The @ubl i sher annotation is a convenience for sending messages with AOP after-returning advice.
For example, each time the following method is invoked, its return value will be sent to the "fooChannel":

@ubl i sher (channel ="f ooChannel ")
public String foo() {

return “"bar";
}

Manud

Spring Integration

Similarly, the @ubscri ber annotation triggers the retrieval of messages from a channel, and the
payload of each message will then be sent as input to an arbitrary method. This is one of the simplest
ways to configure asynchronous, event-driven behavior:

@ubscri ber (channel =" f ooChannel ")

public void log(String foo) {
System out. printl n(foo);

}

1.0.0.m2 (Milestone 2) Spring Integration Reference 21

Spring Integration

5. Spring Integration Samples

5.1 The Cafe Sample

In this section, we will review a sample application that is included in the Spring Integration Milestone 1
release. This sample is inspired by one of the samples featured in Gregor Hohpe's Ramblings
[http://mww.eai patterns.com/ramblings.html].

The domain isthat of a Cafe, and the basic flow is depicted in the following diagram:

hotDrinks

placeOrder

The Dr i nkOr der object may contain multiple Dr i nks. Once the order is placed, a Splitter will break
the composite order message into a single message per drink. Each of these is then processed by a Router
that determines whether the drink is hot or cold (checking the Dr i nk object's 'islced' property). Finaly
the Bari st a prepares each drink, but hot and cold drink preparation are handled by two distinct
methods: 'prepareHotDrink’ and 'prepareColdDrink'.

Here isthe XML configuration:

<beans: beans xm ns="http://wm. spri ngfranmewor k. org/ schema/ i nt egrati on"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: beans="htt p: //ww. spri ngfranewor k. or g/ schena/ beans"

xm ns: context ="http://wmv springframewor k. or g/ schema/ cont ext"

Xsi : schemaLocati on="htt p: //ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springfranmework. org/ schema/integration
http://ww. spri ngfranewor k. org/ schema/ i ntegration/spring-integration-1.0.xsd
http://ww. springframewor k. or g/ schema/ cont ext
http: //ww. spri ngfranmewor k. or g/ schema/ cont ext/ spri ng- cont ext - 2. 5. xsd" >

<nmessage- bus/ >
<annot ati on-driven/ >

<cont ext : conponent - scan base- package="org. spri ngf ranmewor k. i nt egrati on. sanpl es. cafe"/ >

<channel id="orders"/>
<channel id="drinks"/>
<channel id="col dDrinks"/>
<channel id="hotDrinks"/>

<endpoi nt input-channel ="col dDri nks" handl er-ref="bari sta" handl er- et hod="pr epar eCol dDri nk"/ >
<endpoi nt input-channel ="hot Dri nks" handl er-ref="bari sta" handl er - met hod="pr epar eHot Dri nk"/ >

<beans: bean i d="cafe" class="org.springframework.integration.sanpl es.cafe. Cafe">
<beans: property nanme="or der Channel " ref="orders"/>
</ beans: bean>

1.0.0.m2 (Milestone 2) Spring Integration Reference 22

http://www.eaipatterns.com/ramblings.html
http://www.eaipatterns.com/ramblings.html

Spring Integration

</ beans: beans>

Notice that the Message Bus is defined. It will automatically detect and register all channels and
endpoints. The "annotation-driven' element will enable the detection of the splitter and router - both of
which carry the @kssageEndpoi nt annotation. That annotation extends Spring's "stereotype"
annotations (by relying on the @Component meta-annotation), and so all classes carrying the endpoint
annotation are capabl e of being detected by the component-scanner.

@kssageEndpoi nt (i nput =" orders")
public class OrderSplitter {

@pl itter(channel ="drinks")
public List<Drink> split(DrinkOrder order) {
return order.getDrinks();

}

@kssageEndpoi nt (i nput ="dri nks")
public class DrinkRouter {

@Rrout er
public String resol veDri nkChannel (Drink drink) {

return (drink.islced()) ? "coldDrinks" : "hotDrinks";
}

Now turning back to the XML, you see that there are two <endpoint> elements. Each of these is
delegating to the same Bar i st a instance but different methods. The 'barista’ could have been defined in
the XML, but instead the @onponent annotation is applied:

@Conponent
public class Barista {

private | ong hotDrinkDel ay = 1000;
private | ong col dDri nkDel ay = 700;

private Atom clnteger hotDrinkCounter = new Atoniclnteger();
private Atomi cl nteger col dDri nkCounter = new Atom clnteger();

public void setHotDrinkDel ay(l ong hot Dri nkDel ay) {
this. hotDrinkDel ay = hot Dri nkDel ay;

}

public void set Col dDri nkDel ay(l ong col dDri nkDel ay) {
this. col dDri nkDel ay = col dDri nkDel ay;

}
public void prepareHotDrink(Drink drink) {
try {
Thr ead. sl eep(thi s. hot Dri nkDel ay) ;
} catch (InterruptedException e) {
Thread. current Thread().interrupt();
}
Systemout. println("prepared hot drink #' + hotDrinkCounter.incrementAndGet() + ": " + drink);
}
public void prepareCol dDri nk(Drink drink) {
try {

Thr ead. sl eep(t hi s. col dDri nkDel ay) ;

1.0.0.m2 (Milestone 2) Spring Integration Reference 23

Spring Integration

} catch (InterruptedException e) {
Thread. current Thread().interrupt();
}

System out. println("prepared cold drink #' + col dDri nkCounter.incrementAndGet() + ": " + drink);

As you can see from the code excerpt above, the barista methods have different delays. This simulates
work being completed at different rates. When the Caf eDenb 'main’ method runs, it will loop 100 times
sending asingle hot drink and asingle cold drink each time.

public static void main(String[] args) {
Abstract Appl i cati onCont ext context = null;
if(args.length > 0) {
context = new Fil eSyst enXm Appl i cati onCont ext (args);

el se {
context = new O assPat hXm Appl i cati onCont ext (" caf eDeno. xm ", Caf eDenp. cl ass);
}

context.start();
Cafe cafe = (Cafe) context.getBean("cafe");
DrinkOrder order = new DrinkOrder();
Drink hot Doubl eLatte = new Drink(DrinkType. LATTE, 2, false);
Drink icedTripl eMocha = new Drink(Dri nkType. MOCHA, 3, true);
order. addDri nk(hot Doubl eLatte);
order. addDri nk(i cedTri pl eMocha);
for (int i =0; i < 100; i++) {
caf e. pl aceOrder (order);

}

To run this demo, go to the "samples' directory within the root of the Spring Integration distribution. On
Unix/Mac you can run ‘cafeDemo.sh’, and on Windows you can run ‘cafeDemo.bat'. Each of these will by
default create a Spring Appl i cati onCont ext from the ‘cafeDemo.xml’ file that is in the
"spring-integration-samples’ JAR and hence on the classpath (it is the same as the XML above).
However, a copy of that file is also available within the "samples" directory, so that you can provide the
file name as a command line argument to either ‘cafeDemo.sh’ or ‘cafeDemo.bat’. This will alow you to
experiment with the configuration and immediately run the demo with your changes. It is probably a good
ideato first copy the origina file so that you can make as many changes as you want and still refer back
to the original to compare.

When you run cafeDemo, you will see that all 100 cold drinks are prepared in roughly the same amount
of time as only 70 of the hot drinks. This is to be expected based on their respective delays of 700 and
1000 milliseconds. However, by configuring the endpoint concurrency, you can dramatically change the
results. For example, on my machine, the following single modification causes all 100 hot drinks to be
prepared before the 4th cold drink is ready:

<endpoi nt input-channel ="col dDri nks" handl er-ref ="bari sta" handl er - met hod="pr epar eCol dDri nk"/ >
<endpoi nt input-channel ="hot Dri nks" handl er-ref ="bari sta" handl er - met hod="pr epar eHot Dri nk" >

<concurrency core="25" max="50"/>
</ endpoi nt >

Manud

Spring Integration

In addition to experimenting with the ‘concurrency' settings, you can aso try adding the 'schedule
sub-element as described in the section called “Configuring Message Endpoints’. Additionally, you can
experiment with the channel's configuration, such as adding a 'dispatcher-policy' as described in the
section called “Configuring Message Channels’. If you want to explore the sample in more detail, the
source JAR isavailablein the "dist” directory: 'spring-integration-samples-sources-1.0.0.m1.jar'.

1.0.0.m2 (Milestone 2) Spring Integration Reference 25

Spring Integration

6. Additional Resources

6.1 Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home
[http://www.springframework.org/spring-integration] at http://www.springframework.org. That site
serves as a hub of information and is the best place to find up-to-date announcements about the project as
well aslinksto articles, blogs, and new sample applications.

1.0.0.m2 (Milestone 2) Spring Integration Reference 26

http://www.springframework.org/spring-integration
http://www.springframework.org/spring-integration
http://www.springframework.org

	Spring Integration Reference Manual
	Table of Contents
	1. Spring Integration Overview
	1.1 Background
	1.2 Goals and Principles
	1.3 Main Components
	Message
	Message Channel
	Message Endpoint
	Message Router
	Channel Adapter
	Message Bus

	2. The Core API
	2.1 Message
	2.2 MessageChannel
	2.3 ChannelInterceptor
	2.4 MessageHandler
	2.5 MessageBus
	2.6 MessageEndpoint
	2.7 MessageSelector

	3. Channel Adapters
	3.1 Introduction
	3.2 JMS Adapters
	3.3 File Adapters
	3.4 Mail Adapters
	3.5 Stream Adapters
	3.6 ApplicationEvent Adapters

	4. Configuration
	4.1 Introduction
	4.2 Namespace Support
	Configuring Message Channels
	Configuring Message Endpoints
	Configuring the Message Bus
	Configuring Channel Adapters
	Enabling Annotation-Driven Configuration

	4.3 Annotations

	5. Spring Integration Samples
	5.1 The Cafe Sample

	6. Additional Resources
	6.1 Spring Integration Home

