Spring Integration Reference Manual

Mark Fisher
Marius Bogoevici
Iwein Fuld
Jonas Partner
Oleg Zhurakousky

€ SPring

ur c e

1.0.3

© SpringSource Inc., 2009

Table of Contents

1. Spring INtEgration OVEIVIEWcceeirieiierieresie sttt e e s b e sne e 1
1.1, BACKGIOUNG ...ttt bbb e 1
1.2. GOAlS AN PriNCIPIES ...cveeiiviiiieiieieeesie sttt 1
1.3. MaiN COMPONENESuviieiiitisieeiieee ettt sb e bbbt e b e ene e 2
1.4. MESSAgE ENCPOINTSocvieiitiriiiiieieie sttt 4
2. MESSAZE CONSITUCTION ...ttt ettt st benreens 9
2.1. The MESSage INEITACEocueiieiieeeee e 9
2.2. MESSAPE HEATEIS ...ttt 9
2.3. Message IMPIEMENEELIONScceieiererieresereeee e 10
2.4. The MessageBuilder HEIPEr ClIassccoveiireiiiieiee e 11
3. MESSAGE CANNEIS ...ttt b b e 13
3.1. The MessageChannel INLErfaceccovviieieieeeee e 13
3.2. Message Channel Implementationsccoeeeeienene s 14
3.3. Channel INLEICEPLOISeiuireeeiieieiesie sttt bbb 17
3.4. MessageChannel TEMPIELEooeiiiiiirereeeee e 19
3.5. Configuring Message Channels ... 19
4. MESSAE ENUPOINES ...ttt st sttt bbb e 25
4.1. MESSAPE HANAIEN ...t 25
4.2. EVENt Driven CONSUMEYccoiiierieriirieeieeeeee ettt sae s sbe s 26
4.3. POHING CONSUMES ...ttt sttt na e s b e 26
4.4, NAMESPACE SUPPOIT ...ttt sr e s b b sne s e nneennes 27
5. SEIVICE ACHVELOToieiieiieitesieeieiee ettt bbbttt e e bbb sbenneas 31
o300 I g (0o [0 Tox i o] ISP 31
5.2. The <service-activator/> EI@mMENtccccveiiriiiieese e 31
6. Channel AQBPLET ..ottt 33
6.1. The <inbound-channel-adapter> element ... 33
6.2. The <outbound-channel-adapter/> elementccocvnirenniciic e 33
0 L 1 O PR P PTRTPRRPRN 35
7.1. Router IMplementalionsccooveiiierenireeeee e 35
7.2. TN <TOULEr™ ElEMENTooueiieiiieie e 37
7.3. The @ROULEr ANNOLAEIONeveeeiieiiiee ettt e e e e e e ra e e s e e sbe e e s s sraeesssesreeeesanns 38
ST 1 (= USRS 39
LS00 g (0o [0 Tox i o] ISR 39
8.2. The <FIlter> EIOMENtc.ooiieeeeeer e 39
9. TTANSTOIMIEY ...ttt b ettt e e e et s e b sb e bt et et e e e b e nbesbesbenaeas 41
LS00 g (0o [0 Tox i o] ISR 41
9.2. The <transformer> ElemMentccooiiiiieiiieee e 41
9.3. The @Transformer ANNOLALIONeeeeieuiieeiiiieeeeeeereeeeeeeeee e e sre e e s s srreeesssreeees 43
O o [1 = USS ST TPPR 45
05 g 0o (0ot [0 o TSRS P PRI 45
10.2. Programming MOE!ccooiiirininienieeeee st nae s 45
10.3. Configuring a Splitter USINg XMLccooiiiiiiiirerieeeeeee e 46
10.4. Configuring a Splitter With ANNOLALIONScooeriririnireeee e 46
N 0 0 (< = (] TSR PR R 49

1.0.3

0 I 1 g o o (B Tox (o NSO RPRTRRRRRRRRRIN 49

11.2. FUNCHONATY ettt s 49
11.3. Programming MOE!cc.ooiiirinerieieeeeieee et 49
11.4. Configuring an Aggregator With XIMLcccooiiirinenenineneeee e 52
11.5. Configuring an Aggregator with ANNOLELiONSccceverererieeiieresese e 55
12, RESEOUENCESveiueeieeteeitesteete ettt se ettt se e b e e s e s ae e b e e b e sse e s e easeebe e b e eanesneene e e e eneennes 57
02 W g 1 0o [0 Tot o] o USSP PPPRPRPRN 57
12.2. FUNCHONATY .eeeiiieiieeeeee sttt 57
12.3. Configuring a Resequencer With XML ..o 57
(RS B < - Y= USSP 59
S35 I g 0o 0ot o] o TSSO PPPRPRPRN 59
13.2. The <delayer> EI@MENT ... 59
14. Message Handler ChaiN ..o 61
I g 0o 0ot o] o USSP PPPRPRPRN 61
14.2. The <Chain> El@MENTccoiiiiieeeee et 62
15. MESSAQING BITAGE ..ot bbb 63
G0 I g 100 (0ot [0 o TSSO PPN 63
15.2. The <bridge> EIEMENLccvoieceeeceeeeeee et 63
16. INbouNd M ESSAING GALEWEY'Scueeueeeeieieriesieriesieseeee e st st sbe e sse e e s s e e s 65
16.1. SIMPIEM ESSAGINGGELEWEYccuerverrerieriieieierie et se e st e sresaeas 65
16.2. GatewayProXyFaCtOryBEaNcccciiieiieiieiiesieeee e 65
17, FIE SUPPOIT ...ttt bbbttt b e e b 67
0 g 0o [0 Tot o] o USSP PPPRPRPRN 67
17.2. REAAING FIIES .ot 67
17.3 WIHTING FIES e s 68
17.4. File TranNSfOMMIENScooiiiieieeie sttt sbenae s 69
18. IMS SUPPOIT ..ttt ettt sttt b e e bt as e bt e b e ean e sbe e e e e e eneennas 71
18.1. Inbound Channel AdaPLEr ... 71
18.2. Message-Driven Channel Adapter ... 72
18.3. Outbound Channel AaDLErcooiiiiriieee e 72
18.4. INDOUNT GALEWEYcoueeueineeieie sttt se et sbesae s 73
18.5. OUDOUNT GELEWEYoeeeeieieriesiesieeieeiee ettt sbe e 74
18.6. IMS SAMPIES ...ttt bbbttt sb bbb nae s 74
19. WED SEIVICES SUPPONT ...ttt sttt sn b e 75
19.1. Outbound WeD ServiCe GaBWAYScccoverueriererereriesieseses e sne e 75
19.2. Inbound WeD Service GatEWAYSccoveirierierierie st 75
19.3. Web Service Namespace SUPPOITcc.eeeeeerierieriesiesiesiesiesieses e seesse e 76
20. RMI SUPPOIT ..ottt sttt sb e n e sn e ae e b e nnnenne e neennens 79
P20 I IR 1 1 1§ o1 oo RO USSP 79
20.2. OULDOUND RMI ..ottt 79
20.3. 1NDOUNA RMI ..ottt 79
20.4. RMI NAMESPECE SUPPOITcveeieeeieiiesteeiesieesie et sie e se e sbe e se s enesaeennesnneas 79
21, HUPINVOKES SUPPOIT ...ttt sttt st bbb b b e 81
P20 0 R 1 1 1§ o1 oo USSP 81
21.2. Httplnvoker INDoUNd GELEWEYcceiuerierierieieiesesie et 81
21.3. Httplnvoker Outbound GaLEWAYccoeeereeieiieriese e 82
21.4. Httplnvoker Namespacte SUPPOITc..ooverereriereeiesiesie s sie s s 82
22 HTTP SUPPOIT ...ttt ettt sb s ne e b e saeenneenne s 83
P72 W 1 01 1§ o1 o o RO OSSP 83

v Spring Integration 1.0.3

22.2. Htp INDOUNT GELEWEYveeeeenieieieriesie et 83

22.3. Hitp OutbhouNnd GaLEWEYcceeiveriiriiiierierieeeeee et 84
22.4. Http NameSsPace SUPPOITooueeierieriieieseesieete st sre e s sne e 84
23, M@ SUPPOIT ...ttt st b ettt e e e bbb ebenre s 87
23.1. Mail-Sending Channel Adapter ... 87
23.2. Mail-Receiving Channel Adapter ... 87
23.3. Mail NameSpaCte SUPPOITcooverierieriinieriesieseeee et sre e see e 88
24, SEEAIM SUPPONT ...ttt sttt et s e b et e e e e sb e e s e e e e e be e beennesreenreennens 91
P22 T 1 1 1§ o1 o o RSSO 91
24.2. Reading from SIIEAIMSc.eiiiiiiiie e 91
24.3. WIITING 10 SLIEAIMSveveiiriieiieie ettt bbbt sae e 91
24.4. Stream NameSPACE SUPPONTo.veevirierieie s siees et sb e sr s seee s e 92
25. Spring ApplicatiONEVENT SUPPOITeoiuiriiriiiierieeiieeee et 93
25.1. Receiving Spring ApPliCatIONEVENTScccceveeierieriine e 93
25.2. Sending Spring AppliCatiONEVENEScccoiiieiiiieree e 93
26. Dealing With XML PaylOadSccoooiiieiiiiniiieeeese e 95
26.1. INETOTUCTTION ...ttt sttt b e e 95
26.2. Transforming Xml Payloadsccoeriieiiniieee e 95
26.3. Namespace support for Xml transformers ... 96
26.4. SPlitting XMl MESSAPESc.veeueeuieieiiesierie ettt st sb e se e e b e sae e 97
26.5. Routing xml messages uSing XPathcccceoeriininneseseseeee e 98
26.6. Selecting xml messages using XPathcccooeiiiniinenneeee e 98
26.7. XPath components NAMeSPACe SUPPOITcc.eruereerierierieriesiesiesieseeee e s 99
27. Security in SPring INTEGratioNccoieierenirieeee e e 101
P27 4% TR 1 £ 1§ o1 o o RO RSSO 101
27.2. SECUINMNG ChANNEIS ... 101
A. Spring INtegration SAMPIESc.coiiiiireer e 103
A.L The Cafe SAMPIE ..ot 103
A.2. The XML Messaging SamPIEcccooeiirerieiiee e 106
A.3. TN OSGI SAMPIES ...ttt b e 107
B. CONFIQUIALTON ..ttt b e e s 113
= 300 I 1 01 L1 o1 oo TSSO P PO 113
B.2. NamMeSPACE SUPPOITc.eeeeeiueeiieie ettt 113
B.3. Configuring the Task SCheduler ..o 114
B.4. Error HANAIINGooueiieieieesee et 115
B.5. ANNOLELiON SUPPOIT ...ttt 116
C. AJdItiONal RESOUITESc..eiueiiieiieieie ettt bbbt sne b e 119
C.1. Spring INtegration HOME ..ot s 119

1.0.3

Vi

Spring Integration 1.0.3

Spring Integration Overview 1

1. Spring Integration Overview

1.1 Background

One of the key themes of the Spring Framework isinversion of control. In its broadest sense, this
means that the framework handles responsibilities on behalf of the components that are managed
within its context. The components themselves are simplified since they are relieved of those
responsibilities. For example, dependency injection relieves the components of the responsibility
of locating or creating their dependencies. Likewise, aspect-oriented programming relieves
business components of generic cross-cutting concerns by modularizing them into reusable
aspects. In each case, the end result is a system that is easier to test, understand, maintain, and
extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model
for building enterprise applications. Devel opers benefit from the consistency of this model and
especialy the fact that it is based upon well-established best practices such as programming to
interfaces and favoring composition over inheritance. Spring's simplified abstractions and
powerful support libraries boost developer productivity while simultaneously increasing the level
of testability and portability.

Spring Integration is a new member of the Spring portfolio motivated by these same goals and
principles. It extends the Spring programming model into the messaging domain and builds upon
Spring's existing enterprise integration support to provide an even higher level of abstraction. It
supports message-driven architectures where inversion of control applies to runtime concerns,
such as when certain business logic should execute and wher e the response should be sent. It
supports routing and transformation of messages so that different transports and different data
formats can be integrated without impacting testability. In other words, the messaging and
integration concerns are handled by the framework, so business components are further isolated
from the infrastructure and developers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides awide variety of
configuration options including annotations, XML with namespace support, XML with generic
"bean" elements, and of course direct usage of the underlying API. That API is based upon
well-defined strategy interfaces and non-invasive, delegating adapters. Spring Integration's
design isinspired by the recognition of a strong affinity between common patterns within Spring
and the well-known Enterprise Integration Patterns as described in the book of the same name by
Gregor Hohpe and Bobby Woolf (Addison Wesley, 2004). Devel opers who have read that book
should be immediately comfortable with the Spring Integration concepts and terminol ogy.

1.2 Goals and Principles

Spring Integration is motivated by the following goals:

* Provide asimple model for implementing complex enterprise integration solutions.

1.0.3 1

http://www.eaipatterns.com

2 Spring Integration 1.0.3

* Facilitate asynchronous, message-driven behavior within a Spring-based application.
» Promoteintuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

» Components should be loosely coupled for modularity and testability.

» The framework should enforce separation of concerns between business logic and integration
logic.

» Extension points should be abstract in nature but within well-defined boundaries to promote
reuse and portability.

1.3 Main Components

From the vertical perspective, alayered architecture facilitates separation of concerns, and
interface-based contracts between layers promote loose coupling. Spring-based applications are
typically designed this way, and the Spring framework and portfolio provide a strong foundation
for following this best practice for the full-stack of an enterprise application. Message-driven
architectures add a horizontal perspective, yet these same goals are till relevant. Just as "layered
architecture” is an extremely generic and abstract paradigm, messaging systems typically follow
the similarly abstract " pipes-and-filters' model. The "filters' represent any component that is
capable of producing and/or consuming messages, and the "pipes’ transport the messages
between filters so that the components themselves remain loosely-coupled. It isimportant to note
that these two high-level paradigms are not mutually exclusive. The underlying messaging
infrastructure that supports the "pipes’ should still be encapsulated in a layer whose contracts are
defined as interfaces. Likewise, the "filters’ themselves would typically be managed within a
layer that islogically above the application's service layer, interacting with those services
through interfaces much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with
metadata used by the framework while handling that object. It consists of a payload and headers.
The payload can be of any type and the headers hold commonly required information such asid,
timestamp, expiration, and return address. Headers are also used for passing values to and from
connected transports. For example, when creating a Message from areceived File, the file name
may be stored in a header to be accessed by downstream components. Likewise, if a Message's
content is ultimately going to be sent by an outbound Mail adapter, the various properties (to,
from, cc, subject, etc.) may be configured as Message header values by an upstream component.
Developers can also store any arbitrary key-value pairsin the headers.

2 Spring Integration Overview

Spring Integration Overview 3

Message

Header

Payload

Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send
Messages to a channel, and consumers receive M essages from a channel. The Message Channel
therefore decouples the messaging components, and also provides a convenient point for
interception and monitoring of Messages.

send(Message) receive()
Producer Consumer

Message Channel
A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a
Point-to-Point channel, at most one consumer can receive each Message sent to the channel.
Publish/Subscribe channels, on the other hand, will attempt to broadcast each Message to all of
its subscribers. Spring Integration supports both of these.

Whereas " Point-to-Point" and " Publish/Subscribe" define the two options for how many
consumers will ultimately receive each Message, there is another important consideration: should
the channel buffer messages? In Spring Integration, Pollable Channels are capable of buffering
Messages within a queue. The advantage of buffering isthat it allows for throttling the inbound
Messages and thereby prevents overloading a consumer. However, as the name suggests, this
also adds some complexity, since a consumer can only receive the Messages from such a channel
if apoller isconfigured. On the other hand, a consumer connected to a Subscribable Channel is
simply Message-driven. The variety of channel implementations available in Spring Integration
will be discussed in detail in Section 3.2, “Message Channel Implementations’.

Message Endpoint

One of the primary goals of Spring Integration isto simplify the development of enterprise
integration solutions through inversion of control. This means that you should not have to

1.0.3 3

4 Spring Integration 1.0.3

implement consumers and producers directly, and you should not even have to build Messages
and invoke send or receive operations on a Message Channel. Instead, you should be able to
focus on your specific domain model with an implementation based on plain Objects. Then, by
providing declarative configuration, you can "connect” your domain-specific code to the
messaging infrastructure provided by Spring Integration. The components responsible for these
connections are Message Endpoints. This does not mean that you will necessarily connect your
existing application code directly. Any real-world enterprise integration solution will require
some amount of code focused upon integration concerns such as routing and transformation. The
important thing is to achieve separation of concerns between such integration logic and business
logic. In other words, as with the Model-View-Controller paradigm for web applications, the
goal should be to provide athin but dedicated layer that transates inbound requests into service
layer invocations, and then translates service layer return values into outbound replies. The next
section will provide an overview of the Message Endpoint types that handle these
responsibilities, and in upcoming chapters, you will see how Spring Integration's declarative
configuration options provide a non-invasive way to use each of these.

1.4 Message Endpoints

A Message Endpoint represents the "filter” of a pipes-and-filters architecture. As mentioned
above, the endpoint's primary roleis to connect application code to the messaging framework
and to do so in a non-invasive manner. In other words, the application code should ideally have
no awareness of the Message objects or the Message Channels. Thisis similar to therole of a
Controller in the MV C paradigm. Just as a Controller handles HTTP requests, the Message
Endpoint handles Messages. Just as Controllers are mapped to URL patterns, Message Endpoints
are mapped to Message Channels. The goal is the same in both cases: isolate application code
from the infrastructure. These concepts are discussed at length along with all of the patterns that
follow in the Enterprise Integration Patterns book. Here, we provide only a high-level description
of the main endpoint types supported by Spring Integration and their roles. The chapters that
follow will elaborate and provide sample code as well as configuration examples.

Transformer

A Message Transformer is responsible for converting a Message's content or structure and
returning the modified Message. Probably the most common type of transformer is one that
converts the payload of the Message from one format to another (e.g. from XML Document to
javalang.String). Similarly, atransformer may be used to add, remove, or modify the Message's
header values.

Filter

A Message Filter determines whether a Message should be passed to an output channel at all.
This simply requires a boolean test method that may check for a particular payload content type,
aproperty value, the presence of a header, etc. If the Message is accepted, it is sent to the output
channel, but if not it will be dropped (or for a more severe implementation, an Exception could
be thrown). Message Filters are often used in conjunction with a Publish Subscribe channel,

4 Spring Integration Overview

http://www.eaipatterns.com

Spring Integration Overview 5

where multiple consumers may receive the same Message and use the filter to narrow down the
set of Messages to be processed based on some criteria.

Note

Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters
architectural pattern with this specific endpoint type that selectively narrows down
the Messages flowing between two channels. The Pipes-and-Filters concept of "filter"
matches more closely with Spring Integration's Message Endpoint: any component
that can be connected to Message Channel(s) in order to send and/or receive

Messages.

Router

A Message Router is responsible for deciding what channel or channels should receive the
Message next (if any). Typically the decision is based upon the Message's content and/or
metadata available in the Message Headers. A Message Router is often used as a dynamic
aternative to a statically configured output channel on a Service Activator or other endpoint
capable of sending reply Messages. Likewise, a Message Router provides a proactive alternative
to the reactive Message Filters used by multiple subscribers as described above.

Channel A

Message

M ge Router

Channel B

Splitter

A Splitter is another type of Message Endpoint whose responsibility isto accept a Message from
its input channel, split that Message into multiple Messages, and then send each of those to its
output channel. Thisistypically used for dividing a"composite" payload object into a group of
M essages containing the sub-divided payloads.

Aggregator

Basically amirror-image of the Splitter, the Aggregator is atype of Message Endpoint that
receives multiple Messages and combines them into a single Message. In fact, Aggregators are
often downstream consumersin a pipeline that includes a Splitter. Technically, the Aggregator is
more complex than a Splitter, because it is required to maintain state (the Messages

1.0.3 5

6 Spring Integration 1.0.3

to-be-aggregated), to decide when the complete group of Messagesis available, and to timeout if
necessary. Furthermore, in case of atimeout, the Aggregator needs to know whether to send the
partial results or to discard them to a separate channel. Spring Integration provides a

Conpl eti onStr at egy aswell as configurable settings for timeout, whether to send partial
results upon timeout, and the discard channel.

Service Activator

A Service Activator is ageneric endpoint for connecting a service instance to the messaging
system. The input Message Channel must be configured, and if the service method to be invoked
is capable of returning avalue, an output Message Channel may also be provided.

Note
The output channel is optional, since each Message may aso provide its own 'Return
Address header. This same rule applies for all consumer endpoints.

The Service Activator invokes an operation on some service object to process the request
Message, extracting the request M essage's payload and converting if necessary (if the method
does not expect a Message-typed parameter). Whenever the service object's method returns a
value, that return value will likewise be converted to areply Message if necessary (if it's not
already a Message). That reply Message is sent to the output channel. 1f no output channel has
been configured, then the reply will be sent to the channel specified in the Message's "return
address' if available.

handle(Message) Input
. Message
- Service | 4 Message
Activator Dutputb Handler
Input Message
Channel
Output
Channel
A request-reply "Service Activator" endpoint connects atarget object's method to input and
output Message Channels.

Channel Adapter

A Channel Adapter is an endpoint that connects a M essage Channel to some other system or
transport. Channel Adapters may be either inbound or outbound. Typically, the Channel Adapter
will do some mapping between the Message and whatever object or resource is received-from or
sent-to the other system (File, HTTP Request, IMS Message, etc). Depending on the transport,
the Channel Adapter may also populate or extract Message header values. Spring Integration
provides a number of Channel Adapters, and they will be described in upcoming chapters.

6 Spring Integration Overview

Spring Integration Overview

|~ D

Message
Channel
Aninbound "Channel Adapter" endpoint connects a source system to a MessageChannel.

Message

=
Message ——| Target
Channel

An outbound "Channel Adapter" endpoint connects a MessageChannel to atarget system.

1.0.3

Spring Integration 1.0.3

Spring Integration Overview

Message Construction 9

2. Message Construction

The Spring Integration Message isageneric container for data. Any object can be provided as
the payload, and each Message also includes headers containing user-extensible properties as
key-value pairs.

2.1 The Message Interface

Hereisthe definition of the Message interface:

public interface Message<T> {
T get Payl oad();
MessageHeader s get Headers();
}

The Message isobviously avery important part of the API. By encapsulating the datain a
generic wrapper, the messaging system can pass it around without any knowledge of the data's
type. As an application evolves to support new types, or when the types themselves are modified
and/or extended, the messaging system will not be affected by such changes. On the other hand,
when some component in the messaging system does require access to information about the
Message, such metadata can typically be stored to and retrieved from the metadatain the
Message Headers.

2.2 Message Headers

Just as Spring Integration allows any Object to be used as the payload of a Message, it aso
supports any Object types as header values. In fact, the MessageHeader s classimplements
the java.util.Map interface:

public final class MessageHeaders inplenents Map<String, Object>, Serializable {
)

Note

Even though the MessageHeaders implements Map, it is effectively aread-only
implementation. Any attempt to put avalue in the Map will result in an
Unsupport edOper at i onExcept i on. The same applies for remove and clear.
Since Messages may be passed to multiple consumers, the structure of the Map
cannot be modified. Likewise, the Message's payload Object can not be set after the
initial creation. However, the mutability of the header values themselves (or the
payload Object) isintentionally left as adecision for the framework user.

As an implementation of Map, the headers can obviously beretrieved by callingget (. .) with
the name of the header. Alternatively, you can provide the expected Class as an additional

1.0.3 9

10 Spring Integration 1.0.3

parameter. Even better, when retrieving one of the pre-defined values, convenient getters are
available. Hereis an example of each of these three options:

Obj ect sonmeVal ue = nessage. get Headers(). get ("soneKey");
Custonerld custonerld = nessage. get Headers().get("custonerld", Custonerld.class);

Long tinestanp = nessage. get Header s() . get Ti nest anp();

The following Message headers are pre-defined:

Table 2.1. Pre-defined Message Headers

Header Name Header Type

ID java.util.UUID

TIMESTAMP javalang.Long

EXPIRATION_DATE javalang.Long

CORRELATION_ID java.lang.Object

REPLY CHANNEL javalang.Object (can be a String or
MessageChannel)

ERROR_CHANNEL java.lang.Object (can be a String or
M essageChannel)

SEQUENCE_NUMBER javalang.Integer

SEQUENCE_SIZE java.lang.Integer

PRIORITY MessagePriority (an enum)

Many inbound and outbound adapter implementations will also provide and/or expect certain
headers, and additional user-defined headers can also be configured.

2.3 Message Implementations

The base implementation of the Message interfaceis Gener i cMessage<T>, and it provides
two constructors:

new Generi cMessage<T>(T payl oad);
new Generi cMessage<T>(T payl oad, Map<String, Object> headers)

When a Message is created, arandom unique id will be generated. The constructor that accepts a
Map of headers will copy the provided headers to the newly created Message.

There are also two convenient subclasses available: St ri ngMessage and Er r or Message.
The former accepts a String as its payload:

StringMessage nessage = new StringMessage("hello world");

10 Message Construction

Message Construction 11

String s = nmessage. get Payl oad();

And, the latter accepts any Thr owabl e object asits payload:

Error Message nessage = new Error Message(soneThr owabl e);

Throwabl e t = nmessage. get Payl oad();

Notice that these implementations take advantage of the fact that the Gener i cMessage base
classis parameterized. Therefore, as shown in both examples, no casting is necessary when
retrieving the M essage payload Object.

2.4 The MessageBuilder Helper Class

Y ou may notice that the Message interface defines retrieval methods for its payload and headers
but no setters. The reason for thisis that a Message cannot be modified after itsinitial creation.
Therefore, when a Message instance is sent to multiple consumers (e.g. through a Publish
Subscribe Channel), if one of those consumers needs to send areply with a different payload
type, it will need to create a new Message. As aresult, the other consumers are not affected by
those changes. Keep in mind, that multiple consumers may access the same payload instance or
header value, and whether such an instance isitself immutable is a decision |eft to the devel oper.
In other words, the contract for Messagesis similar to that of an unmodifiable Collection, and the
MessageHeaders map further exemplifies that; even though the MessageHeaders class
implementsj ava. uti | . Map, any attempt to invoke a put operation (or 'remove’ or ‘clear’) on
the MessageHeaders will result inan Unsuppor t edQper at i onExcepti on.

Rather than requiring the creation and population of a Map to pass into the GenericM essage
constructor, Spring Integration does provide afar more convenient way to construct M essages:
MessageBui | der . The MessageBuilder provides two factory methods for creating Messages
from either an existing Message or with a payload Object. When building from an existing
Message, the headers and payload of that Message will be copied to the new Message:
Message<String> nessagel = MessageBuil der. wit hPayl oad("test")
. set Header ("foo", "bar")
. bui I d();
Message<String> nessage2 = MessageBui |l der. fronmVessage(nessagel). buil d();

assertEqual s("test", message2. getPayl oad());
assert Equal s("bar", nessage2. getHeaders().get("fo00"));

If you need to create a Message with a new payload but still want to copy the headers from an
existing Message, you can use one of the ‘copy’ methods.

Message<String> nessage3 = MessageBui |l der. wi t hPayl oad("t est 3")
. copyHeader s(nessagel. get Headers())
Lbuild();

Message<String> nessage4 = MessageBuil der. wi t hPayl oad("test4")
. set Header ("foo", 123)
. goplyzk(a?der sl f Absent (nmessagel. get Headers())
. bui ;

assert Equal s("bar", nessage3. getHeaders().get("fo00"));
assert Equal s(123, nessage4. get Headers().get("fo00"));

Notice that the copyHeader sl f Absent does not overwrite existing values. Also, in the
second example above, you can see how to set any user-defined header with set Header .
Finally, there are set methods available for the predefined headers as well as a non-destructive
method for setting any header (M essageHeaders also defines constants for the pre-defined header

1.0.3 11

12 Spring Integration 1.0.3

names).

Message<I| nt eger > i nport ant Message = MessageBui | der. wi t hPayl oad(99)
.setPriority(MessagePriority.H GHEST)
Lbui 1 d();

assert Equal s(MessagePriority. H GHEST, inportant Message. get Headers().getPriority());
Message<I| nt eger > anot her Message = MessageBui | der. fromVessage(i nport ant Message)

. set Header | f Absent (MessageHeaders. PRIORI TY, MessagePriority. LON

Lbui 1 d();

assert Equal s(MessagePriority. H GHEST, anot her Message. get Headers().getPriority());

TheMessagePri ori ty isonly considered when usingaPri ori t yChannel (asdescribed
in the next chapter). It is defined as an enum with five possible values:

public enum MessagePriority {
Hl GHEST,
HI GH,
NORMAL,
Low
LOVEST

12 Message Construction

Message Channels 13

3. Message Channels

While the Message playsthe crucial role of encapsulating data, it isthe MessageChannel
that decouples message producers from message consumers.

3.1 The MessageChannel Interface

Spring Integration's top-level MessageChannel interface is defined as follows.

public interface MessageChannel {
String getNanme();
bool ean send(Message nessage);

bool ean send(Message nessage, |ong tineout);

When sending a message, the return value will be true if the message is sent successfully. If the
send call times out or isinterrupted, then it will return false.

PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there
are two sub-interfaces defining the buffering (pollable) and non-buffering (subscribable) channel
behavior. Hereisthe definition of Pol | abl eChannel .

public interface Pollabl eChannel extends MessageChannel {
Message<?> receive();
Message<?> recei ve(long tineout);
Li st <Message<?>> cl ear();
Li st <Message<?>> pur ge(MessageSel ector sel ector);
}
Similar to the send methods, when receiving a message, the return value will be null in the case
of atimeout or interrupt.

SubscribableChannel

The Subscri babl eChannel baseinterfaceisimplemented by channels that send Messages
directly to their subscribed MessageHand| er s. Therefore, they do not provide receive
methods for polling, but instead define methods for managing those subscribers:

public interface Subscribabl eChannel extends MessageChannel {
bool ean subscri be(MessageHandl er handl er);

bool ean unsubscri be(MessageHandl er handl er);

1.0.3 13

14 Spring Integration 1.0.3

3.2 Message Channel Implementations

Spring Integration provides several different Message Channel implementations. Each is briefly
described in the sections below.

PublishSubscribeChannel

ThePubl i shSubscri beChannel implementation broadcasts any Message sent to it to all
of its subscribed handlers. Thisis most often used for sending Event Messages whose primary
roleis notification as opposed to Document Messages which are generally intended to be
processed by a single handler. Note that the Publ i shSubscri beChannel isintended for
sending only. Since it broadcasts to its subscribers directly when itssend(Message) method
isinvoked, consumers cannot poll for Messages (it does not implement Pol | abl eChannel
and thereforehasnor ecei ve() method). Instead, any subscriber must be a

MessageHandl er itself, and the subscriber'shandl eMessage(Message) method will be
invoked in turn.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike, the

Publ i shSubscri beChannel , the QueueChannel has point-to-point semantics. In other
words, even if the channel has multiple consumers, only one of them should receive any
Message sent to that channel. It provides a default no-argument constructor (providing an
essentially unbounded capacity of | nt eger . MAX_VALUE) aswell as a constructor that accepts
the queue capacity:

public QueueChannel (int capacity)

A channel that has not reached its capacity limit will store messagesin itsinterna queue, and the
send() method will return immediately even if no receiver isready to handle the message. If
the queue has reached capacity, then the sender will block until room is available. Or, if using the
send call that accepts atimeout, it will block until either room is available or the timeout period
elapses, whichever occursfirst. Likewise, areceive call will return immediately if amessageis
available on the queue, but if the queue is empty, then areceive call may block until either a
message is available or the timeout elapses. In either case, it is possible to force an immediate
return regardless of the queue's state by passing atimeout value of 0. The no-argument send and
receive methods block indefinitely. Note however, that calling the no-arg versions of send()
andr ecei ve() will block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-in/first-out (FIFO) ordering, the

Pri orityChannel isan adternativeimplementation that allows for messagesto be ordered
within the channel based upon a priority. By default the priority is determined by the

'pri ority" header within each message. However, for custom priority determination logic, a
comparator of type Conpar at or <Message<?>> can be provided to the

14 Message Channels

Message Channels 15

Pri orityChannel 'sconstructor.

RendezvousChannel

The RendezvousChannel enablesa"direct-handoff" scenario where a sender will block until
another party invokes the channel'sr ecei ve() method or vice-versa. Internally, this
implementation is quite similar to the QueueChannel except that it usesa

Synchr onousQueue (azero-capacity implementation of Bl ocki ngQueue). Thisworks
well in situations where the sender and receiver are operating in different threads but simply
dropping the message in a queue asynchronously is not appropriate. In other words, with a
RendezvousChannel at least the sender knows that some receiver has accepted the message,
whereas with a QueueChannel , the message would have been stored to the internal queue and
potentially never received.

Tip

Keep in mind that all of these queue-based channels are storing messages in-memory
only. When persistence is required, you can either invoke a database operation within
ahandler or use Spring Integration's support for IM S-based Channel Adapters. The
latter option allows you to take advantage of any JM S provider's implementation for
message persistence, and it will be discussed in Chapter 18, JIMS Support. However,
when buffering in a queue is not necessary, the simplest approach is to rely upon the
Di r ect Channel discussed next.

The RendezvousChannel isalso useful for implementing request-reply operations. The
sender can create atemporary, anonymous instance of RendezvousChannel whichit then
sets as the 'replyChannel’ header when building a Message. After sending that Message, the
sender can immediately call receive (optionally providing atimeout value) in order to block
while waiting for areply Message. Thisis very similar to the implementation used internally by
many of Spring Integration’s request-reply components.

DirectChannel

TheDi r ect Channel has point-to-point semantics but otherwise is more similar to the

Publ i shSubscri beChannel than any of the queue-based channel implementations
described above. It implementsthe Subscr i babl eChannel interface instead of the

Pol | abl eChannel interface, so it dispatches Messages directly to a subscriber. Asa
point-to-point channel, however, it differs from the Publ i shSubscri beChannel inthat it
will only send each Message to a single subscribed MessageHandl er .

In addition to being the simplest point-to-point channel option, one of its most important features
isthat it enables a single thread to perform the operations on "both sides" of the channel. For
example, if ahandler is subscribed to aDi r ect Channel , then sending a Message to that
channel will trigger invocation of that handler'shandl eMessage(Message) method directly
in the sender's thread, before the send() method invocation can return.

1.0.3 15

16 Spring Integration 1.0.3

The key motivation for providing a channel implementation with this behavior is to support
transactions that must span across the channel while still benefiting from the abstraction and
loose coupling that the channel provides. If the send call isinvoked within the scope of a
transaction, then the outcome of the handler's invocation (e.g. updating a database record) will
play arolein determining the ultimate result of that transaction (commit or rollback).

Note

Sincethe Di r ect Channel isthe simplest option and does not add any additional
overhead that would be required for scheduling and managing the threads of a poller,
it isthe default channel type within Spring Integration. The general ideaisto define
the channels for an application and then to consider which of those need to provide
buffering or to throttle input, and then modify those to be queue-based

Pol | abl eChannel s. Likewise, if achannel needs to broadcast messages, it
should not beaDi r ect Channel but rather aPubl i shSubscri beChannel .
Below you will see how each of these can be configured.

TheDi r ect Channel internally delegates to a Message Dispatcher to invoke its subscribed
Message Handlers, and that dispatcher can have aload-balancing strategy. The load-balancer
determines how invocations will be ordered in the case that there are multiple handlers
subscribed to the same channel. When using the namespace support described below, the default
strategy is "round-robin™ which essentially load-bal ances across the handlersin rotation.

Note

The "round-robin” strategy is currently the only implementation available
out-of-the-box in Spring Integration. Other strategy implementations may be added in
future versions.

The load-balancer also works in combination with a boolean failover property. If the "failover”
value istrue (the default), then the dispatcher will fall back to any subsequent handlers as
necessary when preceding handlers throw Exceptions. The order is determined by an optional
order value defined on the handlers themselves or, if no such value exists, the order in which the
handlers are subscribed.

If acertain situation requires that the dispatcher always try to invoke the first handler, then
fallback in the same fixed order sequence every time an error occurs, no load-balancing strategy
should be provided. In other words, the dispatcher still supports the failover boolean property
even when no load-balancing is enabled. Without |oad-balancing, however, the invocation of
handlers will always begin with the first according to their order. For example, this approach
works well when there is a clear definition of primary, secondary, tertiary, and so on. When
using the namespace support, the "order" attribute on any endpoint will determine that order.

Note

Keep in mind that load-balancing and failover only apply when a channel has more
than one subscribed Message Handler. When using the namespace support, this
means that more than one endpoint shares the same channel referencein the
"input-channel™ attribute.

16 Message Channels

Message Channels 17

ExecutorChannel

The Execut or Channel isapoint-to-point channel that supports the same dispatcher
configuration as Di r ect Channel (load-balancing strategy and the failover boolean property).
The key difference between these two dispatching channel typesis that the

Execut or Channel delegatesto an instance of TaskExecut or to perform the dispatch.
This means that the send method typically will not block, but it also means that the handler
invocation may not occur in the sender's thread. 1t therefore does not support transactions
spanning the sender and receiving handler.

Tip

Note that there are occasions where the sender may block. For example, when using a
TaskExecutor with arejection-policy that throttles back on the client (such asthe

Thr eadPool Execut or. Cal | er RunsPol i cy), the sender's thread will execute
the method directly anytime the thread pool is at its maximum capacity and the
executor's work queueisfull. Since that situation would only occur in a
non-predictable way, that obviously cannot be relied upon for transactions.

ThreadLocalChannel

The final channel implementation typeis Thr eadLocal Channel . This channel also delegates
to aqueue internally, but the queue is bound to the current thread. That way the thread that sends
to the channel will later be able to receive those same Messages, but no other thread would be
able to access them. While probably the least common type of channel, thisis useful for
situationswhere Di r ect Channel s are being used to enforce a single thread of operation but
any reply Messages should be sent to a "termina™ channel. If that terminal channel isa

Thr eadLocal Channel , the origina sending thread can collect its replies from it.

3.3 Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and
capture meaningful information about the messages passing through the system in anon-invasive
way. Sincethe Messages are being sent to and received from MessageChannel s, those
channels provide an opportunity for intercepting the send and receive operations. The

Channel | nt er cept or strategy interface provides methods for each of those operations:

public interface Channellnterceptor {
Message<?> preSend(Message<?> nessage, MessageChannel channel)
voi d post Send(Message<?> nessage, MessageChannel channel, bool ean sent)
bool ean preRecei ve(MessageChannel channel)

Message<?> post Recei ve(Message<?> nessage, MessageChannel channel)

}

After implementing the interface, registering the interceptor with a channel isjust a matter of
calling:

1.0.3 17

18

Spring Integration 1.0.3

channel . addl nt er cept or (sonmeChannel | nt erceptor);

The methods that return a Message instance can be used for transforming the Message or can
return 'null’ to prevent further processing (of course, any of the methods can throw a
RuntimeException). Also, the pr eRecei ve method canreturn'f al se' to prevent the receive
operation from proceeding.

Note

Keepinmindthat r ecei ve() calsareonly relevant for Pol | abl eChannel s. In
fact the Subscri babl eChannel interface does not even definear ecei ve()
method. The reason for thisisthat when aMessageis sent to a

Subscri babl eChannel it will be sent directly to one or more subscribers
depending on the type of channel (e.g. a PublishSubscribeChannel sendsto all of its
subscribers). Therefore, the pr eRecei ve(..) andpost Recei ve(. .)
interceptor methods are only invoked when the interceptor is applied to a

Pol | abl eChannel .

Spring Integration also provides an implementation of the Wire Tap pattern. It isasimple
interceptor that sends the Message to another channel without otherwise altering the existing
flow. It can be very useful for debugging and monitoring. An example is shown in the section
called “Wire Tap”.

Because it israrely necessary to implement all of the interceptor methods, a

Channel I nt er cept or Adapt er classisalso available for sub-classing. It provides no-op
methods (the voi d method is empty, the Message returning methods return the Message as-is,
and the bool ean method returnst r ue). Therefore, it is often easiest to extend that class and
just implement the method(s) that you need as in the following example.

public class CountingChannel | nterceptor extends Channel | nterceptorAdapter {

private final Atom clnteger sendCount = new Atom clnteger();

@verride

publ i c Message<?> preSend(Message<?> nessage, MessageChannel channel) {
sendCount . i ncrement AndGet () ;
return nessage;

18

Tip

The order of invocation for the interceptor methods depends on the type of channel.
As described above, the queue-based channels are the only ones where the receive
method is intercepted in the first place. Additionally, the relationship between send
and receive interception depends on the timing of separate sender and receiver
threads. For example, if areceiver isaready blocked while waiting for a message the
order could be: preSend, preReceive, postReceive, postSend. However, if areceiver
polls after the sender has placed a message on the channel and already returned, the
order would be: preSend, postSend, (some-time-elapses) preReceive, postReceive.
The time that elapses in such a case depends on a number of factors and is therefore
generally unpredictable (in fact, the receive may never happen!). Obvioudly, the type
of queue aso plays arole (e.g. rendezvous vs. priority). The bottom line is that you
cannot rely on the order beyond the fact that preSend will precede postSend and
preReceive will precede postReceive.

Message Channels

http://eaipatterns.com/WireTap.html

Message Channels 19

3.4 MessageChannelTemplate

Asyou will see when the endpoints and their various configuration options are introduced,
Spring Integration provides a foundation for messaging components that enables non-invasive
invocation of your application code from the messaging system. However, sometimesit is
necessary to invoke the messaging system from your application code. For convenience when
implementing such use-cases, Spring Integration providesa MessageChannel Tenpl at e
that supports a variety of operations across the Message Channels, including request/reply
scenarios. For example, it is possible to send arequest and wait for areply.

MessageChannel Tenpl ate tenpl ate = new MessageChannel Tenpl at e()

Message reply = tenpl at e. sendAndRecei ve(new StringMessage("test"), soneChannel)

In that example, atemporary anonymous channel would be created internally by the template.
The 'sendTimeout' and 'receiveTimeout' properties may also be set on the template, and other
exchange types are also supported.

public bool ean send(final Message<?> nessage, final MessageChannel channel) { ... }
publ i c Message<?> sendAndRecei ve(final Message<?> request, final MessageChannel channel) { .. }
public Message<?> receive(final PollableChannel <?> channel) { ... }

Note

A lessinvasive approach that allows you to invoke simple interfaces with payload
and/or header values instead of Message instances is described in Section 16.2,
“ GatewayProxyFactoryBean”.

3.5 Configuring Message Channels

To create a Message Channel instance, you can use the ‘channel’ element:

<channel id="exanpl eChannel "/ >

The default channel type is Point to Point. To create a Publish Subscribe channel, use the
"publish-subscribe-channel” element:

<publ i sh-subscri be-channel id="exanpl eChannel"/>

To create a Datatype Channel that only accepts messages containing a certain payload type,
provide the fully-qualified class name in the channel element's dat at ype attribute:

<channel id="nunber Channel" datatype="java.lang. Nunber"/>

Note that the type check passes for any type that is assignable to the channel's datatype. In other
words, the "numberChannel" above would accept messages whose payload is
j ava. |l ang. | nt eger orj ava. | ang. Doubl e. Multiple types can be provided as a

comma-delimited list:

1.0.3 19

http://www.eaipatterns.com/DatatypeChannel.html

20 Spring Integration 1.0.3

<channel id="stringO NunberChannel" datatype="java.lang. String,java.lang. Nunber"/>

When using the "channel" element without any sub-elements, it will createaDi r ect Channel
instance (aSubscri babl eChannel).

However, you can aternatively provide avariety of "queue" sub-elementsto create any of the
pollable channel types (as described in Section 3.2, “Message Channel Implementations”).
Examples of each are shown below.

DirectChannel Configuration

As mentioned above, Di r ect Channel isthe default type.

<channel id="directChannel"/>

A default channel will have around-robin load-balancer and will also have failover enabled (See
the discussion in the section called “ DirectChannel” for more detail). To disable one or both of
these, add a <dispatcher/> sub-element and configure the attributes:
<channel id="fail Fast Channel ">

<di spatcher failover="false"/>
</ channel >
<channel id="channel WthFi xedOr der SequenceFai | over">

<di spat cher | oad-bal ancer="none"/>
</ channel >

QueueChannel Configuration

To create aQueueChannel , usethe "queue" sub-element. Y ou may specify the channel's
capacity:

<channel id="queueChannel ">
<queue capacity="25"/>
</ channel >

Note

If you do not provide avalue for the 'capacity’ attribute on this <queue/> sub-element,
the resulting queue will be unbounded. To avoid issues such as OutOfMemoryErrors,
it is highly recommended to set an explicit value for a bounded queue.

PublishSubscribeChannel Configuration

To createaPubl i shSubscri beChannel , usethe "publish-subscribe-channel” element.
When using this element, you can also specify the "task-executor" used for publishing Messages
(if noneis specified it ssmply publishes in the sender's thread):

<publ i sh-subscri be-channel id="pubsubChannel" task-executor="soneExecutor"/>

If you are providing a Resequencer or Aggregator downstream from a
Publ i shSubscri beChannel , then you can set the 'apply-sequence’ property on the channel

20 Message Channels

Message Channels 21

tot r ue. That will indicate that the channel should set the sequence-size and sequence-number
Message headers as well as the correlation id prior to passing the Messages along. For example,
if there are 5 subscribers, the sequence-size would be set to 5, and the Messages would have
sequence-number header values ranging from 1 to 5.

<publ i sh-subscribe-channel id="pubsubChannel" apply-sequence="true"/>

Note

The 'apply-sequence' valueisf al se by default so that a Publish Subscribe Channel
can send the exact same Message instances to multiple outbound channels. Since
Spring Integration enforces immutability of the payload and header references, the
channel creates new Message instances with the same payload reference but different
header valueswhen theflagissettot r ue.

ExecutorChannel

To create an Execut or Channel , add the <dispatcher> sub-element along with a
'task-executor' attribute. Its value can reference any TaskExecut or within the context. For
example, this enables configuration of athread-pool for dispatching messages to subscribed
handlers. As mentioned above, this does break the "single-threaded" execution context between
sender and receiver so that any active transaction context will not be shared by the invocation of
the handler (i.e. the handler may throw an Exception, but the send invocation has already
returned successfully).

<channel i d="executor Channel ">

<di spat cher task-executor="sonmeExecutor"/>
</ channel >

Note
The "load-balancer" and "failover" options are also both available on the dispatcher
sub-element as described above in the section called “DirectChannel Configuration”.
The same defaults apply as well. So, the channel will have a round-robin
load-balancing strategy with failover enabled unless explicit configuration is provided
for one or both of those attributes.

<channel id="executorChannel Wt hout Fai |l over">

<di spat cher task-executor="someExecutor" failover="fal se"/>
</ channel >

PriorityChannel Configuration

TocreateaPri ori t yChannel , usethe "priority-queue" sub-element:

<channel id="priorityChannel">
<priority-queue capacity="20"/>
</ channel >

By default, the channel will consult the MessagePr i ori t y header of the message. However,
acustom Conpar at or reference may be provided instead. Also, note that the
PriorityChannel (likethe other types) does support the "datatype” attribute. As with the

1.0.3 21

22 Spring Integration 1.0.3

QueueChannel, it also supports a " capacity” attribute. The following example demonstrates all of
these:
<channel id="priorityChannel" datatype="exanple. Wdget">
<priority-queue conparator="w dget Conpar at or"

capaci ty="10"/>
</ channel >

RendezvousChannel Configuration

A RendezvousChannel iscreated when the queue sub-element is a <rendezvous-queue>. It
does not provide any additional configuration options to those described above, and its queue
does not accept any capacity value sinceit is a O-capacity direct handoff queue.

<channel id="rendezvousChannel"/>

<rendezvous- queue/ >
</ channel >

ThreadLocalChannel Configuration

The Thr eadLocal Channel does not provide any additional configuration options.

<t hread- | ocal - channel id="threadLocal Channel "/>

Channel Interceptor Configuration

Message channels may also have interceptors as described in Section 3.3, “Channel
Interceptors’. The <interceptors> sub-element can be added within <channel> (or the more
specific element types). Provide the "ref" attribute to reference any Spring-managed object that
implements the Channel | nt er cept or interface:

<channel id="exanpl eChannel ">
<i nt er cept or s>
<ref bean="trafficMnitoringlnterceptor"/>
</interceptors>
</ channel >

In general, it isagood idea to define the interceptor implementations in a separate |ocation since
they usually provide common behavior that can be reused across multiple channels.

Wire Tap

As mentioned above, Spring Integration provides a simple Wire Tap interceptor out of the box.
Y ou can configure a Wire Tap on any channel within an ‘interceptors element. Thisis especially
useful for debugging, and can be used in conjunction with Spring Integration's logging Channel
Adapter asfollows:
<channel id="in">
<i nterceptors>
<w re-tap channel ="1 ogger"/ >
</interceptors>
</ channel >

<l oggi ng- channel - adapt er id="1ogger" |evel ="DEBUG'/ >

22 Message Channels

Message Channels 23

1.0.3

Tip

The 'logging-channel-adapter' also accepts a boolean attribute: 'log-full-message'.
That isfalse by default so that only the payload islogged. Setting that to true enables
logging of al headersin addition to the payload.

Note

If namespace support is enabled, there are also two special channels defined within
the context by default: er r or Channel and nul | Channel . The 'nullChannel’ acts
like/ dev/ nul | , simply logging any Message sent to it at DEBUG level and
returning immediately. Any time you face channel resolution errors for areply that
you don't care about, you can set the affected component's 'output-channel’ to
reference 'nullChannel’ (the name 'nullChannel’ is reserved within the context). The
‘errorChannel’ is used internally for sending error messages, and it can be overridden
with a custom configuration. It is discussed in greater detail in Section B.4, “Error
Handling”.

23

24

24

Spring Integration 1.0.3

Message Channels

Message Endpoints 25

4. Message Endpoints

The first part of this chapter covers some background theory and reveals quite a bit about the
underlying API that drives Spring Integration’s various messaging components. This information
can be helpful if you want to really understand what's going on behind the scenes. However, if
you want to get up and running with the simplified namespace-based configuration of the various
elements, feel free to skip ahead to Section 4.4, “Namespace Support” for now.

As mentioned in the overview, Message Endpoints are responsible for connecting the various
messaging components to channels. Over the next several chapters, you will see a number of
different components that consume Messages. Some of these are also capable of sending reply
Messages. Sending Messages is quite straightforward. As shown above in Chapter 3, Message
Channels, it's easy to send a Message to a Message Channel. However, receiving is a bit more
complicated. The main reason is that there are two types of consumers: Polling Consumers and
Event Driven Consumers.

Of the two, Event Driven Consumers are much simpler. Without any need to manage and
schedule a separate poller thread, they are essentially just listeners with a callback method. When
connecting to one of Spring Integration's subscribable Message Channels, this simple option
works great. However, when connecting to a buffering, pollable Message Channel, some
component has to schedule and manage the polling thread(s). Spring Integration provides two
different endpoint implementations to accommodate these two types of consumers. Therefore,
the consumers themsel ves can simply implement the callback interface. When polling is
required, the endpoint acts as a " container”" for the consumer instance. The benefit issimilar to
that of using a container for hosting Message Driven Beans, but since these consumers are
simply Spring-managed Objects running within an ApplicationContext, it more closely
resembles Spring's own MessageL istener containers.

4.1 Message Handler

Spring Integration's MessageHand| er interface isimplemented by many of the components
within the framework. In other words, thisis not part of the public API, and a developer would
not typically implement MessageHand| er directly. Nevertheless, it is used by a Message
Consumer for actually handling the consumed Messages, and so being aware of this strategy
interface does help in terms of understanding the overall role of a consumer. The interfaceis
defined as follows:

public interface MessageHandl er {
voi d handl eMessage(Message<?> nessage);

}

Despite its smplicity, this provides the foundation for most of the components that will be
covered in the following chapters (Routers, Transformers, Splitters, Aggregators, Service
Activators, etc). Those components each perform very different functionality with the Messages
they handle, but the requirements for actually receiving a Message are the same, and the choice
between polling and event-driven behavior is also the same. Spring Integration provides two
endpoint implementations that "host" these callback-based handlers and allow them to be

1.0.3 25

http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html

26 Spring Integration 1.0.3

connected to Message Channels.

4.2 Event Driven Consumer

Because it is the simpler of the two, we will cover the Event Driven Consumer endpoint first.
Y ou may recall that the Subscr i babl eChannel interface providesasubscri be()
method and that the method accepts a MessageHand| er parameter (as shown in the section
called “ SubscribableChannel”):

subscri babl eChannel . subscri be(messageHandl er) ;

Since ahandler that is subscribed to a channel does not have to actively poll that channel, thisis
an Event Driven Consumer, and the implementation provided by Spring Integration acceptsaa
Subscri babl eChannel andaMessageHandl er:

Subscri babl eChannel channel = (Subscribabl eChannel) context. get Bean("subscri babl eChannel ");

Event Dri venConsuner consuner = new Event Dri venConsuner (channel , exanpl eHandl er);

4.3 Polling Consumer

Spring Integration also providesaPol | i ngConsumer , and it can be instantiated in the same
way except that the channel must implement Pol | abl eChannel :

Pol | abl eChannel channel = (Pol | abl eChannel) context. get Bean("pol | abl eChannel ");

Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , exanpl eHandl er);

There are many other configuration options for the Polling Consumer. For example, the trigger is
arequired property:

Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , handl er);

consuner. set Tri gger (new | nterval Tri gger (30, TinmeUnit.SECONDS));
Spring Integration currently provides two implementations of the Tr i gger interface:

I nt erval Tri gger and CronTri gger.Thel nterval Tri gger istypicaly defined with
asimpleinterval (in milliseconds), but also supports an 'initialDelay’ property and a boolean
‘fixedRate' property (the default isfalse, i.e. fixed delay):

Interval Trigger trigger = new Interval Trigger(1000);
trigger.setlnitial Del ay(5000);
trigger. setFi xedRate(true);

The CronTri gger smply requiresavalid cron expression (see the Javadoc for details):

CronTrigger trigger = new CronTrigger("*/10 * * * * MON-FRI");
In addition to the trigger, several other polling-related configuration properties may be specified:
Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , handl er);

consuner . set MaxMessagesPer Pol | (10) ;

consuner . set Recei veTi meout (5000) ;

26 Message Endpoints

Message Endpoints 27

The 'maxM essagesPerPoll' property specifies the maximum number of messages to receive
within a given poll operation. This means that the poller will continue calling receive() without
waiting until either nul | isreturned or that max is reached. For example, if apoller hasa 10
second interval trigger and a 'maxM essagesPerPoll' setting of 25, and it is polling a channel that
has 100 messagesin its queue, all 100 messages can be retrieved within 40 seconds. It grabs 25,
waits 10 seconds, grabs the next 25, and so on.

The 'receiveTimeout' property specifies the amount of time the poller should wait if no messages
are available when it invokes the receive operation. For example, consider two options that seem
similar on the surface but are actually quite different: the first has an interval trigger of 5 seconds
and areceive timeout of 50 milliseconds while the second has an interval trigger of 50
milliseconds and a receive timeout of 5 seconds. The first one may receive a message up to 4950
milliseconds later than it arrived on the channel (if that message arrived immediately after one of
its poll calls returned). On the other hand, the second configuration will never miss a message by
more than 50 milliseconds. The difference is that the second option requires a thread to wait, but
asaresult it is able to respond much more quickly to arriving messages. This technique, known
as "long polling”, can be used to emulate event-driven behavior on a polled source.

A Polling Consumer may also delegate to a Spring TaskExecut or , and it can be configured to
participate in Spring-managed transactions. The following example shows the configuration of
both:

Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , handl er);

TaskExecutor taskExecutor = (TaskExecutor) context.getBean("exanpl eExecutor");
consuner . set TaskExecut or (t askExecut or) ;

Pl at f or mMr ansact i onManager txManager = (Pl atfornlransati onManager) context.get Bean("exanpl eTxManager");
consuner . set Transact i onManager (t xManager) ;

The examples above show dependency lookups, but keep in mind that these consumers will most
often be configured as Spring bean definitions. In fact, Spring Integration also provides a

Fact or yBean that creates the appropriate consumer type based on the type of channel, and
thereis full XML namespace support to even further hide those details. The namespace-based
configuration will be featured as each component type is introduced.

Note

Many of the MessageHandl er implementations are also capable of generating
reply Messages. As mentioned above, sending Messagesistrivial when compared to
the Message reception. Nevertheless, when and how many reply Messages are sent
depends on the handler type. For example, an Aggregator waits for a number of
Messages to arrive and is often configured as a downstream consumer for a Splitter
which may generate multiple replies for each Message it handles. When using the
namespace configuration, you do not strictly need to know all of the details, but it still
might be worth knowing that several of these components share a common base class,
the Abst r act Repl yPr oduci ngMessageHand| er, and it providesa

set Qut put Channel (..) method.

4.4 Namespace Support

1.0.3 27

28 Spring Integration 1.0.3

Throughout the reference manual, you will see specific configuration examples for endpoint
elements, such as router, transformer, service-activator, and so on. Most of these will support an
"input-channel” attribute and many will support an "output-channel” attribute. After being
parsed, these endpoint elements produce an instance of either the Pol | i ngConsuner or the
Event Dri venConsumer depending on the type of the "input-channel” that is referenced:
Pol | abl eChannel or Subscri babl eChannel respectively. When the channel is
pollable, then the polling behavior is determined based on the endpoint element's "poller”
sub-element. For example, a simple interval-based poller with a 1-second interval would be
configured like this:
<transformer input-channel="poll able"
ref ="transforner"
out put - channel =" out put " >
<pol | er >
<interval -trigger interval ="1000"/>

</ pol | er>
</ transforner>

For a poller based on a Cron expression, use the "cron-trigger” child element instead:

<transformer input-channel="pol |l able"
ref ="transforner"
out put - channel =" out put " >
<pol | er >
<cron-trigger expression="*/10 * * * * MON-FRI "/ >
</ pol | er>
</transforner>

If the input channel isaPol | abl eChannel , then the poller configuration is required.
Specifically, as mentioned above, the 'trigger’ is arequired property of the PollingConsumer
class. Therefore, if you omit the "poller”" sub-element for a Polling Consumer endpoint's
configuration, an Exception may be thrown. However, it is aso possible to create top-level
pollersin which case only a"ref" isrequired:
<pol I er id="weekdayPol |l er">
< p0|<|cre(r32—tri gger expression="*/10 * * * * MON-FRI"/>
<transforner input-channel ="pollable"
ref ="transforner"
out put - channel =" out put " >

<pol | er ref="weekdayPol | er"/>
</ transfor mer >

In fact, to simplify the configuration, you can define aglobal default poller. A single top-level
poller within an ApplicationContext may have the def aul t attribute with avalue of "true". In
that case, any endpoint with a PollableChannel for its input-channel that is defined within the
same ApplicationContext and has no explicitly configured 'poller' sub-element will use that
default.

<pol ler id="defaul tPoller" default="true" max-nmessages-per-poll="5">
<interval -trigger interval ="3" tinme-unit="SECONDS"/>
</ pol | er>

<l-- No <poller/> sub-elenment is necessary since there is a default -->
<transforner input-channel ="pollable"

ref="transforner"

out put - channel =" out put "/ >

Spring Integration also provides transaction support for the pollers so that each
receive-and-forward operation can be performed as an atomic unit-of-work. To configure
transactions for a poller, simply add the <transactional/> sub-element. The attributes for this
element should be familiar to anyone who has experience with Spring's Transaction
management:

28 Message Endpoints

Message Endpoints 29

<pol | er >
<interval -trigger interval ="1000"/>
<transactional transaction-nmanager="txManager"
pr opagat i on=" REQUI RED"
1 sol ati on=" REPEATABLE_READ"
ti meout ="10000"
read-onl y="fal se"/>
</ poll er>

The polling threads may be executed by any instance of Spring's TaskExecut or abstraction.
This enables concurrency for an endpoint or group of endpoints. As a convenience, thereis also
namespace support for creating a simple thread pool executor. The <thread-pool-task-executor/>
element defines attributes for common concurrency settings such as core-size, max-size, and
gueue-capacity. Configuring athread-pooling executor can make a substantial difference in how
the endpoint performs under load. These settings are available per-endpoint since the
performance of an endpoint is one of the major factorsto consider (the other major factor being
the expected volume on the channel to which the endpoint subscribes). To enable concurrency
for a polling endpoint that is configured with the XML namespace support, provide the
'task-executor' reference on its <poller/> element and then provide one or more of the properties
shown below:

<pol | er task-executor="pool"/>

<interval -trigger interval ="5" tinme-unit="SECONDS"/>
</ pol | er>
<t hr ead- pool -t ask- execut or id="pool"

max- si ze="25"
gueue- capaci ty="20"
keep-al i ve- seconds="120"/ >

If no 'task-executor' is provided, the consumer's handler will be invoked in the caller's thread.
Note that the "caller” is usually the default TaskSchedul er (see Section B.3, “Configuring
the Task Scheduler”). Also, keep in mind that the 'task-executor' attribute can provide a reference
to any implementation of Spring's TaskExecut or interface by specifying the bean name. The
thread pool element is simply provided for convenience.

As mentioned in the background section for Polling Consumers above, you can aso configure a
Polling Consumer in such away as to emulate event-driven behavior. With along
receive-timeout and a short interval-trigger, you can ensure a very timely reaction to arriving
messages even on a polled message source. Note that thiswill only apply to sources that have a
blocking wait call with atimeout. For example, the File poller does not block, each receive() call
returns immediately and either contains new files or not. Therefore, even if apoller contains a
long receive-timeout, that value would never be usable in such a scenario. On the other hand
when using Spring Integration’'s own queue-based channels, the timeout value does have a
chance to participate. The following example demonstrates how a Polling Consumer will receive
Messages nearly instantaneously.

<service-activator input-channel ="someQueueChannel "
out put - channel =" out put " >
<pol | er receive-tinmeout="30000">
<interval -trigger interval="10"/>
</ pol | er>
</ servi ce-activator>

Using this approach does not carry much overhead since internally it is nothing more then a
timed-wait thread which does not require nearly as much CPU resource usage as a thrashing,
infinite while loop for example.

1.0.3 29

30

30

Spring Integration 1.0.3

Message Endpoints

Service Activator 31

5. Service Activator

5.1 Introduction

The Service Activator is the endpoint type for connecting any Spring-managed Object to an input
channel so that it may play the role of aservice. If the service produces output, it may also be
connected to an output channel. Alternatively, an output producing service may be located at the
end of a processing pipeline or message flow in which case, the inbound Message's
"replyChannel” header can be used. Thisisthe default behavior if no output channel is defined,
and as with most of the configuration options you'll see here, the same behavior actually applies
for most of the other components we have seen.

5.2 The <service-activator/> Element

To create a Service Activator, use the 'service-activator' element with the 'input-channel® and 'ref'
attributes:

<service-activator input-channel ="exanpl eChannel" ref="exanpl eHandl er"/>

The configuration above assumes that "exampleHandler" either contains a single method
annotated with the @ServiceActivator annotation or that it contains only one public method at
al. To delegate to an explicitly defined method of any object, simply add the "method" attribute.

<servi ce-activator input-channel ="exanpl eChannel" ref="sonePoj 0" nethod="soneMet hod"/>

In either case, when the service method returns a non-null value, the endpoint will attempt to
send the reply message to an appropriate reply channel. To determine the reply channel, it will
first check if an "output-channel” was provided in the endpoint configuration:

<servi ce-activator input-channel ="exanpl eChannel" out put-channel ="repl yChannel "
ref =" sonePoj 0" net hod="soneMet hod"/ >

If no "output-channel" is available, it will then check the Message's REPLY_CHANNEL header
value. If that value is available, it will then check itstype. If itisaMessageChannel , the
reply message will be sent to that channel. If itisa St r i ng, then the endpoint will attempt to
resolve the channel name to a channel instance. If the channel cannot be resolved, then a
Channel Resol uti onExcept i on will bethrown.

The argument in the service method could be either aMessage or an arbitrary type. If the latter,
then it will be assumed that it is a Message payload, which will be extracted from the message
and injected into such service method. Thisis generally the recommended approach asit follows
and promotes a POJO model when working with Spring Integration. Arguments may also have
@Header or @Headers annotations as described in Section B.5, “ Annotation Support”

Note
Since v1.0.3 of Spring Integration, the service method is not required to have an

1.0.3 31

32 Spring Integration 1.0.3

argument at al, which means you can now implement event-style Service Activators,
where al you care about is an invocation of the service method, not worrying about
the contents of the message. Think of it asaNULL JMS message. An example
use-case for such an implementation could be a simple counter/monitor of messages
deposited on the input channel.

Using a"ref" attribute is generally recommended if the custom Service Activator handler
implementation can be reused in other <ser vi ce- act i vat or > definitions. However if the
custom Service Activator handler implementation should be scoped to a single definition of the
<servi ce-acti vat or >, you can use an inner bean definition:

<service-activator id="exanpl eServiceActivator" input-channel="inChannel"
out put - channel = "out Channel" nethod="fo00">

) - <beans: bean class="org. foo. Exanpl eServi ceActivator"/>
</ servi ce-activator>

Note

Using both the "ref" attribute and an inner handler definition in the same
<servi ce-acti vat or > configuration is not allowed, asit creates an ambiguous
condition and will result in an Exception being thrown.

32 Service Activator

Channel Adapter 33

6. Channel Adapter

A Channel Adapter isaMessage Endpoint that enables connecting a single sender or receiver to
a Message Channel. Spring Integration provides a number of adapters out of the box to support
various transports, such as IMS, File, HTTP, Web Services, and Mail. Those will be discussed in
upcoming chapters of this reference guide. However, this chapter focuses on the simple but
flexible Method-invoking Channel Adapter support. There are both inbound and outbound
adapters, and each may be configured with XML elements provided in the core namespace.

6.1 The <inbound-channel-adapter> element

An "inbound-channel-adapter” element can invoke any method on a Spring-managed Object and
send anon-null return valueto aMessageChannel after converting it to aMessage. When
the adapter's subscription is activated, a poller will attempt to receive messages from the source.
The poller will be scheduled with the TaskSchedul er according to the provided
configuration. To configure the polling interval or cron expression for an individual

channel-adapter, provide a'poller' element with either an ‘interval-trigger’ (in milliseconds) or
‘cron-trigger’ sub-element.

<i nbound- channel - adapt er ref="sourcel" nethod="nethodl" channel ="channel 1">

<pol | er >
<interval -trigger interval ="5000"/>
</ pol | er>

</ i nbound- channel - adapt er >

<i nbound- channel - adapt er ref="source2" nethod="nethod2" channel ="channel 2">
<pol | er >

<cron-trigger expression="30 * 9-17 * * MON-FRI"/>
</ pol |l er>
</ channel - adapt er >

Note

If no poller is provided, then a single default poller must be registered within the
context. See Section 4.4, “ Namespace Support” for more detail.

6.2 The <outbound-channel-adapter/> element

An "outbound-channel-adapter" element can also connect aMessageChannel to any method
that should be invoked with the payload of Messages sent to that channel.

<out bound- channel - adapt er channel ="channel 1" ref="target1" nethod="nethodl"/>

If the channel being adapted isa Pol | abl eChannel , provide a poller sub-element:

<out bound- channel - adapt er channel ="channel 2" ref="target2" nethod="net hod2">
<pol | er >

<interval -trigger interval ="3000"/>
</ pol | er>
</ out bound- channel - adapt er >

1.0.3 33

34 Spring Integration 1.0.3

Any Channel Adapter can be created without a " channel” reference in which caseit will
implicitly create an instance of Di r ect Channel . The created channel's name will match the
"id" attribute of the <inbound-channel-adapter/> or <outbound-channel-adapter element.
Therefore, if the "channel” is not provided, the "id" is required.

34 Channel Adapter

Router 35

/. Router

7.1 Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will
require Spring Integration's options for delegating to POJOs using the XML namespace support
and/or Annotations. Both of these are discussed below, but first we present a couple
implementations that are available out-of-the-box since they fulfill generic, but common,
requirements.

PayloadTypeRouter

A Payl oadTypeRout er will send Messages to the channel as defined by payload-type
mappings.

<bean id="payl oadTypeRouter" class="org. springfranmework.integration.router.Payl oadTypeRouter">
<property nanme="payl oadTypeChannel Map" >
<map>
<entry key="java.lang. String" val ue-ref="stringChannel"/>
<entry key="java.lang.|nteger" val ue-ref="integer Channel "/ >
</ map>
</ property>
</ bean>

Configuration of Payl oadTypeRout er isaso supported via the namespace provided by
Spring Integration (see Section B.2, “Namespace Support”), which essentially ssimplifies
configuration by combining <r out er / > configuration and its corresponding implementation
defined using <bean/ > element into a single and more concise configuration element. The
example below demonstrates Payl oadTypeRout er configuration which is equivaent to the
one above using Spring Integration’'s namespace support:

<payl oad-type-router input-channel ="routingChannel ">
<mappi ng type="java.lang. String" channel ="stringChannel" />
<mappi ng type="java.lang.|nteger" channel ="integer Channel " />
</ payl oad- t ype-rout er >

HeaderValueRouter

A Header Val ueRout er will send Messages to the channel based on the individual header
value mappings. When Header Val ueRout er iscreated it isinitialized with the name of the
header to be evaluated, using const r uct or - ar g. The value of the header could be one of
two things:

1. Arbitrary value

2. Channel name

If arbitrary value, then achannel Resol ver should be provided to map header valuesto

1.0.3 35

36 Spring Integration 1.0.3

channel names. The example below uses MapBasedChannel Resol ver to set up amap of
header values to channel names.

<bean i d="nyHeader Val ueRout er"
cl ass="org. springfranmework.integration.router.HeaderVal ueRouter">
<constructor-arg val ue="soneHeader Nane" />
<property name="channel Resol ver">
<bean cl ass="org. springfranmework.integration.channel. MapBasedChannel Resol ver">
<property name="channel Map" >
<nmap>
<entry key="sonmeHeader Val ue" val ue-ref="channel A" />
<entry key="soneQ her Header Val ue" val ue-ref="channel B" />
</ map>
</ property>
</ bean>
</ property>
</ bean>

If channel Resol ver isnot specified, then the header value will be treated as a channel name
making configuration much simpler, where no channel Resol ver needsto be specified.

<bean id="nyHeader Val ueRout er"
class="org. springframework.integration.router.HeaderVal ueRouter">
<constructor-arg val ue="soneHeader Nane" />

</ bean>

Similar to the Payl oadTypeRout er , configuration of Header Val ueRout er isalso
supported via namespace support provided by Spring Integration (see Section B.2, “Namespace
Support™). The example below demonstrates two types of namespace-based configuration of
Header Val ueRout er which are equivalent to the ones above using Spring Integration
namespace support:

1. Configuration where mapping of header values to channelsis required

<header - val ue-rout er input-channel ="routi ngChannel " header - nane="t est Header ">
<mappi ng val ue="soneHeader Val ue" channel ="channel A" />
<mappi ng val ue="sonmeQ her Header Val ue" channel ="channel B" />

</ header - val ue-rout er >

2. Configuration where mapping of header valuesis not required if header values themselves
represent the channel names

<header - val ue-rout er input-channel ="routingChannel " header-nane="t est Header"/>

Note

The two router implementations shown above share some common properties, such as
"defaultOutputChannel” and "resolutionRequired”. If "resolutionRequired” is set to
"true”, and the router is unable to determine atarget channel (e.g. thereisno

matching payload for a PayloadTypeRouter and no "defaultOutputChannel" has been
specified), then an Exception will be thrown.

RecipientListRouter

A Reci pi ent Li st Rout er will send each received Message to a statically-defined list of
Message Channels:

<bean id="recipientListRouter" class="org.springframework.integration.router.RecipientListRouter">

36 Router

Router 37

<property name="channel s">
<list>
<ref bean="channel 1"/ >
<ref bean="channel 2"/ >
<ref bean="channel 3"/ >
</list>
</ property>
</ bean>

Configuration for Reci pi ent Li st Rout er isalso supported via namespace support provided
by Spring Integration (see Section B.2, “Namespace Support”). The example below demonstrates
namespace-based configuration of Reci pi ent Li st Rout er and all the supported attributes
using Spring Integration namespace support:

<recipient-list-router id="custonRouter" input-channel ="routingChannel"
ti meout ="1234"
ignore-send-failures="true"
appl y- sequence="true">
<reci pi ent channel ="channel 1"/ >
<reci pi ent channel ="channel 2"/ >
</recipient-list-router>

Note

The 'apply-sequence' flag here has the same affect as it doesfor a
publish-subscribe-channel, and like publish-subscribe-channel it is disabled by
default on the recipient-list-router. Refer to the section called
“PublishSubscribeChannel Configuration” for more information.

7.2 The <router> element

The "router” element provides a ssmple way to connect a router to an input channel, and also
accepts the optional default output channel. The "ref" may provide the bean name of a custom
Router implementation (extending AbstractM essageRouter):

<router ref="payl oadTypeRouter" input-channel ="inputl" default-output-channel ="defaul t Qutputl1"/>
<router ref="recipientListRouter" input-channel ="input2" default-output-channel ="defaul t Qut put2"/>
<router ref="custonRouter" input-channel ="input3" default-output-channel ="defaul t Qut put 3"/ >

<beans: bean i d="custonRout er Bean cl ass="org. foo. MyCust onRout er"/ >

Alternatively, the "ref" may point to a ssmple Object that contains the @Router annotation (see
below), or the "ref" may be combined with an explicit "method" name. When specifying a
"method", the same behavior applies as described in the @Router annotation section below.

<router input-channel ="input" ref="sonmePojo" nethod="sonmeMet hod"/>

Using a"ref" attribute is generally recommended if the custom router implementation can be
reused in other <r out er > definitions. However if the custom router implementation should be
scoped to a concrete definition of the <r out er >, you can provide an inner bean definition:

<router nethod="sonmeMet hod" input-channel ="input3" defaul t-out put-channel ="def aul t Qut put 3">
<beans: bean cl ass="org. f 0oo. MyCust onRouter"/ >
</router>
Note

1.0.3 37

38 Spring Integration 1.0.3

Using both the "ref" attribute and an inner handler definition in the same <r out er >
configuration is not allowed, asit creates an ambiguous condition and will result in an

Exception being thrown.

7.3 The @Router Annotation

When using the @Rout er annotation, the annotated method can return either the
MessageChannel or Stri ng type. Inthe case of the latter, the endpoint will resolve the
channel name asit does for the default output. Additionally, the method can return either asingle
value or a collection. When a collection is returned, the reply message will be sent to multiple
channels. To summarize, the following method signatures are all valid.

@Rout er
publ i c MessageChannel route(Message nessage) {...}

@Rout er
public List<MessageChannel > route(Message nessage) {...}

@Rout er
public String route(Foo payload) {...}

@Rout er
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a common requirement is to route based on metadata
available within the message header as either a property or attribute. Rather than requiring use of
the Message type as the method parameter, the @Rout er annotation may also use the
@Header parameter annotation that is documented in Section B.5, “ Annotation Support”.

@Rout er
public List<String> route(@eader("orderStatus") OrderStatus status)

Note
For routing of XM L-based Messages, including X Path support, see Chapter 26,

Dealing with XML Payloads.

38 Router

Filter 39

8. Filter

8.1 Introduction

Message Filters are used to decide whether a M essage should be passed along or dropped based
on some criteria such as a Message Header value or even content within the Message itself.
Therefore, aMessage Filter is similar to arouter, except that for each Message received from the
filter'sinput channel, that same Message may or may not be sent to the filter's output channel.
Unlike the router, it makes no decision regarding which Message Channel to send to but only
decides whether to send.

Note

Asyou will see momentarily, the Filter does also support a discard channel, soin
certain cases it can play the role of avery simple router (or "switch") based on a
boolean condition.

In Spring Integration, a Message Filter may be configured as a Message Endpoint that del egates
to some implementation of the MessageSel ect or interface. That interface isitself quite
simple:

public interface MessageSel ector {
bool ean accept (Message<?> nessage) ;
}
The MessageFi | t er constructor accepts a selector instance:

MessageFilter filter = new MessageFilter(soneSel ector);

8.2 The <filter> Element

The <filter> element is used to create a M essage-sel ecting endpoint. In addition to
"input-channel™ and "output-channel" attributes, it requiresa"ref". The "ref" may point to a
M essageSel ector implementation:

<filter input-channel ="input" ref="selector" output-channel ="output"/>

<bean id="sel ector" class="exanpl e. MessageSel ectorlnpl"/>

Alternatively, the "method" attribute can be added at which point the "ref" may refer to any
object. The referenced method may expect either the Message type or the payload type of
inbound Messages. The return value of the method must be a boolean value. Any time the
method returns 'true’, the Message will be passed along to the output-channel.
<filter input-channel ="input" output-channel ="output"
ref =" exanpl e(bj ect” net hod="soneBool eanRet ur ni ngMet hod"/ >

<bean id="exanpl e(bj ect" cl ass="exanpl e. Sonebj ect"/ >

1.0.3 39

40 Spring Integration 1.0.3

If the selector or adapted POJO method returnsf al se, there are afew settings that control the
fate of the rejected Message. By default (if configured like the example above), the rejected
Messages will be silently dropped. If rejection should instead indicate an error condition, then set
the 'throw-exception-on-rejection’ flagtot r ue:

<filter input-channel ="input" ref="selector"
out put - channel ="out put" throw exception-on-rejection="true"/>

If you want the rejected messages to go to a specific channel, provide that reference as the
‘discard-channel':

<filter input-channel ="input" ref="selector"
out put - channel ="out put" di scard-channel ="r ej ect edMessages"/ >

Note

A common usage for Message Filtersisin conjunction with a Publish Subscribe
Channel. Many filter endpoints may be subscribed to the same channel, and they
decide whether or not to pass the Message for the next endpoint which could be any
of the supported types (e.g. Service Activator). This provides areactive alternative to
the more proactive approach of using a Message Router with a single Point-to-Point
input channel and multiple output channels.

Using a"ref" attribute is generally recommended if the custom filter implementation can be
reused in other <f i | t er > definitions. However if the custom filter implementation should be
scoped to asingle<fi | t er > element, provide an inner bean definition:

<filter method="sonmeMethod" input-channel ="inChannel" out put-channel ="out Channel ">
<beans: bean cl ass="org.foo. M/CustonFilter"/>
</filter>
Note

Using both the "ref" attribute and an inner handler definitioninthesame<filter>
configuration is not allowed, asit creates an ambiguous condition, and it will
therefore result in an Exception being thrown.

40 Filter

Transformer 41

9. Transformer

9.1 Introduction

Message Transformers play a very important role in enabling the loose-coupling of Message
Producers and Message Consumers. Rather than requiring every Message-producing component
to know what type is expected by the next consumer, Transformers can be added between those
components. Generic transformers, such as one that converts a String to an XML Document, are
also highly reusable.

For some systems, it may be best to provide a Canonical Data Model, but Spring Integration's
general philosophy is not to require any particular format. Rather, for maximum flexibility,
Spring Integration aims to provide the simplest possible model for extension. As with the other
endpoint types, the use of declarative configuration in XML and/or Annotations enables simple
POJOs to be adapted for the role of Message Transformers. These configuration options will be
described below.

Note

For the same reason of maximizing flexibility, Spring does not require XML -based
Message payloads. Nevertheless, the framework does provide some convenient
Transformers for dealing with XML -based payloadsif that isindeed the right choice
for your application. For more information on those transformers, see Chapter 26,
Dealing with XML Payloads.

9.2 The <transformer> Element

The <transformer> element is used to create a M essage-transforming endpoint. In addition to

"input-channel” and "output-channel" attributes, it requiresa"ref". The "ref" may either point to

an Object that contains the @Transformer annotation on a single method (see below) or it may

be combined with an explicit method name value provided via the "method" attribute.
<transfornmer id="testTransformer" ref="testTransfornmerBean" input-channel ="i nChannel "

met hod="transforni' out put-channel =" out Channel "/ >
<beans: bean id="test Transf or mer Bean" cl ass="org.foo. Test Transfornmer" />

Using a"ref" attribute is generally recommended if the custom transformer handler
implementation can be reused in other <t r ansf or mer > definitions. However if the custom
transformer handler implementation should be scoped to a single definition of the
<t r ansf or mer >, you can define an inner bean definition:
<transforner id="testTransfornmer" input-channel ="inChannel" nethod="transfornt
out put - channel =" out Channel ">

<beans: bean cl ass="org. f0o. Test Transformer"/>
</ transf or ner >

1.0.3 41

http://www.eaipatterns.com/CanonicalDataModel.html

42 Spring Integration 1.0.3

Note

Using both the "ref" attribute and an inner handler definition in the same
<t r ansf or mer > configuration is not allowed, as it creates an ambiguous condition
and will result in an Exception being thrown.

The method that is used for transformation may expect either the Message type or the payload
type of inbound Messages. It may also accept Message header values either individually or asa
full map by using the @Header and @Headers parameter annotations respectively. The return
value of the method can be any type. If thereturn value isitself aMessage, that will be passed
along to the transformer's output channel. If the return type is a Map, and the original Message
payload was not a Map, the entries in that Map will be added to the Message headers of the
original Message (the keys must be Strings). If the return value is null, then no reply Message
will be sent (effectively the same behavior as a Message Filter returning false). Otherwise, the
return value will be sent as the payload of an outbound reply Message.

There are aalso afew Transformer implementations available out of the box. Because, it isfairly
commonto usethet oSt ri ng() representation of an Object, Spring Integration provides an
bj ect ToSt ri ngTr ansf or mer whose output is a Message with a String payload. That
String is the result of invoking the toString operation on the inbound M essage's payload.

<obj ect-to-string-transforner input-channel ="in" output-channel ="out"/>
A potential example for this would be sending some arbitrary object to the
‘outbound-channel-adapter' in the file namespace. Whereas that Channel Adapter only supports
String, byte-array, or j ava. i 0. Fi | e payloads by default, adding this transformer
immediately before the adapter will handle the necessary conversion. Of course, that works fine
aslong astheresult of thet oSt ri ng() call iswhat you want to be written to the File.
Otherwise, you can just provide a custom POJO-based Transformer viathe generic 'transformer'
element shown previously.

Tip

When debugging, this transformer is not typically necessary since the
'logging-channel-adapter' is capable of logging the Message payload. Refer to the
section called “Wire Tap” for more detail.

If you need to serialize an Object to a byte array or deserialize a byte array back into an Object,
Spring Integration provides symmetrical serialization transformers.

<payl oad- serializing-transforner input-channel ="objectsln" output-channel ="bytesQut"/>

<payl oad- deseri al i zi ng-t ransf or ner i nput - channel ="byt esl n* out put - channel =" obj ect sCut "/ >

If you only need to add headers to a Message, and they are not dynamically determined by
M essage content, then referencing a custom implementation may be overkill. For that reason,
Spring Integration provides the ‘header-enricher’ element.
<header - enricher input-channel ="in" output-channel ="out">
<header name="foo" val ue="123"/>

<header nanme="bar" ref="sonmeBean"/>
</ header - enri cher >

42 Transformer

Transformer 43

9.3 The @Transformer Annotation

The @t ansf or mer annotation can also be added to methods that expect either the Message
type or the message payload type. The return value will be handled in the exact same way as
described above in the section describing the <transformer> element.

@r ansf or mer

Order generateOrder(String productld) {
return new Order(productld);

Transformer methods may also accept the @Header and @Headers annotations that is
documented in Section B.5, “ Annotation Support”

@r ansf or mer
Order generateOrder(String productld, @eader("custonerNane") String custoner) {
return new Order(productld, custoner);

1.0.3 43

Spring Integration 1.0.3

Transformer

Splitter 45

10. Splitter

10.1 Introduction

The Splitter is a component whose role isto partition a message in several parts, and send the
resulting messages to be processed independently. Very often, they are upstream producersin a
pipeline that includes an Aggregator.

10.2 Programming model

The API for performing splitting consists from one base class, AbstractM essageSplitter, which is
a MessageHandler implementation, encapsulating features which are common to splitters, such
asfilling in the appropriate message headers CORRELATION_ID, SEQUENCE_SIZE, and
SEQUENCE_NUMBER on the messages that are produced. This allows to track down the
messages and the results of their processing (in atypical scenario, these headers would be copied
over to the messages that are produced by the various transforming endpoints), and use them, for
example, in a Composed Message Processor scenario.

An excerpt from AbstractM essageSplitter can be seen below:
public abstract class AbstractMessageSplitter
ext ends Abstract Repl yProduci ngMessageConsuner {

‘p‘r otected abstract Obj ect splitMessage(Message<?> nessage);

}

For implementing a specific Splitter in an application, a developer can extend
AbstractM essageSplitter and implement the splitM essage method, thus defining the actual logic
for splitting the messages. The return value can be one of the following:

» aCaollection (or subclass thereof) or an array of Message objects - in this case the messages
will be sent as such (after the CORRELATION_ID, SEQUENCE_SIZE and
SEQUENCE_NUMBER are populated). Using this approach gives more control to the
developer, for example for populating custom message headers as part of the splitting process.

» aCaollection (or subclass thereof) or an array of non-Message objects - works like the prior
case, except that each collection element will be used as a Message payload. Using this
approach allows devel opers to focus on the domain objects without having to consider the
Messaging system and produces code that is easier to test.

» aMessage or non-Message object (but not a Collection or an Array) - it works like the
previous cases, except that there is a single message to be sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a

method that accepts a single argument and has a return value. In this case, the return value of the
method will be interpreted as described above. The input argument might either be a Message or

1.0.3 45

46 Spring Integration 1.0.3

asimple POJO. In the latter case, the splitter will receive the payload of the incoming message.
Since this decouples the code from the Spring Integration API and will typically be easier to test,
it is the recommended approach.

10.3 Configuring a Splitter using XML

A splitter can be configured through XML asfollows:

<channel id="input Channel"/>
<splitter id="splitter" O

ref ="splitterBean" 0O

met hod="split" O

i nput - channel ="i nput Channel " 0O

out put - channel =" out put Channel " 0O/ >
<channel id="out put Channel "/ >

<beans: bean id="splitterBean" class="sanple.PojoSplitter"/>

0 Theid of the splitter is optional.

0 A reference to abean defined in the application context. The bean must implement the
splitting logic as described in the section above. Optional. If reference to abean is not
provided, then it is assumed that the payload of the Message that arrived on the
i nput - channel isanimplementation of java.util.Collection and the default splitting
logic will be applied on such Collection, incorporating each individual element into a
Message and depositing it on the out put - channel .

[0 The method (defined on the bean specified above) that implements the splitting logic.
Optional.

[0 Theinput channel of the splitter. Required.

[0 Thechannel where the splitter will send the results of splitting the incoming message.
Optional (because incoming messages can specify a reply channel themselves).

Using a"ref" attribute is generally recommended if the custom splitter handler implementation
can bereused in other <spl i t t er > definitions. However if the custom splitter handler
implementation should be scoped to a single definition of the<spl i t t er >, you can configure
an inner bean definition:
<splitter id="testSplitter" input-channel ="inChannel" nethod="split"

out put - channel =" out Channel ">

<beans: bean class="org.foo. TestSplitter"/>
</spliter>

Note

Using both a"ref" attribute and an inner handler definition in the same
<spl i tter> configurationisnot allowed, asit creates an ambiguous condition and
will result in an Exception being thrown.

10.4 Configuring a Splitter with Annotations

46 Splitter

Splitter 47

The @pl i t t er annotation is applicable to methods that expect either the Message type or
the message payload type, and the return values of the method should be a collection of any type.
If the returned values are not actual Message objects, then each of them will be sent asthe
payload of a message. Those messages will be sent to the output channel as designated for the
endpoint on which the @pl i t t er isdefined.

@plitter
Li st<Lineltenr extractltens(Order order) {
return order.getltens()

1.0.3 47

48

48

Spring Integration 1.0.3

Splitter

Aqggregator 49

11. Aggregator

11.1 Introduction

Basically amirror-image of the Splitter, the Aggregator is atype of Message Handler that
receives multiple Messages and combines them into a single Message. In fact, Aggregators are
often downstream consumersin a pipeline that includes a Splitter.

Technically, the Aggregator is more complex than a Splitter, because it is required to maintain
state (the Messages to-be-aggregated), to decide when the complete group of Messagesis
available, and to timeout if necessary. Furthermore, in case of atimeout, the Aggregator needs to
know whether to send the partial results or to discard them to a separate channel.

11.2 Functionality

The Aggregator combines a group of related messages, by correlating and storing them, until the
group is deemed complete. At that point, the Aggregator will create a single message by
processing the whole group, and will send that aggregated message as output.

As messages might arrive with a certain delay (or certain messages from the group might not
arrive at al), the Aggregator can specify atimeout (counted from the moment when the first
message in the group has arrived), and whether, in the case of atimeout, the group should be
discarded, or the Aggregator should merely attempt to create a single message out of what has
arrived so far. An important aspect of implementing an Aggregator is providing the logic that has
to be executed when the aggregation (creation of a single message out of many) takes place.

In Spring Integration, the grouping of the messages for aggregation is done by default based on
their CORRELATION_ID message header (i.e. the messages with the same
CORRELATION_ID will be grouped together). However, this can be customized, and the users
can opt for other ways of specifying how the messages should be grouped together, by using a
CorrelationStrategy (see below).

An important concern with respect to the timeout is, what happensif |ate messages arrive after
the aggregation has taken place? In this case, a configuration option alows the user to decide
whether they should be discarded or not.

11.3 Programming model

The Aggregation API consists of a number of classes:

» Thebaseclass Abst r act MessageAggr egat or and its subclass
Met hodl nvoki ngMessageAggr egat or

1.0.3 49

50 Spring Integration 1.0.3

* TheConpl et i onSt r at egy interface and its default implementation
SequenceSi zeConpl eti onSt r at egy

» TheCorrel ati onStr at egy interface and its default implementation
Header Attri but eCorrel ati onStrat egy

AbstractMessageAggregator

The Abst r act MessageAggr egat or isaMessageHand| er implementation,
encapsulating the common functionalities of an Aggregator, which are:

* correlating messages into a group to be aggregated

* maintaining those messages until the group is complete

* deciding when the group isin fact complete

 processing the completed group into a single aggregated message

* recognizing and responding to atimed-out completion attempt

The responsibility of deciding how the messages should be grouped together is delegated to a
Correl ati onStr at egy instance. The responsibility of deciding whether the message group
iscompleteis delegated to a Conpl et i onSt r at egy instance.

Hereisabrief highlight of the base Abst r act MessageAggr egat or (the responsibility of
implementing the aggregateM essages method is left to the devel oper):

public abstract class Abstract MessageAggregat or
extends Abstract MessageBarrierHandl er {

private volatile ConpletionStrategy conpletionStrategy
= new SequenceSi zeConpl etionStrategy();
protected abstract Message<?> aggregat eMessages(Li st <Message<?>> nessages);
}
It also inherits the following default CorrelationStrategy:

private volatile CorrelationStrategy correlationStrategy =
new Header AttributeCorrelationStrategy(MessageHeaders. CORRELATI ON | D) ;

When appropriate, the simplest option isthe Def aul t MessageAggr egat or . It createsa
single Message whose payload is a List of the payloads received for a given group. It uses the
default Corr el ati onSt rat egy and Conpl eti onSt r at egy as shown above. Thisworks
well for ssimple Scatter Gather implementations with either a Splitter, Publish Subscribe Channel,
or Recipient List Router upstream.

Note
When using a Publish Subscribe Channel or Recipient List Router in this type of

scenario, be sure to enable the flag to apply sequence. That will add the necessary
headers (correlation id, sequence number and sequence size). That behavior is

50 Aqggregator

Aqggregator 51

enabled by default for Splittersin Spring Integration, but it is not enabled for the
Publish Subscribe Channel or Recipient List Router because those components may
be used in avariety of contexts where those headers are not necessary.

When implementing a specific aggregator object for an application, a developer can extend
Abst ract MessageAggr egat or and implement theaggr egat eMessages method.
However, there are better suited (which reads, less coupled to the API) solutions for
implementing the aggregation logic, which can be configured easily either through XML or
through annotations.

In general, any ordinary Javaclass (i.e. POJO) can implement the aggregation agorithm. For
doing so, it must provide a method that accepts as an argument asingle java.util.List
(parametrized lists are supported as well). This method will be invoked for aggregating
messages, as follows:

* if the argument is a parametrized java.util.List, and the parameter typeis assignable to
Message, then the whole list of messages accumulated for aggregation will be sent to the

aggregator

* if the argument is a non-parametrized java.util.List or the parameter type is not assignable to
Message, then the method will receive the payloads of the accumulated messages

« if thereturn typeis not assignable to Message, then it will be treated as the payload for a
Message that will be created automatically by the framework.

Note

In the interest of code simplicity, and promoting best practices such as low coupling,
testability, etc., the preferred way of implementing the aggregation logic is through a
POJO, and using the XML or annotation support for setting it up in the application.

CompletionStrategy

The Conpl et i onSt r at egy interface is defined as follows:

public interface ConpletionStrategy {
bool ean i sConpl et e(Li st <Message<?>> nessages);

}

In general, any ordinary Javaclass (i.e. POJO) can implement the completion decision
mechanism. For doing so, it must provide a method that accepts as an argument asingle
javauutil.List (parametrized lists are supported as well), and returns a boolean value. This method
will be invoked after the arrival of a new message, to decide whether the group is complete or
not, asfollows:

* if theargument is a parametrized java.util.List, and the parameter typeis assignable to

1.0.3 51

52 Spring Integration 1.0.3

Message, then the whole list of messages accumulated in the group will be sent to the method

« if the argument is a non-parametrized java.util.List or the parameter type is not assignable to
Message, then the method will receive the payloads of the accumulated messages

 the method must return true if the message group is complete and ready for aggregation, and
false otherwise.

Spring Integration provides an out-of-the box implementation for Conpl et i onSt r at egy, the
SequenceSi zeConpl et i onSt r at egy. Thisimplementation uses the
SEQUENCE_NUMBER and SEQUENCE_SIZE of the arriving messages for deciding when a
message group is complete and ready to be aggregated. As shown above, it is aso the default

strategy.

CorrelationStrategy

TheCorrel ati onStr at egy interface is defined as follows:

public interface CorrelationStrategy {
Obj ect get Correl ati onKey(Message<?> nessage)

}

The method shall return an Object which represents the correlation key used for grouping
messages together. The key must satisfy the criteria used for akey in a Map with respect to the
implementation of equals() and hashCode().

In general, any ordinary Javaclass (i.e. POJO) can implement the correlation decision
mechanism, and the rules for mapping a message to a method's argument (or arguments) are the
sameasfor aSer vi ceActi vat or (including support for @Header annotations). The method
must return avalue, and the value must not be nul | .

Spring I ntegration provides an out-of-the box implementation for Cor r el at i onSt r at egy,
theHeader Att ri but eCorrel ati onSt r at egy. Thisimplementation returns the value of
one of the message headers (whose name is specified by a constructor argument) as the
correlation key. By default, the correlation strategy is a HeaderAttributeCorrel ationStrategy
returning the value of the CORRELATION_ID header attribute.

11.4 Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator via XML through the
<aggregator/> element. Below you can see an example of an aggregator with all optional
parameters defined.

<channel id="input Channel "/>

<aggregator id="conpletel yDefinedAggregator" [

i nput - channel ="1 nput Channel " 0O
out put - channel =" out put Channel " 0O
di scard- channel ="di scardChannel " 0O

ref ="aggr egat or Bean" 0O

52 Aqggregator

Aqggregator 53

nmet hod="add" 0O

conpl etion-strategy="conpl eti onStrategyBean" [

conpl etion-strategy-nmet hod="checkConpl et eness" [

correl ation-strategy="correl ati onStrategyBean" O

correl ati on-strategy-nmet hod="groupNunbersByLastDigit" O
ti meout ="42"

send-partial -resul t-on-timeout="true"

reaper-interval ="135"

tracked-correl ati on-id-capacity="99"

send-ti meout =" 86420000" />

<channel id="out put Channel "/ >

<bean i d="aggregat or Bean" cl ass="sanpl e. Poj oAggr egator"/ >

<bean id="conpl eti onStrat egyBean" cl ass="sanpl e. Poj oConpl eti onStrategy"/>

<bean id="correl ationStrategyBean" class="sanpl e. PojoCorrel ationStrategy"/>

| | | | OO

Theid of the aggregator is optional.

The input channel of the aggregator. Required.

The channel where the aggregator will send the aggregation results. Optional (because
incoming messages can specify a reply channel themselves).

The channel where the aggregator will send the messages that timed out (if
send-partial -resul ts-on-ti meout isfalse). Optional.

A reference to a bean defined in the application context. The bean must implement the
aggregation logic as described above. Required.

A method defined on the bean referenced by r ef , that implements the message
aggregation algorithm. Optional, with restrictions (see above).

A reference to a bean that implements the decision algorithm as to whether a given message
group is complete. The bean can be an implementation of the Compl etionStrategy interface
or aPOJO. In the latter case the completion-strategy-method attribute must be defined as
well. Optional (by default, the aggregator will use sequence size) .

A method defined on the bean referenced by conpl et i on- st r at egy, that implements
the completion decision algorithm. Optional, with restrictions (requires

conpl eti on- strat egy to be present).

A reference to a bean that implements the correlation strategy. The bean can be an
implementation of the CorrelationStrategy interface or a POJO. In the latter case the
correlation-strategy-method attribute must be defined as well. Optional (by default, the
aggregator will use the correlation id header attribute) .

A method defined on the bean referenced by cor r el at i on- st r at egy, that
implements the correlation key algorithm. Optional, with restrictions (requires

correl ati on-strat egy to be present).

The timeout (in milliseconds) for aggregating messages (counted from the arrival of the
first message). Optional.

Whether upon the expiration of the timeout, the aggregator shall try to aggregate the
messages that have already arrived. Optional (false by default).

Theinterval (in milliseconds) at which areaper task is executed, checking if there are any
timed out groups. Optional.

The capacity of the correlation id tracker. Remembers the already processed correlation ids,
preventing the formation of new groups for messages that arrive after their group has been
already processed (aggregated or discarded). Set thisvalue to O if you do not want the
messages to be discarded in such a scenario. Optional.

The timeout for sending the aggregated messages to the output or reply channel. Optional.

Using a"ref" attribute is generally recommended if a custom aggregator handler implementation
can be reused in other <aggr egat or > definitions. However if a custom aggregator handler

1.0.3 53

54 Spring Integration 1.0.3

implementation should be scoped to a concrete definition of the <aggr egat or >, you can use
an inner bean definition (starting with version 1.0.3) for custom aggregator handlers within the
<aggr egat or > element:

<aggregat or input-channel ="input" method="sunl' out put-channel ="out put">

<beans: bean cl ass="or g. f 0o0. Exanpl eAggr egat or"/>
</ aggr egat or >

Note

Using both a"ref" attribute and an inner bean definition in the same
<aggr egat or > configuration is not allowed, asit creates an ambiguous condition.
In such cases, an Exception will be thrown.

An example implementation of the aggregator bean looks as follows:

public class PojoAggregator {
public Long add(List<Long> results) {
long total = 0I;
for (long partial Result: results) {
total += partial Result;

return total;

An implementation of the completion strategy bean for the example above may be as follows:

public class PojoConpletionStrategy {
a bubl i ¢ bool ean checkConpl et eness(Li st<Long> nunbers) {
int sum= 0;
for (long nunber: nunbers) {
sum += nunber;

return sum >= maxVal ue;

Note

Wherever it makes sense, the completion strategy method and the aggregator method
can be combined in asingle bean.

An implementation of the correlation strategy bean for the example above may be as follows:

public class PojoCorrelationStrategy {

a bubl ic Long groupNunbersBylLastDigit(Long nunber) {
return nunber % 10;

For example, this aggregator would group numbers by some criterion (in our case the remainder
after dividing by 10) and will hold the group until the sum of the numbers which represents the
payload exceeds a certain value.

54 Aqggregator

Aqggregator 55

Note

Wherever it makes sense, the completion strategy method, correlation strategy
method and the aggregator method can be combined in asingle bean (all of them or
any two).

11.5 Configuring an Aggregator with Annotations

An aggregator configured using annotations can look like this.
public class Waiter {

@Aggr egat or #
public Delivery aggregati ngMet hod(Li st<Orderlten> itens) {

}

@Conpl eti onStrategy #

public bool ean conpl eti onChecker (Li st <Message<?>> nessages) {
) Ce

@orrel ationStrategy #
public String correlateBy(Orderltemiten) {

}
}

[0 Anannotation indicating that this method shall be used as an aggregator. Must be specified
if this classwill be used as an aggregator.

[0 Anannotation indicating that this method shall be used as the completion strategy of an
aggregator. If not present on any method, the aggregator will use the
SequenceSizeCompl etionStrategy.

[0 Anannotation indicating that this method shall be used as the correlation strategy of an
aggregator. If no correlation strategy isindicated, the aggregator will use the
HeaderAttributeCorrelationStrategy based on CORRELATION_ID.

All of the configuration options provided by the xml element are also available for the
@Aggregator annotation.

The aggregator can be either referenced explicitly from XML or, if the @MessageEndpoint is
defined on the class, detected automatically through classpath scanning.

1.0.3 55

56

56

Spring Integration 1.0.3

Aqggregator

Resequencer 57

12. Resequencer

12.1 Introduction

Related to the Aggregator, albeit different from afunctional standpoint, is the Resequencer.

12.2 Functionality

The Resequencer worksin asimilar way to the Aggregator, in the sense that it uses the
CORRELATION_ID to store messages in groups, the difference being that the Resequencer
does not process the messages in any way. It smply releases them in the order of their
SEQUENCE_NUMBER header values.

With respect to that, the user might opt to release all messages at once (after the whole sequence,
according to the SEQUENCE_SIZE, has been released), or as soon as avalid sequenceis
available. Another option isto set atimeout, deciding whether to drop the whole sequence if the
timeout has expired, and not all messages have arrived, or to release the messages accumulated
so far, in the appropriate order.

12.3 Configuring a Resequencer with XML

Configuring aresequencer requires only including the appropriate element in XML.

A sample resequencer configuration is shown below.

<channel id="input Channel"/>
<channel id="out put Channel "/ >
<resequencer id="conpl etel yDefi nedResequencer" #
i nput - channel ="i nput Channel " #
out put - channel =" out put Channel " #
di scar d- channel ="di scar dChannel " #
rel ease-parti al - sequences="true" #
timeout ="42" #
send-partial -result-on-timeout="true" #
reaper-interval ="135" #

tracked-correl ati on-i d-capaci ty="99" #
send- ti meout =" 86420000" # />

Theid of the resequencer is optional.

The input channel of the resequencer. Required.

The channel where the resequencer will send the reordered messages. Optional.

The channel where the resequencer will send the messages that timed out (if
send-partial -resul t-on-tinmeout isfalse). Optional.

Whether to send out ordered sequences as soon as they are available, or only after the
whole message group arrives. Optional (true by default).

The timeout (in milliseconds) for reordering message sequences (counted from the arrival

O 0O OoOogoo

1.0.3 57

58

58

Spring Integration 1.0.3

of the first message). Optional.

Whether, upon the expiration of the timeout, the ordered group shall be sent out (even if
some of the messages are missing). Optional (false by default).

Theinterval (in milliseconds) at which areaper task is executed, checking if there are any
timed out groups. Optional.

The capacity of the correlation id tracker. Remembers the already processed correlation ids,
preventing the formation of new groups for messages that arrive after their group has been
already processed (reordered or discarded). Optional.

The timeout for sending out messages. Optional.

Note
Since thereis no custom behavior to be implemented in Java classes for resequencers,
there is no annotation support for it.

Resequencer

Delayer 59

13. Delayer

13.1 Introduction

A Delayer is asimple endpoint that allows a Message flow to be delayed by a certain interval.
When a Message is delayed, the original sender will not block. Instead, the delayed M essages
will be scheduled with an instance of

java. util.concurrent. Schedul edExecut or Ser vi ce to be sent to the output
channel after the delay has passed. This approach is scalable even for rather long delays, since it
does not result in alarge number of blocked sender Threads. On the contrary, in the typical case
athread pool will be used for the actual execution of releasing the Messages. Below you will
find several examples of configuring a Delayer.

13.2 The <delayer> Element

The <delayer> element is used to delay the Message flow between two Message Channels. As
with the other endpoints, you can provide the "input-channel” and "output-channel" attributes,
but the delayer also requires at least the 'default-delay’ attribute with the number of milliseconds
that each Message should be delayed.

<del ayer input-channel ="input" default-delay="3000" output-channel ="out put"/>

If you need per-Message determination of the delay, then you can also provide the name of a
header within the 'delay-header-name'’ attribute:

<del ayer input-channel ="input" out put-channel ="out put"
def aul t - del ay="3000" del ay- header - nane="del ay"/ >

In the example above the 3 second delay would only apply in the case that the header value is not
present for agiven inbound Message. If you only want to apply a delay to Messages that have an
explicit header value, then you can set the 'default-delay’ to 0. For any Message that has a delay
of O (or less), the Message will be sent directly. In fact, if thereis not a positive delay value for a
Message, it will be sent to the output channel on the calling Thread.

: Tip

1 The delay handler actually supports header values that represent an interval in
milliseconds (any Object whoset oSt ri ng() method produces a vaue that can be
parsed into aLong) aswell asj ava. uti | . Dat e instances representing an absolute
time. In the former case, the milliseconds will be counted from the current time (e.g. a
value of 5000 would delay the Message for at least 5 seconds from the timeiit is
received by the Delayer). In the latter case, with an actual Date instance, the Message
will not be released until that Date occurs. In either case, avalue that equatesto a
non-positive delay, or a Date in the past, will not result in any delay. Instead, it will
be sent directly to the output channel in the original sender's Thread.

The default scheduler will have athread pool of size 1. If you want to configure and provide a

1.0.3 59

60 Spring Integration 1.0.3

different scheduler, you can provide the reference through the 'schedul er' attribute:

<del ayer input-channel ="input" out put-channel ="out put"

schedul er =" sonmeSchedul edExecut or Servi ce"/>

60 Delayer

Message Handler Chain 61

14. Message Handler Chain

14.1 Introduction

The MessageHandl| er Chai n isan implementation of MessageHandl er that can be
configured as a single Message Endpoint while actually delegating to a chain of other handlers,
such as Filters, Transformers, Splitters, and so on. This can lead to a much simpler configuration
when several handlers need to be connected in afixed, linear progression. For example, it is
fairly common to provide a Transformer before other components. Similarly, when providing a
Filter before some other component in a chain, you are essentially creating a Selective
Consumer. In either case, the chain only requires a single input-channel and asingle
output-channel as opposed to the configuration of channels for each individual component.

Tip

Spring Integration's Filter provides a boolean property ‘throwExceptionOnRejection'.
When providing multiple Selective Consumers on the same point-to-point channel
with different acceptance criteria, this value should be set to 'true’ (the default is false)
so that the dispatcher will know that the Message was rejected and as a result will
attempt to pass the Message on to other subscribers. If the Exception were not
thrown, then it would appear to the dispatcher as if the M essage had been passed on
successfully even though the Filter had dropped the Message to prevent further
processing.

The handler chain simplifies configuration while internally maintaining the same degree of loose
coupling between components, and it istrivial to modify the configuration if at some point a
non-linear arrangement is required.

Internally, the chain will be expanded into alinear setup of the listed endpoints, separated by
direct channels. The reply channel header will not be taken into account within the chain: only
after the last handler isinvoked will the resulting message be forwarded on to the reply channel
or the chain's output channel. Because of this setup all handlers except the last require a

set Qut put Channel implementation. The last handler only needs an output channel if the
outputChannel on the MessageHandlerChain is set.

Note
Aswith other endpoints, the output-channel is optional. If there is areply Message at

the end of the chain, the output-channel takes precedence, but if not available, the
chain handler will check for areply channel header on the inbound Message.

In most cases there is no need to implement MessageHandlers yourself. The next section will
focus on namespace support for the chain element. Most Spring Integration endpoints, like
Service Activators and Transformers, are suitable for use within aMessageHand| er Chai n.

1.0.3 61

http://www.eaipatterns.com/MessageSelector.html

62 Spring Integration 1.0.3

14.2 The <chain> Element

The <chain> element provides an 'input-channel’ attribute, and if the last element in the chain is
capable of producing reply messages (optional), it also supports an "output-channel attribute. The
sub-elements are then filters, transformers, splitters, and service-activators. The last element may
also be arouter.
<chai n input-channel ="i nput" out put-channel =" out put ">
<filter ref="someSel ector" throw exception-on-rejection="true"/>
<header - enri cher error-channel ="cust onErr or Channel ">
<header nanme="foo" val ue="bar"/>
</ header - enri cher >

<servi ce-activator ref="soneService" nethod="someMethod"/>
</ chai n>

The <header-enricher> element used in the above example will set a message header with name
"foo" and value "bar" on the message. A header enricher is a specialization of Transformer that
touches only header values. Y ou could obtain the same result by implementing a
MessageHandler that did the header modifications and wiring that as a bean.

62 Message Handler Chain

Messaging Bridge 63

15. Messaging Bridge

15.1 Introduction

A Messaging Bridge is arelatively trivial endpoint that ssmply connects two Message Channels
or Channel Adapters. For example, you may want to connect a Pol | abl eChannel toa
Subscri babl eChannel so that the subscribing endpoints do not have to worry about any
polling configuration. Instead, the M essaging Bridge provides the polling configuration.

By providing an intermediary poller between two channels, a Messaging Bridge can be used to
throttle inbound Messages. The poller'strigger will determine the rate at which messages arrive
on the second channel, and the poller's "maxM essagesPerPoll" property will enforce alimit on
the throughput.

Another valid use for a Messaging Bridge is to connect two different systems. In such a scenario,
Spring Integration's role would be limited to making the connection between these systems and
managing a poller if necessary. It is probably more common to have at |east a Transformer
between the two systems to translate between their formats, and in that case, the channels would
be provided as the 'input-channel’ and 'output-channel’ of a Transformer endpoint. If data format
trandation is not required, the Messaging Bridge may indeed be sufficient.

15.2 The <bridge> Element

The <bridge> element is used to create a Messaging Bridge between two M essage Channels or
Channel Adapters. Simply provide the "input-channel” and "output-channel™ attributes:

<bridge input-channel ="input" output-channel ="out put"/>
As mentioned above, a common use case for the Messaging Bridge is to connect a
Pol | abl eChannel toaSubscri babl eChannel , and when performing thisrole, the
Messaging Bridge may also serve as athrottler:

<bridge input-channel ="pol | abl e" out put-channel ="subscri babl e">

<pol | er max- nmessages- per-pol | ="10">
<interval -trigger interval="5" tine-unit="SECONDS"/>
</ pol | er>
</ bri dge>

Connecting Channel Adaptersisjust as easy. Here is a simple echo example between the "stdin”
and "stdout" adapters from Spring Integration’'s "stream™ namespace.

<stream stdi n-channel -adapter id="stdin"/>

<stream st dout - channel - adapter id="stdout"/>

<bridge id="echo" input-channel ="stdin" output-channel ="stdout"/>
Of course, the configuration would be similar for other (potentially more useful) Channel
Adapter bridges, such asFileto JMS, or Mail to File. The various Channel Adapterswill be
discussed in upcoming chapters.

1.0.3 63

Spring Integration 1.0.3

Note
If no 'output-channel’ is defined on a bridge, the reply channel provided by the

inbound Message will be used, if available. If neither output or reply channel is
available, an Exception will be thrown.

Messaging Bridge

Inbound Messaging Gateways 65

16. Inbound Messaging Gateways

16.1 SimpleMessagingGateway

Even though the MessageChannel Tenpl at e isfairly straightforward, it does not hide the
details of messaging from your application code. To support working with plain Objects instead
of messages, Spring Integration provides Si npl eMessagi ngGat eway with the following
methods:

public void send(Object object) { ... }

public Object receive() { ... }

public Object sendAndRecei ve(Object object) { ... }
Message<?> sendAndRecei veMessage(Obj ect obj ect);

It enables configuration of arequest and/or reply channel and del egates to instances of the
| nboundMessageMapper and Qut boundMessageMapper strategy interfaces.

Si npl eMessagi ngGat eway gateway = new Si npl eMessagi ngGat eway(i nboundMapper, out boundMapper);

gat eway. set Request Channel (request Channel) ;

gat eway. set Repl yChannel (repl yChannel);
Obj ect result = gateway.sendAndRecei ve("test");

16.2 GatewayProxyFactoryBean

Working with Objects instead of Messages is an improvement. However, it would be even better
to have no dependency on the Spring Integration API at all - including the gateway class. For
that reason, Spring Integration also provides a Gat ewayPr oxyFact or yBean that generates a
proxy for any interface and internally invokes the gateway methods shown above. Namespace
support is also provided as demonstrated by the following example.
<gat eway i d="fooService"
servi ce-interface="org. exanpl e. FooServi ce"

def aul t - r equest - channel ="r equest Channel "
def aul t-repl y-channel ="repl yChannel "/ >

Then, the "fooService" can be injected into other beans, and the code that invokes the methods
on that proxied instance of the FooService interface has no awareness of the Spring Integration
API. The general approach is similar to that of Spring Remoting (RMI, Httplnvoker, etc.). See
the "Samples® Appendix for an example that uses this "gateway" element (in the Cafe demo).

The reason that the attributes on the 'gateway' element are named 'default-request-channel’ and
‘default-reply-channel’ is that you may also provide per-method channel references by using the
@Gateway annotation.

public interface Cafe {

@zat eway (r equest Channel =" or ders")
voi d placeOrder(Order order);

}

It is also possible to pass values to be interpreted as M essage headers on the Message that is

1.0.3 65

66 Spring Integration 1.0.3

created and sent to the request channel by using the @Header annotation:

public interface FileWiter {

@zat eway (request Channel ="fil esCut")
void wite(byte[] content, @ieader(FileHeaders.FILENAME) String filenane);

66 Inbound Messaging Gateways

File Support 67

17. File Support

17.1 Introduction

Spring Integration's File support extends the Spring Integration Core with a dedicated vocabulary
to deal with reading, writing, and transforming files. It provides a namespace that enables
elements defining Channel Adapters dedicated to files and support for Transformers that can
read file contentsinto strings or byte arrays.

This section will explain the workings of Fi | eReadi nhgMessageSour ce and

Fil eWitingMessageHandl er and how to configure them as beans. Also the support for
dealing with files through file specific implementations of Tr ansf or mer will be discussed.
Finally the file specific namespace will be explained.

17.2 Reading Files

A Fi | eReadi ngMessageSour ce can be used to consume files from the filesystem. Thisis
an implementation of MessageSour ce that creates messages from afile system directory.

<bean id="pol | abl eFi | eSour ce"
class="org. springframework.integration.file.FileReadi ngMessageSource"
p:inputDirectory="file:${i nput.directory}"/>

To prevent creating messages for certain files, you may supply aFi | eLi st Fi | t er. By
default, an Accept OnceFi | eLi st Fi | t er isused. Thisfilter ensuresfiles are picked up
only once from the directory.

<bean id="pol | abl eFi | eSour ce"
class="org. springframework.integration.file.FileReadi ngMessageSource"
p:inputDirectory="file: ${i nput.directory}"”
p:filter-ref="custonFilterBean"/>

A common problem with reading filesisthat afile may be detected before it isready. The
default Accept OnceFi | eLi st Fi | t er doesnot prevent this. In most cases, this can be
prevented if the file-writing process renames each file as soon asiit is ready for reading. A
pattern-matching filter that accepts only files that are ready (e.g. based on a known suffix),
composed with the default Accept OnceFi | eLi st Fi | t er allowsfor this. The
Conposi t eFi | eLi st Fi | t er enablesthe composition.

<bean id="pol | abl eFi | eSour ce"
class="org. springframework.integration.file.FileReadi ngMessageSource"
p:inputDirectory="file: ${input.directory}"”
p:filter-ref="conpositeFilter"/>
<bean id="conpositeFilter" class="org.springframework.integration.file.ConpositeFileListFilter">
<constructor-arg>
<list>
<bean cl ass="org. springframework.integration.file.AcceptOnceFilelListFilter" />
<bean cl ass="org. springframework.integration.file.PatternMatchingFileListFilter">
<constructor-arg val ue=""test.*$"/>
</ bean>
</list>
</ constructor-arg>
</ bean>

1.0.3 67

68 Spring Integration 1.0.3

The configuration can be simplified using the file specific namespace. To do this use the
following template.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:integration="http://ww.springframework. org/schema/integration"”
xm ns: file="http://ww. springframework. org/schema/integration/file"
xsi : schemaLocat | on="http://ww. spri ngframework. or g/ schema/ beans
http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springfranework. org/ schena/integration

http://ww. springfranework. org/ schema/ i ntegration/spring-integration-1.0.xsd
http://ww. spri ngfranework. org/ schena/integration/file
http://ww. springfranmework. org/ schena/integration/file/spring-integration-file-1.0.xsd">

</ beans>

Within this namespace you can reduce the FileReadingM essageSource and wrap it in an inbound
Channel Adapter likethis:

<file:inbound-channel -adapter id="filesln"
directory="file: ${input.directory}"/>

<fil e:inbound-channel -adapter id="filesln"
directory="file:${input.directory}"”
filter="custonFilterBean" />

<file:inbound-channel -adapter id="filesln"

directory="file: ${input.directory}"”
filename-pattern=""test.*$" />

The first channel adapter isrelying on the default filter that just prevents duplication, the second
isusing a custom filter, and the third is using the filename-pattern attribute to add aPat t er n
based filter tothe Fi | eReadi ngMessageSour ce.

17.3 Writing files

To write messages to the file systemyou canuseaFi | eW i ti ngMessageHandl er . This
class can deal with File, String, or byte array payloads. In its simplest form the

Fil eWitingMessageHandl er only requiresadestination directory for writing the files.
The name of the file to be written is determined by the handler's Fi | eNaneGener at or . The
default implementation looks for a Message header whose key matches the constant defined as
Fi | eHeader s. FI LENAME.

Additionally, you can configure the encoding and the charset that will be used in case of a String
payload.

To make things easier you can configure the FileWritingM essageHandler as part of an outbound
channel adapter using the namespace.

<file:outbound-channel -adapter id="filesQut" directory="file:${input.directory.property}"/>
The namespace based configuration also supportsadel et e- sour ce-fi | es attribute. If set

tot rue, it will trigger deletion of the original source files after writing to a destination. The
default value for that flag isf al se.

<fil e: out bound- channel -adapter id="filesQut"
directory="file: ${output.directory}"”
del ete-source-files="true"/>

68 File Support

File Support 69

Note

Thedel et e- source-fi | es attribute will only have an effect if the inbound
Message has aFile payload or if theFi | eHeader s. ORI G NAL_FI LE header
value contains either the source File instance or a String representing the original file
path.

In cases where you want to continue processing messages based on the written File you can use
the out bound- gat eway instead. It plays avery similar role asthe

out bound- channel - adapt er . However after writing the File, it will also send it to the
reply channel as the payload of a Message.

<file:outbound-gateway id="nover" request-channel ="novel nput"
repl y- channel =" out put "
directory="${out put.directory}"
del ete-source-files="true"/>
Note

The 'outbound-gateway' works well in cases where you want to first move a File and
then send it through a processing pipeline. In such cases, you may connect the file
namespace's 'inbound-channel -adapter' element to the ‘outbound-gateway' and then
connect that gateway's reply-channel to the beginning of the pipeline.

If you have more elaborate requirements or need to support additional payload types as input to
be converted to file content you could extend the FileWritingM essageHandler, but a much better
optionistorely onaTr ansf or mer .

17.4 File Transformers

To transform data read from the file system to objects and the other way around you need to do
some work. Contrary to Fi | eReadi ngMessageSour ce and to alesser extent

Fil eWitingMessageHandl er,itisvery likely that you will need your own mechanism to
get the job done. For this you can implement the Tr ansf or mer interface. Or extend the
Abstract Fi | ePayl oadTr ansf or mer for inbound messages. Some obvious
implementations have been provided.

Fi | eToByt eArrayTransf or mer transforms Filesinto byte[]s using Spring's
Fi | eCopyUi | s. Itisoften better to use a sequence of transformers than to put all
transformationsin asingle class. In that case the File to byte[] conversion might be alogical first

step.

Fi |l eToStringTransf or mer will convert Filesto Strings as the name suggests. If nothing
else, this can be useful for debugging (consider using with a Wire Tap).

To configure File specific transformers you can use the appropriate elements from the file
namespace.

1.0.3 69

70 Spring Integration 1.0.3

<file-to-bytes-transfornmer input-channel ="input" output-channel ="output"
delete-files="true"/>

<file:file-to-string-transformer input-channel="input" output-channel ="out put
delete-files="true" charset="UTF-8"/>

The delete-files option signals to the transformer that it should delete the inbound File after the

transformation is complete. Thisisin no way areplacement for using the
Accept OnceFi | eLi st Fi | t er when the FileReadingMessageSource is being used in a

multi-threaded environment (e.g. Spring Integration in general).

70 File Support

JMS Support 71

18. JMS Support

Spring Integration provides Channel Adapters for receiving and sending JM S messages. There
are actually two JM S-based inbound Channel Adapters. The first uses Spring'sJns Tenpl at e
to receive based on a polling period. The second is "message-driven” and relies upon a Spring
MessageL istener container. Thereis also an outbound Channel Adapter which uses the
JnsTenpl at e to convert and send a JMS Message on demand.

Whereas the IMS Channel Adapters are intended for unidirectional Messaging (send-only or
receive-only), Spring Integration also provides inbound and outbound JM S Gateways for
request/reply operations. The inbound gateway relies on one of Spring's MessageL istener
container implementations for Message-driven reception that is also capable of sending areturn
value to the "reply-to" Destination as provided by the received Message. The outbound Gateway
sends a JMS Message to a "request-destination” and then receives areply Message. The
"reply-destination” reference (or "reply-destination-name") can be configured explicitly or else
the outbound gateway will use a JIMS TemporaryQueue.

18.1 Inbound Channel Adapter

The inbound Channel Adapter requires areference to either asingle Jns Tenpl at e instance or
both Connect i onFact ory and Dest i nat i on (a'destinationName' can be provided in
place of the 'destination’ reference). The following example defines an inbound Channel Adapter
with aDest i nat i on reference.
<j ms: i nbound- channel - adapter id="jnmsln" destination="i nQueue" channel ="exanpl eChannel ">
<integration:poller>
<integration:interval-trigger interval ="30" tinme-unit="SECONDS"/>

</integration:poller>
</j ms: i nbound- channel - adapt er >

Tip

Notice from the configuration that the inbound-channel-adapter is a Polling
Consumer. That means that it invokes receive() when triggered. This should only be
used in situations where polling is done relatively infrequently and timelinessis not
important. For al other situations (a vast majority of JM S-based use-cases), the
message-driven-channel-adapter described below is a better option.

Note

All of the IMS adapters that require a reference to the ConnectionFactory will
automatically look for a bean named " connectionFactory” by default. That iswhy you
don't see a " connection-factory" attribute in many of the examples. However, if your
JMS ConnectionFactory has a different bean name, then you will need to provide that
attribute.

If "extract-payload' is set to true (which is the default), the received IMS Message will be passed
through the MessageConverter. When relying on the default SimpleM essageConverter, this

1.0.3 71

72 Spring Integration 1.0.3

means that the resulting Spring Integration Message will have the IMS Message's body asiits
payload. A IMS TextMessage will produce a String-based payload, a IM S BytesM essage will
produce a byte array payload, and a JIM S ObjectM essage's Serializable instance will become the
Spring Integration Message's payload. If instead you prefer to have the raw IMS Message as the
Spring Integration Message's payload, then set 'extract-payload' to false.
<j ms: i nbound- channel - adapter id="jnsln"
destination="i nQueue"
channel =" exanpl eChannel "
extract - payl oad="f al se"/>
<integration:poller>
<integration:interval-trigger interval ="30" tinme-unit="SECONDS"/>

</integration:poller>
</j ms: i nbound- channel - adapt er >

18.2 Message-Driven Channel Adapter

The "message-driven-channel -adapter” requires a reference to either an instance of a Spring
MessageL istener container (any subclass of Abst r act MessagelLi st ener Cont ai ner) or
both Connect i onFact ory and Dest i nat i on (a'destinationName' can be provided in
place of the 'destination’ reference). The following example defines a message-driven Channel
Adapter with aDest i nat i on reference.

<j ms: nessage- driven-channel -adapter id="jnmsln" destination="inQueue" channel ="exanpl eChannel "/ >

Note

The Message-Driven adapter also accepts several properties that pertain to the
MessageL istener container. These values are only considered if you do not provide an
actual 'container’ reference. In that case, an instance of

DefaultM essageL istenerContainer will be created and configured based on these
properties. For example, you can specify the "transaction-manager” reference, the
"concurrent-consumers’ value, and several other property references and values.
Refer to the JavaDoc and Spring Integration's IM S Schema
(spring-integration-jms-1.0.xsd) for more detail.

The 'extract-payload' property has the same effect as described above, and once again its default
valueis'true'. The poller sub-element is not applicable for a message-driven Channel Adapter, as
it will be actively invoked. For most usage scenarios, the message-driven approach is better since
the Messages will be passed along to the MessageChannel as soon asthey are received from
the underlying JM S consumer.

18.3 Outbound Channel Adapter

The Jns Sendi ngMessageHand| er implementsthe MessageHand| er interfaceand is
capable of converting Spring Integration Messages to JMS messages and then sending to a
JMS destination. It requires either a'jmsTemplate' reference or both ‘connectionFactory' and
‘destination’ references (again, the 'destinationName' may be provided in place of the
‘destination’). As with the inbound Channel Adapter, the easiest way to configure this adapter is

72 JMS Support

JMS Support 73

with the namespace support. The following configuration will produce an adapter that receives
Spring Integration Messages from the "exampleChannel" and then converts those into IMS
Messages and sends them to the JIM S Destination reference whose bean name is "outQueue”.

<j ms: out bound- channel - adapter id="jnmsQut" destinati on="out Queue" channel ="exanpl eChannel "/ >

Aswith the inbound Channel Adapters, there is an 'extract-payload' property. However, the
meaning is reversed for the outbound adapter. Rather than applying to the IMS Message, the
boolean property applies to the Spring Integration Message payload. In other words, the decision
is whether to pass the Spring Integration Message itself as the IMS Message body or whether to
pass the Spring Integration Message's payload as the IMS Message body. The default value is
once again 'true’. Therefore, if you pass a Spring Integration Message whose payload is a String,
aJMS TextMessage will be created. If on the other hand you want to send the actual Spring
Integration Message to another system viaJM S, then simply set thisto 'false'.

Note

Regardless of the boolean value for payload extraction, the Spring Integration
MessageHeaders will map to IM S properties as long as you are relying on the default
converter or provide areference to another instance of

HeaderM appingM essageConverter (the same holds true for 'inbound' adapters except
that in those cases, it's the IM S properties mapping to Spring Integration
MessageHeaders).

18.4 Inbound Gateway

Spring I ntegration's message-driven JM S inbound-gateway delegatesto aMessagelLi st ener
container, supports dynamically adjusting concurrent consumers, and can also handle replies.
The inbound gateway requires referencesto a Connect i onFact or y, and arequest
Dest i nat i on (or 'requestDestinationName'). The following example definesaJMS
"inbound-gateway" that receives from the IM S queue referenced by the bean id "inQueue" and
sends to the Spring Integration channel named " exampleChannel".

<j ms: i nbound- gat enay id="j nsl nGat enay"

request - destinati on="i nQueue"
request - channel =" exanpl eChannel "/ >

Since the gateways provide request/reply behavior instead of unidirectional send or receive, they
also have two distinct properties for the "payload extraction™ (as discussed above for the Channel
Adapters 'extract-payload' setting). For an inbound-gateway, the 'extract-request-payload'
property determines whether the received IM S Message body will be extracted. If 'false, the
JMS Message itself will become the Spring Integration Message payload. The default is 'true'.

Similarly, for an inbound-gateway the 'extract-reply-payload’ property applies to the Spring
Integration Message that is going to be converted into areply IMS Message. If you want to pass
the whole Spring Integration Message (as the body of a IMS ObjectMessage) then set thisto
‘false'. By default, it is also 'true’ such that the Spring Integration Message payload will be
converted into a JMS Message (e.g. String payload becomes a JIM S TextM essage).

1.0.3 73

74 Spring Integration 1.0.3

18.5 Outbound Gateway

The outbound Gateway creates IM S Messages from Spring Integration Messages and then sends
to a'request-destination'. It will then handle the IMS reply Message either by using a selector to
receive from the 'reply-destination’ that you configure, or if no 'reply-destination' is provided, it
will create IMS TemporaryQueues. Notice that the "reply-channel” is also provided.
<j ms: out bound- gat eway id="j nmsQut Gat enay"
request - dest i nat i on="out Queue"

request - channel =" out boundJnsRequest s"
repl y-channel ="j nsRepl i es"/ >

The 'outbound-gateway' payload extraction properties are inversely related to those of the
'inbound-gateway' (see the discussion above). That means that the 'extract-request-payload'
property value applies to the Spring Integration Message that is being converted intoaJMS
Message to be sent as a request, and the 'extract-reply-payload’ property value applies to the
JMS Message that isreceived as a reply and then converted into a Spring Integration Message to
be subsequently sent to the 'reply-channel’ as shown in the example configuration above.

Note

For all of these IM S adapters, you can also specify your own "message-converter”
reference. Simply provide the bean name of an instance of MessageConvert er
that is available within the same ApplicationContext. Note, however, that when you
provide your own MessageConverter instance, it will still be wrapped within the
HeaderM appingM essageConverter. This means that the ‘extract-request-payload' and
‘extract-reply-payload' properties may effect what actual objects are passed to your
converter. The HeaderM appingM essageConverter itself simply delegates to atarget
M essageConverter while also mapping the Spring Integration M essageHeaders to
JMS Message properties and vice-versa.

18.6 IMS Samples

To experiment with these IM S adapters, check out the samples available within the
"samples/jms" directory in the distribution. There are two samplesincluded. One provides
inbound and outbound Channel Adapters, and the other provides inbound and outbound
Gateways. They are configured to run with an embedded ActiveMQ process, but the
"common.xml" file can easily be modified to support either a different IMS provider or a
standalone ActiveM Q process. In other words, you can split the configuration so that the inbound
and outbound adapters are running in separate JVMs. If you have ActiveMQ installed, smply
modify the "brokerURL" property within the configuration to use "tcp://localhost:61616" for
example (instead of "vm://localhost"). Both of the samples accept input via stdin and then echo
back to stdout. Look at the configuration to see how these messages are routed over JIMS.

74 JMS Support

Web Services Support 75

19. Web Services Support

19.1 Outbound Web Service Gateways

To invoke a Web Service upon sending a message to a channel, there are two options - both of

which build upon the Spring Web Services project:

Si npl eWebSer vi ceQut boundGat eway and

Mar shal | i ngWebSer vi ceQut boundGat eway. The former will accept either aSt ri ng
orj avax. xml . t ransf or m Sour ce asthe message payload. The latter provides support

for any implementation of the Mar shal | er and Unmar shal | er interfaces. Both require a

Spring Web ServicesDest i nat i onPr ovi der for determining the URI of the Web Service
to be called.

sinpl eGat eway = new Si npl eWebSer vi ceCut boundGat eway(desti nati onProvi der);

mar shal | i ngGat eway = new Marshal | i ngWebSer vi ceQut boundGat eway(desti nati onProvi der, marshaller);

Note

When using the namespace support described below, you will only need to set aURI.
Internally, the parser will configure afixed URI DestinationProvider implementation.
If you do need dynamic resolution of the URI at runtime, however, then the
DestinationProvider can provide such behavior aslooking up the URI from aregistry.
See the Spring Web Services javadoc for more information about the
DestinationProvider strategy.

For more detail on the inner workings, see the Spring Web Services reference guide's chapter
covering client access as well as the chapter covering Object/ XML mapping.

19.2 Inbound Web Service Gateways

To send a message to a channel upon receiving a Web Service invocation, there are two options
again: Si npl eWwebSer vi cel nboundGat eway and
Mar shal | i ngWebSer vi cel nboundGat eway. The former will extract a
j avax. xm . transf orm Sour ce fromthe WebSer vi ceMessage and set it asthe
message payload. The latter provides support for implementation of the Mar shal | er and
Unmar shal | er interfaces. If the incoming web service message is a SOAP message the SOAP
Action header will be added to the headers of the Message that isforwarded onto the request
channel.

si npl eGat eway = new Si npl eWebSer vi cel nboundGat eway() ;

si npl eGat eway. set Request Channel (f or war dOnt oThi sChannel) ;

si npl eGat eway. set Repl yChannel (| i st enFor ResponseHere); // Optional

mar shal | i ngGat eway = new Marshal | i ngWebSer vi cel nboundGat eway(mar shal | er);
/I set request and optionally reply channel

Both gateways implement the Spring Web Services MessageEndpoi nt interface, so they can
be configured with aMessageDi spat cher Ser vl et as per standard Spring Web Services

1.0.3 75

http://static.springframework.org/spring-ws/sites/1.5/
http://static.springsource.org/spring-ws/sites/1.5/apidocs/index.html
http://static.springframework.org/spring-ws/site/reference/html/client.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

76 Spring Integration 1.0.3

configuration.

For more detail on how to use these components, see the Spring Web Services reference guide's
chapter covering creating a Web Service. The chapter covering Object/ XML mapping is aso
applicable again.

19.3 Web Service Namespace Support

To configure an outbound Web Service Gateway, use the "outbound-gateway" element from the
"WS' namespace:
<ws: out bound- gat eway i d="si npl eGat enay"

r equest - channel ="i nput Channel "
uri="http://exanple.org"/>

Note

Notice that this example does not provide a 'reply-channel’. If the Web Service were
to return a non-empty response, the Message containing that response would be sent
to the reply channel provided in the request Message's REPLY CHANNEL header,
and if that were not available a channel resolution Exception would be thrown. If you
want to send the reply to another channel instead, then provide a 'reply-channel’
attribute on the 'outbound-gateway' element.

: Tip

] When invoking a Web Service that returns an empty response after using a String
payload for the request Message, no reply Message will be sent by default. Therefore
you don't need to set a 'reply-channel’ or havea REPLY CHANNEL header in the
request Message. If for any reason you actually do want to receive the empty
response as a Message, then provide the 'ignore-empty-responses’ attribute with a
value of false (this only applies for Strings, because using a Source or Document
object ssimply leadsto a NULL response and will therefore never generate areply

Message).
To set up an inbound Web Service Gateway, use the "inbound-gateway":

<ws: i nbound- gat eway id="si npl eGat enay"
request - channel ="i nput Channel "/ >

To use Spring OXM Marshallers and/or Unmarshallers, provide bean references. For outbound:

<ws: out bound- gat eway i d="marshal | i ngGat enay"
request - channel ="r equest Channel "
uri="http://exanpl e.org"
mar shal | er =" sonmeMar shal | er"
unmar shal | er ="sonmeUnmar shal | er"/ >

And for inbound:

<ws: i nbound- gat eway id="marshal |l i ngGat enay"
request - channel ="r equest Channel "
mar shal | er =" soneMar shal | er "
unmar shal | er ="someUnnar shal | er"/ >

76 Web Services Support

http://static.springframework.org/spring-ws/sites/1.5/reference/html/server.html
http://static.springframework.org/spring-ws/site/reference/html/oxm.html

Web Services Support 77

Note

Most Mar shal | er implementations also implement the Unmar shal | er
interface. When using such aMar shal | er, only the "marshaller” attributeis
necessary. Even when using aMar shal | er, you may aso provide areference for
the "request-callback” on the outbound gateways.

For either outbound gateway type, a"destination-provider" attribute can be specified instead of
the "uri" (exactly one of them isrequired). Y ou can then reference any Spring Web Services
DestinationProvider implementation (e.g. to lookup the URI at runtime from aregistry).

For either outbound gateway type, the "message-factory” attribute can also be configured with a
reference to any Spring Web Services\WebSer vi ceMessageFact or y implementation.

For the ssmple inbound gateway type, the "extract-payload” attribute can be set to false to
forward the entire WebSer vi ceMessage instead of just its payload asaMessage to the
request channel. This might be useful, for example, when a custom Transformer works against
theWebSer vi ceMessage directly.

1.0.3 77

78

78

Spring Integration 1.0.3

Web Services Support

RMI Support 79

20. RMI Support

20.1 Introduction

This Chapter explains how to use RMI specific channel adapters to distribute a system over
multiple VMs. Thefirst section will deal with sending messages over RMI. The second section
shows how to receive messages over RMI. The last section shows how to define rmi channel
adapters through the namespace support.

20.2 Outbound RMI

To send messages from a channel over RMI, simply define an Rm Qut boundGat eway. This
gateway will use Spring's RmiProxyFactoryBean internally to create a proxy for aremote
gateway. Note that to invoke a remote interface that doesn't use Spring Integration you should
use a service activator in combination with Spring's RmiProxyFactoryBean.

To configure the outbound gateway write a bean definition like this:

<bean id="rm Qut Gateway" class=org.spf.integration.rm .Rm QutboundGat enay>
<constructor-arg value="rm ://host"/>
<property nanme="repl yChannel " val ue="replies"/>

</ bean>

20.3 Inbound RMI

To receive messages over RMI you need to use aRm | nboundGat eway. This gateway can be
configured like this
<bean id="rm Qut Gat eway" cl ass=org.spf.integration.rm.Rm |nboundGateway>

<property name="request Channel " val ue="requests"/>
</ bean>

20.4 RMI namespace support

To configure the inbound gateway you can choose to use the namespace support for it. The
following code snippet shows the different configuration options that are supported.

<rm :inbound-gat enay id="gatewayW thDef aul ts" request-channel ="t est Channel "/ >

<rm :inbound-gateway id="gatewayW thCustonProperties" request-channel ="test Channel "
expect-reply="fal se" request-tinmeout="123" reply-tinmeout="456"/>

<rm :inbound- gat enay id="gatewayW thHost" request-channel ="t est Channel "
regi stry-host="1ocal host"/>

<rm :inbound-gateway id="gatewayWthPort" request-channel ="test Channel "
registry-port="1234"/>

<rm :inbound-gateway id="gatewayW thExecutorRef" request-channel ="test Channel "

1.0.3 79

80 Spring Integration 1.0.3

renot e-i nvocati on- execut or ="i nvocati onExecutor"/ >

To configure the outbound gateway you can use the namespace support as well. The following
code snippet shows the different configuration for an outbound rmi gateway.
<rm : out bound- gat enay i d="gat enay"
request - channel ="1 ocal Channel "

renot e- channel ="t est Channel "
host ="| ocal host "/ >

80 RMI Support

Httplnvoker Support 81

21. Httpinvoker Support

21.1 Introduction

Httplnvoker is a Spring-specific remoting option that essentially enables Remote Procedure Calls
(RPC) over HTTP. In order to accomplish this, an outbound representation of a method
invocation is serialized using standard Java serialization and then passed within an HTTP POST
request. After being invoked on the target system, the method's return value is then serialized and
written to the HTTP response. There are two main requirements. First, you must be using Spring
on both sides since the marshalling to and from HTTP requests and responses is handled by the
client-side invoker and server-side exporter. Second, the Objects that you are passing must
implement Ser i al i zabl e and be available on both the client and server.

While traditional RPC provides physical decoupling, it does not offer nearly the same degree of
logical decoupling as a messaging-based system. In other words, both participantsin an
RPC-based invocation must be aware of a specific interface and specific argument types.
Interestingly, in Spring Integration, the "parameter” being sent is a Spring Integration Message,
and the interface is an internal detail of Spring Integration's implementation. Therefore, the RPC
mechanism is being used as atransport so that from the end user's perspective, it is not necessary
to consider the interface and argument types. It's just another adapter to enable messaging
between two systems.

21.2 Httpinvoker Inbound Gateway

To receive messages over http you can usean Ht t pl nvoker | nboundGat eway. Hereisan
example bean definition:
<bean id="i nboundGat enay"
cl ass="org. springfranmework.integration. httpinvoker. Ht pl nvoker | nboundGat eway" >
<property name="request Channel " ref="request Channel "/ >
<property nanme="repl yChannel " ref="repl yChannel "/>
<property nanme="request Ti reout" val ue="30000"/>

<property name="repl yTi meout" val ue="10000"/>
</ bean>

Because the inbound gateway must be able to receive HT TP requests, it must be configured
within a Servlet container. The easiest way to do thisisto provide a servlet definition in
web.xml:

<Ser\é|s:tr \7I et - nane>i nboundGat eway</ ser vl et - nane>

<servl et-class>org. springfranmework. web. cont ext. support. H t pRequest Handl er Servl et </ servl et -cl ass>
</servlet>

Notice that the servlet name matches the bean name.

Note

If you are running within a Spring MV C application and using the
BeanNameHandlerM apping, then the servlet definition is not necessary. In that case,
the bean name for your gateway can be matched against the URL path just like a
Spring MV C Controller bean.

1.0.3 81

82 Spring Integration 1.0.3

21.3 Httplnvoker Outbound Gateway

To configurethe Ht t pl nvoker Qut boundGat eway write a bean definition like this:

<bean i d="out boundGat enay"
cl ass="org. springframework.integration. httpinvoker. Ht t pl nvoker Qut boundGat eway" >
<property name="repl yChannel " ref="repl yChannel "/ >
</ bean>

The outbound gateway isaMessageHand| er and can therefore be registered with either a
Pol I i ngConsuner or Event Dri venConsuner . The URL must match that defined by an
inbound Httplnvoker Gateway as described in the previous section.

21.4 Httplnvoker Namespace Support

Spring Integration provides an "httpinvoker" namespace and schema definition. To includeitin

your configuration, ssimply provide the following URI within a namespace declaration:
"http://www.springframework.org/schemalintegration/httpinvoker'. The schema location should

then map to

"http://www.springframework.org/schemalintegrati on/httpinvoker/spring-integration-httpinvoker-1.0.xsd'.

To configure the inbound gateway you can choose to use the namespace support for it. The
following code snippet shows the different configuration options that are supported.

<ht t pi nvoker : i nbound- gat eway i d="i nboundGat eway"
request - channel ="r equest Channel "
request-ti meout ="10000"
expect-reply="fal se"
reply-tinmeout ="30000"/>

Note
A 'reply-channel' may also be provided, but it is recommended to rely on the
temporary anonymous channel that will be created automatically for handling replies.

To configure the outbound gateway you can use the namespace support as well. The following
code snippet shows the different configuration for an outbound Httplnvoker gateway. Only the
‘url" and 'request-channel’ are required.

<ht t pi nvoker : out bound- gat eway i d="out boundGat eway"
url ="http://1 ocal host: 8080/ exanpl e"
request - channel ="r equest Channel "
request -t i neout =" 5000"
repl y- channel ="r epl yChannel "
reply-timeout ="10000"/ >

82 Httplnvoker Support

HTTP Support 83

22. HTTP Support

22.1 Introduction

The HTTP support allows for the making of HTTP requests and the processing of inbound Http
requests. Because interaction over HTTP is always synchronous, even if all that isreturnedisa
200 status code the Http support consists of two gateway implementations

Ht t pl nboundEndpoi nt and Ht t pQut boundEndpoi nt .

22.2 Http Inbound Gateway

To receive messages over http you need to use an Ht t pl nboundEndpoi nt . In common with
the Httplnvoker support the Http Inbound Gateway needs to be deployed within a serviet
container. The easiest way to do thisisto provide a servlet definition in web.xml, see
Section 21.2, “Httplnvoker Inbound Gateway” for further details. Below is an example bean
definition for asimple Ht t pl nboundEndpoi nt
<bean id="httpl nbound" class="org.springframework.integration.http.HtplnboundEndpoint">
<property nanme="request Channel " ref="httpRequest Channel " />

<property name="repl yChannel " ref="httpRepl yChannel" />
</ bean>

TheH t pl nboundEndpoi nt accepts an instance of | nboundRequest Mapper which
allows customisation of the mapping from Ht t pSer vl et Request to Message. If noneis
provided an instance of Def aul t | nboundRequest Mapper will be used. This encapsulates
asimple strategy, which for example will create a String message for a POST request where the
content type starts with "text", see the Javadoc for full details.

Starting with this release MultiPart File support was implemented. If the request has been
wrapped as a MultipartHttpServietRequest, then the ‘content type' can be checked. If it is known,
and begins with "text", then the MultipartFile will be copied to a String in the parameter map. If
the content type does not begin with "text", then the MultipartFile will be copied to a byte array
within the parameter map instead.

Note

The HttplnboundEndpoint will locate a MultipartResolver in the context if one exists
with the bean name "multipartResolver" (the same name expected by Spring's
DispatcherServlet). If it doesin fact locate that bean, then the support for
MultipartFiles will be enabled on the inbound request mapper. Otherwise, it will fail
when trying to map a multipart-file request to a Spring Integration Message. For more
on Spring's support for MultipartResolvers, refer to the Spring Reference Manual.

In sending aresponse to the client there are a number of ways to customise the behaviour of the
gateway. By default the gateway will simply acknowledge that the request was received by
sending a 200 status code back. It is possible to customise this response by providing an
implementation of the Spring MV C Vi ewwhich will be invoked with the created Message. In

1.0.3 83

http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart

84 Spring Integration 1.0.3

the case that the gateway should expect areply to the Message then setting the expectReply
flag will cause the gateway to wait for aresponse Message before creating an Http response.
Below is an example of a gateway configured to use a custom view and to wait for aresponse. It
also shows how to customise the Http methods accepted by the gateway, which are POST and
GET by default.

<bean id="httpl nbound" class="org.springframework.integration.http.HtplnboundEndpoint">
<property nanme="request Channel " ref="httpRequest Channel " />
<property name="repl yChannel " ref="httpRepl yChannel" />
<property nanme="vi ew' ref="jsonView' />
<property nanme="supportedMet hods" >
<list>
<val ue>CET</ val ue>
<val ue>DELETE</ val ue>
</list>
</ property>
<property name="expectReply" value="true" />
<property nanme="request Mapper" ref="custonRequest Mapper" />
</ bean>

The message created from the request will be available in the Model map. The key that is used
for that map entry by default is 'requestMessage, but this can be overridden by setting the
'requestK ey’ property on the endpoint's configuration.

22.3 Http Outbound Gateway

To configurethe Ht t pQut boundEndpoi nt write abean definition like this:

<bean id="httpQutbound" class="org.springframework.integration.http. HtpQutboundEndpoint" >
<property name="out put Channel " ref="responseChannel " />
</ bean>

This bean definition will execute Http requests by first converting the message to the Http
request using an instance of Def aul t Qut boundRequest Mapper . Thiswill expect to find
the request URL in the message header under the key HttpHeaders REQUEST_URL. Itisalso
possible to set adefault target URL as a constructor argument along with other options as shown
below.

<bean id="httpQutbound" class="org.springframework.integration.http.HtpQutboundEndpoint" >
<constructor-arg val ue="http://1ocal host: 8080/ exanpl e" />
<property name="out put Channel " ref="responseChannel " />
<property nanme="sendTi neout" val ue="5000" />
<property name="request Mapper" ref="custonRequest Mapper" />
</ bean>

By default the Http request will be made using an instance of

Si npl eHt t pRequest Execut or which usesthe JDK Ht t pURLConnect i on. Use of the
Apache Commons Http Client is also supported through the provided

CommonsHt t pRequest Execut or which can be injected into the outbound gateway.

22.4 Http Namespace Support

Spring Integration provides an "http" namespace and schema definition. To includeit in your
configuration, simply provide the following URI within a namespace declaration:
"http://www.springframework.org/schema/integration/http’. The schema location should then map
to 'http://www.springframework.org/schema/integrati on/http/spring-integration-http-1.0.xsd'.

To configure an inbound http channel adapter which is an instance of

84 HTTP Support

HTTP Support 85

Ht t pl nboundEndpoi nt configured not to expect a response.

<htt p: i nbound- channel - adapt er id="httpChannel Adapter" channel ="requests" supported- nmet hods="PUT, DELETE'/>

To configure an inbound http gateway which expects a response.

<htt p: i nbound- gat enay id="i nboundGat eway" request-channel ="requests" reply-channel ="responses"/>

To configure the outbound gateway you can use the namespace support as well. The following
code snippet shows the different configuration options for an outbound Http gateway.

<htt p: out bound- gat eway id="full Confi gWthout Mapper"
request - channel ="request s"
defaul t-url ="http://]ocal host/test"
extract-request - payl oad="f al se"
charset =" UTF- 8"
request - execut or =" execut or"
request-timeout ="1234"
reply-channel ="replies"/>

If you want to provide a custom OutboundRequestM apper, then a reference may be supplied to
the 'request-mapper’ attribute. In that case however you will not be allowed to set the default
URL, charset, and 'extract-request-payload’ properties since those are all properties of the default
mapper (see the JavaDoc for DefaultOutboundRequestM apper for more information).

1.0.3 85

86

86

Spring Integration 1.0.3

HTTP Support

Mail Support 87

23. Mail Support

23.1 Mail-Sending Channel Adapter

Spring Integration provides support for outbound email with the
Mai | Sendi ngMessageHandl er . It delegates to a configured instance of Spring's
JavaMai | Sender :

JavaMai | Sender nmai |l Sender = (JavaMai |l Sender) context.getBean("mail Sender");

Mai | Sendi ngMessageHandl er nai | Sendi ngHandl er = new Mai | Sendi ngMessageHandl er (nai | Sender) ;

Mai | Sendi ngMessageHand| er has various mapping strategies that use Spring's

Mai | Message abstraction. If the received Message's payload is aready a MailMessage
instance, it will be sent directly. Therefore, it is generally recommended to precede this
consumer with a Transformer for non-trivial MailMessage construction requirements. However,
afew simple Message mapping strategies are supported out-of-the-box. For example, if the
message payload is a byte array, then that will be mapped to an attachment. If the payload is
neither a MailMessage or byte array, then a MailMessage will be created with text content
corresponding to the value returned from the Spring Integration Message payload's

t oSt ri ng() method. For smple text-based emails, simply provide a String-based Message

payload.

The outbound MailMessage may also be configured with certain values from the
MessageHeader s. If available, values will be mapped to the outbound mail's properties, such
astherecipients (TO, CC, and BCC), the from/reply-to, and the subject. The header names are
defined by the following constants:

Mai | Header s. SUBJECT

Mai | Header s. TO

Mai | Headers. CC

Mai | Header s. BCC

Mai | Header s. FROM
Mai | Header s. REPLY_TO

23.2 Mail-Receiving Channel Adapter

Spring Integration also provides support for inbound email with the

Mai | Recei vi ngMessageSour ce. It delegates to a configured instance of Spring
Integration'sown Mai | Recei ver interface, and there are two implementations:

Pop3Mai | Recei ver and | mapMai | Recei ver . The easiest way to instantiate either of
these is by passing the 'uri' for aMail store to the receiver's constructor. For example:

Mai | Recei ver receiver = new Pop3Mil Recei ver ("pop3://usr:pwd@ ocal host/ | NBOX") ;

Another option for receiving mail isthe IMAP "idle" command (if supported by the mail server
you are using). Spring Integration providesthe | mapl dl eChannel Adapt er whichisitself a
M essage-producing endpoint. It delegates to an instance of the | mapMai | Recei ver but
enables asynchronous reception of Mail Messages. There are examples in the next section of

1.0.3 87

88 Spring Integration 1.0.3

configuring both types of inbound Channel Adapter with Spring I ntegration's namespace support
in the 'mail’ schema.

23.3 Mail Namespace Support

Spring Integration provides a namespace for mail-related configuration. To use it, configure the
following schema locations.
<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. springfranmewor k. or g/ schema/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: mai | ="http://ww. springframewor k. org/ schema/ i ntegration/ mail"
xsi : schemaLocat i on="http://ww. spri ngframewor k. or g/ scherma/ beans
http://ww. springfranework. org/ schena/ beans/ spri ng- beans- 2. 5. xsd

htt p: // wwv. spri ngfranewor k. or g/ schena/ i nt egrati on/ nai |
http://ww. springfranmework. org/ schena/integration/nail/spring-integration-nail-1.0.xsd">

To configure an outbound Channel Adapter, provide the channel to receive from, and the
MailSender:

<mai | : out bound- channel - adapt er channel =" out boundMai | "
mai | - sender =" mai | Sender "/ >

Alternatively, provide the host, username, and password:

<mai | : out bound- channel - adapt er channel =" out boundMai | "
host =" sonehost " user nane="soneuser" passwor d="sonepassword"/>

Note

Keep in mind, as with any outbound Channel Adapter, if the referenced channel isa
PollableChannel, a <poller> sub-element should be provided with either an
interval-trigger or cron-trigger.

To configure an inbound Channel Adapter, you have the choice between polling or event-driven
(assuming your mail server supports IMAP IDLE - if not, then polling is the only option). A
polling Channel Adapter ssmply requires the store URI and the channel to send inbound
Messages to. The URI may begin with "pop3" or "imap":

<mai | : i nbound- channel - adapt er channel ="mail | n"
store-uri="imp://usr:pwl@ nap. exanpl e. cont | NBOX" >
<pol | er max- messages- per-poll="3">
<interval -trigger interval ="30" tinme-unit="SECONDS"/>
</ pol | er>
</ mai | : i nbound- channel - adapt er >

If you do have IMAP idle support, then you may want to configure the
"imap-idle-channel-adapter" element instead. Since the "idle" command enables event-driven
notifications, no poller is necessary for this adapter. It will send a Message to the specified
channel as soon as it receives the notification that new mail is available:

<mai | : i map-idl e-channel - adapt er channel ="mail | n"
store-uri="imaps://usr: pwd@ map. exanpl e. com 993/ | NBOX"/ >

When using the namespace support, a header-enricher Message Transformer is also available.
This simplifies the application of the headers mentioned above to any Message prior to sending
to the Mail-sending Channel Adapter.

<mai | : header - enricher subject="Exanple Mil"

88 Mail Support

Mail Support

89

1.0.3

to="t o@xanpl e. org"
cc="cc@xanpl e. org"
bcc="bcc@xanpl e. org"

from="f rom@xanpl e. org"
reply-to="repl yTo@xanpl e. org"
overwite="fal se"/>

89

90

90

Spring Integration 1.0.3

Mail Support

Stream Support 91

24. Stream Support

24.1 Introduction

In many cases application data is obtained from a stream. It is not recommended to send a
reference to a Stream as a message payload to a consumer. Instead messages are created from
datathat is read from an input stream and message payloads are written to an output stream one
by one.

24.2 Reading from streams

Spring Integration provides two adapters for streams. Both

Byt eSt r eanReadi ngMessageSour ce and

Char act er St r eanReadi ngMessageSour ce implement MessageSour ce. By
configuring one of these within a channel-adapter element, the polling period can be configured,
and the Message Bus can automatically detect and schedule them. The byte stream version
requiresan | nput St r eam and the character stream version requires aReader asthesingle
constructor argument. The Byt eSt r eanmReadi ngMessageSour ce aso accepts the
'bytesPerMessage’ property to determine how many bytesit will attempt to read into each
Message. The default value is 1024

<bean cl ass="org. springfranmework.integration.stream Byt eStreanReadi ngMessageSour ce" >
<constructor-arg ref="sonel nput Streant/>
<property nanme="byt esPer Message" val ue="2048"/>

</ bean>

<bean cl ass="org. springfranework.integration.stream Charact er St r eanReadi ngMessageSour ce" >
<constructor-arg ref="sonmeReader"/>

</ bean>

24.3 Writing to streams

For target streams, there are also two implementations:
Byt eStreamW i ti ngMessageHandl er and
Char acter StreanW i ti ngMessageHandl er . Each requires a single constructor
argument - Qut put St r eamfor byte streamsor Wi t er for character streams, and each
provides a second constructor that adds the optional 'bufferSize'. Since both of these ultimately
implement the MessageHand| er interface, they can be referenced from a channel-adapter
configuration as described in more detail in Chapter 6, Channel Adapter.
<bean cl ass="org. springframework.integration.stream ByteStreanitingMessageHandl er">

<constructor-arg ref="someQut put Streant'/ >

<constructor-arg val ue="1024"/>
</ bean>
<bean cl ass="org. springfranework.integration.stream CharacterStreamiWitingMessageHandl er">

<constructor-arg ref="someWiter"/>
</ bean>

1.0.3 91

92 Spring Integration 1.0.3

24.4 Stream namespace support

To reduce the configuration needed for stream related channel adapters there is a namespace
defined. The following schema locations are needed to use it.
<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns="http://wwm. springfranmework. org/ schema/ i ntegration/streant
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: beans="http: // ww. spri ngfranewor k. or g/ schema/ beans"
xsi : schemaLocati on="http://ww. spri ngframework. or g/ scherma/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd

http://ww. springfranmewor k. org/ schema/ i ntegration/stream
http://ww. springfranmework. org/ schema/integration/streanispring-integration-stream1.0.xsd">

To configure the inbound channel adapter the following code snippet shows the different
configuration options that are supported.

<stdi n-channel - adapt er id="adapter W thDef aul t Charset"/ >

<stdi n-channel - adapt er i d="adapter W thProvi dedCharset" charset="UTF-8"/>

To configure the outbound channel adapter you can use the namespace support aswell. The
following code snippet shows the different configuration for an outbound channel adapters.

<stdout - channel - adapt er id="stdout Adapter Wt hDef aul t Charset" channel ="t est Channel "/ >
<stdout - channel - adapt er id="stdout Adapter WthProvi dedCharset" charset="UTF-8" channel ="t est Channel "/ >
<stderr-channel -adapter id="stderrAdapter" channel ="t est Channel "/ >

<stdout - channel - adapter id="new i neAdapter" append-new i ne="true" channel ="t est Channel "/ >

92 Stream Support

Spring ApplicationEvent 93
Support

25. Spring ApplicationEvent Support

Spring Integration provides support for inbound and outbound Appl i cat i onEvent s as
defined by the underlying Spring Framework. For more information about the events and
listeners, refer to the Spring Reference Manual.

25.1 Receiving Spring ApplicationEvents

To receive events and send them to a channel, simply define an instance of Spring Integration's
Appl i cati onEvent Li st eni ngChannel Adapt er . Thisclassis an implementation of
Spring's Appl i cat i onLi st ener interface. By default it will pass all received events as
Spring Integration Messages. To limit based on the type of event, configure the list of event
types that you want to receive with the ‘eventTypes property.

25.2 Sending Spring ApplicationEvents

To send Spring Appl i cati onEvent s, create an instance of the

Appl i cati onEvent Publ i shi ngMessageHand| er and register it within an endpoint.
This implementation of the MessageHand| er interface aso implements Spring's

Appl i cati onEvent Publ i sher Awar e interface and thus acts as a bridge between Spring
Integration Messages and Appl i cati onEvents.

1.0.3 93

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#context-functionality-events

94

94

Spring Integration 1.0.3

Spring ApplicationEvent
Support

Dealing with XML Payloads 95

26. Dealing with XML Payloads

26.1 Introduction

Spring Integration's XML support extends the Spring Integration Core with implementations of
splitter, transformer, selector and router designed to make working with xml messages in Spring
Integration simple. The provided messaging components are designed to work with xml
represented in arange of formats including instancesof j ava. | ang. Stri ng,

or g. w3c. dom Docunent andj avax. xml . t ransf or m Sour ce. It should be noted
however that where aDOM representation is required, for example in order to evaluate an X Path
expression, the St r i ng payload will be converted into the required type and then converted
back again to St r i ng. Components that require an instance of Docunent Bui | der will
create a namespace aware instance if one is not provided. Where greater control of the document
being created is required an appropriately configured instance of Docunent Bui | der should
be provided.

26.2 Transforming xml payloads

This section will explain the workings of Xm Payl oadUnmar shal | i ngTr ansf or ner,
Xm Payl oadMar shal | i ngTr ansf or mer, Xsl t Payl oadTr ansf or mer and how to
configure them as beans. All of the provided xml transformers extend

Abst r act Payl oadTr ansf or mer and thereforeimplement Tr ansf or nmer . When
configuring xml transformers as beans in Spring Integration you would normally configure the
transformer in conjunction with either aMessageTr ansf or m ngChannel | nt er cept or
or aMessageTr ansf or m ngHandl er . Thisallows the transformer to be used as either an
interceptor, which transforms the message as it is sent or received to the channel, or asan
endpoint. Finally the namespace support will be discussed which allows for the simple
configuration of the transformers as elementsin XML.

Xm Payl oadUnmar shal | i ngTr ansf or mer alowsan xml Sour ce to be unmarshalled
using implementations of Spring OXM Unmrar shal | er . Spring OXM provides several
implementations supporting marshalling and unmarshalling using JAXB, Castor and JiBX
amongst others. Since the unmarshaller requires an instance of Sour ce where the message
payload is not currently an instance of Sour ce, conversion will be attempted. Currently
Stringandorg. w3dc. dom Docunent payloads are supported. Custom conversion to a
Sour ce isalso supported by injecting an implementation of Sour ceFact ory.
<bean id="unmarshal | i ngTransf or mer"
cl ass="org. springfranmework.integration.xmn.transforner. Xm Payl oadUnmar shal | i ngTr ansf or ner" >
<constructor-arg>
<bean cl ass="org. springframewor k. oxm j axb. JaxblMarshal | er">
b . <property name="contextPath" val ue="org. exanple" />
< ean

</ constructor-arg>
</ bean>

The Xm Payl oadMar shal | i ngTr ansf or ner alows an object graph to be converted into

1.0.3 95

96 Spring Integration 1.0.3

xml using a Spring OXM Mar shal | er . By default the

Xm Payl oadMar shal | i ngTr ansf or mer will return aDonResul t . However the type of
result can be controlled by configuring an alternative Resul t Fact or y such as
StringResul t Fact ory. In many casesit will be more convenient to transform the payload
into an alternative xml format. To achieve this configure aResul t Tr ansf or ner . Two
implementations are provided, one which convertsto St r i ng and another which converts to
Docunent .

<bean id="marshal | i ngTransf ornmer"
cl ass="org. springfranmework.integration.xm.transforner. Xm Payl oadMar shal | i ngTr ansf or ner" >
<constructor-arg>
<bean cl ass="org. springframework. oxm j axb. JaxblMarshal | er">
<property nanme="cont extPath" val ue="org. exanple" />
</ bean>
</ constructor-arg>
<constructor-arg>
<bean cl ass="org. springfranework.integration.xnl.transforner.Resul t ToDocunent Tr ansforner" />
</ constructor-arg>
</ bean>

Xsl t Payl oadTr ansf or ner transforms xml payloads using xsl. The transformer requires an
instance of either Resour ce or Tenpl at es. PassinginaTenpl at es instance allows for
greater configuration of the Tr ansf or mer Fact or y used to create the template instance. As
in the case of Xm Payl| oadMar shal | i ngTr ansf or mer by default

Xsl t Payl oadTr ansf or mer will create amessage with aResul t payload. This can be
customised by providingaResul t Fact ory and/or aResul t Tr ansf or ner .

<bean id="xsltPayl oadTransf or mer"
class="org. springframework.integration.xm.transformer. XsltPayl oadTransf ornmer">
<constructor-arg val ue="cl asspat h: or g/ exanpl e/ xsl /transform xsl" />
<constructor-arg>
<bean cl ass="org. springfranmework.integration.xmn.transforner.Resul t ToDocunent Transforner" />
</ constructor-arg>
</ bean>

26.3 Namespace support for xml transformers

Namespace support for al xml transformers is provided in the Spring Integration xml
namespace, a template for which can be seen below. The namespace support for transformers
creates an instance of either Event Dri venConsuner or Pol | i ngConsuner according to
the type of the provided input channel. The namespace support is designed to reduce the amount
of xml configuration by allowing the creation of an endpoint and transformer using one element.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wm springfranmewor k. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:integration="http://ww.springframework. org/schema/integration”
xm ns:si-xm ="http://ww. springframework. org/ schema/integration/xm"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schena/ beans
http: //ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springfranmework. org/ schena/integration

http://ww. spri ngfranework. org/ schema/ i ntegration/spring-integration-1.0.xsd
http://ww. springfranework. org/ schena/ i ntegration/xm
http://ww. springframework. org/ schema/i ntegration/xm /spring-integration-xn-1.0.xsd">

</ beans>
The namespace support for Xm Payl oadUnnmar shal | i ngTr ansf or ner isshown below.
Since the namespace is now creating an instance of MessageEndpoi nt rather than a
transformer a poller can also be nested within the element to control the polling of the input
channel.

<si -xm : unmar shal | i ng-transfornmer id="defaultUnmarshaller"
i nput - channel ="i nput"

96 Dealing with XML Payloads

Dealing with XML Payloads 97

out put - channel =" out put "
unnar shal | er ="unmar shal | er" />
<si-xm :unmarshal | i ng-transformer id="unmarshallerWthPoller"
i nput - channel ="i nput"
out put - channel =" out put "
unnar shal | er ="unmar shal | er ">
<si:poller>
<si:interval -trigger interval ="2000"/>
</ si:poller>
<si -xm : unmar shal | i ng-transformer/>

The namespace support for the marshalling transformer requires an input channel, output channel
and areference to amarshaller. The optional result-type attribute can be used to control the type
of result created, valid values are StringResult or DomResult (the default). Where the provided
result types are not sufficient a reference to a custom implementation of Resul t Fact ory can
be provided as an alternative to setting the result-type attribute using the result-factory attribute.
An optional result-transformer can also be specified in order to convert the created Resul t after
marshalling.
<si -xm : marshal | i ng-transfornmer

i nput - channel =" mar shal | i ngTr ansf or mer St ri ngResul t Fact ory"

out put - channel =" out put "

mar shal | er="marshal | er"

result-type="StringResult" />
<si-xm : marshal | i ng-transf or mer

i nput - channel =" mar shal | i ngTr ansf or mer Wt hResul t Tr ansf or mer "

out put - channel =" out put "

mar shal | er="nmarshal | er"

resul t-transfornmer="resul t Transfornmer" />

<bean id="resul t Transformer"
class="org. springframework.integration.xmn.transfornmer.ResultToStringTransforner"/>

Namespace support for the Xsl t Payl oadTr ansf or mer alows either aresource to be
passed in in order to create the Tenpl at es instance or alternatively aprecreated Tenpl at es
instance can be passed in as areference. In common with the marshalling transformer the type of
the result output can be controlled by specifying either the result-factory or result-type attribute.
A result-transfomer attribute can aso be used to reference an implementation of

Resul t Tr ansf omer where conversion of the result is required before sending.

<si-xm :xslt-transformer id="xsltTransformerWthResource"

i nput - channel ="w t hResour cel n"

out put - channel =" out put "

xsl -resource="org/ springframework/integration/xm/config/test.xsl"/>
<si-xm:xslt-transformer id="xsltTransfornmerWthTenpl at esAndResul t Tr ansf or nmer"

i nput - channel ="wi t hTenpl at esAndResul t Tr ansf or ner | n"

out put - channel =" out put "

xsl -t enpl at es="t enpl at es"

resul t-transformer="resul t Transformer"/>

26.4 Splitting xml messages

XPat hMessageSpl i t t er supports messages with either St r i ng or Docunent payloads.
The splitter uses the provided XPath expression to split the payload into a number of nodes. By
default thiswill result in each Node instance becoming the payload of a new message. Where it
is preferred that each message be a Document the cr eat eDocunent s flag can be set. Where a
St ri ng payload is passed in the payload will be converted then split before being converted
back to a number of String messages. The XPath splitter implements MessageHandl er and
should therefore be configured in conjunction with an appropriate endpoint (see the namespace
support below for asimpler configuration alternative).

1.0.3 97

98 Spring Integration 1.0.3

<bean id="splittingEndpoint"
cl ass="org. springfranmework.integration. endpoi nt. Subscri bi ngConsuner Endpoi nt">
<constructor-arg>
<bean cl ass="org. springfranework.integration.xm .splitter.XPathMessageSplitter">
<constructor-arg value="/order/itens" />
<property name="docunent Bui |l der" ref="custom sedDocunent Bui | der" />
<property nanme="out put Channel " ref="orderltensChannel" />
</ bean>
</ constructor-arg>
<constructor-arg ref="order Channel" />
</ bean>

26.5 Routing xml messages using XPath

Two Router implementations based on XPath are provided XPat hSi ngl eChannel Rout er
and XPat hMul t i Channel Rout er . The implementations differ in respect to how many
channels any given message may be routed to, exactly one in the case of the single channel
version or zero or morein the case of the multichannel router. Both evaluate an XPath
expression against the xml payload of the message, supported payload types by default are
Node, Docunent and St ri ng. For other payload types a custom implementation of

Xm Payl oadConvert er can be provided. The router implementations use

Channel Resol ver to convert the result(s) of the XPath expression to a channel name. By
default aBeanFact or yChannel Resol ver strategy will be used, this means that the string
returned by the X Path evaluation should correspond directly to the name of a channel. Where
thisis not the case an alternative implementation of Channel Resol ver can be used. Where
there is a simple mapping from Xpath result to channel name the provided
MapBasedChannel Resol ver can be used.

<!-- Expects a channel for each value of order type to exist -->
<bean i d="si ngl eChannel Rout i ngEndpoi nt"
cl ass="org. springfranmework. i ntegration. endpoi nt. Subscri bi ngConsuner Endpoi nt" >
<constructor-arg>
<bean cl ass="org. springframework.integration.xmn.router.XPathSi ngl eChannel Router">
<constructor-arg value="/order/ @ype" />
</ bean>
</ constructor-arg>
<constructor-arg ref="orderChannel " />
</ bean>

<l-- Milti channel router which uses a map channel resolver to resolve the channel nane
based on the XPath evaluation result Since the router is nulti channel it may deliver
nessage to one or both of the configured channels -->
<bean id="nul ti Channel Routi ngEndpoi nt"
cl ass="org. springfranmework.integration. endpoi nt. Subscri bi ngConsuner Endpoi nt">
<constructor-arg>
<bean cl ass="org. springframework.integration.xmn.router.XPat hMil ti Channel Router">
<constructor-arg value="/order/recipient" />
<property nanme="channel Resol ver">
<bean cl ass="org. springfranmework.integration.channel. MapBasedChannel Resol ver">
<constructor-arg>
<map>
<entry key="accounts"
val ue-ref ="account Confirmati onChannel " />
<entry key="humanResources"
val ue-ref =" humanResour cesConf i r mat i onChannel " />

</ map>
</ constructor-arg>
</ bean>
</ property>
</ bean>

</ constructor-arg>
<constructor-arg ref="order Channel " />
</ bean>

26.6 Selecting xml messages using XPath

98 Dealing with XML Payloads

Dealing with XML Payloads 99

Two MessageSel ect or implementations are provided,

Bool eanTest XPat hMessageSel ect or and

StringVal ueTest XPat hMessageSel ect or .

Bool eanTest XPat hMessageSel ect or requires an XPathExpression which evaluatesto a
boolean, for example boolean(/one/two) which will only select messages which have an element
named two which isachild of aroot element named one.

St ri ngVal ueTest XPat hMessageSel ect or evaluates any XPath expression asa

St ri ng and compares the result with the provided value.

<l-- Interceptor which rejects nessages that do not have a root elenent order -->
<bean id="order Sel ectingl nterceptor"
class="org. springframework.integration.channel.interceptor. MessageSel ectingl nterceptor">
<constructor-arg>
<bean cl ass="org. springframework.integration.xmnl.sel ector.Bool eanTest XPat hMessageSel ect or" >
<constructor-arg val ue="bool ean(/order)" />
</ bean>
</ constructor-arg>
</ bean>

<l-- Interceptor which rejects nmessages that are not version one orders -->
<bean id="versi onOneOr der Sel ecti ngl nterceptor"
class="org. springframework.integration.channel.interceptor. MessageSel ectingl nterceptor">
<constructor-arg>
<bean cl ass="org. springframework.integration.xmnl.selector.StringVal ueTest XPat hMessageSel ect or" >
<constructor-arg val ue="/order/ @ersion" index="0"/>
<constructor-arg value="1" index="1"/>
</ bean>
</ constructor-arg>
</ bean>

26.7 XPath components namespace support

All XPath based components have namespace support allowing them to be configured as

M essage Endpoints with the exception of the X Path selectors which are not designed to act as
endpoints. Each component allows the XPath to either be referenced at the top level or
configured via a nested xpath-expression element. So the following configurations of an
xpath-selector are all valid and represent the general form of X Path namespace support. All
forms of XPath expression result in the creation of an XPat hExpr essi on using the Spring
XPat hExpr essi onFact ory

<si-xml : xpat h-sel ect or id="xpat hRef Sel ector"
xpat h- expr essi on="r ef ToXpat hExpr essi on"
eval uation-resul t-type="bool ean" />

<si-xm : xpat h-sel ector id="sel ector WthNoNS" eval uati on-result-type="bool ean" >
<si-xml : xpat h- expressi on expressi on="/nane"/>
</si-xm : xpat h- sel ect or >

<si-xm : xpat h-sel ector id="sel ectorWthOneNS" eval uation-result-type="bool ean" >
<si -xml : xpat h- expressi on expressi on="/ns1: nane"
ns-prefix="ns1" ns-uri="ww. exanple.org" />
</si-xm : xpat h- sel ect or >

<si-xm : xpat h-sel ector id="sel ector WthTwoNS" eval uati on-result-type="bool ean" >
<si -xml : xpat h- expressi on expressi on="/nsl: nane/ ns2: type">
<map>
<entry key="ns1" val ue="www. exanpl e. or g/ one" />
<entry key="ns2" val ue="ww. exanpl e. org/two" />
</ map>
</ si -xm : xpat h- expr essi on>
</si-xm : xpat h- sel ect or >

<si-xm : xpath-sel ector id="sel ectorWthNamespaceMapRef" eval uation-result-type="bool ean" >
<si -xm : xpat h- expressi on expressi on="/ns1l: nane/ ns2: type"
nanmespace- map="def aul t Nanespaces"/ >
</si-xm : xpat h- sel ect or >

<util:map id="defaul t Namespaces" >

<util:entry key="nsl1" val ue="www. exanpl e. org/ one" />
<util:entry key="ns2" val ue="ww. exanpl e. org/two" />

1.0.3 99

100 Spring Integration 1.0.3

</util:map>

XPath splitter namespace support allows the creation of a Message Endpoint with an input
channel and output channel.

<!-- Split the order into itens creating a new nessage for each itemnode -->
<si-xm:xpath-splitter id="orderltenSplitter"
i nput - channel =" or der Channel "
out put - channel ="or der | t ensChannel " >
<si - xml : xpat h- expr essi on expressi on="/order/itens"/>
</si-xm:xpath-splitter>

<l-- Split the order into itens creating a new docunent for each item->
<si-xm :xpath-splitter id="orderltenDocunmentSplitter"
i nput - channel =" or der Channel "
out put - channel =" or der | t ensChannel "
create-docunment s="true">
<si-xml : xpat h- expressi on expression="/order/itens"/>
<si:poller>
<si:interval -trigger interval ="2000"/>
</ si: poller>
</si-xm:xpath-splitter>

XPath router namespace support allows for the creation of a Message Endpoint with an input
channel but no output channel since the output channel is determined dynamically. The
multi-channel attribute causes the creation of a multi channel router capable of routing asingle
message to many channels when true and a single channel router when false.

<l-- route the nmessage according to exactly one order type channel -->

<si-xm :xpath-router id="orderTypeRouter" input-channel ="orderChannel"” nulti-channel ="fal se">
<si-xml : xpat h- expressi on expressi on="/order/type"/>

</si-xm : xpat h-rout er >

<!-- route the order to all responders-->
<si-xm :xpath-router id="responderRouter" input-channel ="orderChannel" nulti-channel ="true">
<si-xm : xpat h- expressi on expressi on="/request/responders"/>
<si : pol |l er>
<si:interval -trigger interval ="2000"/>
</si:poller>
</ si-xm : xpat h-router>

100 Dealing with XML Payloads

Security in Spring Integration 101

27. Security in Spring Integration

27.1 Introduction

Spring Integration provides integration with the Spring Security project to allow role based
security checksto be applied to channel send and receive invocations.

27.2 Securing channels

Spring Integration provides the interceptor Channel Securi tyl nt er cept or, which
extends Abst r act Secur i tyl nt er cept or and intercepts send and receive calls on the
channel. Access decisions are then made with reference to

Channel | nvocat i onDef i ni ti onSour ce which provides the definition of the send and
receive security constraints. The interceptor requiresthat avalid Secur i t yCont ext has been
established by authenticating with Spring Security, see the Spring Security reference
documentation for details.

Namespace support is provided to allow easy configuration of security constraints. This consists
of the secured channels tag which allows definition of one or more channel name patternsin
conjunction with a definition of the security configuration for send and receive. The patternisa
java. util.regexp. Pattern.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns="http: //MMM/sprlngfranEmork org/ schena/integration”
xm ns: si - securlty "http://ww. springframework. org/schenﬁ/lntegratlon/securlty
xnl ns: beans="http://ww. spri ngfranewor k. org/schena/beans
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: security="http://ww.springframework. org/schema/ security"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
ht / www. springfranmewor k. or g/ schema/ security
ht /www. spri ngframewor k. or g/ schema/ security/spring-security-2.0.xsd
[www. spri ngfranework. org/ schenma/integration
h /www. spri ngframewor k. org/ schema/ i ntegrati on/ spring-integration-1.0.xsd
n fwwwuspringfranemork.org/schenallntegratlon/security

/
/
/
/
/
/ I www. spri ngframewor k. org/ schema/ i ntegrati on/security/spring-integration-security-1.0.xsd">

tp:
tp:
http:
tp:
http:
tp:

<si-security: secured-channel s>
<si-security:access-policy pattern="adm n.*" send-access="ROLE_ADM N'/ >
<si-security:access-policy pattern="user.*" receive-access="ROLE USER'/ >
</ si-security: secured-channel s>

By default the secured-channel s namespace el ement expects a bean named
authenticationManager which implements Aut hent i cat i onManager and abean named
accessDecisionManager which implements AccessDeci si onManager . Where thisis not
the case references to the appropriate beans can be configured as attributes of the
secured-channels element as below.

<si-security:secured-channel s access-deci sion- nanager— custonAccessDEC|S|onNhnager
aut henti cati on- nanager =' custonAuthentlcatlonNhnager >
<si-security:access-policy pattern="adm n.*" send-access=' RCLE ADM N'/ >
<si-security:access-policy pattern="user.*" receive-access="ROLE_USER'/>
</ si-security: secured-channel s>

1.0.3 101

http://static.springframework.org/spring-security/site/

102 Spring Integration 1.0.3

102 Security in Spring Integration

Appendix A. Spring Integration
Samples

Note

Starting with the current release of Spring Integration the samples are distributed as
independent Maven-based projects (http://maven.apache.org/) to minimize the setup
time. Since each project is also an Eclipse-based project, they can be imported asis
using the Eclipse Import wizard. If you prefer another IDE, configuration should be
very trivial, since a special Maven profile was setup to download all of the required
dependencies for all samples. Detailed instructions on how to build and run the
samples are provided in the README. t xt filelocated in the samples directory of the
main distribution.

A.1 The Cafe Sample

In this section, we will review a sample application that isincluded in the Spring Integration
distribution. This sampleisinspired by one of the samples featured in Gregor Hohpe's

Ramblings.
The domain isthat of a Cafe, and the basic flow is depicted in the following diagram:

hotDrinks

orders

The Or der object may contain multiple Or der | t ens. Once the order is placed, a Splitter will
break the composite order message into a single message per drink. Each of these isthen
processed by a Router that determines whether the drink is hot or cold (checking the

Or der | t emobject's'islced' property). The Bar i st a prepares each drink, but hot and cold
drink preparation are handled by two distinct methods: 'prepareHotDrink' and
'‘prepareColdDrink'. The prepared drinks are then sent to the Waiter where they are aggregated
intoaDel i very object.

Hereisthe XML configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns="http://ww. springfranmework. org/schema/integration”
xm ns: xsi ="http://wwmv. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: beans="http://ww. spri ngfranmewor k. or g/ scherma/ beans"
xm ns: streanE"http://ww. springfranmework. org/ schema/ i nt egrati on/streant
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
http://ww. springfranmewor k. org/ schema/ i ntegration
http://ww. springfranmework. org/ schema/integration/spring-integration-1.0.xsd
htt p: // www. spri ngframewor k. or g/ schena/ i nt egrati on/ stream
tp://ww. springframewor k. org/ schema/ i ntegration/streanm spring-integration-stream 1.0.xsd">

http://maven.apache.org/
http://www.eaipatterns.com/ramblings.html

<gateway id="cafe" service-interface="org.springfranmework.integration.sanples.cafe.Cafe"/>

<channel id="orders"/>
<splitter input-channel ="orders" ref="orderSplitter" nmethod="split" output-channel ="drinks"/>

<channel id="drinks"/>
<router input-channel ="drinks" ref="drinkRouter" nethod="resol veOrderltentChannel"/>

<channel id="col dDrinks">
<queue capacity="10"/>
</ channel >
<servi ce-activator input-channel="col dDrinks" ref="barista"
net hod="pr epar eCol dDri nk" out put - channel =" pr epar edDr i nks"/ >
<channel id="hotDrinks">
<queue capacity="10"/>
</ channel >
<service-activator input-channel ="hotDrinks" ref="barista"
met hod="pr epar eHot Dri nk" out put - channel =" prepar edDri nks"/ >
<channel id="preparedDrinks"/>
<aggregator input-channel ="preparedDrinks" ref="waiter"
met hod="pr epar eDel | very" out put-channel ="del i veries"/>
<stream stdout - channel -adapter id="deliveries"/>

<beans: bean id="orderSplitter"
class="org. springframework.integration.sanples.cafe.xm.OderSplitter"/>

<beans: bean id="dri nkRout er"
cl ass="org. springfranework. integration. sanpl es. cafe. xnl . Dri nkRouter"/>

<beans: bean id="barista" class="org.springframework.integration.sanples.cafe.xn.Barista"/>
<beans: bean id="waiter" class="org.springframework.integration.sanples.cafe.xm.Waiter"/>
<poller id="poller" default="true">

<interval -trigger interval ="1000"/>
</ pol | er>

</ beans: beans>

Asyou can see, each Message Endpoint is connected to input and/or output channels. Each
endpoint will manage its own Lifecycle (by default endpoints start automatically upon
initialization - to prevent that add the "auto-startup” attribute with avalue of "false"). Most
importantly, notice that the objects are simple POJOs with strongly typed method arguments. For
example, hereisthe Splitter:

public class OrderSplitter {

public List<Orderlten> split(Order order) {
return order.getltens();

}
In the case of the Router, the return value does not have to be aMessageChannel instance

(although it can be). Asyou see in this example, a String-value representing the channel nameis
returned instead.

public class DrinkRouter {

public String resolveOderltentChannel (Oderltemorderlten) {
return (orderltemislced()) ? "coldDrinks" : "hotDrinks";

Now turning back to the XML, you see that there are two <service-activator> elements. Each of
these is delegating to the same Bar i st a instance but different methods: 'prepareHotDrink’ or
‘prepareColdDrink’ corresponding to the two channels where order items have been routed.

public class Barista {

private | ong hotDrinkDel ay = 5000;
private |long col dDri nkDel ay = 1000;

private Atom clnteger hotDrinkCounter = new Atomniclnteger();
private Atom clnteger col dDrinkCounter = new Atom clnteger();

public void setHotDrinkDel ay(l ong hotDri nkDel ay) {
this. hotDrinkDel ay = hotDri nkDel ay;
}

public void setCol dDri nkDel ay(| ong col dDri nkDel ay) {
this.coldDrinkDelay = col dDri nkDel ay;

public Drink prepareHotDrink(Orderltemorderlten {
try {

Thread. sl eep(thi s. hot Dri nkDel ay) ;

System out. println(Thread. current Thread(). get Nane()
+ " prepared hot drink #" + hotDrinkCounter.increnmentAndGet ()
+ " for order #" + orderltemgetOder().getNunber() + ": " + orderlten);

return new Drink(orderltem getOder().getNunber(), orderltem getDrinkType(),
orderltemislced(), orderltemgetShots());

catch (InterruptedException e) {
Thread. current Thread().interrupt();
return null;

}

public Drink prepareCol dDrink(Orderltemorderltenm {

try {
Thread. sl eep(this. col dDri nkDel ay) ;

System out. println(Thread. current Thread() get Nane()
+ " prepared cold drink #' + col dDri nkCounter.increnment AndGet ()
+ " for order #" + orderltemgetOrder().getNunber() + ": " + orderlten);
return new Drink(orderltem get Order().getNunber(), orderltem getDrinkType(),
orderltemislced(), orderltem getShots());
catch (InterruptedException e) {

Thread. current Thread().interrupt();
return null;

Asyou can see from the code excerpt above, the barista methods have different delays (the hot
drinks take 5 times as long to prepare). This simulates work being completed at different rates.
When the Caf eDenb 'main’ method runs, it will loop 100 times sending a single hot drink and a
single cold drink each time. It actually sends the messages by invoking the 'placeOrder’ method
on the Cafe interface. Above, you will see that the <gateway> element is specified in the
configuration file. Thistriggers the creation of a proxy that implements the given
‘service-interface’ and connectsit to a channel. The channel name is provided on the @Gateway
annotation of the Caf e interface.

public interface Cafe {

@zat eway (r equest Channel =" or ders")
voi d placeOrder (Order order);

}
Finally, have alook at the mai n() method of the Caf eDenp itself.

public static void main(String[] args) {
Abstract Appl i cati onContext context = null;
if (args.length > 0) {
context = new Fil eSystenmXm Applicati onContext(args);

}
el se {
context = new Cl assPat hXm Applicati onCont ext ("caf eDeno. xm ", CafeDeno. class);

Cafe cafe = (Cafe) context.getBean("cafe");
for (int i =1; i <= 100; i++) {
Order order = new Order(i);
order. addl tem(Dri nkType. LATTE, 2, false);
order. addl tem(Dri nkType. MOCHA, 3, true);
caf e. pl aceOrder (order);

Tip
To run this sample as well as 8 others, refer to the READIVE. t xt within the

"samples" directory of the main distribution as described at the beginning of this
chapter.

When you run cafeDemo, you will see that the cold drinks are initially prepared more quickly
than the hot drinks. Because there is an aggregator, the cold drinks are effectively limited by the
rate of the hot drink preparation. Thisisto be expected based on their respective delays of 1000
and 5000 milliseconds. However, by configuring a poller with a concurrent task executor, you
can dramatically change the results. For example, you could use a thread pool executor with 5
workers for the hot drink barista while keeping the cold drink baristaasit is:
<servi ce-activator input-channel ="hotDrinks"
ref ="barista"
net hod="pr epar eHot Dri nk"
out put - channel =" pr epar edDri nks"/ >
<servi ce-activator input-channel ="hotDrinks"
ref="barista"
net hod="pr epar eHot Dr i nk"
out put - channel =" pr epar edDri nks" >
<pol | er task-executor="pool ">
<interval -trigger interval ="1000"/>

</ pol | er>
</ servi ce-acti vator>

<t hr ead- pool - t ask- execut or id="pool" core-size="5"/>

Also, notice that the worker thread name is displayed with each invocation. Y ou will see that the
hot drinks are prepared by the task-executor threads. If you provide a much shorter poller
interval (such as 100 milliseconds), then you will notice that occasionally it throttles the input by
forcing the task-scheduler (the caller) to invoke the operation.

Note

In addition to experimenting with the poller's concurrency settings, you can also add
the 'transactional’ sub-element and then refer to any PlatformTransactionManager
instance within the context.

A.2 The XML Messaging Sample

The xml messaging sample in the org.springframework.integration.samples.xml illustrates how
to use some of the provided components which deal with xml payloads. The sample uses the idea
of processing an order for books represented as xml.

First the order is split into a number of messages, each one representing a single order item using
the X Path splitter component.
<si-xm :xpath-splitter id="orderltenSplitter" input-channel ="ordersChannel"
out put - channel =" st ockChecker Channel " creat e-docunents="true">

<si-xm : xpat h- expressi on expressi on="/order Ns: order/orderNs: orderl|tent namespace- mnap="order NanespaceMap' />
</si-xm :xpath-splitter>

A service activator is then used to pass the message into a stock checker POJO. The order item
document is enriched with information from the stock checker about order item stock level. This
enriched order item message is then used to route the message. In the case where the order item

isin stock the message is routed to the warehouse. The XPath router makes use of a
MapBasedChannel Resol ver which mapsthe XPath evaluation result to a channel
reference.

<si-xm :xpath-router id="instockRouter" channel -resol ver ="mapChannel Resol ver"
i nput - channel =" or der Rout i ngChannel " resol uti on-required="true">
<si-xm : xpat h- expressi on expressi on="/orderNs: orderltenl @n-stock" nanmespace- map="order NanespaceMap" />
</ si-xm : xpat h-rout er >
<bean id="mapChannel Resol ver"
cl ass="org. springfranmework. integration. channel . MapBasedChannel Resol ver">
<property nanme="channel Map" >
<map>
<entry key="true" val ue-ref="warehouseD spat chChannel " />
<entry key="fal se" val ue-ref="out Of St ockChannel " />
</ map>
</ property>
</ bean>

Where the order item is not in stock the message is transformed using xslt into aformat suitable
for sending to the supplier.

<si-xm :xslt-transformer input-channel ="out O StockChannel" out put-channel ="resuppl yOr der Channel "
xsl -resour ce="cl asspat h: or g/ spri ngf ramewor k/ i nt egr ati on/ sanpl es/ xrm / bi gBooksSuppl i er Tr ansf or mer . xsl "/ >

A.3 The OSGi Samples

Thisrelease of Spring Integration includes several samples that are OSGi enabled as well as
samples that were specifically designed to show some of the other benefits of OSGi and Spring
Integration when used together. First lets look at the two familiar examplesthat are also
configured to be valid OSGi bundles. These are Hello World and Cafe. All you need to do to see
these samples work in an OSGi environment is deploy the generated JAR into such an
environment.

Use Maven to generate the JAR by executing the 'mvn install' command on either of these
projects. Thiswill generate the JAR file in the target directory. Now you can simply drop that
JAR fileinto the deployment directory of your OSGi platform. For example, if you are using
SpringSource dm Server, drop the filesinto the 'pickup’ directory within the dm Server home
directory.

Note

Prior to deploying and testing Spring Integration samplesin the dm Server or any
other OSGi server platform, you must have the Spring Integration and Spring bundles
installed on that platform. For example, to install Spring Integration into
SpringSource dm Server, copy al JAR filesthat are located in the 'dist’ directory of
your Spring Integration distribution into the 'repository/bundles/usr’ directory of your
dm Server instance (see the dm Server User Guide for more detail on how to install
bundles).

The Spring Integration samples require afew other bundles to be installed. For the 1.0.3 release,
the full list including transitive dependenciesis:

* org.apache.commons.codec-1.3.0.jar

http://www.springsource.com/products/dmserver
http://static.springsource.com/projects/dm-server/1.0.x/user-guide/htmlsingle/user-guide.html

org.apache.commons.collections-3.2.0.jar
org.apache.commons.httpclient-3.1.0.jar
org.apache.ws.commons.schema-1.3.2.jar
org.springframework.oxm-1.5.5.A ,jar
org.springframework.security-2.0.4.A jar
org.springframework.ws-1.5.5.A jar

org.springframework.xml-1.5.5.A jar

These are all located within the 'lib' directory of the Spring Integration distribution. So, you can
simply copy those JARs into the dm Server 'repository/bundles/usr directory as well.

Note

The Spring Framework bundles (aop, beans, context, etc.) are also included in the 'lib’
directory of the Spring Integration distribution, but they do not need to be installed
since they are aready part of the dm Server infrastructure. Also, note that the versions
listed above are those included with the Spring Integration 1.0.3 release. Newer
versions of individual JARs may be used as long as they are within the range
specified in the MANIFEST.MF files of those bundles that depend upon them.

Tip

The bundles listed above are appropriate for a SpringSource dm Server 1.0.x
deployment environment with a Spring Framework 2.5.x foundation. That is the
version against which Spring Integration 1.0.3 has been devel oped and tested.
However, as of the time of the Spring Integration 1.0.3 release, the Spring Framework
3.0 release candidates are about to be available, and the dm Server 2.0.x milestones
are available. If you want to try running these samplesin that environment, then you
will need to replace the Spring Security and Spring Web Services bundles with
versions that support Spring 3.0. The OXM functionality is moving into the Spring
Framework itself for the 3.0 release. Otherwise, Spring Integration 1.0.3 has been
superficialy tested against the Spring 3.0 snapshots available at the time of its
release. In fact, some internal changes were made in the 1.0.3 release specifically to
support Spring 3.0 (whereas 1.0.2 does not). Spring Integration 2.0 will be built upon
a Spring 3.0 foundation.

To demonstrate some of the benefits of running Spring Integration projects in an OSGi
environment (e.g. modularity, OSGi service dynamics, etc.), we have included a couple new
samples that are dedicated to highlighting those benefits. In the 'samples’ directory, you will find
the following two projects:

* 0sgi-inbound (producer bundle)

* 0sgi-outbound (consumer bundle)

Unlike the other samples in the distribution, these are not Maven enabled. Instead, we have
simply configured them as valid dm Server Bundle projects. That means you can import these
projects directly into an STS workspace using the "Existing Projects into Workspace" option
from the Eclipse Import wizard. Then, you can take advantage of the STS dm Server tools to
deploy them into a SpringSource dm Server instance.

Note

A simple Ant 'build.xml’ file has been included within each of these projects as well.
The build files contain asingle 'jar' target. Therefore, after these projects have been
built within Eclipse/STS, you can generate the bundle (JAR) directly and deploy it
manually.

The structure of these projectsis very simple, yet the concepts they showcase are quite powerful.
The 'osgi-inbound' modul e enables sending a Message to a Publish-Subscribe Channel using a
Spring Integration Gateway proxy. The interesting part, however, is that the Publish-Subscribe
Channel is exported as an OSGi service viathe <osgi:service/> element. Asaresult, any other
bundles can be developed, deployed, and maintained independently yet still subscribe to that
channdl.

The 'osgi-outbound' module is an example of such a subscribing consumer bundle. It uses the
corresponding <osgi:reference/> element to locate the channel exported by the 'osgi-inbound’
bundle. It also contains configuration for a <file:outbound-gateway/> which is a subscriber to
that channel and will write the Message content to afile onceit arrives. It then sends a response
Message with the name of the file and its location.

To make it easy to run, we've exposed a command-line interface where you can type in the
command, the message, and the file name to execute the demo. This is exposed through the
OSGi console. Likewise, the response that provides the name and location of the resulting file
will aso be visible within the OSGi console.

To run these samples, make sure your OSGi environment is properly configured to host Spring
Integration bundles (as described in the note above). Deploy the producer bundle (osgi-inbound)
first, and then deploy the consumer bundle (osgi-outbound). After you have deployed these
bundles, open the OSGi console and type the following command:

osgi > hel p
Y ou will see the following amidst the outpuit:

---Spring Integration CLI-based OSG Denp---
si Send <nmessage> <filename> - send text to be witten to a file

Asyou can see, that describes the command that you will be able to use to send messages. If you
are interested in how it isimplemented or want to customize message sending logic or even
create anew command look at | nboundDenoBundl eAct i vat or . j ava in the consumer
bundle.

Tip
By default, when using dm Server, you can open the OSGi console by connecting to

port 2401 viatelnet:

tel net |ocal host 2401

Now send a message by typing:

osgi > si Send "Hello World" hello.txt
Y ou will see something similar to the following in the OSGi console:

Sendi ng nessage: 'Hello Wrld'
Message sent and its contents were witten to:
/usr/local /dm server/work/tnp/spring-integration-sanpl es/output/hello.txt

Note
It is not necessary to wrap the message in quotesif it does not contain spaces. Go
ahead and open up the file and verify that the message content was written to it.

L et's assume you wanted to change the directory to which the files are written or make any other
change to the consumer bundle (osgi-outboud). Y ou only need to update the consumer bundlie
and not the producer bundle. So, go ahead and change the directory in the 'osgi-outbound.xml'
file located within 'src/META-INF/spring' and refresh the consumer bundle.

: Tip

1 If using STS to deploy to dm Server, the refresh will happen automaticaly. If
replacing bundles manually, you can issue the command 'refresh n' in the OSGi
console (where n would be the ID of the bundle as displayed at any point after issuing
the 'ss command to see the short status output).

Y ou will see that the change takes affect immediately. Not only that, you could even start
developing and deploying new bundles that subscribe to the messages produced by the producer
bundle the same way as the existing consumer bundle (osgi-outbound) does. With a
publish-subscribe-channel any newly deployed bundles would start receiving each Message as
well.

Note

If you also want to modify and refresh the producer bundle, be sure to refresh the
consumer bundle afterwards as well. Thisis necessary because the consumer's
subscription must be explicitly re-enabled after the producer's channel disappears.

Y ou could alternatively deploy arelatively static bundle that defines channels so that
producers and consumers can be completely dynamic without affecting each other at
all. In Spring Integration 2.0, we plan to support automatic re-subscription and more
through the use of a Control Bus.

That pretty much wraps up this very simple example. Hopefully it has successfully demonstrated
the benefits of modularity and OSGi service dynamics while working with Spring Integration.
Feel free to experiment by following some of the suggestions mentioned above. For deeper
coverage of the applicability of OSGi when used with Spring Integration, read this blog by

http://blog.springsource.com/2009/02/27/spring-integration-on-dm-server/

Spring I ntegration team member Iwein Fuld.

Appendix B. Configuration

B.1 Introduction

Spring Integration offers a number of configuration options. Which option you choose depends
upon your particular needs and at what level you prefer to work. As with the Spring framework
in generd, it isaso possible to mix and match the various techniques according to the particular
problem at hand. For example, you may choose the X SD-based namespace for the mgjority of
configuration combined with a handful of objects that are configured with annotations. As much
as possible, the two provide consistent naming. XML elements defined by the XSD schema will
match the names of annotations, and the attributes of those XML elements will match the names
of annotation properties. Direct usage of the API is of course always an option, but we expect
that most users will choose one of the higher-level options, or a combination of the
namespace-based and annotation-driven configuration.

B.2 Namespace Support

Spring Integration components can be configured with XML elements that map directly to the
terminology and concepts of enterprise integration. In many cases, the element names match
those of the Enterprise Integration Patterns.

To enable Spring Integration’s core namespace support within your Spring configuration files,
add the following namespace reference and schema mapping in your top-level 'beans element:

<beans xm ns="http://wm. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:integration="http://ww.springframework. org/schema/integration”
xsi : schemaLocati on="http://ww. spri ngframework. or g/ schema/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd
htt p: // ww. spri ngfranewor k. org/ schena/i ntegration
http://ww. springfranmework. org/ schena/integration/spring-integration-1.0.xsd">

Y ou can choose any name after "xmins:"; integration is used here for clarity, but you might
prefer ashorter abbreviation. Of courseif you are using an XML-editor or IDE support, then the
availability of auto-completion may convince you to keep the longer name for clarity.
Alternatively, you can create configuration files that use the Spring Integration schema as the
primary namespace:
<beans: beans xm ns="http://ww. springfranmework. org/ schema/integration”

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: beans="htt p: // ww. spri ngframewor k. or g/ schema/ beans"

xsi:schemaLocation="http://ww. spri ngfranmewor k. or g/ schema/ beans

http: // ww. spri ngframewor k. or g/ schema/ beans/ spri ng- beans- 2. 5. xsd

http://ww. springfranework. org/ schena/integration
http://ww. springfranmework. org/ schenma/integration/spring-integration-1.0.xsd">

When using this alternative, no prefix is necessary for the Spring Integration elements. On the
other hand, if you want to define a generic Spring "bean™ within the same configuration file, then
aprefix would be required for the bean element (<beans:bean ... />). Sinceit is generally a good
idea to modularize the configuration files themsel ves based on responsibility and/or architectural

http://www.eaipatterns.com

layer, you may find it appropriate to use the latter approach in the integration-focused
configuration files, since generic beans are seldom necessary within those same files. For
purposes of this documentation, we will assume the "integration” namespace is primary.

Many other namespaces are provided within the Spring Integration distribution. In fact, each
adapter type (JMS, File, etc.) that provides namespace support defines its elements within a
separate schema. In order to use these elements, simply add the necessary namespaces with an
"xmins' entry and the corresponding "schemal ocation™ mapping. For example, the following
root element shows several of these namespace declarations:

<?xm versi on="1.0" encodi ng="UTF-8"?>

<beans xm ns="http://wwm. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:integration="http://ww.springframework. org/schema/integration”
xm ns: fil e:" http://ww. springframework. org/ schema/integration/fi I e"
xm ns:j ms=' http /[www. spri ngframework. org/ schema/ i ntegration/jns"

xm ns:r’r‘all- http://ww. spri ngfranework. org/scher’r‘a/lntegratlon/r’r‘all
xm ns:rm— "http://ww. springframework. org/scherra/lntegratlon/rm
xm ns: ws="ht tp: //Www springframework. org/ schema/i nt egration/ ws"

xsi:schemalocation="http://wmv. springfranework. org/ schena/ beans
http://ww. springfranmework. org/ schena/ beans/ spri ng- beans- 2. 5. xsd

http://ww. springframewor k. org/ schema/ i ntegration

http://ww. springfranework. org/ schenma/integration/spring-integration-1.0.xsd
http://ww. springfranework. org/ schena/integration/file

http://ww. springfranework. org/ schena/integration/file/spring-integration-file-1.0.xsd
http: //ww. springframework. org/ schema/integration/jns

http://ww. spri ngfranework. org/ schena/integration/jns/spring-integration-jns-1.0.xsd
http://ww. springframewor k. org/ schema/ i nt egrati on/ nai |

http://ww. spri ngfranework. org/ schena/integration/nmail/spring-integration-nail-1.0.xsd
http://ww. springfranmework. org/ schena/integration/rm

http://ww. spri ngfranework. org/ schema/integration/rm/spring-integration-rm-1.0.xsd
http:// www. springframework. org/ schema/ i ntegrati on/ ws

http://ww. springframewor k. org/ schema/ i ntegration/ws/spring-integration-ws-1.0.xsd">

</ beans>

The reference manual provides specific examples of the various elements in their corresponding
chapters. Here, the main thing to recognize is the consistency of the naming for each namespace
URI and schema location.

B.3 Configuring the Task Scheduler

In Spring Integration, the ApplicationContext plays the central role of a Message Bus, and there
are only a couple configuration options to be aware of. First, you may want to control the central
TaskScheduler instance. Y ou can do so by providing a single bean with the name
"taskScheduler”. Thisis aso defined as a constant:

I ntegrationContextUtils. TASK_SCHEDULER BEAN_NAVE

By default Spring Integration usesthe Si npl eTaskSchedul er implementation. That in turn
just delegates to any instance of Spring's TaskExecut or abstraction. Therefore, it's rather
trivial to supply your own configuration. The "taskScheduler" bean is then responsible for
managing all pollers. The TaskScheduler will startup automatically by default. If you provide
your own instance of SimpleTaskScheduler however, you can set the ‘autoStartup' property to
false instead.

When Polling Consumers provide an explicit task-executor reference in their configuration, the
invocation of the handler methods will happen within that executor's thread pool and not the
main scheduler pool. However, when no task-executor is provided for an endpoint's poller, it will
be invoked by one of the main scheduler's threads.

Note

An endpoint is a Polling Consumer if itsinput channel is one of the queue-based (i.e.
pollable) channels. On the other hand, Event Driven Consumers are those whose input
channels have dispatchers instead of queues (i.e. they are subscribable). Such
endpoints have no poller configuration since their handlers will be invoked directly.

The next section will describe what happens if Exceptions occur within the asynchronous
invocations.

B.4 Error Handling

As described in the overview at the very beginning of this manual, one of the main motivations
behind a M essage-oriented framework like Spring Integration is to promote |oose-coupling
between components. The Message Channel plays an important role in that producers and
consumers do not have to know about each other. However, the advantages also have some
drawbacks. Some things become more complicated in a very loosely coupled environment, and
one exampleis error handling.

When sending a Message to a channel, the component that ultimately handles that M essage may
or may not be operating within the same thread as the sender. If using a ssimple default
DirectChannel (with the <channel> element that has no <queue> sub-element and no
'task-executor' attribute), the Message-handling will occur in the same thread as the
Message-sending. In that case, if an Exception isthrown, it can be caught by the sender (or it
may propagate past the sender if it is an uncaught RuntimeException). So far, everything isfine.
Thisis the same behavior as an Exception-throwing operation in anormal call stack. However,
when adding the asynchronous aspect, things become much more complicated. For instance, if
the 'channel’ element does provide a'queue’ sub-element, then the component that handles the
Message will be operating in a different thread than the sender. The sender may have dropped the
Message into the channel and moved on to other things. There is no way for the Exception to be
thrown directly back to that sender using standard Exception throwing techniques. Instead, to
handle errors for asynchronous processes requires an asynchronous error-handling mechanism as
well.

Spring Integration supports error handling for its components by publishing errors to a Message
Channel. Specifically, the Exception will become the payload of a Spring Integration Message.
That Message will then be sent to a Message Channel that is resolved in away that is similar to
the 'replyChannel’ resolution. First, if the request Message being handled at the time the
Exception occurred contains an ‘errorChannel’ header (the header name is defined in the
constant: MessageHeaders. ERROR_CHANNEL), the ErrorM essage will be sent to that channel.
Otherwise, the error handler will send to a"global" channel whose bean name is "errorChannel”
(thisis also defined as a constant:

| ntegrationContextUtils ERROR_CHANNEL_BEAN_NAME).

Whenever relying on Spring Integration's XML namespace support, a default "errorChannel”
bean will be created behind the scenes. However, you can just as easily define your own if you

want to control the settings.

<channel id="errorChannel ">
<queue capacity="500"/>
</ channel >

Note
The default "errorChannel" is a PublishSubscribeChannel.

The most important thing to understand here is that the messaging-based error handling will only
apply to Exceptions that are thrown by a Spring Integration task that is executing within a
TaskExecutor. This does not apply to Exceptions thrown by a handler that is operating within the
same thread as the sender (e.g. through a DirectChannel as described above).

Note
When Exceptions occur in a scheduled poller task's execution, those exceptions will
be wrapped in Er r or Messages and sent to the 'errorChannel’ as well.

To enable global error handling, simply register a handler on that channel. For example, you can
configure Spring Integration's Er r or MessageExcept i onTypeRout er asthe handler of an
endpoint that is subscribed to the 'errorChannel’. That router can then spread the error messages
across multiple channels based on Except i on type.

B.5 Annotation Support

In addition to the XML namespace support for configuring Message Endpoints, it is also possible
to use annotations. First, Spring Integration provides the class-level @/essageEndpoi nt asa
stereotype annotation meaning that isitself annotated with Spring's @Component annotation and
therefore is recognized automatically as a bean definition when using Spring
component-scanning.

Even more importantly are the various Method-level annotations that indicate the annotated
method is capable of handling a message. The following example demonstrates both:
@kssageEndpoi nt

public class FooService {

@er vi ceAct i vat or
public void processMessage(Message nessage) {

}
}

Exactly what it means for the method to "handl€" the M essage depends on the particular
annotation. The following are available with Spring Integration, and the behavior of eachis
described in its own chapter or section within this reference: @Transformer, @Router,
@Splitter, @Aggregator, @ServiceActivator, and @Channel Adapter.

Note

The @M essageEndpoint is not required if using XML configuration in combination
with annotations. If you want to configure a POJO reference from the "ref" attribute
of a<service-activator/> element, it is sufficient to provide the method-level
annotations. In that case, the annotation prevents ambiguity even when no "method"
attribute exists on the <service-activator/> element.

In most cases, the annotated handler method should not require the Message type asits
parameter. Instead, the method parameter type can match the message's payload type.

public class FooService {

@Handl er
public void bar(Foo foo) {

}
}

When the method parameter should be mapped from avalue in the MessageHeader s, another
option isto use the parameter-level @Header annotation. In general, methods annotated with
the Spring Integration annotations can either accept the Message itself, the message payload, or
a header value (with @Header) as the parameter. In fact, the method can accept a combination,
such as:

public class FooService {

@er vi ceAct i vat or
public void bar(String payl oad, @eader("x") int valueX, @eader("y") int valueY) {

}
}
Thereis aso a @Headers annotation that provides all of the Message headers as a Map:

public class FooService {

@er vi ceAct i vat or
public void bar(String payl oad, @eaders Map<String, Object> headerMap) {

}

Tip
A Map-typed argument does not strictly require the use of the @Headers annotation.
In other words the following is also valid:

public void bar(String payl oad, Map<String, Object> header Map)

However this can lead to unresolvable ambiguitiesif the payload isitself a Map. For
that reason, we highly recommend using the annotation whenever expecting the
headers. For a much more detailed description, see the javadoc for

Met hodPar anmet er MessageMapper .

For severa of these annotations, when a Message-handling method returns a non-null value, the
endpoint will attempt to send areply. Thisis consistent across both configuration options
(namespace and annotations) in that such an endpoint's output channel will be used if available,
and the REPLY _CHANNEL message header value will be used as a fallback.

Tip

The combination of output channels on endpoints and the reply channel message
header enables a pipeline approach where multiple components have an output
channel, and the final component simply allows the reply message to be forwarded to
the reply channel as specified in the original request message. In other words, the
final component depends on the information provided by the original sender and can
dynamically support any number of clients as aresult. Thisis an example of Return
Address.

In addition to the examples shown here, these annotations also support inputChannel and
outputChannel properties.

public class FooService {

@per vi ceAct i vat or (i nput Channel ="i nput", out put Channel =" out put ")
public void bar(String payl oad, @eaders Map<String, Object> headerMap) {

}
}
That provides a pure annotation-driven aternative to the XML configuration. However, it is
generally recommended to use XML for the endpoints, sinceit is easier to keep track of the
overall configuration in asingle, external location (and besides the namespace-based XML
configuration is not very verbose). If you do prefer to provide channels with the annotations
however, you just need to enable a BeanPostProcessor. The following element should be added:

<annot ati on-confi g/ >

Note

When configuring the "inputChannel” and "outputChannel" with annotations, the
"inputChannel” must be areferenceto aSubscri babl eChannel instance.
Otherwise, it would be necessary to aso provide the full poller configuration via
annotations, and those settings (e.g. the trigger for scheduling the poller) should be
externalized rather than hard-coded within an annotation. If the input channel that you
want to receive Messages from isindeed aPol | abl eChannel instance, one option
to consider isthe Messaging Bridge. Spring Integration's "bridge" element can be
used to connect a PollableChannel directly to a SubscribableChannel. Then, the
polling metadata is externally configured, but the annotation option is still available.
For more detail see Chapter 15, Messaging Bridge.

http://eaipatterns.com/ReturnAddress.html
http://eaipatterns.com/ReturnAddress.html

Appendix C. Additional Resources

C.1 Spring Integration Home

The definitive source of information about Spring Integration is the Spring Integration Home at
http://www.springsource.org. That site serves as a hub of information and is the best place to find
up-to-date announcements about the project as well as links to articles, blogs, and new sample
applications.

http://www.springsource.org/spring-integration
http://www.springsource.org

	Spring Integration Reference Manual
	Table of Contents
	1. Spring Integration Overview
	1.1 Background
	1.2 Goals and Principles
	1.3 Main Components
	Message
	Message Channel
	Message Endpoint

	1.4 Message Endpoints
	Transformer
	Filter
	Router
	Splitter
	Aggregator
	Service Activator
	Channel Adapter

	2. Message Construction
	2.1 The Message Interface
	2.2 Message Headers
	2.3 Message Implementations
	2.4 The MessageBuilder Helper Class

	3. Message Channels
	3.1 The MessageChannel Interface
	PollableChannel
	SubscribableChannel

	3.2 Message Channel Implementations
	PublishSubscribeChannel
	QueueChannel
	PriorityChannel
	RendezvousChannel
	DirectChannel
	ExecutorChannel
	ThreadLocalChannel

	3.3 Channel Interceptors
	3.4 MessageChannelTemplate
	3.5 Configuring Message Channels
	DirectChannel Configuration
	QueueChannel Configuration
	PublishSubscribeChannel Configuration
	ExecutorChannel
	PriorityChannel Configuration
	RendezvousChannel Configuration
	ThreadLocalChannel Configuration
	Channel Interceptor Configuration
	Wire Tap

	4. Message Endpoints
	4.1 Message Handler
	4.2 Event Driven Consumer
	4.3 Polling Consumer
	4.4 Namespace Support

	5. Service Activator
	5.1 Introduction
	5.2 The <service-activator/> Element

	6. Channel Adapter
	6.1 The <inbound-channel-adapter> element
	6.2 The <outbound-channel-adapter/> element

	7. Router
	7.1 Router Implementations
	PayloadTypeRouter
	HeaderValueRouter
	RecipientListRouter

	7.2 The <router> element
	7.3 The @Router Annotation

	8. Filter
	8.1 Introduction
	8.2 The <filter> Element

	9. Transformer
	9.1 Introduction
	9.2 The <transformer> Element
	9.3 The @Transformer Annotation

	10. Splitter
	10.1 Introduction
	10.2 Programming model
	10.3 Configuring a Splitter using XML
	10.4 Configuring a Splitter with Annotations

	11. Aggregator
	11.1 Introduction
	11.2 Functionality
	11.3 Programming model
	AbstractMessageAggregator
	CompletionStrategy
	CorrelationStrategy

	11.4 Configuring an Aggregator with XML
	11.5 Configuring an Aggregator with Annotations

	12. Resequencer
	12.1 Introduction
	12.2 Functionality
	12.3 Configuring a Resequencer with XML

	13. Delayer
	13.1 Introduction
	13.2 The <delayer> Element

	14. Message Handler Chain
	14.1 Introduction
	14.2 The <chain> Element

	15. Messaging Bridge
	15.1 Introduction
	15.2 The <bridge> Element

	16. Inbound Messaging Gateways
	16.1 SimpleMessagingGateway
	16.2 GatewayProxyFactoryBean

	17. File Support
	17.1 Introduction
	17.2 Reading Files
	17.3 Writing files
	17.4 File Transformers

	18. JMS Support
	18.1 Inbound Channel Adapter
	18.2 Message-Driven Channel Adapter
	18.3 Outbound Channel Adapter
	18.4 Inbound Gateway
	18.5 Outbound Gateway
	18.6 JMS Samples

	19. Web Services Support
	19.1 Outbound Web Service Gateways
	19.2 Inbound Web Service Gateways
	19.3 Web Service Namespace Support

	20. RMI Support
	20.1 Introduction
	20.2 Outbound RMI
	20.3 Inbound RMI
	20.4 RMI namespace support

	21. HttpInvoker Support
	21.1 Introduction
	21.2 HttpInvoker Inbound Gateway
	21.3 HttpInvoker Outbound Gateway
	21.4 HttpInvoker Namespace Support

	22. HTTP Support
	22.1 Introduction
	22.2 Http Inbound Gateway
	22.3 Http Outbound Gateway
	22.4 Http Namespace Support

	23. Mail Support
	23.1 Mail-Sending Channel Adapter
	23.2 Mail-Receiving Channel Adapter
	23.3 Mail Namespace Support

	24. Stream Support
	24.1 Introduction
	24.2 Reading from streams
	24.3 Writing to streams
	24.4 Stream namespace support

	25. Spring ApplicationEvent Support
	25.1 Receiving Spring ApplicationEvents
	25.2 Sending Spring ApplicationEvents

	26. Dealing with XML Payloads
	26.1 Introduction
	26.2 Transforming xml payloads
	26.3 Namespace support for xml transformers
	26.4 Splitting xml messages
	26.5 Routing xml messages using XPath
	26.6 Selecting xml messages using XPath
	26.7 XPath components namespace support

	27. Security in Spring Integration
	27.1 Introduction
	27.2 Securing channels

	Appendix A. Spring Integration Samples
	A.1 The Cafe Sample
	A.2 The XML Messaging Sample
	A.3 The OSGi Samples

	Appendix B. Configuration
	B.1 Introduction
	B.2 Namespace Support
	B.3 Configuring the Task Scheduler
	B.4 Error Handling
	B.5 Annotation Support

	Appendix C. Additional Resources
	C.1 Spring Integration Home

