Spring Integration Reference Manual

4.2.0.RC1

Mark Fisher , Marius Bogoevici , Iwein Fuld , Jonas Partner , Oleg Zhurakousky , Gary
Russell , Dave Syer , Josh Long , David Turanski , Gunnar Hillert , Artem Bilan , Amol Nayak

Copyright © 2009 2010 2011 2012 2013 2014 2015 Pivotal Software, Inc. All Rights Reserved.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Integration Reference Manual

Table of Contents

TR 1= = Lo 1
=0 [T =T0 0= o1 £ ii
1. Compatible JAVa VEISIONScuuuiiiiiiii et e a e e e ii

2. Compatible Versions of the Spring Frameworkcccoiiiiiiiiiniiiiiiiineiin e ii

I Oo o [@0 17T o1 T] 1PN ii

1. Conventions iN thiS BOOKc..iiiiiiiii e e e e e 4
LAY = LS 1= 5
2. What's new in Spring INtegration 4.272iiiiiiiiii e e e 6
2.1, NEW COMPONENTS ittt ettt et et e et et e e et e et e e e et e e et e ea e en e aenaaenaen 6
Major Management/IMX REWOIKccouuuuiiiiiiiiiiiii e 6

MoNQODB Metadata StOrcccuiiiiiiiiie e 6
SecuredChannel ANNOLALIONiiii i e e e eans 6
SecurityContext Propagationoceeuueioieuiiieiiiie ettt e e 6

L1 =TS o 11T (P 6

o To] N CT=] o1 AT U] o] o o] o AT 6

B> Lo == 14 11T 7

STOMP SUPPOIT ettt e e e e e e e e e aeens 7

Lo [T o PPN 7

Message PreparedStatement SEterocouii i 7

2.2. GENETAl ChANGES ...iiiiiieii i e e e e e e e 7

A AT (ST =T T PSPPI 7

Fle ChANQES ... et et 7

PN o] o 1=T o To [T aTo T AN =LY I o 7

Ignoring Hidden FileS ... e 7

Writing InputStream Payloadsoooveviiiiiiiiiii e 8

[(ST (o T =Tt (o] VA Tor= T o] U= N 8

Last Modified Filteroou i e 8

WatchService DIreCtory SCANNETccocuuuiiiiiiiiiee et 8

Class Package Changeccoiiuiiiiiiiii e e e 8

B O O g F= Ty [o =2 PSPPI 8

QIO ST T T 8

Server SOCKEet EXCEPLIONS ...ocvuiiiii i 8

TCP SEIVEN POIT ..t 8

TCP Gateway Remote TIMEOULociiiviiiiiiiiie e 8

TCP SSLSession Available for Header Mappingcccccoeveviiieiiineiiiniciieeeenn, 8

TCP EVENTS ..ot 9

(@2] o o Ul le (@ gT=TaTa =] VN0 F=T o (=] PP 9

Y o I 4 = T o = PPN 9

JMS CRANGES ..ttt et e e a e 9

Reply Listener Lazy Initializationccooiiiiiiiiiiiiii e 9

Conversion Errors in Message-Driven EnNdpointscccccovveviiieiiiiiiiiineeineeen, 9

Default Acknowledge MOOEc..iiiiiiiii e 9

Shared SUDSCHPLIONSuuiiiiiii e 10

Conditional POIIEIS ...o.veiiiie e 10

AMOP ChanQES ...eeieiiiiiii e ettt e e e e e 10

Publisher Confirms ... oo e 10

XPath Splitter IMProVEMENLSiiiiiieiiie e e e e e 10

4.2.0.RC1 Spring Integration iii

Spring Integration Reference Manual

L I I I 1 = g o = 10
GO R S e 10

Inbound Gateway TIMEOULuuiiiiiiiiieiii et 10

Persistent File List Filter Changescoovvviiiiiiiiiii e 10
Gateway CRanQESiiiiiiii e 11
Gateway Methods can Return CompletableFuture<?>ccccooooiiis 11
MessagingGateway ANNOLAtIONvvvunieriiiei e e e e e e e e 11
Aggregator CRANGEScocuuiiieii et e e e et eaa e 11
Aggregator PerformManCeoooieeuuieiiiii e 11

Output MessSageGrOUPPIOCESSONvuuiiieiieiee e e et e e e e e ee e aeaneeen 11

(S)FTP CRANGES . .eeniiiiiei et ettt e e e et e et e a et e eeaaaees 11
Inbound channel adaptersoooiiiiiiiii e 11

Gateway Partial RESUIScceuiiiii e 11
Delegating SeSSION FACLOMYccouuiiiiiiiiieeii e 11
DefaultSTIPSESSIONFACIONYiiiiiiiiie it 12
MessageSessioNCallDACKcoevuiiiiiiie e 12
WebSOCKEt ChangEScoouuiiiiiii et 12
Application Event Adapters Changesocoevuuiiiiiiiiieiei e 12

[1l. Overview of Spring Integration FrameWOLIKcc.uiiiiiiiiiiiieii e e e e e eans 13
3. Spring INtegration OVEIVIEWc...iiiu it e et e e et e e et e eaeaeens 14
I = 7= Tod (o | (o] 0] o [o [PPSR PPPPTP 14
3.2. G0oals and PrINCIPIEScuuiiiiiiie e e 14
3.3. MaiN COMPONENTS ...ttt ettt e et et e e e e e e e ea e eanaaeees 15
MIBSSATE ... ettt 15
MeESSAGE ChaNNEliieiii e 15
MeESSAgE ENUPOINT ...ttt et e e et e e e e 16

3.4. MeSSage ENUPOINTScouuuiiiiiiiii et 16
TRANSTOIMET ..ot et e e e et e e e e et e e eees 17
1 L= TP PP 17

0] 1= PP 17

S o111 T 17

F oo (=0 I 1 (o] ST PP UPTUPT 18
SEIVICE ACHVALOT .uuiiiiiiei e et e e e e e et e e eanns 18

(O g T Ta a1 A =T o] (T 18

T T o] 01T [0] - 1io] o PP UPTRPTR 19
3.6. Programming CoNSIAEratioNSoeeiiuiiieiiiiieeiiei et 20
Y o] T/ LTS 7= o o P 21
4. MeSSaging CRANNEISii et e et et e e e e e eaaas 22
4.1. MeSSAQE CRANNEIS ..ottt 22
The MessageChannel INterfaceccoviviiiiiii i 22
PollableChannel ... 22
SubscribableChannelcooiiiiiii 22

Message Channel Implementationscouoveiiiieiii e 22
PublishSubscribeChannel ... 23
QUEUECNANNEL ... e 23
PriorityChannel ..o 23
ReNdezvousSChannel oo 24
DIreCtCRANNEI ... coeiie e 24
EXECULOrCRANNEL .. .o 25

Scoped ChannEl ... 26

4.2.0.RC1 Spring Integration iv

Spring Integration Reference Manual

(O aT-Ta a1 I [0] (=T (o= o) (o] =P 26
MeSSagINGTEMPIALE ...t e e ea e 28
Configuring Message Channelscooouiiiiiiiiiiii e 28
DirectChannel Configurationccooveuiiiiiiiiiii e 29

Datatype Channel Configurationcc.oooiiiiiiiiniiiii e 29
QueueChannel Configurationcooriiiiiiiiiiii e 30
PublishSubscribeChannel Configurationccocoiveiiiiiiiieie e, 32
EXECULOrCRaNNeli e 32
PriorityChannel Configurationccoiiiiiiiiiii e 33
RendezvousChannel Configurationccooevuiieiiiieiiii e 33

Scoped Channel Configurationcooouiiiiiiiiii e 33

Channel Interceptor Configurationooviiiiiiniiieiii e 33

Global Channel Interceptor Configurationcccooevviiiiiiiiiii e, 34

AL CS I =T PP PP 35
ConditioNal WIre TaPS ..vuueeeeiiieeiiie et 36

Global Wire Tap Configurationccoeeuiiiiiiiiiiieeie e e e e e 36

Special Channels e 36

o = 1= 37
o] 11T g T @] 1S [41 PP 37
Pollable MESSAgE SOUICEc.uuiiiiiiiiie e e eaa e 37
Conditional Pollers for MeSSage SOUICESc..uuiiiiiiiiiiiiiiiieeeiii e e 38

[Tod (o | (0] [T 38

"SMANt” POIING oeniie e 38
SimpleActiveldleMessageSoUrCEATVICEccouviiiiiiiiieiiiii e 38

4.3, Channel AApLercoouiiiii e e 39
Configuring An Inbound Channel Adaptercccoiiiiiiiiiii e 39
Configuring An Outbound Channel Adapterccoiiiiiiiiiiiiii e 40
Channel Adapter EXpressions and SCrPLSccuuvvviiiiiiiieeiii e e 41

4.4. MeSSaging Bridge ..o 42
T 10T [T 1o) o PN 42
Configuring Bridgecoveiii e 42

5. MeSSAQE CONSIIUCTION ..etiiitiieiie ettt ettt et et e et e e et e e et e e et e ean e e et e eennaaes 43
T I Y TS ST Lo PP P TP PTPPTPPN 43
The MeSSage INTEIfACEcuuiiiiiei e 43
MESSAJE HEAERIS ... e 43
MessageHeaderACCESSOr AP ..o 44

Message ID GENEIALIONcc.uiieiieiii e e e e e e e ean s 45

Message IMplementationsco.u i 46

The MessageBuilder Helper ClIasscc.uiiiiiiiiiiiiiiicce e 46

(ST, L=YTSY= Vo [0 o U] o PP 48
6.0, ROULEIS .t ettt et e et aans 48
L@ YT TS 48
CommOoN ROULET PArameterSieiiiiiiiieii ettt e 50
Inside and Outside of @ Chainoooiii i 50

Top-Level (Outside of @ Chain)ooeiiiiiiiiiii e 51

Router IMpleMENLAtIONScieiiiiei e e e e e e e e 52
PayloadTyPEROULET ... e 52
HeaderValUBROULETo.uiiii et e 52
RECIPIENTLISTROULET .. ceeiiii e 53
RecipientListRouterManagementoooeuiiiiiiiiiiiieeii e 54

4.2.0.RC1 Spring Integration v

Spring Integration Reference Manual

XPaAth ROULET ... e 54

Routing and Error handling ..o 55
Configuring (GENEriC) ROULETccouuiiiiiiiieei e 55
Configuring a Content Based Router with XMLcccoovviiiiiiiniiiiiecieeeie, 55
Configuring a Router with ANNOAtiONScc.viiiiiiiiiiii e, 56

DYNAMIC ROULEIS .. ittt ettt e e e e aa s 57
Manage Router Mappings using the Control BuScccoeeviviviiiiiiiiecennns 60

Manage Router Mappings using JMX ... 60

ROULING SHP et e 60

Process Manager Enterprise Integration Patterncccooeevviviiiievinennnnn. 62

B. 2. BT e e 63
T 10T [T o) o S 63

(0] o 1T 8T aTe [=11 (-] 64
Configuring a Filter With XIMLcoouniiiii e 64
Configuring a Filter with Annotationscccooviiiiiiiii e 66

LT TS o] 11] 66
INEFOAUCTION ..t et e e e e e e e e e eaees 66
Programming MOEIoiiiiiiiiiiii e 66

L@70] a1iTo 8 g1 aTe ST o] 11 €= S 67
Configuring a Splitter using XMLoiiuiiiiii e 67
Configuring a Splitter with AnNNOtatioNSccooviiiiiiiiiiii e 68

L o[=T = (o) 68
TageTo 011 o] o PP PT PPN 68
FUNCHIONAIIEY ...ttt e e e e 68
Programming MOGEIcoouiiiiii e 69
AggregatingMessageHandler ... 69
REICASESIIAEGY ...eevvuieiiiii ettt et et e 71

(70 1] Fo Vi o] 11 1= 1 (=T | 72
LOCKREGISIIY ...ttt e e e e e 73
Configuring an AQOIrEJALONeieeiiieieii ettt e e e e e eaeas 73
Configuring an Aggregator With XMLcccooiiiiiiiiiiiicci e 73
Configuring an Aggregator with ANNOtationscccoiviiiiniiiiniiiieeeeeene, 80

Managing State in an Aggregator: MessageGroupStoreccceveeeveveineeerneeennnn 80

LR T =TS o[U L= o Vo T 82
TageTo 011 o] o PP PT PPN 82
FUNCHIONAIIEY ...ttt e e e e 82
Configuring @ RESEQUENCETcvvueiiiieei i e e e e e e e e e e e e et e e e e e eeanns 82

6.6. Message Handler Chain ... 84
T 10T [T 1o) o PN 84
Configuring @ ChaiNice e 85

B.7. SCAEI-GAINEI ...ttt 87
T 10T [T 1o) o PN 87

LT] od 1T o=] 88
Configuring a Scatter-Gather ENdPOiNtcc.uviiuiiiiiiiieee e 88

LS T I 1 (=T To I = T o =T P 90
7. Message TransfOrMatioNco..iiiiiiiiii e e e e e e e e e e e e eaaeees 93
7.1 TrANSTOMMEL .. et e et e e e et e e et e e e e eaaaas 93
T 10T [T 1o) o PN 93
Configuring TranSfOIMEriii e e e 93
Configuring Transformer with XML ..o 93

4.2.0.RC1 Spring Integration Vi

Spring Integration Reference Manual

Configuring a Transformer with Annotationsccccoeviiiiii i, 99

Header FlEr ..o et e 99
Codec-Based TranSfOrMErScouuiiiiiiiii e e e e 99

7.2, CONENt ENFICRET ...t e s 100
INEFOAUCTION ..t ettt e e e e et e et eean s 100
Header ENFICNEE ... e s 100
Header Channel REJISIIYocvviiiiii e e 101

Payload ENFCNET ... e 102
CONFIGUIALION .ot 103

EXAMPIES ..o 104

7.3, Claim CRECK ... e 106
T 10T [T 1o) o [106
Incoming Claim Check Transformerccooeviiiiiiiiiii e 106
Outgoing Claim Check Transformerooviiiiiiiii e 107

A WOrd 0N MESSAJE SEOTE ...ceutuiiiiii ettt e et e e e e eeere e eees 108

A T o To [o PP 109
INEFOAUCTION ..t ettt e e e e et e et eean s 109
EncodingPayloadTranSfOrmeroi i 109

(D= ToTo o [TaTo LI =T 0153 (0] 1 /0= S 109
CodeCMESSAGECONVEITET ...ttt e et e e e e e e e e aeens 109

K Y0 e 109
CUSLOMIZING KIYO oo e e e e e 109

8. MeSSagiNg ENUPOINTSeuniii it et e 112
8.1. Message ENUPOINTScoouuniiiiiiiiei i 112
MESSAGE HANAIEKiiecii e e e 112
EveNnt DrVEN CONSUMETuiitiiiiiieie ettt e e e et e et e e e eeenas 113
POING CONSUMET ...ttt et 113

I F T oE] 0 F= Tt TS T] Lo N 114
Change Polling Rate at RUNIMEooiiiiiiiii e 119
Payload Type CONVEISIONc.uuuiiiiiii ettt et e e e eene e eees 119
ASYNChronous POHINGoiie e 121
ENdpPoint INNEI BEANScuuiiiiiiiiiieee et 121

8.2. ENAPOINt ROIESuiiiiiiii e 122
8.3. MESSAQING GALEBWAYS ...vvvuiieinieeiiieeiiieei e et e e et e e et e e et e e e e et e e et e e ean e eean e eaneeanns 123
Enter the GatewayProxyFactoryBeancccoviiuiiiiiiiiiiiiii e 123
Gateway XML Namespace SUPPOITcoevueiriieiieieree et e e e eeens 123
Setting the Default Reply Channel ..o 123
Gateway Configuration with Annotations and/or XMLccooviiiiiiiiniiinneennnn. 124
Mapping Method Arguments t0 @ MESSAJEuvveiiiiiiieiiiiiieeeei e 125
@MessagingGateway ANNOLALIONc.uviiuiieiiieir e 127
Invoking No-Argument Methods ... 127
Error HandliNgooeeei e 128
ASYNCHIONOUS GAEWAYuuivveeiiiieeiieeeieeei e e et e e e e et e e et e e et eeaaeeaaaeeeanaeeanaaes 129
INEFOAUCTION ..t et e eb e e ees 129
LiStenablEFULUIEcceeiie e 130
ASYNCTASKEXECULOK .. cevuiiiii e e e e e e e e e e e eanaeees 130
CompletableFULUIE ... e 131

Y= (o (] G o 1] 411 132

Gateway behavior when no reSponse arfivesccocvuveveieiiiiieeii e eeee e 133

8.4, SEIVICE ACHVALOK ...ceiiiii ittt e et et et e e e eea e 135

4.2.0.RC1 Spring Integration Vii

Spring Integration Reference Manual

T To [N Tl 1o o ER OO 135
Configuring ServiCe ACHVALOTccuuiiiiiiiii e 135

8.5, DBIAYET ... 137
T To [N Tl 1o o ER OO 137
ConfiguIING DEIAYET ... et e 137
Delayer and MESSAgE STOTEcoeeuuuiiiiiii it eeees 139

SIS Yol o)] o =] o] Lo] 1 P 139
SCript CONFIGUIALION ...t e e 140

8.7. GrOOVY SUPPOIT ..ttt ettt ettt ettt e et et e e e et e e e e e e eees 142
GrooVvy CONFIQUIALIONuiiii e e e e e eeens 142
(7] a1 (0] I = 1= PP PTRPPR 143

8.8. Adding Behavior t0 ENAPOINESuuiiiiiiiiiiiii e 144
Provided AdVICE CIAaSSES ...cccuuuiiiiiiiieeiii et et eeeai e eees 145
RELIY AGQVICE ... 145

Circuit Breaker AGVICEco.uiiieiieiie et e e e e e e e 151
Expression Evaluating AdVICEocvuuiiiiieiii e e e e e 152

CUSLOM AAVICE CIASSESieiiiiiieeii et eeans 152
Other Advice Chain EIEMENTScccuiiiiiiiiiii e 153

F N AV g T 1 (= £ 153
Advising Endpoints Using ANNOLALIONScocuuiiiiniiiiiieeii e 153
Ordering Advices within an Advice Chainccoooiiiiiiiiii e 154
Idempotent Receiver Enterprise Integration Patternccoooeveveviiiiiiinieinnnenns 154

8.9. Logging Channel AApLer ... e 156
9. SyStEM MaNAGEMENTeeiiiiti ettt ettt e 157
9.1. Metrics and ManagemMENLcccuuiiiiiieii e ee e e e e e e e e e aae 157
Configuring MEtriCS CAPLUIEc.uuiiii it eaa e 157
MessageChannel Metric FEAtUIESiiiiiiiiiiiiii e 158
MessageHandler Metric FEAtUIEScc.uviiiiiiii i 159
Time-Based Average ESHMALESoiiuiiiiiiiiie e 159
MELIICS FACIOTY .ottt e e e e e eaeans 160

LS TN 11 QS T o oL 161
Notification Listening Channel Adapter ..o 161
Notification Publishing Channel Adapterc.ooviiiiiiiiiiin e 162
Attribute Polling Channel Adapterccoovuiiiiiii e e 163
Tree Polling Channel AdapLer 163
Operation Invoking Channel Adaplercoooieviiiiiiiii e 163
Operation Invoking Outbound Gatewaycceuvviiiieiiiieriii e e 164
MBEAN EXPOITEL ..ttt ettt e e e e e eaaes 164
MBean ODBJECINAIMESuiiiiiiiiieeie e 165

1Y G] 01 €017 1= £ 166

Orderly Shutdown Managed Operationccoveeuieiiiiiiiieeieeeee e 168

9.3, MESSAGE HISIOIY ..ottt 168
Message History Configurationcc.uiiiiiiiiiiiici e e e e e 169

9.4, MESSAGE STOME ..eiiiiiitiie ittt ettt et e et e e et et e e e e e e eaas 170
S T Y 11 = To F= L= T (o] = P 172
Idempotent Receiver and Metadata StOrecoovvvviviiiiiiiii e 173
MetadataStOreLISIENETiie e 173

LS I T O a1 o I =1 L 173
9.7. Orderly SRULAOWN ... e e e e e 174
V. INtegration ENAPOINTSuiiiiiii e et e e et e et e e e e et e e e e eaa s 176

4.2.0.RC1 Spring Integration viii

Spring Integration Reference Manual

10. Endpoint Quick Reference Tableccouiiiiiiii e 177
11, AMQP SUPPOI .ttt ettt ettt et et et e e e et et et e et e e e e e e e e e e a e eaae 181
5 O 0 T [T o) o P 181
11.2. Inbound Channel AdapLerooviiei e e e e 181
11.3. INDOUNT GAIEWAYuietiiiiieiit ettt e et e e e e et e e et e e e e eaens 184
11.4. Inbound Endpoint Acknowledge MOdecoooiiiiiiiiiiiiiei e 185
11.5. Outbound Channel AdAPLeriiiiiieie e e e eaes 185
11.6. OUIDOUNT GAIEWAYuiveiiiteeei ettt et e et et e e e e e et e e e e ean e aeees 187
11.7. AMQP Backed Message Channelscooouiiiiiiiiniiiiii e 189
11.8. AMQP MeSSage HEAUEIS ...ccuuiiiiieiii e e e e e e e e ees 190
11.9. AMQP SAMPIES ..o 191

12. Spring ApplicatioNEVENT SUPPOITcieeiiieieiii e 193
12.1. Receiving Spring Application EVENLSoviiiiiiiiiciii e 193
12.2. Sending Spring ApPPlICatioN EVENLSoiiiiiiiiiiiiei e 193

13, FEEU AGAPIET ..ot 195
IR 700 O [1 1o To [o 1T o I PP 195
13.2. Feed Inbound Channel Adapter ... 195

I [T o] oo APPSR PPPTR 197
It O [g1 o To [o 1T I PP 197
14.2. ReAdING FilES ...t 197
NaMESPACE SUPPOIT ...eeieieeiiei ettt et e r e e e e 198
WatChServiceDireCtOrYSCANNENuuiiiiieei i e e e e e e eaens 200

Limiting Memory CONSUMPLIONiiuniiiiiiiiee et e e 200

TAI'ING FIES oo e 201

I O 1Y 1T T T 11 P 202
Generating Filenamesocuu i 202
Specifying the OUtPUL DIr€CIONYc.uuuiiiiiiii e 203

Dealing with Existing Destination Filescccoiviiiiiiii e 204

File Outbound Channel Adapter ..o 205

OUDOUNT GAIEWAYoeviiiiiiiii et 205

14.4. File TransfOrMErS ...ttt e et eeeera e eeees 206
L1A4.5. File SPHIET «..eeiee e ettt e e e e e e e eaes 206

15, FTP/FTPS AGGPIEIS .euniieiiiiiiiiiiiie ettt et e e e e e e e ettt s e e e e e e aeeabba e e e eaaeeaene 208
L 700 O [1o To [o 1T o I PP 208
15.2. FTP SESSION FACLOMY ...ceuniiitiiiii ettt e et e et e e e eees 208
15.3. Delegating SeSSION FACIOMYcccuuuiiiiiiiiiiiiiii e 210
15.4. FTP Inbound Channel AJapterovivuioriiiieie e e e 210
15.5. FTP Outbound Channel Adapter ..o 213
15.6. FTP OUthoUNd GAEWAYceuuiiiiiiieeiiiii et e ettt e et e e et e e e et eeena e eeens 215
Outbound Gateway Partial Success (mget and mput)cccoevveveeiiieviineeeieeennnn. 218

15.7. FTP SeSSION CaAChiNguieeiiiiiiiii et 219
15.8. ReMOtEFIleTEMPIALEccooviiiiii e 220
15.9. MessageSessionCallbackcooouuiiiiiiiiii 220

16. GEMFITE SUPPOIT ettt ettt e et e et et et e e et e e et e e et e eanaaeees 221
G0 R 0T [T o) o P 221
16.2. Inbound Channel AdapLerooviuiiiii e e e 221
16.3. Continuous Query Inbound Channel Adaptercocoiviiiiiiiiiiii e, 221
16.4. Outbound Channel Adaptercooouiiiii e 222
16.5. GEMIire MESSAQGE SEOIE ...cvevuiiii i e e e e eees 223
16.6. Gemfire LOCK REQISIIYeeiiii e 224
4.2.0.RC1 Spring Integration ix

Spring Integration Reference Manual

16.7. Gemfire Metadata StOreccoevririiiiieiiiiii e e 224
O o I 1T o] o o] A PP UPTPPT 226
A R 0 T [T o) o P 226
17.2. Http INDoUND GAEWAYcvvvnieeiiiei e e e e e e e e eees 226
17.3. Http Outbound GAatEWAYoceuuiiiiiiiiie e 227
17.4. HTTP NameSPaACE SUPPOITevunieiiieii ettt e e e eeens 229
INIFOAUCTION .. e e 229
INDOUNG ..o et e e e e e e e e e e 229
Request Mapping SUPPOITcoouuueiiiiie et e s 229
Cross-Origin Resource Sharing (CORS) SUPPOItccvvneviiieriiiieii e eeeeeeeieeeenn 231
RESPONSE STAIUSCOUE ...ttt e e 231
URI Template Variables and EXPreSSiONSc..ovveiiiinieiiiiieeiiiiie e 232
L@ 10 11'¢ o] 0] o o PSP 233
Mapping URI Variables ... 234
Controlling URI ENCOTING ...cevvviiiiiiiieee et 235
A T I =0 10 = o | T T 236
17.6. HTTP Proxy CONfIQUIAtIONcc.uiiiuiiiiiiiiii e e eae e 238
17.7. HTTP Header MapPinNgs .. .cccuuueieeiiaeeiiiaee ettt e et e et e e e et e e eenin e eeens 239
A S T o I ST U]][240
Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway
1] V=] o PP PRSPPI 240
RS TN 13 = T @ T o o o] A 242
18.1. Inbound Channel AdApLeroieu i 242
PolliNg and TranSACHONSuuiiiiiiiieeiiii et e e e e eeens 243
Max-rows-per-poll versus Max-messages-per-pollc.cccoceviviiiiiiniiiiineviineennnn, 244
18.2. Outbound Channel AdAPLETiieiieei e 244
18.3. OUDOUNI GAIEWAYciiiiiieiiiiiee ettt ettt e e 246
18.4. IDBC MESSAQE STOME ...ivuiiiiiiieiiieei e et et e e e e e e e e e e e e e e e e e ea e an e aneeanns 247
The Generic JDBC MeSSAJE STOMeccuuiiiuniiiiieiii et eaas 247
Backing Message ChannelSoiiiiiiiiiiii e 248
Initializing the Databaseccuuieiiiiiiii e 250
Partitioning @ MESSAg@ STOMEcccuuiiiiiiii e 250
ST} 1o (=T I o o Tod =To (1 = 250
SUPPOrtEd DatabASESovvviiiiiiei e 251
(7] 01 To 01 7= 11 o] o IS PP 251
Common Configuration AMDULESco.uuiiiiiiiiii e 251
Common Configuration SUB-EIEMENLSccvviiiiiiiie e 253
Defining Parameter SOUICESc..iiiuiiiiiiii e 254
Stored Procedure Inbound Channel Adapterccoovevviiiiiiiiiiiiieee e 255
Stored Procedure Outbound Channel Adapterccoovviviiiieiii e, 256
Stored Procedure Outbound GateWAYcoeunieiiiiiiiiiiiieei e 257
EXAMIPIES o 257
RS T | N T o o Lo N 259
19.1. Supported Persistence ProViderscoiiiiiiiiiiiiii e 259
19.2. Java IMPIEMENTALIONc.uuiiiiiii e 260
19.3. NAMESPACE SUPPOIT ounieiiieeti ettt e e e e e e e et e et r e e e e e e e e ea e enaeenaeanaeanns 261
Common XML Namespace Configuration Attributescoooiiiiiiiiiinnn, 261
Providing JPA QUErY Parametersc.uuiiiiiiiiieiiiii e 263
Transaction HandliNgcc.uoeviiiiiiiie e e e e e 263
19.4. Inbound Channel AApLEroiiu e 264
Spring Integration X

Spring Integration Reference Manual

Configuration Parameter REfErenCecocvuviiiiii i 265

19.5. Outbound Channel AdPLETiiiiieii e 266
USING aNn ENLItY CIASS ...cceveiiiiiiiiei et 266

Using JPA Query Language (JPA QL) ..oviviiiiiiiii i 266

USING NatiVe QUETIES ...ttt et e e et e e e eaa e eees 267

UsSiNg Named QUETIESu.iiiiiii ettt e e e e eeaa e e e 268
Configuration Parameter REfEreNnCecocvuviiiiiiiiiii i 269

19.6. OUIDOUNT GAIBWAY'S ... cevueieteiit ettt et e e e e et et et e e e e e e e et e e eaneaenas 270
Common Configuration Parameterscovvviiiiiiiiiiiiee e 271

Updating Outbound GatEWAYccuuieviiiiriiieiiiieeiie e e e e e e e e e e e e e e e e 272
Retrieving Outbound GatEWAYceuuiiiiiiiieeii e e 273

JPA Outbound Gateway SamPpPlescooiiiuiiiiiiiiiieiei e 274

2 TR 1 T T o] o Lo ¢ P 276
20.1. Inbound Channel AQAPLETu i 276

LI = 1 57= 1o 1o o PP 277

20.2. Message-Driven Channel Adapterovvvuiiiiiiieiin e e 277
INbound CONVEISION EITOIS ...coviiiiiiiii e 278

20.3. Outbound Channel AapLercoouuuiiiiii e 279
TPANSACHONSieeiiieeeiie ettt ettt e e e e et n e e et e e een e n e e e e e eeene 279

20.4. INDOUNT GAIEWAYietieiitieeei ettt e e e et e e e e e e e e e e aeanas 279
20.5. OUtDOUNT GAEWAYccvvuiieiiiiiieee it e e eees 281
ALLIDULE REFEIENCEvviii e 282

20.6. Mapping Message Headers to/from JMS MeSSaQgeoevevmiiiiiiiiiineiiiiiieieeennnnn 284
20.7. Message Conversion, Marshalling and Unmarshallingcccc.ocoiiiiiiiinnenes 285
20.8. JMS Backed Message Channelsco.oviviiiiiiiiiiin e 285
20.9. Using JMS MeSSage SEIECLOISiiiiiiii i 287
20.10. JMS SAMPIES ..oeiieiiii e 287

20 I 1 - V1 S T 0o 0T N 288
21.1. Mail-Sending Channel Adapter ..o 288
21.2. Mail-Receiving Channel Adaplerovoieiiiioieii e 288
21.3. Mail NameSpaCe SUPPOIT ...c.uuieeiiiii e ee e e e e e et e e e e e e e e e e et e e e e eanaaees 289
21.4. Email Message Filteringccuuiiiiuiiiiiii e 292
21.5. Transaction SYNCRroNIZAtIONcccuuuiiiiiiiiii e 293

2720\ o g o To] o RS U o] o o] o (P 295
22.1. INFOTUCTION ...eeiiiieeeet ettt e e e e e e e e e e e e e e s 295
22.2. Connecting t0 MONGODD ...t 295
22.3. MONQODB MESSAQE STOME ...ieuiiiiiiieeiiee et e e e et e e e e e e e e e e en e enaeaneeen 296
MongodDB Channel MeSSage StOreooceuuiiiiiiiiiiiiieee e 297
MonNgodDB Metadata StOreccoeuuuiiiiiiiiieiii e 297

22.4. MongoDB Inbound Channel Adapterovveviiiiiiieeie e 298
22.5. MongoDB Outbound Channel Adapter ... 300

23, MQTT SUPPOIT ettt ettt et et e e n e e et et et e e e e eenn e 301
P2 T B [o T [0 Tox o] o ISP 301
23.2. Inbound (message-driven) Channel Adapterccoooeiiiiiiiiiiiiie e, 301
Adding/Removing Topics at RUNLIMEooiiiiiiiiiiiii e 302

23.3. Outbound Channel AApLercouuiiiiiii e e 302

24, REAIS SUPPOIT .ttt ettt et et et e e et e e ean e eaes 304
2 T [o1 o o (U] 1T o I PP 304
2 ©1e)] = Tod 1o N (o T = =T [304
24.3. Messaging With RISco.uiiiiiii e 305

4.2.0.RC1 Spring Integration Xi

Spring Integration Reference Manual

Redis Publish/Subscribe channel ..., 305

Redis Inbound Channel Adapter ... 305

Redis Outbound Channel AJapterc.iiiiiiiiiiei e 306

Redis Queue Inbound Channel Adapterco.ovevuiiiiiieii e 306

Redis Queue Outbound Channel Adapterccooooiiiiiiiiiiiiii e 307

Redis Application EVENISiiiiiiiieiiii e 308

24.4. RediS MESSAQE STOMEcivueiii i eiii e ettt e e e e e e e e e e et e e e eanas 308
Redis Channel MeSSage SEOIEScouuiiiiiiiiiieei e 309

24.5. Redis Metadata StOrecoouiiiiiiieii et e e e 309
24.6. RedisStore Inbound Channel Adapteroovvvieiiiiiii e 310
24.7. RedisStore Outbound Channel Adaptercooiviiiiiiiii e, 312
24.8. Redis Outbound Command GateWaYccceuuieiiriiiieiiiiieeee e 313
24.9. Redis Queue OuthouNd GAtEWAYuvevuuieiiiieiiiieeeiiee e rer e e e e et e e e eanaeeeen 314
24.10. Redis Queue INbouNnd GatEWAYc.viiuuiiiiiiieiieiii et 314
24.11. RediS LOCK REQISIIYuuiiiiiiiiieieii et 315

A T = =T 0T8T 0] o] Lo 317
P2 I [0 (o o [FTod 1o o PP UP PP UUPTR PR 317
25.2. Resource Inbound Channel Adapteroooieiiiiiiiiiiiii e 317

24 ST oY IS T o] o o1 A 319
26.1. INEFOTUCTIONiieee et et e e et et e e et eaea e eeanas 319

P2 70 @ ¥ o o 8T To I = 1V P 319
26.3. INDOUNA RMI ..ottt e e e s 319
26.4. RMI NAMESPACE SUPPONT ..eeieieiieeieee et e ettt e e et et et e e e e e e e e eenaens 319

27. SETP AJAPIEIS ...ttt ettt ettt et e r e e aaans 321
P2 A S 1o o [T 1 o o PSP 321
27.2. SFTP SeSSION FACIOIYuuiiiiiii et 321
Configuration PrOPErtIEScooeuiiiiiiii et 322

27.3. Delegating SeSSION FACIONYccvuiiiiiiiiiie e e e 324
27.4. SFTP SeSSIioN CaChINGccuuiiiiiiiiiiee e 324
27.5. ReMOteFIleTEMPIALEcooviiiiiii e 325
27.6. SFTP Inbound Channel Adapterovviuieiiiiei e e 325
27.7. SFTP Outbound Channel Adaptero e 327
27.8. SFTP OUthoUNT GAIEWAYccevuiiiiiiiieeiiii ettt et e e e et e eeeainaaaees 328
Outbound Gateway Partial Success (mget and mput)cooevveveeiiieiiineeeeeeennnn. 332

27.9. SFTP/ISCH LOGGING .. eettteiitiiiaae ettt ettt e e ettt e e e e e e esraae s 333
27.10. MessageSessionCallback ... 333

24 TS T I 11,1 =T o oL 334
28.1. INIFOTUCTION ...ttt et e e e et e et e e et e e ea e eeanas 334

B I © 1= V1 S 334
28.3. STOMP Inbound Channel Adapterccoieiiiiiiiiici e, 334
28.4. STOMP Outbound Channel Adaptero 334
28.5. STOMP Headers MapPiNg .. .cccuuueeeiuiieiiii ettt 335
28.6. STOMP INtegration EVENLScvvuieiiieiiie e e e e e e e 335
28.7. STOMP Adapters Java Configurationcooeeuiiieiiiiiiiniiiee e 336
28.8. STOMP NamMeSPaCE SUPPOITuueirieirieieiee et et e e e e eees 337

A4S ST (== 1 4 IS T U o] oo o A 339
A I I [0 (o o [FTod 1o o PP UUPTRUPTRN 339
29.2. Reading from SIMEAMSciiiii et e et eeeba e eees 339

A IS T VAV 11T o (o TS £ (== 0 339
29.4. Stream NameSPACE SUPPOIT ...cuuieeieieie ettt e e et e e e e e eenaeens 339

4.2.0.RC1

Spring Integration Xii

Spring Integration Reference Manual

1CT0 TS V751 (oo IR T U o] o o] o AP 341
10 % [o1 o o [FTod 1o o PP UP PP UUPTR PR 341
30.2. Syslog <inbound-channel-adapters>ccooooiiiiiiii e 341

Example Configurationooiiiioiiiiiiii e e e 341

31. TCP and UDP SUPPOIT ..ttt ettt ettt e e e et et e e e e e et e e ean e eanaaeees 344
30 T [o o [Td 1T o I PP 344
G 7 U 1 Yo F= 1) (=1 = 344
31.3. TCP CONNECLION FACLOMESuiiitiiiitieeei et e e e e ea e 346

TCP Caching Client Connection FaCtOrYiveiiiiiiiieiiiiiieecii e 349
TCP Failover Client Connection FaCtOryccccuuiiiiiiieiiiieii e 349
31.4. TCP ConNection INtEICEPIOISiiuu ittt e e eeens 350
31.5. TCP CONNECON EVENLS ..ccuuiiiiiiieiiee et e e e 351
3 I G T 1O = A = o) =1 =N 351
31.7. TCP GAEWAYS ...euiruiitneeteiiaet ettt et et et et e et e et et et e et e ea e e e e e e e e aenaees 353
31.8. TCP Message CoOrrelationcoveieuuiiiiiiiiieiii et 354
OVEIVIEW ...ttt ettt e e ettt e e e e ettt e e ettt e e e e e atreeeett e e e eentnaaaaes 354
GALBWALY'S ..etniteit ettt ettt ettt ettt e e e e e et e e ea e aaaas 354
Collaborating Outbound and Inbound Channel Adaptersc.ocoiiieiiiiinnenen. 354
Transferring HEAUEISovvu i e e 355
31.9. A NOte ADOUL NIO ... 357
Thread Pool Task Executor with CALLER_RUNS Policycccoovviiiiiiiieiinnnnnn. 357
31.10. SSLITLS SUPPOI .uuiiiiieitee it e e e e e e e e e e e e e e e e e e et e et e e et e eanaeeanas 359
OVBIVIBW ..ttt e e et e et et e e et e e et e e et e eean s 359
GetliNG STAMEAiiiiii et 359
Advanced TECHNIGQUESccuuuiiiiie e e e e e e e e aes 360
31.11. IP Configuration AIDULESoiiiniiiiii e 361
31.12. IP MeSSage HEAUERIScoviiiiiiiii et 368
31.13. Annotation-Based Configurationccoviiiiiiiiiiiiie e 368

Y K110 1T o] o Lo] ¢ APPSR 371
2205 T [o1 o o (U] 1T o I PP 371
32.2. Twitter OAUth Configurationoiiiuiiiiii e e 371
32.3. TWItter TEMPIALE ...t et e eaa s 371
32.4. Twitter INDOUNA AAPLETSoviiiiiii e e 372

Inbound Message Channel Adapterooovviiriiiiiie e 373
Direct Inbound Message Channel Adapterco.vviiiiiiiiiiiiic e 373
Mentions Inbound Message Channel Adaptercoocoeiiiiiiiinieiiiineeeeees 373
Search Inbound Message Channel Adaptercoovvveiniiiiiieeieee e 373
32.5. Twitter OUtboUNd AJAPLELiie e e 374
Twitter Outbound Update Channel Adapterccoiiiiiiiiiiieiiie e, 374
Twitter Outbound Direct Message Channel Adapterccoovvveiviiveiiineeineeennn. 375
32.6. Twitter Search Outbound GAatEWAYocieuiiiiiiiiiiiii e 375

33, WEDSOCKELS SUPPOIT «..eeeeeiiii ettt e e 377
13 0 I 1o o U Tox 1 o] o PSP 377
3.2, OVEIVIEBW ettt et e et e et e et e e et e e e e e et e e e e eaneeeen 377
33.3. WebSocket Inbound Channel Adapteroviiiiiiiiiiiiic e 378
33.4. WebSocket Outbound Channel Adaptercocvviiiiiieiii e 379
33.5. WebSockets Namespace SUPPOITceue it ea e 380

34. WED SEIVICES SUPPOIT . .ceitiieeiiiti ettt ettt ettt e e et e e et e e e et e e e eat e e eenenaaeees 384
34.1. Outbound Web Service GatEWayscc.uviviiiiiiiiieiiieeiieerene e e e e eaanns 384
34.2. Inbound Web ServiCe Gat@WaYScc.uiiiuuiiiiiieiiiieeii e e e 384

4.2.0.RC1 Spring Integration Xiii

Spring Integration Reference Manual

34.3. Web Service NameSpace SUPPOITcvuueiernieiieeeiiierieeee e e e e e et e s e eaneeeenns 385
34.4. Outbound URI CoNfigUIatioNcouuiiuniiiiiieii e 386

35. XML Support - Dealing with XML Payloadscccuuiiiiiiiiiiiiiiiieee e 387
LT I 1o o U T 1 o o PP 387
35.2. NAMESPACE SUPPONT ...ceeetieeteete et e ettt e et et e et e et e et e et e e e e e e e e eaeees 387
XPath EXPreSSIONSciiiiiiiiiiiii et 388

Providing Namespaces (Optional) to XPath EXpressionscccceeeenn.. 388

Using XPath Expressions with Default Namespacesc.c.cccoveveviiinnnnens 389

35.3. Transforming XML Payloadsccouuiiiiiiiiiiiiii e 390
Configuring Transformers as BEANScoovvieiiiieiiiiieii e ee e 390
UnmarshallingTransformer ... 391
MarshallingTranSfOrMEri i 391
XsltPayloadTransSfOrmeroooeuiiiii i e 391
ReSUITIANSTOMMEIS ... 392

Namespace Support for XML Transformersccoiviieiiiiiiiiiiiiieeceeeeiieees 393
Namespace Configuration and ResultTransformersccooovviiiiiiviiieneeen, 394

35.4. Transforming XML Messages Using XPath ..o 396
35.5. SPlitting XML MESSAGESuuiiiiiiieiiiiiiee ettt e s 397
35.6. Routing XML Messages Using XPathccccouiiiiiiiiiiiiiiii e eis 398
XML Payload CONVEITETccuuiiiiiiiee et ea e eees 400

35.7. XPath Header ENFCRETcouniiii e 400
35.8. Using the XPath FIlErcocuiiiiiiii e eees 401
35.9. #xpath SPEL FUNCLIONoiiiii e 402
35.10. XML Validating Filteroooiiiiiiii e 403

1G] T 1Y, S T o] o Lo o 404
36.1. INIFOTUCTION ...ttt et e e et e e e et eaea e eeanas 404

KT I 1Y, | = = @ o s 1= Tox 1T o N 404
36.3. XIMPP IMESSAQES ..euuteuienitieit et ieet et et e e e e e et e et aan e ean e e e e e ea e en e anaeenaeaneeanns 405
Inbound Message Channel Adapterocoeuiiiiiiiiii e 405

Outbound Message Channel Adapter ... 405

36.4. XMPP PIESENCEoniiiiiiiie ettt et et 405
Inbound Presence Message Channel Adaptercoooeeiiiiiiiiiiii i, 406

Outbound Presence Message Channel Adapterocoeiiiiiiiiinieiiiiineeiiie, 406

36.5. Advanced Configurationcc.iveiiiiriiiieee e e 407

37. ZOOKEEPEI SUPPONIT ...ttt ee et ettt et ettt e e e et e et e e et e e e e e an e e e et e aeaneaeens 408
A% T [o1 o o [Td 1T o I PP 408
37.2. Zookeeper Metadata StOrecccuuiiiiiieiii e 408
37.3. Zookeeper LOCK REQISIIYc.uuiieiiiii et 408
37.4. Zookeeper Leadership Event Handlingcccoooviiiiiiiiiiiiin e 408

RV TR Y o] o =1 Lo [T = 410
A. Spring Expression Language (SPEL)coeuniiiiiiiiee e 411
N I [11 o T [T o o PP 411

A.2. SpEL Evaluation Context CustomMizationcocvuuiieiiiieiiiieriin e 411

A.3. SPEL FUNCLIONS ...t et 412

A4, PrOPEITYACCESSOIS ...cviiiieieeei ettt ettt ettt e e e e et et e et e e e e neenes 413

B. Message PUDIISNINGooue i 415
B.1. Message Publishing Configurationcoceuiiiiiiiiiiii e 415
Annotation-driven approach via @Publisher annotationcccccoiveiiiinnenes 415
XML-based approach via the <publishing-interceptor> elementccccecoe.... 417

Producing and publishing messages based on a scheduled trigger 419

4.2.0.RC1 Spring Integration Xiv

Spring Integration Reference Manual

O I T g 1S Vo 1o T TS U o) o A 421
C.1. Understanding Transactions in Message flowscccoooiiiiiiiiiiiiine, 421
Poller Transaction SUPPOITuuiiiiie e 422

C.2. Transaction BOUNGAIIESuiiiiiiiiiiiiiie et e e e e eeaenns 423

C.3. Transaction SYNChroniZationocceuioieiiiiiie e 423

C.4. PSEUAO TraNSACLIONS ...ieuuiiiiiieiiieei et e e e e e e e et e e e e e e et e e e e e et e eeneeenns 425

D. Security in Spring INtEQrationcc.uieiiiiiii e e e 427
[20 I 11 7o To [0 Tox i o] o FU PP 427

D.2. SECUNNG CRANNEIS ... et 427

D.3. SecurityContext Propagationceeeuiiiiiierii e e e ee e e e e e eaneen 428

E. Spring Integration SAmPIESco.u i 430
S T 101 o o (1 T4 1T o 430

E.2. Where t0 get SAmMPIES ..oovuiiiiii e e e 430

E.3. Submitting Samples or Sample REQUESTScouuiiiiiiiiiiii e 430

E.4. SAMPIES SITUCIUIE ...oeeiniieiii ettt e s 431

ST T T o] o] =P 432
LOAN BIOKET ..oeieiieii e et 433

The Cafe SAMPIE ... e 437

The XML Messaging SampPlecoceuiiiiiiiiiee e e e e e e e 441

[o] oo B] =11 Te] o H PPN 442
St O 1 1 Yo [o £ o o PP 442

{7 N\ F= T g =TS o = Vo TS T U o] o o o A 442

F.3. Configuring the Task Scheduler ... 443

F.4, Error HANAING ..coovei ettt 444

T € (o] o T | I o 0] 0 1= 1= 445

F.6. ANNOAtION SUPPOIT ...t et e e e e e e e e e ean s 446
Messaging Meta-ANNOLAtIONSuiiiiiiiiiiiiiii e 450
ANNOLAtioNS 0N @BEANSuuiiiiiii e 450

Creating a Bridge with ANNOAtiONSc..viiuiiiiiii e 451

Advising Annotated ENAPOINTSocoiuuiiiiiiiieii e 452

F.7. Message Mapping rules and CONVENLIONSccuuviviiieiiiieiii e e e e 452
SIMPIE SCENATOS ...ttt e e e e e 452

COMPIEX SCENANIOS ...ttt 454

LC o [0 [1 (o] g F= LI ST=T Yo U o = PP 456
G.1. Spring INtegration HOMEiiiiiii e e 456

H. Change HISIOTYiiiii et 457
H.1. Changes between 4.1 and 4.2ooiviiiiiiiiiie e 457

H.2. Changes between 4.0 and 4.1 ..o e 457

NEW COMPONENTS ...ttt et e e e ea e enas 457
Promise<?> GalEWAYcvevuiiiiiieiiiieiie e e e e e e e e e e e e e e e eaaaees 457

WEDSOCKEE SUPPOIT ... 457

Scatter-Gather EIP PAtterncooeuuiiiiiiiiieiii e 457

ROULING SHP Patternc.uiiiiiii e e e e e 457

Idempotent Receiver Pattern ..o 457
B0OONJISONODJECIMAPPET ...t e 457

RediS QUEUE GAEWAYSueveeeiiiieiiiieeeiee i e e e e e e e e et e et e et e e e eeeens 457

POHSKIDAGVICE ... e e 458

GeNEral ChANGES .. .ooiiiiiiii et 458

AMQP Inbound Endpoints, Channelcccooooiiiiiiiiii e 458

AMQP Outbound ENdPOINtSoiiiiiiiieii e 458

4.2.0.RC1 Spring Integration XV

Spring Integration Reference Manual

SIMPIEMESSAGESIONEiiiiiiii e e e e e e eaes 458
Web Service Outbound Gateway: enCOde-Uricccuiviiuieiiiniiiiieiiieeennnn. 458
Http Inbound Channel Adapter and StatusCodecccoeveeiiiinieiiiiinnenenn, 458
MQTT Adapter ChanQesccvvuiiiiiiii e 458
FTP/SFTP Adapter Changesocoeuiiiiiiiiiiieiiieee e 458
Splitter and HHEratori i 459
00| (=T = (0] 459
Content Enricher IMProvemMeNnts ..o e 459
Header Channel REGISIIYccouuuiiiiiiiiieee e 459
Orderly ShULdOWNcoeeii e e e e e 459
Management for RecipientLiStROULETc.viiiiiiiiiic e 459
AbstractHeaderMapper: NON_STANDARD_HEADERS token 459
AMQP Channels: template-channel-transactedc.ccoeevviiieviineiinen, 459
SYSIOQ AGAPLEE ...t 459
ASYNC GALEWAY ...evviieeiiiiiee ettt ettt 460
Aggregator Advice Chainc.oviiiiiiiii e 460
Outbound Channel Adapter and SCrPtSccuuiiiiiiiiiiii e 460
ResequeNCer ChaNQESoooiiiiiiiiiiii et 460
Optional POJO method parameterovvviiiiiiiieii e e e 460
QueueChannel: backed QUEUE tYPEc.uiiiuniiiiiiieiiee e 460
Channelinterceptor Changesooeeuuiiiiiiiie e 460
IMAP PEEK ... ittt e 460
H.3. Changes between 3.0 and 4.0 ... 460
NEW COMPONENTS ...ttt et ea e eenas 460
MQTT Channel AdAPLerscooviiiiiiie e e e 460
@ENADBIEINIEGrationoiiiiie e 461
@IntegratioNCOMPONENESCANuuiiiiiiiei it 461
@ENAbIEMESSAQEHISIONYuiiiiicii e 461
@MESSAGINGGAIEWAYceeieeii it e ettt e et e e e e et e e i e ean s 461
Spring Boot @EnableAutoConfigurationcccooeveiiiinieiiiiinneci e, 461
@GIlobalChannellNterCePLOrocvuu i e 461
@INtEgratioNCONVEITEL it e e e e e e e ea e eees 461
@ENADBIEPUDIISNET .. cveeieee s 461
Redis Channel Message StOrEScicvvveiiieiiii e 461
MongodDB Channel MesSage StOrecoceuuiiiiiiiiiiiiiii e 462
@EnablelntegratioNMBEaNEXPOItcoeuuiiiiiiiiiiiiiii e 462
ChannelSecuritylnterceptorFactoryBeanccoovveiiiiiiieeiiecii e eeees 462
Redis CommMaNnd GAatEWAYoviiuuiiiiiiiiieeeiee e 462
RedisLockRegistry and GemfireLOCKREJISIIYovevviiiiiiiiiiiiieiiiineeeenn, 462
@POMIEE e 462
@InboundChannelAdapter and SmartLifecycle for Annotated Endpoints..... 462
Twitter Search Outbound Gatewayooveiiiiiiieiiiiii e 462
Gemfire Metadata StOrecooveririiiiiiieiieiie e 463
@BridgeFrom and @BridgeTo ANNOLAtiONScccuuiiiiiiiiiiieiii e 463
Meta Messaging ANNOLALIONSuveiiiiiiieiiiiiiee e 463
GeNEral ChaNQES ...c.vuiiii i e 463
Requires Spring Framework 4.0 ..o 463
Header Type for XPath Header Enricherccooiiiiiiiiiiiiiiiiicceeeee 463
Object To Json Transformer: Node Resultcccoooiiiiiiiiiiiii e, 463
JMS Header MapPing ...t et e e 463

4.2.0.RC1

Spring Integration XVi

Spring Integration Reference Manual

JMS Outbound Channel Adapteroovvuiiiiii e 463
JMS Inbound Channel Adapterocoeiiiiiiiiii e 464
Datatype Channels ... 464
Simpler Retry Advice Configurationcoccoiiiiiiiiii i 464
Correlation Endpoint: Time-based Release Strategycccooccivevineeinnees 464
Redis Metadata StOreco.uiiiiiiiiii i 464
JdbcChannelMessageStore and PriorityChannelccoooeiiiiiiiieinennn, 464
AMQP Endpoints Delivery Modeccooiiiiiiiiiiii e 464
Ll I T T T £ 464
Twitter: StatusUpdatingMessageHandlerccoovviiiiiiin i, 465
JPA Retrieving Gateway: id-eXPpreSSiOnccuoveeuuieiiiiaiiiiaeiiieeeiieeiieenens 465
TCP Deserialization EVENLSoiiuiiiiiieiiceeee e e e e 465
Messaging Annotations on @Bean Definitionscccooeveviiiiiiieinee, 465
H.4. Changes Between 2.2 and 3.0 ...t 465
NEW COMPONENTS ...ttt e e e e eenas 465
HTTP Request Mappingcceuuieeeiieiiieei e e e e e e e e e e e e eean e eeees 465
Spring Expression Language (SpEL) Configurationcccocoiviviiiiinns 465
SPEL FUNCLIONS SUPPOIT ...t 465
SPEL PropertyACCESSOrS SUPPOI ...ceuuiieeiiieieei e e e eee e e e e e eaaeenees 466
Redis: NeW COMPONENLScouuiiii i e e e 466
Header Channel REGISIIYccouuuiiiiiiiiieee e 466
MongoDB support: New ConfigurableMongoDbMessageStore 466
SYSIOQ SUPPOIT ettt 466
Tall SUPPOIT .. e 466
8 1 G T o oL 466
TCP/IP Connection Events and Connection Management 467
Inbound Channel Adapter Script SUPPOITccovviiiiiiiiee e, 467
Content Enricher: Headers Enrichment Supportcccooeviveiiveiineeenneeen, 467
General ChanQES ... et 467
Message ID GENEIALIONc..uuiiiiii ettt e eens 467
<gateway> ChanQescoccuiiiiiiiii e 467
HTTP ENdpoint Changesoiiuiiiiiiei e e 468
Jackson SUPPOIt (JSON) ...euuiiiiiii it 468
Chain Elements id AtribUtecooviiiiiiii e 468
Aggregator empty-group-min-timeout Propertycoevveeireeeneeinneeeineeennnn. 468
Persistent File List Filters (file, (S)FTP) ...uviiiiiiiiii e 469
Scripting Support: Variables Changesccoovviiiiiiiiine e 469
Direct Channel Load Balancing configurationc.ocoeviiiiiiiinieinneennnn. 469
PublishSubscribeChannel BEhavIiorc..ovviiiiiiiiiiiiiec e 469
FTP, SFTP and FTPS Changescooviuiiiiiiieiie e e e 469
requires-reply Attribute for Outbound Gatewaysccooveeeiviiiiiiiiineennnes 470
AMQP Outbound Gateway Header Mappingcccoovveveerinieieiiinneiiiinneeeens 471
Stored Procedure Components Improvementsccoceuveveieviinieeineennennn. 471
Web Service Outbound URI Configurationcccoeeuiiiiiniiiiniiiiineiieens 471
Redis Adapter Changescoouuuuiiiiiiii it 471
AVISING FIEIS .ovniiie e e e e 472
Advising Endpoints using ANNOLAtIONScccuuiiiiiiiiiiiiiie e 472
ObjectToStringTransformer IMpProvementsccovevvviiiniviiiineeeeineeeeinen 472
JPA SUPPOIt ChanQESsuuiieiieii i a e 472
Delayer: delay eXPreSSIONco.. i 472

4.2.0.RC1 Spring Integration XVii

Spring Integration Reference Manual

JDBC Message Store IMprovVemMENTSvueveeveeeiieeeeeeeeeee e e eaeeaneenees 472
IMAP Idle Connection EXCEPLIONSoeivuiiiiiiiiiieeei e 473
Message Headers and TCPoiiiiiiiiiiiiiii e 473

JMS Message Driven Channel Adaptercccoveveiiiiiiiiiiiecieiccn e, 473

RMI INDOUNA GAIEWAYceuniiiiiiiiieiii et 473
XsItPayloadTransforMEercocuuiiiiiii e 473

H.5. Changes between 2.1 and 2.2ooiviiiiiiie e e 473
NEW COMPONENES ...cuuitiiieeit ettt et e e et e e e e eaeenaens 473
RedisStore Inbound and Outbound Channel Adaptersc.ccoocevvviienenn. 473
MongoDB Inbound and Outbound Channel Adaptersccoooevvveviinenannn. 473

JPA ENAPOINTS ...ttt 473
GeNEral ChANGESciiiiiiiiii et 474
Spring 3.1 Used by Defaultooviiiiiiiiii e 474
Adding Behavior t0 ENdPOINtSviiiiiiiiiiiee e 474
Transaction Synchronization and Pseudo Transactionscccceevvunen. 474

File Adapter - Improved File Overwrite/Append Handlingc.ceeeeee. 474
Reply-Timeout added to more Outbound Gatewayscccceveveneeenneennnn. 475
SPrNG-AMOP 1.1 L e 475
JDBC Support - Stored Procedures COMPONENtScccvvevinieiinieriineeninns 475
JDBC Support - Outbound GatEWaYcceuuiiiiiniiiiiiiiiieeieeei e e 475
JDBC Support - Channel-specific Message Store Implementation 476
Orderly ShULdOWNcoee e e 476

JMS Oubound Gateway IMpProvemMeNtscocuveeuiiiiiieeiieeeiieeeieeeaeeeee 476
0DbjeCt-to-JSON-ranSfOrMErcoouuiiiiii e 476

Lo T I S T o] o Lo o S 476

H.6. Changes between 2.0 and 2.1 ... 476
NEW COMPONENTS ...ttt et e ea e enas 476
JSR-223 SCripting SUPPOI «.ceviieiieeiie e e e e e e aenas 476
GEMFIIE SUPPOIT ...ttt et e e e e e 477
AMQOQP SUPPOIT oo 477

1V o] T o1 T = TS o] o L] o S 477
REAIS SUPPOIT .ot 477
Support for Spring’s Resource abstractionc.ccoeviiiiniiincineeieeeenn, 477
Stored Procedure COMPONENTScouviiieniieiiieei e e e e e e e e e 477
XPath and XML Validating Filtercooiiiiiii e 478
Payload ENFCNEroooiii e 478

FTP and SFTP Outbound GateWayscccuvvevinieeiiieiiiieeiiieeeineeeieeeaneeeees 478

FTP SesSion CacChingcccuuiiiiiiiiiei e 478
Framework RefaCtONNGoviiiueiiiiii e 479
Standardizing Router Configurationcocoiiiiiiiiiiiier e 479
XML Schemas updated t0 2.1 ...t 479
Source Control Management and Build Infrastructurecccoooviiiiiiineeiinnnnn. 480
Source Code now hosted on Githubccoooviiiiiiii e, 480
Improved Source Code Visibility with Sonar ..o, 480

NEW SAMPIES ..o et 480
H.7. Changes between 1.0 and 2.0o.oiiiiiiiiii e 480
SPIING 3 SUPPOIT .ttt ettt et e e e e e e e e e e e eeans 480
Support for the Spring Expression Language (SPEL)ccc.ovveviviineeiininnnen. 481
ConversionService and CONVEIETvvvieuiieiiiiiie e 481
TaskScheduler and Trggerc.. i 481

4.2.0.RC1 Spring Integration Xviii

Spring Integration Reference Manual

RestTemplate and HttpMessageCONVEMErc..vevvviiiiiieiii i eeeeeeeies 481
Enterprise Integration Pattern AAditionSc.cooiiuiiiiiiiiiiini e 481
MESSAGE HISTOMYieiiiiieieii et 481
MESSAGE SO ..uiiiiie ittt e e e e e e e 481
ClaIM CECK ...t 481
L070] o110 I =11 1= SR 482
New Channel Adapters and GateWaysScc.ovvevieiiiieeiiieeeiire e e e eaenns 482
TCP/UDP AQAPLEIS ...eeiiiiiieeii ettt et e et eea e eees 482
TWILEET AGBPLETS ooveieeiii e et e e e e enes 482
DY o S AN =T o) (= £ 482
FTPIFTPS ACAPLEIS ...ttt e e eens 482
SFETP AAPLEIS ..ot 482
(== To AN F=T o) (=] £ 482
Other AAItIONSeeee et e e e e 482
GrOOVY SUPPOIT ..ttt ettt e r e enens 482
Map TranSTOMMErS ...ouuii e e e e 482
JSON TranSfOMMEIS ... 483
Serialization TransSfOrMErSiiii i 483
Framework RefaCtoringoovvuiiiiiiiie e 483
New Source Control Management and Build Infrastructureccoooeeiieennnn. 483
New Spring Integration SAMPIEScoouiiiiiiiiiiiei e 483
Spring Tool Suite Visual Editor for Spring Integrationcc.ccceeevviiiiiiiieinnnenns 483

4.2.0.RC1

Spring Integration XiX

Part |. Preface

Spring Integration Reference Manual

Requirements

This section details the compatible Java and Spring Framework versions.

1 Compatible Java Versions

For Spring Integration 4.2.x, the minimum compatible Java version is Java SE 6. Older versions of
Java are not supported.

Spring Integration 4.2.x is also compatible with Java SE 7 as well as Java SE 8.

Certain features (such as Opt i onal <?> payloads and Conpl et abl eFut ur e gateway method return
types) require Java 8.

While the jars are compatible with Java 6, Java 8 is required to build the project. see Checking out
and Building.

2 Compatible Versions of the Spring Framework

Spring Integration 4.2.x requires Spring Framework 4.2.0 or later.

3 Code Conventions

The Spring Framework 2.0 introduced support for namespaces, which simplifies the Xml configuration of
the application context, and consequently Spring Integration provides broad hamespace support. This
reference guide applies the following conventions for all code examples that use hamespace support:

The int namespace prefix will be used for Spring Integration’s core namespace support. Each Spring
Integration adapter type (module) will provide its own namespace, which is configured using the following
convention:

int- followed by the name of the module, e.g. int-twitter, int-stream, ...

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:int="http://wwm. springframework. org/schena/integration”
xmns:int-twitter="http://ww.springfranmework.org/schema/integration/twitter"
xm ns:int-strean="http://www. springframework. org/ schena/integration/streant
xsi : schemalLocat i on="
http://ww. springfranmewor k. or g/ schema/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
htt p: // ww. spri ngf ramewor k. or g/ schema/ i nt egrati on
http://ww. spri ngframewor k. or g/ schema/ i nt egrati on/ spring-integration.xsd
http://ww. springfranmework. org/ schema/integration/twitter
http://ww. springfranmework. org/ schema/integration/twitter/spring-integration-tw tter.xsd
http://ww. springfranmework. org/ schema/ i ntegration/stream
http://ww. springframework. or g/ schema/ i ntegration/streani spring-integration-stream xsd">

</ beans>

For a detailed explanation regarding Spring Integration’s namespace support see Section F.2,
“Namespace Support”.

Note

Please note that the namespace prefix can be freely chosen. You may even choose not to use any
namespace prefixes at all. Therefore, apply the convention that suits your application needs best.

4.2.0.RC1 Spring Integration ii

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.springsource.org/spring-framework
https://github.com/spring-projects/spring-integration#checking-out-and-building
https://github.com/spring-projects/spring-integration#checking-out-and-building

Spring Integration Reference Manual

Be aware, though, that SpringSource Tool Suite™ (STS) uses the same namespace conventions
for Spring Integration as used in this reference guide.

4.2.0.RC1 Spring Integration

Spring Integration Reference Manual

1. Conventions in this Book

In some cases, to aid formatting, when specifying long fully-qualified class names, we shorten the
package or g. spri ngfranework to 0. s and org. spri ngframework.integrationtoo.s.i,
such as with 0. s.i.transaction. Transacti onSynchroni zati onFact ory.

4.2.0.RC1 Spring Integration 4

Part Il. What’s new?

For those who are already familiar with Spring Integration, this chapter provides a brief overview of the
new features of version 4.2. If you are interested in the changes and features, that were introduced in
earlier versions, please see chapter:Appendix H, Change History

Spring Integration Reference Manual

2. What’'s new in Spring Integration 4.27?

This chapter provides an overview of the new features and improvements that have been introduced
with Spring Integration 4.1. If you are interested in more details, please see the Issue Tracker tickets
that were resolved as part of the 4.1 development process.

2.1 New Components

Major Management/JMX Rework

A new Met ri csFact or y strategy interface has been introduced. This, together with other changes in
the JMX and management infrastructure provides much more control over management configuration
and runtime performance.

However, this has some important implications for (some) user environments.

For complete details, see Section 9.1, “Metrics and Management” and the section called “JMX
Improvements”.

MongoDB Metadata Store

The MongoDbMet adat aSt ore is now available. For more information, see the section called
“MongodDB Metadata Store”.

SecuredChannel Annotation

The @securedChannel annotation has been introduced, replacing the deprecated
Channel Securityl nt er cept or Fact or yBean. For more information, see Appendix D, Security in
Spring Integration.

SecurityContext Propagation

The SecurityContextPropagati onChannel | nterceptor has been introduced for the
Securi t yCont ext propagation from one message flow’s Thread to another. For more information,
see Appendix D, Security in Spring Integration.

FileSplitter

The Fi | eSpli tter, which splits text files into lines, was added in 4.1.2. It now has full support in the
int-file: namespace; see Section 14.5, “File Splitter” for more information.

Zookeeper Support

Zookeeper support has been added to the framework to assist when running on a clustered/multi-host
environment.

» ZookeeperMetadataStore
» ZookeeperLockRegistry

e Zookeeper Leadership

4.2.0.RC1 Spring Integration 6

Spring Integration Reference Manual

See Chapter 37, Zookeeper Support for more information.
Thread Barrier

A new thread <i nt : barri er/ > component is available allowing a thread to be suspended until some
asynchronous event occurs.

See Section 6.8, “Thread Barrier” for more information.

STOMP Support

STOMP support has been added to the framework as inbound and outbound channel adapters pair.
See Chapter 28, STOMP Support for more information.

Codec

A new Codec abstraction has been introduced, to encode/decode objects to/from byte[]. An
implementation that uses Kryo is provided. Codec-based transformers and message converters are
also provided.

See Section 7.4, “Codec” for more information.

Message PreparedStatement Setter

A new MessagePreparedSt at enent Setter functional interface callback is available for
the JdbcMessageHandl er (<i nt-j dbc: out bound- gat eway> and <int-j dbc: out bound-
channel - adapter>) as an alternative to the Sql Paramet er SourceFactory to populate
parameters on the Pr epar edSt at enent with the r equest Message context.

See Section 18.2, “Outbound Channel Adapter” for more information.
2.2 General Changes

Wire Tap

As an alternative to the existing sel ect or attribute, the <wi r e- t ap/ > now supports the sel ect or -
expr essi on attribute.

File Changes
See Chapter 14, File Support for more information about these changes.
Appending NewLines

The <int-file:outbound-channel -adapter> and <int-fil e:outbound-gateway> now
support an append- new- | i ne attribute. If set to true, a new line is appended to the file after a
message is written. The default attribute value is f al se.

Ignoring Hidden Files

The ignore-hi dden attribute has been introduced for the <int-file:inbound-channel -
adapt er > to pick up or not the hidden files from the source directory. Itis t r ue by default.

4.2.0.RC1 Spring Integration 7

Spring Integration Reference Manual

Writing InputStream Payloads

The Fi l eWiti ngMessageHandl er now also accepts | nput St r eamas a valid message payload
type.

HeadDirectoryScanner

The HeadDi r ect or yScanner can now be used with other Fi | eLi stFilter s.
Last Modified Filter

The Last Modi fi edFi | eLi st Fi |l t er has been added.

WatchService Directory Scanner

The WAt chSer vi ceDi r ect or yScanner is now available.

Class Package Change

The Scat t er Gat her Handl er class has been moved from the
org. springframework. i ntegration. handl er to the
org. springframework. integration.scattergather.

TCP Changes
TCP Serializers

The TCP Serializers no longer flush() the Qutput Stream this is now done by the
TcpNxxConnect i on classes. If you are using the serializers directly within user code, you may have
tofl ush() the Qut put St ream

Server Socket Exceptions

TcpConnect i onSer ver Excepti onEvent s are now published whenever an unexpected exception
occurs on a TCP server socket (also added to 4.1.3, 4.0.7). See Section 31.5, “TCP Connection Events”
for more information.

TCP Server Port

If a TCP server socket factory is configured to listen on a random port, the actual port chosen by the
OS can now be obtained using get Port (). get Ser ver Socket Addr ess() is also available.

See Section 31.3, “TCP Connection Factories” for more information.
TCP Gateway Remote Timeout

The TcpQut boundGat eway now supports r enot e- t i meout - expr essi on as an alternative to the
existing r enot e- t i neout attribute. This allows setting the timeout based on each message.

Also, the r enpt e-ti meout no longer defaults to the same value as r epl y-ti meout which has a
completely different meaning.

See Table 31.7, “TCP Outbound Gateway Attributes” for more information.
TCP SSLSession Available for Header Mapping

TcpConnect i on s now support get Ssl Sessi on() to enable users to extract information from the
session to add to message headers.

4.2.0.RC1 Spring Integration 8

Spring Integration Reference Manual

See Section 31.12, “IP Message Headers” for more information.
TCP Events

New events are now published whenever a correlation exception occurs - for example sending a
message to a hon-existent socket.

The TcpConnecti onEvent Li st eni ngMessagePr oducer is deprecated; use the generic event
adapter instead.

See Section 31.5, “TCP Connection Events” for more information.

@InboundChannelAdapter

Previously, the @0l | er on aninbound channel adapter defaulted the maxMessagesPer Pol | attribute
to - 1 (infinity). This was inconsistent with the XML configuration of <i nbound- channel - adapt er/ >
s, which defaults to 1. The annotation now defaults this attribute to 1.

API Changes

o.s.integration.util.Functionlterator now requires a
o.s.integration.util.Functioninstead ofareactor.function. Functi on. This was done
to remove an unnecessary hard dependency on Reactor. Any uses of this iterator will need to change
the import.

Of course, Reactor is still supported for functionality such as the Pr oni se gateway; the dependency
was removed for those users who don't need it.

JMS Changes

Reply Listener Lazy Initialization

It is now possible to configure the reply listener in IMS outbound gateways to be initialized on-demand
and stopped after an idle period, instead of being controlled by the gateway’s lifecycle.

See Section 20.5, “Outbound Gateway” for more information.
Conversion Errors in Message-Driven Endpoints

The er r or - channel now is used for the conversion errors, which have caused a transaction rollback
and message redelivery previously.

See Section 20.2, “Message-Driven Channel Adapter” and Section 20.4, “Inbound Gateway” for more
information.

Default Acknowledge Mode

When using an implicitly defined Def aul t MessageLi st ener Cont ai ner , the default acknow edge
is now transact ed. transact ed is recommended when using this container, to avoid message
loss. This default now applies to the message-driven inbound adapter and the inbound gateway, it was
already the default for jms-backed channels.

See Section 20.2, “Message-Driven Channel Adapter” and Section 20.4, “Inbound Gateway” for more
information.

4.2.0.RC1 Spring Integration 9

Spring Integration Reference Manual

Shared Subscriptions

Namespace support for shared subscriptions (JMS 2.0) has been added to message-driven endpoints
and the <int-jns: publish-subscribe-channel >. Previously, you had to wire up listener
containers as <bean/ > s to use shared connections.

See Chapter 20, JMS Support for more information.
Conditional Pollers

Much more flexibility is now provided for dynamic polling.

See the section called “Conditional Pollers for Message Sources” for more information.

AMQP Changes

Publisher Confirms

The <i nt - angp: out bound- gat eway> now supports confi rm correl ati on- expr essi on and
confirm (n)ack-channel attributes with similar purpose as for <int-anqgp: out bound-
channel - adapt er >.

For both the outbound channel adapter and gateway, if the correlation data is a Message<?>, it will be
the basis of the message on the ack/nack channel, with the additional header(s) added. Previously, any
correlation data (including Message<?>) was returned as the payload of the ack/nack message.

See Chapter 11, AMQP Support for more information.

XPath Splitter Improvements

The XPat hMessageSplitter (<int-xm:xpath-splitter>) now allows the configuration of
out put - properties for the internal j avax. xm . transform Transformer and supports an
| t er at or mode (defaults to t r ue) for the xpath evaluation or g. w3c. dom NodelLi st result.

See Section 35.5, “Splitting XML Messages” for more information.

HTTP Changes
CORS

The HTTP Inbound Endpoints (<int-http:inbound-channel -adapter> and <int-
htt p: i nbound- gat eway>) now allow the configuration of Cross-Origin Resource Sharing (CORS).

See the section called “Cross-Origin Resource Sharing (CORS) Support” for more information.
Inbound Gateway Timeout

The HTTP inbound gateway can be configured as to what status code to return when a request times
out. The default is now 500 I nternal Server Error instead of 200 COK.

See the section called “Response StatusCode” for more information.
Persistent File List Filter Changes

The AbstractPersistentFileListFilter has a new property flushOnUpdate which,
when set to true, will flush() the metadata store if it implements Fl ushable (e.g. the
Properti esPersi sti nghet adat aSt or e).

4.2.0.RC1 Spring Integration 10

Spring Integration Reference Manual

Gateway Changes
Gateway Methods can Return CompletableFuture<?>

When using Java 8, gateway methods can now return Conpl et abl eFut ur e<?>. See the section
called “CompletableFuture” for more information.

MessagingGateway Annotation

The request and reply timeout properties are now St r i ng instead of Long to allow configuration with
property placeholders or SpEL. See the section called “@MessagingGateway Annotation”.

Aggregator Changes
Aggregator Performance

This release includes some performance improvements for aggregating components (aggregator,
resequencer, etc), by more efficiently removing messages from groups when they are released.
New methods (r enoveMessagesFr ona oup) have been added to the message store. Set the
r enoveBat chSi ze property (default 100) to adjust the number of messages deleted in each operation.
Currently, JDBC, Redis and MongoDB message stores support this property.

Output MessageGroupProcessor

When using a ref or inner bean for the aggregator, it is now possible to bind a
MessageG oupPr ocessor directly. In addition, a Si npl eMessageG oupPr ocessor is provided
that simply returns the collection of messages in the group. When an output processor produces
a collection of Message<?>, the aggregator releases those messages individually. Configuring the
Si npl eMessageG oupPr ocessor makes the aggregator a message barrier, were messages are
held up until they all arrive, and are then released individually. See Section 6.4, “Aggregator” for more
information.

(S)FTP Changes

Inbound channel adapters

You can now specify a renot e-di rectory-expressi on on the inbound channel adapters, to
determine the directory at runtime. See Chapter 15, FTP/FTPS Adapters and Chapter 27, SFTP
Adapters for more information.

Gateway Partial Results

When use FTP/SFTP outbound gateways to operate on multiple files (nget, mput), it is possible
for an exception to occur after part of the request is completed. If such a condition occurs,
a Parti al SuccessExcepti on is thrown containing the partial results. See Section 15.6, “FTP
Outbound Gateway” and Section 27.8, “SFTP Outbound Gateway” for more information.

Delegating Session Factory

A delegating session factory is now available, enabling the selection of a particular session factory based
on some thread context value.

See Section 15.3, “Delegating Session Factory” and Section 27.3, “Delegating Session Factory” for
more information.

4.2.0.RC1 Spring Integration 11

Spring Integration Reference Manual

DefaultSftpSessionFactory

Previously, the Def aul t Sft pSessi onFact ory unconditionally allowed connections to unknown
hosts. This is now configurable (default false).

The factory now requires a configured knownHost s file unless the al | owUnknownKeys property is
t r ue (default false).

See the section called “Configuration Properties” for more information.
MessageSessionCallback

The MessageSessi onCal | back<F, T> has been introduced to perform any custom Sessi on
operation(s) with the r equest Message context in the <i nt - (s) ft p: out bound- gat eway/ >.

See Section 15.9, “MessageSessionCallback” and Section 27.10, “MessageSessionCallback” for more
information.

Websocket Changes

WebSocket Handl er Decor at or Fact ory support has been added to the
Server WebSocket Cont ai ner to allow chained customization for the internal WebSocket Handl er .
See Section 33.5, “WebSockets Namespace Support” for more information.

Application Event Adapters changes

The Appl i cati onEvent adapters can now operate with payl oad as event directly allow omitting
custom ApplicationEvent extensions. The publi sh-payl oad boolean attribute has been
introduced on the <i nt - event : out bound- channel - adapt er > for this purpose. See Chapter 12,
Spring ApplicationEvent Support for more information.

4.2.0.RC1 Spring Integration 12

Part Ill. Overview of Spring
Integration Framework

Spring Integration provides an extension of the Spring programming model to support the well-known
Enterprise Integration Patterns. It enables lightweight messaging within Spring-based applications and
supports integration with external systems via declarative adapters. Those adapters provide a higher-
level of abstraction over Spring’s support for remoting, messaging, and scheduling. Spring Integration’s
primary goal is to provide a simple model for building enterprise integration solutions while maintaining
the separation of concerns that is essential for producing maintainable, testable code.

http://www.eaipatterns.com/

Spring Integration Reference Manual

3. Spring Integration Overview

3.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic cross-
cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Developers benefit from the consistency of this model and especially
the fact that it is based upon well-established best practices such as programming to interfaces and
favoring composition over inheritance. Spring’s simplified abstractions and powerful support libraries
boost developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is motivated by these same goals and principles. It extends the Spring programming
model into the messaging domain and builds upon Spring’s existing enterprise integration support to
provide an even higher level of abstraction. It supports message-driven architectures where inversion of
control applies to runtime concerns, such as when certain business logic should execute and where the
response should be sent. It supports routing and transformation of messages so that different transports
and different data formats can be integrated without impacting testability. In other words, the messaging
and integration concerns are handled by the framework, so business components are further isolated
from the infrastructure and developers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean”
elements, and of course direct usage of the underlying API. That API is based upon well-defined
strategy interfaces and non-invasive, delegating adapters. Spring Integration’s design is inspired by the
recognition of a strong affinity between common patterns within Spring and the well-known Enterprise
Integration Patterns as described in the book of the same name by Gregor Hohpe and Bobby Woolf
(Addison Wesley, 2004). Developers who have read that book should be immediately comfortable with
the Spring Integration concepts and terminology.

3.2 Goals and Principles

Spring Integration is motivated by the following goals:

» Provide a simple model for implementing complex enterprise integration solutions.
 Facilitate asynchronous, message-driven behavior within a Spring-based application.
* Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

» Components should be loosely coupled for modularity and testability.

» The framework should enforce separation of concerns between business logic and integration logic.

4.2.0.RC1 Spring Integration 14

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration Reference Manual

» Extension points should be abstract in nature but within well-defined boundaries to promote reuse
and portability.

3.3 Main Components

From the vertical perspective, a layered architecture facilitates separation of concerns, and interface-
based contracts between layers promote loose coupling. Spring-based applications are typically
designed this way, and the Spring framework and portfolio provide a strong foundation for following
this best practice for the full-stack of an enterprise application. Message-driven architectures add
a_horizontal_ perspective, yet these same goals are still relevant. Just as "layered architecture” is an
extremely generic and abstract paradigm, messaging systems typically follow the similarly abstract
"pipes-and-filters" model. The "filters" represent any component that is capable of producing and/or
consuming messages, and the "pipes" transport the messages between filters so that the components
themselves remain loosely-coupled. It is important to note that these two high-level paradigms are not
mutually exclusive. The underlying messaging infrastructure that supports the "pipes" should still be
encapsulated in a layer whose contracts are defined as interfaces. Likewise, the "filters" themselves
would typically be managed within a layer that is logically above the application’s service layer,
interacting with those services through interfaces much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and headers. The payload can be
of any type and the headers hold commonly required information such as id, timestamp, correlation id,
and return address. Headers are also used for passing values to and from connected transports. For
example, when creating a Message from a received File, the file name may be stored in a header to
be accessed by downstream components. Likewise, if a Message'’s content is ultimately going to be
sent by an outbound Mail adapter, the various properties (to, from, cc, subject, etc.) may be configured
as Message header values by an upstream component. Developers can also store any arbitrary key-
value pairs in the headers.

Message

Header

Payload

Figure 3.1. Message
Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages
to a channel, and consumers receive Messages from a channel. The Message Channel therefore
decouples the messaging components, and also provides a convenient point for interception and
monitoring of Messages.

4.2.0.RC1 Spring Integration 15

Spring Integration Reference Manual

send{Message) receive()
Producer L Consumer

Message Channel
Figure 3.2. Message Channel

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a Point-to-
Point channel, at most one consumer can receive each Message sent to the channel. Publish/Subscribe
channels, on the other hand, will attempt to broadcast each Message to all of its subscribers. Spring
Integration supports both of these.

Whereas "Point-to-Point" and "Publish/Subscribe" define the two options for how many consumers will
ultimately receive each Message, there is another important consideration: should the channel buffer
messages? In Spring Integration, Pollable Channels are capable of buffering Messages within a queue.
The advantage of buffering is that it allows for throttling the inbound Messages and thereby prevents
overloading a consumer. However, as the name suggests, this also adds some complexity, since a
consumer can only receive the Messages from such a channel if a poller is configured. On the other
hand, a consumer connected to a Subscribable Channel is simply Message-driven. The variety of
channel implementations available in Spring Integration will be discussed in detail inthe section called
“Message Channel Implementations”.

Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise integration
solutions through inversion of control. This means that you should not have to implement consumers
and producers directly, and you should not even have to build Messages and invoke send or receive
operations on a Message Channel. Instead, you should be able to focus on your specific domain model
with an implementation based on plain Objects. Then, by providing declarative configuration, you can
"connect" your domain-specific code to the messaging infrastructure provided by Spring Integration. The
components responsible for these connections are Message Endpoints. This does not mean that you will
necessarily connect your existing application code directly. Any real-world enterprise integration solution
will require some amount of code focused upon integration concerns such as routing and transformation.
The important thing is to achieve separation of concerns between such integration logic and business
logic. In other words, as with the Model-View-Controller paradigm for web applications, the goal should
be to provide a thin but dedicated layer that translates inbound requests into service layer invocations,
and then translates service layer return values into outbound replies. The next section will provide an
overview of the Message Endpoint types that handle these responsibilities, and in upcoming chapters,
you will see how Spring Integration’s declarative configuration options provide a non-invasive way to
use each of these.

3.4 Message Endpoints

A Message Endpoint represents the “filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint’s primary role is to connect application code to the messaging framework and to do so in a non-
invasive manner. In other words, the application code should ideally have no awareness of the Message
objects or the Message Channels. This is similar to the role of a Controller in the MVC paradigm. Just as
a Controller handles HTTP requests, the Message Endpoint handles Messages. Just as Controllers are
mapped to URL patterns, Message Endpoints are mapped to Message Channels. The goal is the same
in both cases: isolate application code from the infrastructure. These concepts are discussed at length
along with all of the patterns that follow in the Enterprise Integration Patterns book. Here, we provide

4.2.0.RC1 Spring Integration 16

http://www.eaipatterns.com

Spring Integration Reference Manual

only a high-level description of the main endpoint types supported by Spring Integration and their roles.
The chapters that follow will elaborate and provide sample code as well as configuration examples.

Transformer

A Message Transformer is responsible for converting a Message’s content or structure and returning
the modified Message. Probably the most common type of transformer is one that converts the payload
of the Message from one format to another (e.g. from XML Document to java.lang.String). Similarly, a
transformer may be used to add, remove, or modify the Message’s header values.

Filter

A Message Filter determines whether a Message should be passed to an output channel at all. This
simply requires a boolean test method that may check for a particular payload content type, a property
value, the presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if
not it will be dropped (or for a more severe implementation, an Exception could be thrown). Message
Filters are often used in conjunction with a Publish Subscribe channel, where multiple consumers may
receive the same Message and use the filter to narrow down the set of Messages to be processed
based on some criteria.

Note

Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters architectural pattern
with this specific endpoint type that selectively narrows down the Messages flowing between two
channels. The Pipes-and-Filters concept of "filter" matches more closely with Spring Integration’s
Message Endpoint: any component that can be connected to Message Channel(s) in order to
send and/or receive Messages.

Router

A Message Router is responsible for deciding what channel or channels should receive the Message
next (if any). Typically the decision is based upon the Message’s content and/or metadata available in the
Message Headers. A Message Router is often used as a dynamic alternative to a statically configured
output channel on a Service Activator or other endpoint capable of sending reply Messages. Likewise,
a Message Router provides a proactive alternative to the reactive Message Filters used by multiple
subscribers as described above.

. Message Channel A
e Router
Channel B

Figure 3.3. Router
Splitter

A Splitter is another type of Message Endpoint whose responsibility is to accept a Message from its input
channel, split that Message into multiple Messages, and then send each of those to its output channel.

4.2.0.RC1 Spring Integration 17

Spring Integration Reference Manual

This is typically used for dividing a "composite" payload object into a group of Messages containing the
sub-divided payloads.

Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives
multiple Messages and combines them into a single Message. In fact, Aggregators are often
downstream consumers in a pipeline that includes a Splitter. Technically, the Aggregator is more
complex than a Splitter, because it is required to maintain state (the Messages to-be-aggregated), to
decide when the complete group of Messages is available, and to timeout if necessary. Furthermore, in
case of a timeout, the Aggregator needs to know whether to send the partial results or to discard them to
a separate channel. Spring Integration providesa Cor r el ati onStr at egy, aRel easeStr at egy and
configurable settings for: timeout, whether to send partial results upon timeout, and a discard channel.

Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system.
The input Message Channel must be configured, and if the service method to be invoked is capable of
returning a value, an output Message Channel may also be provided.

Note

The output channel is optional, since each Message may also provide its own Return Address
header. This same rule applies for all consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message,
extracting the request Message’s payload and converting if necessary (if the method does not expect
a Message-typed parameter). Whenever the service object’'s method returns a value, that return value
will likewise be converted to a reply Message if necessary (if it's not already a Message). That reply
Message is sent to the output channel. If no output channel has been configured, then the reply will be
sent to the channel specified in the Message’s "return address" if available.

handle(Message) Input
- Service ok i Message
g — : B = L e - -
T Activator Output Handler
IEC Message
Channel

Output
Channel

Figure 3.4. A request-reply "Service Activator" endpoint connects a target object’s method to input and
output Message Channels.

Channel Adapter

A Channel Adapter is an endpoint that connects a Message Channel to some other system or transport.
Channel Adapters may be either inbound or outbound. Typically, the Channel Adapter will do some
mapping between the Message and whatever object or resource is received-from or sent-to the other
system (File, HTTP Request, JMS Message, etc). Depending on the transport, the Channel Adapter

4.2.0.RC1 Spring Integration 18

Spring Integration Reference Manual

may also populate or extract Message header values. Spring Integration provides a number of Channel
Adapters, and they will be described in upcoming chapters.

e E Channel
i Adapter

Figure 3.5. An inbound "Channel Adapter" endpoint connects a source system to a MessageChannel.

E Channel B
| Message —=| Target

Adapter
Figure 3.6. An outbound "Channel Adapter" endpoint connects a MessageChannel to a target system.

[
Message | (D

Message
Channel

Message
Channel

3.5 Configuration

Throughout this document you will see references to XML namespace support for declaring elements
in a Spring Integration flow. This support is provided by a series of namespace parsers that generate
appropriate bean definitions to implement a particular component. For example, many endpoints consist
of a MessageHandl| er bean and a Consuner Endpoi nt Fact or yBean into which the handler and an
input channel name are injected.

The first time a Spring Integration namespace element is encountered, the framework automatically
declares a number of beans that are used to support the runtime environment (task scheduler, implicit
channel creator, etc).

Starting with version 4.0, these support beans can also be defined when using @onfi gurati on
classes, by adding a new annotation @nabl el nt egr ati on. This is useful when declaring a simple
Spring Integration flow using purely Java Configuration. For example; you can declare an endpoint with
a MessageHandl er @ean as well as a Consuner Endpoi nt Fact or yBean @ean.

@knabl el nt egrati on is also useful when you have a parent context with no Spring Integration
components and 2 or more child contexts that do use Spring Integration. It would enable these common
components to be declared once only, in the parent context.

The @ nt egrati onConponent Scan annotation has also been introduced to permit classpath
scanning. This annotation plays a similar role as the standard Spring Framework @onponent Scan
annotation, but it is restricted just to Spring Integration specific components and annotations, which
aren’'t reachable by the standard Spring Framework component scan mechanism. For example the
section called “@MessagingGateway Annotation”.

The @nabl ePubl i sher annotation has been introduced to register a
Publ i sher Annot at i onBeanPost Processor bean and configure the defaul t - publi sher-
channel for those @ubl i sher annotations which are provided without a channel attribute. If more
than one @nabl ePubl i sher annotation is found, they must all have the same value for the default
channel. See the section called “Annotation-driven approach via @Publisher annotation” for more
information.

4.2.0.RC1 Spring Integration 19

Spring Integration Reference Manual

The @d obal Channel I nterceptor annotation has been introduced to mark
Channel | nt er cept or beans for global channel interception. This annotation is an analogue of the
<i nt:channel -i nt ercept or > xml element (see the section called “Global Channel Interceptor
Configuration”). @3 obal Channel | nt er cept or annotations can be placed at the class level (with a
@onponent stereotype annotation), or on @ean methods within @Conf i gur at i on classes. In either
case, the bean must be a Channel | nt er cept or.

The @ntegrati onConverter annotation has been introduced to mark Converter,
CGeneri cConverter or ConverterFactory beans as candidate converters for
i nt egrati onConver si onSer vi ce. This annotation is an analogue of the <i nt : convert er > xml
element (see the section called “Payload Type Conversion”). @ nt egr at i onConvert er annotations
can be placed at the class level (with a @onponent stereotype annotation), or on @ean methods
within @onf i gur at i on classes.

3.6 Programming Considerations

It is generally recommended that you use plain old java objects (POJOs) whenever possible and only
expose the framework in your code when absolutely necessary.

If you do expose the framework to your classes, there are some considerations that need to be taken
into account, especially during application startup; some of these are listed here.

e If your component is Applicati onContext Aware, you should generally not "use" the
Appl i cati onCont ext in the set Appl i cati onCont ext () method; just store a reference and
defer such uses until later in the context lifecycle.

* If your componentisan | niti al i zi ngBean or uses @ost Const r uct methods, do not send any
messages from these initialization methods - the application context is not yet initialized when these
methods are called, and sending such messages will likely fail. If you need to send a messages
during startup, implement Appl i cati onLi st ener and wait for the Cont ext Ref r eshedEvent .
Alternatively, implement Snar t Li f ecycl e, put your bean in a late phase, and send the messages
from the st art () method.

4.2.0.RC1 Spring Integration 20

Part IV. Core Messaging

This section covers all aspects of the core messaging APl in Spring Integration. Here you will learn about
Messages, Message Channels, and Message Endpoints. Many of the Enterprise Integration Patterns
are covered here as well, such as Filters, Routers, Transformers, Service-Activators, Splitters, and
Aggregators. The section also contains material about System Management, including the Control Bus
and Message History support.

Spring Integration Reference Manual

4. Messaging Channels

4.1 Message Channels

While the Message plays the crucial role of encapsulating data, it is the MessageChannel that
decouples message producers from message consumers.

The MessageChannel Interface

Spring Integration’s top-level MessageChannel interface is defined as follows.
public interface MessageChannel {
bool ean send(Message nessage);

bool ean send(Message nessage, |ong tineout);

When sending a message, the return value will be true if the message is sent successfully. If the send
call times out or is interrupted, then it will return false.

PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are
two sub-interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior.
Here is the definition of Pol | abl eChannel .

public interface Poll abl eChannel extends MessageChannel {
Message<?> receive();

Message<?> recei ve(long tineout);

Similar to the send methods, when receiving a message, the return value will be null in the case of a
timeout or interrupt.

SubscribableChannel

The Subscri babl eChannel base interface is implemented by channels that send Messages directly
to their subscribed MessageHandl er s. Therefore, they do not provide receive methods for polling, but
instead define methods for managing those subscribers:

public interface Subscribabl eChannel extends MessageChannel {
bool ean subscri be(MessageHandl er handl er);

bool ean unsubscri be(MessageHandl er handl er);

Message Channel Implementations

Spring Integration provides several different Message Channel implementations. Each is briefly
described in the sections below.

4.2.0.RC1 Spring Integration 22

Spring Integration Reference Manual

PublishSubscribeChannel

The Publ i shSubscri beChannel implementation broadcasts any Message sent to it to all of its
subscribed handlers. This is most often used for sending_Event Messages_ whose primary role is
notification as opposed to Document Messages which are generally intended to be processed by
a single handler. Note that the Publ i shSubscri beChannel is intended for sending only. Since
it broadcasts to its subscribers directly when its® send(Message)" method is invoked, consumers
cannot poll for Messages (it does not implement Pol | abl eChannel and therefore has no
recei ve() method). Instead, any subscriber must be a MessageHandl er itself, and the subscriber’s
handl eMessage(Message) method will be invoked in turn.

Prior to version 3.0, invoking the send method on a Publi shSubscri beChannel that had
no subscribers returned fal se. When used in conjunction with a Messagi ngTenpl ate, a
MessageDel i ver yExcept i on was thrown. Starting with version 3.0, the behavior has changed such
that a send is always considered successful if at least the minimum subscribers are present (and
successfully handle the message). This behavior can be modified by setting the m nSubscri bers
property, which defaults to 0.

Note

If a TaskExecut or is used, only the presence of the correct number of subscribers is used for
this determination, because the actual handling of the message is performed asynchronously.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike the Publ i shSubscri beChannel , the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a default no-
argument constructor (providing an essentially unbounded capacity of | nt eger . MAX_VALUE) as well
as a constructor that accepts the queue capacity:

publ i ¢ QueueChannel (int capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the
send() method will return immediately even if no receiver is ready to handle the message. If the queue
has reached capacity, then the sender will block until room is available. Or, if using the send call that
accepts a timeout, it will block until either room is available or the timeout period elapses, whichever
occurs first. Likewise, a receive call will return immediately if a message is available on the queue, but
if the queue is empty, then a receive call may block until either a message is available or the timeout
elapses. In either case, it is possible to force an immediate return regardless of the queue’s state by
passing a timeout value of 0. Note however, that calls to the no-arg versions of send() andr ecei ve()
will block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-inffirst-out (FIFO) ordering, the Pri orit yChannel is an
alternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority is determined by the pri ori t y header within each message. However,
for custom priority determination logic, a comparator of type Conpar at or <Message<?>> can be
provided to the Pri ori t yChannel 's constructor.

4.2.0.RC1 Spring Integration 23

Spring Integration Reference Manual

RendezvousChannel

The RendezvousChannel enables a "direct-handoff* scenario where a sender will block until another
party invokes the channel’'s recei ve() method or vice-versa. Internally, this implementation is
quite similar to the QueueChannel except that it uses a Synchr onousQueue (a zero-capacity
implementation of Bl ocki ngQueue). This works well in situations where the sender and receiver
are operating in different threads but simply dropping the message in a queue asynchronously is not
appropriate. In other words, with a RendezvousChannel at least the sender knows that some receiver
has accepted the message, whereas with a QueueChannel , the message would have been stored to
the internal queue and potentially never received.

Tip

Keep in mind that all of these queue-based channels are storing messages in-memory only by
default. When persistence is required, you can either provide a message-store attribute within
the queue element to reference a persistent MessageStore implementation, or you can replace
the local channel with one that is backed by a persistent broker, such as a JMS-backed channel
or Channel Adapter. The latter option allows you to take advantage of any JMS provider's
implementation for message persistence, and it will be discussed in Chapter 20, JMS Support.
However, when buffering in a queue is not necessary, the simplest approach is to rely upon the
Di r ect Channel discussed next.

The RendezvousChannel is also useful for implementing request-reply operations. The sender
can create a temporary, anonymous instance of RendezvousChannel which it then sets as
the replyChannel header when building a Message. After sending that Message, the sender can
immediately call receive (optionally providing a timeout value) in order to block while waiting for a reply
Message. This is very similar to the implementation used internally by many of Spring Integration’s
request-reply components.

DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the
Publ i shSubscri beChannel than any of the queue-based channel implementations described
above. It implements the Subscri babl eChannel interface instead of the Pol | abl eChannel
interface, so it dispatches Messages directly to a subscriber. As a point-to-point channel, however,
it differs from the Publ i shSubscri beChannel in that it will only send each Message to a single
subscribed MessageHandl er .

In addition to being the simplest point-to-point channel option, one of its most important features is
that it enables a single thread to perform the operations on "both sides" of the channel. For example,
if a handler is subscribed to a Di r ect Channel , then sending a Message to that channel will trigger
invocation of that handler's handl eMessage(Message) method directly in the sender’s thread, before
the send() method invocation can return.

The key motivation for providing a channel implementation with this behavior is to support transactions
that must span across the channel while still benefiting from the abstraction and loose coupling that the
channel provides. If the send call is invoked within the scope of a transaction, then the outcome of the
handler’s invocation (e.g. updating a database record) will play a role in determining the ultimate result
of that transaction (commit or rollback).

4.2.0.RC1 Spring Integration 24

Spring Integration Reference Manual

Note

Since the Di r ect Channel is the simplest option and does not add any additional overhead that
would be required for scheduling and managing the threads of a poller, it is the default channel
type within Spring Integration. The general idea is to define the channels for an application and
then to consider which of those need to provide buffering or to throttle input, and then modify those
to be queue-based Pol | abl eChannel s. Likewise, if a channel needs to broadcast messages,
it should not be a Di r ect Channel but rather a Publ i shSubscri beChannel . Below you will
see how each of these can be configured.

The Di r ect Channel internally delegates to a Message Dispatcher to invoke its subscribed Message
Handlers, and that dispatcher can have a load-balancing strategy exposed via load-balancer_ or
load-balancer-ref attributes (mutually exclusive). The load balancing strategy is used by the Message
Dispatcher to help determine how Messages are distributed amongst Message Handlers in the case
that there are multiple Message Handlers subscribed to the same channel. As a convinience the
load-balancer attribute exposes enumeration of values pointing to pre-existing implementations of
LoadBal anci ngSt r at egy. The "round-robin" (load-balances across the handlers in rotation) and
"none" (for the cases where one wants to explicitely disable load balancing) are the only available values.
Other strategy implementations may be added in future versions. However, since version 3.0 you can
provide your own implementation of the LoadBal anci ngSt r at egy and inject it using load-balancer-
ref attribute which should point to a bean that implements LoadBal anci ngSt r at egy.

<i nt:channel id="|bRef Channel ">
<int:dispatcher | oad-bal ancer-ref="1b"/>
</int:channel >

<bean id="1b" class="fo0o0. bar. Sanpl eLoadBal anci ngStr at egy"/ >

Note that load-balancer or load-balancer-ref attributes are mutually exclusive.

The load-balancing also works in combination with a boolean failover property. If the "failover" value
is true (the default), then the dispatcher will fall back to any subsequent handlers as necessary when
preceding handlers throw Exceptions. The order is determined by an optional order value defined on
the handlers themselves or, if no such value exists, the order in which the handlers are subscribed.

If a certain situation requires that the dispatcher always try to invoke the first handler, then fallback
in the same fixed order sequence every time an error occurs, no load-balancing strategy should be
provided. In other words, the dispatcher still supports the failover boolean property even when no load-
balancing is enabled. Without load-balancing, however, the invocation of handlers will always begin with
the first according to their order. For example, this approach works well when there is a clear definition
of primary, secondary, tertiary, and so on. When using the namespace support, the "order" attribute on
any endpoint will determine that order.

Note

Keep in mind that load-balancing and failover only apply when a channel has more than one
subscribed Message Handler. When using the namespace support, this means that more than
one endpoint shares the same channel reference in the "input-channel" attribute.

ExecutorChannel

The Execut or Channel is a point-to-point channel that supports the same dispatcher configuration
as Di r ect Channel (load-balancing strategy and the failover boolean property). The key difference

4.2.0.RC1 Spring Integration 25

Spring Integration Reference Manual

between these two dispatching channel types is that the Execut or Channel delegates to an instance
of TaskExecut or to perform the dispatch. This means that the send method typically will not block,
but it also means that the handler invocation may not occur in the sender’s thread. It therefore does not
support transactions spanning the sender and receiving handler.

Tip

Note that there are occasions where the sender may block. For example, when using
a TaskExecutor with a rejection-policy that throttles back on the client (such as the
Thr eadPool Execut or. Cal | er RunsPol i cy), the sender’s thread will execute the method
directly anytime the thread pool is at its maximum capacity and the executor’s work queue is full.
Since that situation would only occur in a non-predictable way, that obviously cannot be relied
upon for transactions.

Scoped Channel

Spring Integration 1.0 provided a Thr eadLocal Channel implementation, but that has been removed
as of 2.0. Now, there is a more general way for handling the same requirement by simply adding a
"scope" attribute to a channel. The value of the attribute can be any name of a Scope that is available
within the context. For example, in a web environment, certain Scopes are available, and any custom
Scope implementations can be registered with the context. Here’'s an example of a ThreadLocal-based
scope being applied to a channel, including the registration of the Scope itself.

<int:channel id="threadScopedChannel" scope="thread">
<int:queue />
</i nt: channel >

<bean cl ass="org. spri ngfranmewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property name="scopes">
<map>
<entry key="thread" val ue="org. springfranmework. context.support.Sinpl eThreadScope" />
</ map>
</ property>
</ bean>

The channel above also delegates to a queue internally, but the channel is bound to the current thread,
so the contents of the queue are as well. That way the thread that sends to the channel will later be able to
receive those same Messages, but no other thread would be able to access them. While thread-scoped
channels are rarely needed, they can be useful in situations where Di r ect Channel s are being used
to enforce a single thread of operation but any reply Messages should be sent to a "terminal" channel.
If that terminal channel is thread-scoped, the original sending thread can collect its replies from it.

Now, since any channel can be scoped, you can define your own scopes in addition to Thread Local.
Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and
capture meaningful information about the messages passing through the system in a non-invasive way.
Since the Message s are being sent to and received from MessageChannel s, those channels provide
an opportunity for intercepting the send and receive operations. The Channel | nt er cept or strategy
interface provides methods for each of those operations:

4.2.0.RC1 Spring Integration 26

Spring Integration Reference Manual

public interface Channel I nterceptor {
Message<?> preSend(Message<?> nessage, MessageChannel channel);
voi d post Send(Message<?> nessage, MessageChannel channel, bool ean sent);
voi d afterSendConpl eti on(Message<?> nessage, MessageChannel channel, bool ean sent, Exception ex);
bool ean preRecei ve(MessageChannel channel);
Message<?> post Recei ve(Message<?> nessage, MessageChannel channel);

voi d afterRecei veConpl eti on(Message<?> nessage, MessageChannel channel, Exception ex);

After implementing the interface, registering the interceptor with a channel is just a matter of calling:

channel . addl nt er cept or (sonmeChannel | nt ercept or) ;

The methods that return a Message instance can be used for transforming the Message or can return
null to prevent further processing (of course, any of the methods can throw a RuntimeException). Also,
the pr eRecei ve method can return f al se to prevent the receive operation from proceeding.

Note

Keep in mind that recei ve() calls are only relevant for Pol | abl eChannel s. In fact the
Subscri babl eChannel interface does not even define ar ecei ve() method. The reason for
this is that when a Message is sent to a Subscri babl eChannel it will be sent directly to one
or more subscribers depending on the type of channel (e.g. a PublishSubscribeChannel sends
to all of its subscribers). Therefore, the pr eRecei ve(..) and post Recei ve(..) interceptor
methods are only invoked when the interceptor is applied to a Pol | abl eChannel .

Spring Integration also provides an implementation of the Wire Tap pattern. It is a simple interceptor
that sends the Message to another channel without otherwise altering the existing flow. It can be very
useful for debugging and monitoring. An example is shown in the section called “Wire Tap”.

Because it is rarely necessary to implement all of the interceptor methods, a
Channel | nt er cept or Adapt er class is also available for sub-classing. It provides no-op methods
(the voi d method is empty, the Message returning methods return the Message as-is, and the bool ean
method returns true). Therefore, it is often easiest to extend that class and just implement the
method(s) that you need as in the following example.

public class CountingChannel | nterceptor extends Channel I nterceptor Adapter {
private final Atom clnteger sendCount = new Atom clnteger();

@verride

publ ic Message<?> preSend(Message<?> nessage, MessageChannel channel) {
sendCount . i ncr ement AndGet () ;
return nessage,

Tip

The order of invocation for the interceptor methods depends on the type of channel. As described
above, the queue-based channels are the only ones where the receive method is intercepted in
the first place. Additionally, the relationship between send and receive interception depends on

4.2.0.RC1 Spring Integration 27

http://eaipatterns.com/WireTap.html

Spring Integration Reference Manual

the timing of separate sender and receiver threads. For example, if a receiver is already blocked
while waiting for a message the order could be: preSend, preReceive, postReceive, postSend.
However, if a receiver polls after the sender has placed a message on the channel and already
returned, the order would be: preSend, postSend, (some-time-elapses) preReceive, postReceive.
The time that elapses in such a case depends on a number of factors and is therefore generally
unpredictable (in fact, the receive may never happen!). Obviously, the type of queue also plays a
role (e.g. rendezvous vs. priority). The bottom line is that you cannot rely on the order beyond the
fact that preSend will precede postSend and preReceive will precede postReceive.

Starting with Spring Framework 4.1 and Spring Integration 4.1, the Channel | nt er cept or provides
new methods - af t er SendConpl eti on() and aft er Recei veConpl eti on() . They are invoked
after send()/ recei ve() calls, regardless of any exception that is raised, thus allowing for resource
cleanup. Note, the Channel invokes these methods on the Channelinterceptor List in the reverse order
of the initial pr eSend() / pr eRecei ve() calls.

MessagingTemplate

As you will see when the endpoints and their various configuration options are introduced, Spring
Integration provides a foundation for messaging components that enables non-invasive invocation of
your application code_from the messaging system_. However, sometimes it is necessary to invoke the
messaging system from your application code. For convenience when implementing such use-cases,
Spring Integration provides a Messagi ngTenpl at e that supports a variety of operations across the
Message Channels, including request/reply scenarios. For example, it is possible to send a request and
wait for a reply.

Messagi ngTenpl ate tenpl ate = new Messagi ngTenpl at e() ;

Message reply = tenpl at e. sendAndRecei ve(soneChannel , new Generi cMessage("test"))
In that example, a temporary anonymous channel would be created internally by the template. The

sendTimeout and receiveTimeout properties may also be set on the template, and other exchange types
are also supported.

public bool ean send(final MessageChannel channel, final Message<?> nessage) { ...

}

publ ic Message<?> sendAndRecei ve(final MessageChannel channel, final Message<?> request) { ..

}

publ i c Message<?> recei ve(final Poll abl eChannel <?> channel) { ...

}

Note

A less invasive approach that allows you to invoke simple interfaces with payload and/or
header values instead of Message instances is described in the section called “Enter the
GatewayProxyFactoryBean”.

Configuring Message Channels

To create a Message Channel instance, you can use the <channel/> element:

<int:channel id="exanpl eChannel"/>

4.2.0.RC1 Spring Integration 28

Spring Integration Reference Manual

The default channel type is Point to Point. To create a Publish Subscribe channel, use the <publish-
subscribe-channel/> element:

<i nt:publish-subscribe-channel id="exanpl eChannel"/>

When using the <channel/> element without any sub-elements, it will create a Di r ect Channel instance
(a Subscri babl eChannel).

However, you can alternatively provide a variety of <queue/> sub-elements to create any of the pollable
channel types (as described inthe section called “Message Channel Implementations”). Examples of
each are shown below.

DirectChannel Configuration

As mentioned above, Di r ect Channel is the default type.

<int:channel id="directChannel"/>

A default channel will have a round-robin load-balancer and will also have failover enabled (See the
discussion in the section called “DirectChannel” for more detail). To disable one or both of these, add
a <dispatcher/> sub-element and configure the attributes:

<int:channel id="fail FastChannel ">
<int:dispatcher failover="false"/>
</ channel >

<int:channel id="channel WthFi xedOr der SequenceFai | over ">
<int:di spatcher | oad-bal ancer="none"/>
</int:channel >

Datatype Channel Configuration

There are times when a consumer can only process a particular type of payload and you need to
therefore ensure the payload type of input Messages. Of course the first thing that comes to mind is
Message Filter. However all that Message Filter will do is filter out Messages that are not compliant with
the requirements of the consumer. Another way would be to use a Content Based Router and route
Messages with non-compliant data-types to specific Transformers to enforce transformation/conversion
to the required data-type. This of course would work, but a simpler way of accomplishing the same thing
is to apply the Datatype Channel pattern. You can use separate Datatype Channels for each specific
payload data-type.

To create a Datatype Channel that only accepts messages containing a certain payload type, provide
the fully-qualified class name in the channel element’s dat at ype attribute:

<int:channel id="nunberChannel" datatype="java.l ang. Number"/>

Note that the type check passes for any type that is assignable to the channel’'s datatype. In other
words, the "numberChannel" above would accept messages whose payload is j ava. | ang. | nt eger
orj ava. | ang. Doubl e. Multiple types can be provided as a comma-delimited list:

<int:channel id="stringO NunberChannel" datatype="java.lang. String,java.lang. Nunber"/>

So the numberChannel above will only accept Messages with a data-type of j ava. | ang. Nunber.
But what happens if the payload of the Message is not of the required type? It depends on whether
you have defined a bean named "integrationConversionService" that is an instance of Spring’s
Conversion Service. If not, then an Exception would be thrown immediately, but if you do have an

4.2.0.RC1 Spring Integration 29

http://www.eaipatterns.com/DatatypeChannel.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-ConversionService-API

Spring Integration Reference Manual

"integrationConversionService" bean defined, it will be used in an attempt to convert the Message’s
payload to the acceptable type.

You can even register custom converters. For example, let's say you are sending a Message with a
String payload to the numberChannel we configured above.

MessageChannel inChannel = context.get Bean("nunber Channel ", MessageChannel . cl ass);
i nChannel . send(new Generi cMessage<String>("5"));

Typically this would be a perfectly legal operation, however since we are using Datatype Channel the
result of such operation would generate an exception:

Exception in thread "main" org.springfranework.integration. MessageDel i ver yExcepti on:
Channel ' number Channel*

expect ed one of the follow ng datataypes [class java.lang. Nunber],

but received [class java.lang. String]

And rightfully so since we are requiring the payload type to be a Number while sending a String. So we
need something to convert String to a Number. All we need to do is implement a Converter.

public static class StringTolntegerConverter inplenents Converter<String, |nteger> {
public Integer convert(String source) {
return |nteger.parselnt(source);
}
}

Then, register it as a Converter with the Integration Conversion Service:

<int:converter ref="strTolnt"/>

<bean id="strTolnt" class="org.springframework.integration.util.Denp.StringTol ntegerConverter"/>

When the converter element is parsed, it will create the "integrationConversionService" bean on-demand
if one is not already defined. With that Converter in place, the send operation would now be successful
since the Datatype Channel will use that Converter to convert the String payload to an Integer.

Note

For more information regarding Payload Type Conversion, please read the section called “Payload
Type Conversion”.

Beginning with version 4.0, the integrationConversionService is invoked by the
Def aul t Dat at ypeChannel MessageConvert er, which looks up the conversion service in the
application context. To use a different conversion technique, you can specify the nessage- convert er
attribute on the channel. This must be a reference to a MessageConver t er implementation. Only the
f r omvessage method is used, which provides the converter with access to the message headers (for
example if the conversion might need information from the headers, such as cont ent -t ype). The
method can return just the converted payload, or a full Message object. If the latter, the converter must
be careful to copy all the headers from the inbound message.

Alternatively, declare a <bean/> of type MessageConverter with an id
"dat at ypeChannel MessageConverter" and that converter will be used by all channels with a
dat at ype.

QueueChannel Configuration

To create a QueueChannel , use the <queue/> sub-element. You may specify the channel’s capacity:

4.2.0.RC1 Spring Integration 30

Spring Integration Reference Manual

<i nt:channel id="queueChannel">
<queue capacity="25"/>
</int:channel >

Note

If you do not provide a value for the capacity attribute on this <queue/> sub-element, the resulting
gueue will be unbounded. To avoid issues such as OutOfMemoryErrors, it is highly recommended
to set an explicit value for a bounded queue.

Persistent QueueChannel Configuration

Since a QueueChannel provides the capability to buffer Messages, but does so in-memory only
by default, it also introduces a possibility that Messages could be lost in the event of a system
failure. To mitigate this risk, a QueueChannel may be backed by a persistent implementation
of the MessageG oupSt or e strategy interface. For more details on MessageG oupSt or e and
MessagesSt or e see Section 9.4, “Message Store”.

When a QueueChannel receives a Message, it will add it to the Message Store, and when a Message
is polled from a QueueChannel , it is removed from the Message Store.

By default, a QueueChannel stores its Messages in an in-memory Queue and can therefore lead to
the lost message scenario mentioned above. However Spring Integration provides persistent stores,
such as the JdbcMessagesSt or e.

You can configure a Message Store for any QueueChannel by adding the mnessage- st or e attribute
as shown in the next example.

<i nt:channel id="dbBackedChannel ">
<i nt:queue nmessage-store="channel Store"/>
</int:channel >

<bean id="channel Store" class="0.s.i.]jdbc.store.JdbcChannel MessageSt ore" >
<property name="dat aSour ce" ref="dataSource"/>
<property name="channel MessageSt or eQueryProvi der" ref="queryProvider"/>
</ bean>

The Spring Integration JDBC module also provides schema DDL for a number of popular databases.
These schemas are located in the org.springframework.integration.jdbc.store.channel package of that
module (spring-integration-jdbc).

Important

One important feature is that with any transactional persistent store (e.g.,
JdbcChannelMessageStore), as long as the poller has a transaction configured, a Message
removed from the store will only be permanently removed if the transaction completes
successfully, otherwise the transaction will roll back and the Message will not be lost.

Many other implementations of the Message Store will be available as the growing number of Spring
projects related to "NoSQL" data stores provide the underlying support. Of course, you can always
provide your own implementation of the MessageGroupStore interface if you cannot find one that meets
your particular needs.

Since version 4.0, it is recommended that QueueChannel s are configured to use a
Channel MessagesSt or e if possible. These are generally optimized for this use, when compared with

4.2.0.RC1 Spring Integration 31

Spring Integration Reference Manual

a general message store. If the Channel MessageSt or e isa Channel Pri ori t yMessageSt or e the
messages will be received in FIFO within priority order. The notion of priority is determined by the
message store implementation.

Another option to customize the QueueChannel environment is provided by the ref
attribute of the <int:queue> sub-element. This attribute implies the reference to any
java. util.Queue implementation. An implementation is provided by the Project Reactor and its
react or. queue. Per si st ent Queue implementation for the IndexedChronicle:

@Bean
publ i ¢ QueueChannel reactorQueue() {
return new QueueChannel (new Per si st ent QueueSpec<Message<?>>()
. codec(new JavaSeri al i zat i onCodec<Message<?>>())
. basePat h(Syst em get Property("java.io.tnpdir") + "/reactor-queue")

-get());

PublishSubscribeChannel Configuration

To create a Publ i shSubscri beChannel , use the <publish-subscribe-channel/> element. When
using this element, you can also specify the t ask- execut or used for publishing Messages (if none
is specified it simply publishes in the sender’s thread):

<i nt:publish-subscribe-channel id="pubsubChannel" task-executor="someExecutor"/>

If you are providing a Resequencer or Aggregator downstream from a Publ i shSubscri beChannel ,
then you can set the apply-sequence property on the channeltot r ue. That will indicate that the channel
should set the sequence-size and sequence-number Message headers as well as the correlation id prior
to passing the Messages along. For example, if there are 5 subscribers, the sequence-size would be
set to 5, and the Messages would have sequence-number header values ranging from 1 to 5.

<i nt:publish-subscribe-channel id="pubsubChannel" apply-sequence="true"/>

Note

The appl y- sequence value is f al se by default so that a Publish Subscribe Channel can
send the exact same Message instances to multiple outbound channels. Since Spring Integration
enforces immutability of the payload and header references, the channel creates new Message
instances with the same payload reference but different header values when the flag is set to
true.

ExecutorChannel

To create an Execut or Channel , add the <dispatcher> sub-element along with a t ask- execut or
attribute. Its value can reference any TaskExecut or within the context. For example, this enables
configuration of a thread-pool for dispatching messages to subscribed handlers. As mentioned above,
this does break the "single-threaded" execution context between sender and receiver so that any active
transaction context will not be shared by the invocation of the handler (i.e. the handler may throw an
Exception, but the send invocation has already returned successfully).

<i nt:channel id="executorChannel ">
<int:dispatcher task-executor="soneExecutor"/>
</int:channel >

4.2.0.RC1 Spring Integration 32

https://github.com/reactor/reactor
https://github.com/OpenHFT/Chronicle-Queue

Spring Integration Reference Manual

Note

The | oad- bal ancer and f ai | over options are also both available on the <dispatcher/> sub-
element as described above in the section called “DirectChannel Configuration”. The same
defaults apply as well. So, the channel will have a round-robin load-balancing strategy with failover
enabled unless explicit configuration is provided for one or both of those attributes.

<int:channel id="executorChannel Wthout Fail over">
<int:di spat cher task-executor="someExecutor" fail over="fal se"/>
</int:channel >

PriorityChannel Configuration

To create a Pri ori t yChannel , use the <priority-queue/> sub-element:

<int:channel id="priorityChannel">
<int:priority-queue capacity="20"/>
</int:channel >

By default, the channel will consult the priority header of the message. However, a custom
Conpar at or reference may be provided instead. Also, note that the Pri ori t yChannel (like the other
types) does support the dat at ype attribute. As with the QueueChannel, it also supports a capaci ty
attribute. The following example demonstrates all of these:

<int:channel id="priorityChannel" datatype="exanple. Wdget">
<int:priority-gqueue conparator="w dget Conpar at or"
capaci ty="10"/>
</int:channel >

Since version 4.0, the priority-channel child element supports the nessage-store
option (conparator is not allowed in that case). The message store must be
a PriorityCapabl eChannel MessageStore and, in this case, the namespace parser
will declare a QueueChannel instead of a PriorityChannel. Implementations of the
PriorityCapabl eChannel MessageSt or e are currently provided for Redi s, JDBC and MongoDB.
See the section called “QueueChannel Configuration”.

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <rendezvous-queue>. It does not
provide any additional configuration options to those described above, and its queue does not accept
any capacity value since it is a 0-capacity direct handoff queue.

<i nt:channel id="rendezvousChannel"/>
<int:rendezvous- queue/ >
</int:channel >

Scoped Channel Configuration

Any channel can be configured with a "scope" attribute.

<int:channel id="threadLocal Channel" scope="thread"/>

Channel Interceptor Configuration

Message channels may also have interceptors as described in the section called “Channel Interceptors”.
The <i nterceptors/> sub-element can be added within a <channel / > (or the more specific

4.2.0.RC1 Spring Integration 33

Spring Integration Reference Manual

element types). Provide the r ef attribute to reference any Spring-managed object that implements the
Channel | nt er cept or interface:

<i nt:channel id="exanpl eChannel ">
<int:interceptors>
<ref bean="trafficMnitoringlnterceptor"/>
</int:interceptors>
</int:channel >

In general, it is a good idea to define the interceptor implementations in a separate location since they
usually provide common behavior that can be reused across multiple channels.

Global Channel Interceptor Configuration

Channel Interceptors provide a clean and concise way of applying cross-cutting behavior per individual
channel. If the same behavior should be applied on multiple channels, configuring the same set of
interceptors for each channel would not be the most efficient way. To avoid repeated configuration while
also enabling interceptors to apply to multiple channels, Spring Integration provides Global Interceptors.
Look at the example below:

<int:channel -interceptor pattern="input*, bar*, foo" order="3">
<bean cl ass="f 0o. bar Sanpl el nt erceptor"/>
</int:channel -interceptor>

or

<int:channel -interceptor ref="nylnterceptor" pattern="input*, bar*, foo" order="3"/>

<bean id="nylnterceptor" class="foo.barSanpl el nterceptor"/>

Each <channel-interceptor/> element allows you to define a global interceptor which will be applied on
all channels that match any patterns defined via the pat t er n attribute. In the above case the global
interceptor will be applied on the foo channel and all other channels that begin with bar or input. The order
attribute allows you to manage where this interceptor will be injected if there are multiple interceptors
on a given channel. For example, channel inputChannel could have individual interceptors configured
locally (see below):

<i nt:channel id="inputChannel">
<int:interceptors>
<int:wre-tap channel ="| ogger"/>
</int:interceptors>
</int:channel >

A reasonable question is how will a global interceptor be injected in relation to other interceptors
configured locally or through other global interceptor definitions? The current implementation provides a
very simple mechanism for defining the order of interceptor execution. A positive number in the or der
attribute will ensure interceptor injection after any existing interceptors and a negative number will ensure
that the interceptor is injected before existing interceptors. This means that in the above example, the
global interceptor will be injected AFTER (since its order is greater than 0) the wire-tap interceptor
configured locally. If there were another global interceptor with a matching pat t er n, its order would be
determined by comparing the values of the or der attribute. To inject a global interceptor BEFORE the
existing interceptors, use a negative value for the or der attribute.

Note

Note that both the or der and patt er n attributes are optional. The default value for or der will
be 0 and for pat t er n, the default is * (to match all channels).

4.2.0.RC1 Spring Integration 34

Spring Integration Reference Manual

Wire Tap

As mentioned above, Spring Integration provides a simple Wire Tap interceptor out of the box. You can
configure a Wire Tap on any channel within an <interceptors/> element. This is especially useful for
debugging, and can be used in conjunction with Spring Integration’s logging Channel Adapter as follows:

<int:channel id="in">
<int:interceptors>
<int:wre-tap channel ="| ogger"/>
</int:interceptors>
</int:channel >

<int:| oggi ng- channel - adapter id="1ogger" |evel ="DEBUG'/ >

Tip

The logging-channel-adapter also accepts an expression attribute so that you can evaluate a
SpEL expression against payload and/or headers variables. Alternatively, to simply log the full
Message toString() result, provide a value of "true" for the log-full-message attribute. That is
f al se by default so that only the payload is logged. Setting that to t r ue enables logging of
all headers in addition to the payload. The expression option does provide the most flexibility,
however (e.g. expression="payload.user.name").

A little more on Wire Tap

One of the common misconceptions about the wire tap and other similar components (Section B.1,
“Message Publishing Configuration”) is that they are automatically asynchronous in nature. Wire-tap as
a component is not invoked asynchronously be default. Instead, Spring Integration focuses on a single
unified approach to configuring asynchronous behavior: the Message Channel. What makes certain
parts of the message flow sync or async is the type of Message Channel that has been configured within
that flow. That is one of the primary benefits of the Message Channel abstraction. From the inception
of the framework, we have always emphasized the need and the value of the Message Channel as
a first-class citizen of the framework. It is not just an internal, implicit realization of the EIP pattern, it
is fully exposed as a configurable component to the end user. So, the Wire-tap component is ONLY
responsible for performing the following 3 tasks:

* intercept a message flow by tapping into a channel (e.g., channelA)
e grab each message
» send the message to another channel (e.g., channelB)

It is essentially a variation of the Bridge, but it is encapsulated within a channel definition (and hence
easier to enable and disable without disrupting a flow). Also, unlike the bridge, it basically forks another
message flow. Is that flow synchronous or asynchronous? The answer simply depends on the type of
Message Channel that channelB is. And, now you know that we have: Direct Channel, Pollable Channel,
and Executor Channel as options. The last two do break the thread boundary making communication
via such channels_asynchronous_ simply because the dispatching of the message from that channel
to its subscribed handlers happens on a different thread than the one used to send the message to
that channel. That is what is going to make your wire-tap flow sync or async. It is consistent with other
components within the framework (e.g., Message Publisher) and actually brings a level of consistency
and simplicity by sparing you from worrying in advance (other than writing thread safe code) whether
a particular piece of code should be implemented as sync or async. The actual wiring of two pieces of
code (component A and component B) via Message Channel is what makes their collaboration sync or

4.2.0.RC1 Spring Integration 35

Spring Integration Reference Manual

async. You may even want to change from sync to async in the future and Message Channel is what's
going to allow you to do it swiftly without ever touching the code.

One final point regarding the Wire Tap is that, despite the rationale provided above for not being async
by default, one should keep in mind it is usually desirable to hand off the Message as soon as possible.
Therefore, it would be quite common to use an asynchronous channel option as the wire-tap’s outbound
channel. Nonetheless, another reason that we do not enforce asynchronous behavior by default is that
you might not want to break a transactional boundary. Perhaps you are using the Wire Tap for auditing
purposes, and you DO want the audit Messages to be sent within the original transaction. As an example,
you might connect the wire-tap to a JMS outbound-channel-adapter. That way, you get the best of both
worlds: 1) the sending of a IMS Message can occur within the transaction while 2) it is still a "fire-and-
forget" action thereby preventing any noticeable delay in the main message flow.

Important

Starting with version 4.0, it is important to avoid circular references when an interceptor (such
as WreTap) references a channel itself. You need to exclude such channels from those
being intercepted by the current interceptor. This can be done with appropriate patt er ns or
programmatically. If you have a custom Channel | nt er cept or that references a channel ,
consider implementing Vet oCapabl el nt er cept or. That way, the framework will ask the
interceptor if it's OK to intercept each channel that is a candidate based on the pattern. You can
also add runtime protection in the interceptor methods that ensures that the channel is not one
that is referenced by the interceptor. The W r eTap uses both of these techniques.

Conditional Wire Taps

Wire taps can be made conditional, using the sel ect or or sel ect or - expr essi on attributes.
The sel ect or references a MessageSel ect or bean, which can determine at runtime whether the
message should go to the tap channel. Similarly, the™ selector-expression’ is a boolean SpEL expression
that performs the same purpose - if the expression evaluates to true, the message will be sent to the
tap channel.

Global Wire Tap Configuration

It is possible to configure a global wire tap as a special case of the the section called “Global Channel
Interceptor Configuration”. Simply configure a top level wi r e-t ap element. Now, in addition to the
normal wi r e- t ap namespace support, the pat t er n and or der attributes are supported and work in
exactly the same way as with the channel -i nt er cept or

<int:wire-tap pattern="input*, bar*, foo" order="3" channel ="wi retapChannel "/ >

Tip

A global wire tap provides a convenient way to configure a single channel wire tap externally
without modifying the existing channel configuration. Simply set the patt er n attribute to the
target channel name. For example, This technique may be used to configure a test case to verify
messages on a channel.

Special Channels

If namespace support is enabled, there are two special channels defined within the application context
by default: er r or Channel and nul | Channel . The nullChannel acts like / dev/ nul | , simply logging

4.2.0.RC1 Spring Integration 36

Spring Integration Reference Manual

any Message sent to it at DEBUG level and returning immediately. Any time you face channel
resolution errors for a reply that you don’t care about, you can set the affected component’s out put -
channel attribute to nullChannel (the name nullChannel is reserved within the application context).
The errorChannel is used internally for sending error messages and may be overridden with a custom
configuration. This is discussed in greater detail in Section F.4, “Error Handling”.

4.2 Poller

Polling Consumer

When Message Endpoints (Channel Adapters) are connected to channels and instantiated, they
produce one of the following 2 instances:

» PollingConsumer

» EventDrivenConsumer

The actual implementation depends on which type of channel these Endpoints are
connected to. A channel adapter connected to a channel that implements the
org.springframework.messaging.SubscribableChannel interface will produce an instance of
Event Dri venConsuner. On the other hand, a channel adapter connected to a channel that
implements the org.springframework.messaging.PollableChannel interface (e.g. a QueueChannel) will
produce an instance of Pol | i ngConsurer .

Polling Consumers allow Spring Integration components to actively poll for Messages, rather than to
process Messages in an event-driven manner.

They represent a critical cross cutting concern in many messaging scenarios. In Spring Integration,
Polling Consumers are based on the pattern with the same name, which is described in the book
"Enterprise Integration Patterns" by Gregor Hohpe and Bobby Woolf. You can find a description of the
pattern on the book’s website at:

http://www.enterpriseintegrationpatterns.com/PollingConsumer.html

Pollable Message Source

Furthermore, in Spring Integration a second variation of the Polling Consumer pattern exists.
When Inbound Channel Adapters are being used, these adapters are often wrapped by a
Sour cePol | i ngChannel Adapt er. For example, when retrieving messages from a remote FTP
Server location, the adapter described in Section 15.4, “FTP Inbound Channel Adapter” is configured
with a poller to retrieve messages periodically. So, when components are configured with Pollers, the
resulting instances are of one of the following types:

¢ PollingConsumer

» SourcePollingChannelAdapter

This means, Pollers are used in both inbound and outbound messaging scenarios. Here are some use-
cases that illustrate the scenarios in which Pollers are used:

» Polling certain external systems such as FTP Servers, Databases, Web Services
» Polling internal (pollable) Message Channels

 Polling internal services (E.g. repeatedly execute methods on a Java class)

4.2.0.RC1 Spring Integration 37

http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/EventDrivenConsumer.html
http://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/SubscribableChannel.html
http://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/PollableChannel.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/SourcePollingChannelAdapter.html

Spring Integration Reference Manual

Note

AOP Advice classes can be applied to pollers, in an advi ce-chai n. An example being a
transaction advice to start a transaction. Starting with version 4.1 a Pol | Ski pAdvi ce is provided.
Pollers use triggers to determine the time of the next poll. The Pol | Ski pAdvi ce can be used
to suppress (skip) a poll, perhaps because there is some downstream condition that would
prevent the message to be processed properly. To use this advice, you have to provide it with an
implementation of a Pol | Ski pSt r at egy. Version 4.2 added more flexibility in this area - see
the section called “Conditional Pollers for Message Sources”.

This chapter is meant to only give a high-level overview regarding Polling Consumers and how they
fit into the concept of message channels - Section 4.1, “Message Channels” and channel adapters
- Section 4.3, “Channel Adapter”. For more in-depth information regarding Messaging Endpoints in
general and Polling Consumers in particular, please seeSection 8.1, “Message Endpoints”.

Conditional Pollers for Message Sources
Background

Advi ce objects, in an advi ce- chai n on a poller, advise the whole polling task (message retrieval
and processing). These "around advice" methods do not have access to any context for the poll, just
the poll itself. This is fine for requirements such as making a task transactional, or skipping a poll due
to some external condition as discussed above. What if we wish to take some action depending on the
result of the r ecei ve part of the poll, or if we want to adjust the poller depending on conditions?

"Smart" Polling

Version 4.2 introduced the Abst r act MessageSour ceAdvi ce. Any Advi ce objects in the advi ce-
chai n that subclass this class, are applied to just the receive operation. Such classes implement the
following methods:

bef or eRecei ve(MessageSour ce<?> source)

This method is called before the MessageSour ce. recei ve() method. It enables you to examine
and or reconfigure the source at this time. Returning fal se cancels this poll (similar to the
Pol | Ski pAdvi ce mentioned above).

Message<?> after Recei ve(Message<?> result, MessageSource<?> source)

This method is called after the r ecei ve() method; again, you can reconfigure the source, or take any
action perhaps depending on the result (which can be nul | if there was no message created by the
source). You can even return a different message!

SimpleActiveldleMessageSourceAdvice

This advice is a simple implementation of Abstract MessageSour ceAdvi ce, when used in
conjunction with a Dynani cPer i odi cTri gger, it adjuststhe polling frequency depending on whether
or not the previous poll resulted in a message or not. The poller must also have a reference to the same
Dynami cPeri odi cTri gger.

Important: Async Handoff

This advice modifies the trigger based on the r ecei ve() result. This will only work if the advice
is called on the poller thread. It will not work if the poller has a t ask- execut or. To use this

4.2.0.RC1 Spring Integration 38

Spring Integration Reference Manual

advice where you wish to use async operations after the result of a poll, do the async handoff
later, perhaps by using an Execut or Channel .

Advice Chain Ordering

It is important to understand how the advice chain is processed during initialization. Advi ce
objects that do not extend Abstract MessageSour ceAdvi ce are applied to the whole poll
process and are all invoked first, in order, before any Abst r act MessageSour ceAdvi ce; then
Abst ract MessageSour ceAdvi ce objects are invoked in order around the MessageSour ce
recei ve() method. If you have, say Advi ce objects a, b, ¢, d, where b and d are
Abst ract MessageSour ceAdvi ce, they will be applied in the order a, c, b, d. Also, ifa
MessageSour ce is already a Pr oxy, the Abstract MessageSour ceAdvi ce will be invoked
after any existing Advi ce objects. If you wish to change the order, you should wire up the proxy
yourself.

4.3 Channel Adapter

A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to
a Message Channel. Spring Integration provides a number of adapters out of the box to support
various transports, such as JMS, File, HTTP, Web Services, Mail, and more. Those will be discussed
in upcoming chapters of this reference guide. However, this chapter focuses on the simple but flexible
Method-invoking Channel Adapter support. There are both inbound and outbound adapters, and each
may be configured with XML elements provided in the core namespace. These provide an easy way
to extend Spring Integration as long as you have a method that can be invoked as either a source or
destination.

Configuring An Inbound Channel Adapter

An "inbound-channel-adapter" element can invoke any method on a Spring-managed Object and send
a non-null return value to a MessageChannel after converting it to a Message. When the adapter’s
subscription is activated, a poller will attempt to receive messages from the source. The poller will be
scheduled with the TaskSchedul er according to the provided configuration. To configure the polling
interval or cron expression for an individual channel-adapter, provide a poller element with one of the
scheduling attributes, such as fixed-rate or cron.

<i nt:inbound-channel - adapt er ref="sourcel" method="nmet hodl" channel ="channel 1">
<int:poller fixed-rate="5000"/>
</int:inbound-channel - adapt er >

<i nt:inbound-channel - adapt er ref="source2" method="nmethod2" channel ="channel 2">
<int:poller cron="30 * 9-17 * * MON-FR "/ >
</int: channel - adapt er >

Also see the section called “Channel Adapter Expressions and Scripts”.

Note

If no poller is provided, then a single default poller must be registered within the context. See the
section called “Namespace Support” for more detail.

Important: Poller Configuration

Some i nbound- channel - adapt er types are backed by a
Sour cePol | i ngChannel Adapt er which means they contain Poller configuration which will

4.2.0.RC1 Spring Integration 39

Spring Integration Reference Manual

poll the MessageSour ce (invoke a custom method which produces the value that becomes a
Message payload) based on the configuration specified in the Poller.

For example:
<int:poller max-nmessages-per-poll="1" fixed-rate="1000"/>
<int:poller max-nmessages-per-poll="10" fixed-rate="1000"/>

In the the first configuration the polling task will be invoked once per poll and during such task
(poll) the method (which results in the production of the Message) will be invoked once based on
the max- messages- per - pol | attribute value. In the second configuration the polling task will
be invoked 10 times per poll or until it returns null thus possibly producing 10 Messages per poll
while each poll happens at 1 second intervals. However what if the configuration looks like this:

<int:poller fixed-rate="1000"/>

Note there is no max- nessages- per - pol | specified. As you'll learn later the identical poller
configuration in the Pol | i ngConsumer (e.g., service-activator, filter, router etc.) would have a
default value of -1 for max- messages- per - pol I which means "execute poling task non-stop
unless polling method returns null (e.g., no more Messages in the QueueChannel)" and then sleep
for 1 second.

However in the SourcePollingChannelAdapter it is a bit different. The default value for max-
nmessages- per - pol | will be set to 1 by default unless you explicitly set it to a negative value
(e.g., -1). Itis done so to make sure that poller can react to a LifeCycle events (e.qg., start/stop) and
prevent it from potentially spinning in the infinite loop if the implementation of the custom method
of the MessageSour ce has a potential to never return null and happened to be non-interruptible.

However if you are sure that your method can return null and you need the behavior where you
want to poll for as many sources as available per each poll, then you should explicitly set nax-
nessages- per - pol | to a negative value.

<int:poller max-nmessages-per-poll="-1" fixed-rate="1000"/>

Configuring An Outbound Channel Adapter

An "outbound-channel-adapter" element can also connect a MessageChannel to any POJO consumer
method that should be invoked with the payload of Messages sent to that channel.

<i nt:out bound- channel - adapt er channel ="channel 1" ref="target" nethod="handl e"/>

<beans: bean id="target" cl ass="org.Foo"/>

If the channel being adapted is a Pol | abl eChannel , provide a poller sub-element:

<i nt: out bound- channel - adapt er channel ="channel 2" ref="target" method="handl e">
<int:poller fixed-rate="3000" />
</ int: out bound- channel - adapt er >

<beans: bean id="target" class="org.Foo"/>

Using a "ref" attribute is generally recommended if the POJO consumer implementation can be reused
in other <out bound- channel - adapt er > definitions. However if the consumer implementation is only
referenced by a single definition of the <out bound- channel - adapt er >, you can define it as inner
bean:

4.2.0.RC1 Spring Integration 40

Spring Integration Reference Manual

<i nt: out bound- channel - adapt er channel ="channel " net hod="handl e" >
<beans: bean cl ass="org. Foo"/>
</i nt: out bound- channel - adapt er >

Note

Using both the "ref" attribute and an inner handler definition in the same <out bound- channel -
adapt er > configuration is not allowed as it creates an ambiguous condition. Such a configuration
will result in an Exception being thrown.

Any Channel Adapter can be created without a "channel" reference in which case it will implicitly
create an instance of Di r ect Channel . The created channel’'s name will match the "id" attribute of
the <i nbound- channel - adapt er > or <out bound- channel - adapt er > element. Therefore, if the
"channel" is not provided, the "id" is required.

Channel Adapter Expressions and Scripts

Like many other Spring Integration components, the <i nbound-channel -adapter> and
<out bound- channel - adapt er > also provide support for SpEL expression evaluation. To use SpEL,
provide the expression string via the expression attribute instead of providing the ref and method
attributes that are used for method-invocation on a bean. When an Expression is evaluated, it follows
the same contract as method-invocation where: the expression for an <i nbound- channel - adapt er >
will generate a message anytime the evaluation result is a non-null value, while the expression for an
<out bound- channel - adapt er > must be the equivalent of a void returning method invocation.

Starting with Spring Integration 3.0, an <i nt : i nbound- channel - adapt er / > can also be configured
with a SpEL <expr essi on/ > (or even with <scri pt / >) sub-element, for when more sophistication is
required than can be achieved with the simple expression attribute. If you provide a script as a Resour ce
using the | ocat i on attribute, you can also set the refresh-check-delay allowing the resource to be
refreshed periodically. If you want the script to be checked on each poll, you would need to coordinate
this setting with the poller’s trigger:

<i nt:inbound-channel - adapt er ref="sourcel" method="nmet hodl" channel ="channel 1">
<int:poller max-messages-per-poll="1" fixed-del ay="5000"/>
<script:script lang="ruby" |ocation="Foo.rb" refresh-check-del ay="5000"/>
</int:inbound-channel - adapt er >

Also see the cacheSeconds property on the Rel oadabl eResour ceBundl eExpr essi onSour ce
when using the <expressi on/ > sub-element. For more information regarding expressions see
Appendix A, Spring Expression Language (SpEL), and for scripts - Section 8.7, “Groovy support” and
Section 8.6, “Scripting support”.

Important

The <int:inbound-channel - adapt er/ > is an endpoint that starts a message flow via
periodic triggering to poll some underlying MessageSour ce. Since, at the time of polling, there
is not yet a message object, expressions and scripts don’t have access to a root Message, so
there are no payload or headers properties that are available in most other messaging SpEL
expressions. Of course, the script can generate and return a complete Message object with
headers and payload, or just a payload, which will be added to a message with basic headers.

4.2.0.RC1 Spring Integration 41

Spring Integration Reference Manual

4.4 Messaging Bridge
Introduction

A Messaging Bridge is a relatively trivial endpoint that simply connects two Message Channels
or Channel Adapters. For example, you may want to connect a Pol | abl eChannel to a
Subscri babl eChannel so that the subscribing endpoints do not have to worry about any polling
configuration. Instead, the Messaging Bridge provides the polling configuration.

By providing an intermediary poller between two channels, a Messaging Bridge can be used to throttle
inbound Messages. The poller’s trigger will determine the rate at which messages arrive on the second
channel, and the poller's "maxMessagesPerPoll" property will enforce a limit on the throughput.

Another valid use for a Messaging Bridge is to connect two different systems. In such a scenario, Spring
Integration’s role would be limited to making the connection between these systems and managing a
poller if necessary. It is probably more common to have at least a Transformer between the two systems
to translate between their formats, and in that case, the channels would be provided as the input-channel
and output-channel of a Transformer endpoint. If data format translation is not required, the Messaging
Bridge may indeed be sufficient.

Configuring Bridge

The <bridge> element is used to create a Messaging Bridge between two Message Channels or Channel
Adapters. Simply provide the "input-channel" and "output-channel" attributes:

<int:bridge input-channel ="input" output-channel ="out put"/>

As mentioned above, a common use case for the Messaging Bridge is to connect a Pol | abl eChannel
to a Subscri babl eChannel , and when performing this role, the Messaging Bridge may also serve
as a throttler:

<int:bridge input-channel ="poll abl e" output-channel ="subscri babl e">
<int:poller max-nmessages-per-poll="10" fixed-rate="5000"/>
</int:bridge>

Connecting Channel Adapters is just as easy. Here is a simple echo example between the "stdin" and
"stdout" adapters from Spring Integration’s "stream" namespace.
<i nt-stream stdi n-channel -adapter id="stdin"/>
<i nt - stream st dout - channel - adapt er id="stdout"/>

<int:bridge id="echo" input-channel ="stdin" out put-channel ="stdout"/>

Of course, the configuration would be similar for other (potentially more useful) Channel Adapter bridges,
such as File to JMS, or Mail to File. The various Channel Adapters will be discussed in upcoming
chapters.

Note

If no output-channel is defined on a bridge, the reply channel provided by the inbound Message
will be used, if available. If neither output or reply channel is available, an Exception will be thrown.

4.2.0.RC1 Spring Integration 42

Spring Integration Reference Manual

5. Message Construction

5.1 Message

The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message also includes headers containing user-extensible properties as key-value
pairs.

The Message Interface

Here is the definition of the Message interface:

public interface Message<T> {
T get Payl oad();

MessageHeader s get Headers();

The Message is obviously a very important part of the API. By encapsulating the data in a generic
wrapper, the messaging system can pass it around without any knowledge of the data’s type. As an
application evolves to support new types, or when the types themselves are modified and/or extended,
the messaging system will not be affected by such changes. On the other hand, when some component
in the messaging system does require access to information about the Message, such metadata can
typically be stored to and retrieved from the metadata in the Message Headers.

Message Headers

Just as Spring Integration allows any Object to be used as the payload of a Message, it also supports
any Object types as header values. In fact, the MessageHeader s class implements the java.util. Map
interface:

public final class MessageHeaders inplenents Map<String, Object>, Serializable {

}

Note

Even though the MessageHeaders implements Map, it is effectively a read-only implementation.
Any attempt to put a value in the Map will result in an Unsuppor t edOper at i onExcepti on. The
same applies for remove and clear. Since Messages may be passed to multiple consumers, the
structure of the Map cannot be modified. Likewise, the Message’s payload Object can not be set
after the initial creation. However, the mutability of the header values themselves (or the payload
Object) is intentionally left as a decision for the framework user.

As an implementation of Map, the headers can obviously be retrieved by calling get (. .) with the name
of the header. Alternatively, you can provide the expected Class as an additional parameter. Even better,
when retrieving one of the pre-defined values, convenient getters are available. Here is an example of
each of these three options:

4.2.0.RC1 Spring Integration 43

Spring Integration Reference Manual

bj ect sonmeVal ue = nmessage. get Headers(). get ("sonmeKey");

Customer |l d customerld = message. get Headers().get("custonerld", Customerld.class);

Long ti mestanp = nmessage. get Header s(). get Ti mest anp() ;

The following Message headers are pre-defined:

Table 5.1. Pre-defined Message Headers

Header Name

‘ MessageHeaders. | D

Header Type

java.util.Uu D

Usage

An identifier for this message instance. Changes each
time a message is mutated.

MessageHeader s.
TI MESTAMP

MessageHeader s.
REPLY_CHANNEL

java. |l ang. Long

java. |l ang. bj ect
(String or
MessageChannel)

The time the message was created. Changes each
time a message is mutated.

A channel to which a reply (if any) will be sent
when no explicit output channel is configured and

there is no ROUTI NG_SLI P or the ROUTI NG _SLI P

is exhausted. If the value is a St ri ng it must
represent a bean name, or have been generated by a
Channel Regi stry.

A channel to which errors will be sent. If the value is a
St ri ng it must represent a bean name, or have been
generated by a Channel Regi stry.

java. |l ang. bj ect
(String or

MessageHeader s.
MessageChannel)

ERROR_CHANNEL

Many inbound and outbound adapter implementations will also provide and/or expect certain headers,
and additional user-defined headers can also be configured. Constants for these headers can be found
in those modules where such headers exist, for example AngpHeader s, JnsHeader s etc.

MessageHeaderAccessor API

Starting with Spring Framework 4.0 and Spring Integration 4.0, the core Messaging abstraction
has been moved to the spring-messaging module and the new MessageHeader Accessor
APl has been introduced to provide additional abstraction over Messaging implementations.
All (core) Spring Integration specific Message Headers constants are now declared in the
I nt egrati onMessageHeader Accessor class:

Table 5.2. Pre-defined Message Headers

Header Name Header Type Usage
I nt egr at i onMessageHeader Accessor . j ava. | ang. Obj ect ‘ Used to correlate two or more
CORRELATI ON_I D messages.
I nt egr at i onMessageHeader Accessor . j ava. | ang. | nt eger ‘ Usually a sequence number

SEQUENCE_NUMBER

with a group of messages with a
SEQUENCE_SI ZE but can also be
used in a <r esequencer/ >to
resequence an unbounded group of
messages.

4.2.0.RC1 Spring Integration 44

Spring Integration Reference Manual

Header Name Header Type Usage

The number of messages within a
group of correlated messages.

I nt egr at i onMessageHeader Accessor . java. |l ang. | nt eger
SEQUENCE_SI ZE

I nt egr ati onMessageHeader Accessor . java. l ang. Long ‘ Indicates when a message is
SR L 1S expired. Not used by the framework
directly but can be set with a
header enricher and used in a
<filter/ > configured with an
Unexpi r edMessageSel ect or .

Message priority; for example within

I nt egr at i onMessageHeader Accessor . java.l ang. | nt eger
GO LR aPriorityChannel

I nt egr at i onMessageHeader Accessor . j ava. | ang. Bool ean ‘ True if a message was detected as a
BrrHleyIE]taeses duplicate by an idempotent receiver

interceptor. See the section called
“l[dempotent Receiver Enterprise
Integration Pattern”.

Convenient typed getters for some of these headers are provided on the
I nt egr ati onMessageHeader Accessor class:

I nt egrati onMessageHeader Accessor accessor = new | ntegrati onMessageHeader Accessor (message) ;
i nt sequenceNunber = accessor. get SequenceNunber ();
Obj ect correlationld = accessor.getCorrelationld();

The following headers also appear in the | nt egr at i onMessageHeader Accessor but are generally
not used by user code; their inclusion here is for completeness:

Table 5.3. Pre-defined Message Headers

Header Name Header Type Usage
I nt egr at i onMessageHeader Accessor . java.util.List< A stack of correlation data used
SEevaNes parlEs H e d] G =2 when nested correlation is
needed (e.g.splitter->...-
>splitter->...->aggregator-
>...->aggregator).
I nt egr at i onMessageHeader Accessor . java.util.Map< See the section called “Routing Slip”.
ROUTI NG_SLI P Li st <Obj ect >,
I nt eger >

Message ID Generation

When a message transitions through an application, each time it is mutated (e.g. by a transformer) a new
message id is assigned. The message id is a UUI D. Beginning with Spring Integration 3.0, the default
strategy used for id generation is more efficient than the previous j ava. uti | . UUl D. r andomUJul D()
implementation. It uses simple random numbers based on a secure random seed, instead of creating
a secure random number each time.

A different UUID generation strategy can be selected by declaring a bean that implements
org. springframework. util.|dGenerator in the application context.

4.2.0.RC1 Spring Integration 45

Spring Integration Reference Manual

Important

Only one UUID generation strategy can be used in a classloader. This means that if two or more
application contexts are running in the same classloader, they will share the same strategy. If one
of the contexts changes the strategy, it will be used by all contexts. If two or more contexts in the
same classloader declare a bean of type or g. spri ngf ramewor k. uti | . | dGener at or, they
must all be an instance of the same class, otherwise the context attempting to replace a custom
strategy will fail to initialize. If the strategy is the same, but parameterized, the strategy in the first
context to initialize will be used.

In additon to the default strategy, two additional |dGenerators are provided;
org.springframework. util.Jdkl dGenerator wuses the previous UUl D.randomJul D()
mechanism; 0. s. i . support. | dGenerators. Si npl el ncrenmenti ngl dGener at or can be used
in cases where a UUID is not really needed and a simple incrementing value is sufficient.

Message Implementations

The base implementation of the Message interface is Generi cMessage<T>, and it provides two
constructors:

new Generi cMessage<T>(T payl oad);
new Generi cMessage<T>(T payl oad, Map<String, Object> headers)

When a Message is created, a random unique id will be generated. The constructor that accepts a Map
of headers will copy the provided headers to the newly created Message.

There is also a convenient implementation of Message designed to communicate error conditions. This
implementation takes Thr owabl e object as its payload:

Error Message nessage = new Error Message(soneThrowabl e);

Throwabl e t = nessage. get Payl oad();

Notice that this implementation takes advantage of the fact that the Generi cMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the
Message payload Object.

The MessageBuilder Helper Class

You may notice that the Message interface defines retrieval methods for its payload and headers but
no setters. The reason for this is that a Message cannot be modified after its initial creation. Therefore,
when a Message instance is sent to multiple consumers (e.g. through a Publish Subscribe Channel), if
one of those consumers needs to send a reply with a different payload type, it will need to create a new
Message. As a result, the other consumers are not affected by those changes. Keep in mind, that multiple
consumers may access the same payload instance or header value, and whether such an instance is
itself immutable is a decision left to the developer. In other words, the contract for Messages is similar to
that of an unmodifiable Collection, and the MessageHeaders' map further exemplifies that; even though
the MessageHeaders class implements j ava. uti | . Map, any attempt to invoke a put operation (or
remove or clear) on the MessageHeaders will result in an Unsupport edQper at i onExcept i on.

Rather than requiring the creation and population of a Map to pass into the GenericMessage constructor,
Spring Integration does provide a far more convenient way to construct Messages: MessageBui | der .
The MessageBuilder provides two factory methods for creating Messages from either an existing

4.2.0.RC1 Spring Integration 46

Spring Integration Reference Manual

Message or with a payload Object. When building from an existing Message, the headers and payload
of that Message will be copied to the new Message:

Message<String> nessagel = MessageBui |l der. wit hPayl oad("test")
. set Header ("foo", "bar")
Lbuild();

Message<Stri ng> nessage2 = MessageBui | der. fromVessage(nessagel). build();

assert Equal s("test", message2. getPayl oad());
assert Equal s("bar", message2. get Headers().get("fo0"));

If you need to create a Message with a new payload but still want to copy the headers from an existing
Message, you can use one of the copy methods.

Message<Stri ng> nessage3 = MessageBui | der. wi t hPayl oad("t est 3")
. copyHeader s(nessagel. get Header s())
Lbuild();

Message<Stri ng> nessage4 = MessageBui | der. wi t hPayl oad("t est 4")
. set Header ("foo", 123)
. copyHeader sl f Absent (nessagel. get Headers())
Lbuild();

assert Equal s("bar", nessage3. getHeaders().get("fo0"));
assert Equal s(123, nessage4. get Headers().get("fo00"));

Notice that the copyHeader sl f Absent does not overwrite existing values. Also, in the second
example above, you can see how to set any user-defined header with set Header . Finally, there are
set methods available for the predefined headers as well as a non-destructive method for setting any
header (MessageHeaders also defines constants for the pre-defined header names).

Message<I| nt eger > i nport ant Message = MessageBui | der. wi t hPayl oad(99)
.setPriority(5)
Lbuild();

assert Equal s(5, inportant Message. get Headers().getPriority());
Message<I nt eger > | essl nport ant Message = MessageBui | der. fromVessage(i nmport ant Message)
. set Header | f Absent (I nt egr ati onMessageHeader Accessor. PRIOCRI TY, 2)

. bui 1d();

assert Equal s(2, | esslnportant Message. get Headers().getPriority());

The pri ori ty header is only considered when using a Pri ori t yChannel (as described in the next
chapter). It is defined as java.lang.Integer.

4.2.0.RC1 Spring Integration 47

Spring Integration Reference Manual

6. Message Routing

6.1 Routers

Overview

Routers are a crucial element in many messaging architectures. They consume Messages from a
Message Channel and forward each consumed message to one or more different Message Channel
depending on a set of conditions.

Spring Integration provides the following routers out-of-the-box:

Payload Type Router

Header Value Router

Recipient List Router

XPath Router (Part of the XML Module)

* Error Message Exception Type Router

(Generic) Router

Router implementations share many configuration parameters. Yet, certain differences exist between
routers. Furthermore, the availability of configuration parameters depends on whether Routers are used
inside or outside of a chain. In order to provide a quick overview, all available attributes are listed in
the 2 tables below.

Table 6.1. Routers Outside of a Chain

Attribute router header xpath payload recipient |exception
value router type list router |type
router router router

apply-sequence Ve Ve Ve Ve & &

default-output-channel | <+~ 4 4 4 & &
resolution-required e " " " Ve Ve

ignore-send-failures & <« <« <« v v

timeout &« &« &« &« & &

id <« <« <« & & &

auto-startup &« &« &« &« & &

input-channel 4 4 4 4 & &
order 4 4 4 4 & &

4.2.0.RC1 Spring Integration 48

Spring Integration Reference Manual

Attribute router header xpath payload recipient |exception
value router type list router |type
router router router

method &

ref &

expression &

header-name &

evaluate-as-string &

xpath-expression-ref &

converter v

Table 6.2. Routers Inside of a Chain

Attribute router header xpath payload recipient |exception
value router type list router |type
router router router

apply-sequence 4 4 4 4 & &

default-output-channel | <+~ <« <« <« v v

resolution-required <« <« <« <« v v

ignore-send-failures " Ve Ve Ve & &

timeout 4 4 4 4 & &

id

auto-startup

input-channel

order

method &

ref &

expression &

header-name &

evaluate-as-string &

4.2.0.RC1 Spring Integration 49

Spring Integration Reference Manual

Attribute router header xpath payload recipient |exception
value router type list router |type
router router router

xpath-expression-ref &

converter &

Important

Router parameters have been more standardized across all router implementations with Spring
Integration 2.1. Consequently, there are a few minor changes that leave the possibility of breaking
older Spring Integration based applications.

Since Spring Integration 2.1 the i gnor e- channel - nane-r esol uti on-f ai | ur es attribute is
removed in favor of consolidating its behavior with the r esol ut i on-r equi r ed attribute. Also,
the resol uti on-requi r ed attribute now defaultsto t r ue.

Prior to these changes, the resol uti on-required attribute defaulted to f al se causing
messages to be silently dropped when no channel was resolved and no def aul t - out put -
channel was set. The new behavior will require at least one resolved channel and by default will
throw an MessageDel i ver yExcept i on if no channel was determined (or an attempt to send
was not successful).

If you do desire to drop messages silently simply set default-output-
channel =" nul | Channel ".

Common Router Parameters
Inside and Outside of a Chain
The following parameters are valid for all routers inside and outside of chains.

apply-sequence
This attribute specifies whether sequence number and size headers should be added to each
Message. This_optional__ attribute defaults to false.

default-output-channel
If set, this attribute provides a reference to the channel, where Messages should be sent, if channel
resolution fails to return any channels. If no default output channel is provided, the router will throw
an Exception. If you would like to silently drop those messages instead, add the nul | Channel as
the default output channel attribute value.

Note

A Message will only be sent to the def aul t - out put - channel if resol uti on-requiredis
false and the channel is not resolved.

resolution-required
If true this attribute specifies that channel names must always be successfully resolved to channel
instances that exist. If set to true, a Messagi ngExcept i on will be raised, in case the channel

4.2.0.RC1 Spring Integration 50

Spring Integration Reference Manual

cannot be resolved. Setting this attribute to false, will cause any unresovable channels to be ignored.
This_optional_ attribute will, if not explicitly set, default to true.

Note

A Message will only be sent to the default-output-channel, if specified, when
resol uti on-requi red is false and the channel is not resolved.

ignore-send-failures
If set to true, failures to send to a message channel will be ignored. If set to false, a
MessageDel i ver yExcept i on will be thrown instead, and if the router resolves more than one
channel, any subsequent channels will not receive the message.

The exact behavior of this attribute depends on the type of the Channel messages are sent to. For
example, when using direct channels (single threaded), send-failures can be caused by exceptions
thrown by components much further down-stream. However, when sending messages to a simple queue
channel (asynchronous) the likelihood of an exception to be thrown is rather remote.

Note

While most routers will route to a single channel, they are allowed to return more than one channel
name. Ther eci pi ent -1 i st -rout er, forinstance, does exactly that. If you set this attribute to
true on a router that only routes to a single channel, any caused exception is simply swallowed,
which usually makes little sense to do. In that case it would be better to catch the exception in
an error flow at the flow entry point. Therefore, setting the i gnor e- send- f ai | ur es attribute to
true usually makes more sense when the router implementation returns more than one channel
name, because the other channel(s) following the one that fails would still receive the Message.

This attribute defaults to false.

timeout
Theti meout attribute specifies the maximum amount of time in milliseconds to wait, when sending
Messages to the target Message Channels. By default the send operation will block indefinitely.

Top-Level (Outside of a Chain)
The following parameters are valid only across all top-level routers that are ourside of chains.
id
Identifies the underlying Spring bean definition which in case of Routers is an instance of

EventDrivenConsumer or PollingConsumer depending on whether the Router’s input-channel is a
SubscribableChannel or PollableChannel, respectively. This is an optional attribute.

auto-startup
This Li f ecycl e attribute signaled if this component should be started during startup of the
Application Context. This optional attribute defaults to true.

input-channel
The receiving Message channel of this endpoint.

order
This attribute defines the order for invocation when this endpoint is connected as a subscriber to a
channel. This is particularly relevant when that channel is using a failover dispatching strategy. It
has no effect when this endpoint itself is a Polling Consumer for a channel with a queue.

4.2.0.RC1 Spring Integration 51

Spring Integration Reference Manual

Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will require
Spring Integration’s options for delegating to POJOs using the XML namespace support and/or
Annotations. Both of these are discussed below, but first we present a couple implementations that are
available out-of-the-box since they fulfill common requirements.

PayloadTypeRouter

A Payl oadTypeRout er will send Messages to the channel as defined by payload-type mappings.

<bean i d="payl oadTypeRout er"
cl ass="org. springframework.integration.router.Payl oadTypeRout er">
<property name="channel Mappi ng" >
<rT‘ap>
<entry key="java.lang. String" val ue-ref="stringChannel "/ >
<entry key="java.lang.Integer" val ue-ref="integerChannel "/>
</ map>
</ property>
</ bean>

Configuration of the Payl oadTypeRout er is also supported via the namespace provided by Spring
Integration (see Section F.2, “Namespace Support”), which essentially simplifies configuration by
combining the <r out er / > configuration and its corresponding implementation defined using a <bean/
> element into a single and more concise configuration element. The example below demonstrates
a Payl oadTypeRout er configuration which is equivalent to the one above using the namespace
support:

<i nt: payl oad-type-router input-channel ="routingChannel ">
<int:mapping type="java.lang. String" channel ="stringChannel " />
<int:mapping type="java.lang.|nteger" channel ="i nteger Channel " />
</int: payl oad-type-router>

HeaderValueRouter

A Header Val ueRout er will send Messages to the channel based on the individual header value
mappings. When a Header Val ueRout er is created it is initialized with the name of the header to be
evaluated. The value of the header could be one of two things:

1. Arbitrary value
2. Channel name

If arbitrary then additional mappings for these header values to channel names is required, otherwise
no additional configuration is needed.

Spring Integration provides a simple namespace-based XML configuration to configure a
Header Val ueRout er . The example below demonstrates two types of namespace-based configuration
for the Header Val ueRout er .

1. Configuration where mapping of header values to channels is required

<i nt: header-val ue-router input-channel ="routingChannel" header-nanme="t est Header" >
<i nt:mappi ng val ue="sonmeHeader Val ue" channel ="channel A" />
<i nt:mappi ng val ue="someQ her Header Val ue" channel ="channel B" />

</i nt: header - val ue-rout er>

During the resolution process this router may encounter channel resolution failures, causing an
exception. If you want to suppress such exceptions and send unresolved messages to the default output

4.2.0.RC1 Spring Integration 52

Spring Integration Reference Manual

channel (identified with the def aul t - out put - channel attribute) set resol uti on-required to
fal se.

Normally, messages for which the header value is not explicitly mapped to a channel will be sent to
the def aul t - out put - channel . However, in cases where the header value is mapped to a channel
name but the channel cannot be resolved, setting the r esol uti on-r equi r ed attribute to f al se will
result in routing such messages to the def aul t - out put - channel .

Important

With Spring Integration 2.1 the attribute was changed from i gnore-channel - nane-
resol ution-failures toresol ution-required. Attribute resol uti on-required will
defaultto t r ue.

2. Configuration where mapping of header values to channel names is not required since header values
themselves represent channel names

<i nt: header-val ue-router input-channel ="routingChannel" header-nanme="t est Header"/ >

Note

Since Spring Integration 2.1 the behavior of resolving channels is more explicit. For example,
if you ommit the def aul t - out put - channel attribute and the Router was unable to resolve
at least one valid channel, and any channel name resolution failures were ignored by setting
resol ution-requiredtofal se, thenaMessageDel i ver yExcepti on is thrown.

Basically, by default the Router must be able to route messages successfully to at least one
channel. If you really want to drop messages, you must also have def aul t - out put - channel
setto nul | Channel .

RecipientListRouter

A Reci pi ent Li st Rout er will send each received Message to a statically defined list of Message
Channels:

<bean id="reci pi entLi st Router"
cl ass="org. springframework.integration.router.RecipientListRouter">
<property nane="channel s">
<list>
<ref bean="channel 1"/ >
<ref bean="channel 2"/ >
<ref bean="channel 3"/ >
</list>
</ property>
</ bean>

Spring Integration also provides namespace support for the Reci pi ent Li st Rout er configuration
(see Section F.2, “Namespace Support”) as the example below demonstrates.

<int:recipient-list-router id="custonRouter" input-channel="routingChannel"
timeout ="1234"
i gnor e-send-failures="true"
appl y- sequence="true" >
<int:recipient channel ="channel 1"/>
<int:recipient channel ="channel 2"/>
</int:recipient-list-router>

4.2.0.RC1 Spring Integration 53

Spring Integration Reference Manual

Note

The apply-sequence flag here has the same effect as it does for a publish-subscribe-channel, and
like a publish-subscribe-channel, it is disabled by default on the recipient-list-router. Refer tothe
section called “PublishSubscribeChannel Configuration” for more information.

Another convenient option when configuring a Reci pi ent Li st Rout er is to use Spring Expression
Language (SpEL) support as selectors for individual recipient channels. This is similar to using a Filter at
the beginning of chain to act as a "Selective Consumer". However, in this case, it's all combined rather
concisely into the router’s configuration.

<int:recipient-list-router id="custonRouter" input-channel="routingChannel ">
<int:recipient channel ="channel 1" sel ect or - expr essi on="payl oad. equal s(' foo')"/>
<int:recipient channel ="channel 2" sel ect or - expressi on="headers. cont ai nsKey(' bar')"/>
</int:recipient-list-router>

In the above configuration a SpEL expression identified by the sel ect or - expr essi on attribute will be
evaluated to determine if this recipient should be included in the recipient list for a given input Message.
The evaluation result of the expression must be a boolean. If this attribute is not defined, the channel
will always be among the list of recipients.

RecipientListRouterManagement

Starting with version 4.1, the Reci pi ent Li st Rout er provides several operation to manipulate
with recipients dynamically at runtime. These management operations are presented by
Reci pi ent Li st Rout er Managenent @mhnagedResour ce. They are available using Section 9.6,
“Control Bus” as well as via JMX:

<control -bus input-channel ="control Bus"/>
<recipient-list-router id="sinpleRouter" input-channel="routingChannel A">
<reci pi ent channel ="channel 1"/ >

</recipient-list-router>

<channel id="channel 2"/>

messagi ngTenpl at e. conver t AndSend(cont r ol Bus,
" @ sinpl eRout er. handl er' . addReci pi ent (' channel 2')");

From the application start up the si npl eRout er will have only one channel 1 recipient. But after the
addReci pi ent command above the new channel 2 recipient will be added. It is a "registering an
interest in something that is part of the Message" use case, when we may be interested in messages
from the router at some time period, so we are subscribing to the the r eci pi ent -1 i st-router and
in some point decide to unsubscribe our interest.

Having the runtime management operation for the <r eci pi ent - | i st - r out er >, it can be configured
without any <r eci pi ent > from the start. In this case the behaviour of Reci pi ent Li st Rout er is
the same, when there is no one matching recipient for the message: if def aul t Qut put Channel is
configured, the message will be sent there, otherwise the MessageDel i ver yExcept i on is thrown.

XPath Router

The XPath Router is part of the XML Module. As such, please read chapter Section 35.6, “Routing XML
Messages Using XPath”

4.2.0.RC1 Spring Integration 54

Spring Integration Reference Manual

Routing and Error handling

Spring Integration also provides a special type-based router called
Error MessageExcept i onTypeRout er for routing Error Messages (Messages whose payl oad
is a Throwabl e instance). Error MessageExcepti onTypeRouter is very similar to the
Payl oadTypeRouter. In fact they are almost identical. The only difference is that
while Payl oadTypeRout er navigates the instance hierarchy of a payload instance (e.g.,
payl oad. get O ass() . get Supercl ass()) to find the most specific type/channel mappings,
the ErrorMessageExcepti onTypeRout er navigates the hierarchy of exception causes (e.g.,
payl oad. get Cause()) to find the most specific Thr owabl e type/channel mappings.

Below is a sample configuration for Er r or MessageExcept i onTypeRout er.

<int:exception-type-router input-channel="inputChannel"
def aul t - out put - channel =" def aul t Channel " >
<i nt:mappi ng exception-type="java.lang. ||| egal Argunent Exception"
channel ="i | | egal Channel "/ >

<int:mappi ng exception-type="java. | ang. Nul | Poi nt er Excepti on"
channel =" npeChannel "/ >
</int:exception-type-router>

<int:channel id="illegal Channel" />
<i nt:channel id="npeChannel" />

Configuring (Generic) Router
Configuring a Content Based Router with XML

The "router" element provides a simple way to connect a router to an input channel and also accepts
the optional def aul t - out put - channel attribute. The r ef attribute references the bean name of a
custom Router implementation (extending Abst r act MessageRout er):

<int:router ref="payl oadTypeRouter" input-channel ="input1"
def aul t - out put - channel =" def aul t Qut put 1"/ >

<int:router ref="recipientListRouter" input-channel ="input2"
def aul t - out put - channel =" def aul t Qut put 2"/ >

<int:router ref="custonRouter" input-channel ="input3"
def aul t - out put - channel =" def aul t Qut put 3"/ >

<beans: bean i d="cust onRout er Bean" cl ass="org. f 0oo. MyCust onRouter"/ >

Alternatively, r ef may point to a simple POJO that contains the @Router annotation (see below), or the
r ef may be combined with an explicit met hod name. Specifying a met hod applies the same behavior
described in the @Router annotation section below.

<int:router input-channel ="input" ref="sonmePojo" nethod="sonmeMet hod"/>

Using a r ef attribute is generally recommended if the custom router implementation is referenced in
other <r out er > definitions. However if the custom router implementation should be scoped to a single
definition of the <r out er >, you may provide an inner bean definition:

<int:router method="someMethod" input-channel ="input 3"
def aul t - out put - channel =" def aul t Qut put 3" >
<beans: bean cl ass="org. f 0oo. M/Cust onRout er"/ >
</int:router>

4.2.0.RC1 Spring Integration 55

Spring Integration Reference Manual

Note

Using both the r ef attribute and an inner handler definition in the same <r out er > configuration
is not allowed, as it creates an ambiguous condition, and an Exception will be thrown.

Routers and the Spring Expression Language (SpEL)

Sometimes the routing logic may be simple and writing a separate class for it and configuring it as a
bean may seem like overkill. As of Spring Integration 2.0 we offer an alternative where you can now use
SpEL to implement simple computations that previously required a custom POJO router.

Note

For more information about the Spring Expression Language, please refer to the respective
chapter in the Spring Framework Reference Documentation at:

null

Generally a SpEL expression is evaluated and the result is mapped to a channel:

<int:router input-channel ="inChannel" expressi on="payl oad. paynment Type" >
<i nt: mappi ng val ue="CASH' channel =" cashPaynent Channel "/ >
<i nt: mappi ng val ue="CREDI T* channel ="aut hori zePaynent Channel "/ >
<i nt: mappi ng val ue="DEBI T" channel ="aut hori zePaynment Channel "/ >
</int:router>

To simplify things even more, the SpEL expression may evaluate to a channel name:

<int:router input-channel ="inChannel" expression="payl oad + ' Channel'"/>

In the above configuration the result channel will be computed by the SpEL expression which simply
concatenates the value of the payl oad with the literal String Channel.

Another value of SpEL for configuring routers is that an expression can actually return a Col | ecti on,
effectively making every <r out er > a Recipient List Router. Whenever the expression returns multiple
channel values the Message will be forwarded to each channel.

<int:router input-channel ="inChannel" expression="headers. channels"/>

In the above configuration, if the Message includes a header with the name channels the value of which
is a Li st of channel names then the Message will be sent to each channel in the list. You may also
find Collection Projection and Collection Selection expressions useful to select multiple channels. For
further information, please see:

» Collection Projection

» Collection Selection

Configuring a Router with Annotations

When using @out er to annotate a method, the method may return either a MessageChannel or
Stri ng type. In the latter case, the endpoint will resolve the channel name as it does for the default
output channel. Additionally, the method may return either a single value or a collection. If a collection
is returned, the reply message will be sent to multiple channels. To summarize, the following method
signatures are all valid.

4.2.0.RC1 Spring Integration 56

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-projection
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-selection

Spring Integration Reference Manual

@Rout er
publ i c MessageChannel route(Message nessage) {...}

@Rout er
public List<MessageChannel > rout e(Message nessage) {...}

@Rout er
public String route(Foo payload) {...}

@Rout er
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a Message may be routed based on metadata available within the
message header as either a property or attribute. In this case, a method annotated with @Rout er may
include a parameter annotated with @eader which is mapped to a header value as illustrated below
and documented in Section F.6, “Annotation Support”.

@Rout er
public List<String> route(@ader("orderStatus”) OrderStatus status)

Note

For routing of XML-based Messages, including XPath support, see Chapter 35, XML Support -
Dealing with XML Payloads.

Dynamic Routers

So as you can see, Spring Integration provides quite a few different router configurations for common
content-based routing use cases as well as the option of implementing custom routers as POJOs. For
example Payl oadTypeRout er provides a simple way to configure a router which computes channel s
based on the payl oad t ype of the incoming Message while Header Val ueRout er provides the same
convenience in configuring a router which computes channel s by evaluating the value of a particular
Message Header. There are also expression-based (SpEL) routers where the channel is determined
based on evaluating an expression. Thus, these type of routers exhibit some dynamic characteristics.

However these routers all require static configuration. Even in the case of expression-based routers, the
expression itself is defined as part of the router configuration which means that_the same expression
operating on the same value will always result in the computation of the same channel_. This is
acceptable in most cases since such routes are well defined and therefore predictable. But there are
times when we need to change router configurations dynamically so message flows may be routed to
a different channel.

Example:

You might want to bring down some part of your system for maintenance and temporarily re-reroute
messages to a different message flow. Or you may want to introduce more granularity to your message
flow by adding another route to handle a more concrete type of j ava. | ang. Nunber (in the case of
Payl oadTypeRout er).

Unfortunately with static router configuration to accomplish this, you would have to bring down your
entire application, change the configuration of the router (change routes) and bring it back up. This is
obviously not the solution.

The Dynamic Router pattern describes the mechanisms by which one can change/configure routers
dynamically without bringing down the system or individual routers.

4.2.0.RC1 Spring Integration 57

http://www.eaipatterns.com/DynamicRouter.html

Spring Integration Reference Manual

Before we get into the specifics of how this is accomplished in Spring Integration, let’s quickly summarize
the typical flow of the router, which consists of 3 simple steps:

» Step 1 - Compute channel identi fier which is avalue calculated by the router once it receives
the Message. Typically itis a St ri ng or and instance of the actual MessageChannel .

» Step 2 - Resolve channel identifier tochannel nane.We'll describe specifics of this process
in a moment.

» Step 3 - Resolve channel nane to the actual MessageChannel

There is not much that can be done with regard to dynamic routing if Step 1 results in the actual instance
of the MessageChannel , simply because the MessageChannel is the final product of any router’s job.
However, if Step 1 results in a channel identifier thatis not an instance of MessageChannel ,
then there are quite a few possibilities to influence the process of deriving the Message Channel . Lets
look at couple of the examples in the context of the 3 steps mentioned above:

Payload Type Router

<i nt: payl oad-type-router input-channel ="routingChannel ">
<int:mappi ng type="java.lang. String" channel ="channel 1" />
<int:mappi ng type="java.lang. | nteger" channel ="channel 2" />
</int:payl oad-type-router>

Within the context of the Payload Type Router the 3 steps mentioned above would be realized as:

» Step 1- Compute channel identifier which is the fully qualified name of the payload type (e.qg.,
java.lang.String).

e Step 2 - Resolve channel identifier tochannel name where the result of the previous step is
used to select the appropriate value from the payload type mapping defined via mappi ng element.

» Step 3 - Resolve channel nane to the actual instance of the MessageChannel as a reference
to a bean within the Application Context (which is hopefully a MessageChannel) identified by the
result of the previous step.

In other words, each step feeds the next step until the process completes.

Header Value Router

<i nt:header-val ue-router input-channel ="i nput Channel" header-nane="t est Header" >
<i nt: mappi ng val ue="foo0" channel ="fooChannel " />
<int:mappi ng val ue="bar" channel ="bar Channel " />

</int: header-val ue-router>

Similar to the PayloadTypeRouter:

» Step 1- Compute channel identifier which isthe value of the header identified by the header -
name attribute.

» Step 2 - Resolve channel identifier tochannel name where the result of the previous step is
used to select the appropriate value from the general mapping defined via mappi ng element.

» Step 3 - Resolve channel nane to the actual instance of the MessageChannel as a reference
to a bean within the Application Context (which is hopefully a MessageChannel) identified by the
result of the previous step.

4.2.0.RC1 Spring Integration 58

Spring Integration Reference Manual

The above two configurations of two different router types look almost identical. However if we look at
the alternate configuration of the Header Val ueRout er we clearly see that there is no mappi ng sub
element:

<i nt: header-val ue-router input-channel ="input Channel" header-nane="t est Header" >

But the configuration is still perfectly valid. So the natural question is what about the mapping in the
Step 27?

What this means is that Step 2 is now an optional step. If mappi ng is not defined then the channel
i dentifier value computed in Step 1 will automatically be treated as the channel namne, which
will now be resolved to the actual MessageChannel as in Step 3. What it also means is that Step
2 is one of the key steps to provide dynamic characteristics to the routers, since it introduces a
process which_allows you to change the way channel identifier resolves to '‘channel name'_, thus
influencing the process of determining the final instance of the MessageChannel from the initial
channel identifier.

For Example:

In the above configuration let’'s assume that the t est Header value is kermit which is now a channel

i dentifier (Step 1). Since there is no mapping in this router, resolving this channel i dentifier
toachannel nane (Step 2) isimpossible and this channel identi fi er isnow treated as channel

nane. However what if there was a mapping but for a different value? The end result would still be the
same and that is:_if a new value cannot be determined through the process of resolving the channel
identifier to a channel name, such channel identifier becomes channel name._

So all that is left is for Step 3 to resolve the channel nane (kermit) to an actual instance of the
MessageChannel identified by this name. That basically involves a bean lookup for the name provided.
So now all messages which contain the header/value pair as t est Header =ker m t are going to be
routed to a MessageChannel whose bean name (id) is kermit.

But what if you want to route these messages to the simpson channel? Obviously changing a static
configuration will work, but will also require bringing your system down. However if you had access to
the channel identifier map,thenyou could justintroduce a new mapping where the header/value
pair is now ker mi t =si npson, thus allowing Step 2 to treat kermit as a channel identifi er while
resolving it to simpson as the channel nane.

The same obviously applies for Payl oadTypeRout er, where you can now remap or remove a
particular payload type mapping. In fact, it applies to every other router, including expression-based
routers, since their computed values will now have a chance to go through Step 2 to be additionally
resolved to the actual channel nane.

Any router that is a subclass of the Abstract Mappi ngMessageRout er (which includes most
framework defined routers) is a Dynamic Router simply because the channel Mappi ng is defined at the
Abst r act Mappi ngMessageRout er level. That map’s setter method is exposed as a public method
along with setChannelMapping and removeChannelMapping methods. These allow you to change/add/
remove router mappings at runtime as long as you have a reference to the router itself. It also means
that you could expose these same configuration options via JMX (see Section 9.2, “JMX Support”) or
the Spring Integration ControlBus (see Section 9.6, “Control Bus”) functionality.

4.2.0.RC1 Spring Integration 59

Spring Integration Reference Manual

Manage Router Mappings using the Control Bus

One way to manage the router mappings is through the Control Bus pattern which exposes a Control
Channel where you can send control messages to manage and monitor Spring Integration components,
including routers.

Note

For more information about the Control Bus, please see chapter Section 9.6, “Control Bus”.

Typically you would send a control message asking to invoke a particular operation on a particular
managed component (e.g. router). Two managed operations (methods) that are specific to changing
the router resolution process are:

* public void setChannel Mappi ng(String key, String channel Nane) - will allow you to
add a new or modify an existing mapping between channel identifier and channel name

e public void renoveChannel Mappi hg(String key) - will allow you to remove a particular
channel mapping, thus disconnecting the relationship between channel i denti fi er and channel
nane

Note that these methods can be used for simple changes (updating a single route or adding/removing
a route). However, if you want to remove one route and add another, the updates are not atomic. This
means the routing table may be in an indeterminate state between the updates. Starting with version
4.0, you can now use the control bus to update the entire routing table atomically.

* public Map<String, String>getChannel Mappi ngs() returns the current mappings.

e« public void replaceChannel Mappi ngs(Properties channel Mappi ngs) updates the
mappings. Notice that the parameter is a properties object; this allows the use of the inbuilt
StringToPropertiesConverter by a control bus command, for example:

"@router. handl er'.repl aceChannel Mappi ngs(' foo=qux \n baz=bar')"

» note that each mapping is separated by a newline character (\ n). For programmatic changes to the
map, it is recommended that the set Channel Mappi ngs method is used instead, for type-safety.
Any non-String keys or values passed into r epl aceChannel Mappi ngs are ignored.

Manage Router Mappings using JMX

You can also expose a router instance with Spring’s JMX support, and then use your favorite JIMX client
(e.g., JConsole) to manage those operations (methods) for changing the router’s configuration.

Note

For more information about Spring Integration’s JMX support, please see chapter Section 9.2,
“JMX Support”.

Routing Slip

Starting with version 4.1, Spring Integration provides an implementation of the Routing Slip Enterprise
Integration Pattern. It is implemented as ar out i ngSl i p message header which is used to determine
the next channel in Abstract MessagePr oduci ngHandl er s, when an out put Channel isn't

4.2.0.RC1 Spring Integration 60

http://www.eaipatterns.com/ControlBus.html
http://www.eaipatterns.com/RoutingTable.html

Spring Integration Reference Manual

specified for the endpoint. This pattern is useful in complex, dynamic, cases when it can become difficult
to configure multiple ro