Spring Integration Reference Manual

4.3.18.RELEASE

Mark Fisher , Marius Bogoevici , Iwein Fuld , Jonas Partner , Oleg Zhurakousky , Gary
Russell , Dave Syer , Josh Long , David Turanski , Gunnar Hillert , Artem Bilan , Amol Nayak

Copyright © 2009 2010 2011 2012 2013 2014 2015 2016 2017 Pivotal Software, Inc. All Rights Reserved.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Integration Reference Manual

Table of Contents

TR 1= = Lo 1
=0 [T =T0 0= o1 £ ii
1. Compatible JAVa VEISIONScuuuiiiiiiii et e a e e e ii

2. Compatible Versions of the Spring Frameworkcccoiiiiiiiiiniiiiiiiineiin e ii

3. COUE CONVENTIONS .ovvveiieeeee ettt ettt e ettt e e ettt e b e e e e e e e e b e e i

1. Conventions iN thiS BOOKc..iiiiiiiii e e e e e 4
LAY = LS 1= 5
2. What's new in Spring INtegration 4.3c..iiiiiiiiii e e e e 6
2.1, NEW COMPONENTS ittt ettt et et e et et e e et e et e e e et e e et e ea e en e aenaaenaen 6
AMQP Async Outbound GatEWAYiveiiuiiiieiiiiiieeei e 6
MeESSAGEGIOUPFACIONY ...t e ans 6
PersiSteNtMESSAGEGIOUD ...ttt ettt et e e e e e e e e e e e e e e e ea e aeans 6
FTP/SFTP Streaming Inbound Channel Adaptersooooeuiiiiiiiiiieiiiiii e 6

Stream TranSTOMMEEi e 6
INEEGratioN Graph ... et e 6

JIDBC LOCK REQISIIY ...iiiiiiieiiiiie ettt ettt e et e e e e e e enaas 6

Leader Initiator for LOCK REQISIIYvuiiiiiiii e 6

2.2, GENEIAl CRANGES ...iiiiiiii ettt e et e et e e e e e aaes 7
(70 (I O 0 F= g T [PPSR 7
Outbound Gateway within Chainc.ccoiiiiiiii e, 7

ASYNC SEIVICE ACHVALOLiiviiiiie e 7

Messaging Annotation SUppOort ChaNQgEScccevuiieiiiiiiieiiii e 7

Lifecycle Role CONtrOIIEYuiiiiiei e 7

Mall CRANGES ... ettt et et e et e e et e et aean s 7
Customizable USer FIagooooiiiiiiiiii e 7

Malil MeSSAagE MaPPING ovuneiiiiiiii e e e e 7

N | ST @ g = Ty [o =2 PP PPRRN 7

HeEAdEr MAPPEE ..oeiieii e 7

ASYNC GAEWAEAY ...euiiiiiiiii ittt e 7

Aggregator CRANGEScccuuiiii e et e e e e ea e eaes 8
TCP/UDP ChANGES ...ttt e e e e s 8

EVENTS Lo 8

Stream DeESEHAlIIZEISiiiii e 8

TCP MESSAGE MEAPPET ...eveeiiieii et 8

1L O 4 - T T TP 8
Destination DireCtory Creationc..iceeuoeiiiiiii e eenes 8

BUFfEE SIZE e e 8

Appending and FIUShINGco.oiiiiiii e 8

Preserving TIMESIAMPS .. .c.uiiiiiiii et eaa e 8

SPHEET CRANGES ..oviiiiiii e e 9

FIlE FIEIS e 9

AMOP ChanQES ...ceniiiiieii et 9

Content Type MeSsage CONVEITEToieuuiiiiiieiiieeeie e 9

Headers for Delayed Message Handlingcccooeeeiiiiiii i 9

AMQP-Backed Channels ..o 9

REAIS CRANGES ...eeieiiii et 9

List PUSh/POP DIFCHIONcvvtiiiiiicii e e e e e 9

4.3.18.RELEASE Spring Integration iii

Spring Integration Reference Manual

Queue Inbound Gateway Default Serializerccooeveeiiviiiiiiiie e 9

HTTP ChaANGES oo ettt e e e e e aeens 9
SFETP CRANGES ..ot 10

= T (0] Y == T o 10

Inbound Channel AdApLer ... 10

o3 T /6o o U 10

L I 1 - T o 1= P 10
SESSION ChANQES ...eiiiiiie e 10

Inbound Channel Adaperoooiiiiii i 10

[0 101 (=] G @1 o= U o =P 10
Header MapPINgoeeeiii et et et 10
LCT=] == | P 10

AMQP Header MapPiNg ...cceueeeeeeeieieiieee e e e e e e e e e e e e e eaaeeeanaaees 11

GrOOVY SCIPLS . tuiiiieiit ettt ettt et e e e e e et e et e e e bt e e enaaean e 11
@INboUNdChANNEIATAPLET ... 11
DY 1 o o 0T T g To = 11
WireTap Late BiNdiNgGcoouiiiiiiii e 11
ChannelMessageStoreQUENYPTOVIAE!ccoiuuiiieiiiiiieiii e 11
WEDSOCKEt ChanQEsc.uiiiiiiiii e e 11
Barrier ChaAnQESceuiiii ittt 11
AMOP ChANGES ..ottt ettt e e e 11

[1l. Overview of Spring Integration FrameWOLIKcc.uiiiiiiiiiiiieii e e e e e eans 12
3. Spring INtegration OVEIVIEWc...iiiu it e et e e et e e et e eaeaeens 13
I = 7= Tod (o | (o] 0] o [o [PPSR PPPPTP 13
3.2. G0oals and PrINCIPIEScouiiiiiieiii e 13
3.3. MaiN COMPONENTS ...ttt ettt e et et e e e e e e e ea e eanaaeees 14
MIBSSATE ... ettt 14
MeESSAGE ChaNNElcieiii e 14
MeESSAgE ENUPOINT ...ttt et e e et e e e e 15

3.4. MeSSage ENUPOINTScouuuiiiiiiiii et 15
TRANSTOIMET ..ot et e e e et e e e e et e e eees 16
1 L= TP PP 16

0] 1= USSP 16

S o111 T 16

F e [o | (=To I 1 (o] SR PP PP PP 17
SEIVICE ACHVALOT .uuiiiiiiei e et e e e e e et e e eanns 17

(O g T Ta a1 A =T o] (T P 18

3.5. Configuration and @Enablelntegration ..o 18
3.6. Programming CoNSIAEratioNSooeiiuiiiieiiiiee et 20
3.7. Considerations When using Packaged (e.g. Shaded) Jarscccooevevvviiiievinnennnn. 20
3.8. Programming Tips @nd TrICKScouuiiiiiii e 21
[V. COFE MESSAGING .vtueetettu ettt ettt e ettt e et e e e ettt e ettt e e et et e e et et e e ettt e e et st e e e eaba e e eesaan s 24
Y =TT Vo [T T @ F=] = £ 25
4.1. MeSSage CRaNNEISc.uiiiiii et 25
The MessageChannel INterface ..o 25
PollableChanneloooiiiii e 25
SubscribableChannel ... 25

Message Channel Implementationsovoeeeiiieiiiiiei e 25
PublishSubscribeChannel ..o 26
QUEUECNANNEL ... 26

4.3.18.RELEASE Spring Integration iv

Spring Integration Reference Manual

PriorityChannelo 26
RenNdezvousChanneloviiiiiiii e 27
DIreCtCRANNEI ... cceiie e 27
EXECULOrCRANNE!oovviiiiiii e 28

Scoped ChannEl ... 29

Channel INTEIrCEPIOIS .. .oiuti i e e 29

Y oYY o [T o [=T 0] 0] = L 31
Configuring Message Channels ... 31
DirectChannel Configurationcoeuuiieiiiinieiii e 32

Datatype Channel Configurationcc.oiiviiiiiiiiei e 32
QueueChannel Configurationoceuiiiiiiiiiii e 33
PublishSubscribeChannel Configurationccoviiiiiiiiiieii e 35
EXECULOrCRANNE!oovviiiiiii e 36
PriorityChannel Configurationooouiiiiiiiii e 36
RendezvousChannel Configurationccooveieiiiiniiiiin e 37

Scoped Channel Configurationcccoevuieiiierii e 37

Channel Interceptor Configurationccooiuuiiiiiiiiiiiii e 37

Global Channel Interceptor Configurationcccooveiiiiiiiiiiiinieieeeeeenn, 37

LAY (= =T o 38
ConditionNal WIre TaPS ..eeunieii ettt e e 40

Global Wire Tap Configurationoocoiuiiiiiiiiin e 40

Special ChanNEIScooe i e 41

.2, POIIBT it 41
POING CONSUMET ..ottt ettt ettt e et e e e et e e e eaaa e eeens 41
Pollable MESSAJE SOUICEccuuuiiiiiieiii et e e e e e e e e et e e e eanaeees 41
Conditional Pollers for MeSSage SOUICESuciiuuiiiiiiiiiiieiiieeii e e 42
BaCKGrOUNGo 42

"SMANt” POIING ovniiiiii e 42
SimpleActiveldleMessageSoUrcCeAdVICEcoeuiiiiiiiiiieiieee e 43
CompoundTrggErAAVICEiiiiiiiieeeei e 43

O T O g T T o a1 A - o (Y 44
Configuring An Inbound Channel Adaptercooiiiiiiiiii e 44
Configuring An Outbound Channel Adapterccooiiiiiiiiiiiiiii e 45
Channel Adapter ExXpressions and SCrPLScc.uvvviiiiiiieeii e 46

4.4. MeSSaging Bridge ..o 47
T 10T [T 1o) o PN a7

(@] a1iTo 8T TaTe [=] T [o = TS 47

5. MeSSAQE CONSIIUCTION ..ceuiiitiieii ettt ettt et et et e et e e et s e et e ean e eeaeeennaaes 49
5. L. MBS ST .uniiti ittt et 49
The MeSSage INTEIfACEcuuiiiii i e e 49
MESSAJE HEAERIS ... e 49
MessageHeaderACCESSOr AP ..o 50

Message ID GENEIAtIONc.uieiiieiii e e e e e e e e ean s 51
Read-only HEAEISoouiiii et 52

Header Propagationovoiiiiiioieii e 52

Message IMplemMENtAtiONSoovuiiiiii e 53

The MessageBuilder Helper Classcoouiiiiiiiiiii e 53

6. MESSAGE ROULING ..eeitniiiiii ettt ettt et e ettt e e e e ab e e enaans 55
B.1. ROULEIS ..ooii ittt e e et e e et e e e e e e eens 55
OVEBIVIEW ...ttt ettt ettt et e et et n et e e et e e n e e e e e e ennas 55

4.3.18.RELEASE Spring Integration v

Spring Integration Reference Manual

CommOoN ROULET PArameterScoeuiiiiiiieiii ettt et 57
Inside and Outside of @ Chainoooiiiiiiiii e 57

Top-Level (Outside of @ Chain)cooeiiiiiiiiiiii e 58

Router IMpIeEMENLAtIONScvieiiiii e e e e r e 59
PayloadTyPEROULET ... e e 59
HeaderValUBROULETc.uiiii et e 59
RECIPIENTLISTROULET .. ceee i 60
RecipientListRouterManagementoooeuiiiiiiiiiiiiic e 61

D= 11 T o 10 =] 61

Routing and Error handlingcc.oeviiiiiiic e 62
Configuring (Generic) ROULETiiiuiiiii e e 62
Configuring a Content Based Router with XMLccccoiviiiiiiniiiiiinnecie, 62
Configuring a Router with ANNOtationsccocveiiiiiiiiii e, 64

DYNAMIC ROULEIS ...ttt ettt e e e e e 64
Manage Router Mappings using the Control BuScccoveviiiiiiiiiiieennnns 67

Manage Router Mappings using JMXcooiiiiiiiiiieiiiieiin e 67

ROULING SHP e 68

Process Manager Enterprise Integration Patternccooeeeivviiieiineennnn. 70

L2 1= PR 70
TageTo 011 o] o PP PT PPN 70
CoNfIGUIING FIIEET .o e 71
Configuring a Filter With XIMLcooviiiii e 71
Configuring a Filter with ANNOLAtiONScocuiiiiiiiiiii e, 73

8.3, ST ettt e e eaaas 73
] o [N L1 1o o IR PRSPPI 73
Programming MOAElcoouniiii e e 74
ConfiIGUIING SPITEET ...t 75
Configuring a Splitter using XMLcoiiiiiiiiiici e 75
Configuring a Splitter with ANNOatIoONSc..oiiiiiiiiii e 76

LS o o £ =To [=1 o] ST PP PP 76
] o 11 L1 1o o IR P PPTN 76
FUNCHONAIILY ...eeeee e et e eeans 76
Programming MOEIiiiiiiiiiiii e e e 76
AggregatingMessageHaNndIerooviiiiiiiiiiiie e 77
REIEASESITAIEOY .. .eetniiiti et 79
Aggregating Large GrOUPSeiiiiinieiiiii ettt e e e eeees 80

(070 1] Fo Vi o] 11 1= 1 (=T | 81
LOCKREISIIY ...ttt e e e e 81
Configuring an AQOIrEJALOFicieeiiieieii ettt e e e e eaaas 81
Configuring an Aggregator With XMLccoooiiiiiiiiiiiicc e 81
Configuring an Aggregator with ANNOtationsccoiviiiiiiiiiniiiiieeeeeene, 88

Managing State in an Aggregator: MessageGroupStoreccceveveveveineeenneeennnn 89

LR T =TS o[U L= o T T 90
INEFOAUCTION ...ttt e e e et et e e e e e e aees 90
FUNCHONAIILY ...ttt e e enaans 91
Configuring @ RESEOQUENCETvuvueiiiieei i ee e e e e e e e e e e e e e e e et e e e eanns 91

6.6. Message Handler Chain ... 93
T 10T [T 1o) o PN 93
Configuring @ ChaiNice e 93

B.7. SCALEI-GALNEI .. eeiii e e 96

4.3.18.RELEASE Spring Integration Vi

Spring Integration Reference Manual

] o [N L1 1o o IR PRSPPI 96
FUNCHONAIILY ...eeeeeee e e e e e eans 96
Configuring a Scatter-Gather ENdpointc.uviiiiiiiieiiiiiiecieeee e 97

6.8. Thread Barrieri it eaaaas 98
7. Message TransfOrMationo..ioiui i 101
A% T I - 1S 0 1 1= 101
T To [N Tl 1o o ER OO 101
Configuring TranSTOIMETriiii e 101
Configuring Transformer wWith XMLcooiiiiiiiiiiiii e 101

Common TranSfOMMErSiiiiii e 102
Configuring a Transformer with ANNOtatioNscccooviiiiiiiiiiiiiiieeis 107

[(5= 10 1= S 1 = 108
Codec-Based TranSfOrMErS i 108

7.2. CONLENE ENFICNEI ... et e e e 108
T 10T [T 1o) o [108
Header ENFICRET ... 108
Configuring a Header Enricher with Java Configurationc....c........ 110
Configuring a Header Enricher with the Java DSLccoooviiiiiiniiiinnnnnen. 110

Header Channel REJISIIYociviiiiii e 110

Payload ENFCNET ... e 111
CONFIGUIALION .ottt 112

EXAMPIES ..o 114

7.3, Claim CRECK ... e 115
T 10T [T 1o) o 1 P 115
Incoming Claim Check Transformercooovviiiiiiiiii e 115
Outgoing Claim Check Transformeroviiuiiiiiiii e 116

A WOrd 0N MESSAGE SEOTE ...ceutuiiiiii ettt ettt e e e et e eeere e eees 117

A o To [o PSP 118
INEFOAUCTION ..t ettt e b e e e et e et eeaa s 118
EncodingPayloadTranSfOrmeriiiiiiiiiii e 118

(D= ToTo o [TaTo L=V 1S3 (0] 1 /1= S 118
CodeCMESSAGECONVEITET . .euiiei ettt et e e e e e et e e e e e aeens 118

K Y0 e 118
L1015 (o] 13174 g o N 4 57/ TS 118

8. MeSSagiNg ENUPOINTSeuniii ittt et e 121
8.1. MeSsage ENUPOINTScoouuiiiiiiiiiiei it 121
MESSAGE HANAIEK ..o e e e r e 121
EveNnt DrVEN CONSUMETuiiiiiiiiie ittt e e e e et e et e e e eaenas 121
POING CONSUMET ..ottt et e e 122

I F T LT 0 F= Lot TS U T] Lo N 123
Change Polling Rate at RUNIMEooiiiiiiii e 127
Payload Type CONVEISIONc.uuuiiiiiii ettt et e e e eene e eees 128
ASYNChronous POHINGovueii e e 129
ENdpPoint INNEI BEANScuuiiiiiiiii et 130

8.2. ENAPOINEt ROIESuiiiiiiii et 130
8.3. Leadership Event HandliNgoovuuiiiiiiiiiii e e e e 132
8.4. MESSAQING GAIEWAY'Seetuiitieiti ettt e et e et et ettt e e e et e e et e e ea et an e eanaeaens 132
Enter the GatewayProxyFactoryBeancc.covveiiiiiiiiiiiiiieiiiiineeeei e 132
Gateway XML Namespace SUPPOIT ..ceuiiniiieieie e e e e eenes 133
Setting the Default Reply Channel ... 133

4.3.18.RELEASE Spring Integration Vii

Spring Integration Reference Manual

Gateway Configuration with Annotations and/or XMLccooveviieiiiniiiineeennnn, 134
Mapping Method Arguments t0 @ MESSAJEccuuiiiiuiiiiiiiii i 135
@MessagingGateway ANNOTALIONcocuuiiiiiiiiieei e 137
Invoking No-Argument Methods ..o, 137
Error HaNAIING ... et 138
ASYNCNIONOUS GAIEWAYceevrineiiiiiieeeii et e et e et e e et eeebe e eees 139
INEFOUCTION .oeuee e e 139
LiStenabIEFULUIEcoeieie e 140
ASYNCTASKEXECULOKciiiiiieeiiii ettt e 141
ComPpletableFULUIEiei e e 141

REACION PrOMISE ..ot 142

Gateway behavior when N0 reSPoNSE ArfiVESoveveeiiiieiiiiiieeeiiee e 143

8.5. SEIVICE ACHVALOK ...ttt et e e 145
INEFOAUCTION ..t ettt e e e e et e et eean s 145
Configuring Service ACHVALOTcccuuuiieiiiiee e 145
ASYNChronous ServiCe ACHIVALONcevuueiiiie e e e e e e e e 147

8.6, DIAYET ..t e 148
T 10T [T 1o) o [148

(70 a1 To U g1 aTe [l DI=F= 1Y =] 148
Delayer and MeSSAgE SEOIEiiiuniiiiiiii et e e 150

8.7. SCHPLNG SUPPOIT ..ttt ettt et e et e e et e e et eeeaa s 151
Script CONfIQUIALIONieeeie e e e 151

8.8. GIOOVY SUPPOIT ..ottt ettt ettt et e et et e et e ea e en e e e enees 153
Groovy CONFIQUIALIONniiiii et e e e eaeens 154

(0] 110 I = L= PP 155

8.9. Adding Behavior t0 ENAPOINTScuuiiiiiiiiiiiiee e 156
T 10T [T 1o) o 1 P 156
Provided AdVICE CIAaSSES ...cccuuuiiiiiiiieeeii e e e et eeeat e eees 157
RELIY AGQVICE ... 157

Circuit Breaker AGVICEuieiiiieiie et e e e e e e e e e 163
Expression Evaluating AdVICEccvuuiiiiiiiiii e e e 164

CUSLOM AQVICE CIASSES ...iiiieiiiieii ettt e eaens 165
Other Advice Chain EIEMENTScocuniiiiiiiii e e 166
Handle MeSSAage AQVICEiiiiiiiiii e e e e e e eaaae e 167
AdVISING FIIEIS ..o e e 167
Advising Endpoints UsSing ANNOLAtIONSc.uuuieiiiiiieiiiieeeiin e 167
Ordering Advices within an Advice Chainccooviiiiiii i 168
Advised Handler Properties 168
Idempotent Receiver Enterprise Integration Patterncccoeveviiiiiiinieinnnnes 168
8.10. Logging Channel AapLerooveiiiiiiiei e e e e e e 170
Configuring with Java Configurationcocouiiiiiiiiii e 171

9. SyStEM MaNAGEMENTceiiitiet ettt et e e e e e e 173
9.1. Metrics and ManagemMENLccouuiiiiiieiiie e e e e e e e e e e e aae 173
Configuring MEtriCS CaPLUIEc.uuiiiei i e e eaa e 173
MessageChannel Metric FEAtUIESviiiiiiiiiiiiii e 174
MessageHandler Metric FEAtUIEScc.uviiiiiiiii e e 175
Time-Based Average ESHMALESoiiuiiiiiiiie e 175
MELIICS FACIOTY .ottt a e e eneans 176

LS TN 11 QS T o oL S 177
Notification Listening Channel Adapter ..o 177

4.3.18.RELEASE Spring Integration viii

Spring Integration Reference Manual

Notification Publishing Channel Adaptercocooviviiiiiii e, 178
Attribute Polling Channel Adapter ..o 179
Tree Polling Channel Adapter 179
Operation Invoking Channel Adapterccooeiieiiiiiii e 179
Operation Invoking Outbound Gatewaycccovieiiiiiiiiiiie e, 180
MBEAN EXPOITEI ...oeiiiii et 180
MBean ODBJECINAMEScovviiiiiiei e e e e e e e 181

JMX IMPIOVEMENTS ...ttt e e eens 182

Orderly Shutdown Managed Operationcccoveveeviiieiiiiineeieiiieeeeeiiee 184

9.3, MESSAQE HiISIOIY ..uuiiiiiiiiii e e e 184
Message History Configurationcoouiiiiiiiiiiii e 185

9.4, MESSAGE SEOME ...ieiiiiii ittt ettt et 186
MESSAGEGIOUPFACIONY ...ivuiiiieiie ettt e e e e e e e e e e eenns 188
Persistence MessageGroupStore and Lazy-Loadccoovieiiiiiiiiiiiiieiiieeiis 188

S T Y 11 = To F= L= T (o] = P 189
Idempotent Receiver and Metadata StOrecoovvvviviiiiiiiiii e 190
MetadataStOreLISIENET 190

LS I T O a1 o] I =1 L 190
9.7. Orderly SRULAOWN ... e e e e e 191
9.8. INtegration Graph ... 192
Graph RUNtIME MOEliiiiiii e 195

9.9. Integration Graph CONLIOIEriviiiii e 196
V. INtegration ENAPOINTSuiiiiiiie et et e et et e et e e et e e e e eaa s 198
10. Endpoint Quick Reference Table ... 199
B 1Y 1 T o o Lo 203
5 R [10T [DT i To] I PP 203
11.2. Inbound Channel AApercoouuiiiiiiie e 203
Configuring with Java Configurationcccecvuiioiiiiiiii e 206
Configuring with the Java DSLcccoiiiiiiii e 207
11.3. INDOUNA GAIEWAYceeiiieiiiiiie ettt ettt et e e et e e et e eeeebe e eeees 208
Configuring with Java Configurationccceevuiioriiiiiiie e 209
Configuring with the Java DSLcccoiiiiiiii e 210
11.4. Inbound Endpoint Acknowledge MOdecoovviiiiiiiiiiiiei e 210
11.5. Outbound Channel AdAPLeriiiiieii e e e e aes 211
Configuring with Java Configurationcoceuiiiiiiiiiii e 213
Configuring with the Java DSLoiiiiiiiiiieiii e 213
B G @ 1011 o Yo 18 s [o I 7= 11,7 Y 214
Configuring with Java Configurationcoceuiiiiiiiiiii e 216
Configuring with the Java DSLoiiiiiiiiiiii e 217
11.7. Async OUutboUNd GatEWAYcveunieiinieiiieeii e e e e e e e e e e e e e e eanas 218
Configuring with Java Configurationcocouiiiiiiiiii e 220
Configuring with the Java DSLoiiiiiiiiiiii e 220
11.8. Outbound MesSage CONVEISIONcc.uuiiuiiieiieiiieeiee e e e e e ea e e e e e eanas 221
11.9. OUbOUN USEI I ...t et e e 221
11.10. Delayed Message EXChangeoveiiiiiiiiiiiiiiicc e 222
11.11. AMQP Backed Message Channelscooovuiieiiiiiiiii e 222
Configuring with Java Configurationcoceuiiiiiiiiiii e 223
Configuring with the Java DSLoiiiiiiiiiiii e 223
11.12. AMQP MeSSage HEAUEISuiieieieiiiiii et e e e e e e e eaes 224
11.13. AMQP SAMIPIES ..ot 226

4.3.18.RELEASE Spring Integration ix

Spring Integration Reference Manual

12. Spring ApplicatioNEVENT SUPPOIcvieeei e e e e e e e e e ean s 228
12.1. Receiving Spring Application EVENLSooiiiiiiiiiiiii e 228
12.2. Sending Spring Application EVENLSccoouiiiiiiiii e 228

R T =TT Ao =V o) - 230
IR Tt N [oo [0 Tox 1 o PSP P R PPPPT 230
13.2. Feed Inbound Channel Adapterooouiiiiiiiiiiii e 230

I 1 TS o o o o 232
It I [g1 oo [0 Tox 1T PSP PP P PPPPT 232
14.2. ReadiNg FlES ... e 232

I F T oE] o F= Tt TS U T] Lo N 234
WatchServiceDireCtOrySCANNENcieuuiiiiiiei e e eens 236
Limiting Memory CONSUMPLIONuiiiiiiiiiii et 237
Configuring with Java Configurationcccoevuiioiiiiiiii e 237
Configuring with the Java DSLccciiiiiiiii e 238
TAI'ING FIES oo e 238
I O 1Y 1T T T 11 P 240
Generating File NamMEeSiiii e 240
Specifying the OULPUL DIr€CIONYc.uuuiiiiiii i 241
Dealing with Existing Destination Filescccooviiiiiiiiii e 242
Flushing Files When using APPEND_NO_FLUSHcccoiiiiiiiiiiiieee 243
File TIMESTAMPS ...t et eeaans 243
File Outbound Channel Adaptercoovviieiiie e e 243
OULDOUNI GAEWAYnivtiiiiee ettt e e e e e e e e eaa e eees 244
Configuring with Java Configurationcooiiiiiiiiiii e 244
Configuring with the Java DSLcccouiiiiiiiiii e 245
14.4. File TranSfOIMEISccouuiiiiieiii et et e et e e et e e et e e e ent e eeens 245
L1A4.5. File SPIILEEE «..veeeeeie ettt ee 246

ST o I e I R A o o] (=] £ 248
70 B [g1 oo [Tox 1T o PSP PPPPT 248
15.2. FTP SESSION FACIOIY ..iiiiiiiiiiiiii ettt 248
15.3. Delegating SesSioN FaCIOIYcccviiiiieiii i e e s 250
15.4. FTP Inbound Channel Adapter ..o 250

Recovering from Failurescoouiiiiiiiiii e 253
Configuring with Java Configurationccceevuiioriiiiiiie e 254
Configuring with the Java DSLcccoiiiiiiii e 255
15.5. FTP Streaming Inbound Channel Adapterccoovviiiiiiiiiiiiiiie e 256
Configuring with Java Configurationcccoevuiiiiiiiiiiiii e 257
15.6. FTP Outbound Channel Adapter ... 257
Configuring with Java Configurationcooiiiiiiiiin e 258
Configuring with the Java DSLcccouiiiiiiii e 259
15.7. FTP OUtbOUNT GAEWAYuiiitiiiiiaeii ettt ettt e e et e e e e e eens 260
Configuring with Java Configurationcooiiiiiiiiin e 264
Configuring with the Java DSLccccuiiiiiiiii e 265
Outbound Gateway Partial Success (mget and mMpPuUt)ccooeevieiiiiiiinieeieeennnn. 265
15.8. FTP SeSSion CaChiNgccouuiiiiiiiiiiiiii e 266
15.9. ReMOtEFIlETEMPIALEcveecee e e e e s 267
15.10. MessageSessionCallbDackoooouiiiiiii 267

16. GEMEINE SUPPOIT «.oevuieeiiii ettt et e et ettt e e et e e e et e e e era e e eenans 269
16.1. INFOAUCTION ...t e e e e e e e e e e e e eeene 269
16.2. Inbound Channel AdapLerooeu e 269

4.3.18.RELEASE Spring Integration X

Spring Integration Reference Manual

16.3. Continuous Query Inbound Channel Adapterccoooviviiiiiiii e, 269
16.4. Outbound Channel AdAPLETiiii e 270
16.5. Gemfire MESSAJE STOTEociiiiiiieiei e 271
16.6. GeEMIire LOCK REQISIIY ..uuiieiiiiiiii e e e e e e e e e 272
16.7. Gemfire Metadata STOreco.uiiiiiiiiii e 272
A o I S 0] o] oo S PP PP PPTPPT 273
0t O [1o To [o 1T I PP 273
17.2. Http Inbound COMPONENLSiiiiiii e e e eeens 273
17.3. Http Outbound COMPONENTScouuiiiiiiiie e 275
17.4. HTTP NameSPaCE SUPPOIT ..ueeeeiniineiieeteeeteeeneeeeeaeetneetaeeteeeneeaneeaneeaneenneenaeens 276
INEFOAUCTION ..t ettt e e e e et e et eean s 276
1] oo 18] o 276
Request Mapping SUPPOIvviciie e e e e e e e e e e e e eanas 277
Cross-Origin Resource Sharing (CORS) SUPPOItcouuneeiiiiiiiieiieeeieeeiieeeieeeenn 278
RESPONSE SEAtUSCOUE ...covviiiiiiiie et 279
URI Template Variables and EXPreSSiONScc.cvevuuieeeiniieiiieeiieeeiieeeineeaaneeennns 280
OULDOUNG ..o et ettt e e e et e e e ea e ees 280
Mapping URI Variablescooouiiiiii e 282
Controlling URI ENCOUINGvvvniiiiieiie e e e e e e e e e e e e et n e e e aaneees 284
17.5. TIMeout HandliNgooouniiiii et e e eeans 284
17.6. HTTP Proxy CONfigurationcoouuuioiiiiiieiiiiieeei et 286
17.7. HTTP Header MapPinNgSeveuieeieeiiieeee e e e e e e e et se st e e e aesaaneeanneeeens 287
17.8. Integration Graph Controller ... 288
17.9. HTTP SAMPIES ..ottt e et e e 288
Multipart HTTP request - RestTemplate (client) and Http Inbound Gateway
1] V=]) PPN 288
RSN] T RS U] o] oo] AP P TP 290
18.1. Inbound Channel AdapLerooviuieii e e 290
Polling and TranSaACHONSc.uiiiiiiiiieei e e e e 291
Max-rows-per-poll versus Max-messages-per-pollcccoooviiiiiniiiiiineeinnnnn, 292
18.2. Outbound Channel AdAPLeriiiiieii e e e aes 292
18.3. OUIDOUNT GAIEWAYeeeiiii ettt e et ettt et e e e e e e eaa e eeees 294
18.4. JIDBC MESSAQE SEOIE ...cvuuiiiiiiiiiieit ettt ettt et et e e e e e 295
The Generic JDBC MeSSAQE STOMEcvvvuiiiiieeiiieeeiiie e e e e e e e e e e e e eeanes 295
Backing Message Channelso 296
Initializing the Databaseuiiiiiiiiiii e 298
Partitioning a MEeSSAgE STOIEccuuuiiiiiiiii e e e e e e e e e e aes 298
18.5. StOred ProCeAUIESc.uu it e eaes 298
Supported Databasesooooiuiiiii 299
(0] 01T 81 r=\ 1o o [299
Common Configuration AttrDULESoiiiiiii e 299
Common Configuration Sub-Elements ..., 301
Defining Parameter SOUICESccuuiiiieieiieee e e e e e e e e e e e 302
Stored Procedure Inbound Channel Adapteroovoeuiviiiiiiiiiiiiceeieee 303
Stored Procedure Outbound Channel Adaptercooveviiiiieiiiiinieiii e, 304
Stored Procedure Outbound GatEWaYccceeuneviiiiiiinieiiieeei e e eeieeeaneeens 304
EXAMPIES ..o e 305
18.6. JIDBC LOCK REQISIIY ...eiiiiiiiiiii et et 306
RS T | N T o o Lo N 307
19.1. Supported PersiStence ProViderscoiiiiiiiiiiiii e 307
4.3.18.RELEASE Spring Integration Xi

Spring Integration Reference Manual

19.2. Java IMpPlemMENLAtioNcc.uiiii i e 308
19.3. NAMESPACE SUPPONIT «.enieiieeie ettt et et e et e e et e ea e ea e en e anaennnas 309
Common XML Namespace Configuration Atributesccccovveviviiniiiiiiineeiiinen, 309
Providing JPA QUErY Parameterscc.veiuiiieiiieeiiiieeie e e e e e e e e eaneens 311
Transaction HandliNgc..ooeuiiiiii e 311
19.4. Inbound Channel AApercoouuiiiiiii e 312
Configuration Parameter REfEreNnCecocvuviiiiiiiiiii i 313
19.5. Outbound Channel AdAPLETiiiieii e 314
USING aNn ENLItY CIASS ...cceveiiiiiiiiei et 314
Using JPA Query Language (JPA QL) ..oivvriiiiiiii e 314
USING NatiVe QUETIES ...ttt ettt et e e et e e e eaa e eees 315
USiNg Named QUETIESiiiiiii ettt ettt et e e e e e eene e eees 316
Configuration Parameter REfEreNnCecocvuviiiiiiiiiii i 317
19.6. OUIDOUNT GAIBWAY'S ... cevueieteeit e et e et e e e e et et et e e e e e e e e et e e eaneaeeas 318
Common Configuration Parameterscovvviiiiiiiiiiiiieee e 319
Updating Outbound GatEWAYccuuieviiiiriieeiiiieeiieeeiie e e e e e e e e e e e eeanaees 320
Retrieving Outbound GatEWAYocouuiiiiiiii e 321

JPA Outbound Gateway SampPlesoooiiiuiiiiiiiiieiei e 322

2 TR 1 T T o] o Lo ¢ P 324
20.1. Inbound Channel AdAPLETu i 324
LI = 1 57= 1o 1o o PP 325
20.2. Message-Driven Channel Adapterovvveiiiiiiiciie e e 325
INbound CONVEISION EFTOISocuuiiiiieii e 326
20.3. Outbound Channel Aaptercoouuuieiiii e 327
TRANSACHIONS ..oevti ittt e e e e e et e e e e et e e 327
20.4. INDOUNT GAIEWAYevtiiiiteeet ettt ettt e e e et e et e et e e e e e e e eeaaas 327
20.5. OUDOUNT GAEWAYcovvniieiiiiiieee et e e eees 329
Gateway Reply Correlationcocouieiiiiiiii e e e 330
ASYNC GALEWAY ...cenieniiiiei ettt ettt ettt et e et e e e e e e e aaas 332
AUHDULE REFEIENCE ... e 333
20.6. Mapping Message Headers to/from JMS MESSAJEvvvvnieiiiieeinieiiiieeeieeennnn 335
20.7. Message Conversion, Marshalling and Unmarshallingcccc.cooiiiinn, 335
20.8. JMS Backed Message ChannelSiviiiiiiieiiiiieiei e 336
20.9. Using JMS MeSSAQgE SEIECIOIScuuiiiiiiiiieiei e e e e e e e eanas 337
20.10. IMS SAMPIES ... e 338
P2 Y =T IS o] e o] ¢ A PP PPTPRPPPPPNN 339
21.1. Mail-Sending Channel Adapterooviiieiiiiei e 339
21.2. Mail-Receiving Channel Adaptercooeuiiiiiiiiiei e 339
21.3. Inbound Mail MesSsage MapPPiNgcccuuuieiiuiiieieii et eaaans 340
21.4. Mail NameSPaCE SUPPOIT ...ceuuieeiieii e ee e e e e e e e e e et e e e e e e e e e eeen e eeanaaees 341
21.5. Marking IMAP Messages When \Recent is Not Supportedccooceiveennneennnn. 345
21.6. Email Message FilteriNgoviiiiiiiiiii e 345
21.7. Transaction SYNChroniZationcoceuieiiiirii e e e e e e e 346
22, MONGODD SUPPOIT ..ttt ettt et et e et e et e e et e e et e e e e e et e e et e aean s 348
205 T [o1 o o (U] 1T o I PP 348
22.2. Connecting t0 MONQODDccuiiiiii e 348
22.3. MONQODB MESSAQE SIOMEeuiieiiiiiiiiee ettt e e e e e e e enees 349
MongoDB Channel MeSSage StOMEoceeuuuieiiiiiieeeiii et eeeens 349
MoNQODB Metadata StOrecccuiiiiiiiiii e 350
22.4. MongoDB Inbound Channel Adapter ..o e 351

4.3.18.RELEASE Spring Integration Xii

Spring Integration Reference Manual

22.5. MongoDB Outbound Channel Adaptercoovviiiiii e 353

23, MQTT SUPPOIT .ttt ettt et et et e e e et et et e en e en e e eenaees 354
b2 25 T [o1 o o (U] 1T o I PP 354
23.2. Inbound (message-driven) Channel Adaptercoveviiviiiiiiiiii e, 354
Adding/Removing Topics at RUNIIMEoooouiiiiiii e, 355
Configuring with Java Configurationcooiiiiiiiiin e 356

23.3. Outbound Channel AApLerccuuiiiiiiie e e 356
Configuring with Java Configurationcocouiiiiiiniiiiii e 357

P L= To LR U o] oo AP PP TPPPPT 359
P22 N [o T [0 Tox o] o ISP 359
24.2. ConNNECtiNG T0 REMISceviiiiiiii it 359
24.3. Messaging With REdiSccoouuiiiiiiii e 360
Redis Publish/Subscribe channel ..o 360

Redis Inbound Channel Adapterc.o i 360

Redis Outbound Channel Adapter ... 361

Redis Queue Inbound Channel Adapterco.ovevuiiiiiieii e 361

Redis Queue Outbound Channel Adapterccooooiiiiiiiiiii e 362

Redis Application EVENISiiiiiiiieiiii et 363

24.4. RediS MESSAQE STOMEiivuieiiiieieiee e ettt e e e e e e e e e e et e e e ean s 363
Redis Channel MeSSage SEOIESccuuiiiiiiiiiiee e 364

24.5. Redis Metadata StOreccouiiiiiiiiiiee et e e e e e e 365
24.6. RedisStore Inbound Channel Adapteroovvviiiiiiiiie e 365
24.7. RedisStore Outbound Channel Adaptercooiviiiiiiiiiii e, 367
24.8. Redis Outbound Command GateWaYccceuuiieiiriiiieiiiiiiee e 368
24.9. Redis Queue OuthoUNd GAtEWAYuvevrueiiiieiiiieeeiie e ree e e e e e eanaeeees 370
24.10. Redis Queue INbouNnd GatEWAYc.viiuuiiiiiiiiiieiei e 370
24.11. RediS LOCK REQISIIYuuiiiiiiiiieiiii et 371

A T = =T 0T8T 0] o Lo 372
25.1. INFOTUCTION ...eeiiieeeet ettt e et e et e e e e e e e s 372
25.2. Resource Inbound Channel Adapteroooveeiiiiiiiiii e 372

24 ST oY IS T o] o o1 A 374
26.1. INFOTUCTION ...eeitiie ittt e e et e e e e e e e e e s 374

P2 70 @ ¥ o o 8T To I = 1V P 374
26.3. INDOUNA RMI ...t 374
26.4. RMI NAMESPACE SUPPONT ..eeieieiii ittt et et ettt e et et et e e e e e e e eenaens 374
26.5. Configuring with Java Configurationccooeieiiiiiiiiiiiniei e 375
S I S X =T o) (= £ 376
27. 0. INFOTUCTION ...ttt et e et e et e e e e e e s 376
27.2. SFTP SESSION FACIONY ..oeuiiiiiiiiieiiite ettt e e 376
Configuration PrOPEItIESccvuuiiiiieeii e e e e e an s 377

27.3. Proxy Factory BEaANccouiiiiiiiiii ettt e 379
27.4. Delegating SeSSION FACIOIYc.uuuiiiiiiieieii e 379
27.5. SFTP SeSSION CaChINGcvviiiiiiiiii et e e e aens 380
27.6. RemoteFileTemPplate ... e 380
27.7. SFTP Inbound Channel Adaptercoouuiiiiiiiiiei e 381
Recovering from Failuresoiiiiiiiiii e e 383
Configuring with Java Configurationcoceuiiiiiiiiiii e 383
Configuring with the Java DSLoiiiiiiiiiiii e 384

27.8. SFTP Streaming Inbound Channel Adapterccocoevviiiiiiiiieie e 385
Configuring with Java Configurationcocouiiiiiiiiiii e 386

4.3.18.RELEASE Spring Integration Xiii

Spring Integration Reference Manual

27.9. SFTP Outbound Channel Adapteroiivui i 386
Configuring with Java Configurationcoceuiiiiiiiiiii e 387
Configuring with the Java DSLoiiiiiiiiiii e 388

27.10. SFTP OutbouNd GaEWAYcccvueiiiieiiiieeii e e e e e e e e e e e e e ean s 389
Configuring with Java Configurationcocouiiiiiiniiiiii e 393
Configuring with the Java DSLoiiiiiiiiiii e 393
Outbound Gateway Partial Success (mget and mput)cooevveveeiiieiiineeeeeennnnn. 394

27.11. SFTP/ISCH LOGGING +tuuniieeiiiiiiiiiiaa e ee ettt sttt a e e e e et ennb e e e e e eeennees 395

27.12. MessageSessionCallback ..o 395

P2 TS T 1 11,1 T o] oL 396

28.1. INFOTUCTION ...eeiiiieeeet ettt e e e e e et e e e e e e 396

B T © 1= V1 PPN 396

28.3. STOMP Inbound Channel Adapterc.oieiiiiiiiiic e 396

28.4. STOMP Outbound Channel Adaptero 396

28.5. STOMP Headers MapPiNg .. .cceuuueeeiuieiiii ettt 397

28.6. STOMP Integration EVENLScviuieiiieiii e e e e e e e e 397

28.7. STOMP Adapters Java Configurationcooeeuiiiiiiiiiiiiiiiee e 398

28.8. STOMP NamMeSPACE SUPPOITvuueirieirieietee ettt e e eeneeees 399

4SS (== 1 4 IS T U o] oo o A 401

29,1, INFOTUCTION ...eeitiieeeet ettt e e e et e et e e e e e ne s 401

29.2. Reading from SIMEAMSiiiiii et e et e e e aees 401

A IS T VAV 11T Lo o TS £ (Y= o 401

29.4. Stream NameSPACE SUPPOITeuuieeiei ittt e e e e e e e e e e eeneens 401

30. SYSIOQ SUPPOIT ettt ettt ettt et e e et e et e s 403

10 0 I [o T [0 Tox (o] o IS PUPPPTTR 403

30.2. Syslog <inbound-channel-adapter> ..o 403
Example Configurationc..iio i 403

31. TCP and UDP SUPPOI .ouuiiiieiiti e et e et e e e e e e s e e e e e e e et s e e e e et e e et eeeanaeeees 406

3 I I 1o o U T 1 o o PSPPSR 406

31.2. UDP AJAPIEIS ...ttt et et 406

31.3. TCP CONNECHION FACIOMES ...uvuuiiiiiieiiieiiii et 408
TCP Caching Client Connection FACLOrYcovieuiiiiiiiiiiiiieeee e 412
TCP Failover Client Connection FaCIONYoviiiiiiiieiiiiiiieecie e 412

31.4. TCP Connection INtErCEPIOIS ...uuiiiinieiiieei e e e et e e e e e e e e e eaens 413

31.5. TCP CONNECHON EVENTS ...coevtiiiiiiiiieieiii ettt e e 414

3L.6. TCP AGAPIEIS ..ttt ettt e ettt e et a e e e eat e e e era e eaes 415

1 A 1 O e T 21T 417

31.8. TCP Message COrITelationoeeeuiiiiiiiiieeii e 418
L@ YT T 418
LT LS = P 418
Collaborating Outbound and Inbound Channel Adapterscccoveviieiiiieiinnnes 418
Transferfing HEAUEISoouu i e 419

31.9. A NOte ADOUL NIO ... 421
Thread Pool Task Executor with CALLER_RUNS PoliCcycccoviiiiiiiiiiiin. 421

31.10. SSLITLS SUPPOIT «.eettuniiieeeiet ettt e e ettt e e e et e ettt e e e e e e e eeeeebne e e eeeeeaeennes 423
OVEBIVIEW ..ttt ettt e et et r e e e e et e e e e e e e e e e nnnneas 423
GettiNg STAMEA ...t e 423

31.11. Advanced TECHNMIQUEScccuuuriiiiiii ettt ettt e e et e e e et e e eea e eeees 424
Strategy INTEITACES ...covniiii e 424
Example: Enabling SSL Client Authenticationcccocoiiiiiiiiiiiiiieeees 425

4.3.18.RELEASE Spring Integration Xiv

Spring Integration Reference Manual

31.12. IP Configuration AtHDULESioviniiiiei e e e e e 426
31.13. IP MeSSage HEAUEISiiiiiiiieii et e e 433
31.14. Annotation-Based Configurationcoviiiiiiieiiiiiie e 434
Gy /110 G TU o] o o] o A 437
2% I [o1 1 (o o [FTod 1o o PP UP PP UUPTRUPTRN 437
32.2. Twitter OAUth ConfIQUIAtioNcoouuiiiiiiii e 437
G T LY (= G =10 0] o] = =P 437
32.4. Twitter INboUNd AAPLEIS ... e 438
Inbound Message Channel Adapter ..o 439
Direct Inbound Message Channel Adaptercooviveiiiiiii i 439
Mentions Inbound Message Channel Adaptercooovviiiiiiiiiiiiiiieee 439
Search Inbound Message Channel Adaptercooiiiiiiiiiniiiii e, 439
32.5. Twitter OutbouNd AdApPLErcovvniei e 440
Twitter Outbound Update Channel Adapterccoviiiiiiiiiiiiie e 440
Twitter Outbound Direct Message Channel Adaptercccoooeviviiniiiiiinneeiinnnnn. 441
32.6. Twitter Search Outbound GateWaYcoevuiiieiiiiiiiiierie e 441
33. WEDSOCKELS SUPPOIT ...ttt e e ea e eees 443
13 0 I [o1 o o (1] 1T o IR 443
332, OVEIVIEW ...ttt ettt ettt e ettt e e ettt e e e ettt e e e ettt e e e eatnneeeeatnneeeananaeaees 443
33.3. WebSocket Inbound Channel Adaptercooviiiiiiiiii e, 444
33.4. WebSocket Outbound Channel Adapterooveiiiiiiiiiii e 445
33.5. WebSockets Namespace SUPPOITvevnieiiii e e e e e e e e e e eeen 446
33.6. ClieNtStOMPENCOAETcuuiiiiiiiit e ea e 449
34. WED SEIVICES SUPPOIT ...ttt ettt ettt e et e e et e e e et e e e eat e e eenenaeaees 451
34.1. Outbound Web Service GatEWayscc.uviviiieiiiiieiiiieeiieeeen e e e e e eaanns 451
34.2. Inbound Web ServiCe Gat@WaYScc.uiieuuiiiiuieiiiiaei et e e e e 451
34.3. Web Service NameSpace SUPPOITceuuuueieiiieieiii ettt e e e e eeees 452
34.4. Outbound URI Configurationcc.ceiiuiiiiiiieii e e e e 453
34.5. WS MeSSAgE HEAUEISuuiii ittt e e e 454
35. XML Support - Dealing with XML Payloadscocuuiiiiiiiiiiiiiiiiieeei e 456
LT I 1o o [T 1 o] o PRSP 456
35.2. NAMESPACE SUPPOIT ...eeeetieiteeteet ettt et et e e e e et e et e et e e e e e e e e eaeees 456
XPath EXPreSSIONSciiiiiiiiiiii e 457
Providing Namespaces (Optional) to XPath EXpressionscccceeeennn. 457

Using XPath Expressions with Default Namespacesc.c.cccevevevieiinnnnens 458

35.3. Transforming XML Payloadscccuuiiiiiiiiiiiiiieeeei e 459
Configuring Transformers as BEANScocvvuiiiiiiiiiiiieeieee e 459
UnmarshallingTransformer ... 460
MarshallingTranSfOrMErov i e 460
XsltPayloadTransSformercovueiiiii i e 460
ReSUITIANSTOMMEIS ... e 461
Namespace Support for XML Transformersccoiviiiiiiiiiieiiiineeci e 462
Namespace Configuration and ResultTransformersccooveviiiiiiiiieceeen, 463
35.4. Transforming XML Messages Using XPath ..o 465
35.5. SPlitting XML MESSAGESuuiiiiiiieiiiiii ettt 466
35.6. Routing XML Messages Using XPathccccouiiiiiiiiiiiiiiiii e 467
XML Payload CONVEITETc.uuiiiiiiiiiie et ea e ees 469
35.7. XPath Header ENFCRErcouniiiiie e 469
35.8. Using the XPath FIlErcccuiiiiiii e e 470
35.9. #xpath SPEL FUNCLIONooiii et 471

4.3.18.RELEASE Spring Integration XV

Spring Integration Reference Manual

35.10. XML Validating Filterccouuiiii e e e eaaes 472

36. XIMPP SUPPOIT ...ttt ettt et et et e e et e et e et e e e e e e eaaees 473
1T G0 T [o o (U] 1T o IR 473
36.2. XMPP CONNECLION oottt a e 473
36.3. XIMPP MESSAGES ...euieuiiiiiieit ettt et e et et e e e e e e e e 474
Inbound Message Channel Adapter ..o 474

Outbound Message Channel Adapterovvvviiiiiiiiiiie e 475

36.4. XIMPP PIESENCEctiiiiiiiii ittt ettt et e e e e eaeens 475
Inbound Presence Message Channel Adapterccooovvveiiiiiiiiiiiniiiiin i, 475

Outbound Presence Message Channel Adaptercccoveviiiiiiiiiiicciineceeeen, 476

36.5. Advanced ConfIQUIratiONcouu i 476
36.6. XMPP MeSSage HEAUERISccouuiiiiiii ittt 477
36.7. XMPP EXIENSIONS ...uiiiiiiiiieeiii ettt et e e et s e e e et eeeeaanaeeees 478

37. ZOOKEEPEI SUPPOIT ...ttt ettt ettt ettt et e e et e et e et e e e e e an e e et e aeaneaeens 481
A% T [o1 o o (1] 1T o I P 481
37.2. Zookeeper Metadata StOrEcceuuiiiinieii e 481
37.3. Zookeeper LOCK REQISIIYc.uuiiiiiiii et 481
37.4. Zookeeper Leadership Event Handlingcccoooveiiiiiiiiiiiinieeceeeece 481

RV TR Y o] o 1= Lo [T = 483
A. Spring Expression Language (SPEL)coeuniiiiiiiiii e 484
N I [11 o T [T o o PP 484

A.2. SpEL Evaluation Context CustOmMizationcocveviveiiiiiiiiierin e 484

A.3. SPEL FUNCLIONS ...ceei e e 485

A4, PrOPEITYACCESSOIS ...cviiieieeiiee ettt ettt et et e e et et e e e eeaneenes 486

B. Message PUDBIISNING ... 488
B.1. Message Publishing Configurationcocouiiiiiiiiiiiiii e 488
Annotation-driven approach via @Publisher annotationccccceiviiiiinnenes 488
XML-based approach via the <publishing-interceptor> elementccccecee.... 490
Producing and publishing messages based on a scheduled trigger 492

C. TranSaCON SUPPOMTuuiiiit ettt e e ettt e et e e e et e e e et e e e eraa s 494
C.1. Understanding Transactions in Message flowsccccocciiiviiiiiin i, 494
Poller Transaction SUPPOITiii e 495

C.2. Transaction BOUNGANEScoeuniiiiiieiie et e e e e e 496

C.3. Transaction SynChronizationccceuiiiiiiiiiii e e e e e 496

C.4. PSEUAO TraNSACLIONScetuiiiiieiiii ettt e et e e e e et e et e e e eeaens 498

D. Security in SPring INtEGratioNuuiiiiiiiieiiii et eeaens 500
[200 O [1 o Yo [Tox 1T I PSPPI 500

D.2. SecUring ChaNNEISoouii e 500

D.3. SecurityContext Propagationoiiiieuiiiiiiieeeie e 501

E. Spring Integration SAmPIEScoouiiiiiiiiii e e 503
L I [oo [F o1 1o o PP 503

E.2. Where 10 get SAmMPIES ..o 503

E.3. Submitting Samples or Sample REQUESESccvvviiiiiiiiiiiiei e, 503

E.4. SAMPIES SHUCIUIEieeiiii ettt e et e e e ea e 504

E.D. SAMPIES ..o 505
o= 1 I =10 (= S SPPR 506

The Cafe SAMPIE ... e 510

The XML MesSSaging SampPleoviiiiiiiiiiiieiei e 514

L @0 Ty o U= 110} o T 515
S O 1 (o To [¥ (o 1 o] o KU PP PTRPPPR 515

4.3.18.RELEASE Spring Integration XVi

Spring Integration Reference Manual

{7 N\ F= T g =TS o = Vo =TS T U o] o o o A 515
F.3. Configuring the Task Scheduler ... 516
F.4, Error HANAING ...oovni et e 517
T €] o] o T | I o 0] 0 1= 1= 518
F.6. ANNOAtION SUPPOIT ...ttt et e e et e e e e e e e ean s 519
Messaging Meta-ANNOLAtIONSuiiiiiiiiiiiiiii e 524
ANNOLAtioNS 0N @BEANSuuiiiiiii e 524
Creating a Bridge with ANNOAtiONSc..viiuiiiiiii e 526
Advising Annotated ENAPOINTSocoouuiiiiiiiieiii e 526

F.7. Message Mapping rules and CONVENLIONSccuuviiiiieiiiieiii e ee e e 526
SIMPIE SCENATOSuiiiiiii e ettt e e e e e 526
COMPIEX SCENANIOS ...ttt e e 529

G. AJAItIONAl RESOUICESuciiiiiiiee ettt e e et e e et e e e eae s 531
G.1. Spring INtegration HOMEiiiiiii et ea e 531
H. Change HISIOTYiiiii et 532
H.1. Changes between 4.1 and 4.2oiiviiiiiii i 532
H.2. NeW COMPONENESuitiiiiiitieee ettt et et e e e e e e e e e e en e e eenns 532
Major Management/IMX REWOTKcooiiiiiiiiiiiii e 532
MoNQgODB Metadata StOrecccuiiiiiiiiiii e e 532
SecuredChannel ANNOLALIONoiiuiii e 532
SecurityContext Propagationooeeeuuuiieeiiiineeiiine et e e e e 532

L1 =3 o 11T N 532

P oTo] =TT o1 g U] o] o o] o AP PTUPTRPPTRN 532

LI L= o == 4 1 533

S 1O 1Y 0T] Lo 533
(7o [T o PP PPTUPPIN 533
Message PreparedStatement SEteruiiiiiiiiiiiiiii e 533

H.3. General ChanQESccouuiiiii i e e e e e e 533
VTSI -1 o TP 533

File ChaNQES ...t 533
ApPPeNdING NEW LINES ...uuiiiiiiii e e e 533

Ignoring Hidden Fles ... e 533

Writing InputStream Payloadscociiiiiiiiiiiiiiec e 533

[[ST= (o 1] =Tt (o] A Yor= T g T =1 534

Last Modified Filter ... 534
WatchService DireCtory SCANNETc.uuieiiiiiiieieiii et 534
Persistent File List Filter Changesc.ccovvvuiiiiiiciiiec e 534

Class Package Changeooiiuiiiiiiii e 534
TCP CRANGES ..ottt 534
TCP SEIAlIZEIS ..ot 534

Server Socket EXCEPLIONSc..iiuiiiiiiii e 534

TCP SEIVEIN POI ottt et e e 534

TCP Gateway Remote TiMEOULovvuniiiiiiiiii e e e e e 534

TCP SSLSession Available for Header Mappingcccoovveviiiiiiiiiiineeiieees 535

TCP EVENTS .ot e 535
@INbouNdChanNEIAAPLETiieiee e e 535

APT ChanQES ... 535
JMS CRANGES ...ttt 535
Reply Listener Lazy Initializationcoooviiiiiiiiiie e 535
Conversion Errors in Message-Driven Endpointsoccoeveiiiiiiiinieiineennn. 535
4.3.18.RELEASE Spring Integration XVii

Spring Integration Reference Manual

Default Acknowledge MOOEoovviiiiiici e 535
Shared SUDSCHPLONScoueiiiii e e 536

1070] oo 11 ioT o F= 1IN =0]| 1= = 536
F Y[] = 1 o= T oo = 536
Publisher COoNfirMSuiii e 536
COorrelation DAtAcceuiiiiieeiee e e 536

The Inbound Gateway Properti€Scocvuuveeeieviiieeii e e e eaens 536
XPath Splitter IMProVemMENTSoiiuiiiiie e 536
HTTP ChaNQGES ..ot 536
O R S it 536
Inbound Gateway TIMEOULvieuniiiiiieei e 537
FOIM DaTA ..cenieeiiie e e 537
Gateway ChanQESoiiiiiiii e 537
Gateway Methods can Return CompletableFuture<?>cccoiiiiien. 537
MessagingGateway ANNOLALIONiveiieiiieeiiie e 537

P Yo [o [(=To =1 (o] g O g =T gV 1T 537
Aggregator PerformManCeoooeuuiiiiiiiii i 537
Output Message Group PrOCESSONiuuiiiniiieeiieeiieieeie e eee e anns 537

(S Ll I 1 1T Vg 1= 537
Inbound channel adapters ... 537
Gateway Partial RESUILSccoouiiiiiiii e 537
Delegating SeSSION FACIOMYocvvuiiiiiieii e e e e e e e e e 538
Default Sftp SeSSIoN FaCIOrycc.uiiiiiiiiiii e 538
Message Session CallDackoooveeuiiiiiiiiieiii e 538
WeEDSOCKEt ChanQESiieiiiii e e 538
Application Event Adapters Changesovieiiiiiiiiiii e 538
H.4. Changes between 4.0 and 4.1 ..o 538
NEW COMPONENTS ...ouuiitieiiei e e e e e e e e et e e e e e e e e e e e eaaeenaeens 538
PromiSe<?> GAEWAYcvevuiiiniiiii et e ettt e e e e e eaa e 538
WEDSOCKET SUPPOIT ... 539
Scatter-Gather EIP patternoovvviiiiiii e 539
ROULING SHP PAterN .. .ceeeiii e 539
[dempotent Receiver Patternocoeuuiiiiiiiiiieiii e 539

12 T0To] g N ETo] 0@ o] [T 1)Y= T o] o 1= 539
RediS QUEUE GAEWAYSiivuiiiiieiii ettt e et e ea e eans 539
POISKIDATVICE ...t 539

1= =T | IO o= T o =S 539
AMQP Inbound Endpoints, Channel ..o 539
AMQP Outbound ENdpPointscooeeeuiiiiiiiiiieecii e 539
SIMPIEMESSAGESIONEiiiiieiiii e e e eaes 540
Web Service Outbound Gateway: enCOde-Uricccuiviiuiiiiiniiiiieiiieeennnn. 540

Http Inbound Channel Adapter and StatusCodecccoeveieiiiiieiiiiinnenenn, 540
MQTT Adapter ChanQesocvvuiiiii i 540
FTP/SFTP Adapter Changesocoeuuiiiiniiiiieiii e 540
Splitter and HHEratoriiiiiii e 540
00| =T = (0] 540
Content Enricher IMProvemMeNtsovoiuiiiiiiiiiiie e 540
Header Channel REGISIIYccouuuiiiiiiiiieie e 541
Orderly ShULdOWNoveiii e e e 541
Management for RecipientLiStROULEToiiiiiiiiiiiie e 541

4.3.18.RELEASE

Spring Integration Xviii

Spring Integration Reference Manual

AbstractHeaderMapper: NON_STANDARD_HEADERS token 541
AMQP Channels: template-channel-transactedc.cccoiviiiiiiiineennnen. 541
SYSIOG AGAPLET ... 541
ASYNC GAEWAY ...ivuiiieeieit et e e e et e e e et e e e et e e e et e e e an s ean e e eaneeanaes 541
Aggregator AdVICe Chainc.oviiiiiiii e 541
Outbound Channel Adapter and SCriPtSocoeviiiiiiiiiiiei e, 541
ResequeNCEr ChanQESoiviuiiii it aaa e 542
Optional POJO method parameterooveiiiiiiiiii e 542
QueueChannel: backed QUEUE tYPEuviiiiiiiiiiiii e 542
Channellnterceptor Changescoovvuiiiiiieiiii e e 542
IMAP PEEK ..ottt e et e et 542
H.5. Changes between 3.0 and 4.0coouuiiiiiiiiiiii e 542
NEW COMPONENTS ...ovuiiteiiie it ee et e e e e e e e et e et e e e e e e e e e eaeenaeens 542
MQTT Channel AdApLErScoouniiiiii e 542
@ENADBIEINtErationoiiiiiiiiee e 542
@INntegratioNCOMPONENISCANcvvvniiiii e e e e e e e e e 542
@ENAbIeMESSAgEHISIONYcoueiiiei e 542
@MESSAGINGGALEWAYcevviieiiitii ettt e e e 543
Spring Boot @EnableAutoConfigurationcccoveviiiiiiieeii e, 543
@GIlobalChannellNterCeptor ..o 543
@l alt=To] =1 iTo] g 1@] 0 1Y/ T o (= 543
@ENADIEPUDIISNEriiii e 543
Redis Channel MesSage SEOrESooouuiiiiiiiiiiiiie e 543
MongodDB Channel MeSsage STOrecoveviuuiiieiiiiiiieeeiiieeeei e 543
@EnablelntegrationMBeanEXPOrtccocuiviiiiiiiiiciie e 543
ChannelSecuritylnterceptorFactoryBeanooveviiiiiiiiiiiiniii e 544
Redis Command GAatEWAYccceuuuieiiiiiieiiiiiiae et e et e e e 544
RedisLockRegistry and GemfireLOCKREgIStrYcevvvviviiiiiiiiiiiiece e, 544
(@] 0] |1 544
@InboundChannelAdapter and SmartLifecycle for Annotated Endpoints..... 544
Twitter Search Outbound Gatewaycooveviieiiiieiii i 544
Gemfire Metadata StOrecccuiiiiiiiiiii e 544
@BridgeFrom and @BridgeTo ANNOtatioNScccuvveiiiieiineiiiieeiieeeiees 544
Meta Messaging ANNOLAtIONScvvuivieieiii e e e 544
General ChanQES ... et 545
Requires Spring Framework 4.0 ... 545
Header Type for XPath Header Enrichercccoooviiiiiiiiiiie e, 545
Object To Json Transformer: Node Resultocoiiiiiiiiiiiien, 545
JMS Header Mapping ...coouu oo 545
JMS Outbound Channel Adapteroovvuieiiii e 545
JMS Inbound Channel Adapterocoeiiiiiiiii e 545
Datatype Channels ... 545
Simpler Retry Advice Configurationc.ccoiiiiiieiiiiicri e 545
Correlation Endpoint: Time-based Release Strategyccoocceeveivineennnns 546
Redis Metadata StOreco.uiviieiiiiii e 546
JdbcChannelMessageStore and PriorityChannelccoooeiiiiiiiiiinenn, 546
AMQP Endpoints Delivery Modecoooiiiiiiiiiiiii e 546
Ll I T T 0 T £ 546
Twitter: StatusUpdatingMessageHandlerc..ccoovvviiiiiii i, 546
JPA Retrieving Gateway: id-eXPpreSSiOnccuoveeuuieiiiieieiiieiieeiieeeieeeen 546

4.3.18.RELEASE

Spring Integration XiX

Spring Integration Reference Manual

TCP Deserialization EVENLSccovviiiiiiiieiiiieii e 546
Messaging Annotations on @Bean Definitionsccoooviieiiiiiiiiinneen, 547

H.6. Changes Between 2.2 and 3.0ccouuiiiiiiiiiiiiii e 547
LYV @0 o1 o Lo =] o1 547
HTTP Request Mappingcccuuieieiaieee e e ea e eees 547
Spring Expression Language (SpEL) Configurationccccooevvviieeiinnnnnn. 547
SPEL FUNCHONS SUPPOI .vuiieiieii e e e e e eeens 547
SPEL PropertyACCESSOrS SUPPOITvvuieiiiiieieeie et eaes 547
Redis: NeW COMPONENEScooutiiiiiiiiiee et 547
Header Channel REJISIIYocvviiiiii e e 548
MongoDB support: New ConfigurableMongoDbMessageStore 548
SYSIOG SUPPOIT ...ttt et 548

LI LIS 10 o 0T i 548
JMX SUPPOIT e ettt e e e ees 548
TCP/IP Connection Events and Connection Managementc........ 548
Inbound Channel Adapter Script SUPPOITviiiieiiiieiie e 549
Content Enricher: Headers Enrichment Supportccoocoiviiiiiiiniiineeenn. 549
GeNEral ChANGESciiiiiiiiii et 549
Message ID GENEIALIONccuuiiiiieiii e e e e e e e e eens 549
<gateway> Changesoocuiiiiiii e 549
HTTP ENdpoint ChaANGEScccouuuiiiiiiiieieii e 549
Jackson SUPPOrt (JSON) ..oevuiie e e e e e 550
Chain Elements id AttribUtecooeeiiiii e 550
Aggregator empty-group-min-timeout Propertycceeeereeeeeiineieeiineeennnnn. 550
Persistent File List Filters (file, (S)FTP) ...ovvviiiiiieieee e, 550
Scripting Support: Variables Changesccooviiiiiiii 550
Direct Channel Load Balancing configurationcccccevviviviinneiiiiinnenenn. 550
PublishSubscribeChannel BEhaviorc.oooooiiiiiiiin e 551
FTP, SFTP and FTPS Changescoceuiiiiiiiiiieei e 551
requires-reply Attribute for Outbound Gatewayscoovveeieiiiiieiineennnnnns 552
AMQP Outbound Gateway Header Mappingcccoeevvveveiieeinieciiieeineennn. 552
Stored Procedure Components IMprovementsocoeuveeeuniieinieeiineennneenns 553
Web Service Outbound URI Configurationcccooevieiiiiinieiiiiineeeciie, 553
Redis Adapter Changescoouiiiiiiii i e 553
AVISING FIIEIS ..oeei e 553
Advising Endpoints using ANNOLALIONSoveieeiiieiiiiiieeeei e 553
ObjectToStringTransformer IMprovementsooevvviiiiiieeiievi e eeeies 553

JPA SUpPOrt ChanQESoieiiiii e 553
Delayer: delay eXPreSSIiONc..uieieiiiiieiiiiii et 554
JDBC Message Store IMprovVemMENTSvuuveeieieiieiieeeeeeeee e eaeeaneenees 554
IMAP Idle Connection EXCEPLIONSoiivuiiiiiiiiiieiii e 554
Message Headers and TCPoiiiiiiiiiiiiii e 554
JMS Message Driven Channel Adapterccovevviiiiiiiiiiiecieiecn e 554

RMI INbOUNA GAIEWAYceuiiiiiiiiiieiii et 555
XsItPayloadTransforMercocuuiiiiii e 555

H.7. Changes between 2.1 and 2.2oiiviiiiii e 555
NEW COMPONENES ...couitiiiiiit ettt ettt e e e e e e e e e e eaaens 555
RedisStore Inbound and Outbound Channel Adaptersc.ccoocevvviieeenn. 555
MongoDB Inbound and Outbound Channel Adaptersccoooevvvevinnennnnn. 555

JPA ENAPOINTS ...ttt 555

4.3.18.RELEASE Spring Integration XX

Spring Integration Reference Manual

1= =T | IO o= T o = 555
Spring 3.1 Used by Defaultooiiiiiii e 555
Adding Behavior to ENAPOINtSccoeuuiiiiiiiiiiiiii e 555
Transaction Synchronization and Pseudo Transactionsccccocevvun. 556
File Adapter - Improved File Overwrite/Append Handlingccooeeeee. 556
Reply-Timeout added to more Outbound Gatewayscccceevevevvnnneeenen. 556
SPriNG-AMOP L.l .. 556
JDBC Support - Stored Procedures COMPONENtSccuuveevuniiiieiiineeeinnnes 557
JDBC Support - Outbound GateWaYoveveuuiiieriiiiiieieiiiee e 557
JDBC Support - Channel-specific Message Store Implementation 557
Orderly SNULAOWNoouii e 557
JMS Oubound Gateway IMProvemMeNtscvveeiiiiiieiiiiieeeeiine e 557
0bjeCt-to-jSON-traNSfOrMErccoveiei e 557
HTTP SUPPOIT ..ttt e e e e 558

H.8. Changes between 2.0 and 2.1coouiiiiiiiiie e 558

NEW COMPONENTS ...ovuiiteiiie it ee et e e e e e e e et e et e e e e e e e e e eaeenaeens 558
JSR-223 SCripting SUPPOI «.c.uneiieeitee et 558
GEMFIIE SUPPOIT ..ot 558
F Y (@ YU o o e] P 558
MONQODB SUPPOIT ...ttt e e e e e e eaas 559
REAIS SUPPOI ...t 559
Support for Spring’s Resource abstractionc.cccoeveviieiiieiin e, 559
Stored Procedure COMPONENTScouuuiiiiniiiiieeiee e 559
XPath and XML Validating Filter ..o, 560
Payload ENFMCHETooeiiii e 560
FTP and SFTP Outbound GateWayscccuuviiiuiieiiiiiiiieieieeeieeeie e 560
FTP Session Cachingoviiiiiiiiiiiiiiiceei e 560

Framework Refactoringoovvuiiiiiiiii e e e 560
Standardizing Router Configurationcoooiiiiiiiiiiii e 560
XML Schemas updated 10 2.1cooiuiiiiiiiiiiecie e 561

Source Control Management and Build Infrastructureccoooviiiiiieeinnnen. 561
Source Code now hosted on Github ..o 561
Improved Source Code Visibility with Sonarccccciieii, 562

N LA T= 1] o] [P 562

H.9. Changes between 1.0 and 2.0 ... 562

SPHNG 3 SUPPOIT ...ttt et e et e e e a e e e 562
Support for the Spring Expression Language (SPEL)covveveiiiviiiveinnnns 562
ConversionService and CONVEIMETooiuuiiiiiiiiiie e 562
TaskScheduler and TrQQETcoouuiiiiiiiii e 562
RestTemplate and HttpMessageCONVEMErvevvviiiiiieiiiievieeeee e 563

Enterprise Integration Pattern AdditionSccooiiiiiiiiiiiiiini e 563
MESSAGE HISTOMYiiiiiiieeei e e 563
MESSAGE STOIE ..uiitiiieiii it e e e e e e e e e 563
ClaIM CRECK ...t e 563
L070] o110 I =1 1= PR 563

New Channel Adapters and GateWaysScc.ovvvviieiiiieeiiieeeiiie e e e eaenns 563
TCP/UDP AQAPLEIS ...eeiiiiieei ettt et e e e eees 563
TWILEET AGBPLEIS ooeeieeiii e et e e e e e et eenes 564
DY o S AN =T) (= £ 564
FTPIFTPS ACAPLEIS ...eeiiiiiiiii et ea e eens 564

4.3.18.RELEASE Spring Integration XXi

Spring Integration Reference Manual

] o I Yo F=) (= = P 564
FEEA AUAPLEIS . .eeiiii et 564
Other AItIONSeeee e e et e e e e ee 564
L] o0 1YY ST o] o L0 o 564
Map TranSTOIMEIS . ..uniii et 564
JSON TranSfOMMEISuiii e e e e s 564
Serialization TransfOrMEersoiiiiiiiii e 564
Framework RefactOriNgooeuuiiiiiiii e 564
New Source Control Management and Build Infrastructurecccoooeeiiinnnnnn. 565
New Spring Integration SAMPIESiiiiiiiii e 565
Spring Tool Suite Visual Editor for Spring Integrationcccocooieiiiiiiiiieenneens 565

4.3.18.RELEASE

Spring Integration XXii

Part |. Preface

Spring Integration Reference Manual

Requirements

This section details the compatible Java and Spring Framework versions.

1 Compatible Java Versions

For Spring Integration 4.3.x, the minimum compatible Java version is Java SE 6. Older versions of
Java are not supported.

Spring Integration 4.3.x is also compatible with Java SE 7 as well as Java SE 8.

Certain features (such as Opt i onal <?> payloads and Conpl et abl eFut ur e gateway method return
types) require Java 8.

While the jars are compatible with Java 6, Java 8 is required to build the project. see Checking out
and Building.

2 Compatible Versions of the Spring Framework

Spring Integration 4.3.x requires Spring Framework 4.3 or later.

3 Code Conventions

The Spring Framework 2.0 introduced support for namespaces, which simplifies the XML configuration
of the application context, and consequently Spring Integration provides broad namespace support. This
reference guide applies the following conventions for all code examples that use hamespace support:

The int namespace prefix will be used for Spring Integration’s core namespace support. Each Spring
Integration adapter type (module) will provide its own namespace, which is configured using the following
convention:

int- followed by the name of the module, e.g. int-twitter, int-stream, ...

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:int="http://wwm. springframework. org/schena/integration”
xmns:int-twitter="http://ww.springfranmework.org/schema/integration/twitter"
xm ns:int-strean="http://www. springframework. org/ schena/integration/streant
xsi : schemalLocat i on="
http://ww. springfranmewor k. or g/ schema/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
htt p: // ww. spri ngf ramewor k. or g/ schema/ i nt egrati on
http://ww. spri ngframewor k. or g/ schema/ i nt egrati on/ spring-integration.xsd
http://ww. springfranmework. org/ schema/integration/twitter
http://ww. springfranmework. org/ schema/integration/twitter/spring-integration-tw tter.xsd
http://ww. springfranmework. org/ schema/ i ntegration/stream
http://ww. springframework. or g/ schema/ i ntegration/streani spring-integration-stream xsd">

</ beans>

For a detailed explanation regarding Spring Integration’s namespace support see Section F.2,
“Namespace Support”.

Note

Please note that the namespace prefix can be freely chosen. You may even choose not to use any
namespace prefixes at all. Therefore, apply the convention that suits your application needs best.

4.3.18.RELEASE Spring Integration ii

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.springsource.org/spring-framework
https://github.com/spring-projects/spring-integration#checking-out-and-building
https://github.com/spring-projects/spring-integration#checking-out-and-building

Spring Integration Reference Manual

Be aware, though, that SpringSource Tool Suite™ (STS) uses the same namespace conventions
for Spring Integration as used in this reference guide.

4.3.18.RELEASE Spring Integration

Spring Integration Reference Manual

1. Conventions in this Book

In some cases, to aid formatting, when specifying long fully-qualified class names, we shorten the
package or g. spri ngfranework to 0. s and org. spri ngframework.integrationtoo.s.i,
such as with 0. s.i.transaction. Transacti onSynchroni zati onFact ory.

4.3.18.RELEASE Spring Integration 4

Part Il. What’s new?

For those who are already familiar with Spring Integration, this chapter provides a brief overview of the
new features of version 4.3. If you are interested in the changes and features, that were introduced in
earlier versions, please see chapter: Appendix H, Change History

Spring Integration Reference Manual

2. What’'s new in Spring Integration 4.37?

This chapter provides an overview of the new features and improvements that have been introduced
with Spring Integration 4.3. If you are interested in more details, please see the Issue Tracker tickets
that were resolved as part of the 4.3 development process.

2.1 New Components

AMQP Async Outbound Gateway
See Section 11.7, “Async Outbound Gateway”.
MessageGroupFactory

The new MessageG oupFact or y strategy has been introduced to allow a control over MessageG oup
instances in MessageG oupSt or e logic. The Si npl eMessageG oupFact ory is provided for the
Si npl eMessageG oup with the G oupType. HASH SET as the default factory for the standard
MessageG oupsSt or e implementations. See Section 9.4, “Message Store” for more information.

PersistentMessageGroup

The Persi st ent Message& oup, - lazy-load proxy, - implementation is provided for persistent
MessageG oupSt ore s, which return this instance for the get MessageG oup() when their
| azyLoadMessageG oups ist r ue (defaults). See Section 9.4, “Message Store” for more information.

FTP/SFTP Streaming Inbound Channel Adapters

New inbound channel adapters are provided that return an | nput St r eamfor each file allowing you
to retrieve remote files without writing them to the local file system See Section 15.5, “FTP Streaming
Inbound Channel Adapter” and Section 27.8, “SFTP Streaming Inbound Channel Adapter” for more
information.

Stream Transformer

A new St r eanilt ansf or mer is provided to transform an | nput St r eampayload to either a byt e[]
or St ri ng. See the section called “Stream Transformer” for more information.

Integration Graph

A new | ntegrationG aphServer together with the | ntegrationG aphController REST
service are provided to expose the runtime model of a Spring Integration application as a graph. See
Section 9.8, “Integration Graph” for more information.

JDBC Lock Registry

A new JdbcLockRegi st ry is provided for distributed locks shared through the data base table. See
Section 18.6, “JDBC Lock Registry” for more information.

Leader Initiator for Lock Registry

A new Leader | ni tiat or implementation is provided based on the LockRegi st ry strategy. See
Section 8.3, “Leadership Event Handling” for more information.

4.3.18.RELEASE Spring Integration 6

Spring Integration Reference Manual

2.2 General Changes

Core Changes
Outbound Gateway within Chain

Previously, it was possible to specify a r epl y- channel on an outbound gateway within a chain. It
was completely ignored; the gateway'’s reply goes to the next chain element, or to the chain’s output
channel if the gateway is the last element. This condition is now detected and disallowed. If you have
such configuration, simply remove the r epl y- channel .

Async Service Activator

An option to make the Service Asynchronous has been added. See the section called “Asynchronous
Service Activator” for more information.

Messaging Annotation Support changes

The Messaging Annotation Support doesn’t require any more @/kessageEndpoi nt (or any other
@conponent) annotation declaration on the class level. To restore the previous behaviour
specify the spri ng. i nt egrati on. messagi ngAnnot at i ons. r equi r e. conponent Annot ati on
of spring.integration.properties as true. See Section F.5 “Global Properties” and
Section F.6, “Annotation Support” for more information.

Lifecycle Role Controller

The Smart Li f ecycl eRol eCont rol | er now provides methods to obtain status of endpoints in roles.
See Section 8.2, “Endpoint Roles” for more information.

Mail Changes

Customizable User Flag

The customizable user Fl ag added in 4.2.2 to provide customization of the flag used to denote that
the mail has been seen is now available using the XML namespace. See Section 21.5, “Marking IMAP
Messages When \Recent is Not Supported” for more information.

Mail Message Mapping

There is now an option to map inbound mail messages with the MessageHeader s containing the mail
headers and the payload containing the email content. Previously, the payload was always the raw
M neMessage. See Section 21.3, “Inbound Mail Message Mapping” for more information.

JMS Changes

Header Mapper

The Def aul t IJnsHeader Mapper now maps the standard corr el ati onl d header as a message
property by invoking its t oSt ri ng() method. See Section 20.6, “Mapping Message Headers to/from
JMS Message” for more information.

Async Gateway

The JMS Outbound gateway now has an async property. See the section called “Async Gateway” for
more information.

4.3.18.RELEASE Spring Integration 7

Spring Integration Reference Manual

Aggregator Changes

There is a change in behavior when a POJO aggregator releases a collection of Message<?> objects;
this is rare but if your application does that, you will need to make a small change to your POJO. See
this Important note for more information.

TCP/UDP Changes

Events

A new TcpConnecti onServer Li st eni ngEvent is emitted when a server connection factory is
started. See Section 31.5, “TCP Connection Events” for more information.

The destination-expression and socket-expressi on are now available for the <int-
i p: udp- out bound- channel - adapt er >. See Section 31.2, “UDP Adapters” for more information.

Stream Deserializers

The various deserializers that can’t allocate the final buffer until the whole message has been assembled
now support pooling of the raw buffer into which the data is received, rather than creating and discarding
a buffer for each message. See Section 31.3, “TCP Connection Factories” for more information.

TCP Message Mapper

The message mapper now, optionally, sets a configured content type header. See Section 31.13, “IP
Message Headers” for more information.

File Changes

Destination Directory Creation

The generated file name for the Fi | eW i ti ngMessageHandl er can represent sub-path to save the
desired directory structure for file in the target directory. See the section called “Generating File Names”
for more information.

The Fi | eReadi ngMessageSour ce now hides the Wat chSer vi ce directory scanning logic in the
inner class. The use-wat ch-servi ce and wat ch- event s options are provided to enable such
a behaviour. The top level Wat chSer vi ceDi r ect or yScanner has been deprecated because of
inconsistency around API. See the section called “WatchServiceDirectoryScanner” for more information.

Buffer Size
When writing files, you can now specify the buffer size to use.
Appending and Flushing

You can now avoid flushing files when appending and use a number of strategies to flush the data
during idle periods. See the section called “Flushing Files When using APPEND_NO_FLUSH" for more
information.

Preserving Timestamps

The outbound channel adapter can now be configured to set the destination file’s | ast nodi fi ed
timestamp. See the section called “File Timestamps” for more information.

4.3.18.RELEASE Spring Integration 8

Spring Integration Reference Manual

Splitter Changes

The Fi | eSplitter will now automatically close an (S)FTP session when the file is completely read.
This applies when the outbound gateway returns an | nput St r eam or the new (S)FTP streaming
channel adapters are being used. Also a new nar ker s- j son options has been introduced to convert
FileSplitter.Fil eMarker to JSON String for relaxed downstream network interaction. See
Section 14.5, “File Splitter” for more information.

File Filters

A new Chai nFi | eLi st Fi |l ter is provided as an alternative to Conposi teFil eLi stFilter. See
Section 14.2, “Reading Files” for more information.

AMQP Changes

Content Type Message Converter

The outbound endpoints now support a RabbitTenplate configured with a
Cont ent TypeDel egat i ngMessageConvert er such that the converter can be chosen based on the
message content type. See Section 11.8, “Outbound Message Conversion” for more information.

Headers for Delayed Message Handling

Spring AMQP 1.6 adds support for Delayed Message Exchanges. Header mapping now supports the
headers (amgp_del ay and angp_r ecei vedDel ay) used by this feature.

AMQP-Backed Channels

AMQP-backed channels now support message mapping. See Section 11.11, “AMQP Backed Message
Channels” for more information.

Redis Changes
List Push/Pop Direction

Previously, the queue channel adapters always used the Redis List in a fixed direction, pushing to
the left end and reading from the right end. It is now possible to configure the reading and writing
direction using ri ght Pop and | ef t Push options for the Redi sQueueMessageDri venEndpoi nt
and Redi sQueueQut boundChannel Adapt er respectively. See the section called “Redis Queue
Inbound Channel Adapter” and the section called “Redis Queue Outbound Channel Adapter” for more
information.

Queue Inbound Gateway Default Serializer

The default serializer in the inbound gateway has been changed to a
JdkSeri al i zati onRedi sSeri alizer for compatibilty with the outbound gateway. See
Section 24.10, “Redis Queue Inbound Gateway” for more information.

HTTP Changes

Previously, with requests that had a body (such as POST) that had no cont ent - t ype header, the body
was ignored. With this release, the content type of such requests is considered to be appl i cati on/
oct et - st reamas recommended by RFC 2616. See Section 17.2, “Http Inbound Components” for
more information.

4.3.18.RELEASE Spring Integration 9

https://www.rabbitmq.com/blog/2015/04/16/scheduling-messages-with-rabbitmq/

Spring Integration Reference Manual

SFTP Changes

Factory Bean

A new factory bean is provided to simplify the configuration of Jsch proxies for SFTP. See Section 27.3,
“Proxy Factory Bean” for more information.

Inbound Channel Adapter

The inbound channel adapter is now configured with a
Fi | eSyst enPer si st ent Accept OnceFi l eListFilter in the | ocal -filter by default. See
Section 27.7, “SFTP Inbound Channel Adapter” for more information.

chmod

The SFTP outbound gateway (for put and mput commands) and the SFTP outbound channel
adapter now support the chnod attribute to change the remote file permissions after uploading. See
Section 27.9, “SFTP Outbound Channel Adapter” and Section 27.10, “SFTP Outbound Gateway” for
more information.

FTP Changes

Session Changes

The FtpSession now supports null for the Iist() and |istNames() method, since it is
possible by the underlying FTP Client. With that the Ft pQut boundGat eway can now be configured
without r enot eDi r ect or y expression. And the <i nt-ft p: i nbound- channel - adapt er > can be
configured without r enot e- di r ect or y/r enot e- di r ect ory- expr essi on. See Chapter 15, FTP/
FTPS Adapters for more information.

Inbound Channel Adapter

The inbound channel adapter is now configured with a
Fi | eSyst enPer si st ent Accept OnceFil eListFilter in the | ocal -filter by default. See
Section 15.4, “FTP Inbound Channel Adapter” for more information.

Router Changes

The Error MessageExcepti onTypeRout er supports now the Excepti on superclass mappings
to avoid duplication for the same channel in case of several inheritors. For this purpose the
Err or MessageExcept i onTypeRout er loads mapping classes during initialization to fail-fast for a
Cl assNot FoundExcepti on.

See Section 6.1, “Routers” for more information.
Header Mapping
General

AMQP, WS and XMPP header mappings (e.g. r equest - header - mappi ng, repl y-header -
nmappi ng) now support negated patterns. See Section 11.12, “AMQP Message Headers”, Section 34.5,
“WS Message Headers”, and Section 36.6, “XMPP Message Headers” for more information.

4.3.18.RELEASE Spring Integration 10

Spring Integration Reference Manual

AMQP Header Mapping

Previously, only standard AMQP headers were mapped by default; users had to explicitly enable
mapping of user-defined headers. With this release all headers are mapped by default. In addition, the
inbound anmgp_del i ver yMode header is no longer mapped by default. See Section 11.12, “AMQP
Message Headers” for more information.

Groovy Scripts

Groovy scripts can now be configured with the conpile-static hint or any other
Conpi | er Confi gurati on options. See the section called “Groovy configuration” for more
information.

@InboundChannelAdapter

The @ nboundChannel Adapt er has now an alias channel attribute for regular val ue. In addition the
target Sour cePol | i ngChannel Adapt er components can now resolve the target out put Channel

bean from its provided name (out put Channel Nane options) in late-binding manner. See Section F.6,
“Annotation Support” for more information.

XMPP changes

The XMPP Extensions (XEP) are now supported by the XMPP channel adapters. See Section 36.7,
“XMPP Extensions” for more information.

WireTap Late Binding

The W r eTap Channel | nt er cept or now can accept a channel Nane which is resolved to the target
MessageChannel later, during the first active interceptor operation. See the section called “Wire Tap”
for more information.

ChannelMessageStoreQueryProvider

The Channel MessageSt or eQuer yProvi der now supports H2 database. See the section called
“Backing Message Channels” for more information.

WebSocket Changes

The ServerWebSocket Cont ai ner now exposes allowedOrigins option and
SockJsServi ceQpti ons a suppr essCor s option. See Chapter 33, WebSockets Support for more
information.

Barrier Changes

The Barri er MessageHandl er now supports a discard channel to which late-arriving trigger
messages are sent. See Section 6.8, “Thread Barrier” for more information.

AMQP Changes

The AMQP outbound endpoints now support setting a delay expression for when using the RabbitMQ
Delayed Message Exchange plugin. See Section 11.10, “Delayed Message Exchange” for more
information.

4.3.18.RELEASE Spring Integration 11

Part Ill. Overview of Spring
Integration Framework

Spring Integration provides an extension of the Spring programming model to support the well-known
Enterprise Integration Patterns. It enables lightweight messaging within Spring-based applications and
supports integration with external systems via declarative adapters. Those adapters provide a higher-
level of abstraction over Spring’s support for remoting, messaging, and scheduling. Spring Integration’s
primary goal is to provide a simple model for building enterprise integration solutions while maintaining
the separation of concerns that is essential for producing maintainable, testable code.

http://www.eaipatterns.com/

Spring Integration Reference Manual

3. Spring Integration Overview

3.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic cross-
cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Developers benefit from the consistency of this model and especially
the fact that it is based upon well-established best practices such as programming to interfaces and
favoring composition over inheritance. Spring’s simplified abstractions and powerful support libraries
boost developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is motivated by these same goals and principles. It extends the Spring programming
model into the messaging domain and builds upon Spring’s existing enterprise integration support to
provide an even higher level of abstraction. It supports message-driven architectures where inversion of
control applies to runtime concerns, such as when certain business logic should execute and where the
response should be sent. It supports routing and transformation of messages so that different transports
and different data formats can be integrated without impacting testability. In other words, the messaging
and integration concerns are handled by the framework, so business components are further isolated
from the infrastructure and developers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean”
elements, and of course direct usage of the underlying API. That API is based upon well-defined
strategy interfaces and non-invasive, delegating adapters. Spring Integration’s design is inspired by the
recognition of a strong affinity between common patterns within Spring and the well-known Enterprise
Integration Patterns as described in the book of the same name by Gregor Hohpe and Bobby Woolf
(Addison Wesley, 2004). Developers who have read that book should be immediately comfortable with
the Spring Integration concepts and terminology.

3.2 Goals and Principles

Spring Integration is motivated by the following goals:

» Provide a simple model for implementing complex enterprise integration solutions.
 Facilitate asynchronous, message-driven behavior within a Spring-based application.
* Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

» Components should be loosely coupled for modularity and testability.

» The framework should enforce separation of concerns between business logic and integration logic.

4.3.18.RELEASE Spring Integration 13

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration Reference Manual

» Extension points should be abstract in nature but within well-defined boundaries to promote reuse
and portability.

3.3 Main Components

From the vertical perspective, a layered architecture facilitates separation of concerns, and interface-
based contracts between layers promote loose coupling. Spring-based applications are typically
designed this way, and the Spring framework and portfolio provide a strong foundation for following
this best practice for the full-stack of an enterprise application. Message-driven architectures add a
horizontal perspective, yet these same goals are still relevant. Just as "layered architecture" is an
extremely generic and abstract paradigm, messaging systems typically follow the similarly abstract
"pipes-and-filters" model. The "filters" represent any component that is capable of producing and/or
consuming messages, and the "pipes" transport the messages between filters so that the components
themselves remain loosely-coupled. It is important to note that these two high-level paradigms are not
mutually exclusive. The underlying messaging infrastructure that supports the "pipes" should still be
encapsulated in a layer whose contracts are defined as interfaces. Likewise, the "filters" themselves
would typically be managed within a layer that is logically above the application’s service layer,
interacting with those services through interfaces much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and headers. The payload can be
of any type and the headers hold commonly required information such as id, timestamp, correlation id,
and return address. Headers are also used for passing values to and from connected transports. For
example, when creating a Message from a received File, the file name may be stored in a header to
be accessed by downstream components. Likewise, if a Message'’s content is ultimately going to be
sent by an outbound Mail adapter, the various properties (to, from, cc, subject, etc.) may be configured
as Message header values by an upstream component. Developers can also store any arbitrary key-
value pairs in the headers.

Message

Header

Payload

Figure 3.1. Message
Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages
to a channel, and consumers receive Messages from a channel. The Message Channel therefore
decouples the messaging components, and also provides a convenient point for interception and
monitoring of Messages.

4.3.18.RELEASE Spring Integration 14

Spring Integration Reference Manual

send{Message) receive()
Producer L Consumer

Message Channel
Figure 3.2. Message Channel

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a Point-to-
Point channel, at most one consumer can receive each Message sent to the channel. Publish/Subscribe
channels, on the other hand, will attempt to broadcast each Message to all of its subscribers. Spring
Integration supports both of these.

Whereas "Point-to-Point" and "Publish/Subscribe" define the two options for how many consumers will
ultimately receive each Message, there is another important consideration: should the channel buffer
messages? In Spring Integration, Pollable Channels are capable of buffering Messages within a queue.
The advantage of buffering is that it allows for throttling the inbound Messages and thereby prevents
overloading a consumer. However, as the name suggests, this also adds some complexity, since a
consumer can only receive the Messages from such a channel if a poller is configured. On the other
hand, a consumer connected to a Subscribable Channel is simply Message-driven. The variety of
channel implementations available in Spring Integration will be discussed in detail in the section called
“Message Channel Implementations”.

Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise integration
solutions through inversion of control. This means that you should not have to implement consumers
and producers directly, and you should not even have to build Messages and invoke send or receive
operations on a Message Channel. Instead, you should be able to focus on your specific domain model
with an implementation based on plain Objects. Then, by providing declarative configuration, you can
"connect" your domain-specific code to the messaging infrastructure provided by Spring Integration. The
components responsible for these connections are Message Endpoints. This does not mean that you will
necessarily connect your existing application code directly. Any real-world enterprise integration solution
will require some amount of code focused upon integration concerns such as routing and transformation.
The important thing is to achieve separation of concerns between such integration logic and business
logic. In other words, as with the Model-View-Controller paradigm for web applications, the goal should
be to provide a thin but dedicated layer that translates inbound requests into service layer invocations,
and then translates service layer return values into outbound replies. The next section will provide an
overview of the Message Endpoint types that handle these responsibilities, and in upcoming chapters,
you will see how Spring Integration’s declarative configuration options provide a non-invasive way to
use each of these.

3.4 Message Endpoints

A Message Endpoint represents the “filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint’s primary role is to connect application code to the messaging framework and to do so in a non-
invasive manner. In other words, the application code should ideally have no awareness of the Message
objects or the Message Channels. This is similar to the role of a Controller in the MVC paradigm. Just as
a Controller handles HTTP requests, the Message Endpoint handles Messages. Just as Controllers are
mapped to URL patterns, Message Endpoints are mapped to Message Channels. The goal is the same
in both cases: isolate application code from the infrastructure. These concepts are discussed at length
along with all of the patterns that follow in the Enterprise Integration Patterns book. Here, we provide

4.3.18.RELEASE Spring Integration 15

http://www.eaipatterns.com

Spring Integration Reference Manual

only a high-level description of the main endpoint types supported by Spring Integration and their roles.
The chapters that follow will elaborate and provide sample code as well as configuration examples.

Transformer

A Message Transformer is responsible for converting a Message’s content or structure and returning
the modified Message. Probably the most common type of transformer is one that converts the payload
of the Message from one format to another (e.g. from XML Document to java.lang.String). Similarly, a
transformer may be used to add, remove, or modify the Message’s header values.

Filter

A Message Filter determines whether a Message should be passed to an output channel at all. This
simply requires a boolean test method that may check for a particular payload content type, a property
value, the presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if
not it will be dropped (or for a more severe implementation, an Exception could be thrown). Message
Filters are often used in conjunction with a Publish Subscribe channel, where multiple consumers may
receive the same Message and use the filter to narrow down the set of Messages to be processed
based on some criteria.

Note

Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters architectural pattern
with this specific endpoint type that selectively narrows down the Messages flowing between two
channels. The Pipes-and-Filters concept of "filter" matches more closely with Spring Integration’s
Message Endpoint: any component that can be connected to Message Channel(s) in order to
send and/or receive Messages.

Router

A Message Router is responsible for deciding what channel or channels should receive the Message
next (if any). Typically the decision is based upon the Message’s content and/or metadata available in the
Message Headers. A Message Router is often used as a dynamic alternative to a statically configured
output channel on a Service Activator or other endpoint capable of sending reply Messages. Likewise,
a Message Router provides a proactive alternative to the reactive Message Filters used by multiple
subscribers as described above.

. Message Channel A
e Router
Channel B

Figure 3.3. Router
Splitter

A Splitter is another type of Message Endpoint whose responsibility is to accept a Message from its input
channel, split that Message into multiple Messages, and then send each of those to its output channel.

4.3.18.RELEASE Spring Integration 16

Spring Integration Reference Manual

This is typically used for dividing a "composite" payload object into a group of Messages containing the
sub-divided payloads.

Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives
multiple Messages and combines them into a single Message. In fact, Aggregators are often
downstream consumers in a pipeline that includes a Splitter. Technically, the Aggregator is more
complex than a Splitter, because it is required to maintain state (the Messages to-be-aggregated), to
decide when the complete group of Messages is available, and to timeout if necessary. Furthermore, in
case of a timeout, the Aggregator needs to know whether to send the partial results or to discard them to
a separate channel. Spring Integration providesa Corr el ati onSt r at egy, aRel easeSt r at egy and
configurable settings for: timeout, whether to send partial results upon timeout, and a discard channel.

Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system.
The input Message Channel must be configured, and if the service method to be invoked is capable of
returning a value, an output Message Channel may also be provided.

Note

The output channel is optional, since each Message may also provide its own Return Address
header. This same rule applies for all consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message,
extracting the request Message’s payload and converting if necessary (if the method does not expect
a Message-typed parameter). Whenever the service object’s method returns a value, that return value
will likewise be converted to a reply Message if necessary (if it's not already a Message). That reply
Message is sent to the output channel. If no output channel has been configured, then the reply will be
sent to the channel specified in the Message’s "return address" if available.

A request-reply "Service Activator" endpoint connects a target object's method to input and output
Message Channels.

Input E

Message

- = === ——————— — T — -
Qutput

Message

handle(Message)

Service
Activator

Message
Handler

Input
Channel

Output
Channel

Figure 3.4. Service Activator

Note

As discussed in Message Channel above, channels can be Pollable or Subscribable; in this
diagram, this is depicted by the "clock" symbol and the solid arrow (poll) and the dotted arrow
(subscribe).

4.3.18.RELEASE Spring Integration 17

Spring Integration Reference Manual

Channel Adapter

A Channel Adapter is an endpoint that connects a Message Channel to some other system or transport.
Channel Adapters may be either inbound or outbound. Typically, the Channel Adapter will do some
mapping between the Message and whatever object or resource is received-from or sent-to the other
system (File, HTTP Request, JMS Message, etc). Depending on the transport, the Channel Adapter
may also populate or extract Message header values. Spring Integration provides a number of Channel
Adapters, and they will be described in upcoming chapters.

-
Source

Adapter
Figure 3.5. An inbound "Channel Adapter" endpoint connects a source system to a MessageChannel.

[
Message | (D

Message
Channel

Note

Message sources can be Pollable (e.g. POP3) or Message-Driven (e.g. IMAP Idle); in this
diagram, this is depicted by the "clock" symbol and the solid arrow (poll) and the dotted arrow

(message-driven).
E Channel

Adapter

Message
Channel

[,
| Message —| Target

Figure 3.6. An outbound "Channel Adapter" endpoint connects a MessageChannel to a target system.

Note

As discussed in Message Channel above, channels can be Pollable or Subscribable; in this
diagram, this is depicted by the "clock" symbol and the solid arrow (poll) and the dotted arrow
(subscribe).

3.5 Configuration and @Enablelntegration

Throughout this document you will see references to XML namespace support for declaring elements
in a Spring Integration flow. This support is provided by a series of namespace parsers that generate
appropriate bean definitions to implement a particular component. For example, many endpoints consist
of a MessageHandl| er bean and a Consuner Endpoi nt Fact or yBean into which the handler and an
input channel name are injected.

The first time a Spring Integration namespace element is encountered, the framework automatically
declares a number of beans that are used to support the runtime environment (task scheduler, implicit
channel creator, etc).

4.3.18.RELEASE Spring Integration 18

Spring Integration Reference Manual

Important

Starting with version 4.0, the @nabl el nt egr at i on annotation has been introduced, to allow
the registration of Spring Integration infrastructure beans (see JavaDocs). This annotation is
required when only Java & Annotation configuration is used, e.g. with Spring Boot and/or
Spring Integration Messaging Annotation support and Spring Integration Java DSL with no XML
integration configuration.

The @nabl el nt egr at i on annotation is also useful when you have a parent context with no Spring
Integration components and 2 or more child contexts that use Spring Integration. It enables these
common components to be declared once only, in the parent context.

The @nabl el nt egr at i on annotation registers many infrastructure components with the application
context:

» Registers some built-in beans, e.g. er r or Channel and its Loggi ngHandl er,t askSchedul er for
pollers, j sonPat h SpEL-function etc.;

» Adds several BeanFact or yPost Processor sto enhance the BeanFact ory for global and default
integration environment;

» Adds several BeanPost Processor s to enhance and/or convert and wrap particular beans for
integration purposes;

» Adds annotations processors to parse Messaging Annotations and registers components for them
with the application context.

The @ nt egrati onConponent Scan annotation has also been introduced to permit classpath
scanning. This annotation plays a similar role as the standard Spring Framework @onponent Scan
annotation, but it is restricted just to Spring Integration specific components and annotations, which
aren’t reachable by the standard Spring Framework component scan mechanism. For example the
section called “@MessagingGateway Annotation”.

The @nabl ePubl i sher annotation has been introduced to register a
Publ i sher Annot at i onBeanPost Processor bean and configure the defaul t - publi sher-
channel for those @ubl i sher annotations which are provided without a channel attribute. If more
than one @nabl ePubl i sher annotation is found, they must all have the same value for the default
channel. See the section called “Annotation-driven approach via @Publisher annotation” for more
information.

The @i obal Channel I nt er cept or annotation has been introduced to mark
Channel | nt er cept or beans for global channel interception. This annotation is an analogue of the
<i nt: channel -i nt er cept or > xml element (see the section called “Global Channel Interceptor
Configuration”). @3 obal Channel | nt er cept or annotations can be placed at the class level (with a
@Conponent stereotype annotation), or on @ean methods within @Conf i gur at i on classes. In either
case, the bean must be a Channel | nt er cept or.

The @ntegrationConverter annotation has been introduced to mark Converter,
CGeneri cConverter or ConverterFactory beans as candidate converters for
i nt egrati onConver si onSer vi ce. This annotation is an analogue of the <i nt: convert er > xml
element (see the section called “Payload Type Conversion”). @ nt egr at i onConvert er annotations
can be placed at the class level (with a @onponent stereotype annotation), or on @ean methods
within @onf i gur at i on classes.

4.3.18.RELEASE Spring Integration 19

http://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/config/EnableIntegration.html

Spring Integration Reference Manual

Also see Section F.6, “Annotation Support” for more information about Messaging Annotations.

3.6 Programming Considerations

It is generally recommended that you use plain old java objects (POJOs) whenever possible and only
expose the framework in your code when absolutely necessary.

If you do expose the framework to your classes, there are some considerations that need to be taken
into account, especially during application startup; some of these are listed here.

e If your component is Applicati onContext Aware, you should generally not "use" the
Appl i cati onCont ext in the set Appl i cati onCont ext () method; just store a reference and
defer such uses until later in the context lifecycle.

 If your componentisan | nitial i zi ngBean or uses @ost Const r uct methods, do not send any
messages from these initialization methods - the application context is not yet initialized when these
methods are called, and sending such messages will likely fail. If you need to send a messages
during startup, implement Appl i cati onLi st ener and wait for the Cont ext Ref r eshedEvent .
Alternatively, implement Smar t Li f ecycl e, put your bean in a late phase, and send the messages
from the st art () method.

3.7 Considerations When using Packaged (e.g. Shaded) Jars

Spring Integration bootstraps certain features using Spring Framework’s SpringFactories
mechanism to load several | nt egrati onConfi gurationlnitializer classes. This includes the
- cor e jar as well as certain others such as - ht t p, - j nx, etc. The information for this process is stored
in a file META- 1 NF/ spring. factori es in each jar.

Some developers prefer to repackage their application and all dependencies into a single jar using well-
known tools, such as the Apache Maven Shade Plugin.

By default, the shade plugin will not merge the spri ng. f act ori es files when producing the shaded
jar.

In addition to spring.factories, there are other META-INF files (spring. handlers,
spring. schemas) used for XML configuration. These also need to be merged.

Important

Spring Boot's executable jar mechanism takes a different approach in that it nests the jars, thus
retaining each spri ng. fact ori es file on the class path. So, with a Spring Boot application,
nothing more is needed, if you use its default executable jar format.

Even if you are not using Spring Boot, you can still use tooling provided by Boot to enhance the shade
plugin by adding transformers for the above mentioned files.

The following is an example configuration for the plugin at the time of writing. You may wish to consult
the current spring-boot-starter-parent pom to see the current settings that boot uses.

pom.xml.

4.3.18.RELEASE Spring Integration 20

https://maven.apache.org/plugins/maven-shade-plugin/
https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-starters/spring-boot-starter-parent/pom.xml

Spring Integration Reference Manual

<pl ugi ns>
<pl ugi n>
<groupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifact|d>maven-shade-plugin</artifactld>
<confi guration>
<keepDependenci esWt hPr ovi dedScope>t r ue</ keepDependenci esW t hPr ovi dedScope>
<cr eat eDependencyReducedPon®t r ue</ cr eat eDependencyReducedPon>
</ configuration>
<dependenci es>
<dependency> 0O
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
<versi on>${spring. boot . versi on} </ versi on>
</ dependency>
</ dependenci es>
<executions>
<execution>
<phase>package</ phase>
<goal s>
<goal >shade</ goal >
</ goal s>
<confi gurati on>
<transforners> O
<t r ansf or ner

i npl enent at i on="or g. apache. maven. pl ugi ns. shade. r esour ce. Appendi ngTr ansf or ner " >
<resour ce>META- | NF/ spri ng. handl er s</ resour ce>
</ transf or mer >
<t r ansf or ner

i npl enent ati on="or g. spri ngfranmewor k. boot . maven. Properti esMer gi ngResour ceTr ansf or mer" >
<resour ce>META- | NF/ spring. factories</resource>
</ transf or mer>
<transf or mer

i npl ement ati on="or g. apache. maven. pl ugi ns. shade. r esour ce. Appendi ngTr ansf or ner " >
<resour ce>META- | NF/ spri ng. schemas</ resour ce>
</ transformer>
<t ransf or mer

i npl enent ati on="or g. apache. maven. pl ugi ns. shade. r esour ce. Ser vi cesResour ceTransforner" />
</ transf or mer s>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>

Specifically,

0 addthe spring-boot - maven- pl ugi n as a dependency
O configure the transformers

Add a property for ${ spri ng. boot . ver si on} or use a version explicitly there.

3.8 Programming Tips and Tricks

With XML configuration and Spring Integration Namespace support, the XML Parsers hide how target
beans are built and wired together. For Java & Annotation Configuration, it is important to understand
the Framework API for the target end-user applications.

The first class citizens for EIP implementation are Message, Channel and Endpoi nt (see Section 3.3,
“Main Components” above). Their implementations (contracts) are:

4.3.18.RELEASE Spring Integration 21

Spring Integration Reference Manual

e org.springfranmewor k. messagi ng. Message - see Section 5.1, “Message”;
« org.springfranmewor k. messagi ng. MessageChannel - see Section 4.1, “Message Channels”;

e org.springframework.integration.endpoint. Abstract Endpoi nt - see Section 4.2,
“Poller”.

The first two are simple enough to understand how to implement, configure and use, respectively; the
last one deserves more review.

The Abstract Endpoi nt is widely used throughout the Framework for different component
implementations; its main implementations are:

» Event Dri venConsuner , when we subscribe to a Subscri babl eChannel to listen for messages;
» Pol I i ngConsurmer , when we poll for messages from a Pol | abl eChannel .

Using Messaging Annotations and/or Java DSL, you shouldn’t worry about these components, because
the Framework produces them automatically via appropriate annotations and BeanPost Pr ocessor s.
When building components manually, the Consuner Endpoi nt Fact or yBean should be used to help
to determine the target Abst r act Endpoi nt implementation based on the provided i nput Channel

property.

On the other hand, the ConsumerEndpoi nt FactoryBean exhibits an another first
class citizens in the Framework - org.springframework. messagi ng. MessageHandl er.
The goal of the implementation of this <class is to handle the message
consumed by the endpoint from the channel. Al EIP components in Spring
Integration are MessageHandl er implementations, e.g. Aggregati ngMessageHand! er,
MessageTr ansf or m ngHandl er, Abstract MessageSplitter etc.; as well as the target
protocol outbound adapters are implementations, too, e.g. FileWitingMessageHandl er,
Ht t pRequest Execut i ngMessageHand!l er, Abstract Mgtt MessageHandl er etc. When you
develop Spring Integration applications with Java & Annotation Configuration, you should take a look
into the Spring Integration module to find an appropriate MessageHandl er implementation to be used
for the @Ber vi ceAct i vat or configuration. For example to send an XMPP message (see Chapter 36,
XMPP Support) we should configure something like this:

@ean
@er vi ceAct i vat or (i nput Channel = "input")
publ i c MessageHandl er sendChat MessageHandl er (XMPPConnect i on xnppConnecti on) {
Chat MessageSendi ngMessageHandl er handl er = new Chat MessageSendi ngMessageHand!| er (xnppConnecti on) ;

Def aul t XnppHeader Mapper xnppHeader Mapper = new Def aul t XnppHeader Mapper () ;
xnppHeader Mapper . set Request Header Nanes("*") ;
handl er . set Header Mapper (xnppHeader Mapper) ;

return handl er;

The MessageHandl er implementations represent the outbound and processing part of the message
flow.

The inbound message flow side has its own components, which are divided to the
polling and listening behavior. The listening components are pretty simple and typically
requires only one target class implementation to be ready to produce messages.
Listening components can be one-way MessageProducer Support implementations, e.g.
Abst ract Mgt t MessageDr i venChannel Adapt er and | mapl dl eChannel Adapt er ; and request-

4.3.18.RELEASE Spring Integration 22

Spring Integration Reference Manual

reply - Messagi ngGat ewaySupport implementations, e.g. Angpl nboundGat eway and
Abst ract WebSer vi cel nboundGat eway.

Polling inbound endpoints are for those protocols which don’t provide a listener API or aren’t intended
for such a behavior. For example any File based protocol, as an FTP, any data bases (RDBMS or
NoSQL) etc.

These inbound endpoints consist with two components: the poller configuration, to initiate the
polling task periodically, and message source class to read data from the target protocol and
produce a message for the downstream integration flow. The first class, for poller configuration,
is Sour cePol | i ngChannel Adapt er. It is one more Abstract Endpoi nt implementation, but
especially for the polling purpose for initiating an integration flow. Typically, with the Messaging
Annotations or Java DSL, you shouldn’t worry about this class, the Framework produces a bean for it,
based on the @ nboundChannel Adapt er configuration or Java DSL particular Builder.

The message source components are more important for the target application development
and they all implement the MessageSource interface, e.g. MongoDbMessageSource and
Abstract Twi tt er MessageSour ce. With that in mind, our config for reading data from an RDBMS
table with JDBC may look like:

@Bean
@ nboundChannel Adapt er (val ue = "fooChannel ", poller = @oller(fixedDel ay="5000"))
publ i c MessageSour ce<?> st or edProc(Dat aSour ce dat aSource) {
return new JdbcPol | i ngChannel Adapt er (dat aSour ce, "SELECT * FROM foo where status = 0");

}

All the required inbound and outbound classes for the target protocols you can find in the
particular Spring Integration module, in most cases in the respective package. For example spri ng-
i nt egrati on-websocket adapters are:

e 0.s.i.websocket.inbound. WebSocket | nboundChannel Adapt er - implements
MessagePr oducer Support implementation to listen frames on the socket and produce message
to the channel;

* 0.S.i.websocket. out bound. WebSocket Qut boundMessageHandl| er - the one-way
Abst r act MessageHandl er implementation to convert incoming messages to the appropriate
frame and send over websocket.

If you are familiar with Spring Integration XML configuration already, starting with version 4.3, we provide
in the XSD elements definitions the description with the pointer which target classes are used to produce
beans for the adapter or gateway, for example:

<xsd: el enent name="out bound- async- gat eway" >
<xsd: annot at i on>
<xsd: docunent ati on>

Configures a Consuner Endpoint for the 'o.s.i.angp. outbound. AsyncAngpQut boundGat eway'
that will publish an AMQP Message to the provided Exchange and expect a reply Message.
The sending thread returns imediately; the reply is sent asynchronously; uses

' AsyncRabbi t Tenpl at e. sendAndRecei ve() " .

</ xsd: docunent at i on>
</ xsd: annot ati on>

4.3.18.RELEASE Spring Integration 23

Part IV. Core Messaging

This section covers all aspects of the core messaging APl in Spring Integration. Here you will learn about
Messages, Message Channels, and Message Endpoints. Many of the Enterprise Integration Patterns
are covered here as well, such as Filters, Routers, Transformers, Service-Activators, Splitters, and
Aggregators. The section also contains material about System Management, including the Control Bus
and Message History support.

Spring Integration Reference Manual

4. Messaging Channels

4.1 Message Channels

While the Message plays the crucial role of encapsulating data, it is the MessageChannel that
decouples message producers from message consumers.

The MessageChannel Interface

Spring Integration’s top-level MessageChannel interface is defined as follows.
public interface MessageChannel {
bool ean send(Message nessage);

bool ean send(Message nessage, |ong tineout);

When sending a message, the return value will be true if the message is sent successfully. If the send
call times out or is interrupted, then it will return false.

PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are
two sub-interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior.
Here is the definition of Pol | abl eChannel .

public interface Poll abl eChannel extends MessageChannel {
Message<?> receive();

Message<?> recei ve(long tineout);

Similar to the send methods, when receiving a message, the return value will be null in the case of a
timeout or interrupt.

SubscribableChannel

The Subscri babl eChannel base interface is implemented by channels that send Messages directly
to their subscribed MessageHandl er s. Therefore, they do not provide receive methods for polling, but
instead define methods for managing those subscribers:

public interface Subscribabl eChannel extends MessageChannel {
bool ean subscri be(MessageHandl er handl er);

bool ean unsubscri be(MessageHandl er handl er);

Message Channel Implementations

Spring Integration provides several different Message Channel implementations. Each is briefly
described in the sections below.

4.3.18.RELEASE Spring Integration 25

Spring Integration Reference Manual

PublishSubscribeChannel

The Publ i shSubscri beChannel implementation broadcasts any Message sent to it to all of its
subscribed handlers. This is most often used for sending Event Messages whose primary role
is notification as opposed to Document Messages which are generally intended to be processed
by a single handler. Note that the Publ i shSubscri beChannel is intended for sending only.
Since it broadcasts to its subscribers directly when its send(Message) method is invoked,
consumers cannot poll for Messages (it does not implement Pol | abl eChannel and therefore has no
recei ve() method). Instead, any subscriber must be a MessageHandl er itself, and the subscriber’s
handl eMessage(Message) method will be invoked in turn.

Prior to version 3.0, invoking the send method on a Publi shSubscri beChannel that had
no subscribers returned fal se. When used in conjunction with a Messagi ngTenpl ate, a
MessageDel i ver yExcept i on was thrown. Starting with version 3.0, the behavior has changed such
that a send is always considered successful if at least the minimum subscribers are present (and
successfully handle the message). This behavior can be modified by setting the m nSubscri bers
property, which defaults to 0.

Note

If a TaskExecut or is used, only the presence of the correct number of subscribers is used for
this determination, because the actual handling of the message is performed asynchronously.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike the Publ i shSubscri beChannel , the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a default no-
argument constructor (providing an essentially unbounded capacity of | nt eger . MAX_VALUE) as well
as a constructor that accepts the queue capacity:

publ i ¢ QueueChannel (int capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the
send() method will return immediately even if no receiver is ready to handle the message. If the queue
has reached capacity, then the sender will block until room is available. Or, if using the send call that
accepts a timeout, it will block until either room is available or the timeout period elapses, whichever
occurs first. Likewise, a receive call will return immediately if a message is available on the queue, but
if the queue is empty, then a receive call may block until either a message is available or the timeout
elapses. In either case, it is possible to force an immediate return regardless of the queue’s state by
passing a timeout value of 0. Note however, that calls to the no-arg versions of send() andr ecei ve()
will block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-inffirst-out (FIFO) ordering, the Pri orit yChannel is an
alternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority is determined by the pri ori t y header within each message. However,
for custom priority determination logic, a comparator of type Conpar at or <Message<?>> can be
provided to the Pri ori t yChannel 's constructor.

4.3.18.RELEASE Spring Integration 26

Spring Integration Reference Manual

RendezvousChannel

The RendezvousChannel enables a "direct-handoff* scenario where a sender will block until another
party invokes the channel’'s recei ve() method or vice-versa. Internally, this implementation is
quite similar to the QueueChannel except that it uses a Synchr onousQueue (a zero-capacity
implementation of Bl ocki ngQueue). This works well in situations where the sender and receiver
are operating in different threads but simply dropping the message in a queue asynchronously is not
appropriate. In other words, with a RendezvousChannel at least the sender knows that some receiver
has accepted the message, whereas with a QueueChannel , the message would have been stored to
the internal queue and potentially never received.

Tip

Keep in mind that all of these queue-based channels are storing messages in-memory only by
default. When persistence is required, you can either provide a message-store attribute within
the queue element to reference a persistent MessageStore implementation, or you can replace
the local channel with one that is backed by a persistent broker, such as a JMS-backed channel
or Channel Adapter. The latter option allows you to take advantage of any JMS provider's
implementation for message persistence, and it will be discussed in Chapter 20, JMS Support.
However, when buffering in a queue is not necessary, the simplest approach is to rely upon the
Di r ect Channel discussed next.

The RendezvousChannel is also useful for implementing request-reply operations. The sender
can create a temporary, anonymous instance of RendezvousChannel which it then sets as
the replyChannel header when building a Message. After sending that Message, the sender can
immediately call receive (optionally providing a timeout value) in order to block while waiting for a reply
Message. This is very similar to the implementation used internally by many of Spring Integration’s
request-reply components.

DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the
Publ i shSubscri beChannel than any of the queue-based channel implementations described
above. It implements the Subscri babl eChannel interface instead of the Pol | abl eChannel
interface, so it dispatches Messages directly to a subscriber. As a point-to-point channel, however,
it differs from the Publ i shSubscri beChannel in that it will only send each Message to a single
subscribed MessageHandl er .

In addition to being the simplest point-to-point channel option, one of its most important features is
that it enables a single thread to perform the operations on "both sides" of the channel. For example,
if a handler is subscribed to a Di r ect Channel , then sending a Message to that channel will trigger
invocation of that handler's handl eMessage(Message) method directly in the sender’s thread, before
the send() method invocation can return.

The key motivation for providing a channel implementation with this behavior is to support transactions
that must span across the channel while still benefiting from the abstraction and loose coupling that the
channel provides. If the send call is invoked within the scope of a transaction, then the outcome of the
handler’s invocation (e.g. updating a database record) will play a role in determining the ultimate result
of that transaction (commit or rollback).

4.3.18.RELEASE Spring Integration 27

Spring Integration Reference Manual

Note

Since the Di r ect Channel is the simplest option and does not add any additional overhead that
would be required for scheduling and managing the threads of a poller, it is the default channel
type within Spring Integration. The general idea is to define the channels for an application and
then to consider which of those need to provide buffering or to throttle input, and then modify those
to be queue-based Pol | abl eChannel s. Likewise, if a channel needs to broadcast messages,
it should not be a Di r ect Channel but rather a Publ i shSubscri beChannel . Below you will
see how each of these can be configured.

The Di r ect Channel internally delegates to a Message Dispatcher to invoke its subscribed Message
Handlers, and that dispatcher can have a load-balancing strategy exposed via load-balancer or load-
balancer-ref attributes (mutually exclusive). The load balancing strategy is used by the Message
Dispatcher to help determine how Messages are distributed amongst Message Handlers in the case
that there are multiple Message Handlers subscribed to the same channel. As a convenience the
load-balancer attribute exposes enumeration of values pointing to pre-existing implementations of
LoadBal anci ngSt r at egy. The "round-robin" (load-balances across the handlers in rotation) and
"none" (for the cases where one wants to explicitely disable load balancing) are the only available values.
Other strategy implementations may be added in future versions. However, since version 3.0 you can
provide your own implementation of the LoadBal anci ngSt r at egy and inject it using load-balancer-
ref attribute which should point to a bean that implements LoadBal anci ngSt r at egy.

<i nt:channel id="|bRef Channel ">
<int:dispatcher | oad-bal ancer-ref="1b"/>
</int:channel >

<bean id="1b" class="fo0o0. bar. Sanpl eLoadBal anci ngStr at egy"/ >

Note that load-balancer or load-balancer-ref attributes are mutually exclusive.

The load-balancing also works in combination with a boolean failover property. If the "failover" value
is true (the default), then the dispatcher will fall back to any subsequent handlers as necessary when
preceding handlers throw Exceptions. The order is determined by an optional order value defined on
the handlers themselves or, if no such value exists, the order in which the handlers are subscribed.

If a certain situation requires that the dispatcher always try to invoke the first handler, then fallback
in the same fixed order sequence every time an error occurs, no load-balancing strategy should be
provided. In other words, the dispatcher still supports the failover boolean property even when no load-
balancing is enabled. Without load-balancing, however, the invocation of handlers will always begin with
the first according to their order. For example, this approach works well when there is a clear definition
of primary, secondary, tertiary, and so on. When using the namespace support, the "order" attribute on
any endpoint will determine that order.

Note

Keep in mind that load-balancing and failover only apply when a channel has more than one
subscribed Message Handler. When using the namespace support, this means that more than
one endpoint shares the same channel reference in the "input-channel" attribute.

ExecutorChannel

The Execut or Channel is a point-to-point channel that supports the same dispatcher configuration
as Di r ect Channel (load-balancing strategy and the failover boolean property). The key difference

4.3.18.RELEASE Spring Integration 28

Spring Integration Reference Manual

between these two dispatching channel types is that the Execut or Channel delegates to an instance
of TaskExecut or to perform the dispatch. This means that the send method typically will not block,
but it also means that the handler invocation may not occur in the sender’s thread. It therefore does not
support transactions spanning the sender and receiving handler.

Tip

Note that there are occasions where the sender may block. For example, when using
a TaskExecutor with a rejection-policy that throttles back on the client (such as the
Thr eadPool Execut or. Cal | er RunsPol i cy), the sender’s thread will execute the method
directly anytime the thread pool is at its maximum capacity and the executor’s work queue is full.
Since that situation would only occur in a non-predictable way, that obviously cannot be relied
upon for transactions.

Scoped Channel

Spring Integration 1.0 provided a Thr eadLocal Channel implementation, but that has been removed
as of 2.0. Now, there is a more general way for handling the same requirement by simply adding a
"scope" attribute to a channel. The value of the attribute can be any name of a Scope that is available
within the context. For example, in a web environment, certain Scopes are available, and any custom
Scope implementations can be registered with the context. Here’'s an example of a ThreadLocal-based
scope being applied to a channel, including the registration of the Scope itself.

<int:channel id="threadScopedChannel" scope="thread">
<int:queue />
</i nt: channel >

<bean cl ass="org. spri ngfranmewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property name="scopes">
<map>
<entry key="thread" val ue="org. springfranmework. context.support.Sinpl eThreadScope" />
</ map>
</ property>
</ bean>

The channel above also delegates to a queue internally, but the channel is bound to the current thread,
so the contents of the queue are as well. That way the thread that sends to the channel will later be able to
receive those same Messages, but no other thread would be able to access them. While thread-scoped
channels are rarely needed, they can be useful in situations where Di r ect Channel s are being used
to enforce a single thread of operation but any reply Messages should be sent to a "terminal" channel.
If that terminal channel is thread-scoped, the original sending thread can collect its replies from it.

Now, since any channel can be scoped, you can define your own scopes in addition to Thread Local.
Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and
capture meaningful information about the messages passing through the system in a non-invasive way.
Since the Message s are being sent to and received from MessageChannel s, those channels provide
an opportunity for intercepting the send and receive operations. The Channel | nt er cept or strategy
interface provides methods for each of those operations:

4.3.18.RELEASE Spring Integration 29

Spring Integration Reference Manual

public interface Channel I nterceptor {

Message<?> preSend(Message<?> nessage, MessageChannel channel);

voi d post Send(Message<?> nessage, MessageChannel channel, bool ean sent);

voi d afterSendConpl eti on(Message<?> nessage, MessageChannel channel, bool ean sent, Exception ex);

bool ean preRecei ve(MessageChannel channel);

Message<?> post Recei ve(Message<?> nessage, MessageChannel channel);

voi d afterRecei veConpl eti on(Message<?> nessage, MessageChannel channel, Exception ex);

After implementing the interface, registering the interceptor with a channel is just a matter of calling:

channel . addl nt er cept or (sonmeChannel | nt ercept or) ;

The methods that return a Message instance can be used for transforming the Message or can return
null to prevent further processing (of course, any of the methods can throw a RuntimeException). Also,
the pr eRecei ve method can return f al se to prevent the receive operation from proceeding.

Note

Keep in mind that recei ve() calls are only relevant for Pol | abl eChannel s. In fact the
Subscri babl eChannel interface does not even define a recei ve() method. The reason
for this is that when a Message is sent to a Subscri babl eChannel it will be sent directly to
one or more subscribers depending on the type of channel (e.g. a PublishSubscribeChannel
sends to all of its subscribers). Therefore, the preRecei ve(..), post Receive(..) and
af t er Recei veConpl eti on(..) interceptor methods are only invoked when the interceptor is
applied to a Pol | abl eChannel .

Spring Integration also provides an implementation of the Wire Tap pattern. It is a simple interceptor
that sends the Message to another channel without otherwise altering the existing flow. It can be very
useful for debugging and monitoring. An example is shown in the section called “Wire Tap”.

Because it is rarely necessary to implement all of the interceptor methods, a
Channel | nt er cept or Adapt er class is also available for sub-classing. It provides no-op methods
(the voi d method is empty, the Message returning methods return the Message as-is, and the bool ean
method returns true). Therefore, it is often easiest to extend that class and just implement the
method(s) that you need as in the following example.

public class CountingChannel | nterceptor extends Channel | nterceptorAdapter {
private final Atom clnteger sendCount = new Atonmi clnteger();

@verride

publi c Message<?> preSend(Message<?> nessage, MessageChannel channel) {
sendCount . i ncrenent AndCet () ;
return message;

Tip

The order of invocation for the interceptor methods depends on the type of channel. As described
above, the queue-based channels are the only ones where the receive method is intercepted in

4.3.18.RELEASE Spring Integration 30

http://eaipatterns.com/WireTap.html

Spring Integration Reference Manual

the first place. Additionally, the relationship between send and receive interception depends on
the timing of separate sender and receiver threads. For example, if a receiver is already blocked
while waiting for a message the order could be: preSend, preReceive, postReceive, postSend.
However, if a receiver polls after the sender has placed a message on the channel and already
returned, the order would be: preSend, postSend, (some-time-elapses) preReceive, postReceive.
The time that elapses in such a case depends on a number of factors and is therefore generally
unpredictable (in fact, the receive may never happen!). Obviously, the type of queue also plays a
role (e.g. rendezvous vs. priority). The bottom line is that you cannot rely on the order beyond the
fact that preSend will precede postSend and preReceive will precede postReceive.

Starting with Spring Framework 4.1 and Spring Integration 4.1, the Channel | nt er cept or provides
new methods - af t er SendConpl eti on() and aft er Recei veConpl eti on(). They are invoked
after send()/ recei ve() calls, regardless of any exception that is raised, thus allowing for resource
cleanup. Note, the Channel invokes these methods on the Channellnterceptor List in the reverse order
of the initial pr eSend() / pr eRecei ve() calls.

MessagingTemplate

As you will see when the endpoints and their various configuration options are introduced, Spring
Integration provides a foundation for messaging components that enables non-invasive invocation of
your application code from the messaging system. However, sometimes it is necessary to invoke the
messaging system from your application code. For convenience when implementing such use-cases,
Spring Integration provides a Messagi ngTenpl at e that supports a variety of operations across the
Message Channels, including request/reply scenarios. For example, it is possible to send a request and
wait for a reply.

Messagi ngTenpl ate tenpl ate = new Messagi ngTenpl ate();

Message reply = tenpl at e. sendAndRecei ve(soneChannel , new Generi cMessage("test"));

In that example, a temporary anonymous channel would be created internally by the template. The
sendTimeout and receiveTimeout properties may also be set on the template, and other exchange types
are also supported.

public bool ean send(final MessageChannel channel, final Message<?> nessage) { ...

}

publ i c Message<?> sendAndRecei ve(final MessageChannel channel, final Message<?> request) { ..

}

public Message<?> receive(final Pollabl eChannel <?> channel) { ...

}

Note

A less invasive approach that allows you to invoke simple interfaces with payload and/or
header values instead of Message instances is described in the section called “Enter the
GatewayProxyFactoryBean”.

Configuring Message Channels

To create a Message Channel instance, you can use the <channel/> element:

<i nt:channel id="exanpl eChannel"/>

4.3.18.RELEASE Spring Integration 31

Spring Integration Reference Manual

The default channel type is Point to Point. To create a Publish Subscribe channel, use the <publ i sh-
subscri be- channel / > element:

<i nt:publish-subscribe-channel id="exanpl eChannel"/>

When using the <channel / > element without any sub-elements, it will create a Di r ect Channel
instance (a Subscri babl eChannel).

However, you can alternatively provide a variety of <queue/ > sub-elements to create any of the pollable
channel types (as described in the section called “Message Channel Implementations”). Examples of
each are shown below.

DirectChannel Configuration

As mentioned above, Di r ect Channel is the default type.

<int:channel id="directChannel"/>

A default channel will have a round-robin load-balancer and will also have failover enabled (See the
discussion in the section called “DirectChannel” for more detail). To disable one or both of these, add
a <di spat cher/ > sub-element and configure the attributes:

<int:channel id="fail FastChannel ">
<int:dispatcher failover="false"/>
</ channel >

<int:channel id="channel WthFi xedOr der SequenceFai | over ">
<int:di spatcher | oad-bal ancer="none"/>
</int:channel >

Datatype Channel Configuration

There are times when a consumer can only process a particular type of payload and you need to
therefore ensure the payload type of input Messages. Of course the first thing that comes to mind is
Message Filter. However all that Message Filter will do is filter out Messages that are not compliant with
the requirements of the consumer. Another way would be to use a Content Based Router and route
Messages with non-compliant data-types to specific Transformers to enforce transformation/conversion
to the required data-type. This of course would work, but a simpler way of accomplishing the same thing
is to apply the Datatype Channel pattern. You can use separate Datatype Channels for each specific
payload data-type.

To create a Datatype Channel that only accepts messages containing a certain payload type, provide
the fully-qualified class name in the channel element’s dat at ype attribute:

<int:channel id="nunberChannel" datatype="java.l ang. Number"/>

Note that the type check passes for any type that is assignable to the channel’'s datatype. In other
words, the "numberChannel" above would accept messages whose payload is j ava. | ang. | nt eger
orj ava. | ang. Doubl e. Multiple types can be provided as a comma-delimited list:

<int:channel id="stringO NunberChannel" datatype="java.lang. String,java.lang. Nunber"/>

So the numberChannel above will only accept Messages with a data-type of j ava. | ang. Nunber.
But what happens if the payload of the Message is not of the required type? It depends on whether
you have defined a bean named i nt egr at i onConver si onSer vi ce that is an instance of Spring’s
Conversion Service. If not, then an Exception would be thrown immediately, but if you do have an

4.3.18.RELEASE Spring Integration 32

http://www.eaipatterns.com/DatatypeChannel.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-ConversionService-API

Spring Integration Reference Manual

"integrationConversionService" bean defined, it will be used in an attempt to convert the Message’s
payload to the acceptable type.

You can even register custom converters. For example, let's say you are sending a Message with a
String payload to the numberChannel we configured above.

MessageChannel inChannel = context.get Bean("nunber Channel ", MessageChannel . cl ass);
i nChannel . send(new Generi cMessage<String>("5"));

Typically this would be a perfectly legal operation, however since we are using Datatype Channel the
result of such operation would generate an exception:

Exception in thread "main" org.springfranework.integration. MessageDel i ver yExcepti on:
Channel ' number Channel*

expect ed one of the follow ng datataypes [class java.lang. Nunber],

but received [class java.lang. String]

And rightfully so since we are requiring the payload type to be a Number while sending a String. So we
need something to convert String to a Number. All we need to do is implement a Converter.

public static class StringTolntegerConverter inplenents Converter<String, |nteger> {
public Integer convert(String source) {
return | nteger.parselnt(source);
}
}

Then, register it as a Converter with the Integration Conversion Service:

<int:converter ref="strTolnt"/>

<bean id="strTolnt" class="org.springframework.integration.util.Denp.StringTol ntegerConverter"/>

When the converter element is parsed, it will create the "integrationConversionService" bean on-demand
if one is not already defined. With that Converter in place, the send operation would now be successful
since the Datatype Channel will use that Converter to convert the String payload to an Integer.

Note

For more information regarding Payload Type Conversion, please read the section called “Payload
Type Conversion”.

Beginning with version 4.0, the integrationConversionService is invoked by the
Def aul t Dat at ypeChannel MessageConvert er, which looks up the conversion service in the
application context. To use a different conversion technique, you can specify the nessage- convert er
attribute on the channel. This must be a reference to a MessageConver t er implementation. Only the
f r omvessage method is used, which provides the converter with access to the message headers (for
example if the conversion might need information from the headers, such as cont ent -t ype). The
method can return just the converted payload, or a full Message object. If the latter, the converter must
be careful to copy all the headers from the inbound message.

Alternatively, declare a <bean/> of type MessageConverter with an id
"dat at ypeChannel MessageConverter" and that converter will be used by all channels with a
dat at ype.

QueueChannel Configuration

To create a QueueChannel , use the <queue/ > sub-element. You may specify the channel’'s capacity:

4.3.18.RELEASE Spring Integration 33

Spring Integration Reference Manual

<i nt:channel id="queueChannel">
<queue capacity="25"/>
</int:channel >

Note

If you do not provide a value for the capacity attribute on this <queue/ > sub-element, the resulting
gueue will be unbounded. To avoid issues such as OutOfMemoryErrors, it is highly recommended
to set an explicit value for a bounded queue.

Persistent QueueChannel Configuration

Since a QueueChannel provides the capability to buffer Messages, but does so in-memory only
by default, it also introduces a possibility that Messages could be lost in the event of a system
failure. To mitigate this risk, a QueueChannel may be backed by a persistent implementation
of the MessageG oupSt or e strategy interface. For more details on MessageG oupSt or e and
MessagesSt or e see Section 9.4, “Message Store”.

Important

The capaci t y attribute is not allowed when the nessage- st or e attribute is used.

When a QueueChannel receives a Message, it will add it to the Message Store, and when a Message
is polled from a QueueChannel , it is removed from the Message Store.

By default, a QueueChannel stores its Messages in an in-memory Queue and can therefore lead to the
lost message scenario mentioned above. However Spring Integration provides persistent stores, such
as the JdbcChannel MessageSt or e.

You can configure a Message Store for any QueueChannel by adding the nessage- st or e attribute
as shown in the next example.

<i nt:channel id="dbBackedChannel ">
<i nt:queue nmessage-store="channel Store"/>
</int:channel >

<bean id="channel Store" class="o0.s.i.jdbc.store.JdbcChannel MessageSt ore" >
<property name="dat aSource" ref="dataSource"/>
<property name="channel MessageSt or eQueryProvi der" ref="queryProvider"/>
</ bean>

The Spring Integration JDBC module also provides schema DDL for a number of popular databases.
These schemas are located in the org.springframework.integration.jdbc.store.channel package of that
module (spring-integration-jdbc).

Important

One important feature is that with any transactional persistent store (e.g.,
JdbcChannel MessageSt or e), as long as the poller has a transaction configured, a Message
removed from the store will only be permanently removed if the transaction completes
successfully, otherwise the transaction will roll back and the Message will not be lost.

Many other implementations of the Message Store will be available as the growing number of Spring
projects related to "NoSQL" data stores provide the underlying support. Of course, you can always

4.3.18.RELEASE Spring Integration 34

Spring Integration Reference Manual

provide your own implementation of the MessageGroupStore interface if you cannot find one that meets
your particular needs.

Since version 4.0, it is recommended that QueueChannel s are configured to use a
Channel MessagesSt or e if possible. These are generally optimized for this use, when compared with
a general message store. If the Channel MessageSt or e isa Channel Pri ori t yMessageSt or e the
messages will be received in FIFO within priority order. The notion of priority is determined by the
message store implementation. For example the Java Configuration for the the section called “MongoDB
Channel Message Store™:

@Bean

publ i ¢ Basi cMessageG oupSt or e nongoDbChannel MessageSt or e(MongoDbFact ory nongoDbFactory) {
MongoDbChannel MessageStore store = new MongoDbChannel MessageSt or e(nbongoDbFact ory) ;
store.setPriorityEnabl ed(true);
return store,;

}

@ean
public Poll abl eChannel priorityQueue(Basi cMessageG oupStore nongoDbChannel MessageStore) {
return new QueueChannel (new MessageG oupQueue(nongoDbChannel MessageStore, "priorityQueue"));

}

Note

Pay attention to the MessageG oupQueue class. That is a Bl ocki ngQueue implementation to
utilize the MessageG oupSt or e operations.

The same with Java DSL may look like:

@Bean
public IntegrationFlow priorityFl owmPriorityCapabl eChannel MessageSt ore nongoDbChannel MessageStore) {
return IntegrationFlows.fron{(Channels c) ->
c.priority("priorityChannel", nmongoDbChannel MessageStore, "priorityGoup"))

.get();

Another option to customize the QueueChannel environment is provided by the ref
attribute of the <int:queue> sub-element. This attribute implies the reference to any
java.util.Queue implementation. An implementation is provided by the Project Reactor and its
react or. queue. Per si st ent Queue implementation for the IndexedChronicle:

@Bean
publ i ¢ QueueChannel reactorQueue() {
return new QueueChannel (new Per si st ent QueueSpec<Message<?>>()
. codec(new JavaSeri al i zat i onCodec<Message<?>>())
. basePat h(System get Property("java.io.tnpdir") + "/reactor-queue")
.get());

PublishSubscribeChannel Configuration

To create a Publ i shSubscri beChannel , use the <publish-subscribe-channel/> element. When
using this element, you can also specify the t ask- execut or used for publishing Messages (if none
is specified it simply publishes in the sender’s thread):

<int:publish-subscribe-channel id="pubsubChannel" task-executor="sonmeExecutor"/>

Alongside with the Executor, an ErrorHandl er can be configured as well. By default the
Publ i shSubscri beChannel uses a MessagePubl i shi ngEr r or Handl er implementation to send

4.3.18.RELEASE Spring Integration 35

https://github.com/reactor/reactor
https://github.com/OpenHFT/Chronicle-Queue

Spring Integration Reference Manual

error to the MessageChannel from the er r or Channel header or a global er r or Channel instance.
If an Execut or is not configured, the Err or Handl er is ignored and exceptions are thrown directly
to the caller’s Thread.

If you are providing a Resequencer or Aggregator downstream from a Publ i shSubscri beChannel ,
then you can set the apply-sequence property on the channeltot r ue. That will indicate that the channel
should set the sequence-size and sequence-number Message headers as well as the correlation id prior
to passing the Messages along. For example, if there are 5 subscribers, the sequence-size would be
set to 5, and the Messages would have sequence-number header values ranging from 1 to 5.

<i nt:publish-subscribe-channel id="pubsubChannel" apply-sequence="true"/>

Note

The appl y- sequence value is f al se by default so that a Publish Subscribe Channel can
send the exact same Message instances to multiple outbound channels. Since Spring Integration
enforces immutability of the payload and header references, the channel creates new Message
instances with the same payload reference but different header values when the flag is set to
true.

ExecutorChannel

To create an Execut or Channel , add the <dispatcher> sub-element along with a t ask- execut or
attribute. Its value can reference any TaskExecut or within the context. For example, this enables
configuration of a thread-pool for dispatching messages to subscribed handlers. As mentioned above,
this does break the "single-threaded" execution context between sender and receiver so that any active
transaction context will not be shared by the invocation of the handler (i.e. the handler may throw an
Exception, but the send invocation has already returned successfully).

<int:channel id="executorChannel ">
<i nt:di spatcher task-executor="sonmeExecutor"/>
</int:channel >

Note

The | oad- bal ancer and f ai | over options are also both available on the <dispatcher/> sub-
element as described above in the section called “DirectChannel Configuration”. The same
defaults apply as well. So, the channel will have a round-robin load-balancing strategy with failover
enabled unless explicit configuration is provided for one or both of those attributes.

<int:channel id="executorChannel Wthout Fai | over">
<int:dispatcher task-executor="soneExecutor" failover="false"/>
</int:channel >

PriorityChannel Configuration

To create a Pri ori t yChannel , use the <pri ori ty- queue/ > sub-element:

<int:channel id="priorityChannel">
<int:priority-queue capacity="20"/>
</int:channel >

By default, the channel will consult the priority header of the message. However, a custom
Conpar at or reference may be provided instead. Also, note that the Pri ori t yChannel (like the other

4.3.18.RELEASE Spring Integration 36

Spring Integration Reference Manual

types) does support the dat at ype attribute. As with the QueueChannel, it also supports a capaci ty
attribute. The following example demonstrates all of these:

<int:channel id="priorityChannel" datatype="exanple. Wdget">
<int:priority-gqueue conparator="w dget Conpar at or"
capaci ty="10"/>
</int:channel >

Since version 4.0, the priority-channel child element supports the nessage-store
option (conparator and capacity are not allowed in that case). The message store
must be a PriorityCapabl eChannel MessageStore and, in this case, the namespace
parser will declare a QueueChannel instead of a PriorityChannel. Implementations of the
PriorityCapabl eChannel MessageSt or e are currently provided for Redi s, JDBC and MongoDB.
See the section called “QueueChannel Configuration” and Section 9.4, “Message Store” for more
information. You can find sample configuration in the section called “Backing Message Channels”.

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <r endezvous- queue>. It does
not provide any additional configuration options to those described above, and its queue does not accept
any capacity value since it is a 0-capacity direct handoff queue.

<int:channel id="rendezvousChannel"/>
<i nt:rendezvous- queue/ >
</int:channel >

Scoped Channel Configuration

Any channel can be configured with a "scope" attribute.

<int:channel id="threadLocal Channel" scope="thread"/>

Channel Interceptor Configuration

Message channels may also have interceptors as described in the section called “Channel Interceptors”.
The <i nterceptors/> sub-element can be added within a <channel / > (or the more specific
element types). Provide the r ef attribute to reference any Spring-managed object that implements the
Channel | nt er cept or interface:

<i nt:channel id="exanpl eChannel ">
<int:interceptors>
<ref bean="trafficMonitoringlnterceptor"/>
</int:interceptors>
</i nt:channel >

In general, it is a good idea to define the interceptor implementations in a separate location since they
usually provide common behavior that can be reused across multiple channels.

Global Channel Interceptor Configuration

Channel Interceptors provide a clean and concise way of applying cross-cutting behavior per individual
channel. If the same behavior should be applied on multiple channels, configuring the same set of
interceptors for each channel would not be the most efficient way. To avoid repeated configuration while
also enabling interceptors to apply to multiple channels, Spring Integration provides Global Interceptors.
Look at the example below:

<int:channel -interceptor pattern="input*, bar*, foo" order="3">
<bean cl ass="f 00. bar Sanpl el nt erceptor"/>
</int:channel -interceptor>

4.3.18.RELEASE Spring Integration 37

Spring Integration Reference Manual

or

<int:channel -interceptor ref="nylnterceptor" pattern="input*, bar*, foo" order="3"/>

<bean id="nylnterceptor" class="foo.barSanpl el nterceptor"/>

Each <channel -i nt er cept or/ > element allows you to define a global interceptor which will be
applied on all channels that match any patterns defined via the pat t er n attribute. In the above case
the global interceptor will be applied on the foo channel and all other channels that begin with bar or
input. The order attribute allows you to manage where this interceptor will be injected if there are multiple
interceptors on a given channel. For example, channel inputChannel could have individual interceptors
configured locally (see below):

<i nt:channel id="inputChannel">
<int:interceptors>
<int:w re-tap channel ="| ogger"/>
</int:interceptors>
</int:channel >

A reasonable question is how will a global interceptor be injected in relation to other interceptors
configured locally or through other global interceptor definitions? The current implementation provides a
very simple mechanism for defining the order of interceptor execution. A positive number in the or der
attribute will ensure interceptor injection after any existing interceptors and a negative number will ensure
that the interceptor is injected before existing interceptors. This means that in the above example, the
global interceptor will be injected AFTER (since its order is greater than 0) the wire-tap interceptor
configured locally. If there were another global interceptor with a matching pat t er n, its order would be
determined by comparing the values of the or der attribute. To inject a global interceptor BEFORE the
existing interceptors, use a negative value for the or der attribute.

Note

Note that both the or der and patt er n attributes are optional. The default value for or der will
be 0 and for pat t er n, the default is * (to match all channels).

Starting with version 4.3.15, you can configure a property
spring.integration. post ProcessDynam cBeans = true to apply any global interceptors
to dynamically created MessageChannel beans. See Section F.5, “Global Properties” for more
information.

Wire Tap

As mentioned above, Spring Integration provides a simple Wire Tap interceptor out of the box. You can
configure a Wire Tap on any channel within an <i nt er cept or s/ > element. This is especially useful for
debugging, and can be used in conjunction with Spring Integration’s logging Channel Adapter as follows:

<int:channel id="in">
<int:interceptors>
<int:w re-tap channel ="| ogger"/>
</int:interceptors>
</int:channel >

<i nt: | oggi ng- channel - adapter id="1ogger" |evel ="DEBUG'/ >

4.3.18.RELEASE Spring Integration 38

Spring Integration Reference Manual

Tip

The logging-channel-adapter also accepts an expression attribute so that you can evaluate a
SpEL expression against payload and/or headers variables. Alternatively, to simply log the full
Message toString() result, provide a value of "true" for the log-full-message attribute. That is
f al se by default so that only the payload is logged. Setting that to t r ue enables logging of
all headers in addition to the payload. The expression option does provide the most flexibility,
however (e.g. expression="payload.user.name").

A little more on Wire Tap

One of the common misconceptions about the wire tap and other similar components (Section B.1,
“Message Publishing Configuration”) is that they are automatically asynchronous in nature. Wire-tap as
a component is not invoked asynchronously be default. Instead, Spring Integration focuses on a single
unified approach to configuring asynchronous behavior: the Message Channel. What makes certain
parts of the message flow sync or async is the type of Message Channel that has been configured within
that flow. That is one of the primary benefits of the Message Channel abstraction. From the inception
of the framework, we have always emphasized the need and the value of the Message Channel as
a first-class citizen of the framework. It is not just an internal, implicit realization of the EIP pattern, it
is fully exposed as a configurable component to the end user. So, the Wire-tap component is ONLY
responsible for performing the following 3 tasks:

« intercept a message flow by tapping into a channel (e.g., channelA)
» grab each message
» send the message to another channel (e.g., channelB)

It is essentially a variation of the Bridge, but it is encapsulated within a channel definition (and hence
easier to enable and disable without disrupting a flow). Also, unlike the bridge, it basically forks another
message flow. Is that flow synchronous or asynchronous? The answer simply depends on the type of
Message Channel that channelB is. And, now you know that we have: Direct Channel, Pollable Channel,
and Executor Channel as options. The last two do break the thread boundary making communication
via such channels asynchronous simply because the dispatching of the message from that channel
to its subscribed handlers happens on a different thread than the one used to send the message to
that channel. That is what is going to make your wire-tap flow sync or async. It is consistent with other
components within the framework (e.g., Message Publisher) and actually brings a level of consistency
and simplicity by sparing you from worrying in advance (other than writing thread safe code) whether
a particular piece of code should be implemented as sync or async. The actual wiring of two pieces of
code (component A and component B) via Message Channel is what makes their collaboration sync or
async. You may even want to change from sync to async in the future and Message Channel is what's
going to allow you to do it swiftly without ever touching the code.

One final point regarding the Wire Tap is that, despite the rationale provided above for not being async
by default, one should keep in mind it is usually desirable to hand off the Message as soon as possible.
Therefore, it would be quite common to use an asynchronous channel option as the wire-tap’s outbound
channel. Nonetheless, another reason that we do not enforce asynchronous behavior by default is that
you might not want to break a transactional boundary. Perhaps you are using the Wire Tap for auditing
purposes, and you DO want the audit Messages to be sent within the original transaction. As an example,
you might connect the wire-tap to a JMS outbound-channel-adapter. That way, you get the best of both
worlds: 1) the sending of a IMS Message can occur within the transaction while 2) it is still a "fire-and-
forget" action thereby preventing any noticeable delay in the main message flow.

4.3.18.RELEASE Spring Integration 39

Spring Integration Reference Manual

Important

Starting with version 4.0, it is important to avoid circular references when an interceptor (such
as WreTap) references a channel itself. You need to exclude such channels from those
being intercepted by the current interceptor. This can be done with appropriate patt erns or
programmatically. If you have a custom Channel | nt er cept or that references a channel ,
consider implementing Vet oCapabl el nt er cept or. That way, the framework will ask the
interceptor if it's OK to intercept each channel that is a candidate based on the pattern. You can
also add runtime protection in the interceptor methods that ensures that the channel is not one
that is referenced by the interceptor. The W r eTap uses both of these techniques.

Starting with version 4.3, the W r eTap has additional constructors that take a channel Nane instead
of a MessageChannel instance. This can be convenient for Java Configuration and when channel
auto-creation logic is being used. The target MessageChannel bean is resolved from the provided
channel Nane later, on the first interaction with the interceptor.

Important

Channel resolution requires a BeanFact or y so the wire tap instance must be a Spring-managed
bean.

This late-binding approach also allows simplification of typical wire-tapping patterns with Java DSL
configuration:

@Bean
public Pol | abl eChannel nyChannel () {
return MessageChannel s. queue()
.wireTap("! oggi ngFl ow. i nput™)
-get();
}

@Bean
public IntegrationFl ow | oggi ngFl ow() {
return f -> f.log();

}
Conditional Wire Taps

Wire taps can be made conditional, using the sel ect or or sel ect or - expr essi on attributes.
The sel ect or references a MessageSel ect or bean, which can determine at runtime whether the
message should go to the tap channel. Similarly, the™ selector-expression’ is a boolean SpEL expression
that performs the same purpose - if the expression evaluates to true, the message will be sent to the
tap channel.

Global Wire Tap Configuration

It is possible to configure a global wire tap as a special case of the the section called “Global Channel
Interceptor Configuration”. Simply configure a top level wi r e-t ap element. Now, in addition to the
normal wi r e- t ap namespace support, the pat t er n and or der attributes are supported and work in
exactly the same way as with the channel -i nt er cept or

<int:wire-tap pattern="input*, bar*, foo" order="3" channel ="w retapChannel "/ >

4.3.18.RELEASE Spring Integration 40

Spring Integration Reference Manual

Tip

A global wire tap provides a convenient way to configure a single channel wire tap externally
without modifying the existing channel configuration. Simply set the patt er n attribute to the
target channel name. For example, This technique may be used to configure a test case to verify
messages on a channel.

Special Channels

If namespace support is enabled, there are two special channels defined within the application context
by default: er r or Channel and nul | Channel . The nullChannel acts like / dev/ nul | , simply logging
any Message sent to it at DEBUG level and returning immediately. Any time you face channel
resolution errors for a reply that you don’t care about, you can set the affected component’s out put -
channel attribute to nullChannel (the name nullChannel is reserved within the application context).
The errorChannel is used internally for sending error messages and may be overridden with a custom
configuration. This is discussed in greater detail in Section F.4, “Error Handling”.

4.2 Poller

Polling Consumer

When Message Endpoints (Channel Adapters) are connected to channels and instantiated, they
produce one of the following 2 instances:

* PollingConsumer

» EventDrivenConsumer

The actual implementation depends on which type of channel these Endpoints are
connected to. A channel adapter connected to a channel that implements the
org.springframework.messaging.SubscribableChannel interface will produce an instance of
Event Dri venConsuner. On the other hand, a channel adapter connected to a channel that
implements the org.springframework.messaging.PollableChannel interface (e.g. a QueueChannel) will
produce an instance of Pol | i ngConsurer .

Polling Consumers allow Spring Integration components to actively poll for Messages, rather than to
process Messages in an event-driven manner.

They represent a critical cross cutting concern in many messaging scenarios. In Spring Integration,
Polling Consumers are based on the pattern with the same name, which is described in the book
"Enterprise Integration Patterns" by Gregor Hohpe and Bobby Woolf. You can find a description of the
pattern on the book’s website at:

http://www.enterpriseintegrationpatterns.com/PollingConsumer.html

Pollable Message Source

Furthermore, in Spring Integration a second variation of the Polling Consumer pattern exists.
When Inbound Channel Adapters are being used, these adapters are often wrapped by a
Sour cePol | i ngChannel Adapt er. For example, when retrieving messages from a remote FTP
Server location, the adapter described in Section 15.4, “FTP Inbound Channel Adapter” is configured
with a poller to retrieve messages periodically. So, when components are configured with Pollers, the
resulting instances are of one of the following types:

4.3.18.RELEASE Spring Integration 41

http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/EventDrivenConsumer.html
http://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/SubscribableChannel.html
http://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/PollableChannel.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html

Spring Integration Reference Manual

» PollingConsumer

» SourcePollingChannelAdapter

This means, Pollers are used in both inbound and outbound messaging scenarios. Here are some use-
cases that illustrate the scenarios in which Pollers are used:

» Polling certain external systems such as FTP Servers, Databases, Web Services
» Polling internal (pollable) Message Channels

» Polling internal services (E.g. repeatedly execute methods on a Java class)

Note

AOP Advice classes can be applied to pollers, in an advi ce-chai n. An example being
a transaction advice to start a transaction. Starting with version 4.1 a Pol | Ski pAdvi ce is
provided. Pollers use triggers to determine the time of the next poll. The Pol | Ski pAdvi ce
can be used to suppress (skip) a poll, perhaps because there is some downstream condition
that would prevent the message to be processed properly. To use this advice, you have to
provide it with an implementation of a Pol | Ski pStrat egy. Startng with version 4.2.5, a
Si npl ePol | Ski pSt r at egy is provided. Add an instance as a bean to the application context,
inject it into a Pol | Ski pAdvi ce and add that to the poller's advice chain. To skip polling, call
ski pPol | s(), to resume polling, call r eset () . Version 4.2 added more flexibility in this area -
see the section called “Conditional Pollers for Message Sources”.

This chapter is meant to only give a high-level overview regarding Polling Consumers and how they
fit into the concept of message channels - Section 4.1, “Message Channels” and channel adapters
- Section 4.3, “Channel Adapter”. For more in-depth information regarding Messaging Endpoints in
general and Polling Consumers in particular, please seeSection 8.1, “Message Endpoints”.

Conditional Pollers for Message Sources

Background

Advi ce objects, in an advi ce- chai n on a poller, advise the whole polling task (message retrieval
and processing). These "around advice" methods do not have access to any context for the poll, just
the poll itself. This is fine for requirements such as making a task transactional, or skipping a poll due
to some external condition as discussed above. What if we wish to take some action depending on the
result of the r ecei ve part of the poll, or if we want to adjust the poller depending on conditions?

"Smart" Polling

Version 4.2 introduced the Abst r act MessageSour ceAdvi ce. Any Advi ce objects in the advi ce-
chai n that subclass this class, are applied to just the receive operation. Such classes implement the
following methods:

bef or eRecei ve(MessageSour ce<?> source)

This method is called before the MessageSour ce. recei ve() method. It enables you to examine
and or reconfigure the source at this time. Returning fal se cancels this poll (similar to the
Pol | Ski pAdvi ce mentioned above).

4.3.18.RELEASE Spring Integration 42

http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/SourcePollingChannelAdapter.html

Spring Integration Reference Manual

Message<?> after Recei ve(Message<?> resul t, MessageSource<?> source)

This method is called after the r ecei ve() method; again, you can reconfigure the source, or take any
action perhaps depending on the result (which can be nul | if there was no message created by the
source). You can even return a different message!

Advice Chain Ordering

It is important to understand how the advice chain is processed during initialization. Advi ce
objects that do not extend Abst r act MessageSour ceAdvi ce are applied to the whole poll
process and are all invoked first, in order, before any Abst r act MessageSour ceAdvi ce; then
Abst ract MessageSour ceAdvi ce objects are invoked in order around the MessageSour ce
recei ve() method. If you have, say Advi ce objects a, b, ¢, d, where b and d are
Abst r act MessageSour ceAdvi ce, they will be applied in the order a, ¢, b, d. Also, if a
MessageSour ce is already a Pr oxy, the Abstract MessageSour ceAdvi ce will be invoked
after any existing Advi ce objects. If you wish to change the order, you should wire up the proxy
yourself.

SimpleActiveldleMessageSourceAdvice

This advice is a simple implementation of Abstract MessageSour ceAdvi ce, when used in
conjunction with a Dynami cPer i odi cTri gger, it adjusts the polling frequency depending on whether
or not the previous poll resulted in a message or not. The poller must also have a reference to the same
Dynami cPeri odi cTri gger.

Important: Async Handoff

This advice modifies the trigger based on the r ecei ve() result. This will only work if the advice
is called on the poller thread. It will not work if the poller has a t ask- execut or. To use this
advice where you wish to use async operations after the result of a poll, do the async handoff
later, perhaps by using an Execut or Channel .

CompoundTriggerAdvice

This advice allows the selection of one of two triggers based on whether a poll returns a message or
not. Consider a poller that uses a Cr onTr i gger ; CronTri gger s are immutable so cannot be altered
once constructed. Consider a use case where we want to use a cron expression to trigger a poll once
each hour but, if no message is received, poll once per minute and, when a message is retrieved, revert
to using the cron expression.

The advice (and poller) use a ConpoundTr i gger for this purpose. The trigger’s pr i mary trigger can be
a CronTri gger . When the advice detects that no message is received, it adds the secondary trigger to
the ConpoundTr i gger . When the ConrpoundTr i gger 's next Execut i onTi me method is invoked,
it will delegate to the secondary trigger, if present; otherwise the primary trigger.

The poller must also have a reference to the same ConpoundTr i gger.

The following shows the configuration for the hourly cron expression with fall-back to every minute...

4.3.18.RELEASE Spring Integration 43

Spring Integration Reference Manual

<i nt:inbound-channel - adapt er channel ="nul | Channel " aut o-startup="fal se">
<bean cl ass="org. springframework.integrati on. endpoi nt. Pol | er Advi ceTests. Source" />
<int:poller trigger="conmpoundTrigger">
<i nt:advi ce- chai n>
<bean cl ass="org. springfranmework.integrati on.aop. ConpoundTri gger Advi ce" >
<constructor-arg ref="conmpoundTrigger"/>
<constructor-arg ref="secondary"/>
</ bean>
</i nt:advi ce-chai n>
</int:poller>
</int:inbound-channel - adapt er >

<bean id="conmpoundTrigger" class="org.springfranmework.integration.util.ConpoundTrigger">
<constructor-arg ref="primry" />
</ bean>

<bean id="primry" class="org.springfranmework.scheduling.support.CronTrigger">
<constructor-arg value="0 0 * * * *" /> <I-- top of every hour -->
</ bean>

<bean id="secondary" class="org.springfranmework.schedul i ng. support. Periodi cTrigger">
<constructor-arg val ue="60000" />
</ bean>

Important: Async Handoff

This advice modifies the trigger based on the r ecei ve() result. This will only work if the advice
is called on the poller thread. It will not work if the poller has a t ask- execut or. To use this
advice where you wish to use async operations after the result of a poll, do the async handoff
later, perhaps by using an Execut or Channel .

4.3 Channel Adapter

A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to
a Message Channel. Spring Integration provides a number of adapters out of the box to support
various transports, such as JMS, File, HTTP, Web Services, Mail, and more. Those will be discussed
in upcoming chapters of this reference guide. However, this chapter focuses on the simple but flexible
Method-invoking Channel Adapter support. There are both inbound and outbound adapters, and each
may be configured with XML elements provided in the core namespace. These provide an easy way
to extend Spring Integration as long as you have a method that can be invoked as either a source or
destination.

Configuring An Inbound Channel Adapter

An "inbound-channel-adapter" element can invoke any method on a Spring-managed Object and send
a non-null return value to a MessageChannel after converting it to a Message. When the adapter’s
subscription is activated, a poller will attempt to receive messages from the source. The poller will be
scheduled with the TaskSchedul er according to the provided configuration. To configure the polling
interval or cron expression for an individual channel-adapter, provide a poller element with one of the
scheduling attributes, such as fixed-rate or cron.

<i nt:inbound-channel - adapt er ref="sourcel" nethod="nethodl" channel ="channel 1" >
<int:poller fixed-rate="5000"/>
</int:inbound-channel - adapt er >

<i nt:inbound-channel -adapter ref="source2" nethod="nethod2" channel ="channel 2">
<int:poller cron="30 * 9-17 * * MON-FRI"/>
</int:channel - adapt er >

4.3.18.RELEASE Spring Integration 44

Spring Integration Reference Manual

Also see the section called “Channel Adapter Expressions and Scripts”.

Note

If no poller is provided, then a single default poller must be registered within the context. See the
section called “Namespace Support” for more detail.

Important: Poller Configuration

Some i nbound- channel - adapt er types are backed by a
Sour cePol | i ngChannel Adapt er which means they contain Poller configuration which will
poll the MessageSour ce (invoke a custom method which produces the value that becomes a
Message payload) based on the configuration specified in the Poller.

For example:
<int:poller max-nmessages-per-poll="1" fixed-rate="1000"/>
<int:poller max-nmessages-per-poll="10" fixed-rate="1000"/>

In the the first configuration the polling task will be invoked once per poll and during such task
(poll) the method (which results in the production of the Message) will be invoked once based on
the max- messages- per - pol | attribute value. In the second configuration the polling task will
be invoked 10 times per poll or until it returns null thus possibly producing 10 Messages per poll
while each poll happens at 1 second intervals. However what if the configuration looks like this:

<int:poller fixed-rate="1000"/>

Note there is no max- nessages- per - pol | specified. As you'll learn later the identical poller
configuration in the Pol | i ngConsurer (e.g., service-activator, filter, router etc.) would have a
default value of -1 for max- messages- per - pol | which means "execute poling task non-stop
unless polling method returns null (e.g., no more Messages in the QueueChannel)" and then sleep
for 1 second.

However in the SourcePollingChannelAdapter it is a bit different. The default value for max-
nmessages- per - pol | will be set to 1 by default unless you explicitly set it to a negative value
(e.g., -1). Itis done so to make sure that poller can react to a LifeCycle events (e.qg., start/stop) and
prevent it from potentially spinning in the infinite loop if the implementation of the custom method
of the MessageSour ce has a potential to never return null and happened to be non-interruptible.

However if you are sure that your method can return null and you need the behavior where you
want to poll for as many sources as available per each poll, then you should explicitly set nax-
nmessages- per - pol | to a negative value.

<int:poller max-nmessages-per-poll="-1" fixed-rate="1000"/>

Configuring An Outbound Channel Adapter

An "outbound-channel-adapter" element can also connect a MessageChannel to any POJO consumer

method that should be invoked with the payload of Messages sent to that channel.

<i nt: out bound- channel - adapt er channel ="channel 1" ref="target" method="handl e"/>

<beans: bean id="target" class="org.Foo"/>

4.3.18.RELEASE Spring Integration

45

Spring Integration Reference Manual

If the channel being adapted is a Pol | abl eChannel , provide a poller sub-element:

<i nt:out bound- channel - adapt er channel ="channel 2" ref="target" nethod="handl e">
<int:poller fixed-rate="3000" />
</int: out bound- channel - adapt er >

<beans: bean id="target" cl ass="org.Foo"/>

Using a "ref" attribute is generally recommended if the POJO consumer implementation can be reused
in other <out bound- channel - adapt er > definitions. However if the consumer implementation is only
referenced by a single definition of the <out bound- channel - adapt er >, you can define it as inner
bean:

<i nt: out bound- channel - adapt er channel ="channel " net hod="handl e" >
<beans: bean cl ass="org. Foo"/>
</int:outbound-channel - adapt er >

Note

Using both the "ref" attribute and an inner handler definition in the same <out bound- channel -
adapt er > configuration is not allowed as it creates an ambiguous condition. Such a configuration
will result in an Exception being thrown.

Any Channel Adapter can be created without a "channel" reference in which case it will implicitly
create an instance of Di r ect Channel . The created channel's name will match the "id" attribute of
the <i nbound- channel - adapt er > or <out bound- channel - adapt er > element. Therefore, if the
"channel" is not provided, the "id" is required.

Channel Adapter Expressions and Scripts

Like many other Spring Integration components, the <i nbound-channel -adapter> and
<out bound- channel - adapt er > also provide support for SpEL expression evaluation. To use SpEL,
provide the expression string via the expression attribute instead of providing the ref and method
attributes that are used for method-invocation on a bean. When an Expression is evaluated, it follows
the same contract as method-invocation where: the expression for an <i nbound- channel - adapt er >
will generate a message anytime the evaluation result is a non-null value, while the expression for an
<out bound- channel - adapt er > must be the equivalent of a void returning method invocation.

Starting with Spring Integration 3.0, an <i nt : i nbound- channel - adapt er/ > can also be configured
with a SpEL <expr essi on/ > (or even with <scr i pt / >) sub-element, for when more sophistication is
required than can be achieved with the simple expression attribute. If you provide a script as a Resour ce
using the | ocat i on attribute, you can also set the refresh-check-delay allowing the resource to be
refreshed periodically. If you want the script to be checked on each poll, you would need to coordinate
this setting with the poller’s trigger:

<i nt:inbound-channel - adapt er ref="sourcel" method="methodl" channel ="channel 1">
<int:poller max-messages-per-poll="1" fixed-del ay="5000"/>
<script:script lang="ruby" |ocation="Foo.rb" refresh-check-del ay="5000"/>

</int:inbound-channel - adapt er >

Also see the cacheSeconds property on the Rel oadabl eResour ceBundl eExpr essi onSour ce
when using the <expressi on/ > sub-element. For more information regarding expressions see
Appendix A, Spring Expression Language (SpEL), and for scripts - Section 8.8, “Groovy support” and
Section 8.7, “Scripting support”.

4.3.18.RELEASE Spring Integration 46

Spring Integration Reference Manual

Important

The <int:inbound-channel - adapt er/ > is an endpoint that starts a message flow via
periodic triggering to poll some underlying MessageSour ce. Since, at the time of polling, there
is not yet a message object, expressions and scripts don't have access to a root Message, so
there are no payload or headers properties that are available in most other messaging SpEL
expressions. Of course, the script can generate and return a complete Message object with
headers and payload, or just a payload, which will be added to a message with basic headers.

4.4 Messaging Bridge
Introduction

A Messaging Bridge is a relatively trivial endpoint that simply connects two Message Channels
or Channel Adapters. For example, you may want to connect a Pol | abl eChannel to a
Subscri babl eChannel so that the subscribing endpoints do not have to worry about any polling
configuration. Instead, the Messaging Bridge provides the polling configuration.

By providing an intermediary poller between two channels, a Messaging Bridge can be used to throttle
inbound Messages. The poller’s trigger will determine the rate at which messages arrive on the second
channel, and the poller's "maxMessagesPerPoll" property will enforce a limit on the throughput.

Another valid use for a Messaging Bridge is to connect two different systems. In such a scenario, Spring
Integration’s role would be limited to making the connection between these systems and managing a
poller if necessary. It is probably more common to have at least a Transformer between the two systems
to translate between their formats, and in that case, the channels would be provided as the input-channel
and output-channel of a Transformer endpoint. If data format translation is not required, the Messaging
Bridge may indeed be sufficient.

Configuring Bridge

The <bridge> element is used to create a Messaging Bridge between two Message Channels or Channel
Adapters. Simply provide the "input-channel" and "output-channel" attributes:

<int:bridge input-channel ="input" output-channel ="out put"/>

As mentioned above, a common use case for the Messaging Bridge is to connect a Pol | abl eChannel
to a Subscri babl eChannel , and when performing this role, the Messaging Bridge may also serve
as a throttler:

<int:bridge input-channel ="pol | able" output-channel ="subscri babl e">
<int:poller max-nmessages-per-poll="10" fixed-rate="5000"/>
</int:bridge>

Connecting Channel Adapters is just as easy. Here is a simple echo example between the "stdin" and
"stdout" adapters from Spring Integration’s "stream" namespace.

<i nt-stream stdi n-channel - adapter id="stdin"/>
<i nt-stream stdout - channel - adapter id="stdout"/>

<int:bridge id="echo" input-channel ="stdin" output-channel ="stdout"/>

4.3.18.RELEASE Spring Integration 47

Spring Integration Reference Manual

Of course, the configuration would be similar for other (potentially more useful) Channel Adapter bridges,
such as File to JMS, or Mail to File. The various Channel Adapters will be discussed in upcoming
chapters.

Note

If no output-channel is defined on a bridge, the reply channel provided by the inbound Message
will be used, if available. If neither output or reply channel is available, an Exception will be thrown.

4.3.18.RELEASE Spring Integration 48

Spring Integration Reference Manual

5. Message Construction

5.1 Message

The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message also includes headers containing user-extensible properties as key-value
pairs.

The Message Interface

Here is the definition of the Message interface:

public interface Message<T> {
T get Payl oad();

MessageHeader s get Headers();

The Message is obviously a very important part of the API. By encapsulating the data in a generic
wrapper, the messaging system can pass it around without any knowledge of the data’s type. As an
application evolves to support new types, or when the types themselves are modified and/or extended,
the messaging system will not be affected by such changes. On the other hand, when some component
in the messaging system does require access to information about the Message, such metadata can
typically be stored to and retrieved from the metadata in the Message Headers.

Message Headers

Just as Spring Integration allows any Object to be used as the payload of a Message, it also supports
any Object types as header values. In fact, the MessageHeader s class implements the java.util. Map
interface:

public final class MessageHeaders inplenents Map<String, Object>, Serializable {

}

Note

Even though the MessageHeaders implements Map, it is effectively a read-only implementation.
Any attempt to put a value in the Map will result in an Unsuppor t edOper at i onExcepti on. The
same applies for remove and clear. Since Messages may be passed to multiple consumers, the
structure of the Map cannot be modified. Likewise, the Message’s payload Object can not be set
after the initial creation. However, the mutability of the header values themselves (or the payload
Object) is intentionally left as a decision for the framework user.

As an implementation of Map, the headers can obviously be retrieved by calling get (. .) with the name
of the header. Alternatively, you can provide the expected Class as an additional parameter. Even better,
when retrieving one of the pre-defined values, convenient getters are available. Here is an example of
each of these three options:

4.3.18.RELEASE Spring Integration 49

Spring Integration Reference Manual

bj ect sonmeVal ue = nmessage. get Headers(). get ("sonmeKey");

Customer |l d customerld = message. get Headers().get("custonerld", Customerld.class);

Long ti mestanp = nmessage. get Header s(). get Ti mest anp() ;

The following Message headers are pre-defined:

Table 5.1. Pre-defined Message Headers

Header Name

‘ MessageHeaders. | D

Header Type

java.util.Uu D

Usage

An identifier for this message instance. Changes each
time a message is mutated.

MessageHeader s.
TI MESTAMP

MessageHeader s.
REPLY_CHANNEL

java. |l ang. Long

java. |l ang. bj ect
(String or
MessageChannel)

The time the message was created. Changes each
time a message is mutated.

A channel to which a reply (if any) will be sent
when no explicit output channel is configured and

there is no ROUTI NG_SLI P or the ROUTI NG _SLI P

is exhausted. If the value is a St ri ng it must
represent a bean name, or have been generated by a
Channel Regi stry.

A channel to which errors will be sent. If the value is a
St ri ng it must represent a bean name, or have been
generated by a Channel Regi stry.

java. |l ang. bj ect
(String or

MessageHeader s.
MessageChannel)

ERROR_CHANNEL

Many inbound and outbound adapter implementations will also provide and/or expect certain headers,
and additional user-defined headers can also be configured. Constants for these headers can be found
in those modules where such headers exist, for example AngpHeader s, JnsHeader s etc.

MessageHeaderAccessor API

Starting with Spring Framework 4.0 and Spring Integration 4.0, the core Messaging abstraction
has been moved to the spring-messaging module and the new MessageHeader Accessor
APl has been introduced to provide additional abstraction over Messaging implementations.
All (core) Spring Integration specific Message Headers constants are now declared in the
I nt egrati onMessageHeader Accessor class:

Table 5.2. Pre-defined Message Headers

Header Name Header Type Usage
I nt egr at i onMessageHeader Accessor . j ava. | ang. Obj ect ‘ Used to correlate two or more
CORRELATI ON_I D messages.
I nt egr at i onMessageHeader Accessor . j ava. | ang. | nt eger ‘ Usually a sequence number

SEQUENCE_NUMBER

with a group of messages with a
SEQUENCE_SI ZE but can also be
used in a <r esequencer/ >to
resequence an unbounded group of
messages.

4.3.18.RELEASE Spring Integration 50

Spring Integration Reference Manual

Header Name Header Type Usage

The number of messages within a
group of correlated messages.

I nt egr at i onMessageHeader Accessor . java. |l ang. | nt eger
SEQUENCE_SI ZE

I nt egr ati onMessageHeader Accessor . java. l ang. Long ‘ Indicates when a message is
SR L 1S expired. Not used by the framework
directly but can be set with a
header enricher and used in a
<filter/ > configured with an
Unexpi r edMessageSel ect or .

Message priority; for example within

I nt egr at i onMessageHeader Accessor . java.l ang. | nt eger
GO LR aPriorityChannel

I nt egr at i onMessageHeader Accessor . j ava. | ang. Bool ean ‘ True if a message was detected as a
BrrHleyIE]taeses duplicate by an idempotent receiver

interceptor. See the section called
“l[dempotent Receiver Enterprise
Integration Pattern”.

Convenient typed getters for some of these headers are provided on the
I nt egr ati onMessageHeader Accessor class:

I nt egrati onMessageHeader Accessor accessor = new | ntegrati onMessageHeader Accessor (message) ;
i nt sequenceNunber = accessor. get SequenceNunber ();
Obj ect correlationld = accessor.getCorrelationld();

The following headers also appear in the | nt egr at i onMessageHeader Accessor but are generally
not used by user code; their inclusion here is for completeness:

Table 5.3. Pre-defined Message Headers

Header Name Header Type Usage
I nt egr at i onMessageHeader Accessor . java.util.List< A stack of correlation data used
SEevaNes parlEs H e d] G =2 when nested correlation is
needed (e.g.splitter->...-
>splitter->...->aggregator-
>...->aggregator).
I nt egr at i onMessageHeader Accessor . java.util.Map< See the section called “Routing Slip”.
ROUTI NG_SLI P Li st <Obj ect >,
I nt eger >

Message ID Generation

When a message transitions through an application, each time it is mutated (e.g. by a transformer) a new
message id is assigned. The message id is a UUI D. Beginning with Spring Integration 3.0, the default
strategy used for id generation is more efficient than the previous j ava. uti | . UUl D. r andomUJul D()
implementation. It uses simple random numbers based on a secure random seed, instead of creating
a secure random number each time.

A different UUID generation strategy can be selected by declaring a bean that implements
org. springframework. util.|dGenerator in the application context.

4.3.18.RELEASE Spring Integration 51

Spring Integration Reference Manual

Important

Only one UUID generation strategy can be used in a classloader. This means that if two or more
application contexts are running in the same classloader, they will share the same strategy. If one
of the contexts changes the strategy, it will be used by all contexts. If two or more contexts in the
same classloader declare a bean of type or g. spri ngf ramewor k. uti | .| dCGener at or, they
must all be an instance of the same class, otherwise the context attempting to replace a custom
strategy will fail to initialize. If the strategy is the same, but parameterized, the strategy in the first
context to initialize will be used.

In additon to the default strategy, two additional |dGenerators are provided;
org.springframework. util.Jdkl dGenerator wuses the previous UU D.randomJul D()
mechanism; 0. s. i . support. | dGenerators. Si npl el ncrenenti ngl dGener at or can be used
in cases where a UUID is not really needed and a simple incrementing value is sufficient.

Read-only Headers

The MessageHeaders. | D and MessageHeaders. TI MESTAMP are read-only headers and they
cannot be overridden.

Since version 4.3.2, the MessageBuil der provides the readOnl yHeaders(String...
readOnl yHeaders) API to customize a list of headers which should not be copied from an
upstream Message. Just the MessageHeaders. | D and MessageHeader s. TI MESTAMP are read
only by default. The global spri ng. i ntegration. readOnly. headers property (see Section F.5,
“Global Properties”) is provided to customize Def aul t MessageBui | der Fact ory for Framework
components. This can be useful when you would like do not populate some out-of-the-box headers, like
cont ent Type by the Obj ect ToJsonTr ansf or mer (see ??7?).

When you try to build a new message using MessageBui | der, this kind of headers are ignored and
particular | NFOmessage is emitted to logs.

Header Propagation

When messages are processed (and modified) by message-producing endpoints (such as a service
activator), in general, inbound headers are propagated to the outbound message. One exception to this
is a transformer, when a complete message is returned to the framework; in that case, the user code is
responsible for the entire outbound message. When a transformer just returns the payload; the inbound
headers are propagated. Also, a header is only propagated if it does not already exist in the outbound
message, allowing user code to change header values as needed.

Starting with version 4.3.10, you can configure message handlers (that modify messages and produce
output) to suppress the propagation of specific headers. Call the set Not Pr opagat edHeader s()
or addNot Pr opagat edHeader s() methods on the MessagePr oduci ngMessageHand| er abstract
class, to configure the header(s) you don't want to be copied. You can also globally suppress
propagation of specific message headers by setting the r eadOnl yHeader s property in META- | NF/
spring.integration. properties toacomma-delimited list of headers.

Important

Header propagation suppression does not apply to those endpoints that don’t modify the message,
e.g. bridges and routers

4.3.18.RELEASE Spring Integration 52

Spring Integration Reference Manual

Message Implementations

The base implementation of the Message interface is Generi cMessage<T>, and it provides two
constructors:

new Generi cMessage<T>(T payl oad);

new Generi cMessage<T>(T payl oad, Map<String, Object> headers)

When a Message is created, a random unique id will be generated. The constructor that accepts a Map
of headers will copy the provided headers to the newly created Message.

There is also a convenient implementation of Message designed to communicate error conditions. This
implementation takes Thr owabl e object as its payload:

Error Message nessage = new Error Message(soneThr owabl e) ;

Throwabl e t = message. get Payl oad();

Notice that this implementation takes advantage of the fact that the Gener i cMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the
Message payload Object.

The MessageBuilder Helper Class

You may notice that the Message interface defines retrieval methods for its payload and headers but
no setters. The reason for this is that a Message cannot be modified after its initial creation. Therefore,
when a Message instance is sent to multiple consumers (e.g. through a Publish Subscribe Channel), if
one of those consumers needs to send a reply with a different payload type, it will need to create a new
Message. As aresult, the other consumers are not affected by those changes. Keep in mind, that multiple
consumers may access the same payload instance or header value, and whether such an instance is
itself immutable is a decision left to the developer. In other words, the contract for Messages is similar to
that of an unmodifiable Collection, and the MessageHeaders' map further exemplifies that; even though
the MessageHeaders class implements j ava. uti | . Map, any attempt to invoke a put operation (or
remove or clear) on the MessageHeaders will result in an Unsuppor t edQper at i onExcept i on.

Rather than requiring the creation and population of a Map to pass into the GenericMessage constructor,
Spring Integration does provide a far more convenient way to construct Messages: MessageBui | der .
The MessageBuilder provides two factory methods for creating Messages from either an existing
Message or with a payload Object. When building from an existing Message, the headers and payload
of that Message will be copied to the new Message:

Message<Stri ng> nessagel = MessageBui |l der. wi t hPayl oad("test")
. set Header ("foo", "bar")
Lbuild();

Message<Stri ng> nessage2 = MessageBui | der. fromVessage(nessagel). buil d();

assert Equal s("test", nessage2. getPayl oad());
assert Equal s("bar", nessage2. get Headers().get("fo00"));

If you need to create a Message with a new payload but still want to copy the headers from an existing
Message, you can use one of the copy methods.

4.3.18.RELEASE Spring Integration 53

Spring Integration Reference Manual

Message<Stri ng> nessage3 = MessageBui | der. wi t hPayl oad("t est 3")
. copyHeader s(nessagel. get Headers())
Lbuild();

Message<Stri ng> nessage4 = MessageBui | der. wi t hPayl oad("t est 4")
. set Header ("foo", 123)
. copyHeader sl f Absent (nessagel. get Header s())
Lbuild();

assert Equal s("bar", nessage3. getHeaders().get("fo0"));
assert Equal s(123, nessage4. get Headers().get("fo00"));

Notice that the copyHeader sl f Absent does not overwrite existing values. Also, in the second
example above, you can see how to set any user-defined header with set Header . Finally, there are
set methods available for the predefined headers as well as a non-destructive method for setting any
header (MessageHeaders also defines constants for the pre-defined header names).

Message<I| nt eger > i nport ant Message = MessageBui | der. wi t hPayl oad(99)
.setPriority(5)
Lbuild();

assert Equal s(5, inportant Message. get Headers().getPriority());
Message<I nt eger > | essl nport ant Message = MessageBui | der. fromVessage(i nport ant Message)
. set Header | f Absent (I nt egr ati onMessageHeader Accessor. PRICRI TY, 2)

. bui 1d();

assert Equal s(2, | esslnportant Message. get Headers().getPriority());

The pri ori ty header is only considered when using a Pri ori t yChannel (as described in the next
chapter). It is defined as java.lang.Integer.

4.3.18.RELEASE Spring Integration 54

Spring Integration Reference Manual

6. Message Routing

6.1 Routers

Overview

Routers are a crucial element in many messaging architectures. They consume Messages from a
Message Channel and forward each consumed message to one or more different Message Channel
depending on a set of conditions.

Spring Integration provides the following routers out-of-the-box:

Payload Type Router

Header Value Router

Recipient List Router

XPath Router (Part of the XML Module)

* Error Message Exception Type Router

(Generic) Router

Router implementations share many configuration parameters. Yet, certain differences exist between
routers. Furthermore, the availability of configuration parameters depends on whether Routers are used
inside or outside of a chain. In order to provide a quick overview, all available attributes are listed in
the 2 tables below.

Table 6.1. Routers Outside of a Chain

Attribute router header xpath payload recipient |exception
value router type list router |type
router router router

apply-sequence Ve Ve Ve Ve & &

default-output-channel | <+~ 4 4 4 & &
resolution-required e " " " Ve Ve

ignore-send-failures & <« <« <« v v

timeout &« &« &« &« & &

id <« <« <« & & &

auto-startup &« &« &« &« & &

input-channel 4 4 4 4 & &
order 4 4 4 4 & &

4.3.18.RELEASE Spring Integration 55

Spring Integration Reference Manual

Attribute router header xpath payload recipient |exception
value router type list router |type
router router router

method &

ref &

expression &

header-name &

evaluate-as-string &

xpath-expression-ref &

converter v

Table 6.2. Routers Inside of a Chain

Attribute router header xpath payload recipient |exception
value router type list router |type
router router router

apply-sequence 4 4 4 4 & &

default-output-channel | <+~ <« <« <« v v

resolution-required <« <« <« <« v v

ignore-send-failures " Ve Ve Ve & &

timeout 4 4 4 4 & &

id

auto-startup

input-channel

order

method &

ref &

expression &

header-name &

evaluate-as-string &

4.3.18.RELEASE Spring Integration 56

Spring Integration Reference Manual

Attribute router header xpath payload recipient |exception
value router type list router |type
router router router

xpath-expression-ref &

converter &

Important

Router parameters have been more standardized across all router implementations with Spring
Integration 2.1. Consequently, there are a few minor changes that leave the possibility of breaking
older Spring Integration based applications.

Since Spring Integration 2.1 the i gnor e- channel - nane-r esol uti on-f ai | ur es attribute is
removed in favor of consolidating its behavior with the r esol ut i on-r equi r ed attribute. Also,
the resol uti on-requi r ed attribute now defaultsto t r ue.

Prior to these changes, the resol uti on-required attribute defaulted to f al se causing
messages to be silently dropped when no channel was resolved and no def aul t - out put -
channel was set. The new behavior will require at least one resolved channel and by default will
throw an MessageDel i ver yExcept i on if no channel was determined (or an attempt to send
was not successful).

If you do desire to drop messages silently simply set default-output-
channel =" nul | Channel ".

Common Router Parameters
Inside and Outside of a Chain
The following parameters are valid for all routers inside and outside of chains.

apply-sequence
This attribute specifies whether sequence number and size headers should be added to each
Message. This optional attribute defaults to false.

default-output-channel
If set, this attribute provides a reference to the channel, where Messages should be sent, if channel
resolution fails to return any channels. If no default output channel is provided, the router will throw
an Exception. If you would like to silently drop those messages instead, add the nul | Channel as
the default output channel attribute value.

Note

A Message will only be sent to the def aul t - out put - channel if resol uti on-requiredis
false and the channel is not resolved.

resolution-required
If true this attribute specifies that channel names must always be successfully resolved to channel
instances that exist. If set to true, a Messagi ngExcept i on will be raised, in case the channel

4.3.18.RELEASE Spring Integration 57

Spring Integration Reference Manual

cannot be resolved. Setting this attribute to false, will cause any unresovable channels to be ignored.
This optional attribute will, if not explicitly set, default to true.

Note

A Message will only be sent to the default-output-channel, if specified, when
resol uti on-requi red is false and the channel is not resolved.

ignore-send-failures
If set to true, failures to send to a message channel will be ignored. If set to false, a
MessageDel i ver yExcept i on will be thrown instead, and if the router resolves more than one
channel, any subsequent channels will not receive the message.

The exact behavior of this attribute depends on the type of the Channel messages are sent to. For
example, when using direct channels (single threaded), send-failures can be caused by exceptions
thrown by components much further down-stream. However, when sending messages to a simple queue
channel (asynchronous) the likelihood of an exception to be thrown is rather remote.

Note

While most routers will route to a single channel, they are allowed to return more than one channel
name. Ther eci pi ent -1 i st -rout er, forinstance, does exactly that. If you set this attribute to
true on a router that only routes to a single channel, any caused exception is simply swallowed,
which usually makes little sense to do. In that case it would be better to catch the exception in
an error flow at the flow entry point. Therefore, setting the i gnor e- send- f ai | ur es attribute to
true usually makes more sense when the router implementation returns more than one channel
name, because the other channel(s) following the one that fails would still receive the Message.

This attribute defaults to false.

timeout
Theti meout attribute specifies the maximum amount of time in milliseconds to wait, when sending
Messages to the target Message Channels. By default the send operation will block indefinitely.

Top-Level (Outside of a Chain)
The following parameters are valid only across all top-level routers that are ourside of chains.
id
Identifies the underlying Spring bean definition which in case of Routers is an instance of

EventDrivenConsumer or PollingConsumer depending on whether the Router’s input-channel is a
SubscribableChannel or PollableChannel, respectively. This is an optional attribute.

auto-startup
This Li f ecycl e attribute signaled if this component should be started during startup of the
Application Context. This optional attribute defaults to true.

input-channel
The receiving Message channel of this endpoint.

order
This attribute defines the order for invocation when this endpoint is connected as a subscriber to a
channel. This is particularly relevant when that channel is using a failover dispatching strategy. It
has no effect when this endpoint itself is a Polling Consumer for a channel with a queue.

4.3.18.RELEASE Spring Integration 58

Spring Integration Reference Manual

Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will require
Spring Integration’s options for delegating to POJOs using the XML namespace support and/or
Annotations. Both of these are discussed below, but first we present a couple implementations that are
available out-of-the-box since they fulfill common requirements.

PayloadTypeRouter

A Payl oadTypeRout er will send Messages to the channel as defined by payload-type mappings.

<bean i d="payl oadTypeRout er"
cl ass="org. springframework.integration.router.Payl oadTypeRout er">
<property name="channel Mappi ng" >
<rT‘ap>
<entry key="java.lang. String" val ue-ref="stringChannel "/ >
<entry key="java.lang.Integer" val ue-ref="integerChannel "/>
</ map>
</ property>
</ bean>

Configuration of the Payl oadTypeRout er is also supported via the namespace provided by Spring
Integration (see Section F.2, “Namespace Support”), which essentially simplifies configuration by
combining the <r out er / > configuration and its corresponding implementation defined using a <bean/
> element into a single and more concise configuration element. The example below demonstrates
a Payl oadTypeRout er configuration which is equivalent to the one above using the namespace
support:

<i nt: payl oad-type-router input-channel ="routingChannel ">
<int:mapping type="java.lang. String" channel ="stringChannel " />
<int:mapping type="java.lang.|nteger" channel ="i nteger Channel " />
</int: payl oad-type-router>

HeaderValueRouter

A Header Val ueRout er will send Messages to the channel based on the individual header value
mappings. When a Header Val ueRout er is created it is initialized with the name of the header to be
evaluated. The value of the header could be one of two things:

1. Arbitrary value
2. Channel name

If arbitrary then additional mappings for these header values to channel names is required, otherwise
no additional configuration is needed.

Spring Integration provides a simple namespace-based XML configuration to configure a
Header Val ueRout er . The example below demonstrates two types of namespace-based configuration
for the Header Val ueRout er .

1. Configuration where mapping of header values to channels is required

<i nt: header-val ue-router input-channel ="routingChannel" header-nanme="t est Header" >
<i nt:mappi ng val ue="sonmeHeader Val ue" channel ="channel A" />
<i nt:mappi ng val ue="someQ her Header Val ue" channel ="channel B" />

</i nt: header - val ue-rout er>

During the resolution process this router may encounter channel resolution failures, causing an
exception. If you want to suppress such exceptions and send unresolved messages to the default output

4.3.18.RELEASE Spring Integration 59

Spring Integration Reference Manual

channel (identified with the def aul t - out put - channel attribute) set resol uti on-required to
fal se.

Normally, messages for which the header value is not explicitly mapped to a channel will be sent to
the def aul t - out put - channel . However, in cases where the header value is mapped to a channel
name but the channel cannot be resolved, setting the r esol uti on-r equi r ed attribute to f al se will
result in routing such messages to the def aul t - out put - channel .

Important

With Spring Integration 2.1 the attribute was changed from i gnore-channel - nane-
resol ution-failures toresol ution-required. Attribute resol uti on-required will
defaultto t r ue.

2. Configuration where mapping of header values to channel names is not required since header values
themselves represent channel names

<i nt: header-val ue-router input-channel ="routingChannel" header-nanme="t est Header"/ >

Note

Since Spring Integration 2.1 the behavior of resolving channels is more explicit. For example,
if you ommit the def aul t - out put - channel attribute and the Router was unable to resolve
at least one valid channel, and any channel name resolution failures were ignored by setting
resol ution-requiredtofal se, thenaMessageDel i ver yExcepti on is thrown.

Basically, by default the Router must be able to route messages successfully to at least one
channel. If you really want to drop messages, you must also have def aul t - out put - channel
setto nul | Channel .

RecipientListRouter

A Reci pi ent Li st Rout er will send each received Message to a statically defined list of Message
Channels:

<bean id="reci pi entLi st Router"
cl ass="org. springframework.integration.router.RecipientListRouter">
<property nane="channel s">
<list>
<ref bean="channel 1"/ >
<ref bean="channel 2"/ >
<ref bean="channel 3"/ >
</list>
</ property>
</ bean>

Spring Integration also provides namespace support for the Reci pi ent Li st Rout er configuration
(see Section F.2, “Namespace Support”) as the example below demonstrates.

<int:recipient-list-router id="custonRouter" input-channel="routingChannel"
timeout ="1234"
i gnor e-send-failures="true"
appl y- sequence="true" >
<int:recipient channel ="channel 1"/>
<int:recipient channel ="channel 2"/>
</int:recipient-list-router>

4.3.18.RELEASE Spring Integration 60

Spring Integration Reference Manual

Note

The apply-sequence flag here has the same effect as it does for a publish-subscribe-channel, and
like a publish-subscribe-channel, it is disabled by default on the recipient-list-router. Refer tothe
section called “PublishSubscribeChannel Configuration” for more information.

Another convenient option when configuring a Reci pi ent Li st Rout er is to use Spring Expression
Language (SpEL) support as selectors for individual recipient channels. This is similar to using a Filter at
the beginning of chain to act as a "Selective Consumer". However, in this case, it's all combined rather
concisely into the router’s configuration.

<int:recipient-list-router id="custonRouter" input-channel="routingChannel ">
<int:recipient channel ="channel 1" sel ector - expr essi on="payl oad. equal s(' foo"')"/>
<int:recipient channel ="channel 2" sel ect or - expressi on="headers. cont ai nsKey(' bar')"/>
</int:recipient-list-router>

In the above configuration a SpEL expression identified by the sel ect or - expr essi on attribute will be
evaluated to determine if this recipient should be included in the recipient list for a given input Message.
The evaluation result of the expression must be a boolean. If this attribute is not defined, the channel
will always be among the list of recipients.

RecipientListRouterManagement

Starting with version 4.1, the Reci pi ent Li st Rout er provides several operation to manipulate
with recipients dynamically at runtime. These management operations are presented by
Reci pi ent Li st Rout er Managenent @mhnagedResour ce. They are available using Section 9.6,
“Control Bus” as well as via JMX:

<control -bus input-channel ="control Bus"/>
<recipient-list-router id="sinpleRouter" input-channel ="routingChannel A">
<reci pi ent channel ="channel 1"/ >

</recipient-list-router>

<channel id="channel 2"/>

messagi ngTenpl at e. convert AndSend(control Bus, " @ si npl eRout er. handl er' . addReci pi ent (' channel 2')");

From the application start up the si npl eRout er will have only one channel 1 recipient. But after the
addReci pi ent command above the new channel 2 recipient will be added. It is a "registering an
interest in something that is part of the Message" use case, when we may be interested in messages
from the router at some time period, so we are subscribing to the the r eci pi ent -1 i st -rout er and
in some point decide to unsubscribe our interest.

Having the runtime management operation for the <r eci pi ent - | i st - r out er >, it can be configured
without any <r eci pi ent > from the start. In this case the behaviour of Reci pi ent Li st Rout er is
the same, when there is no one matching recipient for the message: if def aul t Qut put Channel is
configured, the message will be sent there, otherwise the MessageDel i ver yExcept i on is thrown.

XPath Router

The XPath Router is part of the XML Module. As such, please read chapter Section 35.6, “Routing XML
Messages Using XPath”

4.3.18.RELEASE Spring Integration 61

Spring Integration Reference Manual

Routing and Error handling

Spring Integration also provides a special type-based router called
Err or MessageExcept i onTypeRout er for routing Error Messages (Messages whose payl oad
is a Throwabl e instance). Error MessageExcepti onTypeRouter is very similar to the
Payl oadTypeRouter. In fact they are almost identical. The only difference is that
while Payl oadTypeRout er navigates the instance hierarchy of a payload instance (e.g.,
payl oad. get O ass() . get Supercl ass()) to find the most specific type/channel mappings,
the Error MessageExcepti onTypeRout er navigates the hierarchy of exception causes (e.g.,
payl oad. get Cause()) to find the most specific Thr owabl e type/channel mappings and uses
mappi ngd ass. i sl nst ance(cause) to match the cause to the class or any super class.

Note

Since version 4.3 the Er r or MessageExcept i onTypeRout er loads all mapping classes during
the initialization phase to fail-fast for a Gl assNot FoundExcept i on.

Below is a sample configuration for Er r or MessageExcept i onTypeRout er .

<int:exception-type-router input-channel ="inputChannel"
def aul t - out put - channel =" def aul t Channel ">
<i nt:mappi ng exception-type="java.l ang. ||| egal Argunment Excepti on"
channel ="i | | egal Channel "/ >

<i nt: mappi ng exception-type="java. | ang. Nul | Poi nt er Excepti on"
channel ="npeChannel "/ >
</int:exception-type-router>

<int:channel id="illegal Channel" />
<int:channel id="npeChannel" />

Configuring (Generic) Router
Configuring a Content Based Router with XML

The "router" element provides a simple way to connect a router to an input channel and also accepts
the optional def aul t - out put - channel attribute. The r ef attribute references the bean name of a
custom Router implementation (extending Abst r act MessageRout er):

<int:router ref="payl oadTypeRouter" input-channel ="input1"
def aul t - out put - channel =" def aul t Qut put 1"/ >

<int:router ref="recipientlListRouter" input-channel="input2"
def aul t - out put - channel =" def aul t Qut put 2"/ >

<int:router ref="custonRouter" input-channel ="input 3"
def aul t - out put - channel =" def aul t Qut put 3"/ >

<beans: bean i d="cust onRout er Bean" cl ass="org. f 0o. MyCust onRouter"/ >

Alternatively, r ef may point to a simple POJO that contains the @Router annotation (see below), or the
r ef may be combined with an explicit met hod name. Specifying a met hod applies the same behavior
described in the @Router annotation section below.

<int:router input-channel ="input" ref="sonmePojo" nethod="sonmeMet hod"/>

Using a r ef attribute is generally recommended if the custom router implementation is referenced in
other <r out er > definitions. However if the custom router implementation should be scoped to a single
definition of the <r out er >, you may provide an inner bean definition:

4.3.18.RELEASE Spring Integration 62

Spring Integration Reference Manual

<int:router method="sonmeMethod" input-channel ="i nput 3"
def aul t - out put - channel =" def aul t Qut put 3" >
<beans: bean cl ass="org. foo. M/Cust onRouter"/ >
</int:router>

Note

Using both the r ef attribute and an inner handler definition in the same <r out er > configuration
is not allowed, as it creates an ambiguous condition, and an Exception will be thrown.

Important

If the "ref" attribute references a bean that extends Abst r act MessagePr oduci ngHandl er
(such as routers provided by the framework itself), the configuration is optimized referencing the
router directly. In this case, each "ref" must be to a separate bean instance (or a pr ot ot ype-
scoped bean), or use the inner <bean/ > configuration type. However, this optimization only
applies if you don’t provide any router-specific attributes in the router XML definition. If
you inadvertently reference the same message handler from multiple beans, you will get a
configuration exception.

Routers and the Spring Expression Language (SpEL)

Sometimes the routing logic may be simple and writing a separate class for it and configuring it as a
bean may seem like overkill. As of Spring Integration 2.0 we offer an alternative where you can now use
SpEL to implement simple computations that previously required a custom POJO router.
Note
For more information about the Spring Expression Language, please refer to the respective
chapter in the Spring Framework Reference Documentation at:
null
Generally a SpEL expression is evaluated and the result is mapped to a channel:

<int:router input-channel="inChannel" expression="payl oad. paynent Type" >
<i nt: mappi ng val ue="CASH' channel =" cashPaynment Channel "/ >
<i nt: mappi ng val ue="CREDI T* channel ="aut hori zePaynent Channel "/ >
<int:mappi ng val ue="DEBI T" channel ="aut hori zePaynent Channel "/ >
</int:router>

To simplify things even more, the SpEL expression may evaluate to a channel name:

<int:router input-channel="inChannel" expression="payl oad + ' Channel"'"/>

In the above configuration the result channel will be computed by the SpEL expression which simply
concatenates the value of the payl oad with the literal String Channel.

Another value of SpEL for configuring routers is that an expression can actually return a Col | ecti on,
effectively making every <r out er > a Recipient List Router. Whenever the expression returns multiple
channel values the Message will be forwarded to each channel.

<int:router input-channel ="inChannel" expressi on="headers. channel s"/>

In the above configuration, if the Message includes a header with the name channels the value of which
is a Li st of channel names then the Message will be sent to each channel in the list. You may also

4.3.18.RELEASE Spring Integration 63

Spring Integration Reference Manual

find Collection Projection and Collection Selection expressions useful to select multiple channels. For
further information, please see:

» Collection Projection

» Collection Selection

Configuring a Router with Annotations

When using @out er to annotate a method, the method may return either a MessageChannel or
St ri ng type. In the latter case, the endpoint will resolve the channel name as it does for the default
output channel. Additionally, the method may return either a single value or a collection. If a collection
is returned, the reply message will be sent to multiple channels. To summarize, the following method
signatures are all valid.

@Rout er
publ i c MessageChannel route(Message nessage) {...}

@Rout er
public List<MessageChannel > rout e(Message nessage) {...}

@Rout er
public String route(Foo payload) {...}

@Rout er
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a Message may be routed based on metadata available within the
message header as either a property or attribute. In this case, a method annotated with @Rout er may
include a parameter annotated with @deader which is mapped to a header value as illustrated below
and documented in Section F.6, “Annotation Support”.

@Rout er
public List<String> route(@ader("orderStatus”) OrderStatus status)

Note

For routing of XML-based Messages, including XPath support, see Chapter 35, XML Support -
Dealing with XML Payloads.

Dynamic Routers

So as you can see, Spring Integration provides quite a few different router configurations for common
content-based routing use cases as well as the option of implementing custom routers as POJOs. For
example Payl oadTypeRout er provides a simple way to configure a router which computes channel s
based on the payl oad t ype of the incoming Message while Header Val ueRout er provides the same
convenience in configuring a router which computes channel s by evaluating the value of a particular
Message Header. There are also expression-based (SpEL) routers where the channel is determined
based on evaluating an expression. Thus, these type of routers exhibit some dynamic characteristics.

However these routers all require static configuration. Even in the case of expression-based routers, the
expression itself is defined as part of the router configuration which means that_the same expression
operating on the same value will always result in the computation of the same channel_. This is
acceptable in most cases since such routes are well defined and therefore predictable. But there are
times when we need to change router configurations dynamically so message flows may be routed to
a different channel.

4.3.18.RELEASE Spring Integration 64

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-projection
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-selection

Spring Integration Reference Manual

Example:

You might want to bring down some part of your system for maintenance and temporarily re-reroute
messages to a different message flow. Or you may want to introduce more granularity to your message
flow by adding another route to handle a more concrete type of j ava. | ang. Nunber (in the case of
Payl oadTypeRout er).

Unfortunately with static router configuration to accomplish this, you would have to bring down your
entire application, change the configuration of the router (change routes) and bring it back up. This is
obviously not the solution.

The Dynamic Router pattern describes the mechanisms by which one can change/configure routers
dynamically without bringing down the system or individual routers.

Before we get into the specifics of how this is accomplished in Spring Integration, let’s quickly summarize
the typical flow of the router, which consists of 3 simple steps:

» Step 1 - Compute channel identi fier which is avalue calculated by the router once it receives
the Message. Typically itis a St ri ng or and instance of the actual MessageChannel .

» Step 2 - Resolve channel identifier tochannel name.We'll describe specifics of this process
in a moment.

» Step 3 - Resolve channel nane to the actual MessageChannel

There is not much that can be done with regard to dynamic routing if Step 1 results in the actual instance
of the MessageChannel , simply because the MessageChannel is the final product of any router’s job.
However, if Step 1 results in a channel identifier thatis not an instance of MessageChannel ,
then there are quite a few possibilities to influence the process of deriving the Message Channel . Lets
look at couple of the examples in the context of the 3 steps mentioned above:

Payload Type Router

<i nt:payl oad-type-router input-channel ="routingChannel ">
<int:mappi ng type="java.lang. String" channel ="channel 1" />
<int:mappi ng type="java.l ang. | nteger" channel ="channel 2" />
</int: payl oad-type-router>

Within the context of the Payload Type Router the 3 steps mentioned above would be realized as:

» Step 1- Compute channel identifier which is the fully qualified name of the payload type (e.qg.,
java.lang.String).

e Step 2 - Resolve channel identifier tochannel name where the result of the previous step is
used to select the appropriate value from the payload type mapping defined via mappi ng element.

» Step 3 - Resolve channel nane to the actual instance of the MessageChannel as a reference
to a bean within the Application Context (which is hopefully a MessageChannel) identified by the
result of the previous step.

In other words, each step feeds the next step until the process completes.

Header Value Router

<i nt:header-val ue-router input-channel ="i nput Channel " header - nane="t est Header " >
<i nt: mappi ng val ue="foo0" channel ="fooChannel " />
<i nt: mappi ng val ue="bar" channel ="bar Channel " />

</int: header-val ue-router>

4.3.18.RELEASE Spring Integration 65

http://www.eaipatterns.com/DynamicRouter.html

Spring Integration Reference Manual

Similar to the PayloadTypeRouter:

e Step 1- Compute channel identifier which isthe value of the header identified by the header -
namne attribute.

» Step 2 - Resolve channel identifier tochannel name where the result of the previous step is
used to select the appropriate value from the general mapping defined via mappi ng element.

» Step 3 - Resolve channel nane to the actual instance of the MessageChannel as a reference
to a bean within the Application Context (which is hopefully a MessageChannel) identified by the
result of the previous step.

The above two configurations of two different router types look almost identical. However if we look at
the alternate configuration of the Header Val ueRout er we clearly see that there is no mappi ng sub
element:

<i nt: header - val ue-router input-channel ="i nput Channel " header - nane="t est Header " >

But the configuration is still perfectly valid. So the natural question is what about the mapping in the
Step 27?

What this means is that Step 2 is now an optional step. If mappi ng is not defined then the channel
i denti fi er value computed in Step 1 will automatically be treated as the channel nane, which will
now be resolved to the actual MessageChannel asin Step 3. What it also means is that Step 2 is one
of the key steps to provide dynamic characteristics to the routers, since it introduces a process which
allows you to change the way channel identifier resolves to ‘channel name’, thus influencing the process
of determining the final instance of the MessageChannel from the initial channel identifier.

For Example:

In the above configuration let's assume that the t est Header value is kermit which is nhow a channel
i denti fier (Step 1). Since there is no mapping in this router, resolving this channel i dentifier
toachannel nane (Step 2) isimpossible and this channel identi fi er isnow treated as channel
nane. However what if there was a mapping but for a different value? The end result would still be the
same and that is: if a new value cannot be determined through the process of resolving the channel
identifier to a channel name, such channel identifier becomes channel name.

So all that is left is for Step 3 to resolve the channel nane (kermit) to an actual instance of the
MessageChannel identified by this name. That basically involves a bean lookup for the name provided.
So now all messages which contain the header/value pair as t est Header =ker mi t are going to be
routed to a MessageChannel whose bean name (id) is kermit.

But what if you want to route these messages to the simpson channel? Obviously changing a static
configuration will work, but will also require bringing your system down. However if you had access to
the channel identifier map,thenyou could justintroduce a new mapping where the header/value
pair is now ker i t =si npson, thus allowing Step 2 to treat kermit as a channel identifi er while
resolving it to simpson as the channel nane.

The same obviously applies for Payl oadTypeRout er, where you can now remap or remove a
particular payload type mapping. In fact, it applies to every other router, including expression-based
routers, since their computed values will now have a chance to go through Step 2 to be additionally
resolved to the actual channel nane.

Any router that is a subclass of the Abstract Mappi ngMessageRout er (which includes most
framework defined routers) is a Dynamic Router simply because the channel Mappi ng is defined at the

4.3.18.RELEASE Spring Integration 66

Spring Integration Reference Manual

Abst r act Mappi ngMessageRout er level. That map’s setter method is exposed as a public method
along with setChannelMapping and removeChannelMapping methods. These allow you to change/add/
remove router mappings at runtime as long as you have a reference to the router itself. It also means
that you could expose these same configuration options via JMX (see Section 9.2, “JMX Support”) or
the Spring Integration ControlBus (see Section 9.6, “Control Bus”) functionality.

Manage Router Mappings using the Control Bus

One way to manage the router mappings is through the Control Bus pattern which exposes a Control
Channel where you can send control messages to manage and monitor Spring Integration components,
including routers.

Note

For more information about the Control Bus, please see chapter Section 9.6, “Control Bus”.

Typically you would send a control message asking to invoke a particular operation on a particular
managed component (e.g. router). Two managed operations (methods) that are specific to changing
the router resolution process are:

e public void setChannel Mappi ng(String key, String channel Nane) - will allow you to
add a new or modify an existing mapping between channel identifier and channel nane

e public void renoveChannel Mappi ng(String key) - will allow you to remove a particular
channel mapping, thus disconnecting the relationship between channel i dentifi er andchannel
nane

Note that these methods can be used for simple changes (updating a single route or adding/removing
a route). However, if you want to remove one route and add another, the updates are not atomic. This
means the routing table may be in an indeterminate state between the updates. Starting with version
4.0, you can now use the control bus to update the entire routing table atomically.

* public Map<String, String>getChannel Mappi ngs() returns the current mappings.

e public void replaceChannel Mappi ngs(Properties channel Mappi ngs) updates the
mappings. Notice that the parameter is a properties object; this allows the use of the inbuilt
StringToPropertiesConverter by a control bus command, for example:

"@router. handl er'.repl aceChannel Mappi ngs(' f oo=qux \n baz=bar')"

» note that each mapping is separated by a newline character (\ n). For programmatic changes to the
map, it is recommended that the set Channel Mappi ngs method is used instead, for type-safety.
Any non-String keys or values passed into r epl aceChannel Mappi ngs are ignored.

Manage Router Mappings using JMX

You can also expose a router instance with Spring’s JMX support, and then use your favorite JIMX client
(e.g., JConsole) to manage those operations (methods) for changing the router’s configuration.

Note

For more information about Spring Integration’s JMX support, please see chapter Section 9.2,
“JMX Support”.

4.3.18.RELEASE Spring Integration 67

http://www.eaipatterns.com/ControlBus.html

Spring Integration Reference Manual

Routing Slip

Starting with version 4.1, Spring Integration provides an implementation of the Routing Slip Enterprise
Integration Pattern. It is implemented as ar out i ngSl i p message header which is used to determine
the next channel in Abstract MessagePr oduci ngHandl er s, when an out put Channel isn't
specified for the endpoint. This pattern is useful in complex, dynamic, cases when it can become difficult
to configure multiple routers to determine message flow. When a message arrives at an endpoint that
has no out put - channel , the rout i ngSl i p is consulted to determine the next channel to which the
message will be sent. When the routing slip is exhausted, normal r epl yChannel processing resumes.

Configuration for the Routing Slip is presented as a Header Enr i cher option - a semicolon-separated
Routing Slip pat h entries:

<util:properties id="properties">

<beans: prop key="nyRout ePat h1" >channel 1</ beans: pr op>

<beans: prop key="nyRout ePat h2" >r equest . header s[myRout i ngSl i pChannel] </ beans: pr op>
</util:properties>

<cont ext: property-pl acehol der properties-ref="properties"/>

<header - enri cher input-channel ="i nput" out put-channel ="process">
<routing-slip
val ue="${ nyRout ePat h1}; @ outingSli pRouti ngPoj 0. get (request, reply);
routingSlipRoutingStrategy; ${nyRoutePath2}; finishChannel"/>
</ header - enri cher >

In this sample we have:

* A <context: property-pl acehol der > configuration to demonstrate that the entries in the
Routing Slip pat h can be specified as resolvable keys.

e The <header-enricher> <routing-slip> sub-element is used to populate the
Rout i ngSl i pHeader Val ueMessagePr ocessor to the Header Enri cher handler.

» The Rout i ngSl i pHeader Val ueMessagePr ocessor accepts a String array of resolved Routing
Slip pat h entries and returns (from pr ocessMessage()) a si ngl et onMap with the pat h as key
and 0 as initial r out i ngSl i pl ndex.

Routing Slip pat h entries can contain MessageChannel bean names,
RoutingSli pRouteStrategy bean names and also Spring expressions (SpEL). The
Rout i ngSl i pHeader Val ueMessagePr ocessor checks each Routing Slip pat h entry against the
BeanFact ory on the first pr ocessMessage invocation. It converts entries, which aren’t bean names
in the application context, to Expr essi onEval uati ngRout i ngSl i pRout eStr at egy instances.
Rout i ngSl i pRout eSt r at egy entries are invoked multiple times, until they return null, or an empty
String.

Since the Routing Slip is involved in the get Qut put Channel process we have a request-
reply context. The RoutingSli pRouteStrategy has been introduced to determine the next
out put Channel using the request Message, as well as the repl y object. An implementation
of this strategy should be registered as a bean in the application context and its bean name
is used in the Routing Slip path. The Expressi onEval uati ngRout i ngSl i pRout eSt r at egy
implementation is provided. It accepts a SpEL expression, and an internal
Expr essi onEval uat i ngRout i ngSl i pRout eSt r at egy. Request AndRepl y object is used as the
root object of the evaluation context. This is to avoid the overhead of Eval uati onCont ext
creation for each ExpressionEval uatingRoutingSlipRouteStrategy. getNextPath()

4.3.18.RELEASE Spring Integration 68

http://www.eaipatterns.com/RoutingTable.html

Spring Integration Reference Manual

invocation. It is a simple Java Bean with two properties - Message<?> request
and bj ect reply. With this expression implementation, we can specify
Routing Slip path entries using SpEL (@outingSlipRoutingPojo.get(request,
reply), request. headers[nyRoutingSlipChannel]) avoiding a bean definition for the
Rout i ngSl i pRout eSt r at egy.

Note

The request Message argument is always a Message<?>; depending on context, the reply
object may be a Message<?>, an Abstract | nt egrati onMessageBui | der or an arbitrary
application domain object (if, for example, it is returned by a POJO method invoked by a service
activator). In the first two cases, the usual "message" properties are available (payl oad and
header s) when using SpEL (or a Java implementation). When an arbitrary domain object,
these properties are, obviously, not available. Care should be taken when using routing slips in
conjunction with POJO methods if the result is used to determine the next path.

Important

If a Routing Slip is involved in a distributed environment - cross-JVM application, r equest -
reply through a Message Broker (e.g. Chapter 11, AMQP Support, Chapter 20, JMS
Support), or persistence MessageSt ore (Section 9.4, “Message Store”) is used in the
integration flow, etc., - it is recommended to not use inline expressions for the Routing
Slip pat h. The framework (Rout i ngSl i pHeader Val ueMessagePr ocessor) converts them
to Expressi onEval uati ngRouti ngSl i pRout eStrat egy objects and they are used in
the routi ngSli p message header. Since this class isn't Seri al i zabl e (and it can’t be,
because it depends on the BeanFact ory) the entire Message becomes non-serializable and
in any distributed operation we end up with Not Seri al i zabl eExcepti on. To overcome this
limitation, register an Expr essi onEval uat i ngRout i ngSl i pRout eSt r at egy bean with the
desired SpEL and use its bean name in the Routing Slip pat h configuration.

For Java configuration, simply add a Rout i ngSl i pHeader Val ueMessagePr ocessor instance to
the Header Enr i cher bean definition:

@ean

@r ansf orner (i nput Channel = "routingSlipHeader Channel ")

publ i ¢ Header Enri cher header Enricher () {

return new Header Enri cher (Col | ecti ons. si ngl et onMap(| nt egr at i onMessageHeader Accessor . ROUTI NG_SLI P,
new Rout i ngSl i pHeader Val ueMessagePr ocessor (" nyRout ePat h1",

"@outingSlipRoutingPojo.get(request, reply)",
"routingSlipRoutingStrategy"”,
"request . header s[nyRout i ngSl i pChannel] ",
"finishChannel")));

The Routing Slip algorithm works as follows when an endpoint produces a reply and there is no
out put Channel defined:

» TheroutingSlipl ndex is used to get a value from the Routing Slip pat h list.
« If the value by r out i ngSl i pl ndex is St ri ng, it is used to get a bean from BeanFact ory.

 If areturned bean is an instance of MessageChannel , it is used as the next out put Channel and
therouti ngSl i pl ndex is incremented in the reply message header (the Routing Slip pat h entries
remain unchanged).

4.3.18.RELEASE Spring Integration 69

Spring Integration Reference Manual

« If a returned bean is an instance of Rout i ngSl i pRout eSt r at egy and its get Next Pat h doesn't
return an empty String, that result is used a bean name for the next out put Channel . The
routingSli pl ndex remains unchanged.

 If RoutingSlipRouteStrategy. get Next Path returns an empty String, the
routingSli pl ndex is incremented and the get Qut put Channel Fr onRout i ngSl i p is invoked
recursively for the next Routing Slip pat h item;

« If the next Routing Slip path entry isn't a String it must be an instance of
Rout i ngSl i pRout eSt r at egy;

 Whenthe routi ngSli pl ndex exceeds the size of the Routing Slip pat h list, the algorithm moves
to the default behavior for the standard r epl yChannel header.

Process Manager Enterprise Integration Pattern

The EIP also defines the Process Manager pattern. This pattern can now easily be implemented
using custom Process Manager logic encapsulated in a RoutingSli pRouteStrategy within
the routing slip. In addition to a bean name, the Routi ngSl i pRout eStrat egy can return any
MessageChannel object; and there is no requirement that this MessageChannel instance is a
bean in the application context. This way, we can provide powerful dynamic routing logic, when
there is no prediction which channel should be used; a MessageChannel can be created within
the Rout i ngSl i pRout eSt r at egy and returned. A Fi xedSubscr i ber Channel with an associated
MessageHand!| er implementation is good combination for such cases. For example we can route to
a Reactor Stream:

@Bean
publi c Pol | abl eChannel resultsChannel () {
return new QueueChannel ();
}
@Bean
public RoutingSlipRouteStrategy routeStrategy() {
return (request Message, reply) -> request Message. get Payl oad() instanceof String
? new Fi xedSubscri ber Channel (m - >
Streans. defer ((String) m getPayl oad())
.env(this.reactorEnv)
.get ()
.map(String::toUpperCase)
.consune(v -> nessagi ngTenpl at e(). convert AndSend(resul t sChannel (), Vv))
.flush())
: new Fi xedSubscri ber Channel (m ->
Streans. def er ((I nteger) m getPayl oad())
.env(this.reactorEnv)
.get()
.map(v -> v * 2)
.consune(v -> nessagi ngTenpl ate(). convert AndSend(resul t sChannel (), Vv))
flush());

6.2 Filter

Introduction

Message Filters are used to decide whether a Message should be passed along or dropped based on
some criteria such as a Message Header value or Message content itself. Therefore, a Message Filter
is similar to a router, except that for each Message received from the filter's input channel, that same
Message may or may not be sent to the filter's output channel. Unlike the router, it makes no decision
regarding which Message Channel to send the Message to but only decides whether to send.

4.3.18.RELEASE Spring Integration 70

http://www.eaipatterns.com/ProcessManager.html
https://github.com/reactor/reactor/wiki/Streams

Spring Integration Reference Manual

Note

As you will see momentarily, the Filter also supports a discard channel, so in certain cases it can
play the role of a very simple router (or "switch") based on a boolean condition.

In Spring Integration, a Message Filter may be configured as a Message Endpoint that delegates to an
implementation of the MessageSel ect or interface. That interface is itself quite simple:

public interface MessageSel ector {

bool ean accept (Message<?> nessage)

The MessageFi | t er constructor accepts a selector instance:

MessageFilter filter = new MessageFilter(soneSel ector)

In combination with the namespace and SpEL, very powerful filters can be configured with very little
java code.

Configuring Filter

Configuring a Filter with XML

The <filter> element is used to create a Message-selecting endpoint. In addition to "i nput - channel
and out put - channel attributes, it requires a ref . The ref may point to a MessageSel ect or
implementation:

<int:filter input-channel="input" ref="selector" output-channel ="output"/>

<bean id="sel ector" class="exanpl e. MessageSel ectorlnpl"/>

Alternatively, the net hod attribute can be added at which point the r ef may refer to any object. The
referenced method may expect either the Message type or the payload type of inbound Messages.
The method must return a boolean value. If the method returns true, the Message will be sent to the
output-channel.

<int:filter input-channel ="input" output-channel ="output"
ref =" exanpl eCbj ect" met hod="soneBool eanRet ur ni ngMet hod"/ >

<bean i d="exanpl eObj ect" cl ass="exanpl e. SomeChj ect"/ >

If the selector or adapted POJO method returns f al se, there are a few settings that control the handling
of the rejected Message. By default (if configured like the example above), rejected Messages will be
silently dropped. If rejection should instead resultin an error condition, then setthe t hr ow except i on-
on-rej ection attribute to t r ue:

<int:filter input-channel ="input" ref="selector"
out put - channel =" out put" throw exception-on-rejection="true"/>

If you want rejected messages to be routed to a specific channel, provide that reference as the
di scard-channel :

<int:filter input-channel ="input" ref="selector"
out put - channel =" out put" di scard-channel ="rej ect edMessages"/ >

4.3.18.RELEASE Spring Integration 71

Spring Integration Reference Manual

Also see the section called “Advising Filters”.

Note

Message Filters are commonly used in conjunction with a Publish Subscribe Channel. Many filter
endpoints may be subscribed to the same channel, and they decide whether or not to pass the
Message to the next endpoint which could be any of the supported types (e.g. Service Activator).
This provides a reactive alternative to the more proactive approach of using a Message Router
with a single Point-to-Point input channel and multiple output channels.

Using ar ef attribute is generally recommended if the custom filter implementation is referenced in other
<fil t er> definitions. However if the custom filter implementation is scoped to a single <filter>
element, provide an inner bean definition:

<int:filter method="someMet hod" input-channel ="i nChannel " out put - channel =" out Channel ">
<beans: bean cl ass="org.foo. M/CustonFilter"/>

</filter>

Note

Using both the r ef attribute and an inner handler definition in the same <f i | t er > configuration
is not allowed, as it creates an ambiguous condition, and an Exception will be thrown.

Important

If the "ref" attribute references a bean that extends MessageFi | t er (such as filters provided
by the framework itself), the configuration is optimized by injecting the output channel into
the filter bean directly. In this case, each "ref' must be to a separate bean instance (or
a prot ot ype-scoped bean), or use the inner <bean/ > configuration type. However, this
optimization only applies if you don’t provide any filter-specific attributes in the filter XML definition.
If you inadvertently reference the same message handler from multiple beans, you will get a
configuration exception.

With the introduction of SpEL support, Spring Integration added the expr essi on attribute to the filter
element. It can be used to avoid Java entirely for simple filters.

<int:filter input-channel ="input" expressi on="payl oad. equal s(' nonsense')"/>

The string passed as the expression attribute will be evaluated as a SpEL expression with the Message
available in the evaluation context. If it is necessary to include the result of an expression in the scope
of the application context you can use the #{} notation as defined in the SpEL reference documentation.

<int:filter input-channel="input"
expr essi on="payl oad. mat ches(#{filterPatterns. nonsensePattern})"/>

If the Expression itself needs to be dynamic, then an expression sub-element may be used. That
provides a level of indirection for resolving the Expression by its key from an ExpressionSource. That
is a strategy interface that you can implement directly, or you can rely upon a version available in
Spring Integration that loads Expressions from a "resource bundle" and can check for modifications
after a given number of seconds. All of this is demonstrated in the following configuration sample where
the Expression could be reloaded within one minute if the underlying file had been modified. If the
ExpressionSource bean is named "expressionSource”, then it is not necessary to provide the™ source’
attribute on the <expression> element, but in this case it's shown for completeness.

4.3.18.RELEASE Spring Integration 72

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-beandef

Spring Integration Reference Manual

<int:filter input-channel ="input" output-channel ="out put">
<int:expression key="filterPatterns.exanple" source="nyExpressions"/>
</fint:filter>

<beans: bean id="nmyExpressions" id="nyExpressions"
cl ass="0.s.i.expression. Rel oadabl eResour ceBundl eExpr essi onSour ce" >
<beans: property nanme="basenane" val ue="config/integration/expressions"/>
<beans: property name="cacheSeconds" val ue="60"/>

</ beans: bean>

Then, the config/integration/expressions.properties file (or any more specific version with a locale
extension to be resolved in the typical way that resource-bundles are loaded) would contain a key/value
pair:

filterPatterns. exanpl e=payl oad > 100

Note

All of these examples that use expr essi on as an attribute or sub-element can also be applied
within transformer, router, splitter, service-activator, and header-enricher elements. Of course,
the semantics/role of the given component type would affect the interpretation of the evaluation
result in the same way that the return value of a method-invocation would be interpreted. For
example, an expression can return Strings that are to be treated as Message Channel names by
a router component. However, the underlying functionality of evaluating the expression against
the Message as the root object, and resolving bean names if prefixed with @ is consistent across
all of the core EIP components within Spring Integration.

Configuring a Filter with Annotations

A filter configured using annotations would look like this.
public class PetFilter {

@ilter 0O
public bool ean dogsOnly(String input) {

}

O An annotation indicating that this method shall be used as a filter. Must be specified if this class
will be used as a filter.

All of the configuration options provided by the xml element are also available for the @il ter
annotation.

The filter can be either referenced explicitly from XML or, if the @/essageEndpoi nt annotation is
defined on the class, detected automatically through classpath scanning.

Also see the section called “Advising Endpoints Using Annotations”.

6.3 Splitter

Introduction

The Splitter is a component whose role is to partition a message in several parts, and send the resulting
messages to be processed independently. Very often, they are upstream producers in a pipeline that
includes an Aggregator.

4.3.18.RELEASE Spring Integration 73

Spring Integration Reference Manual

Programming model

The API for performing splitting consists of one base class, Abst r act MessageSpl i tter, whichis a
MessageHandl er implementation, encapsulating features which are common to splitters, such as filling
in the appropriate message headers CORRELATI ON_| D, SEQUENCE_SI ZE, and SEQUENCE_NUVBER
on the messages that are produced. This enables tracking down the messages and the results of their
processing (in a typical scenario, these headers would be copied over to the messages that are produced
by the various transforming endpoints), and use them, for example, in a Composed Message Processor
scenario.

An excerpt from Abst r act MessageSpl i tt er can be seen below:

public abstract class AbstractMessageSplitter
ext ends Abstract Repl yProduci ngMessageConsuner {

protected abstract Cbject splitMssage(Message<?> nessage);

To implement a specific Splitter in an application, extend Abst r act MessageSpl i tt er and implement
the spl i t Message method, which contains logic for splitting the messages. The return value may be
one of the following:

 ACol | ecti onoranarray of Messages,oranlt erabl e (orlt er at or) thatiterates over Messages
- in this case the messages will be sent as such (after the CORRELATI ON | D, SEQUENCE_SI ZE and
SEQUENCE_NUMBER are populated). Using this approach gives more control to the developer, for
example for populating custom message headers as part of the splitting process.

« A Coll ection or an array of non-Message objects, or an | t er abl e (or | t er at or) that iterates
over non-Message objects - works like the prior case, except that each collection element will be used
as a Message payload. Using this approach allows developers to focus on the domain objects without
having to consider the Messaging system and produces code that is easier to test.

» aMessage or non-Message object (but not a Collection or an Array) - it works like the previous cases,
except a single message will be sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a method
that accepts a single argument and has a return value. In this case, the return value of the method will
be interpreted as described above. The input argument might either be a Message or a simple POJO.
In the latter case, the splitter will receive the payload of the incoming message. Since this decouples the
code from the Spring Integration API and will typically be easier to test, it is the recommended approach.

Splitter and Iterators

Starting with version 4.1, the Abstract MessageSplitter supports the | terator type for the
val ue to split. Note, in the case of an Iterator (or Iterable), we don't have access to the
number of underlying items and the SEQUENCE_SI ZE header is set to 0. This means that the
default SequenceSi zeRel easeSt r at egy of an <aggr egat or > won't work and the group for the
CORRELATI ON_I Dfrom the spl i tter won't be released; it will remain as i nconpl et e. In this case
you should use an appropriate custom Rel easeSt r at egy or rely on send- parti al -resul t - on-
expi ry together with gr oup-ti meout or a MessageG oupSt or eReaper .

An |t erator objectis useful to avoid the need for building an entire collection in the memory before
splitting. For example, when underlying items are populated from some external system (e.g. DataBase
or FTP MGET) using iterations or streams.

4.3.18.RELEASE Spring Integration 74

http://www.eaipatterns.com/DistributionAggregate.html

Spring Integration Reference Manual

Configuring Splitter

Configuring a Splitter using XML

A splitter can be configured through XML as follows:

<i nt:channel id="inputChannel"/>

<int:splitter id="splitter" 0O

ref="splitterBean" [

met hod="split" 0O

i nput - channel ="i nput Channel " 0O

out put - channel =" out put Channel " /> 0O

<int:channel id="outputChannel"/>

<beans: bean id="splitterBean" class="sanple.PojoSplitter"/>

0 Theid of the splitter is optional.

O Areference to a bean defined in the application context. The bean mustimplement the splitting logic
as described in the section above .Optional. If reference to a bean is not provided, then itis assumed
that the payload of the Message that arrived on the i nput - channel is an implementation
of java. util . Coll ecti on and the default splitting logic will be applied to the Collection,
incorporating each individual element into a Message and sending it to the out put - channel .

0 The method (defined on the bean specified above) that implements the splitting logic.Optional.

0 The input channel of the splitter. Required.

0 The channel to which the splitter will send the results of splitting the incoming message. Optional

(because incoming messages can specify a reply channel themselves).

Using ar ef attribute is generally recommended if the custom splitter implementation may be referenced
in other <spl i tter> definitions. However if the custom splitter handler implementation should be

scoped to a single definition of the <spl i t t er >, configure an inner bean definition:

<int:splitter id="testSplitter" input-channel ="inChannel" nethod="split"
out put - channel =" out Channel ">
<beans: bean cl ass="org.foo. TestSplitter"/>
</int:splitter>

Note

Using both a ref attribute and an inner handler definition in the same <int:splitter>
configuration is not allowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

Important

If the "ref" attribute references a bean that extends Abstr act MessagePr oduci ngHandl er
(such as splitters provided by the framework itself), the configuration is optimized by injecting
the output channel into the handler directly. In this case, each "ref' must be to a separate bean
instance (or a pr ot ot ype-scoped bean), or use the inner <bean/ > configuration type. However,
this optimization only applies if you don’t provide any splitter-specific attributes in the splitter XML
definition. If you inadvertently reference the same message handler from multiple beans, you will
get a configuration exception.

4.3.18.RELEASE Spring Integration

75

Spring Integration Reference Manual

Configuring a Splitter with Annotations

The @Bpl i tter annotation is applicable to methods that expect either the’Message® type or the
message payload type, and the return values of the method should be a Col | ect i on of any type. If
the returned values are not actual Message objects, then each item will be wrapped in a Message as
its payload. Each message will be sent to the designated output channel for the endpoint on which the
@Bplitter is defined.

@plitter
Li st<Lineltenr extractltens(Order order) {
return order.getltens()

}

Also see the section called “Advising Endpoints Using Annotations”.
6.4 Aggregator

Introduction

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Handler that receives
multiple Messages and combines them into a single Message. In fact, an Aggregator is often a
downstream consumer in a pipeline that includes a Splitter.

Technically, the Aggregator is more complex than a Splitter, because it is stateful as it must hold the
Messages to be aggregated and determine when the complete group of Messages is ready to be
aggregated. In order to do this it requires a MessageSt or e.

Functionality

The Aggregator combines a group of related messages, by correlating and storing them, until the group
is deemed complete. At that point, the Aggregator will create a single message by processing the whole
group, and will send the aggregated message as output.

Implementing an Aggregator requires providing the logic to perform the aggregation (i.e., the creation
of a single message from many). Two related concepts are correlation and release.

Correlation determines how messages are grouped for aggregation. In Spring Integration correlation is
done by default based onthe | nt egr at i onMessageHeader Accessor . CORRELATI ON_| Dmessage
header. Messages with the same | nt egr at i onMessageHeader Accessor . CORRELATI ON_| D will
be grouped together. However, the correlation strategy may be customized to allow other ways of
specifying how the messages should be grouped together by implementing a Cor r el at i onSt r at egy
(see below).

To determine the point at which a group of messages is ready to be processed,
a Rel easeStrategy is consulted. The default release strategy for the Aggregator will
release a group when all messages included in a sequence are present, based on the
I nt egr ati onMessageHeader Accessor . SEQUENCE_SI ZE header. This default strategy may be
overridden by providing a reference to a custom Rel easeSt r at egy implementation.

Programming model

The Aggregation API consists of a number of classes:

4.3.18.RELEASE Spring Integration 76

Spring Integration Reference Manual

e The interface MessageG oupProcessor, and its
subclasses:Met hodl nvoki ngAggr egat i ngMessageG oupPr ocessor and
Expr essi onEval uat i ngMessageG oupPr ocessor

* The Rel easeStr at egy interface and its default implementation
SequenceSi zeRel easeSt r at egy

* The Correl ati onStrat egy interface and its default implementation
Header Attri but eCorrel ati onStrat egy

AggregatingMessageHandler

The Aggr egat i ngMessageHandl| er (subclass of Abst ract Corr el ati ngMessageHandl er) is a
MessageHandl er implementation, encapsulating the common functionalities of an Aggregator (and
other correlating use cases), which are:

 correlating messages into a group to be aggregated

* maintaining those messages in a MessageSt or e until the group can be released
 deciding when the group can be released

» aggregating the released group into a single message

* recognizing and responding to an expired group

The responsibility of deciding how the messages should be grouped together is delegated to a
Correl ati onSt r at egy instance. The responsibility of deciding whether the message group can be
released is delegated to a Rel easeSt r at egy instance.

Here is a brief highlight of the base Abstract Aggregati ngMessage@& oupProcessor (the
responsibility of implementing the aggr egat ePayl| oads method is left to the developer):

public abstract class Abstract Aggregati ngMessageG oupPr ocessor
i npl enent s MessageG oupProcessor {

protected Map<String, Object> aggregat eHeaders(MessageG oup group) {
/'l default inplenentation exists

}

protected abstract Cbject aggregatePayl oads(MessageG oup group, Map<String, Object> defaul t Headers);

The Correl ati onStr at egy is owned by the Abst r act Corr el ati ngMessageHand! er and it has
a default value based on the | nt egr at i onMessageHeader Accessor . CORRELATI ON_| Dmessage
header:

public Abstract Correl ati ngMessageHand! er (MessageG oupProcessor processor, MessageG oupStore store,
Correl ationStrategy correl ationStrategy, ReleaseStrategy rel easeStrategy) {

this.correlationStrategy = correlationStrategy == null ?
new Header Attri buteCorrel ati onStrategy(lntegrati onMessageHeader Accessor . CORRELATI ON_I D) :
correl ati onStrategy;
this.rel easeStrategy = rel easeStrategy == null ? new SequenceSi zeRel easeStrategy() :
rel easeStrat egy;

As for actual processing of the message group, the default implementation is the
Def aul t Aggr egat i ngMessageG oupProcessor. It creates a single Message whose payload

4.3.18.RELEASE Spring Integration 77

Spring Integration Reference Manual

is a List of the payloads received for a given group. This works well for simple Scatter Gather
implementations with either a Splitter, Publish Subscribe Channel, or Recipient List Router upstream.

Note

When using a Publish Subscribe Channel or Recipient List Router in this type of scenario,
be sure to enable the flag to appl y- sequence. That will add the necessary headers
(CORRELATION_ID, SEQUENCE_NUMBER and SEQUENCE_SIZE). That behavior is enabled
by default for Splitters in Spring Integration, but it is not enabled for the Publish Subscribe Channel
or Recipient List Router because those components may be used in a variety of contexts in which
these headers are not necessary.

When implementing a specific aggregator strategy for an application, a developer can extend
Abst ract Aggr egat i ngMessageG oupProcessor and implement the aggregat ePayl oads
method. However, there are better solutions, less coupled to the API, for implementing the aggregation
logic which can be configured easily either through XML or through annotations.

In general, any POJO can implement the aggregation algorithm if it provides a method that accepts a
single j ava. util . Li st as an argument (parameterized lists are supported as well). This method will
be invoked for aggregating messages as follows:

« if the argument is a java. util. Col | ecti on<T>, and the parameter type T is assignable to
Message, then the whole list of messages accumulated for aggregation will be sent to the aggregator

« if the argument is a non-parameterized j ava. util. Col | ecti on or the parameter type is not
assignable to Message, then the method will receive the payloads of the accumulated messages

« if the return type is not assignable to Message, then it will be treated as the payload for a Message
that will be created automatically by the framework.

Note

In the interest of code simplicity, and promoting best practices such as low coupling, testability,
etc., the preferred way of implementing the aggregation logic is through a POJO, and using the
XML or annotation support for configuring it in the application.

Important

The Si npl eMessageG oup. get Messages() method returns an
unnodi fi abl eCol | ecti on, therefore, if your aggregating POJO method has a
Col | ecti on<Message> parameter, the argument passed in wil be exactly that
Col I ecti on instance and, when a Si npl eMessageStore is used for the Aggregator,
that original Col | ecti on<Message> will be cleared after releasing the group. Hence the
Col | ecti on<Message> variable in the POJO will be cleared too, if passed out of the aggregator.
If you wish to simply release that collection as-is for further processing, it is required that you build
anew Col | ection (e.g.new ArrayLi st <Message>(nessages)) Starting with _version 4.3,
the Framework no longer copies the messages to a new collection, to avoid undesired extra object
creation.

If the MessageG oupPr ocessor 's processMessageG oup method returns a collection, it must be
a collection of Message<?> s. In this case, the messages are released individually. Prior to version

4.3.18.RELEASE Spring Integration 78

Spring Integration Reference Manual

4.2, it was not possible to provide a MessageG oupPr ocessor using XML configuration, only POJO
methods could be used for aggregation. Now, if the framework detects that the referenced (or inner)
bean implements MessagePr ocessor, it is used as the aggregator’s output processor.

If you wish to release a collection of objects from a custom MessageGr oupPr ocessor as the payload
of a message, your class should extend Abstract Aggr egat i ngMessageG oupProcessor and
implement aggr egat ePayl oads() .

Also, since version 4.2, a Si npl eMessageG oupPr ocessor is provided; which simply returns the
collection of messages from the group, which, as indicated above, causes the released messages to
be sent individually.

This allows the aggregator to work as a message barrier where arriving messages are held until the
release strategy fires, and the group is released, as a sequence of individual messages.

ReleaseStrategy

The Rel easeSt r at egy interface is defined as follows:

public interface Rel easeStrategy {

bool ean canRel ease(MessageG oup group);

In general, any POJO can implement the completion decision logic if it provides a method that accepts
asingle j ava. util.Li st as an argument (parameterized lists are supported as well), and returns a
boolean value. This method will be invoked after the arrival of each new message, to decide whether
the group is complete or not, as follows:

 iftheargumentisaj ava. util . Li st <T>, and the parameter type T is assignable to Message, then
the whole list of messages accumulated in the group will be sent to the method

- if the argument is a non-parametrized j ava. uti | . Li st or the parameter type is not assignable to
Message, then the method will receive the payloads of the accumulated messages

» the method must return true if the message group is ready for aggregation, and false otherwise.

For example:

public class M/Rel easeStrategy {

@Rel easeStr at egy
publ i c bool ean canMessagesBeRel eased(Li st <Message<?>>) {...}

public class M/Rel easeStrategy {

@Rel easeStrat egy
publi c bool ean canMessagesBeRel eased(List<String>) {...}

As you can see based on the above signatures, the POJO-based Release Strategy will be passed
a Col | ection of not-yet-released Messages (if you need access to the whole Message) or a
Col | ecti on of payload objects (if the type parameter is anything other than Message). Typically
this would satisfy the majority of use cases. However if, for some reason, you need to access the full
MessageG oup then you should simply provide an implementation of the Rel easeSt r at egy interface.

4.3.18.RELEASE Spring Integration 79

Spring Integration Reference Manual

Warning

When handling potentially large groups, it is important to understand how these methods are
invoked because the release strategy may be invoked multiple times before the group is released.
The most efficient is an implementation of Rel easeStr at egy because the aggregator can
invoke it directly. The second most efficient is a POJO method with a Col | ect i on<Message<?
>> parameter type. The least efficient is a POJO method with a Col | ect i on<Foo> type - the
framework has to copy the payloads from the messages in the group into a new collection (and
possibly attempt conversion on the payloads to Foo) every time the release strategy is called.
Col | ect i on<?> avoids the conversion but still requires creating the new Col | ecti on.

For these reasons, for large groups, it is recommended that you implement
Rel easeStr at egy.

When the group is released for aggregation, all its not-yet-released messages are processed and
removed from the group. If the group is also complete (i.e. if all messages from a sequence have
arrived or if there is no sequence defined), then the group is marked as complete. Any new messages
for this group will be sent to the discard channel (if defined). Setting expi r e- gr oups- upon-
conpl eti on totrue (default is f al se) removes the entire group and any new messages, with the
same correlation id as the removed group, will form a new group. Partial sequences can be released
by using a MessageG oupSt or eReaper together with send- parti al -resul t - on- expi ry being
settotrue.

Important

To facilitate discarding of late-arriving messages, the aggregator must maintain state about the
group after it has been released. This can eventually cause out of memory conditions. To avoid
such situations, you should consider configuring a MessageG oupSt or eReaper to remove the
group metadata; the expiry parameters should be set to expire groups after it is not expected
that late messages will arrive. For information about configuring a reaper, see the section called
“Managing State in an Aggregator: MessageGroupStore”.

Spring Integration provides an out-of-the box implementation for Rel easeStrategy, the
SequenceSi zeRel easeSt rat egy. This implementation consults the SEQUENCE NUMBER and
SEQUENCE_SI ZE headers of each arriving message to decide when a message group is complete and
ready to be aggregated. As shown above, it is also the default strategy.

If you are aggregating large groups, you don't need to release partial groups, and you don't need
to detect/reject duplicate sequences, consider using the Si npl eSequenceSi zeRel easeSt r at egy
instead - it is much more efficient for these use cases, and will be the default in future releases when
partial group release is not specified.

Aggregating Large Groups

The 4.3 release changed the default Col | ecti on for messages in a Si npl eMessageG oup to
HashSet (it was previously a Bl ocki ngQueue). This was expensive when removing individual
messages from large groups (an O(n) linear scan was required). Although the hash set is generally
much faster for removing, it can be expensive for large messages because the hash has to be
calculated (on both inserts and removes). If you have messages that are expensive to hash,
consider using some other collection type. As discussed in the section called “MessageGroupFactory”,
a Si npl eMessageG oupFactory is provided so you can select the Col | ecti on that best

4.3.18.RELEASE Spring Integration 80

Spring Integration Reference Manual

suits your needs. You can also provide your own factory implementation to create some other
Col | ecti on<Message<?>>.

Here is an example of how to configure an aggregator with the previous implementation and a
Si npl eSequenceSi zeRel easeStr at egy.

<i nt:aggregator input-channel ="aggregate"
out put - channel ="out" nessage-store="store" rel ease-strategy="rel easer" />

<bean id="store" class="org.springfranmework.integration.store.Sinpl eMessageSt ore">
<property nanme="nmessageG& oupFactory">
<bean cl ass="org. springfranmework.integration.store. Si npl eMessageG oupFactory">
<constructor-arg val ue="BLOCKI NG QUEUE"/ >
</ bean>
</ property>
</ bean>

<bean id="rel easer" cl ass="Si npl eSequenceSi zeRel easeStrat egy" />

CorrelationStrategy

The Correl ati onStr at egy interface is defined as follows:

public interface Correl ationStrategy {

Obj ect get Correl ati onKey(Message<?> nessage);

The method returns an Object which represents the correlation key used for associating the message
with a message group. The key must satisfy the criteria used for a key in a Map with respect to the
implementation of equal s() and hashCode() .

In general, any POJO can implement the correlation logic, and the rules for mapping a message to a
method’s argument (or arguments) are the same as for a Ser vi ceAct i vat or (including support for
@Header annotations). The method must return a value, and the value must not be nul | .

Spring Integration provides an out-of-the box implementation for Correl ati onStrat egy, the
Header Attri but eCorrel ati onStrat egy. This implementation returns the value of one of the
message headers (whose name is specified by a constructor argument) as the correlation key. By
default, the correlation strategy is a Header Attri but eCorrel ati onSt r at egy returning the value
of the CORRELATI ON_I D header attribute. If you have a custom header name you would like to use for
correlation, then simply configure that on an instance of Header At t ri but eCorr el ati onStr at egy
and provide that as a reference for the Aggregator’s correlation-strategy.

LockRegistry

Changes to groups are thread safe; a LockRegi stry is used to obtain a lock for the resolved
correlation id. A Def aul t LockRegi stry is used by default (in-memory). For synchronizing updates
across servers, where a shared MessageG oupSt or e is being used, a shared lock registry must be
configured. See the section called “Configuring an Aggregator” below for more information.

Configuring an Aggregator

Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator via XML through the <aggr egat or/ >
element. Below you can see an example of an aggregator.

4.3.18.RELEASE Spring Integration 81

Spring Integration Reference Manual

<channel id="input Channel"/>

<int:aggregator id=""nmyAggregator" 0O

auto-startup="true" O

i nput - channel ="i nput Channel " 0O
out put - channel =" out put Channel " O
di scar d- channel ="t hr owAwayChannel " 0O

nmessage- st or e="persi st ent MessageStore" 0O
order="1" 0O

send-partial -result-on-expiry="false" 0O
send- ti nmeout ="1000" O

correl ation-strategy="correl ati onStrat egyBean" 0O
correl ation-strategy-nethod="correl ate"
correl ation-strategy-expressi on="headers['foo']"

ref =" aggr egat or Bean"
met hod="aggr egat e"

rel ease-strategy="rel easeStrat egyBean"
rel ease- strat egy- met hod="rel ease"

rel ease-strategy-expressi on="si ze() == 5"

expi re- groups-upon-conpl eti on="f al se"
enpt y- group-m n-ti meout =" 60000"

| ock-registry="1 ockRegi stry"
group-ti meout =" 60000"
group-timeout - expressi on="si ze() ge 2 ? 100 : -1"
expi re-groups-upon-timeout="true"
schedul er ="t askSchedul er" >
<expire-transactional / >
<expi r e- advi ce- chai n/ >
</ aggr egat or >
<i nt:channel id="outputChannel"/>
<int:channel id="throwAwayChannel "/ >
<bean id="persistent MessageStore" cl ass="org. springframework.integration.jdbc.JdbcMessageStore">
<constructor-arg ref="dataSource"/>
</ bean>
<bean i d="aggregat or Bean" cl ass="sanpl e. Poj 0Aggregator"/>

<bean id="rel easeStrat egyBean" cl ass="sanpl e. Poj oRel easeStrat egy"/ >

<bean id="correl ati onStrategyBean" class="sanpl e. PojoCorrel ati onStrategy"/>

O The id of the aggregator is Optional.

O Lifecycle attribute signaling if aggregator should be started during Application Context startup.
Optional (default is true).

O The channel from which where aggregator will receive messages. Required.

0 The channel to which the aggregator will send the aggregation results. Optional (because incoming
messages can specify a reply channel themselves via replyChannel Message Header).

O The channel to which the aggregator will send the messages that timed out (if send- parti al -
resul t - on- expi ry is false). Optional.

O Areference to a MessageG oupSt or e used to store groups of messages under their correlation
key until they are complete. Optional, by default a volatile in-memory store.

0 Order of this aggregator when more than one handle is subscribed to the same DirectChannel (use
for load balancing purposes). Optional.

4.3.18.RELEASE Spring Integration 82

Spring Integration Reference Manual

Indicates that expired messages should be aggregated and sent to the output-
channel or replyChannel once their containing MessageG oup is expired (see
MessageG oupSt or e. expi reMessageG oups(| ong)). One way of expiring MessageG oup
s is by configuring a MessageG oupSt or eReaper . However MessageG oup s can alternatively
be expired by simply calling MessageG oupSt or e. expi r eMessage& oups(ti nmeout) . That
could be accomplished via a Control Bus operation or by simply invoking that method if you have a
reference to the MessageG oupSt or e instance. Otherwise by itself this attribute has no behavior.
It only serves as an indicator of what to do (discard or send to the output/reply channel) with
Messages that are still in the MessageGr oup that is about to be expired. Optional. Default - false.
NOTE: This attribute is more properly send- parti al -resul t - on-ti meout because the group
may not actually expire if expi r e- gr oups- upon-ti meout is settof al se.

The timeout interval to wait when sending a reply Message to the out put-channel
or di scard-channel . Defaults to -1 - blocking indefinitely. It is applied only if the
output channel has some sending limitations, e.g. QueueChannel with a fixed capacity.
In this case a MessageDel i ver yExcepti on is thrown. The send-ti neout is ignored in
case of Abstract Subscri babl eChannel implementations. In case of group-ti nmeout (-
expr essi on) the MessageDel i ver yExcept i on from the scheduled expire task leads this task
to be rescheduled. Optional.

A reference to a bean that implements the message correlation (grouping) algorithm. The bean can
be an implementation of the Cor r el at i onSt r at egy interface or a POJO. In the latter case the
correlation-strategy-method attribute must be defined as well. Optional (by default, the aggregator
will use the | nt egr at i onMessageHeader Accessor . CORRELATI ON_| D header).

A method defined on the bean referenced by correl ati on-strat egy, that implements the
correlation decision algorithm. Optional, with restrictions (requires corr el ati on-strat egy to
be present).

A SpEL expression representing the correlation strategy. Example: " headers[' foo']". Only
one ofcorrel ati on-strategy orcorrel ati on-strategy-expression is allowed.

A reference to a bean defined in the application context. The bean must implement the aggregation
logic as described above. Optional (by default the list of aggregated Messages will become a
payload of the output message).

A method defined on the bean referenced by r ef , that implements the message aggregation
algorithm. Optional, depends on r ef attribute being defined.

A reference to a bean that implements the release strategy. The bean can be an implementation
of the Rel easeStrategy interface or a POJO. In the latter case the release-strategy-
method attribute must be defined as well. Optional (by default, the aggregator will use the
I nt egr ati onMessageHeader Accessor . SEQUENCE_SI ZE header attribute).

A method defined on the bean referenced by rel ease-strategy, that implements the
completion decision algorithm. Optional, with restrictions (requires r el ease- strat egy to be
present).

A SpEL expression representing the release strategy; the root object for the expression is a
Col | ecti on of Message s. Example: "si ze() == 5". Only one of rel ease-strat egy or
rel ease-strat egy- expressi on is allowed.

When set to true (default false), completed groups are removed from the message store, allowing
subsequent messages with the same correlation to form a new group. The default behavior is to
send messages with the same correlation as a completed group to the discard-channel.

Only applies if a MessageG oupSt or eReaper is configured for the <aggregator>'s
MessagesSt or e. By default, when a MessageG oupSt or eReaper is configured to expire partial
groups, empty groups are also removed. Empty groups exist after a group is released normally.
This is to enable the detection and discarding of late-arriving messages. If you wish to expire empty
groups on a longer schedule than expiring partial groups, set this property. Empty groups will then

4.3.18.RELEASE Spring Integration 83

Spring Integration Reference Manual

not be removed from the MessagesSt or e until they have not been modified for at least this number
of milliseconds. Note that the actual time to expire an empty group will also be affected by the
reaper’s timeout property and it could be as much as this value plus the timeout.
Areferencetoaorg. springframework. integration.util.LockRegi stry bean; used to
obtain a Lock based on the gr oupl d for concurrent operations on the MessageG oup. By default,
an internal Def aul t LockRegi stry is used. Use of a distributed LockRegi stry, such as the
Zookeeper LockRegi st ry, ensures only one instance of the aggregator will operate on a group
concurrently. See Section 24.11, “Redis Lock Registry”, Section 16.6, “Gemfire Lock Registry”,
Section 37.3, “Zookeeper Lock Registry” for more information.

A timeout in milliseconds to force the MessageG oup complete, when the Rel easeSt r at egy
doesn’t release the group when the current Message arrives. This attribute provides a built-in
Time-base Release Strategy for the aggregator, when there is a need to emit a partial result (or
discard the group), if a new Message does not arrive for the MessageG oup within the timeout.
When a new Message arrives at the aggregator, any existing Schedul edFut ur e<?> for its
MessageG oup is canceled. If the Rel easeStrat egy returns f al se (don't release) and the
groupTi meout > 0 a new task will be scheduled to expire the group. Setting this attribute
to zero is not advised because it will effectively disable the aggregator because every message
group will be immediately completed. It is possible, however to conditionally set it to zero using
an expression; see gr oup-ti nmeout - expr essi on for information. The action taken during the
completion depends on the Rel easeSt r at egy and the send- parti al - gr oup- on- expiry
attribute. See the section called “Aggregator and Group Timeout” for more information. Mutually
exclusive with group-timeout-expression attribute.

The SpEL expression that evaluates to a gr oupTi meout with the MessageG oup as the #r oot
evaluation context object. Used for scheduling the MessageG oup to be forced complete. If the
expression evaluates to null or < 0, the completion is not scheduled. If it evaluates to zero, the
group is completed immediately on the current thread. In effect, this provides a dynamic gr oup-
ti meout property. See group-ti meout for more information. Mutually exclusive with group-
timeout attribute.

When a group is completed due to a timeout (or by a MessageG oupSt or eReaper), the group
is expired (completely removed) by default. Late arriving messages will start a new group. Set this
to f al se to complete the group but have its metadata remain so that late arriving messages will
be discarded. Empty groups can be expired later using a MessageG oupSt or eReaper together
with the enpt y- gr oup- i n- ti meout attribute. Default: true.

A TaskSchedul er bean reference to schedule the MessageG oup to be forced complete
if no new message arrives for the MessageG oup within the groupTi neout. If not
provided, the default scheduler t askSchedul er, registered in the Appli cati onCont ext
(Thr eadPool TaskSchedul er) will be used. This attribute does not apply if gr oup-ti neout or
group-ti meout - expr essi on is not specified.

Since version 4.1. Allows a transaction to be started for the f or ceConpl et e operation. It is
initiated from a gr oup-ti meout (- expressi on) or by a MessageG oupSt or eReaper and
is not applied to the normal add/r el ease/ di scard operations. Only this sub-element or
<expi r e- advi ce- chai n/ > is allowed.

Since version 4.1. Allows the configuration of any Advi ce for the f or ceConpl et e operation.
It is initiated from a gr oup-ti meout (- expressi on) or by a MessageG oupSt or eReaper
and is not applied to the normal add/ r el ease/ di scar d operations. Only this sub-element or
<expire-transactional / > is allowed. A transaction Advi ce can also be configured here
using the Spring t X hamespace.

4.3.18.RELEASE Spring Integration 84

Spring Integration Reference Manual

Expiring Groups

There are two attributes related to expiring (completely removing) groups. When a group is
expired, there is no record of it and if a new message arrives with the same correlation, a
new group is started. When a group is completed (without expiry), the empty group remains
and late arriving messages are discarded. Empty groups can be removed later using a
MessageG oupSt or eReaper in combination with the enpt y- gr oup- i n-ti meout attribute.

expi re-groups-upon-conpl eti on relates to "normal® completion - when the
Rel easeSt r at egy releases the group. This defaults to f al se.

If a group is not completed normally, but is released or discarded because of a timeout, the group
is normally expired. Since version 4.1, you can now control this behavior using expi r e- gr oups-
upon-t i neout ; this defaults to t r ue for backwards compatibility.

Note

When a group is timed out, the Rel easeSt r at egy is given one more opportunity to release
the group; if it does so, and expi r e- gr oups- upon-ti nmeout is false, then expiration is
controlled by expi r e- gr oups- upon- conpl eti on. If the group is not released by the
release strategy during timeout, then the expiration is controlled by the expi r e- gr oups-
upon-ti neout . Timed-out groups are either discarded, or a partial release occurs (based
onsend-partial -resul t-on-expiry).

Using ar ef attribute is generally recommended if a custom aggregator handler implementation may be
referenced in other <aggr egat or > definitions. However if a custom aggregator implementation is only
being used by a single definition of the <aggr egat or >, you can use an inner bean definition (starting
with version 1.0.3) to configure the aggregation POJO within the <aggr egat or > element:

<aggregat or input-channel ="input" nethod="sun{ output-channel ="out put">
<beans: bean cl ass="org. f 00. Poj 0Aggregator"/ >
</ aggr egat or >

Note

Using both ar ef attribute and an inner bean definition in the same <aggr egat or > configuration
is not allowed, as it creates an ambiguous condition. In such cases, an Exception will be thrown.

An example implementation of the aggregator bean looks as follows:

public class Poj oAggregator {

public Long add(List<Long> results) {
long total = 0l;
for (long partial Result: results) {
total += partial Resul t;

}

return total;

An implementation of the completion strategy bean for the example above may be as follows:

4.3.18.RELEASE Spring Integration 85

Spring Integration Reference Manual

public class PojoRel easeStrategy {

publ i c bool ean canRel ease(Li st <Long> nunbers) {
int sum= 0;
for (long nunber: nunbers) {
sum += numnber ;
}

return sum >= naxVal ue;

}

}

Note

Wherever it makes sense, the release strategy method and the aggregator method can be
combined in a single bean.

An implementation of the correlation strategy bean for the example above may be as follows:

public class PojoCorrel ationStrategy {

public Long groupNunbersByLast Di gi t (Long nunber) {
return number % 10;

}
}

For example, this aggregator would group numbers by some criterion (in our case the remainder after
dividing by 10) and will hold the group until the sum of the numbers provided by the payloads exceeds
a certain value.

Note

Wherever it makes sense, the release strategy method, correlation strategy method and the
aggregator method can be combined in a single bean (all of them or any two).

Aggregators and Spring Expression Language (SpEL)

Since Spring Integration 2.0, the various strategies (correlation, release, and aggregation) may be
handled with SpEL which is recommended if the logic behind such release strategy is relatively simple.
Let's say you have a legacy component that was designed to receive an array of objects. We know that
the default release strategy will assemble all aggregated messages in the List. So now we have two
problems. First we need to extract individual messages from the list, and then we need to extract the
payload of each message and assemble the array of objects (see code below).

public String[] processRel ease(List<Message<String>> nessages) {
Li st<String> stringList = new ArrayList<String>();
for (Message<String> nessage : nessages) {
stringlLi st. add(nmessage. get Payl oad());

}
return stringList.toArray(new String[]{});

However, with SpEL such a requirement could actually be handled relatively easily with a one-line
expression, thus sparing you from writing a custom class and configuring it as a bean.

<i nt:aggregator input-channel ="aggChannel "
out put - channel ="r epl yChannel "
expressi on="#this.![payl oad].toArray()"/>

4.3.18.RELEASE Spring Integration 86

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Spring Integration Reference Manual

In the above configuration we are using a Collection Projection expression to assemble a hew collection
from the payloads of all messages in the list and then transforming it to an Array, thus achieving the
same result as the java code above.

The same expression-based approach can be applied when dealing with custom Release and
Correlation strategies.

Instead of defining a bean for a custom Corr el ati onStrat egy via the correl ati on-strat egy
attribute, you can implement your simple correlation logic via a SpEL expression and configure it via
the correl ati on-strat egy-expressi on attribute.

For example:

correl ati on-strategy-expressi on="payl oad. person.id"

In the above example it is assumed that the payload has an attribute per son with an i d which is going
to be used to correlate messages.

Likewise, for the Rel easeStrat egy you can implement your release logic as a SpEL expression
and configure it via the r el ease- st r at egy- expr essi on attribute. The only difference is that since
ReleaseStrategy is passed the List of Messages, the root object in the SpEL evaluation context is the
List itself. That List can be referenced as #t hi s within the expression.

For example:

rel ease-strategy-expressi on="#this.size() gt 5"

In this example the root object of the SpEL Evaluation Context is the MessageG oup itself, and you are
simply stating that as soon as there are more than 5 messages in this group, it should be released.

Aggregator and Group Timeout

Starting with version 4.0, two new mutually exclusive attributes have been introduced: gr oup- t i meout
and group-ti nmeout - expr essi on (see the description above). There are some cases where it is
needed to emit the aggregator result (or discard the group) after a timeout if the Rel easeSt r at egy
doesn'’t release when the current Message arrives. For this purpose the gr oupTi neout option allows
scheduling the MessageG oup to be forced complete:

<aggregat or input-channel ="input" output-channel ="out put"
send-partial -resul t-on-expiry="true"
group-ti meout - expressi on="si ze() ge 2 ? 10000 : -1"
rel ease- strat egy- expressi on="[0] . header s. sequenceNunber == [0]. headers. sequenceSi ze"/ >

With this example, the normal release will be possible if the aggregator receives the last message in
sequence as defined by the r el ease- strat egy- expr essi on. If that specific message does not
arrive, the gr oupTi meout will force the group complete after 10 seconds as long as the group contains
at least 2 Messages.

The results of forcing the group complete depends on the Rel easeSt r at egy andthe send- parti al -
resul t - on- expi ry. First, the release strategy is again consulted to see if a normal release is to be
made - while the group won't have changed, the Rel easeSt r at egy can decide to release the group
at this time. If the release strategy still does not release the group, it will be expired. If send- parti al -
resul t-on-expiryistrue, existing messages in the (partial) MessageG oup will be released as a
normal aggregator reply Message to the out put - channel , otherwise it will be discarded.

There is a difference between gr oupTi neout behavior and MessageG oupSt or eReaper (see
the section called “Configuring an Aggregator”). The reaper initiates forced completion for all

4.3.18.RELEASE Spring Integration 87

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-projection

Spring Integration Reference Manual

MessageG oup s in the MessageG oupSt or e periodically. The gr oupTi meout does it for each
MessageG oup individually, if a new Message doesn’t arrive during the gr oupTi meout . Also, the
reaper can be used to remove empty groups (empty groups are retained in order to discard late
messages, if expi r e- gr oups- upon- conpl eti on is false).

Configuring an Aggregator with Annotations
An aggregator configured using annotations would look like this.
public class Wiiter {

@\ggregator 0O
public Delivery aggregatingMet hod(List<Orderltenr itens) {

}

@Rel easeStrategy O
publ i c bool ean rel easeChecker (Li st <Message<?>> nessages) {

}

@orrel ationStrategy 0O
public String correlateBy(Orderltemiten) {

}

O An annotation indicating that this method shall be used as an aggregator. Must be specified if this
class will be used as an aggregator.

0 An annotation indicating that this method shall be used as the release strategy of an aggregator.
If not present on any method, the aggregator will use the SequenceSizeReleaseStrategy.

0 An annotation indicating that this method shall be used as the correlation strategy
of an aggregator. If no correlation strategy is indicated, the aggregator will use the
Header Attri but eCorrel ati onStrat egy based on CORRELATI ON_| D.

All of the configuration options provided by the xml element are also available for the @\ggr egat or
annotation.

The aggregator can be either referenced explicitly from XML or, if the @/essageEndpoi nt is defined
on the class, detected automatically through classpath scanning.

Annotation configuration (@Aggr egat or and others) for the Aggregator component covers only simple
use cases, where most default options are sufficient. If you need more control over those options using
Annotation configuration, consider using a @ean definition for the Aggr egat i ngMessageHand| er
and mark its @ean method with @er vi ceActi vat or :

@er vi ceAct i vat or (i nput Channel = "aggregat or Channel ")
@Bean
publ i c MessageHandl er aggregat or (MessageG oupStore j dbcMessageGr oupStore) {
Aggr egat i ngMessageHand| er aggregator =
new Aggr egat i ngMessageHandl er (new Def aul t Aggr egat i ngMessageG oupPr ocessor (),
j dbcMessageGroupSt ore) ;
aggr egat or . set Qut put Channel (resul t sChannel ());
aggr egat or. set G oupTi meout Expr essi on(new Val ueExpr essi on<>(500L)) ;
aggr egat or . set TaskSchedul er (t hi s. taskSchedul er);
return aggregator;

See the section called “Programming model” and the section called “Annotations on @Beans” for more
information.

4.3.18.RELEASE Spring Integration 88

Spring Integration Reference Manual

Note

Starting with the version 4.2 the Aggr egat or Fact or yBean is available, to simplify Java
configuration for the Aggr egat i ngMessageHand| er .

Managing State in an Aggregator: MessageGroupStore

Aggregator (and some other patterns in Spring Integration) is a stateful pattern that requires decisions
to be made based on a group of messages that have arrived over a period of time, all with the same
correlation key. The design of the interfaces in the stateful patterns (e.g. Rel easeSt r at egy) is driven
by the principle that the components (whether defined by the framework or a user) should be able to
remain stateless. All state is carried by the MessageG oup and its management is delegated to the
MessageG oupSt or e.

public interface MessageG oupStore {
i nt get MessageCount For Al | MessageG oups() ;

i nt get Mar kedMessageCount For Al | MessageGr oups() ;

i nt get MessageG oupCount () ;

MessageG oup get MessageG oup(Obj ect groupl d);

MessageG oup addMessageToG oup(Cbj ect groupld, Message<?> nessage);
MessageG oup mar kMessageG oup(MessageG oup group);

MessageG oup renpveMessageFr onGroup(Obj ect key, Message<?> nmessageToRenove);
MessageG oup mar kMessageFr onGroup(Obj ect key, Message<?> nessageToMarKk);

voi d renoveMessageG oup(Cbj ect groupld);

voi d regi st er MessageG oupExpi ryCal | back(MessageG oupCal | back cal | back) ;

i nt expireMessageG oups(long tineout);

For more information please refer to the JavaDoc.

The MessageG oupSt or e accumulates state information in MessageG oups while waiting for a
release strategy to be triggered, and that event might not ever happen. So to prevent stale messages
from lingering, and for volatile stores to provide a hook for cleaning up when the application shuts down,
the MessageG oupSt or e allows the user to register callbacks to apply to its MessageG oups when
they expire. The interface is very straightforward:

public interface MessageG oupCal | back {

voi d execut e(MessageG oupSt ore nmessageG oupStore, MessageG oup group);

The callback has direct access to the store and the message group so it can manage the persistent
state (e.g. by removing the group from the store entirely).

The MessageGroupSt ore maintains a list of these callbacks which it applies, on demand,
to all messages whose timestamp is earlier than a time supplied as a parameter (see
the regi st er Message& oupExpi ryCal | back(..) and expi reMessageG oups(..) methods
above).

4.3.18.RELEASE Spring Integration 89

http://docs.spring.io/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html

Spring Integration Reference Manual

The expi r eMessageG oups method can be called with a timeout value. Any message older than the
current time minus this value will be expired, and have the callbacks applied. Thus it is the user of the
store that defines what is meant by message group "expiry".

As a convenience for users, Spring Integration provides a wrapper for the message expiry in the form
of a MessageG oupSt or eReaper :

<bean id="reaper" class="org...MssageG oupSt or eReaper ">
<property name="nmessageG oupStore" ref="nessageStore"/>
<property name="ti meout" val ue="30000"/>

</ bean>

<t ask: schedul ed-t asks schedul er ="schedul er ">
<t ask: schedul ed ref="reaper" method="run" fixed-rate="10000"/>
</t ask: schedul ed-t asks>

The reaper is a Runnabl e, and all that is happening in the example above is that the message group
store’s expire method is being called once every 10 seconds. The timeout itself is 30 seconds.

Note

It is important to understand that the timeout property of the MessageG oupSt or eReaper is
an approximate value and is impacted by the the rate of the task scheduler since this property
will only be checked on the next scheduled execution of the MessageG oupSt or eReaper
task. For example if the timeout is set for 10 min, but the MessageG oupSt or eReaper task is
scheduled to run every 60 min and the last execution of the MessageG oupSt or eReaper task
happened 1 min before the timeout, the MessageG oup will not expire for the next 59 min. So it
is recommended to set the rate at least equal to the value of the timeout or shorter.

In addition to the reaper, the expiry callbacks are invoked when the application shuts down via a lifecycle
callback in the Abst ract Correl ati ngMessageHandl er .

The Abstract Correl ati ngMessageHand| er registers its own expiry callback, and this is the link
with the boolean flag send- parti al - resul t - on- expi ry inthe XML configuration of the aggregator.
If the flag is set to true, then when the expiry callback is invoked, any unmarked messages in groups
that are not yet released can be sent on to the output channel.

Important

When using a MessageG oupSt or eReaper , it is generally recommended to use a separate
MessagesSt or e for each correlating endpoint. Otherwise, unexpected results may occur because
one endpoint may remove another endpoint’s groups.

Some MessageSt ore implementations allow using the same physical resources, by
partitioning the data; for example, the JdbcMessageStore has a regi on property; the
MongoDbMessageSt or e has a col | ecti onNane property.

For more information about MessagesSt or e interface and its implementations, please read
Section 9.4, “Message Store”.

6.5 Resequencer

Introduction

Related to the Aggregator, albeit different from a functional standpoint, is the Resequencer.

4.3.18.RELEASE Spring Integration 90

Spring Integration Reference Manual

Functionality

The Resequencer works in a similar way to the Aggregator, in the sense that it uses the
CORRELATI ON_I D to store messages in groups, the difference being that the Resequencer does not
process the messages in any way. It simply releases them in the order of their SEQUENCE NUVBER
header values.

With respect to that, the user might opt to release all messages at once (after the whole sequence,
according to the SEQUENCE_SI ZE, has been released), or as soon as a valid sequence is available.

Configuring a Resequencer

Configuring a resequencer requires only including the appropriate element in XML.

A sample resequencer configuration is shown below.

<i nt:channel id="inputChannel"/>

<int:channel id="outputChannel"/>

<int:resequencer id="conpl etel yDefi nedResequencer" 0O

i nput - channel ="i nput Channel " 0O
out put - channel =" out put Channel " [
di scar d- channel ="di scardChannel " O

rel ease-partial -sequences="true" 0O

nessage- st or e="nessageStore" [

send-partial -result-on-expiry="true" 0O

send- ti meout ="86420000" [

correl ation-strategy="correl ati onStrat egyBean" 0O
correl ati on-strategy-nethod="correlate" 0O

correl ati on-strategy-expressi on="headers['foo0']"
rel ease-strategy="rel easeStrat egyBean"

rel ease-strategy- met hod="r el ease"

rel ease- strategy- expressi on="si ze() == 10"
enpt y- group- i n-ti meout =" 60000"

l ock-regi stry="1 ockRegi stry"

group-ti meout =" 60000"

group-ti meout - expressi on="size() ge 2 ? 100 : -1"
schedul er ="t askSchedul er" />

expi re-group-upon-tineout="fal se" />

The id of the resequencer is optional.

The input channel of the resequencer. Required.

The channel to which the resequencer will send the reordered messages. Optional.

The channel to which the resequencer will send the messages that timed out (if send- parti al -

resul t-on-tineout is false). Optional.

O Whether to send out ordered sequences as soon as they are available, or only after the whole
message group arrives. Optional (false by default).

0 Avreference to a MessageG oupSt or e that can be used to store groups of messages under their
correlation key until they are complete. Optional with default a volatile in-memory store.

0 Whether, upon the expiration of the group, the ordered group should be sent out (even if some of
the messages are missing). Optional (false by default). See the section called “Managing State in
an Aggregator: MessageGroupStore”.

0 The timeout interval to wait when sending a reply Message to the out put-channel

or di scard-channel . Defaults to -1 - blocking indefinitely. It is applied only if the

I Ay |

4.3.18.RELEASE Spring Integration 91

Spring Integration Reference Manual

output channel has some sending limitations, e.g. QueueChannel with a fixed capacity.
In this case a MessageDel i ver yExcepti on is thrown. The send-ti neout is ignored in
case of Abstract Subscri babl eChannel implementations. In case of group-ti meout (-
expr essi on) the MessageDel i ver yExcept i on from the scheduled expire task leads this task
to be rescheduled. Optional.

0 Areference to a bean that implements the message correlation (grouping) algorithm. The bean can
be an implementation of the Cor r el at i onSt r at egy interface or a POJO. In the latter case the
correlation-strategy-method attribute must be defined as well. Optional (by default, the aggregator
will use the | nt egr at i onMessageHeader Accessor . CORRELATI ON_I| D header).

O A method defined on the bean referenced by correl ati on-strat egy, that implements the
correlation decision algorithm. Optional, with restrictions (requires corr el ati on-str at egy to
be present).

A SpEL expression representing the correlation strategy. Example: " headers[' foo']". Only
oneofcorrel ati on-strategy orcorrel ati on-strategy-expression is allowed.

A reference to a bean that implements the release strategy. The bean can be an implementation
of the Rel easeStrategy interface or a POJO. In the latter case the release-strategy-
method attribute must be defined as well. Optional (by default, the aggregator will use the
I nt egr ati onMessageHeader Accessor . SEQUENCE_SI ZE header attribute).

A method defined on the bean referenced by rel ease-strategy, that implements the
completion decision algorithm. Optional, with restrictions (requires r el ease- strat egy to be
present).

A SpEL expression representing the release strategy; the root object for the expression is a
Col | ecti on of Message s. Example: "si ze() == 5". Only one of rel ease-strat egy or
rel ease-strat egy- expressi on is allowed.

Only applies if a MessageG oupSt oreReaper is configured for the <resequcencer>
MessagesSt or e. By default, when a MessageG oupSt or eReaper is configured to expire partial
groups, empty groups are also removed. Empty groups exist after a group is released normally.
This is to enable the detection and discarding of late-arriving messages. If you wish to expire empty
groups on a longer schedule than expiring partial groups, set this property. Empty groups will then
not be removed from the MessagesSt or e until they have not been modified for at least this number
of milliseconds. Note that the actual time to expire an empty group will also be affected by the
reaper’s timeout property and it could be as much as this value plus the timeout.

See the section called “Configuring an Aggregator with XML”".

See the section called “Configuring an Aggregator with XML”".

See the section called “Configuring an Aggregator with XML".

See the section called “Configuring an Aggregator with XML”".

When a group is completed due to a timeout (or by a MessageG oupSt or eReaper), the empty
group’s metadata is retained by default. Late arriving messages will be immediately discarded. Set
this to t r ue to remove the group completely; then, late arriving messages will start a new group
and won't be discarded until the group again times out. The new group will never be released
normally because of the "hole" in the sequence range that caused the timeout. Empty groups can
be expired (completely removed) later using a MessageG oupSt or eReaper together with the
enpt y- group- m n-ti nmeout attribute. Default: false.

Note

Since there is no custom behavior to be implemented in Java classes for resequencers, there is
no annotation support for it.

4.3.18.RELEASE Spring Integration 92

Spring Integration Reference Manual

6.6 Message Handler Chain

Introduction

The MessageHandl er Chai n is an implementation of MessageHandl er that can be configured as
a single Message Endpoint while actually delegating to a chain of other handlers, such as Filters,
Transformers, Splitters, and so on. This can lead to a much simpler configuration when several handlers
need to be connected in a fixed, linear progression. For example, it is fairly common to provide a
Transformer before other components. Similarly, when providing a Filter before some other component
in a chain, you are essentially creating a Selective Consumer. In either case, the chain only requires
a single i nput - channel and a single out put - channel eliminating the need to define channels for
each individual component.

Tip

Spring Integration’s Fi | t er provides a boolean property t hr owExcepti onOnRej ecti on.
When providing multiple Selective Consumers on the same point-to-point channel with different
acceptance criteria, this value should be set to true (the default is false) so that the dispatcher
will know that the Message was rejected and as a result will attempt to pass the Message on to
other subscribers. If the Exception were not thrown, then it would appear to the dispatcher as if
the Message had been passed on successfully even though the Filter had dropped the Message
to prevent further processing. If you do indeed want to "drop" the Messages, then the Filter's
discard-channel might be useful since it does give you a chance to perform some operation with
the dropped message (e.g. send to a IMS queue or simply write to a log).

The handler chain simplifies configuration while internally maintaining the same degree of loose
coupling between components, and it is trivial to modify the configuration if at some point a non-linear
arrangement is required.

Internally, the chain will be expanded into a linear setup of the listed endpoints, separated by anonymous
channels. The reply channel header will not be taken into account within the chain: only after the last
handler is invoked will the resulting message be forwarded on to the reply channel or the chain’s output
channel. Because of this setup all handlers except the last required to implement the MessageProducer
interface (which provides a setOutputChannel() method). The last handler only needs an output channel
if the outputChannel on the MessageHandlerChain is set.

Note

As with other endpoints, the out put - channel is optional. If there is a reply Message at the
end of the chain, the output-channel takes precedence, but if not available, the chain handler will
check for a reply channel header on the inbound Message as a fallback.

In most cases there is no need to implement MessageHandlers yourself. The next section will focus on
namespace support for the chain element. Most Spring Integration endpoints, like Service Activators
and Transformers, are suitable for use within a MessageHand| er Chai n.

Configuring a Chain

The <chain> element provides an i nput - channel attribute, and if the last element in the chain is
capable of producing reply messages (optional), it also supports an out put - channel attribute. The

4.3.18.RELEASE Spring Integration 93

http://www.eaipatterns.com/MessageSelector.html

Spring Integration Reference Manual

sub-elements are then filters, transformers, splitters, and service-activators. The last element may also
be a router or an outbound-channel-adapter.

<int:chain input-channel ="input" output-channel ="out put">
<int:filter ref="sonmeSel ector" throw exception-on-rejection="true"/>
<i nt:header-enricher>
<i nt:header nane="foo" value="bar"/>
</int:header-enricher>
<int:service-activator ref="sonmeService" nmethod="someMet hod"/>

</int:chai n>

The <header-enricher> element used in the above example will set a message header named "foo" with
a value of "bar" on the message. A header enricher is a specialization of Tr ansf or mer that touches
only header values. You could obtain the same result by implementing a MessageHandler that did the
header modifications and wiring that as a bean, but the header-enricher is obviously a simpler option.

The <chain> can be configured as the last black-box consumer of the message flow. For this solution it
is enough to put at the end of the <chain> some <outbound-channel-adapter>:

<int:chain input-channel ="i nput">
<int-xm :marshal | i ng-transfornmer marshall er="marshal ler" result-type="StringResult" />
<int:service-activator ref="someService" nethod="soneMet hod"/>
<i nt: header-enricher>
<i nt:header nane="foo" val ue="bar"/>
</int:header-enricher>
<i nt:| oggi ng- channel - adapter |evel ="I NFO' | og-full-nmessage="true"/>
</int:chai n>

Disallowed Attributes and Elements

It is important to note that certain attributes, such as order and input-channel are not allowed to be
specified on components used within a chain. The same is true for the poller sub-element.

Important

For the Spring Integration core components, the XML Schema itself will enforce some of
these constraints. However, for non-core components or your own custom components, these
constraints are enforced by the XML namespace parser, not by the XML Schema.

These XML namespace parser constraints were added with Spring Integration 2.2. The XML
namespace parser will throw an BeanDefi ni ti onParsi ngExcepti on if you try to use
disallowed attributes and elements.

'id" Attribute

Beginning with Spring Integration 3.0, if a chain element is given an id, the bean name for the element is
a combination of the chain’s id and the id of the element itself. Elements without an id are not registered
as beans, but they are given conponent Nane s that include the chain id. For example:
<int:chain id="fooChain" input-channel ="input">
<int:service-activator id="fooService" ref="sonmeService" nethod="soneMethod"/>

<int:object-to-json-transforner/>
</i nt: chai n>

» The <chai n> root element has an id fooChain. So, the Abstract Endpoi nt implementation
(Pol 1'i ngConsumer or Event Dri venConsuner , depending on the input-channel type) bean takes
this value as it's bean name.

4.3.18.RELEASE Spring Integration 94

Spring Integration Reference Manual

The MessageHandl er Chai n bean acquires a bean alias fooChain.handler, which allows direct
access to this bean from the BeanFact ory.

The <servi ce-acti vator> is not a fully-fledged Messaging Endpoint (Pol | i ngConsurmer or
Event Dri venConsuner) - it is simply a MessageHand!| er within the <chai n>. In this case, the
bean name registered with the BeanFact or y is fooChain$child.fooService.handler.

The componentName of this Ser vi ceAct i vat i ngHandl er takes the same value, but without the
.handler suffix - fooChain$child.fooService.

The last <chai n> sub-component, <obj ect-to-j son-transforner>, doesn’'t have an id
attribute. Its componentName is based on its position in the <chai n>. In this case, it is fooChain
$child#1. (The final element of the name is the order within the chain, beginning with #0). Note, this
transformer isn’t registered as a bean within the application context, so, it doesn’t get a beanName,
however its componentName has a value which is useful for logging etc.

The id attribute for <chai n> elements allows them to be eligible for IMX export and they are trackable
via Message History. They can also be accessed from the BeanFact or y using the appropriate bean

name as discussed above.

Tip

It is useful to provide an explicit id attribute on <chai n> s to simplify the identification of sub-
components in logs, and to provide access to them from the BeanFact or y etc.

Calling a Chain from within a Chain

Sometimes you need to make a nested call to another chain from within a chain and then come back and
continue execution within the original chain. To accomplish this you can utilize a Messaging Gateway

by including a <gateway> element. For example:

<i nt: header-enricher>

<int:header nanme="nane" val ue="Many" />
</int:header-enricher>
<int:service-activator>

<bean cl ass="org. f 0o. Sanpl eServi ce" />
</int:service-activator>
<int:gateway request-channel ="inputA'/>

</int:chai n>

<int:chain id="nested-chai n-a" input-channel ="i nput A">
<i nt: header-enricher>
<int:header nanme="nane" val ue="NMe" />
</int:header-enricher>
<i nt:gateway request-channel ="i nputB"/>
<int:service-activator>
<bean cl ass="org. f 00. Sanpl eServi ce" />
</int:service-activator>
</int:chai n>

<int:chain id="nested-chai n-b" input-channel ="i nputB">
<i nt:header-enricher>
<i nt:header name="name" val ue="Jack" />
</int:header-enricher>
<int:service-activator>
<bean cl ass="org. f 00. Sanpl eServi ce" />
</int:service-activator>
</int:chai n>

<int:chain id="nmain-chain" input-channel ="in" output-channel ="out">

4.3.18.RELEASE Spring Integration

95

Spring Integration Reference Manual

In the above example the nested-chain-a will be called at the end of main-chain processing by the
gateway element configured there. While in nested-chain-a a call to a nested-chain-b will be made after
header enrichment and then it will come back to finish execution in nested-chain-b. Finally the flow
returns to the main-chain. When the nested version of a <gateway> element is defined in the chain, it
does not require the ser vi ce- i nt er f ace attribute. Instead, it simple takes the message in its current
state and places it on the channel defined via the r equest - channel attribute. When the downstream
flow initiated by that gateway completes, a Message will be returned to the gateway and continue its
journey within the current chain.

6.7 Scatter-Gather

Introduction

Starting with version 4.1, Spring Integration provides an implementation of the Scatter-Gather Enterprise
Integration Pattern. It is a compound endpoint, where the goal is to send a message to the recipients
and aggregate the results. Quoting the EIP Book, it is a component for scenarios like best quote, when
we need to request information from several suppliers and decide which one provides us with the best
term for the requested item.

Previously, the pattern could be configured using discrete components, this enhancement brings more
convenient configuration.

The Scat t er Gat her Handl er is a request-reply endpoint that combines
a Publ i shSubscri beChannel (or Reci pi ent Li st Rout er) and an
Aggr egat i ngMessageHand!| er. The request message is sent to the scatter channel and the
Scat t er Gat her Handl er waits for the reply from the aggregator to sends to the out put Channel .

Functionality

The Scatter-Gather pattern suggests two scenarios - Auction and Distribution. In both
cases, the aggregation function is the same and provides all options available for
the Aggregati ngMessageHandl er. Actually the Scatter Gat her Handl er just requires an
Aggr egat i ngMessageHand| er as a constructor argument. See Section 6.4, “Aggregator” for more
information.

Auction

The Auction Scatt er - Gat her variant uses publ i sh- subscri be logic for the request message,
where the scatter channel is a Publ i shSubscri beChannel with appl y-sequence="true".
However, this channel can be any MessageChannel implementation as is the case with the r equest -
channel in the Cont ent Enri cher (see Section 7.2, “Content Enricher”) but, in this case, the end-
user should support his own custom corr el ati onSt r at egy for the aggr egat i on function.

Distribution

The Distribution Scatt er- Gat her variant is based on the Reci pi entLi st Router (see the
section called “RecipientListRouter”) with all available options for the Reci pi ent Li st Rout er. This
is the second Scatt er Gat her Handl er constructor argument. If you want to rely just on the
default correl ati onStrategy for the recipient-list-router and the aggregator, you
should specify appl y- sequence="t r ue" . Otherwise, a custom correl ati onSt r at egy should be
supplied for the aggr egat or . Unlike the Publ i shSubscri beChannel (Auction) variant, having a
reci pient-list-router sel ector option, we can filter target suppliers based on the message.
With appl y- sequence="t rue" the default sequenceSi ze will be supplied and the aggr egat or

4.3.18.RELEASE Spring Integration 96

http://www.eaipatterns.com/BroadcastAggregate.html

Spring Integration Reference Manual

will be able to release the group correctly. The Distribution option is mutually exclusive with the Auction
option.

In both cases, the request (scatter) message is enriched with the gat her Resul t Channel
QueueChannel header, to wait for a reply message from the aggr egat or .

By default, all suppliers should send their result to the r epl yChannel header (usually by omitting the
out put - channel from the ultimate endpoint). However, the gat her Channel option is also provided,
allowing suppliers to send their reply to that channel for the aggregation.

Configuring a Scatter-Gather Endpoint

For Java and Annotation configuration, the bean definition for the Scat t er - Gat her is:

@Bean
publ i c MessageHandl er distributor() {
Reci pi ent Li st Router router = new Reci pi entLi st Router();
rout er. set Appl ySequence(true);
rout er. set Channel s(Arrays. asLi st (di stributi onChannel 1(), distributionChannel 2(),
di stributionChannel 3()));
return router;

}

@Bean
publ i c MessageHandl er gatherer() {
return new Aggregati ngMessageHand! er (
new Expressi onEval uati ngMessageG oupProcessor ("~[payl oad gt 5] ?: -1D"),
new Si npl eMessageStore(),
new Header AttributeCorrel ationStrategy(
I nt egr at i onMessageHeader Accessor . CORRELATI ON_I D) ,

new Expressi onEval uati ngRel easeStrategy("size() == 2"));
}
@Bean
@ber vi ceAct i vat or (i nput Channel = "di stri butionChannel ")

publ i c MessageHandl er scatterGatherDistribution() {
Scatt er Gat her Handl er handl er = new Scatt er Gat her Handl er (di stri butor (), gatherer());
handl er . set Qut put Channel (out put ());
return handl er;

}

Here, we configure the Reci pi ent Li st Rout er di stri but or bean, withappl ySequence="true"
and the list of recipient channels. The next bean is for an Aggr egat i ngMessageHandl er . Finally,
we inject both those beans into the Scatt er Gat her Handl er bean definition and mark it as a
@ber vi ceAct i vat or to wire the Scatter-Gather component into the integration flow.

Configuring the <scat t er - gat her > endpoint using the XML namespace:

<scatter-gat her
id="" 0O
auto-startup="" 0O
i nput - channel ="" 0O
out put - channel ="" 0O
scatter-channel ="" O
gat her-channel ="" 0O
order="" 0O
phase="" 0O
send-tinmeout="" 0O
gat her-tineout="" [
requires-reply="" >
<scatterer/>
<gat herer/>
</ scatter-gat her>

4.3.18.RELEASE Spring Integration 97

Spring Integration Reference Manual

The id of the Endpoint. The Scatter Gat her Handl er bean is registered with id +
' . handl er' alias. The Reci pi entListRouter - with id + '.scatterer'. And the
Aggr egat i ngMessageHandl er withid + '.gatherer'. Optional (a default id is generated
value by BeanFact ory).

Lifecycle attribute signaling if the Endpoint should be started during Application Context
initialization. In addition, the Scat t er Gat her Handl er also implements Li f ecycl e and starts/
stops the gat her Endpoi nt, which is created internally if a gat her - channel is provided.
Optional (default is t r ue).

The channel to receive request messages to handle them in the Scatt er Gat her Handl er.
Required.

The channel to which the Scatter-Gather will send the aggregation results. Optional (because
incoming messages can specify a reply channel themselves via repl yChannel Message
Header).

The channel to send the scatter message for the Auction scenario. Optional. Mutually exclusive
with <scat t er er > sub-element.

The channel to receive replies from each supplier for the aggregation. is used
as the replyChannel header in the scatter message. Optional. By default the
Fi xedSubscri ber Channel is created.

Order of this component when more than one handler is subscribed to the same DirectChannel
(use for load balancing purposes). Optional.

Specify the phase in which the endpoint should be started and stopped. The startup order proceeds
from lowest to highest, and the shutdown order is the reverse of that. By default this value is
Integer. MAX_VALUE meaning that this container starts as late as possible and stops as soon as
possible. Optional.

The timeout interval to wait when sending a reply Message to the out put-channel.
By default the send will block for one second. It applies only if the output channel
has some sending limitations, e.g. a QueueChannel with a fixed capacity and is full. In
this case, a MessageDel i ver yExcepti on is thrown. The send-ti neout is ignored in
case of Abstract Subscri babl eChannel implementations. In case of group-ti nmeout (-
expr essi on) the MessageDel i ver yExcept i on from the scheduled expire task leads this task
to be rescheduled. Optional.

Allows you to specify how long the Scatter-Gather will wait for the reply message before returning.
By default it will wait indefinitely. null is returned if the reply times out. Optional. Defaults to - 1 -
indefinitely.

Specify whether the Scatter-Gather must return a non-null value. This value is t r ue by default,
hence a Repl yRequi r edExcept i on will be thrown when the underlying aggregator returns a
null value after gat her - ti neout . Note, if nul | is a possibility, the gat her - t i nreout should be
specified to avoid an indefinite wait.

The <recipient-1ist-router> options. Optional. Mutually exclusive with scatter-
channel attribute.

The <aggr egat or > options. Required.

6.8 Thread Barrier

Sometimes, we need to suspend a message flow thread until some other asynchronous event occurs.
For example, consider an HTTP request that publishes a message to RabbitMQ. We might wish to
not reply to the user until the RabbitMQ broker has issued an acknowledgment that the message was
received.

4.3.18.RELEASE Spring Integration 98

Spring Integration Reference Manual

Spring Integration version 4.2 introduced the <barrier/> component for this purpose. The
underlying MessageHandl er is the Barri er MessageHandl er; this class also implements
MessageTri gger Acti on where a message passed to the trigger() method releases a
corresponding thread in the handl eRequest Message() method (if present).

The suspended thread and trigger thread are correlated by invoking a Correl ati onStr at egy
on the messages. When a message is sent to the i nput - channel , the thread is suspended for
up to ti meout milliseconds, waiting for a corresponding trigger message. The default correlation
strategy uses the | nt egr ati onMessageHeader Accessor. CORRELATI ON_| D header. When a
trigger message arrives with the same correlation, the thread is released. The message sent to
the out put - channel after release is constructed using a MessageG oupPr ocessor . By default,
the message is a Col | ecti on<?> of the two payloads and the headers are merged, using a
Def aul t Aggr egat i ngMessageG oupPr ocessor .

Caution

Ifthet ri gger () method is invoked first (or after the main thread times out), it will be suspended
foruptoti meout waiting for the suspending message to arrive. If you do not want to suspend the
trigger thread, consider handing off to a TaskExecut or instead so its thread will be suspended
instead.

The requi res-repl y property determines the action if the suspended thread times out before the
trigger message arrives. By default, it is f al se which means the endpoint simply returns nul | , the flow
ends and the thread returns to the caller. When t r ue, a Repl yRequi r edExcept i on is thrown.

You can call the trigger () method programmatically (obtain the bean reference using the name
barri er. handl er - where barrier is the bean name of the barrier endpoint) or you can configure an
<out bound- channel - adapt er/ > to trigger the release.

Important

Only one thread can be suspended with the same correlation; the same correlation can be used
multiple times but only once concurrently. An exception is thrown if a second thread arrives with
the same correlation.

<int:barrier id="barrierl" input-channel ="in" output-channel ="out"
correl ati on-strategy-expressi on="headers[' nyHeader']"
out put - pr ocessor =" myQut put Pr ocessor "
di scar d- channel ="| at eTri gger Channel "
timeout ="10000" >
</int:barrier>

<i nt: out bound- channel - adapt er channel ="rel ease" ref="barrier1. handl er" nmethod="trigger" />

In this example, a custom header is used for correlation. Either the thread sending a message to i n
or the one sending a message to r el ease will wait for up to 10 seconds until the other arrives. When
the message is released, the out channel will be sent a message combining the result of invoking the
custom MessageG oupPr ocessor bean nyQut put Processor . If the main thread times out and a
trigger arrives later, you can configure a discard channel to which the late trigger will be sent. Java
configuration is shown below.

4.3.18.RELEASE Spring Integration 99

Spring Integration Reference Manual

@onfi guration
@Enabl el nt egrati on
public class Config {

@er vi ceAct i vat or (i nput Channel ="i n")
@Bean
public BarrierMessageHandl er barrier() {
Barri er MessageHandl er barrier = new Barrier MessageHandl er (10000) ;
barri er. set Qut put Channel (out());
barrier.setDi scardChannel (I ateTriggers());
return barrier;

}

@ervi ceActivator (inputChannel ="rel ease")
@ean
public MessageHandl er releaser() {

return new MessageHandl er () {

@verride
public voi d handl eMessage(Message<?> nessage) throws Messagi ngException {
barrier().trigger(nmessage);

}

See the barrier sample application for an example of this component.

4.3.18.RELEASE Spring Integration 100

https://github.com/spring-projects/spring-integration-samples/tree/master/basic/barrier

Spring Integration Reference Manual

7. Message Transformation

7.1 Transformer

Introduction

Message Transformers play a very important role in enabling the loose-coupling of Message Producers
and Message Consumers. Rather than requiring every Message-producing component to know what
type is expected by the next consumer, Transformers can be added between those components.
Generic transformers, such as one that converts a String to an XML Document, are also highly reusable.

For some systems, it may be best to provide a Canonical Data Model, but Spring Integration’s general
philosophy is not to require any particular format. Rather, for maximum flexibility, Spring Integration
aims to provide the simplest possible model for extension. As with the other endpoint types, the use of
declarative configuration in XML and/or Annotations enables simple POJOs to be adapted for the role
of Message Transformers. These configuration options will be described below.

Note

For the same reason of maximizing flexibility, Spring does not require XML-based Message
payloads. Nevertheless, the framework does provide some convenient Transformers for dealing
with XML-based payloads if that is indeed the right choice for your application. For more
information on those transformers, see Chapter 35, XML Support - Dealing with XML Payloads.

Configuring Transformer
Configuring Transformer with XML

The <transformer> element is used to create a Message-transforming endpoint. In addition to "input-
channel" and "output-channel" attributes, it requires a "ref". The "ref" may either point to an Object that
contains the @Transformer annotation on a single method (see below) or it may be combined with an
explicit method name value provided via the "method" attribute.

<int:transforner id="testTransfornmer" ref="testTransfornerBean" input-channel ="i nChannel"
nmet hod="t ransf ornf' out put - channel =" out Channel "/ >
<beans: bean i d="t est Transf or mer Bean" cl ass="org. foo. Test Transfornmer" />

Using a r ef attribute is generally recommended if the custom transformer handler implementation
can be reused in other <transf ormer > definitions. However if the custom transformer handler
implementation should be scoped to a single definition of the <t r ansf or mer >, you can define an inner
bean definition:

<int:transformer id="testTransforner" input-channel="inChannel" nethod="transf ornf
out put - channel =" out Channel ">
<beans: bean cl ass="org. f0o. Test Transfornmer"/>
</ transformer>

Note

Using both the "ref" attribute and an inner handler definition in the same <t ransf or mer >
configuration is not allowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

4.3.18.RELEASE Spring Integration 101

http://www.eaipatterns.com/CanonicalDataModel.html

Spring Integration Reference Manual

Important

If the "ref" attribute references a bean that extends Abstract MessagePr oduci ngHandl er
(such as transformers provided by the framework itself), the configuration is optimized by injecting
the output channel into the handler directly. In this case, each "ref* must be to a separate
bean instance (or a pr ot ot ype-scoped bean), or use the inner <bean/ > configuration type.
If you inadvertently reference the same message handler from multiple beans, you will get a
configuration exception.

When using a POJO, the method that is used for transformation may expect either the Message type
or the payload type of inbound Messages. It may also accept Message header values either individually
or as a full map by using the @Header and @Header s parameter annotations respectively. The return
value of the method can be any type. If the return value is itself a Message, that will be passed along
to the transformer’s output channel.

As of Spring Integration 2.0, a Message Transformer’s transformation method can no longer return
nul | . Returning nul | will result in an exception since a Message Transformer should always be
expected to transform each source Message into a valid target Message. In other words, a Message
Transformer should not be used as a Message Filter since there is a dedicated <fi | t er > option for
that. However, if you do need this type of behavior (where a component might return NULL and that
should not be considered an error), a service-activator could be used. Its r equi r es-r epl y value is
FALSE by default, but that can be set to TRUE in order to have Exceptions thrown for NULL return
values as with the transformer.

Transformers and Spring Expression Language (SpEL)

Just like Routers, Aggregators and other components, as of Spring Integration 2.0 Transformers can
also benefit from SpEL support (http://docs.spring.io/spring/docs/current/spring-framework-reference/
html/expressions.html) whenever transformation logic is relatively simple.

<int:transforner input-channel ="inChannel"
out put - channel =" out Channel "
expressi on="payl oad. t oUpperCase() + '- [' + T(java.lang.System).currentTimeMIlis() + ']'"/>

In the above configuration we are achieving a simple transformation of the payload with a simple SpEL
expression and without writing a custom transformer. Our payload (assuming String) will be upper-cased
and concatenated with the current timestamp with some simple formatting.

Common Transformers
There are also a few Transformer implementations available out of the box.
Object-to-String Transformer

Because, it is fairly common to use the t oSt ri ng() representation of an Object, Spring Integration
provides an Qbj ect ToSt ri ngTr ansf or mer whose output is a Message with a String payl oad. That
String is the result of invoking the t oSt ri ng() operation on the inbound Message’s payload.

<int:object-to-string-transfornmer input-channel ="in" output-channel ="out"/>

A potential example for this would be sending some arbitrary object to the outbound-channel-adapter in
the file namespace. Whereas that Channel Adapter only supports String, byte-array, orj ava. i o. Fi |l e
payloads by default, adding this transformer immediately before the adapter will handle the necessary
conversion. Of course, that works fine as long as the result of the t oSt ri ng() call is what you want

4.3.18.RELEASE Spring Integration 102

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Spring Integration Reference Manual

to be written to the File. Otherwise, you can just provide a custom POJO-based Transformer via the
generic transformer element shown previously.

Tip

When debugging, this transformer is not typically necessary since the logging-channel-adapter is
capable of logging the Message payload. Refer to the section called “Wire Tap” for more detail.

Note

The object-to-string-transformer is very simple; it invokes t oSt ri ng() on the inbound payload.
There are two exceptions to this (since 3.0): if the payload is a char[], it invokes new
String(payl oad) ;ifthe payloadisabyt e[], itinvokes new Stri ng(payl oad, charset),
where char set is "UTF-8" by default. The char set can be modified by supplying the charset
attribute on the transformer.

For more sophistication (such as selection of the charset dynamically, at runtime), you can use a
SpEL expression-based transformer instead; for example:

<int:transformer input-channel ="in" output-channel ="out"
expressi on="new j ava. |l ang. Stri ng(payl oad, headers[' nyCharset']" />

If you need to serialize an Object to a byte array or deserialize a byte array back into an Object, Spring
Integration provides symmetrical serialization transformers. These will use standard Java serialization
by default, but you can provide an implementation of Spring 3.0’s Serializer or Deserializer strategies
via the serializer and deserializer attributes, respectively.

<int:payl oad-serializing-transforner input-channel ="objectsln" output-channel ="bytesQut"/>

<i nt: payl oad-deseri al i zi ng-transforner input-channel ="bytesln" output-channel ="obj ectsQut"
whi te-list="comnmycom *, com yourcom *"/>

Important

When deserializing data from untrusted sources, you should consider adding a whi t e-1i st of
package/class patterns. By default, all classes will be deserialized.

Object-to-Map and Map-to-Object Transformers

Spring Integration also provides Object-to-Map and Map-to-Object transformers which utilize the Spring
Expression Language (SpEL) to serialize and de-serialize the object graphs. The object hierarchy is
introspected to the most primitive types (String, int, etc.). The path to this type is described via SpEL,
which becomes the key in the transformed Map. The primitive type becomes the value.

For example:

public class Parent{
private Child child;
private String nane;
/] setters and getters are onmitted

}

public class Child{
private String nane;
private List<String> nickNanes;
/] setters and getters are onmitted

4.3.18.RELEASE Spring Integration 103

Spring Integration Reference Manual

..will be transformed to a Map which looks like this: {person. nane=Geor ge,
per son. chi | d. nane=Jenna, person. child. ni ckNanes[0]=Binbo ... etc}

The SpEL-based Map allows you to describe the object structure without sharing the actual types
allowing you to restore/rebuild the object graph into a differently typed Object graph as long as you
maintain the structure.

For example: The above structure could be easily restored back to the following Object graph via the
Map-to-Object transformer:

public class Father {
private Kid child;
private String nane;
/] setters and getters are onmitted

}

public class Kid {
private String nane;
private List<String> nickNanes;
/] setters and getters are omitted

If you need to create a "structured” map, you can provide the flatten attribute. The default value for this
attribute is true meaning the default behavior; if you provide a false value, then the structure will be a
map of maps.

For example:

public class Parent {
private Child child;
private String nane;
/] setters and getters are omtted

}

public class Child {

private String nane;

private List<String> ni ckNares;

/] setters and getters are omtted

}

...will be transformed to a Map which looks like this: { name=George, chil d={nanme=Jenna,
ni ckNanes=[Bi nbo, ...]}}

To configure these transformers, Spring Integration provides namespace support Object-to-Map:

<int:obj ect-to-map-transfornmer input-channel ="directlnput" output-channel ="output"/>

or

<int:object-to-map-transfornmer input-channel ="directlnput" output-channel ="output” flatten="fal se"/>

Map-to-Object

<i nt: map-to-obj ect-transforner input-channel ="input"
out put - channel =" out put "
type="org. f oo. Person"/>

or

<i nt: map-to- obj ect-transforner input-channel ="inputA"
out put - channel =" out put A"
ref="person"/>

<bean id="person" class="org.foo0.Person" scope="prototype"/>

4.3.18.RELEASE Spring Integration 104

Spring Integration Reference Manual

Note

NOTE: ref and type attributes are mutually exclusive. You can only use one. Also, if using the
ref attribute, you must point to a prototype scoped bean, otherwise a BeanCreationException will
be thrown.

Stream Transformer

The St r eanr ansf or mer transforms | nput St r eampayloadstoabyte[] oraStri ngifacharset
is provided.

<int:streamtransforner input-channel ="directlnput" output-channel ="output"/> <!-- byte[] -->

<int:streamtransforner id="w thCharset" charset="UTF-8"
i nput - channel =" char set Channel " out put - channel ="output"/> <!-- String -->

@Bean
@ ansf or mer (i nput Channel = "streani, outputChannel = "data")
public Streaniransfornmer streanToBytes() {

return new Streaniransfornmer(); // transforns to byte[]

}

@Bean
@ ansf or mer (i nput Channel = "streani, outputChannel = "data")
public Streaniransforner streanToString() {

return new Streaniransfornmer("UTF-8"); // transfornms to String

}

JSON Transformers

Object to JSON and JSON to Object transformers are provided.

<int:object-to-json-transformer input-channel ="objectMapper!nput"/>

<int:json-to-object-transformer input-channel ="objectMapper!nput"
type="f oo. MyDomai nQbj ect "/ >

These use a vanilla JsonOhj ect Mapper by default based on implementation from classpath. You can
provide your own custom JsonQbj ect Mapper implementation with appropriate options or based on
required library (e.g. GSON).

<int:]son-to-object-transformer input-channel ="objectMpperlnput"
type="f oo. MyDomai nCbj ect” obj ect - mapper =" cust onChj ect Mapper "/ >

Note

Beginning with version 3.0, the obj ect - mapper attribute references an instance of a new
strategy interface JsonObj ect Mapper . This abstraction allows multiple implementations of json
mappers to be used. Implementations that wraphttps://github.com/RichardHightower/boon[Boon]
and Jackson 2 are provided, with the version being detected on the classpath. These classes are
BoonJsonObj ect Mapper and Jackson2Jsonhj ect Mapper .

Note, BoonJsonCbj ect Mapper is provided since version 4.1.

Important

If there are requirements to use both Jackson libraries and/or Boon in the same application, keep
in mind that before version 3.0, the JSON transformers used only Jackson 1.x. From 4.1 on, the

4.3.18.RELEASE Spring Integration 105

https://github.com/FasterXML

Spring Integration Reference Manual

framework will select Jackson 2 by default ahead of the Boon implementation if both are on the
classpath. Jackson 1.x is no longer supported by the framework internally but, of course, you
can still use it within your code. To avoid unexpected issues with JISON mapping features, when
using annotations, there may be a need to apply annotations from both Jacksons and/or Boon
on domain classes:

@r g. codehaus. j ackson. annot at e. Jsonl gnor eProperti es(i gnor eUnknown=t r ue)
@om fasterxmn .jackson. annot ati on. Jsonl gnor eProperti es(i gnoreUnknown=t r ue)
@r g. boon. j son. annot at i ons. Jsonl gnor eProperties("foo")

public class Foo {

@r g. codehaus. j ackson. annot at e. JsonProperty("fooBar")
@om fasterxn . jackson. annot ati on. JsonProperty("fooBar")
@r g. boon. j son. annot at i ons. JsonProperty("fooBar")

public Cbject bar;

You may wish to consider using a FactoryBean or simple factory method to create the

JsonObj ect Mapper with the required characteristics.

public class Object Mapper Factory {

public static Jackson2JsonObj ect Mapper get Mapper () {
Obj ect Mapper mapper = new Obj ect Mapper () ;
mapper . confi gure(JsonPar ser. Feat ure. ALLONV COMVENTS, true);
return new Jackson2JsonObj ect Mapper (mapper) ;

<bean id="cust onbj ect Mapper" cl ass="fo0o. bj ect Mapper Fact ory"
fact ory-net hod="get Mapper"/ >

Important

Beginning with version 2.2, the obj ect -t 0-j son-tr ansf or ner sets the content-type header
to appl i cati on/j son, by default, if the input message does not already have that header
present.

It you wish to set the content type header to some other value, or explicitly overwrite any existing
header with some value (including appl i cati on/j son), use the cont ent -t ype attribute. If
you wish to suppress the setting of the header, set the cont ent -t ype attribute to an empty
string (" "). This will result in a message with no cont ent -t ype header, unless such a header
was present on the input message.

Beginning with version 3.0, the Cbj ect ToJsonTr ansf or mer adds headers, reflecting the source
type, to the message. Similarly, the JsonToObj ect Tr ansf or mer can use those type headers when
converting the JSON to an object. These headers are mapped in the AMQP adapters so that they are

entirely compatible with the Spring-AMQP JsonMessageConverter.
This enables the following flows to work without any special configuration...
.. ->angp- out bound- adapter---->

- --->angp- i nbound- adapt er - > son-t o- obj ect-transforner->. ..

Where the outbound adapter is configured with a JsonMessageConver t er and the inbound adapter

uses the default Si npl eMessageConverter.

4.3.18.RELEASE Spring Integration

106

http://docs.spring.io/spring-amqp/api/

Spring Integration Reference Manual

...->0bj ect-to-json-transforner->angp-out bound- adapter---->
- --->angp- i nbound- adapter->. ..

Where the outbound adapter is configured with a Si npl eMessageConvert er and the inbound adapter
uses the default JsonMessageConverter.

..->0bj ect-to-json-transforner->anqgp-out bound-adapter---->
- --->angp- i nbound- adapt er - >j son-t o- obj ect -t ransf or mer->

Where both adapters are configured with a Si npl eMessageConvert er.

Note

When using the headers to determine the type, you should not provide a cl ass attribute, because
it takes precedence over the headers.

In addition to JSON Transformers, Spring Integration provides a built-in #jsonPath SpEL function for
use in expressions. For more information see Appendix A, Spring Expression Language (SpEL).

#xpath SpEL Function

Since version 3.0, Spring Integration also provides a built-in #xpath SpEL function for use in expressions.
For more information see Section 35.9, “#xpath SpEL Function”.

Beginning with version 4.0, the Cbj ect ToJsonTr ansf or mer supports the r esul t Type property,
to specify the node JSON representation. The result node tree representation depends on the
implementation of the provided JsonCbj ect Mapper . By default, the Cbj ect ToJsonTr ansf or ner
uses a Jackson2JsonObj ect Mapper and delegates the conversion of the object to the node tree
to the Obj ect Mapper #val ueToTr ee method. The node JSON representation provides efficiency for
using the JsonPr oper t yAccessor , when the downstream message flow uses SpEL expressions with
access to the properties of the JSON data. See Section A.4, “PropertyAccessors”. When using Boon,
the NODE representation is a Map<St ri ng, Obj ect>

Configuring a Transformer with Annotations

The @' ansf or mer annotation can also be added to methods that expect either the Message type or
the message payload type. The return value will be handled in the exact same way as described above
in the section describing the <transformer> element.

@r ansf or mer
Order generateOrder(String productld) {
return new O der (productld);

}

Transformer methods may also accept the @Header and @Headers annotations that is documented
in Section F.6, “Annotation Support”

@r ansf or ner
Order generateOrder(String productld, @ieader("customerNane") String custoner) {
return new Order(productld, custoner);

}

Also see the section called “Advising Endpoints Using Annotations”.

4.3.18.RELEASE Spring Integration 107

Spring Integration Reference Manual

Header Filter

Some times your transformation use case might be as simple as removing a few headers. For such a
use case, Spring Integration provides a Header Filter which allows you to specify certain header names
that should be removed from the output Message (e.g. for security reasons or a value that was only
needed temporarily). Basically, the Header Filter is the opposite of the Header Enricher. The latter is
discussed in the section called “Header Enricher”.

<int:header-filter input-channel="inputChannel"
out put - channel =" out put Channel " header - nanmes="1 ast Nane, state"/>

As you can see, configuration of a Header Filter is quite simple. It is a typical endpoint with input/output
channels and a header - nanes attribute. That attribute accepts the names of the header(s) (delimited
by commas if there are multiple) that need to be removed. So, in the above example the headers named
lastName and state will not be present on the outbound Message.

Codec-Based Transformers

See Section 7.4, “Codec”.
7.2 Content Enricher

Introduction

At times you may have a requirement to enhance a request with more information than was provided by
the target system. The Content Enricher pattern describes various scenarios as well as the component
(Enricher), which allows you to address such requirements.

The Spring Integration Cor e module includes 2 enrichers:

» Header Enricher

» Payload Enricher

Furthermore, several Adapter specific Header Enrichers are included as well:

» XPath Header Enricher (XML Module)

» Mail Header Enricher (Mail Module)

« XMPP Header Enricher (XMPP Module)

Please go to the adapter specific sections of this reference manual to learn more about those adapters.

For more information regarding expressions support, please see Appendix A, Spring Expression
Language (SpEL).

Header Enricher

If you only need to add headers to a Message, and they are not dynamically determined by the Message
content, then referencing a custom implementation of a Transformer may be overkill. For that reason,
Spring Integration provides support for the Header Enricher pattern. It is exposed via the <header -
enri cher > element.

4.3.18.RELEASE Spring Integration 108

http://www.eaipatterns.com/DataEnricher.html

Spring Integration Reference Manual

<i nt:header-enricher input-channel ="in" output-channel ="out">
<i nt:header name="foo" val ue="123"/>
<int:header name="bar" ref="sonmeBean"/>
</int:header-enricher>

The Header Enricher also provides helpful sub-elements to set well-known header names.

<i nt:header-enricher input-channel ="in" output-channel ="out">
<int:error-channel ref="applicationErrorChannel"/>
<int:reply-channel ref="quoteReplyChannel"/>
<int:correlation-id val ue="123"/>
<int:priority val ue="H GHEST"/ >

<int:header name="bar" ref="sonmeBean"/>
</int:header-enricher>

<routing-slip value="channel 1; routingSlipRoutingStrategy; request.headers[nyRoutingSlipChannel]"/>

In the above configuration you can clearly see that for well-known headers such as er r or Channel ,
correlationld, priority, replyChannel, routing-slip etc., instead of using generic
<header> sub-elements where you would have to provide both header name and value, you can use

convenient sub-elements to set those values directly.

Starting with version 4.1 the Header Enricher provides r out i ng- sl i p sub-element. See the section

called “Routing Slip” for more information.

POJO Support

Often a header value cannot be defined statically and has to be determined dynamically based on some
content in the Message. That is why Header Enricher allows you to also specify a bean reference using
the r ef and net hod attribute. The specified method will calculate the header value. Let's look at the

following configuration:

<i nt:header-enricher input-channel ="in" output-channel ="out">
<int:header name="foo" nethod="conputeVal ue" ref="nyBean"/>
</int:header-enricher>

<bean id="nyBean" cl ass="foo. bar. M/Bean"/ >

public class MyBean {

public String conputeVal ue(String payl oad){
return payl oad.toUpper Case() + "_US";
}

You can also configure your POJO as inner bean:

<int:header-enricher input-channel ="inputChannel" out put-channel ="out put Channel ">

<i nt: header name="some_header" >
<bean cl ass="org. Wy Enri cher"/>
</i nt: header >
</int:header-enricher>

as well as point to a Groovy script:

<int:header-enricher input-channel ="inputChannel" out put-channel ="out put Channel ">

<i nt: header nanme="sone_header" >

<int-groovy:script |ocation="org/Sanpl eG oovyHeader Enri cher. groovy"/>

</int:header>
</int:header-enricher>

SpEL Support

4.3.18.RELEASE Spring Integration

109

Spring Integration Reference Manual

In Spring Integration 2.0 we have introduced the convenience of the Spring Expression Language
(SpEL) to help configure many different components. The Header Enricher is one of them. Looking
again at the POJO example above, you can see that the computation logic to determine the header
value is actually pretty simple. A natural question would be: "is there a simpler way to accomplish this?".
That is where SpEL shows its true power.

<i nt:header-enricher input-channel ="in" output-channel ="out">
<int:header name="foo0" expression="payl oad.toUpperCase() + '_US "/>
</int:header-enricher>

As you can see, by using SpEL for such simple cases, we no longer have to provide a separate class
and configure it in the application context. All we need is the expression attribute configured with a valid
SpEL expression. The payload and headers variables are bound to the SpEL Evaluation Context, giving
you full access to the incoming Message.

Configuring a Header Enricher with Java Configuration

The following are some examples of Java Configuration for header enrichers:

@Bean
@ ansf or mer (i nput Channel = "enrichHeader sChannel ", out put Channel = "enai |l Channel ")
publ i ¢ Header Enri cher enrichHeaders() {

Map<String, ? extends HeaderVal ueMessageProcessor <?>> header sToAdd =

Col | ecti ons. si ngl etonMap("enai | Ul ",
new St ati cHeader Val ueMessagePr ocessor <>(this.impUrl));
Header Enri cher enricher = new Header Enri cher (header sToAdd) ;
return enricher;

}

@ean

@r ansf or ner (i nput Channel ="enri chHeader sChannel ", out put Channel =" enai | Channel ")

publ i ¢ Header Enri cher enrichHeaders() {
Map<String, Header Val ueMessagePr ocessor <?>> header sToAdd = new HashMap<>();
header sToAdd. put ("emai | Url ", new Stati cHeader Val ueMessageProcessor<String>(this.impUl));
Expressi on expressi on = new Spel Expr essi onPar ser (). par seExpressi on("payl oad. fronf0].toString()");
header sToAdd. put ("front',

new Expressi onEval uati ngHeader Val ueMessagePr ocessor <>(expression, String.class));

Header Enri cher enricher = new Header Enri cher (header sToAdd) ;
return enricher;

The first adds a single literal header. The second adds two headers - a literal header and one based
on a SpEL expression.

Configuring a Header Enricher with the Java DSL

The following is an example of Java DSL Configuration for a header enricher:

@Bean
public IntegrationFl ow enrichHeaderslnFl ow() {
return f ->f

.enrichHeaders(h -> h.header("enmail Url", this.emilUl)
. header Expressi on("front, "payload.fron{0].toString()"))
.handle(...);

Header Channel Registry

Starting with Spring Integration 3.0, a new sub-element <i nt : header - channel s-to-string/>is
available; it has no attributes. This converts existing r epl yChannel and error Channel headers
(whenthey are a MessageChannel) to a String and stores the channel(s) in aregistry for later resolution

4.3.18.RELEASE Spring Integration 110

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Spring Integration Reference Manual

when it is time to send a reply, or handle an error. This is useful for cases where the headers might be
lost; for example when serializing a message into a message store or when transporting the message
over JMS. If the header does not already exist, or it is not a MessageChannel , no changes are made.

Use of this functionality requires the presence of a Header Channel Regi stry bean. By default,
the framework creates a Def aul t Header Channel Regi st ry with the default expiry (60 seconds).
Channels are removed from the registry after this time. To change this, simply define a bean with id
i nt egr ati onHeader Channel Regi st ry and configure the required default delay using a constructor
argument (milliseconds).

Since version 4.1, you can set a property r enoveOnGet to true on the <bean/ > definition, and
the mapping entry will be removed immediately on first use. This might be useful in a high-volume
environment and when the channel is only used once, rather than waiting for the reaper to remove it.

The Header Channel Regi stry has a si ze() method to determine the current size of the registry.
The runReaper () method cancels the current scheduled task and runs the reaper immediately; the
task is then scheduled to run again based on the current delay. These methods can be invoked directly
by getting a reference to the registry, or you can send a message with, for example, the following content
to a control bus:

" @ nt egr at i onHeader Channel Regi stry. runReaper ()"

This sub-element is a convenience only, and is the equivalent of specifying:

<int:reply-channel
expressi on=" @ nt egr at i onHeader Channel Regi stry. channel ToChannel Nane(header s. r epl yChannel)"
overwite="true" />

<int:error-channel
expr essi on=" @ nt egr at i onHeader Channel Regi st ry. channel ToChannel Nane(header s. er r or Channel)"
overwite="true" />

Starting with version 4.1, you can now override the registry’s configured reaper delay, so the the channel
mapping is retained for at least the specified time, regardless of the reaper delay:

<i nt:header-enricher input-channel ="inputTtl" output-channel ="next">
<i nt:header-channel s-to-string time-to-1ive-expressi on="120000" />
</i nt:header-enricher>

<int:header-enricher input-channel ="inputCustonilt|" output-channel ="next">
<i nt: header - channel s-to-string
time-to-live-expressi on="headers['channel TTL'] ?: 120000" />
</i nt:header-enricher>

In the first case, the time to live for every header channel mapping will be 2 minutes; in the second
case, the time to live is specified in the message header and uses an elvis operator to use 2 minutes
if there is no header.

Payload Enricher

In certain situations the Header Enricher, as discussed above, may not be sufficient and payloads
themselves may have to be enriched with additional information. For example, order messages that
enter the Spring Integration messaging system have to look up the order’s customer based on the
provided customer number and then enrich the original payload with that information.

Since Spring Integration 2.1, the Payload Enricher is provided. A Payload Enricher defines an endpoint
that passes a Message to the exposed request channel and then expects a reply message. The reply
message then becomes the root object for evaluation of expressions to enrich the target payload.

4.3.18.RELEASE Spring Integration 111

Spring Integration Reference Manual

The Payload Enricher provides full XML namespace support via the enri cher element. In order to
send request messages, the payload enricher has a r equest - channel attribute that allows you to
dispatch messages to a request channel.

Basically by defining the request channel, the Payload Enricher acts as a Gateway, waiting for the
message that were sent to the request channel to return, and the Enricher then augments the message’s
payload with the data provided by the reply message.

When sending messages to the request channel you also have the option to only send a subset of the
original payload using the r equest - payl oad- expr essi on attribute.

The enriching of payloads is configured through SpEL expressions, providing users with a maximum
degree of flexibility. Therefore, users are not only able to enrich payloads with direct values from the
reply channel’'s Message, but they can use SpEL expressions to extract a subset from that Message,
only, or to apply addtional inline transformations, allowing them to further manipulate the data.

If you only need to enrich payloads with static values, you don’t have to provide the r equest - channel
attribute.

Note

Enrichers are a variant of Transformers and in many cases you could use a Payload Enricher
or a generic Transformer implementation to add additional data to your messages payloads.
Thus, familiarize yourself with all transformation-capable components that are provided by Spring
Integration and carefully select the implementation that semantically fits your business case best.

Configuration

Below, please find an overview of all available configuration options that are available for the payload
enricher:

<int:enricher request-channel =
auto-startup="true"
i d=""

out put - channel =""

request - payl oad- expr essi on=
repl y- channel =""

error-channel =

send-ti meout =

Ooooooogoogao

shoul d- cl one- payl oad="f al se" >
<int:poller></int:poller>
<int:property name="" expression= nul | -resul t-expression=""Could not determnine the name'"/>
<int:property name="" val ue="23" type="java.lang.|nteger" null-result-expression="'0""/>
<int:header name="" expression="" null-result-expression=""/>
<int:header name="" val ue="" overwite="" type="" null-result-expression=""/>
</int:enricher>

O Channel to which a Message will be sent to get the data to use for enrichment. Optional.

O Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true.Optional.

O Id of the underlying bean definition, which is either an Event Dri venConsuner or a
Pol | i ngConsuner . Optional.

0 Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a "failover" dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Optional.

4.3.18.RELEASE Spring Integration 112

Spring Integration Reference Manual

Identifies the Message channel where a Message will be sent after it is being processed by this
endpoint.Optional.

By default the original message’s payload will be used as payload that will be send to the
r equest - channel . By specifying a SpEL expression as value for the r equest - payl oad-
expr essi on attribute, a subset of the original payload, a header value or any other resolvable
SpEL expression can be used as the basis for the payload, that will be sent to the request-channel.
For the Expression evaluation the full message is available as the root object. For instance the
following SpEL expressions (among others) are possible: payl oad. f 0o, header s. f oobar , new
java.util.Date(), ' foo' + 'bar'.

Channel where a reply Message is expected. This is optional; typically the auto-generated
temporary reply channel is sufficient. Optional.

Channel to which an Err or Message will be sent if an Excepti on occurs downstream of the
r equest - channel . This enables you to return an alternative object to use for enrichment. This
is optional; if it is not set then Except i on is thrown to the caller. Optional.

Maximum amount of time in milliseconds to wait when sending a message to the channel,
if such channel may block. For example, a Queue Channel can block until space is
available, if its maximum capacity has been reached. Internally the send timeout is set on
the Messagi ngTenpl at e and ultimately applied when invoking the send operation on the
MessageChannel . By default the send timeout is set to -1, which may cause the send operation
on the MessageChannel , depending on the implementation, to block indefinitely. Optional.
Boolean value indicating whether any payload that implements Cl oneabl e should be cloned prior
to sending the Message to the request chanenl for acquiring the enriching data. The cloned version
would be used as the target payload for the ultimate reply. Default is f al se. Optional.

Allows you to configure a Message Poller if this endpoint is a Polling Consumer. Optional.

Each pr oper t y sub-element provides the name of a property (via the mandatory nane attribute).
That property should be settable on the target payload instance. Exactly one of the val ue or
expr essi on attributes must be provided as well. The former for a literal value to set, and the
latter for a SpEL expression to be evaluated. The root object of the evaluation context is the
Message that was returned from the flow initiated by this enricher, the input Message if there is
no request channel, or the application context (using the @<beanName>.<beanProperty> SpEL
syntax). Starting with 4.0, when specifying a val ue attribute, you can also specify an optional
t ype attribute. When the destination is a typed setter method, the framework will coerce the value
appropriately (as long as a Pr opert yEdi t or) exists to handle the conversion. If however, the
target payload is a Map the entry will be populated with the value without conversion. The t ype
attribute allows you to, say, convert a String containing a number to an | nt eger value in the
target payload. Starting with 4.1, you can also specify an optional nul | - resul t - expr essi on
attribute. When the enri cher returns null, it will be evaluated and the output of the evaluation
will be returned instead.

Each header sub-element provides the name of a Message header (via the mandatory nane
attribute). Exactly one of the val ue or expressi on attributes must be provided as well. The
former for a literal value to set, and the latter for a SpEL expression to be evaluated. The root
object of the evaluation context is the Message that was returned from the flow initiated by this
enricher, the input Message if there is no request channel, or the application context (using the
@<beanName>.<beanProperty> SpEL syntax). Note, similar to the <header - enri cher >, the
<enri cher >'s header element has t ype and overwri t e attributes. However, a difference is
that, with the <enri cher >, the overwri t e attribute is t r ue by default, to be consistent with
<enri cher >'s <property> sub-element. Starting with 4.1, you can also specify an optional
nul | - resul t - expr essi on attribute. When the enr i cher returns null, it will be evaluated and
the output of the evaluation will be returned instead.

4.3.18.RELEASE Spring Integration 113

Spring Integration Reference Manual

Examples
Below, please find several examples of using a Payload Enricher in various situations.

In the following example, a User object is passed as the payload of the Message. The User has several
properties but only the user nane is set initially. The Enricher's r equest - channel attribute below is
configured to pass the User on to the f i ndUser Ser vi ceChannel .

Through the implicitly set r epl y- channel a User object is returned and using the pr operty sub-
element, properties from the reply are extracted and used to enrich the original payload.

<int:enricher id="findUserEnricher"
i nput - channel ="fi ndUser Enri cher Channel "
request - channel ="fi ndUser Servi ceChannel " >
<int:property name="email" expr essi on="payl oad. emai | "/ >
<int:property name="password" expressi on="payl oad. password"/ >
</int:enricher>

Note

The code samples shown here, are part of the Spring Integration Samples project. Please feel
free to check it out at:null

How do | pass only a subset of data to the request channel?

Using ar equest - payl oad- expr essi on attribute a single property of the payload can be passed on
to the request channel instead of the full message. In the example below on the username property is
passed on to the request channel. Keep in mind, that although only the username is passed on, the
resulting message send to the request channel will contain the full set of MessageHeader s.

<int:enricher id="findUserByUsernameEnricher"
i nput - channel ="fi ndUser ByUser naneEnri cher Channel "
request - channel ="fi ndUser ByUser naneSer vi ceChannel "
request - payl oad- expr essi on="payl oad. user nane" >
<int:property name="email" expr essi on="payl oad. emai | "/ >
<int:property name="password" expression="payl oad. password"/ >
</int:enricher>

How can | enrich payloads that consist of Collection data?

In the following example, instead of a User object, a Map is passed in. The Map contains the username
under the map key user nane. Only the user nane is passed on to the request channel. The reply
contains a full User object, which is ultimately added to the Map under the user key.

<int:enricher id="findUser WthMapEnricher"
i nput - channel ="fi ndUser Wt hMapEnri cher Channel "
request - channel ="fi ndUser ByUser naneSer vi ceChannel "
request - payl oad- expr essi on="payl oad. user nane" >
<int:property name="user" expression="payl oad"/>
</int:enricher>

How can | enrich payloads with static information without using a request channel?

Here is an example that does not use a request channel at all, but solely enriches the message’s payload
with static values. But please be aware that the word static is used loosely here. You can still use SpEL
expressions for setting those values.

4.3.18.RELEASE Spring Integration 114

Spring Integration Reference Manual

<int:enricher id="userEnricher"
i nput - channel ="i nput " >
<int:property name="user.updateDate" expression="new java.util.Date()"/>
<int:property name="user.firstNane" val ue="foo"/>
<int:property name="user.|ast Nane" val ue="bar"/>
<int:property name="user.age" val ue="42"/>
</int:enricher>

7.3 Claim Check

Introduction

In the earlier sections we've covered several Content Enricher type components that help you deal with
situations where a message is missing a piece of data. We also discussed Content Filtering which lets
you remove data items from a message. However there are times when we want to hide data temporarily.
For example, in a distributed system we may receive a Message with a very large payload. Some
intermittent message processing steps may not need access to this payload and some may only need
to access certain headers, so carrying the large Message payload through each processing step may
cause performance degradation, may produce a security risk, and may make debugging more difficult.

The Claim Check pattern describes a mechanism that allows you to store data in a well known place
while only maintaining a pointer (Claim Check) to where that data is located. You can pass that pointer
around as a payload of a new Message thereby allowing any component within the message flow to get
the actual data as soon as it needs it. This approach is very similar to the Certified Mail process where
you'll get a Claim Check in your mailbox and would have to go to the Post Office to claim your actual
package. Of course it's also the same idea as baggage-claim on a flight or in a hotel.

Spring Integration provides two types of Claim Check transformers:
* Incoming Claim Check Transformer
e Outgoing Claim Check Transformer

Convenient namespace-based mechanisms are available to configure them.
Incoming Claim Check Transformer

An Incoming Claim Check Transformer will transform an incoming Message by storing it in the Message
Store identified by its message- st or e attribute.

<int:clai mcheck-in id="checkin"
i nput - channel =" checki nChannel "
nmessage- st ore="t est MessageSt or e
out put - channel =" out put "/ >

In the above configuration the Message that is received on the i nput - channel will be persisted to
the Message Store identified with the nessage- st or e attribute and indexed with generated ID. That
ID is the Claim Check for that Message. The Claim Check will also become the payload of the new
(transformed) Message that will be sent to the out put - channel .

Now, lets assume that at some point you do need access to the actual Message. You can of course
access the Message Store manually and get the contents of the Message, or you can use the same
approach as before except now you will be transforming the Claim Check to the actual Message by
using an Outgoing Claim Check Transformer.

Here is an overview of all available parameters of an Incoming Claim Check Transformer:

4.3.18.RELEASE Spring Integration 115

http://www.eaipatterns.com/StoreInLibrary.html

Spring Integration Reference Manual

<int:clai mcheck-in auto-startup="true" 0O
id=""
i nput - channel =""
nessage- st or e=" messageSt or e"
order=""
out put - channel =

send-ti meout ="">

O O0OO0O0Ooogoaog

<int:poller></int:poller>
</int:clai mcheck-in>

O Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Attribute is not available inside a Chai n element. Optional.

O Id identifying the underlying bean definition (MessageTr ansf or mi ngHandl er). Attribute is not
available inside a Chai n element. Optional.

0 Thereceiving Message channel of this endpoint. Attribute is not available inside a Chai n element.
Optional.

0 Reference to the MessageStore to be used by this Claim Check transformer. If not specified, the
default reference will be to a bean named messageStore. Optional.

0 Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a failover dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Attribute is not
available inside a Chai n element. Optional.

O Identifies the Message channel where Message will be sent after its being processed by this
endpoint. Attribute is not available inside a Chai n element. Optional.

0 Specify the maximum amount of time in milliseconds to wait when sending a reply Message to
the output channel. Defaults to - 1 - blocking indefinitely. Attribute is not available inside a Chai n
element. Optional.

O Defines a poller. Element is not available inside a Chai n element. Optional.

Outgoing Claim Check Transformer

An Outgoing Claim Check Transformer allows you to transform a Message with a Claim Check payload
into a Message with the original content as its payload.

<int:clai mcheck-out id="checkout"
i nput - channel =" checkout Channel "
nmessage- st ore="t est MessageSt or e"
out put - channel =" out put "/ >

In the above configuration, the Message that is received on the i nput - channel should have a Claim
Check as its payload and the Outgoing Claim Check Transformer will transform it into a Message with
the original payload by simply querying the Message store for a Message identified by the provided
Claim Check. It then sends the newly checked-out Message to the out put - channel .

Here is an overview of all available parameters of an Outgoing Claim Check Transformer:

<int:claimcheck-out auto-startup="true" 0O
id=""
i nput - channel =""
nessage- st or e=" nessageSt ore"
order=""
out put - channel =""
renove- nessage="f al se"

send-ti meout ="">

O0Oo0Oo0Oogooad

<int:poller></int:poller>
</int:clai mcheck-out>

4.3.18.RELEASE Spring Integration 116

Spring Integration Reference Manual

O Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Attribute is not available inside a Chai n element. Optional.

O Id identifying the underlying bean definition (MessageTr ansf or mi ngHandl er). Attribute is not
available inside a Chai n element. Optional.

0 Thereceiving Message channel of this endpoint. Attribute is not available inside a Chai n element.
Optional.

0 Reference to the MessageStore to be used by this Claim Check transformer. If not specified, the
default reference will be to a bean named messageStore. Optional.

0 Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a failover dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Attribute is not
available inside a Chai n element. Optional.

O Identifies the Message channel where Message will be sent after its being processed by this
endpoint. Attribute is not available inside a Chai n element. Optional.

O If settotrue the Message will be removed from the MessageStore by this transformer. Useful
when Message can be "claimed" only once. Defaults to f al se. Optional.

O Specify the maximum amount of time in milliseconds to wait when sending a reply Message to
the output channel. Defaults to - 1 - blocking indefinitely. Attribute is not available inside a Chai n
element. Optional.

0 Defines a poller. Element is not available inside a Chai n element. Optional.

Claim Once

There are scenarios when a particular message must be claimed only once. As an analogy, consider the
airplane luggage check-in/out process. Checking-in your luggage on departure and and then claiming
it on arrival is a classic example of such a scenario. Once the luggage has been claimed, it can not be
claimed again without first checking it back in. To accommodate such cases, we introduced a r enove-
nmessage boolean attribute on the cl ai m check- out transformer. This attribute is set to f al se by
default. However, if setto t r ue, the claimed Message will be removed from the MessageStore, so that
it can no longer be claimed again.

This is also something to consider in terms of storage space, especially in the case of the in-memory
Map-based Si npl eMessagesSt or e, where failing to remove the Messages could ultimately lead to an
Qut O Menor yExcept i on. Therefore, if you don’t expect multiple claims to be made, it's recommended
that you set the r enove- nessage attribute’s value to t r ue.

<int:clai mcheck-out id="checkout"
i nput - channel =" checkout Channel "
nmessage- st ore="t est MessageSt or e"
out put - channel =" out put "
renove- nessage="true"/ >

A word on Message Store

Although we rarely care about the details of the claim checks as long as they work, it is still worth
knowing that the current implementation of the actual Claim Check (the pointer) in Spring Integration
is a UUID to ensure uniqueness.

org. springframework.integration.store. MessageStore is a strategy interface for storing
and retrieving messages. Spring Integration provides two convenient implementations of it.
Si npl eMessageSt or e: an in-memory, Map-based implementation (the default, good for testing) and
JdbcMessagesSt or e: an implementation that uses a relational database via JDBC.

4.3.18.RELEASE Spring Integration 117

Spring Integration Reference Manual

7.4 Codec

Introduction

Spring Integration version 4.2 introduces the Codec abstraction. Codecs are used to encode/decode
objects to/from byt e[]. They are an alternative to Java Serialization. One advantage is, typically,
objects do not have to implement Ser i al i zabl e. One implementation, using Kryo for serialization, is
provided but you can provide your own implementation for use in any of these components:

e Encodi ngPayl oadTr ansf or mer
» Decodi ngTr ansf or ner
» CodecMessageConverter

See their JavaDocs for more information.

EncodingPayloadTransformer

This transformer encodes the payload to a byt e[] using the codec. It does not affect message headers.

DecodingTransformer

This transformer decodes a byt e[] using the codec; it needs to be configured with the Class to which
the object should be decoded (or an expression that resolves to a Class). If the resulting object is a
Message<?>, inbound headers will not be retained.

CodecMessageConverter

Certain endpoints (e.g. TCP, Redis) have no concept of message headers; they support the use of a
MessageConvert er and the CodecMessageConvert er can be used to convert a message to/from
a byt e[] for transmission.

Kryo

Currently, this is the only implementation of Codec. There are two Codec s - Poj oCodec which can be
used in the transformers and MessageCodec which can be used in the CodecMessageConvert er.

Several custom serializers are provided by the framework:
» FileSerializer

 MessageHeadersSeri ali zer

» Mut abl eMessageHeader sSeri al i zer

The first can be used with the Poj oCodec, by initializing it with the Fi | eKr yoRegi st r ar. The second
and third are used with the MessageCodec, which is initialized with the MessageKr yoRegi st rar.

Customizing Kryo

By default, Kryo delegates unknown Java types to its Fi el dSeri alizer. Kryo also registers
default serializers for each primitive type along with String, Col | ecti on and Map serializers.

4.3.18.RELEASE Spring Integration 118

https://github.com/EsotericSoftware/kryo

Spring Integration Reference Manual

Fi el dSeri al i zer uses reflection to navigate the object graph. A more efficient approach is to
implement a custom serializer that is aware of the object’s structure and can directly serialize selected

primitive fields:
public class AddressSerializer extends Serializer<Address> {
@verride
output.witeString(address.getStreet());

output.witeString(address.getCity());
output.witeString(address. getCountry());

}

@verride

}

public void wite(Kryo kryo, Qutput output, Address address) {

public Address read(Kryo kryo, Input input, O ass<Address> type) {
return new Address(input.readString(), input.readString(),

i nput . readstring());

The Seri al i zer interface exposes Kryo, | nput , and Qut put which provide complete control over

which fields are included and other internal settings as described in the documentation.

Note

the registrars mentioned above.

Using a Custom Kryo Serializer

When registering your custom serializer, you need a registration ID. The registration IDs are
arbitrary but in our case must be explicitly defined because each Kryo instance across the
distributed application must use the same IDs. Kryo recommends small positive integers, and
reserves a few ids (value < 10). Spring Integration currently defaults to using 40, 41 and 42 (for
the file and message header serializers mentioned above); we recommend you start at, say 60, to
allow for expansion in the framework. These framework defaults can be overridden by configuring

If custom serialization is indicated, please consult the Kryo documentation since you will be using the

native API. For an example, see the MessageCodec.

Implementing KryoSerializable

If you have write access to the domain object source code it may implement KryoSeri al i zabl e
as described here. In this case the class provides the serialization methods itself and no further
configuration is required. This has the advantage of being much simpler to use with XD, however

benchmarks have shown this is not quite as efficient as registering a custom serializer explicitly:

public class Address inplenments KryoSerializable {

@verride

public void wite(Kryo kryo, Qutput output) {
output.witeString(this.street);
output.witeString(this.city);
output.witeString(this.country);

}

@verride
public void read(Kryo kryo, Input input) {
this.street = input.readString();

this.city = input.readString();
this.country = input.readString();

4.3.18.RELEASE Spring Integration

119

https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo#kryoserializable

Spring Integration Reference Manual

Note that this technique can also be used to wrap a serialization library other than Kryo.
Using DefaultSerializer Annotation

Kryo also provides an annotation as described here.

@ef aul t Seri al i zer (SoneCl assSeri al i zer. cl ass)
public class Somed ass {
...

}

If you have write access to the domain object this may be a simpler alternative to specify a custom
serializer. Note this does not register the class with an ID, so your mileage may vary.

4.3.18.RELEASE Spring Integration 120

https://github.com/EsotericSoftware/kryo#default-serializers

Spring Integration Reference Manual

8. Messaging Endpoints

8.1 Message Endpoints

The first part of this chapter covers some background theory and reveals quite a bit about the underlying
API that drives Spring Integration’s various messaging components. This information can be helpful if
you want to really understand what's going on behind the scenes. However, if you want to get up and
running with the simplified namespace-based configuration of the various elements, feel free to skip
ahead tothe section called “Namespace Support” for now.

As mentioned in the overview, Message Endpoints are responsible for connecting the various
messaging components to channels. Over the next several chapters, you will see a number of different
components that consume Messages. Some of these are also capable of sending reply Messages.
Sending Messages is quite straightforward. As shown above in Section 4.1, “Message Channels”, it's
easy to send a Message to a Message Channel. However, receiving is a bit more complicated. The main
reason is that there are two types of consumers: Polling Consumers and Event Driven Consumers.

Of the two, Event Driven Consumers are much simpler. Without any need to manage and schedule a
separate poller thread, they are essentially just listeners with a callback method. When connecting to one
of Spring Integration’s subscribable Message Channels, this simple option works great. However, when
connecting to a buffering, pollable Message Channel, some component has to schedule and manage the
polling thread(s). Spring Integration provides two different endpoint implementations to accommodate
these two types of consumers. Therefore, the consumers themselves can simply implement the callback
interface. When polling is required, the endpoint acts as a container for the consumer instance. The
benefit is similar to that of using a container for hosting Message Driven Beans, but since these
consumers are simply Spring-managed Objects running within an ApplicationContext, it more closely
resembles Spring’s own MessageListener containers.

Message Handler

Spring Integration’s MessageHandl er interface is implemented by many of the components within
the framework. In other words, this is not part of the public API, and a developer would not typically
implement MessageHandl er directly. Nevertheless, it is used by a Message Consumer for actually
handling the consumed Messages, and so being aware of this strategy interface does help in terms of
understanding the overall role of a consumer. The interface is defined as follows:

public interface MessageHandl er {
voi d handl eMessage(Message<?> nessage) ;

}

Despite its simplicity, this provides the foundation for most of the components that will be covered
in the following chapters (Routers, Transformers, Splitters, Aggregators, Service Activators, etc).
Those components each perform very different functionality with the Messages they handle, but the
requirements for actually receiving a Message are the same, and the choice between polling and event-
driven behavior is also the same. Spring Integration provides two endpoint implementations that host
these callback-based handlers and allow them to be connected to Message Channels.

Event Driven Consumer

Because it is the simpler of the two, we will cover the Event Driven Consumer endpoint first.
You may recall that the Subscri babl eChannel interface provides a subscri be() method

4.3.18.RELEASE Spring Integration 121

http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html

Spring Integration Reference Manual

and that the method accepts a MessageHandl er parameter (as shown in the section called
“SubscribableChannel”):

subscri babl eChannel . subscri be(messageHandl er) ;

Since a handler that is subscribed to a channel does not have to actively poll that channel, this
is an Event Driven Consumer, and the implementation provided by Spring Integration accepts a a
Subscri babl eChannel and a MessageHandl er:

Subscri babl eChannel channel = context.getBean("subscribabl eChannel ", Subscri babl eChannel . cl ass);

Event Dri venConsuner consunmer = new Event Dri venConsuner (channel, exanpl eHandl er);

Polling Consumer

Spring Integration also provides a Pol | i ngConsuner, and it can be instantiated in the same way
except that the channel must implement Pol | abl eChannel :

Pol | abl eChannel channel = context.getBean("pol | abl eChannel ", Pol | abl eChannel . cl ass);

Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , exanpl eHandl er);

Note

For more information regarding Polling Consumers, please also read Section 4.2, “Poller” as well
as Section 4.3, “Channel Adapter”.

There are many other configuration options for the Polling Consumer. For example, the trigger is a
required property:

Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , handl er);

consuner. set Tri gger (new | nterval Tri gger (30, TinmeUnit.SECONDS));
Spring Integration currently provides two implementations of the Trigger interface:
Interval Tri gger and CronTri gger. The | nterval Tri gger is typically defined with a simple

interval (in milliseconds), but also supports an initialDelay property and a boolean fixedRate property
(the default is false, i.e. fixed delay):

Interval Trigger trigger = new Interval Trigger(1000);
trigger.setlnitial Del ay(5000);
trigger.setFi xedRate(true);

The CronTri gger simply requires a valid cron expression (see the Javadoc for details):

CronTrigger trigger = new CronTrigger("*/10 * * * * MON-FRI");

In addition to the trigger, several other polling-related configuration properties may be specified:

Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , handl er);

consumer . set MaxMessagesPer Pol | (10);
consuner . set Recei veTi meout (5000) ;

The maxMessagesPerPoll property specifies the maximum number of messages to receive within a
given poll operation. This means that the poller will continue calling receive() without waiting until either
nul | is returned or that max is reached. For example, if a poller has a 10 second interval trigger and

4.3.18.RELEASE Spring Integration 122

Spring Integration Reference Manual

a maxMessagesPerPoll setting of 25, and it is polling a channel that has 100 messages in its queue,
all 100 messages can be retrieved within 40 seconds. It grabs 25, waits 10 seconds, grabs the next
25, and so on.

The receiveTimeout property specifies the amount of time the poller should wait if no messages are
available when it invokes the receive operation. For example, consider two options that seem similar on
the surface but are actually quite different: the first has an interval trigger of 5 seconds and a receive
timeout of 50 milliseconds while the second has an interval trigger of 50 milliseconds and a receive
timeout of 5 seconds. The first one may receive a message up to 4950 milliseconds later than it arrived
on the channel (if that message arrived immediately after one of its poll calls returned). On the other
hand, the second configuration will never miss a message by more than 50 milliseconds. The difference
is that the second option requires a thread to wait, but as a result it is able to respond much more
quickly to arriving messages. This technique, known as long polling, can be used to emulate event-
driven behavior on a polled source.

A Polling Consumer may also delegate to a Spring TaskExecut or, as illustrated in the following
example:

Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , handl er);

TaskExecut or taskExecutor = context.getBean("exanpl eExecutor", TaskExecutor.cl ass);
consumer . set TaskExecut or (t askExecut or);

Furthermore, a Pol | i ngConsumer has a property called adviceChain. This property allows you to
specify a Li st of AOP Advices for handling additional cross cutting concerns including transactions.
These advices are applied around the doPol | () method. For more in-depth information, please see the
sections AOP Advice chains and Transaction Support under the section called “Namespace Support”.

The examples above show dependency lookups, but keep in mind that these consumers will most often
be configured as Spring bean definitions. In fact, Spring Integration also provides a Fact or yBean called
Consumer Endpoi nt Fact or yBean that creates the appropriate consumer type based on the type of
channel, and there is full XML namespace support to even further hide those details. The namespace-
based configuration will be featured as each component type is introduced.

Note

Many of the MessageHand| er implementations are also capable of generating reply Messages.
As mentioned above, sending Messages is trivial when compared to the Message reception.
Nevertheless,when and how many reply Messages are sent depends on the handler type. For
example, an Aggregator waits for a number of Messages to arrive and is often configured as
a downstream consumer for a Splitter which may generate multiple replies for each Message
it handles. When using the namespace configuration, you do not strictly need to know all
of the details, but it still might be worth knowing that several of these components share a
common base class, the Abstract Repl yProduci ngMessageHand| er, and it provides a
set Qut put Channel (..) method.

Namespace Support

Throughout the reference manual, you will see specific configuration examples for endpoint elements,
such as router, transformer, service-activator, and so on. Most of these will support an input-channel
attribute and many will support an output-channel attribute. After being parsed, these endpoint elements
produce an instance of either the Pol | i ngConsuner or the Event Dri venConsuner depending
on the type of the input-channel that is referenced: Pol | abl eChannel or Subscri babl eChannel

4.3.18.RELEASE Spring Integration 123

Spring Integration Reference Manual

respectively. When the channel is pollable, then the polling behavior is determined based on the
endpoint element’s poller sub-element and its attributes.

Configuration_Below you find a _poller with all available configuration options:

<int:poller cron=

def aul t ="f al se"
error-channel =""
fixed-del ay=""
fixed-rate=""

id=""

max- nessages- per-pol | =""
receive-timeout=""
ref=""

task- executor=""
time-unit="M LLI SECONDS"
trigger="">
<int:advice-chain />

<int:transactional />

EEEEDDDDDDDDDD

</int:poller>

Provides the ability to configure Pollers using Cron expressions. The underlying implementation
usesanorg. spri ngfranmewor k. schedul i ng. support. CronTri gger. Ifthis attribute is set,
none of the following attributes must be specified: fi xed- del ay,tri gger,fi xed-rate,ref.
By setting this attribute to true, it is possible to define exactly one (1) global default
poller. An exception is raised if more than one default poller is defined in the
application context. Any endpoints connected to a PollableChannel (PollingConsumer) or any
SourcePollingChannelAdapter that does not have any explicitly configured poller will then use the
global default Poller. Optional. Defaults to f al se.

Identifies the channel which error messages will be sent to if a failure occurs in this poller's
invocation. To completely suppress Exceptions, provide a reference to the nul | Channel .
Optional.

The fixed delay trigger uses a Peri odi cTri gger under the covers. If the ti me-uni t attribute
is not used, the specified value is represented in milliseconds. If this attribute is set, none of the
following attributes must be specified: f i xed-rate, trigger,cron,ref.

The fixed rate trigger uses a Peri odi cTri gger under the covers. If the ti me-unit attribute
is not used the specified value is represented in milliseconds. If this attribute is set, none of the
following attributes must be specified: f i xed- del ay, tri gger, cron,ref.

The Id referring to the Poller's underlying bean-definition, which is of type
org. springframework. i ntegration. schedul i ng. Pol | er Met adat a. The id attribute is
required for a top-level poller element unless it is the default poller (def aul t ="t rue").

Please see the section called “Configuring An Inbound Channel Adapter” for more information.
Optional. If not specified the default values used depends on the context. If a Pol | i ngConsuner
is used, this atribute will default to -1. However, if a Sour cePol | i ngChannel Adapt er is used,
then the max- nessages- per - pol | attribute defaults to 1.

Value is set on the underlying class "PollerMetadata Optional. If not specified it defaults to 1000
(milliseconds).

Bean reference to another top-level poller. The r ef attribute must not be present on the top-level
pol | er element. However, if this attribute is set, none of the following attributes must be specified:
fixed-rate,trigger,cron,fixed-del ay.

Provides the ability to reference a custom task executor. Please see the section below titled
TaskExecutor Support for further information. Optional.

This attribute specifies the java.util.concurrent. TineUnit enum value on the
underlying or g. spri ngf ramewor k. schedul i ng. support. Peri odi cTri gger. Therefore,

4.3.18.RELEASE Spring Integration 124

Spring Integration Reference Manual

this attribute can ONLY be used in combination with the f i xed- del ay or fi xed- r at e attributes.
If combined with either cr on oratri gger reference attribute, it will cause a failure. The minimal
supported granularity for a Peri odi cTri gger is MILLISECONDS. Therefore, the only available
options are MILLISECONDS and SECONDS. If this value is not provided, then any f i xed- del ay
or fi xed-rat e value will be interpreted as MILLISECONDS by default. Basically this enum
provides a convenience for SECONDS-based interval trigger values. For hourly, daily, and monthly
settings, consider using a cr on trigger instead.

Reference to any spring configured bean which implements the
org. spri ngframewor k. schedul i ng. Tri gger interface. Optional. However, if this attribute
is set, none of the following attributes must be specified:f i xed- del ay,fi xed-rate,cron,ref.

Allows to specify extra AOP Advices to handle additional cross cutting concerns. Please see the
section below titled Transaction Support for further information. Optional.

Pollers can be made transactional. Please see the section below titled AOP Advice chains for
further information. Optional.

Examples

For example, a simple interval-based poller with a 1-second interval would be configured like this:

<int:transformer input-channel ="pollable"
ref ="transforner"
out put - channel =" out put " >
<int:poller fixed-rate="1000"/>
</int:transforner>

As an alternative to fixed-rate you can also use the fixed-delay attribute.

For a poller based on a Cron expression, use the cron attribute instead:

<int:transformer input-channel ="pollable"
ref="transforner"
out put - channel =" out put " >
<int:poller cron="*/10 * * * * MONNFRI"/>
</int:transforner>

If the input channel is a Pol | abl eChannel , then the poller configuration is required. Specifically, as
mentioned above, the trigger is a required property of the PollingConsumer class. Therefore, if you omit
the poller sub-element for a Polling Consumer endpoint’s configuration, an Exception may be thrown.
The exception will also be thrown if you attempt to configure a poller on the element that is connected
to a non-pollable channel.

It is also possible to create top-level pollers in which case only a ref is required:
<int:poller id="weekdayPoller" cron="*/10 * * * * MON-FRI "/ >

<int:transformer input-channel ="pollable"
ref="transforner"
out put - channel =" out put " >
<int:poller ref="weekdayPol | er"/>
</int:transforner>

Note

The ref attribute is only allowed on the inner-poller definitions. Defining this attribute on a top-level
poller will result in a configuration exception thrown during initialization of the Application Context.

Global Default Pollers

4.3.18.RELEASE Spring Integration 125

Spring Integration Reference Manual

In fact, to simplify the configuration even further, you can define a global default poller. A single top-level
poller within an ApplicationContext may have the def aul t attribute with a value of true. In that case, any
endpoint with a PollableChannel for its input-channel that is defined within the same ApplicationContext
and has no explicitly configured poller sub-element will use that default.

<int:poller id="defaul tPoller" default="true" max-nessages-per-poll="5" fixed-rate="3000"/>

<l-- No <poller/> sub-elenent is necessary since there is a default -->
<int:transformer input-channel ="pollable"

ref="transforner"

out put - channel =" out put "/ >

Transaction Support

Spring Integration also provides transaction support for the pollers so that each receive-and-forward
operation can be performed as an atomic unit-of-work. To configure transactions for a poller, simply add
the_<transactional/>_ sub-element. The attributes for this element should be familiar to anyone who
has experience with Spring’s Transaction management:

<int:poller fixed-delay="1000">
<int:transactional transaction-manager="txManager"
propagat i on=" REQUI RED"
i sol ati on="REPEATABLE_READ"
ti meout =" 10000"
read-only="fal se"/ >
</int:poller>

For more information please refer to the section called “Poller Transaction Support”.
AOP Advice chains

Since Spring transaction support depends on the Proxy mechanism with Tr ansact i onl nt er cept or
(AOP Advice) handling transactional behavior of the message flow initiated by the poller, some times
there is a need to provide extra Advice(s) to handle other cross cutting behavior associated with the
poller. For that poller defines an advice-chain element allowing you to add more advices - class that
implements Met hodl nt er cept or interface...

<int:service-activator id="advicedSa" input-channel ="goodl nput WthAdvice" ref="testBean"
net hod="good" out put - channel =" out put " >
<int:poller max-nmessages-per-poll="1" fixed-rate="10000">
<i nt:advi ce- chai n>
<ref bean="advi ceA" />
<beans: bean cl ass="org. bar. Sanpl eAdvi ce" />
<ref bean="txAdvice" />
</int:advi ce-chai n>
</int:poller>
</int:service-activator>

For more information on how to implement MethodInterceptor please refer to AOP sections of Spring
reference manual (section 8 and 9). Advice chain can also be applied on the poller that does not have
any transaction configuration essentially allowing you to enhance the behavior of the message flow
initiated by the poller.

Important

When using an advice chain, the <t r ansact i onal / > child element cannot be specified; instead,
declare a <t x: advi ce/ > bean and add it to the <advi ce- chai n/ >. See the section called
“Poller Transaction Support” for complete configuration.

4.3.18.RELEASE Spring Integration 126

Spring Integration Reference Manual

TaskExecutor Support

The polling threads may be executed by any instance of Spring’s TaskExecut or abstraction. This
enables concurrency for an endpoint or group of endpoints. As of Spring 3.0, there is a task namespace
in the core Spring Framework, and its <executor/> element supports the creation of a simple thread
pool executor. That element accepts attributes for common concurrency settings such as pool-size and
gueue-capacity. Configuring a thread-pooling executor can make a substantial difference in how the
endpoint performs under load. These settings are available per-endpoint since the performance of an
endpoint is one of the major factors to consider (the other major factor being the expected volume
on the channel to which the endpoint subscribes). To enable concurrency for a polling endpoint that
is configured with the XML namespace support, provide the task-executor reference on its <poller/>
element and then provide one or more of the properties shown below:

<int:poller task-executor="pool" fixed-rate="1000"/>

<t ask: execut or i d="pool"
pool - si ze="5- 25"
queue- capaci t y="20"
keep-al i ve="120"/ >

If no task-executor is provided, the consumer’s handler will be invoked in the caller’s thread. Note that
the caller is usually the default TaskSchedul er (see Section F.3, “Configuring the Task Scheduler”).
Also, keep in mind that the task-executor attribute can provide a reference to any implementation of
Spring’s TaskExecut or interface by specifying the bean name. The executor element above is simply
provided for convenience.

As mentioned in the background section for Polling Consumers above, you can also configure a Polling
Consumer in such a way as to emulate event-driven behavior. With a long receive-timeout and a short
interval-trigger, you can ensure a very timely reaction to arriving messages even on a polled message
source. Note that this will only apply to sources that have a blocking wait call with a timeout. For example,
the File poller does not block, each receive() call returns immediately and either contains new files or
not. Therefore, even if a poller contains a long receive-timeout, that value would never be usable in such
a scenario. On the other hand when using Spring Integration’s own queue-based channels, the timeout
value does have a chance to participate. The following example demonstrates how a Polling Consumer
will receive Messages nearly instantaneously.

<int:service-activator input-channel="sonmeQueueChannel"
out put - channel =" out put " >
<int:poller receive-tinmeout="30000" fixed-rate="10"/>

</int:service-activator>

Using this approach does not carry much overhead since internally it is nothing more then a timed-wait
thread which does not require nearly as much CPU resource usage as a thrashing, infinite while loop
for example.

Change Polling Rate at Runtime

When configuring Pollers with a f i xed- del ay or fi xed-r at e attribute, the default implementation
willuse a Peri odi cTri gger instance. The Peri odi cTri gger is part of the Core Spring Framework
and it accepts the interval as a constructor argument, only. Therefore it cannot be changed at runtime.

However, you can define your own implementation of the
org. springframewor k. schedul i ng. Tri gger interface. You could even use the PeriodicTrigger
as a starting point. Then, you can add a setter for the interval (period), or you could even embed your

4.3.18.RELEASE Spring Integration 127

Spring Integration Reference Manual

own throttling logic within the trigger itself if desired. The period property will be used with each call to
nextExecutionTime to schedule the next poll. To use this custom trigger within pollers, declare the bean
definition of the custom Trigger in your application context and inject the dependency into your Poller
configuration using the t r i gger attribute, which references the custom Trigger bean instance. You can
now obtain a reference to the Trigger bean and the polling interval can be changed between polls.

For an example, please see the Spring Integration Samples project. It contains a sample called dynamic-
poller, which uses a custom Trigger and demonstrates the ability to change the polling interval at runtime.

https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate

The sample provides a custom Trigger which implements the org.springframework.scheduling.Trigger
interface. The sample’s Trigger is based on Spring’s PeriodicTrigger implementation. However, the
fields of the custom trigger are not final and the properties have explicit getters and setters, allowing to
dynamically change the polling period at runtime.

Note

It is important to note, though, that because the Trigger method is nextExecutionTime(), any
changes to a dynamic trigger will not take effect until the next poll, based on the existing
configuration. It is not possible to force a trigger to fire before it's currently configured next
execution time.

Payload Type Conversion

Throughout the reference manual, you will also see specific configuration and implementation examples
of various endpoints which can accept a Message or any arbitrary Object as an input parameter.
In the case of an Object, such a parameter will be mapped to a Message payload or part of the
payload or header (when using the Spring Expression Language). However there are times when the
type of input parameter of the endpoint method does not match the type of the payload or its part.
In this scenario we need to perform type conversion. Spring Integration provides a convenient way
for registering type converters (using the Spring 3.x ConversionService) within its own instance of a
conversion service bean named integrationConversionService. That bean is automatically created as
soon as the first converter is defined using the Spring Integration infrastructure. To register a Converter
all you need is to implement or g. spri ngfranmewor k. core. convert. converter. Converter,
org. springframework. core. convert. converter. Generi cConverter or
org. spri ngfranmewor k. core. convert.converter. ConverterFactory.

The Convert er implementation is the simplest and converts from a single type to another. For more
sophistication, such as converting to a class hierarchy, you would implement a Generi cConverter
and possibly a Condi ti onal Convert er. These give you complete access to the from and to type
descriptors enabling complex conversions. For example, if you have an abstract class Foo that is
the target of your conversion (parameter type, channel data type etc) and you have two concrete
implementations Bar and Baz and you wish to convert to one or the other based on the input type,
the Generi cConverter would be a good fit. Refer to the JavaDocs for these interfaces for more
information.

When you have implemented your converter, you can register it with convenient namespace support:

<int:converter ref="sanpl eConverter"/>

<bean id="sanpl eConverter" class="foo. bar. Test Converter"/>

4.3.18.RELEASE Spring Integration 128

https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/scheduling/Trigger.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/scheduling/support/PeriodicTrigger.html

Spring Integration Reference Manual

or as an inner bean:

<int:converter>
<bean cl ass="o0.s.i.config.xm . ConverterParserTest s$Test Converter3"/>
</int:converter>

Starting with Spring Integration 4.0, the above configuration is available using annotations:

@onponent
@ nt egr at i onConvert er
public class TestConverter inplenents Converter<Bool ean, Nunber> {

publ i c Nurmber convert (Bool ean source) {
return source ? 1 : 0O;

}

or as a @onfi gurati on part:

@onfiguration
@Enabl el nt egrati on
public class ContextConfiguration {

@Bean

@ nt egr ati onConverter

public SerializingConverter serializingConverter() {
return new SerializingConverter();

}

Important

When configuring an Application Context, the Spring Framework allows you to add a
conversionService bean (see Configuring a ConversionService chapter). This service is used,
when needed, to perform appropriate conversions during bean creation and configuration.

In contrast, the integrationConversionService is used for runtime conversions. These uses are
quite different; converters that are intended for use when wiring bean constructor-args and
properties may produce unintended results if used at runtime for Spring Integration expression
evaluation against Messages within Datatype Channels, Payload Type transformers etc.

However, if you do want to use the Spring conversionService as the Spring Integration
integrationConversionService, you can configure an alias in the Application Context:

<al i as nanme="conversi onService" alias="integrati onConversionService"/>

In this case the conversionService's Converters will be available for Spring Integration runtime
conversion.

Asynchronous polling

If you want the polling to be asynchronous, a Poller can optionally specify a task-executor attribute
pointing to an existing instance of any TaskExecut or bean (Spring 3.0 provides a convenient
namespace configuration via the t ask namespace). However, there are certain things you must
understand when configuring a Poller with a TaskExecutor.

The problem is that there are two configurations in place. The Poller and the TaskExecutor, and they
both have to be in tune with each other otherwise you might end up creating an artificial memory leak.

4.3.18.RELEASE Spring Integration 129

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-Spring-config

Spring Integration Reference Manual

Let's look at the following configuration provided by one of the users on the Spring Integration Forum:

<int:channel id="publishChannel">
<i nt:queue />
</i nt:channel >

<int:service-activator input-channel ="publishChannel" ref="nyService">
<int:poller receive-tinmeout="5000" task-executor="taskExecutor" fixed-rate="50" />
</int:service-activator>

<t ask: execut or id="taskExecutor" pool -size="20" />

The above configuration demonstrates one of those out of tune configurations.

By default, the task executor has an unbounded task queue. The poller keeps scheduling new tasks
even though all the threads are blocked waiting for either a new message to arrive, or the timeout to
expire. Given that there are 20 threads executing tasks with a 5 second timeout, they will be executed
at a rate of 4 per second (5000/20 = 250ms). But, new tasks are being scheduled at a rate of 20 per
second, so the internal queue in the task executor will grow at a rate of 16 per second (while the process
is idle), so we essentially have a memory leak.

One of the ways to handle this is to set the queue- capaci ty attribute of the Task Executor; and
even 0 is a reasonable value. You can also manage it by specifying what to do with messages that can
not be queued by setting the r ej ect i on- pol i cy attribute of the Task Executor (e.g., DISCARD). In
other words, there are certain details you must understand with regard to configuring the TaskExecutor.
Please refer to Task Execution and Scheduling of the Spring reference manual for more detail on the
subject.

Endpoint Inner Beans

Many endpoints are composite beans; this includes all consumers and all polled inbound channel
adapters. Consumers (polled or event- driven) delegate to a MessageHandl er ; polled adapters obtain
messages by delegating to a MessageSour ce. Often, it is useful to obtain a reference to the delegate
bean, perhaps to change configuration at runtime, or for testing. These beans can be obtained from
the Appli cati onCont ext with well-known names. MessageHandl er s are registered with the
application context with a bean id soneConsuner . handl er (where consumer is the endpoint’s i d
attribute). MessageSour ce s are registered with a bean id sonePol | edAdapt er. sour ce, again
where somePolledAdapter is the id of the adapter.

The above only applies to the framework component itself. If you use an inner bean definition such as
this:

<int:service-activator id="exanpleServiceActivator" input-channel="i nChannel"
out put - channel = "out Channel " nethod="f 00" >
<beans: bean cl ass="org. f 0o. Exanpl eServi ceActivator"/>
</int:service-activator>

the bean is treated like any inner bean declared that way and is not registered with the application
context. If you wish to access this bean in some other manner, declare it at the top level with an i d and
use the r ef attribute instead. See the Spring Documentation for more information.

8.2 Endpoint Roles

Starting with version 4.2, endpoints can be assigned to roles. Roles allow endpoints to be started and
stopped as a group; this is particularly useful when using leadership election where a set of endpoints
can be started or stopped when leadership is granted or revoked respectively.

4.3.18.RELEASE Spring Integration 130

http://forum.spring.io/forum/spring-projects/integration/87155-spring-integration-poller-configuration
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/beans.html#beans-inner-beans

Spring Integration Reference Manual

You can assign endpoints to roles using XML, Java configuration, or programmatically:

<i nt:inbound-channel -adapter id="ica" channel ="soneChannel " expressi on=""fo0 rol e="cluster">
<int:poller fixed-rate="60000" />

</int:inbound-channel - adapt er >

@Bean
@er vi ceAct i vat or (i nput Channel = "sendAsyncChannel ")
@Rol e("cluster")
publ i c MessageHandl er sendAsyncHandl er () {
return // some MessageHandl er

}

@ayl oad("#args[0] .t oLower Case()")

@Rol e("cluster")

public String handl e(String payl oad) {
return payl oad.t oUpper Case();

}

@\ut owi r ed
private SmartLifecycl eRol eController roleController;

this.roleController.addSmartLifeCycl eToRol e("cl uster", someEndpoint);

Each of these adds the endpoint to the role cl ust er.

Invoking rol eController.startLifecycleslnRole("cluster") (and the -corresponding
st op. . . method) will start/stop the endpoints.

Note

Any object implementing Smar t Li f ecycl e can be programmatically added, not just endpoints.

The Smart Li f ecycl eRol eControl | er implements
Appl i cationLi st ener <Abstract Leader Event > and it will automatically start/stop its configured
Smart Li fecycl e objects when leadership is granted/revoked (when some bean publishes
OnG ant edEvent or OnRevokedEvent respectively).

Important

When using leadership election to start/stop components, it is important to set the aut o- st art up
XML attribute (aut oSt ar t up bean property) to f al se so the application context does not start
the components during context intialization.

Starting with _version 4.3.8, the SmartLifecycl eRol eControll er provides several status
methods:

public Collection<String> getRoles() O

publ i c bool ean al | Endpoi nt sRunning(String role) O

publ i ¢ bool ean noEndpoi nt sRunni ng(String role) O

public Map<String, Bool ean> get Endpoi nt sRunni ngStatus(String role) O

0 Returns a list of the roles being managed.

4.3.18.RELEASE Spring Integration 131

Spring Integration Reference Manual

O Returns true if all endpoints in the role are running.

Returns true if none of the endpoints in the role are running.

0 Returns a map of conponent nane : running status -the component name is usually
the bean name.

O

8.3 Leadership Event Handling

Groups of endpoints can be started/stopped based on leadership being granted or revoked respectively.
This is useful in clustered scenarios where shared resources must only be consumed by a single
instance. An example of this is a file inbound channel adapter that is polling a shared directory. (See
Section 14.2, “Reading Files”).

To participate in a leader election and be notified when elected leader or when leadership is revoked, an
application creates a component in the application context called a "leader initiator". Normally a leader
initiator is a Smart Li f ecycl e so it starts up (optionally) automatically when the context starts, and
then publishes notifications when leadership changes. By convention the user provides a Candi dat e
that receives the callbacks and also can revoke the leadership through a Cont ext object provided by
the framework. User code can also listen for Abst r act Leader Event s, and respond accordingly, for
instance using a Sart Li f ecycl eRol eControl | er.

There is a basic implementation of a leader initiator based on the LockRegi st ry abstraction. To use
it you just need to create an instance as a bean, for example:

@Bean
public LockRegi stryLeaderlnitiator |eaderlnitiator(LockRegistry |ocks) {
return new LockRegi stryLeaderlnitiator(locks);

}

If the lock registry is implemented correctly, there will only ever be at most one leader. If the lock registry
also provides locks which throw exceptions (ideally | nt er r upt edExcept i on) when they expire or are
broken, then the duration of the leaderless periods can be as short as is allowed by the inherent latency
in the lock implementation. By default there is a busyWai t M | | i s property that adds some additional
latency to prevent CPU starvation in the (more usual) case that the locks are imperfect and you only
know they expired by trying to obtain one again.

See Section 37.4, “Zookeeper Leadership Event Handling” for more information about leadership
election and events using Zookeeper.

8.4 Messaging Gateways

The primary purpose of a Gateway is to hide the messaging API provided by Spring Integration. It allows
your application’s business logic to be completely unaware of the Spring Integration APl and using a
generic Gateway, your code interacts instead with a simple interface, only.

Enter the GatewayProxyFactoryBean

As mentioned above, it would be great to have no dependency on the Spring Integration
APl at all - including the gateway class. For that reason, Spring Integration provides the
Gat ewayPr oxyFact or yBean that generates a proxy for any interface and internally invokes the
gateway methods shown below. Using dependency injection you can then expose the interface to your
business methods.

Here is an example of an interface that can be used to interact with Spring Integration:

4.3.18.RELEASE Spring Integration 132

Spring Integration Reference Manual

package org.cafeteria;

public interface Cafe {

voi d placeOrder (Order order);

Gateway XML Namespace Support

Namespace support is also provided which allows you to configure such an interface as a service as
demonstrated by the following example.

<int:gateway id="cafeService"
service-interface="org.cafeteria. Cafe"

def aul t - request - channel ="r equest Channel "
defaul t-reply-tinmeout="10000"
def aul t -repl y- channel ="r epl yChannel "/ >

With this configuration defined, the "cafeService" can now be injected into other beans, and the code
that invokes the methods on that proxied instance of the Cafe interface has no awareness of the Spring
Integration API. The general approach is similar to that of Spring Remoting (RMI, Httpinvoker, etc.). See
the "Samples" Appendix for an example that uses this "gateway" element (in the Cafe demo).

The defaults in the configuration above are applied to all methods on the gateway interface; if a reply
timeout is not specified, the calling thread will wait indefinitely for areply. See the section called “Gateway
behavior when no response arrives”.

The defaults can be overridden for individual methods; see the section called “Gateway Configuration
with Annotations and/or XML".

Setting the Default Reply Channel

Typically you don't have to specify the def aul t - r epl y- channel , since a Gateway will auto-create
a temporary, anonymous reply channel, where it will listen for the reply. However, there are some
cases which may prompt you to define adef aul t - r epl y- channel (orr epl y- channel with adapter
gateways such as HTTP, JMS, etc.).

For some background, we’ll quickly discuss some of the inner-workings of the Gateway. A Gateway
will create a temporary point-to-point reply channel which is anonymous and is added to the Message
Headers with the name repl yChannel . When providing an explicit def aul t - r epl y- channel
(repl y- channel with remote adapter gateways), you have the option to point to a publish-subscribe
channel, which is so named because you can add more than one subscriber to it. Internally Spring
Integration will create a Bridge between the temporary r epl yChannel and the explicitly defined
def aul t-repl y-channel .

So let’s say you want your reply to go not only to the gateway, but also to some other consumer. In
this case you would want two things: a) a named channel you can subscribe to and b) that channel
is a publish-subscribe-channel. The default strategy used by the gateway will not satisfy those needs,
because the reply channel added to the header is anonymous and point-to-point. This means that no
other subscriber can get a handle to it and even if it could, the channel has point-to-point behavior such
that only one subscriber would get the Message. So by defining a def aul t - r epl y- channel you can
point to a channel of your choosing, which in this case would be a publ i sh- subscri be- channel .
The Gateway would create a bridge from it to the temporary, anonymous reply channel that is stored
in the header.

4.3.18.RELEASE Spring Integration 133

Spring Integration Reference Manual

Another case where you might want to provide a reply channel explicitly is for monitoring or auditing via
an interceptor (e.g., wiretap). You need a named channel in order to configure a Channel Interceptor.

Gateway Configuration with Annotations and/or XML

public interface Cafe {

@zat eway(r equest Channel =" orders")
voi d placeOrder (COrder order);

You may alternatively provide such content in met hod sub-elements if you prefer XML configuration
(see the next paragraph).

It is also possible to pass values to be interpreted as Message headers on the Message that is created

and sent to the request channel by using the @Header annotation:

public interface FileWiter {

@zat eway (request Channel ="fil esCQut")
void wite(byte[] content, @deader(FileHeaders. FI LENAMVE) String fil enane);

If you prefer the XML approach of configuring Gateway methods, you can provide method sub-elements
to the gateway configuration.

<int:gateway id="nyGateway" service-interface="org.foo.bar. Test Gat enay"

def aul t - request - channel ="i nput C' >
<int:defaul t-header name="cal | edMet hod" expressi on="+#gat ewayMet hod. nane"/ >
<i nt:nmethod nane="echo" request-channel ="i nput A" reply-tineout="2" request-tinmeout="200"/>
<i nt: et hod nane="echoUpper Case" request-channel ="i nput B"/ >

<int:nethod nane="echoVi aDefaul t"/>
</int: gat enay>

You can also provide individual headers per method invocation via XML. This could be very useful if
the headers you want to set are static in nature and you don’t want to embed them in the gateway’s
method signature via @Header annotations. For example, in the Loan Broker example we want to
influence how aggregation of the Loan quotes will be done based on what type of request was initiated
(single quote or all quotes). Determining the type of the request by evaluating what gateway method
was invoked, although possible, would violate the separation of concerns paradigm (the method is a
java artifact), but expressing your intention (meta information) via Message headers is natural in a
Messaging architecture.

<int:gateway id="|oanBroker Gat enay"
service-interface="org.springfranmework.integration.|oanbroker.LoanBroker Gat eway" >
<i nt:nmethod nane="get LoanQuote" request-channel ="1 oanBr oker PreProcessi ngChannel ">
<i nt:header nanme="RESPONSE_TYPE" val ue="BEST"/ >
</i nt: met hod>
<int:nmethod name="get Al | LoanQuot es" request-channel ="| oanBr oker Pr ePr ocessi ngChannel " >
<int:header name="RESPONSE TYPE" val ue="ALL"/>
</int: method>
</int: gat enay>

In the above case you can clearly see how a different value will be set for the RESPONSE_TYPE header
based on the gateway’s method.

Expressions and "Global" Headers

4.3.18.RELEASE Spring Integration 134

Spring Integration Reference Manual

The <header/ > element supports expr essi on as an alternative to val ue. The SpEL expression is
evaluated to determine the value of the header. There is no #r oot object but the following variables
are available:

#args - an Obj ect [] containing the method arguments

#gatewayMethod - the j ava. refl ect. Met hod object representing the method in the servi ce-
i nt erface that was invoked. A header containing this variable can be used later in the flow, for
example, for routing. For example, if you wish to route on the simple method name, you might add a
header, with expression #gat eway Met hod. nane.

Note

The j ava. ref | ect. Met hod is not serializable; a header with expression #gat eway Met hod
will be lost if you later serialize the message. So, you may wish to use #gat eway Met hod. nane
or #gat ewayMet hod. t oSt ri ng() in those cases; the t oSt ri ng() method provides a String
representation of the method, including parameter and return types.

Note

Prior to 3.0, the #net hod variable was available, representing the method name only. This is still
available, but deprecated; use #gat eway Met hod. nane instead.

Since 3.0, <def aul t - header/ > s can be defined to add headers to all messages produced by the
gateway, regardless of the method invoked. Specific headers defined for a method take precedence
over default headers. Specific headers defined for a method here will override any @Header annotations
in the service interface. However, default headers will NOT override any @Header annotations in the
service interface.

The gateway now also supports a def aul t - payl oad- expr essi on which will be applied for all
methods (unless overridden).

Mapping Method Arguments to a Message

Using the configuration techniques in the previous section allows control of how method arguments are
mapped to message elements (payload and header(s)). When no explicit configuration is used, certain
conventions are used to perform the mapping. In some cases, these conventions cannot determine
which argument is the payload and which should be mapped to headers.

public String sendl(Cbject foo, Map bar);

public String send2(Map foo, Map bar);

In the first case, the convention will map the first argument to the payload (as long as it is not a Map)
and the contents of the second become headers.

In the second case (or the first when the argument for parameter f oo is a Map), the framework cannot
determine which argument should be the payload; mapping will fail. This can generally be resolved
using a payl oad- expr essi on, a @ayl oad annotation and/or a @Header s annotation.

Alternatively, and whenever the conventions break down, you can take the entire responsibility for
mapping the method calls to messages. To do this, implement anMethodArgsMessageMapper™ and

4.3.18.RELEASE Spring Integration 135

Spring Integration Reference Manual

provide it to the <gat eway/ > using the mapper attribute. The mapper maps a Met hodAr gsHol der,
which is a simple class wrapping the j ava. ref | ect . Met hod instance and an Cbj ect[] containing
the arguments. When providing a custom mapper, the def aul t - payl oad- expr essi on attribute and
<def aul t - header / > elements are not allowed on the gateway; similarly, the payl oad- expr essi on
attribute and <header / > elements are not allowed on any <net hod/ > elements.

Mapping Method Arguments

Here are examples showing how method arguments can be mapped to the message (and some
examples of invalid configuration):

public interface MyGateway {
voi d payl oadAndHeader MapW t hout Annot ati ons(String s, Map<String, Object> map);
voi d payl oadAndHeader MapW t hAnnot ati ons(@ayl| oad String s, @leaders Map<String, Object> map);

voi d header Val uesAndPayl oadW t hAnnot ati ons(@eader ("k1") String x, @ayload String s, @leader("k2")
String y);

void mapOnl y(Map<String, Object> map); // the payload is the map and no custom headers are added

voi d t wMapsAndOneAnnot at edW t hPayl oad(@ayl oad Map<String, Cbject> payl oad, Map<String, Object>
headers);

@ayl oad("#args[0] + #args[1] + '!'")
voi d payl oadAnnot at i onAt Met hodLevel (String a, String b);

@Payl| oad(" @oneBean. excl ai n{#args[0])")
voi d payl oadAnnot at i onAt Met hodLevel Usi ngBeanResol ver (String s);

voi d payl oadAnnot ati onW t hExpr essi on(@ay| oad("toUpper Case()") String s);

voi d payl oadAnnot ati onW t hExpr essi onUsi ngBeanResol ver (@ayl| oad(" @oneBean. sun{#this)") String s); //
O

/1l invalid
voi d twoMapsW t hout Annot ati ons(Map<String, Cbject> nml, Map<String, Object> nR);

/] invalid
voi d twoPayl oads(@ayl oad String sl, @ayload String s2);

/1l invalid
voi d payl oadAndHeader Annot at i onsOnSanePar anet er (@ayl oad @deader ("x") String s);

/] invalid
voi d payl oadAndHeader sAnnot at i onsOnSanePar anet er (@ay| oad @ieaders Map<String, Object> map);

O Note thatin this example, the SpEL variable #t hi s refers to the argument - in this case, the value
of's".

The XML equivalent looks a little different, since there is no #t hi s context for the method argument,
but expressions can refer to method arguments using the #ar gs variable:

<int:gateway id="nyGateway" service-interface="org.foo.bar. MyGat enay" >
<int:nmethod nane="sendl" payl oad- expressi on="#args[0] + 'bar'"/>
<int:nmethod nane="send2" payl oad- expressi on="@onmeBean. sun(#args[0])"/>
<int:nmethod name="send3" payl oad- expressi on="#nmet hod"/ >
<int:method nane="send4">

<int:header name="foo0" expression="+#args[2].toUpperCase()"/>

</int: method>

</int: gat enay>

4.3.18.RELEASE Spring Integration 136

Spring Integration Reference Manual

@MessagingGateway Annotation

Starting with version 4.0, gateway service interfaces can be marked with a @wessagi ngGat eway
annotation instead of requiring the definition of a <gat eway /> xml element for configuration. The
following compares the two approaches for configuring the same gateway:

<int:gateway id="nyGateway" service-interface="org.foo.bar. Test Gat enay"

def aul t - r equest - channel ="i nput C' >
<int:defaul t-header name="cal | edMet hod" expressi on="+#gat ewayMet hod. nane"/ >
<i nt:nmethod nane="echo" request-channel ="i nput A" reply-tineout="2" request-tinmeout="200"/>
<i nt: et hod nane="echoUpper Case" request-channel ="i nput B">

<i nt:header nanme="foo" val ue="bar"/>
</int: method>
<int:nmethod name="echoVi aDefaul t"/>
</int: gat enay>

@kssagi ngGat eway(nane = "nyGat eway", default Request Channel = "inputC',
def aul t Headers = @zt ewayHeader (name = "cal | edMet hod",
expr essi on="+#gat ewayMet hod. nane"))
public interface TestGateway {

@zat eway(request Channel = "inputA", replyTineout = 2, requestTi neout = 200)
String echo(String payl oad);

@zat eway(request Channel = "inputB", headers = @atewayHeader(nane = "foo", value="bar"))
String echoUpper Case(String payl oad);

String echoVi aDefaul t (String payl oad);

Important

As with the XML version, Spring Integration creates the proxy implementation with its
messaging infrastructure, when discovering these annotations during a component scan.
To perform this scan and register the BeanDefinition in the application context,
add the @ ntegrationConponent Scan annotation to a @Confi guration class. The
standard @onponent Scan infrastructure doesn’t deal with interfaces, therefore the custom
@ nt egr at i onConponent Scan logic has been introduced to determine @/kssagi ngGat eway
annotation on the interfaces and register Gat ewayPr oxyFact or yBean s for them. See also
Section F.6, “Annotation Support”

Note

If you have no XML configuration, the @nabl el nt egr at i on annotation is required on at least
one @onfi gur ati on class. See Section 3.5, “Configuration and @Enablelntegration” for more
information.

Invoking No-Argument Methods

When invoking methods on a Gateway interface that do not have any arguments, the default behavior
is to receive a Message from a Pol | abl eChannel .

At times however, you may want to trigger no-argument methods so that you can in fact interact
with other components downstream that do not require user-provided parameters, e.g. triggering no-
argument SQL calls or Stored Procedures.

4.3.18.RELEASE Spring Integration 137

Spring Integration Reference Manual

In order to achieve send-and-receive semantics, you must provide a payload. In order to generate a
payload, method parameters on the interface are not necessary. You can either use the @ayl oad
annotation or the payl oad- expr essi on attribute in XML on the net hod sub-element. Below please
find a few examples of what the payloads could be:

a literal string

#gatewayMethod.name
e new java.util.Date()
* @someBean.someMethod()'s return value

Here is an example using the @ay| oad annotation:

public interface Cafe {

@Payl oad("new java.util.Date()")
Li st <Order> retrieveOpenOrders();

If a method has no argument and no return value, but does contain a payload expression, it will be
treated as a send-only operation.

Error Handling

Of course, the Gateway invocation might result in errors. By default any error that has occurred
downstream will be re-thrown as a Messagi ngExcept i on (Runti meExcept i on) upon the Gateway's
method invocation. However there are times when you may want to simply log the error rather than
propagating it, or you may want to treat an Exception as a valid reply, by mapping it to a Message that will
conform to some "error message" contract that the caller understands. To accomplish this, the Gateway
provides support for a Message Channel dedicated to the errors via the error-channel attribute. In the
example below, you can see that a transformer is used to create a reply Message from the Exception.

<int:gateway id="sanpl eGateway"
def aul t - r equest - channel =" gat emayChannel "
servi ce-interface="fo0o0. bar. Si npl eGat enay"
error-channel ="excepti onTransf or mati onChannel "/ >

<int:transforner input-channel ="exceptionTransformati onChannel "
ref ="exceptionTransformer" nethod="creat eError Response"/ >

The exceptionTransformer could be a simple POJO that knows how to create the expected error
response objects. That would then be the payload that is sent back to the caller. Obviously, you could
do many more elaborate things in such an "error flow" if necessary. It might involve routers (including
Spring Integration’s Er r or MessageExcept i onTypeRout er), filters, and so on. Most of the time, a
simple transformer should be sufficient, however.

Alternatively, you might want to only log the Exception (or send it somewhere asynchronously). If you
provide a one-way flow, then nothing would be sent back to the caller. In the case that you want to
completely suppress Exceptions, you can provide a reference to the global "nullChannel" (essentially
a /dev/null approach). Finally, as mentioned above, if no "error-channel" is defined at all, then the
Exceptions will propagate as usual.

4.3.18.RELEASE Spring Integration 138

Spring Integration Reference Manual

Important

Exposing the messaging system via simple POJI Gateways obviously provides benefits, but
"hiding" the reality of the underlying messaging system does come at a price so there are certain
things you should consider. We want our Java method to return as quickly as possible and not
hang for an indefinite amount of time while the caller is waiting on it to return (void, return value, or a
thrown Exception). When regular methods are used as a proxies in front of the Messaging system,
we have to take into account the potentially asynchronous nature of the underlying messaging.
This means that there might be a chance that a Message that was initiated by a Gateway could
be dropped by a Filter, thus never reaching a component that is responsible for producing a reply.
Some Service Activator method might result in an Exception, thus providing no reply (as we don't
generate Null messages). So as you can see there are multiple scenarios where a reply message
might not be coming. That is perfectly natural in messaging systems. However think about the
implication on the gateway method. The Gateway’s method input arguments were incorporated
into a Message and sent downstream. The reply Message would be converted to a return value of
the Gateway’s method. So you might want to ensure that for each Gateway call there will always be
a reply Message. Otherwise, your Gateway method might never return and will hang indefinitely.
One of the ways of handling this situation is via an Asynchronous Gateway (explained later in this
section). Another way of handling it is to explicitly set the reply-timeout attribute. That way, the
gateway will not hang any longer than the time specified by the reply-timeout and will return null
if that timeout does elapse. Finally, you might want to consider setting downstream flags such as
requires-reply on a service-activator or throw-exceptions-on-rejection on a filter. These options
will be discussed in more detail in the final section of this chapter.

Note

If the downstream flow returns an Er r or Message, its payl oad (a Thr owabl e) is treated as a
regular downstream error: if there is an er r or - channel configured, it will be sent there, to the
error flow; otherwise the payload is thrown to the caller of gateway. Similarly, if the error flow on the
error - channel returnsan Err or Message its payload is thrown to the caller. The same applies
to any message with a Thr owabl e payload. This can be useful in async situations when when
there is a need propagate an Except i on directly to the caller. To achieve this you can either
return an Excepti on asther epl y from some service, or simply throw it. Generally, even with an
async flow, the framework will take care of propagating an exception thrown by the downstream
flow back to the gateway. The TCP Client-Server Multiplex sample demonstrates both techniques
to return the exception to the caller. It emulates a Socket 10 error to the waiting thread using an
aggr egat or with group-ti meout (see the section called “Aggregator and Group Timeout”)
and Messagi ngTi neout Except i on reply on the discard flow.

Asynchronous Gateway
Introduction

As a pattern, the Messaging Gateway is a very nice way to hide messaging-specific code
while still exposing the full capabilities of the messaging system. As you've seen, the
Gat ewayPr oxyFact or yBean provides a convenient way to expose a Proxy over a service-interface
thus giving you POJO-based access to a messaging system (based on objects in your own domain, or
primitives/Strings, etc). But when a gateway is exposed via simple POJO methods which return values
it does imply that for each Request message (generated when the method is invoked) there must be
a Reply message (generated when the method has returned). Since Messaging systems naturally are
asynchronous you may not always be able to guarantee the contract where "for each request there will

4.3.18.RELEASE Spring Integration 139

https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/tcp-client-server-multiplex

Spring Integration Reference Manual

always be be areply". With Spring Integration 2.0 we introduced support for an Asynchronous Gateway
which is a convenient way to initiate flows where you may not know if a reply is expected or how long
will it take for replies to arrive.

A natural way to handle these types of scenarios in Java would be relying upon
java.util.concurrent.Future instances, and that is exactly what Spring Integration uses to support an
Asynchronous Gateway.

From the XML configuration, there is nothing different and you still define Asynchronous Gateway the
same way as a regular Gateway.

<int:gateway id="mathService"
service-interface="org.springframework.integration.sanple.gateway. futures. Mat hServi ceGat enay"
def aul t - request - channel ="r equest Channel "/ >

However the Gateway Interface (service-interface) is a little different:

public interface MathServiceGateway {

Fut ure<lnteger> nul tipl yByTwo(int i);

As you can see from the example above, the return type for the gateway method is a Fut ure.
When Gat ewayPr oxyFact or yBean sees that the return type of the gateway method is a Fut ur e,
it immediately switches to the async mode by utilizing an AsyncTaskExecut or. That is all. The call
to such a method always returns immediately with a Fut ur e instance. Then, you can interact with the
Fut ur e at your own pace to get the result, cancel, etc. And, as with any other use of Future instances,
calling get() may reveal a timeout, an execution exception, and so on.

Mat hSer vi ceGat eway mat hServi ce = ac. get Bean(" nat hServi ce", Mt hServi ceGat eway. cl ass);
Fut ure<lnteger> result = mathService. mul ti pl yByTwo(nunber);

/1 do something else here since the reply might take a nonent

int final Result = result.get(1000, TinmeUnit.SECONDS);

For a more detailed example, please refer to the async-gateway sample distributed within the Spring
Integration samples.

ListenableFuture

Starting with version 4.1, async gateway methods can also return Li st enabl eFut ur e (introduced
in Spring Framework 4.0). These return types allow you to provide a callback which is invoked
when the result is available (or an exception occurs). When the gateway detects this return
type, and the task executor (see below) is an AsynclLi st enabl eTaskExecut or, the executor's
submi t Li st enabl e() method is invoked.

Li st enabl eFuture<String> result = this.asyncGateway.async("foo");
resul t.addCal | back(new Li st enabl eFut ureCal | back<String>() {

@verride
public void onSuccess(String result) {

}

@verride
public void onFailure(Throwable t) {

}
1)

4.3.18.RELEASE Spring Integration 140

https://github.com/spring-projects/spring-integration-samples/tree/master/intermediate/async-gateway

Spring Integration Reference Manual

AsyncTaskExecutor

By default, the Gat ewayPr oxyFact or yBean uses
org. springframework. core. task. Si npl eAsyncTaskExecut or when submitting internal
Asyncl nvocat i onTask instances for any gateway method whose return type is Fut ur e. However
the async- execut or attribute in the <gat eway/ > element’s configuration allows you to provide a
reference to any implementation of j ava. uti | . concurrent. Execut or available within the Spring
application context.

The (default) Si npl eAsyncTaskExecut or supports both Fut ur e and Li st enabl eFut ur e return
types, returning Fut ur eTask or Li st enabl eFut ur eTask respectively. Also see the section called
“CompletableFuture” below. Even though there is a default executor, it is often useful to provide an
external one so that you can identify its threads in logs (when using XML, the thread name is based
on the executor’'s bean name):

@Bean

publ i c AsyncTaskExecut or exec() {
Si npl eAsyncTaskExecut or si npl eAsyncTaskExecut or = new Si npl eAsyncTaskExecutor () ;
si mpl eAsyncTaskExecut or . set Thr eadNanePr ef i x("“exec-");
return sinpl eAsyncTaskExecut or;

}

@kssagi ngGat eway(asyncExecut or = "exec")
public interface ExecGateway {

@zat eway(r equest Channel = "gat ewayChannel ")
Fut ur e<?> doAsync(String foo);

If you wish to return a different Fut ur e implementation, you can provide a custom executor, or
disable the executor altogether and return the Fut ure in the reply message payload from the
downstream flow. To disable the executor, simply set it to nul | in the Gat ewayPr oxyFact or yBean
(set AsyncTaskExecutor (null)). When configuring the gateway with XML, use async-

execut or =""; when configuring using the @/essagi ngGat eway annotation, use:

@/kssagi ngGat eway(asyncExecut or = Annot ati onConst ants. NULL)
public interface NoExecGateway {

@zat eway (request Channel = "gat ewayChannel ")
Fut ur e<?> doAsync(String foo);

Important

If the return type is a specific concrete Fut ur e implementation or some other subinterface that
is not supported by the configured executor, the flow will run on the caller’s thread and the flow
must return the required type in the reply message payload.

CompletableFuture

Starting with version 4.2, gateway methods can now return Conpl et abl eFut ur e<?>. There are
several modes of operation when returning this type:

When an async executor is provided and the return type is exactly Conpl et abl eFut ure
(not a subclass), the framework will run the task on the executor and immediately return

4.3.18.RELEASE Spring Integration 141

Spring Integration Reference Manual

a Conpl etabl eFuture to the caller. Conpl et abl eFut ure. suppl yAsync(Suppl i er <U>
supplier, Executor executor) isused to create the future.

When the async executor is explicitly set to nul | and the return type is Conpl et abl eFut ur e or the
return type is a subclass of Conpl et abl eFut ur e, the flow is invoked on the caller’s thread. In this
scenario, it is expected that the downstream flow will return a Conpl et abl eFut ur e of the appropriate

type.
Usage Scenarios

‘ Conpl et abl eFut ur e<l nvoi ce> order (Order order);

<int:gateway service-interface="foo. Service" default-request-channel ="orders" />

In this scenario, the caller thread returns immediately with a Conpl et abl eFut ur e<l nvoi ce> which
will be completed when the downstream flow replies to the gateway (with an | nvoi ce object).

‘ Conpl et abl eFut ur e<I nvoi ce> order (Order order);

<int:gateway service-interface="foo.Service" default-request-channel ="orders"
async- executor="" />

In this scenario, the caller thread will return with a CompletableFuture<invoice> when the downstream
flow provides it as the payload of the reply to the gateway. Some other process must complete the future
when the invoice is ready.

‘ My Conpl et abl eFut ur e<l nvoi ce> order (Order order);

<int:gateway service-interface="foo.Service" default-request-channel ="orders" />

In this scenario, the caller thread will return with a CompletableFuture<invoice> when the downstream
flow provides it as the payload of the reply to the gateway. Some other process must complete the
future when the invoice is ready. If DEBUGlogging is enabled, a log is emitted indicating that the async
executor cannot be used for this scenario.

Conpl et abl eFut ur e s can be used to perform additional manipulation on the reply, such as:

Conpl et abl eFuture<String> process(String data);

Conpl et abl eFuture result = process("foo0")
.thenApply(t -> t.toUpperCase());

String out = result.get(10, TinmeUnit.SECONDS);

Reactor Promise

Starting with version 4.1, the Gat eway Pr oxyFact or yBean allows the use of a React or with gateway
interface methods, utilizing a Proni se<?> return type. The internal Asyncl nvocati onTask is
wrapped in a reactor. function. Supplier, using a default R ngBuf f er Di spat cher for the
Pr om se consumption. Only methods with the Proni se<?> return type are run on the reactor's
dispatcher.

A Pr oni se can be used to retrieve the result later (similar to a Fut ur e<?>) or you can consume from
it with the dispatcher invoking your Consurrer when the result is returned to the gateway.

4.3.18.RELEASE Spring Integration 142

https://github.com/reactor/reactor/wiki/Promises

Spring Integration Reference Manual

Important

The Pr omi se isn't flushed immediately by the framework. Hence the underlying message flow
won't be started before the gateway method returns (as it is with Fut ur e<?> Execut or task).
The flow will be started when the Pr omi se is flushed or via Prom se. awai t () . Alternatively,
the Pr om se (being a Conrposabl e) might be a part of Reactor St r ean<?>, when the f | ush()
is related to the entire St r eam For example:

@/kssagi ngGat eway
public static interface TestGateway {

@zat eway(r equest Channel = "prom seChannel ")
Proni se<l nteger> mul tiply(lnteger value);

}

@per vi ceAct i vat or (i nput Channel = "prom seChannel ")
public Integer multiply(lnteger value) {
return value * 2;

}

Streans. def er (Arrays. asList("1", "2", "3", "4", "5"))
.get()
.map(|l nteger::parselnt)
.mapMany(integer -> testGateway. nmultiply(integer))
.col lect()
.consune(integers -> ...)
.flush();

Another example is a simple callback scenario:

Prom se<I nvoi ce> promi se = service. process(nyOrder);

prom se. consunme(new Consuner <l nvoi ce>() {
@verride
public void accept (I nvoice invoice) {
handl el nvoi ce(i nvoi ce);
}

b
.flush();

The calling thread continues, with handl el nvoi ce() being called when the flow completes.
Gateway behavior when no response arrives

As it was explained earlier, the Gateway provides a convenient way of interacting with a Messaging
system via POJO method invocations, but realizing that a typical method invocation, which is generally
expected to always return (even with an Exception), might not always map one-to-one to message
exchanges (e.g., a reply message might not arrive - which is equivalent to a method not returning). It is
important to go over several scenarios especially in the Sync Gateway case and understand the default
behavior of the Gateway and how to deal with these scenarios to make the Sync Gateway behavior
more predictable regardless of the outcome of the message flow that was initialed from such Gateway.

There are certain attributes that could be configured to make Sync Gateway behavior more predictable,
but some of them might not always work as you might have expected. One of them is reply-timeout (at
the method level or default-reply-timeout at the gateway level). So, lets look at the reply-timeout attribute

4.3.18.RELEASE Spring Integration 143

Spring Integration Reference Manual

and see how it can/can’t influence the behavior of the Sync Gateway in various scenarios. We will look
at single-threaded scenario (all components downstream are connected via Direct Channel) and multi-
threaded scenarios (e.g., somewhere downstream you may have Pollable or Executor Channel which
breaks single-thread boundary)

Long running process downstream

Sync Gateway - single-threaded. If a component downstream is still running (e.g., infinite loop or a
very slow service), then setting a reply-timeout has no effect and the Gateway method call will not
return until such downstream service exits (via return or exception). Sync Gateway - multi-threaded. If
a component downstream is still running (e.g., infinite loop or a very slow service), in a multi-threaded
message flow setting the reply-timeout will have an effect by allowing gateway method invocation to
return once the timeout has been reached, since the Gat ewayPr oxyFact or yBean will simply poll on
the reply channel waiting for a message until the timeout expires. However it could result in a null return
from the Gateway method if the timeout has been reached before the actual reply was produced. It is
also important to understand that the reply message (if produced) will be sent to a reply channel after
the Gateway method invocation might have returned, so you must be aware of that and design your
flow with this in mind.

Downstream component returns 'null’

Sync Gateway - single-threaded. If a component downstream returns null and no reply-timeout has been
configured, the Gateway method call will hang indefinitely unless: a) a reply-timeout has been configured
or b) the requires-reply attribute has been set on the downstream component (e.g., service-activator)
that might return null. In this case, an Exception would be thrown and propagated to the Gateway.Sync
Gateway - multi-threaded. Behavior is the same as above.

Downstream component return signature is void while Gateway method signature is non-void

Sync Gateway - single-threaded. If a component downstream returns void and no reply-timeout has been
configured, the Gateway method call will hang indefinitely unless a reply-timeout has been configured
Sync Gateway - multi-threaded Behavior is the same as above.

Downstream component results in Runtime Exception (regardless of the method signature)

Sync Gateway - single-threaded. If a component downstream throws a Runtime Exception, such
exception will be propagated via an Error Message back to the gateway and re-thrown. Sync Gateway
- multi-threaded Behavior is the same as above.

Important

It is also important to understand that by default reply-timeout is unbounded* which means that
if not explicitly set there are several scenarios (described above) where your Gateway method
invocation might hang indefinitely. So, make sure you analyze your flow and if there is even a
remote possibility of one of these scenarios to occur, set the reply-timeout attribute to a safe value
or, even better, set the requires-reply attribute of the downstream component to true to ensure
a timely response as produced by the throwing of an Exception as soon as that downstream
component does return null internally. But also, realize that there are some scenarios (see the
very first one) where reply-timeout will not help. That means it is also important to analyze your
message flow and decide when to use a Sync Gateway vs an Async Gateway. As you've seen
the latter case is simply a matter of defining Gateway methods that return Future instances. Then,
you are guaranteed to receive that return value, and you will have more granular control over the

4.3.18.RELEASE Spring Integration 144

Spring Integration Reference Manual

results of the invocation.Also, when dealing with a Router you should remember that setting the
resolution-required attribute to true will result in an Exception thrown by the router if it can not
resolve a particular channel. Likewise, when dealing with a Filter, you can set the throw-exception-
on-rejection attribute. In both of these cases, the resulting flow will behave like that containing
a service-activator with the requires-reply attribute. In other words, it will help to ensure a timely
response from the Gateway method invocation.

Note

* reply-timeout is unbounded for <gateway/> elements (created by the
GatewayProxyFactoryBean). Inbound gateways for external integration (ws, http, etc.) share
many characteristics and attributes with these gateways. However, for those inbound gateways,
the default reply-timeout is 1000 milliseconds (1 second). If a downstream async handoff is made
to another thread, you may need to increase this attribute to allow enough time for the flow to
complete before the gateway times out.

Important

Itis important to understand that the timer starts when the thread returns to the gateway, i.e. when
the flow completes or a message is handed off to another thread. At that time, the calling thread
starts waiting for the reply. If the flow was completely synchronous, the reply will be immediately
available; for asynchronous flows, the thread will wait for up to this time.

8.5 Service Activator

Introduction

The Service Activator is the endpoint type for connecting any Spring-managed Object to an input channel
so that it may play the role of a service. If the service produces output, it may also be connected to an
output channel. Alternatively, an output producing service may be located at the end of a processing
pipeline or message flow in which case, the inbound Message’s "replyChannel" header can be used.
This is the default behavior if no output channel is defined and, as with most of the configuration options
you'll see here, the same behavior actually applies for most of the other components we have seen.

Configuring Service Activator

To create a Service Activator, use the service-activator element with the input-channel and ref attributes:

<int:service-activator input-channel ="exanpl eChannel " ref="exanpl eHandl er"/>

The configuration above assumes that "exampleHandler" either contains a single method annotated
with the @ ServiceActivator annotation or that it contains only one public method at all. To delegate to
an explicitly defined method of any object, simply add the "method" attribute.

<int:service-activator input-channel ="exanpl eChannel" ref="sonmePoj 0" nethod="sonmeMet hod"/ >

In either case, when the service method returns a non-null value, the endpoint will attempt to send the
reply message to an appropriate reply channel. To determine the reply channel, it will first check if an
"output-channel" was provided in the endpoint configuration:

<int:service-activator input-channel ="exanpl eChannel" out put-channel ="repl yChannel "
ref ="sonmePoj 0" net hod="sonmeMet hod"/ >

4.3.18.RELEASE Spring Integration 145

Spring Integration Reference Manual

If the method returns a result and no "output-channel" is defined, the framework will then check the
Message’s r epl yChannel header value. If that value is available, it will then check its type. If it is
a'MessageChannel’, the reply message will be sent to that channel. Ifitis a St ri ng, then the endpoint
will attempt to resolve the channel name to a channel instance. If the channel cannot be resolved, then
aDesti nati onResol uti onExcept i on will be thrown. It it can be resolved, the Message will be sent
there. This is the technique used for Request Reply messaging in Spring Integration, and it is also an
example of the Return Address pattern.

If your method returns a result, and you want to discard it and end the flow, you should configure the
out put - channel to sendto a Nul | Channel . For convenience, the framework registers one with the
name nul | Channel . See the section called “Special Channels” for more information.

The Service Activator is one of those components that is not required to produce a reply
message. If your method returns null or has a void return type, the Service Activator
exits after the method invocation, without any signals. This behavior can be controlled by
the Abstract Repl yProduci ngMessageHandl er. requi resReply option, also exposed as
requi r es-r epl y when configuring with the XML namespace. If the flag is setto t r ue and the method
returns null, a Repl yRequi r edExcept i on is thrown.

The argument in the service method could be either a Message or an arbitrary type. If the latter, then
it will be assumed that it is a Message payload, which will be extracted from the message and injected
into such service method. This is generally the recommended approach as it follows and promotes a
POJO model when working with Spring Integration. Arguments may also have @Header or @Headers
annotations as described in Section F.6, “Annotation Support”

Note

The service method is not required to have any arguments at all, which means you can implement
event-style Service Activators, where all you care about is an invocation of the service method,
not worrying about the contents of the message. Think of it as a NULL JMS message. An example
use-case for such an implementation could be a simple counter/monitor of messages deposited
on the input channel.

Starting with version 4.1 the framework correct converts Message properties (payl oad and header s)
to the Java 8 Opt i onal POJO method parameters:

public class MyBean {
public String conputeVal ue(Optional <String> payl oad,
@Header (val ue="foo", required=false) String fool,
@eader (val ue="fo0") Optional <String> fo02) {
if (payload.isPresent()) {
String val ue = payl oad. get();

}

el se {

Using ar ef attribute is generally recommended if the custom Service Activator handler implementation
can be reused in other <ser vi ce- act i vat or > definitions. However if the custom Service Activator
handler implementation is only used within a single definition of the <ser vi ce- act i vat or >, you can
provide an inner bean definition:

4.3.18.RELEASE Spring Integration 146

Spring Integration Reference Manual

<int:service-activator id="exanpleServiceActivator" input-channel ="i nChannel "
out put - channel = "out Channel " nethod="f 00" >
<beans: bean cl ass="org. f 0oo. Exanpl eServi ceActivator"/>
</int:service-activator>

Note

Using both the "ref" attribute and an inner handler definition in the same <ser vi ce- act i vat or >
configuration is not allowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

Important

If the "ref" attribute references a bean that extends Abst r act MessagePr oduci ngHandl er
(such as handlers provided by the framework itself), the configuration is optimized by injecting
the output channel into the handler directly. In this case, each "ref* must be to a separate
bean instance (or a pr ot ot ype-scoped bean), or use the inner <bean/ > configuration type.
If you inadvertently reference the same message handler from multiple beans, you will get a
configuration exception.

Service Activators and the Spring Expression Language (SpEL)

Since Spring Integration 2.0, Service Activators can also benefit from SpEL (http:/
static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html).

For example, you may now invoke any bean method without pointing to the bean via a r ef attribute or
including it as an inner bean definition. For example:

<int:service-activator input-channel ="in" output-channel ="out"
expr essi on="@ccount Servi ce. processAccount (payl oad, headers. accountld)"/>

<bean i d="account Servi ce" class="fo00. bar. Account"/>

In the above configuration instead of injecting accountService using a r ef or as an inner bean, we
are simply using SpEL’s @eanl d notation and invoking a method which takes a type compatible with
Message payload. We are also passing a header value. As you can see, any valid SpEL expression
can be evaluated against any content in the Message. For simple scenarios your Service Activators do
not even have to reference a bean if all logic can be encapsulated by such an expression.

<int:service-activator input-channel ="in" output-channel ="out" expressi on="payl oad * 2"/>

In the above configuration our service logic is to simply multiply the payload value by 2, and SpEL lets
us handle it relatively easy.

Asynchronous Service Activator

The service activator is invoked by the calling thread; this would be some upstream thread if the input
channelisa Subscri babl eChannel , or apoller thread for a Pol | abl eChannel . If the service returns
a Li st enabl eFut ur e<?> the default action is to send that as the payload of the message sent to
the output (or reply) channel. Starting with version 4.3, you can now set the async attribute to true
(set Async(true) when using Java configuration). If the service returns a Li st enabl eFut ur e<?
> when this is true, the calling thread is released immediately, and the reply message is sent on the
thread (from within your service) that completes the future. This is particularly advantageous for long-

4.3.18.RELEASE Spring Integration 147

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html

Spring Integration Reference Manual

running services using a Pol | abl eChannel because the poller thread is freed up to perform other
services within the framework.

If the service completes the future with an Excepti on, normal error processing will occur - an
Err or Message is sent to the er r or Channel message header, if present or otherwise to the default
error Channel (if available).

8.6 Delayer

Introduction

A Delayer is a simple endpoint that allows a Message flow to be delayed by a certain interval. When a
Message is delayed, the original sender will not block. Instead, the delayed Messages will be scheduled
with an instance of or g. spri ngf ranmewor k. schedul i ng. TaskSchedul er to be sent to the output
channel after the delay has passed. This approach is scalable even for rather long delays, since it does
not result in a large number of blocked sender Threads. On the contrary, in the typical case a thread pool
will be used for the actual execution of releasing the Messages. Below you will find several examples
of configuring a Delayer.

Configuring Delayer

The <del ayer > element is used to delay the Message flow between two Message Channels. As
with the other endpoints, you can provide the input-channel and output-channel attributes, but the
delayer also has default-delay and expression attributes (and expression sub-element) that are used
to determine the number of milliseconds that each Message should be delayed. The following delays
all messages by 3 seconds:

<int:del ayer id="del ayer" input-channel ="input"
def aul t - del ay="3000" out put - channel =" out put"/ >

If you need per-Message determination of the delay, then you can also provide the SpEL expression
using the expression attribute:

<int:del ayer id="delayer" input-channel="input" output-channel ="output"
def aul t - del ay="3000" expressi on="headers["'delay']"/>

In the example above, the 3 second delay would only apply when the expression evaluates to null for
a given inbound Message. If you only want to apply a delay to Messages that have a valid result of the
expression evaluation, then you can use a default-delay of 0 (the default). For any Message that has a
delay of 0 (or less), the Message will be sent immediately, on the calling Thread.

Tip

The delay handler supports expression evaluation results that represent an interval in milliseconds
(any Objectwhoset oSt ri ng() method produces a value that can be parsed into a Long) as well
asjava. util . Dat e instances representing an absolute time. In the first case, the milliseconds
will be counted from the current time (e.g. a value of 5000 would delay the Message for at least 5
seconds from the time it is received by the Delayer). With a Date instance, the Message will not
be released until the time represented by that Date object. In either case, a value that equates
to a non-positive delay, or a Date in the past, will not result in any delay. Instead, it will be sent
directly to the output channel on the original sender’s Thread. If the expression evaluation result
is not a Date, and can not be parsed as a Long, the default delay (if any) will be applied.

4.3.18.RELEASE Spring Integration 148

Spring Integration Reference Manual

Important

The expression evaluation may throw an evaluation Exception for various reasons, including an
invalid expression, or other conditions. By default, such exceptions are ignored (logged at DEBUG
level) and the delayer falls back to the default delay (if any). You can modify this behavior by
setting the i gnor e- expr essi on-f ai | ur es attribute. By default this attribute is set to t r ue
and the Delayer behavior is as described above. However, if you wish to not ignore expression
evaluation exceptions, and throw them to the delayer’s caller, set the i gnor e- expr essi on-
fail ures attribute to f al se.

Tip

Notice in the example above that the delay expression is specified as header s[' del ay'] . This
is the SpEL | ndexer syntax to access a Map element (MessageHeader s implements Map), it
invokes: header s. get (" del ay") . For simple map element names (that do not contain .) you
can also use the SpEL dot accessor syntax, where the above header expression can be specified
as header s. del ay. But, different results are achieved if the header is missing. In the first case,
the expression will evaluate to nul | ; the second will result in something like:

org. spri ngframewor k. expr essi on. spel . Spel Eval uati onExcepti on: EL1008E: (pos 8)
Field or property 'delay' cannot be found on object of
type 'org.springframework. messagi ng. MessageHeader s

So, if there is a possibility of the header being omitted, and you want to fall back to the default
delay, it is generally more efficient (and recommended) to use the Indexer syntax instead of dot
property accessor syntax, because detecting the null is faster than catching an exception.

The delayer delegates to an instance of Spring’s TaskSchedul er abstraction. The default scheduler
used by the delayer is the Thr eadPool TaskSchedul er instance provided by Spring Integration on
startup: Section F.3, “Configuring the Task Scheduler”. If you want to delegate to a different scheduler,

you can provide a reference through the delayer element’s scheduler attribute:

<int:del ayer id="del ayer" input-channel="input" output-channel ="output"
expressi on="header s. del ay"
schedul er =" exanpl eTaskSchedul er"/ >

<t ask: schedul er id="exanpl eTaskSchedul er" pool -si ze="3"/>

Tip

If you configure an external Thr eadPool TaskSchedul er you can set on this scheduler property
wai t For TasksToConpl et eOnShut down = true. It allows successful completion of delay
tasks, which already in the execution state (releasing the Message), when the application is
shutdown. Before Spring Integration 2.2 this property was available on the <del ayer > element,
because Del ayHandl er could create its own scheduler on the background. Since 2.2 delayer
requires an external scheduler instance and wai t For TasksToConpl et eOnShut down was
deleted; you should use the scheduler’'s own configuration.

Tip

Also keep in mind Thr eadPool TaskSchedul er has a property err or Handl er which can
be injected with some implementation of org. springfranmework. util.ErrorHandl er.
This handler allows to process an Exception from the thread of

4.3.18.RELEASE Spring Integration

149

Spring Integration Reference Manual

the scheduled task sending the delayed message. By default it uses
an org. springframewor k. schedul i ng. support. TaskUti | s$Loggi ngErr or Handl er
and you will see a stack trace in the logs. You might want to consider using an
org. springfranmework. i ntegration. channel . MessagePubl i shi ngError Handl er,
which sends an Error Message into an error-channel , either from the failed Message’'s
header or into the default er r or - channel .

Delayer and Message Store

The Del ayHandl er persists delayed Messages into the Message Group in the provided
MessagesSt or e. (The groupld is based on required id attribute of <del ayer > element.) A delayed
message is removed from the MessageSt or e by the scheduled task just before the Del ayHandl er
sends the Message to the out put - channel . If the provided MessageSt or e is persistent (e.g.
JdbcMessagesSt or e) it provides the ability to not lose Messages on the application shutdown.
After application startup, the Del ayHandl er reads Messages from its Message Group in the
MessageSt or e and reschedules them with a delay based on the original arrival time of the Message
(if the delay is numeric). For messages where the delay header was a Dat e, that is used when
rescheduling. If a delayed Message remained in the MessageSt or e more than its delay, it will be sent
immediately after startup.

The <del ayer> can be enriched with mutually exclusive sub-elements <transacti onal >
or <advi ce-chai n> The List of these AOP Advices is applied to the proxied internal
Del ayHandl er . Rel easeMessageHand! er, which has the responsibility to release the Message,
after the delay, on a Thr ead of the scheduled task. It might be used, for example, when the downstream
message flow throws an Exception and the Rel easeMessageHand! er's transaction will be rolled
back. In this case the delayed Message will remain in the persistent MessagesSt or e. You can use any
custom or g. aopal | i ance. aop. Advi ce implementation within the <advi ce- chai n>. A sample
configuration of the <del ayer > may look like this:

<int:del ayer id="del ayer" input-channel ="input" output-channel ="out put"
expressi on="header s. del ay"
nessage- st or e="j dbcMessageSt ore" >
<i nt:advi ce-chai n>
<beans: ref bean="customAdvi ceBean"/ >
<t x: advi ce>

<tx:attributes>
<t x: met hod nanme="*" read-only="true"/>
</tx:attributes>

</ tx: advi ce>
</int:advi ce-chai n>
</int:del ayer>

The Del ayHandl er can be exported as a JMX MBean with managed operations
get Del ayedMessageCount and r eschedul ePer si st edMessages, which allows the rescheduling
of delayed persisted Messages at runtime, for example, if the TaskSchedul er has previously been
stopped. These operations can be invoked via a Cont r ol Bus command:

Message<Stri ng> del ayer Reschedul i ngMessage =
MessageBui | der . wi t hPayl oad(" @ del ayer. handl er' . reschedul ePer si st edMessages()") . bui I d();
cont r ol BusChannel . send(del ayer Reschedul i ngMessage) ;

Note

For more information regarding the Message Store, JMX and the Control Bus, please read
Chapter 9, System Management.

4.3.18.RELEASE Spring Integration 150

Spring Integration Reference Manual

8.7 Scripting support

With Spring Integration 2.1 we've added support for the JSR223 Scripting for Java specification,
introduced in Java version 6. This allows you to use scripts written in any supported language including
Ruby/JRuby, Javascript and Groovy to provide the logic for various integration components similar to
the way the Spring Expression Language (SpEL) is used in Spring Integration. For more information
about JSR223 please refer to the documentation

Important

Note that this feature requires Java 6 or higher. Sun developed a JSR223 reference
implementation which works with Java 5 but it is not officially supported and we have not tested
it with Spring Integration.

In order to use a JVM scripting language, a JSR223 implementation for that language must be included
in your class path. Java 6 natively supports Javascript. The Groovy and JRuby projects provide JSR233
support in their standard distribution. Other language implementations may be available or under
development. Please refer to the appropriate project website for more information.

Important

Various JSR223 language implementations have been developed by third parties. A particular
implementation’s compatibility with Spring Integration depends on how well it conforms to the
specification and/or the implementer’s interpretation of the specification.

Tip

If you plan to use Groovy as your scripting language, we recommended you use Spring-
Integration’s Groovy Support as it offers additional features specific to Groovy. However you will
find this section relevant as well.

Script configuration

Depending on the complexity of your integration requirements scripts may be provided inline as CDATA
in XML configuration or as a reference to a Spring resource containing the script. To enable scripting
support Spring Integration defines a Scri pt Executi ngMessagePr ocessor which will bind the
Message Payload to a variable named payl oad and the Message Headers to a header s variable,
both accessible within the script execution context. All that is left for you to do is write a script that uses
these variables. Below are a couple of sample configurations:

Filter

<int:filter input-channel ="referencedScriptlnput">
<int-script:script lang="ruby" |ocation="sone/path/to/ruby/script/RubyFilterTests.rb"/>
</int:filter>

<int:filter input-channel="inlineScriptlnput">
<int-script:script |ang="groovy">
<! [CDATA[
return payl oad == ' good'

11>
</int-script:script>
</int:filter>

4.3.18.RELEASE Spring Integration 151

http://jcp.org/aboutJava/communityprocess/pr/jsr223/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/
http://www.groovy-lang.org/
http://jruby.org/

Spring Integration Reference Manual

Here, you see that the script can be included inline or can reference a resource location via the
| ocat i on attribute. Additionally the | ang attribute corresponds to the language name (or JSR223 alias)

Other Spring Integration endpoint elements which support scripting include router, service-activator,
transformer, and splitter. The scripting configuration in each case would be identical to the above
(besides the endpoint element).

Another useful feature of Scripting support is the ability to update (reload) scripts without having to
restart the Application Context. To accomplish this, specify the r ef r esh- check- del ay attribute on
the script element:

<int-script:script location="..." refresh-check-del ay="5000"/>

In the above example, the script location will be checked for updates every 5 seconds. If the script is
updated, any invocation that occurs later than 5 seconds since the update will result in execution of
the new script.

<int-script:script location="..." refresh-check-del ay="0"/>

In the above example the context will be updated with any script modifications as soon as such
modification occurs, providing a simple mechanism for real-time configuration. Any negative number
value means the script will not be reloaded after initialization of the application context. This is the default
behavior.

Important

Inline scripts can not be reloaded.

<int-script:script location="..." refresh-check-del ay="-1"/>

Script variable bindings

Variable bindings are required to enable the script to reference variables externally provided to the
script’'s execution context. As we have seen, payl oad and header s are used as binding variables by
default. You can bind additional variables to a script via <var i abl e> sub-elements:

<script:script lang="js" |ocation="foo/bar/MScript.js">
<script:variabl e name="fo00" val ue="foo0"/>
<script:variabl e name="bar" val ue="bar"/>
<script:variabl e nane="date" ref="date"/>
</script:script>

As shown in the above example, you can bind a script variable either to a scalar value or a Spring bean
reference. Note that payl oad and header s will still be included as binding variables.

With Spring Integration 3.0, in addition to the vari abl e sub-element, the vari abl es attribute has
been introduced. This attribute and vari abl e sub-elements aren’t mutually exclusive and you can
combine them within one scri pt component. However variables must be unique, regardless of where
they are defined. Also, since Spring Integration 3.0, variable bindings are allowed for inline scripts too:

4.3.18.RELEASE Spring Integration 152

Spring Integration Reference Manual

<servi ce-activator input-channel ="input">
<script:script lang="ruby" variabl es="f00=FO0, dat e-ref=dateBean">
<scri pt:variabl e nane="bar" ref="bar Bean"/>
<script:variabl e nane="baz" val ue="bar"/>
<! [CDATA[
payl oad. foo = foo
payl oad. date = date

payl oad. bar = bar
payl oad. baz = baz
payl oad

11>
</script:script>
</ servi ce-activator>

The example above shows a combination of an inline script, a vari abl e sub-element and a
vari abl es attribute. The vari abl es attribute is a comma-separated value, where each segment
contains an = separated pair of the variable and its value. The variable name can be suffixed with - r ef ,
as in the dat e- r ef variable above. That means that the binding variable will have the name dat e, but
the value will be a reference to the dat eBean bean from the application context. This may be useful
when using Property Placeholder Configuration or command line arguments.

If you need more control over how variables are generated, you can implement your own Java class
using the Scri pt Vari abl eGener at or strategy:

public interface ScriptVariabl eGenerator {

Map<String, Object> generateScriptVari abl es(Message<?> nessage) ;

This interface requires you to implement the method gener at eScri pt Vari abl es(Message) . The
Message argument allows you to access any data available in the Message payload and headers and
the return value is the Map of bound variables. This method will be called every time the script is executed
for a Message. All you need to do is provide an implementation of Scri pt Vari abl eGener at or and
reference it with the scri pt - vari abl e- gener at or attribute:

<int-script:script |ocation="fool/bar/MScript.groovy"
script-vari abl e-generat or="vari abl eGenerator"/>

<bean id="vari abl eGenerator" cl ass="fo0o0.bar. M/Scri ptVari abl eGenerator"/>

If a script-variabl e-generator is not provided, script components use
Def aul t Scri pt Var i abl eGener at or, which merges any provided <var i abl e> s with payload and
headers variables from the Message in its gener at eScr i pt Var i abl es(Message) method.

Important

You cannot provide both the scri pt - vari abl e- gener at or attribute and <vari abl e> sub-
element(s) as they are mutually exclusive.

8.8 Groovy support

In Spring Integration 2.0 we added Groovy support allowing you to use the Groovy scripting language to
provide the logic for various integration components similar to the way the Spring Expression Language
(SpEL) is supported for routing, transformation and other integration concerns. For more information
about Groovy please refer to the Groovy documentation which you can find on the project website.

4.3.18.RELEASE Spring Integration 153

http://www.groovy-lang.org/

Spring Integration Reference Manual

Groovy configuration

With Spring Integration 2.1, Groovy Support’s configuration namespace is an extension of Spring
Integration’s Scripting Support and shares the core configuration and behavior described in detail in
the Scripting Support section. Even though Groovy scripts are well supported by generic Scripting
Support, Groovy Support provides the Groovy configuration namespace which is backed by the
Spring Framework’s or g. spri ngf ranmewor k. scri pti ng. groovy. G oovyScri pt Fact ory and
related components, offering extended capabilities for using Groovy. Below are a couple of sample
configurations:

Filter

<int:filter input-channel ="referencedScriptlnput">
<int-groovy:script |ocation="sonme/path/to/groovy/filel/ G oovyFilterTests.groovy"/>
</int:filter>

<int:filter input-channel="inlineScriptlnput">
<i nt-groovy: scri pt ><! [CDATA[
return payl oad == ' good'
]1></int-groovy:script>
</int:filter>

As the above examples show, the configuration looks identical to the general Scripting Support
configuration. The only difference is the use of the Groovy hamespace as indicated in the examples by
the int-groovy namespace prefix. Also note that the | ang attribute on the <scri pt > tag is not valid
in this namespace.

Groovy object customization

If you need to customize the Groovy object itself, beyond setting variables, you can reference a bean
that implements G- oovy(bj ect Cust omi zer via the cust omi zer attribute. For example, this might
be useful if you want to implement a domain-specific language (DSL) by modifying the Met adl ass and
registering functions to be available within the script:

<int:service-activator input-channel ="groovyChannel ">
<int-groovy:script |ocation="foo/SomeScript.groovy" custom zer="groovyCustom zer"/>
</int:service-activator>

<beans: bean id="groovyCustom zer" cl ass="org.fo00. MG oovyObj ect Cust om zer"/ >

Setting a custom G oovyQbj ect Cust oni zer is not mutually exclusive with <vari abl e> sub-
elements or the scri pt - vari abl e- gener at or attribute. It can also be provided when defining an
inline script.

With Spring Integration 3.0, in addition to the vari abl e sub-element, the vari abl es attribute
has been introduced. Also, groovy scripts have the ability to resolve a variable to a bean in the
BeanFact ory, if a binding variable was not provided with the name:

<int-groovy:script>
<! [CDATA[
entityManager . persi st (payl oad)
payl oad
11>

</int-groovy:script>

where variable ent i t yManager is an appropriate bean in the application context.

For more information regarding <vari abl e>,vari abl es,andscri pt - vari abl e- gener at or, see
the paragraph Script variable bindings of the section called “Script configuration”.

4.3.18.RELEASE Spring Integration 154

Spring Integration Reference Manual

Groovy Script Compiler Customization

The @onpi | eSt ati ¢ hint is the most popular Groovy compiler customization option, which can
be used on the class or method level. See more information in the Groovy Reference Manual and,
specifically, @CompileStatic. To utilize this feature for short scripts (in integration scenarios), we are
forced to change a simple script like this (a <fi | t er > script):

headers. type == 'good'

to more Java-like code:

@r oovy. transform Conpi |l eStatic
String filter(Mp headers) {
headers. type == 'good'

}

filter(headers)

With that, the fi |l t er () method will be transformed and compiled to static Java code, bypassing the
Groovy dynamic phases of invocation, like get Pr operty() factories and Cal | Si t e proxies.

Starting with version 4.3, Spring Integration Groovy components can be configured with the conpi | e-
st ati c bool ean option, specifying that ASTTr ansf or mat i onCust omi zer for @onpi |l eStatic
should be added to the internal Conpi | er Conf i gur at i on. With that in place, we can omit the method
declaration with @onpi | eSt at i ¢ in our script code and still get compiled plain Java code. In this case
our script can still be short but still needs to be a little more verbose than interpreted script:

bi ndi ng. vari abl es. headers. type == ' good'

Where we can access the headers and payl oad (or any other) variables only through the
groovy. | ang. Scri pt bi ndi ng property since, with @onpi | eSt at i ¢, we don’t have the dynamic
G oovy(Cbj ect . get Property() capability.

In addition, the conpi | er - confi gur at i on bean reference has been introduced. With this attribute,
you can provide any other required Groovy compiler customizations, e.g. | mport Cust oni zer . For
more information about this feature, please, refer to the Groovy Documentation: Advanced compiler

configuration.

Note

Using conpi | er Confi guration does not automatically add a
ASTTr ansf or mat i onCust oni zer for @Conpi l eStatic and overrides the
conpileStatic option. If ConpileStatic is still requirement, a new

ASTTr ansf or mat i onCust oni zer (Conpi | eSt ati c. cl ass) should be manually added into
the Conpi | at i onCust omi zer s of that custom conpi | er Confi gur ati on.

Note

The Groovy compiler customization does not have any effect to the r ef r esh- check- del ay
option and reloadable scripts can be statically compiled, too.

Control Bus

As described in (EIP), the idea behind the Control Bus is that the same messaging system can be used
for monitoring and managing the components within the framework as is used for "application-level"

4.3.18.RELEASE Spring Integration 155

http://docs.groovy-lang.org/latest/html/documentation/index.html#_static_compilation
http://docs.groovy-lang.org/latest/html/documentation/index.html#compilestatic-annotation
http://groovy.jmiguel.eu/groovy.codehaus.org/Advanced+compiler+configuration.html
http://groovy.jmiguel.eu/groovy.codehaus.org/Advanced+compiler+configuration.html
http://www.eaipatterns.com/ControlBus.html

Spring Integration Reference Manual

messaging. In Spring Integration we build upon the adapters described above so that it's possible to
send Messages as a means of invoking exposed operations. One option for those operations is Groovy
scripts.

<i nt-groovy: control -bus input-channel ="operati onChannel "/ >

The Control Bus has an input channel that can be accessed for invoking operations on the beans in
the application context.

The Groovy Control Bus executes messages on the input channel as Groovy scripts. It takes
a message, compiles the body to a Script, customizes it with a Groovy(Qbj ect Cust omi zer,
and then executes it. The Control Bus' MessagePr ocessor exposes all beans in the application
context that are annotated with @/anagedResour ce, implement Spring's Li f ecycl e interface or
extend Spring’s Cust omi zabl eThr eadCr eat or base class (e.g. several of the TaskExecut or and
TaskSchedul er implementations).

Important

Be careful about using managed beans with custom scopes (e.g. request) in the Control
Bus' command scripts, especially inside an async message flow. If The Control Bus'
MessageProcessor can’'t expose a bean from the application context, you may end up
with some BeansExcepti on during command script's executing. For example, if a custom
scope’s context is not established, the attempt to get a bean within that scope will trigger a
BeanCr eat i onExcepti on.

If you need to further customize the Groovy objects, you can also provide a reference to a bean that
implements Gr oovyObj ect Cust om zer via the cust oni zer attribute.

<i nt-groovy: control -bus input-channel ="input"
out put - channel =" out put "
cust om zer =" gr oovyCust om zer"/ >

<beans: bean i d="groovyCustomn zer" class="org.fo00. MG oovybj ect Cust oni zer"/ >

8.9 Adding Behavior to Endpoints

Introduction

Prior to Spring Integration 2.2, you could add behavior to an entire Integration flow by adding an AOP
Advice to a poller's <advi ce- chai n/ > element. However, let's say you want to retry, say, justa REST
Web Service call, and not any downstream endpoints.

For example, consider the following flow:
inbound-adapter#poller#http-gatewayl#http-gateway2#jdbc-outbound-adapter

If you configure some retry-logic into an advice chain on the poller, and, the call to http-gateway?2 failed
because of a network glitch, the retry would cause both http-gatewayl and http-gateway?2 to be called a
second time. Similarly, after a transient failure in the jdbc-outbound-adapter, both http-gateways would
be called a second time before again calling the jdbc-outbound-adapter.

Spring Integration 2.2 adds the ability to add behavior to individual endpoints. This is achieved by the
addition of the <r equest - handl er - advi ce- chai n/ > element to many endpoints. For example:

4.3.18.RELEASE Spring Integration 156

Spring Integration Reference Manual

<int-http: out bound- gat eway i d="w t hAdvi ce"

url -expression=""http://|ocal host/test1""

request - channel ="r equest s"

repl y- channel =" next Channel ">

<i nt:request - handl er - advi ce- chai n>

<ref bean="nyRetryAdvice" />

</ request - handl er - advi ce- chai n>

</int-http: out bound- gat enay>

In this case, myRetryAdvice will only be applied locally to this gateway and will not apply to further
actions taken downstream after the reply is sent to the nextChannel. The scope of the advice is limited
to the endpoint itself.

Important

At this time, you cannot advise an entire <chai n/ > of endpoints. The schema does not allow a
<r equest - handl er - advi ce- chai n/ > as a child element of the chain itself.

However, a <r equest - handl er - advi ce- chai n/ > can be added to individual reply-producing
endpoints within a <chai n/ > element. An exception is that, in a chain that produces no reply,
because the last element in the chain is an outbound-channel-adapter, that last element cannot
be advised. If you need to advise such an element, it must be moved outside of the chain (with
the output-channel of the chain being the input-channel of the adapter. The adapter can then be
advised as normal. For chains that produce a reply, every child element can be advised.

Provided Advice Classes

In addition to providing the general mechanism to apply AOP Advice classes in this way, three standard
Advices are provided:

* Request Handl er Ret r yAdvi ce

e Request Handl er Ci r cui t Br eaker Advi ce

* Expressi onEval uat i ngRequest Handl er Advi ce
These are each described in detail in the following sections.
Retry Advice

The retry advice (0. s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce) leverages the rich
retry mechanisms provided by the Spring Retry project. The core component of spri ng-retry is the
Ret r yTenpl at e, which allows configuration of sophisticated retry scenarios, including Ret r yPol i cy
and Backof f Pol i cy strategies, with a number of implementations, as well as a Recover yCal | back
strategy to determine the action to take when retries are exhausted.

Stateless Retry

Stateless retry is the case where the retry activity is handled entirely within the advice, where the thread
pauses (if so configured) and retries the action.

Stateful Retry

Stateful retry is the case where the retry state is managed within the advice, but where an exception is
thrown and the caller resubmits the request. An example for stateful retry is when we want the message

4.3.18.RELEASE Spring Integration 157

https://github.com/spring-projects/spring-retry

Spring Integration Reference Manual

originator (e.g. JMS) to be responsible for resubmitting, rather than performing it on the current thread.
Stateful retry needs some mechanism to detect a retried submission.

Further Information

For more information on spring-retry, refer to the project's javadocs, as well as the reference
documentation for Spring Batch, where spri ng-r et ry originated.

Warning

The default back off behavior is no back off - retries are attempted immediately. Using a back off
policy that causes threads to pause between attempts may cause performance issues, including
excessive memory use and thread starvation. In high volume environments, back off policies
should be used with caution.

Configuring the Retry Advice

The following examples use a simple <ser vi ce- act i vat or/ > that always throws an exception:

public class FailingService {

public void service(String nessage) {
throw new Runti neException("foo");

}

Simple Stateless Retry

This example uses the default Ret r yTenpl at e which hasa Si npl eRet r yPol i cy which tries 3 times.
There is no BackCf f Pol i cy so the 3 attempts are made back-to-back-to-back with no delay between
attempts. There is no Recover yCal | back so, the result is to throw the exception to the caller after
the final failed retry occurs. In a Spring Integration environment, this final exception might be handled
using an er r or - channel on the inbound endpoint.

<int:service-activator input-channel ="input" ref="failer" nmethod="service">
<i nt:request - handl er - advi ce- chai n>
<bean cl ass="o0.s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce"/ >
</ request - handl er - advi ce- chai n>
</int:service-activator>

DEBUG [t ask-schedul er-2] preSend on channel 'input', message: [Payload=...]
DEBUG [t ask- schedul er-2] Retry: count =0

DEBUG [t ask- schedul er - 2] Checking for rethrow count=1

DEBUG [t ask-schedul er-2] Retry: count=1

DEBUG
DEBUG
DEBUG
DEBUG

t ask- schedul er -2
t ask- schedul er -2
task-schedul er-2
t ask- schedul er -2

Checking for rethrow count=2
Retry: count=2

Checking for rethrow count=3
Retry failed last attenpt: count=3

Simple Stateless Retry with Recovery

This example adds a RecoveryCallback to the above example; it uses a
Er r or MessageSendi ngRecover er to send an Err or Message to a channel.

4.3.18.RELEASE Spring Integration 158

http://docs.spring.io/spring-batch/reference/html/retry.html

Spring Integration Reference Manual

<int:service-activator input-channel ="input" ref="failer" method="service">
<i nt:request-handl er - advi ce- chai n>
<bean cl ass="o0.s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce" >
<property name="recoveryCal | back">
<bean cl ass="0.s.i.handl er. advi ce. Err or MessageSendi ngRecover er" >
<constructor-arg ref="nyErrorChannel " />
</ bean>
</ property>
</ bean>
</ request - handl er - advi ce- chai n>
</int:int:service-activator>

DEBUG
DEBUG

[task-schedul er-2] preSend on channel 'input', nessage: [Payload=...]
[task-schedul er-2] Retry: count =0

DEBUG [t ask- schedul er- 2] Checki ng for rethrow count=1

DEBUG [t ask-schedul er-2] Retry: count=1

DEBUG [t ask- schedul er - 2] Checki ng for rethrow count=2

DEBUG [t ask-schedul er-2] Retry: count=2

DEBUG [t ask- schedul er - 2] Checki ng for rethrow count=3

DEBUG [t ask-schedul er-2] Retry failed | ast attenpt: count=3

DEBUG [t ask- schedul er- 2] Sendi ng Error Message : fail edMessage: [Payl oad=. . .]

Stateless Retry with Customized Policies, and Recovery

For more sophistication, we can provide the advice with a customized Ret r yTenpl at e. This example
continues to use the Si npl eRetryPolicy but it increases the attempts to 4. It also adds an
Exponent i al Backof f Pol i cy where the first retry waits 1 second, the second waits 5 seconds and
the third waits 25 (for 4 attempts in all).

4.3.18.RELEASE Spring Integration 159

Spring Integration Reference Manual

<int:service-activator input-channel ="input" ref="failer" method="service">
<i nt:request-handl er - advi ce- chai n>
<bean cl ass="o0.s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce" >
<property name="recoveryCal | back">
<bean cl ass="o0.s.i.handl er. advi ce. Err or MessageSendi ngRecover er" >
<constructor-arg ref="nyErrorChannel " />
</ bean>
</ property>
<property name="retryTenpl ate" ref="retryTenpl ate" />
</ bean>
</ request - handl er - advi ce- chai n>
</int:service-activator>

<bean id="retryTenpl ate" class="org.springframework.retry.support.RetryTenpl ate">
<property name="retryPolicy">
<bean cl ass="org. springframework.retry.policy.Si npl eRetryPolicy">
<property name="nmaxAttenpts" val ue="4" />
</ bean>
</ property>
<property name="backCf f Policy">
<bean cl ass="org. springframework.retry. backoff. Exponenti al BackOf f Pol i cy" >
<property nanme="initiallnterval" val ue="1000" />
<property name="nultiplier" value="5.0" />
<property name="maxlnterval " val ue="60000" />
</ bean>
</ property>
</ bean>

27.058 DEBUG [task-schedul er-1] preSend on channel '"input', nessage: [Payload=...]
27.071 DEBUG [t ask-schedul er-1] Retry: count=0

27.080 DEBUG [t ask-schedul er-1] Sl eepi ng for 1000

28. 081 DEBUG [task-schedul er-1] Checking for rethrow count=1

28. 081 DEBUG [task-schedul er-1] Retry: count=1

28.081 DEBUG [task-schedul er-1] Sl eepi ng for 5000

33. 082 DEBUG [t ask-schedul er-1] Checking for rethrow count=2

33.082 DEBUG [task-schedul er-1] Retry: count=2

33. 083 DEBUG [t ask-schedul er-1] Sl eepi ng for 25000

58. 083 DEBUG [t ask-schedul er-1] Checki ng for rethrow count=3

58. 083 DEBUG [t ask-schedul er-1] Retry: count=3

58. 084 DEBUG [t ask-schedul er- 1] Checking for rethrow count=4

58. 084 DEBUG [task-scheduler-1]Retry failed | ast attenpt: count=4

58. 086 DEBUG [t ask-schedul er-1] Sendi ng ErrorMessage :fail edMessage: [Payl oad=. . .]

Namespace Support for Stateless Retry

Starting with version 4.0, the above configuration can be greatly simplified with the namespace support
for the retry advice:

<int:service-activator input-channel ="input" ref="failer" method="service">
<i nt:request-handl er - advi ce- chai n>
<bean ref="retrier" />
</ request - handl er - advi ce- chai n>
</int:service-activator>
<int:handler-retry-advice id="retrier" max-attenpts="4" recovery-channel =" nyError Channel ">
<i nt:exponenti al - back-of f initial="1000" multiplier="5.0" maxi mrum="60000" />
</int:handl er-retry-advi ce>

In this example, the advice is defined as a top level bean so it can be used in multiple r equest -
handl er - advi ce- chai n s. You can also define the advice directly within the chain:

<int:service-activator input-channel ="input" ref="failer" nmethod="service">
<i nt:request-handl er - advi ce- chai n>
<int:retry-advice id="retrier" max-attenpts="4" recovery-channel ="nyError Channel ">
<i nt:exponenti al -back-of f initial="1000" multiplier="5.0" maxi rum="60000" />
</int:retry-advi ce>
</ request - handl er - advi ce- chai n>
</int:service-activator>

4.3.18.RELEASE Spring Integration 160

Spring Integration Reference Manual

A <handl| er-retry-advi ce/ > with no child element uses no back off; it can have a f i xed- back-
of f or exponenti al - back- of f child element. If there is no r ecover y- channel , the exception is
thrown when retries are exhausted. The namespace can only be used with stateless retry.

For more complex environments (custom policies etc), use normal <bean/ > definitions.
Simple Stateful Retry with Recovery

To make retry stateful, we need to provide the Advice with a RetryStateGenerator implementation.
This class is used to identify a message as being a resubmission so that the RetryTenpl ate
can determine the current state of retry for this message. The framework provides a
Spel Expr essi onRet rySt at eGener at or which determines the message identifier using a SpEL
expression. This is shown below; this example again uses the default policies (3 attempts with no back
off); of course, as with stateless retry, these policies can be customized.

4.3.18.RELEASE Spring Integration 161

Spring Integration Reference Manual

<int:service-activator input-channel ="input" ref="failer" method="service">
<i nt:request-handl er - advi ce- chai n>
<bean cl ass="o0.s.i.handl er. advi ce. Request Handl er Ret r yAdvi ce" >
<property name="retryStateCenerator">
<bean cl ass="0.s.i.handl er. advi ce. Spel Expr essi onRet rySt at eGener at or" >
<constructor-arg val ue="headers['jnms_nessageld]" />
</ bean>
</ property>
<property name="recoveryCal | back">
<bean cl ass="0.s.i.handl er.advi ce. Error MessageSendi ngRecover er ">
<constructor-arg ref="nyErrorChannel " />
</ bean>
</ property>
</ bean>
</int:request-handl er-advi ce- chai n>
</int:service-activator>

24. 351 DEBUG [Cont ai ner #0- 1] preSend on channel 'input', nessage: [Payload=...]
24.368 DEBUG [Cont ai ner#0- 1] Retry: count =0

24. 387 DEBUG [Cont ai ner #0- 1] Checki ng for rethrow count=1

24.387 DEBUG [Cont ai ner#0-1] Rethrow in retry for policy: count=1

24,387 WARN [Cont ai ner#0-1]failure occurred in gateway sendAndRecei ve

org. springfranmework. integration. Messagi ngExcepti on: Failed to invoke handl er

Caused by: java.lang. Runti meException: foo
24.391 DEBUG [Cont ai ner#0-1] I nitiating transaction rollback on application exception

25. 412 DEBUG [Cont ai ner #0- 1] preSend on channel 'input', nessage: [Payload=...]
25. 412 DEBUG [Cont ai ner #0- 1] Retry: count=1

25. 413 DEBUG [Cont ai ner #0- 1] Checki ng for rethrow count=2

25. 413 DEBUG [Cont ai ner#0-1] Rethrow in retry for policy: count=2

25.413 WARN [Cont ai ner#0-1]failure occurred in gateway sendAndRecei ve

org. springfranmework. integration. Messagi ngExcepti on: Failed to invoke handl er

Caused by: java.lang. Runti meException: foo
25. 414 DEBUG [Cont ai ner#0-1] I nitiating transaction rollback on application exception

26. 418 DEBUG [Cont ai ner #0- 1] preSend on channel 'input', nessage: [Payload=...]
26. 418 DEBUG [Cont ai ner #0- 1] Retry: count =2

26. 419 DEBUG [Cont ai ner #0- 1] Checking for rethrow count=3

26. 419 DEBUG [Cont ai ner#0-1] Rethrow in retry for policy: count=3

26.419 WARN [Cont ai ner#0-1]failure occurred in gateway sendAndRecei ve

org. springframework.integrati on. Messagi ngException: Failed to invoke handl er

Caused by: java.lang. Runti mneException: foo
26. 420 DEBUG [Cont ai ner#0-1] I nitiating transaction rollback on application exception
27.425 DEBUG [Cont ai ner #0- 1] preSend on channel 'input', message: [Payload=...]

27.426 DEBUG [Cont ai ner#0-1]Retry failed |ast attenpt: count=3
27.426 DEBUG [Cont ai ner #0- 1] Sendi ng Error Message :fail edMessage: [Payl oad=. . .]

Comparing with the stateless examples, you can see that with stateful retry, the exception is thrown to
the caller on each failure.

Exception Classification for Retry

Spring Retry has a great deal of flexibility for determining which exceptions can invoke retry. The default
configuration will retry for all exceptions and the exception classifier just looks at the top level exception.
If you configure it to, say, only retry on Bar Except i on and your application throws a FooExcept i on
where the cause is a Bar Except i on, retry will not occur.

Since Spring Retry 1.0.3, the Bi nar yExcepti onCl assifi er has a property traver seCauses
(default f al se). When t r ue it will traverse exception causes until it finds a match or there is no cause.

4.3.18.RELEASE Spring Integration 162

Spring Integration Reference Manual

To use this classifier for retry, use a Si npl eRet r yPol i cy created with the constructor that takes the
max attempts, the Map of Except i on s and the boolean (traverseCauses), and inject this policy into
the Ret ryTenpl at e.

Circuit Breaker Advice

The general idea of the Circuit Breaker Pattern is that, if a service is not
currently available, then don't waste time (and resources) trying to use it. The
0.s.i.handl er. advi ce. Request Handl er Gi r cui t Breaker Advi ce implements this pattern.
When the circuit breaker is in the closed state, the endpoint will attempt to invoke the service. The circuit
breaker goes to the open state if a certain number of consecutive attempts fail; when it is in the open
state, new requests will "fail fast" and no attempt will be made to invoke the service until some time
has expired.

When that time has expired, the circuit breaker is set to the half-open state. When in this state, if even
a single attempt fails, the breaker will immediately go to the open state; if the attempt succeeds, the
breaker will go to the closed state, in which case, it won’t go to the open state again until the configured
number of consecutive failures again occur. Any successful attempt resets the state to zero failures for
the purpose of determining when the breaker might go to the open state again.

Typically, this Advice might be used for external services, where it might take some time to fail (such
as a timeout attempting to make a network connection).

The RequestHandl erCircuitBreakerAdvice has two properties: threshold and
hal f OpenAf t er. The threshold property represents the number of consecutive failures that need to
occur before the breaker goes open. It defaults to 5. The halfOpenAfter property represents the time after
the last failure that the breaker will wait before attempting another request. Default is 1000 milliseconds.

Example:

<int:service-activator input-channel ="input" ref="failer" method="service">
<i nt:request-handl er - advi ce- chai n>
<bean cl ass="o0.s.i.handl er. advi ce. Request Handl er G r cui t Br eaker Advi ce" >
<property name="t hreshol d" val ue="2" />
<property name="hal f OpenAfter" val ue="12000" />
</ bean>
</int:request-handl er-advi ce-chai n>
</int:service-activator>

05. 617 DEBUG [task-schedul er-1] preSend on channel '"input', nessage: [Payload=...]
05. 638 ERROR [task-schedul er-1] org. spri ngframewor k. mressagi ng. MessageHand| i ngExcepti on:
java. |l ang. Runti meException: foo

10. 598 DEBUG [t ask-schedul er-2] preSend on channel 'input', nessage: [Payload=...]
10. 600 ERROR [task-schedul er-2]org. spri ngframewor k. mressagi ng. MessageHand! i ngExcept i on:
java. |l ang. Runti meException: foo

15. 598 DEBUG [t ask-schedul er-3] preSend on channel 'input', nessage: [Payload=...]
15. 599 ERROR [t ask-schedul er-3] org. springfranewor k. nessagi ng. Messagi ngexception: Circuit Breaker is Open
for ServiceActivator

20. 598 DEBUG [t ask-schedul er-2] preSend on channel '"input', nessage: [Payload=...]
20. 598 ERROR [task-schedul er-2] org. spri ngf ramewor k. mressagi ng. Messagi ngException: Circuit Breaker is Open
for ServiceActivator

25. 598 DEBUG [t ask-schedul er-5] preSend on channel '"input', nessage: [Payload=...]
25. 601 ERROR [task-schedul er-5]org. springfranmewor k. nessagi ng. MessageHandl i ngExcepti on:
java.l ang. Runti meException: foo

30. 598 DEBUG [t ask-schedul er-1] preSend on channel 'input', nessage: [Payl oad=foo...]
30. 599 ERROR [task-schedul er-1] org. spri ngframewor k. mressagi ng. Messagi ngException: Circuit Breaker is Qpen
for ServiceActivator

4.3.18.RELEASE Spring Integration 163

Spring Integration Reference Manual

In the above example, the threshold is set to 2 and halfOpenAfter is set to 12 seconds; a hew request
arrives every 5 seconds. You can see that the first two attempts invoked the service; the third and fourth
failed with an exception indicating the circuit breaker is open. The fifth request was attempted because
the request was 15 seconds after the last failure; the sixth attempt fails immediately because the breaker
immediately went to open.

Expression Evaluating Advice

The final supplied advice class is the
0.s.i.handl er. advi ce. Expr essi onEval uat i ngRequest Handl er Advi ce. This advice is
more general than the other two advices. It provides a mechanism to evaluate an expression on the
original inbound message sent to the endpoint. Separate expressions are available to be evaluated,
either after success, or failure. Optionally, a message containing the evaluation result, together with the
input message, can be sent to a message channel.

A typical use case for this advice might be with an <f t p: out bound- channel - adapt er / >, perhaps
to move the file to one directory if the transfer was successful, or to another directory if it fails:

The Advice has properties to set an expression when successful, an expression for failures, and
corresponding channels for each. For the successful case, the message sent to the successChannel is
an Advi ceMessage, with the payload being the result of the expression evaluation, and an additional
property i nput Message which contains the original message sent to the handler. A message sent
to the failureChannel (when the handler throws an exception) is an Er r or Message with a payload of
MessageHand! i ngExpr essi onEval uat i ngAdvi ceExcepti on. Like all Messagi ngExcepti on
s, this payload has fail edMessage and cause properties, as well as an additional property
eval uat i onResul t, containing the result of the expression evaluation.

When an exception is thrown in the scope of the advice, by default, that exception is thrown to caller
after any f ai | ur eExpr essi on is evaluated. If you wish to suppress throwing the exception, set the
t rapExcepti on property to t r ue.

Example - Configuring the Advice with Java DSL.

4.3.18.RELEASE Spring Integration 164

Spring Integration Reference Manual

@Bpr i ngBoot Appl i cati on
public class EerhaApplication {

public static void main(String[] args) {
Conf i gur abl eAppl i cati onCont ext context = SpringApplication. run(EerhaApplication.class, args);
MessageChannel in = context.getBean("advised.input", MessageChannel.class);
in.send(new Generi cMessage<>("good"));
in.send(new Generi cMessage<>("bad"));
cont ext.cl ose();

}

@Bean
public IntegrationFl ow advi sed() {
return f -> f.handl e((GenericHandl er<String>) (payload, headers) -> {
i f (payl oad. equal s("good")) {

return null;
}
el se {
throw new Runti neException("sone failure");
}
}, ¢ -> c.advice(expressionAdvice()));
}
@Bean

public Advice expressionAdvice() {

Expr essi onEval uat i ngRequest Handl er Advi ce advi ce = new

Expr essi onEval uat i ngRequest Handl er Advi ce() ;
advi ce. set SuccessChannel Nane("success. i nput");
advi ce. set OnSuccessExpressi onStri ng("payl oad +
advi ce. set Fai | ureChannel Nane("failure.input");
advi ce. set OnFai | ur eExpressi onStri ng(

"payl oad + ' was bad, with reason: ' + #exception.cause. message");

advi ce. set TrapException(true);
return advice;

was successful'");

}

@Bean
public IntegrationFl ow success() {
return f -> f.handl e(Systemout::println);

}

@Bean
public IntegrationFlow failure() {
return f -> f.handl e(Systemout::println);

}

Custom Advice Classes

In addition to the provided Advice classes above, you can implement your own Advice
classes. While you can provide any implementation of or g. aopal | i ance. aop. Advi ce (usually
org. aopal l i ance. i ntercept. Met hodl nt er cept or), it is generally recommended that you
subclass 0. s.i.handl er. advi ce. Abst r act Request Handl er Advi ce. This has the benefit of
avoiding writing low-level Aspect Oriented Programming code as well as providing a starting point that
is specifically tailored for use in this environment.

Subclasses need to implement the dol nvoke() ® method:

4.3.18.RELEASE Spring Integration 165

Spring Integration Reference Manual

| **

* Subcl asses inplement this method to apply behavior to the {@ink MessageHandl er} cal |l back. execute()
* invokes the handl er method and returns its result, or null).

* @aram cal | back Subcl asses invoke the execute() nethod on this interface to invoke the handl er

net hod.

* @aramtarget The target handler.

* @aram nmessage The nmessage that will be sent to the handler.

* @eturn the result after invoking the {@ink MessageHandl er}.

* @hrows Exception

*/

protected abstract Object dol nvoke(ExecutionCallback cal |l back, Object target, Message<?> nessage) throws
Excepti on;

The callback parameter is simply a convenience to avoid subclasses dealing with AOP directly; invoking
the cal | back. execut e() method invokes the message handler.

The target parameter is provided for those subclasses that need to maintain state for a specific handler,
perhaps by maintaining that state in a Map, keyed by the target. This allows the same advice to be
applied to multiple handlers. The Request Handl er Ci r cui t Br eaker Advi ce uses this to keep circuit
breaker state for each handler.

The message parameter is the message that will be sent to the handler. While the advice cannot
modify the message before invoking the handler, it can modify the payload (if it has mutable properties).
Typically, an advice would use the message for logging and/or to send a copy of the message
somewhere before or after invoking the handler.

The return value would normally be the value returned by call back.execute();
but the advice does have the ability to modify the return value. Note that only
Abst r act Repl yPr oduci ngMessageHandl er s return a value.

public class MyAdvice extends Abstract Request Handl er Advi ce {

@verride
protected Object dol nvoke(ExecutionCall back cal |l back, Cbject target, Message<?> nessage) throws
Exception {
/1 add code before the invocation
Obj ect result = call back. execute();
/] add code after the invocation
return result;

Note

In addition to the execute() method, the Executi onCal | back provides an additional
method cl oneAndExecute(). This method must be used in cases where the
invocation might be called multiple times within a single execution of dol nvoke(),
such as in the RequestHandl er RetryAdvi ce. This is required because the Spring
AOP org. springframework. aop. framewor k. Ref | ecti veMet hodl nvocati on object
maintains state of which advice in a chain was last invoked; this state must be reset for each call.

For more information, see the ReflectiveMethodInvocation JavaDocs.

Other Advice Chain Elements

While the abstract class mentioned above is provided as a convenience, you can add any Advi ce to
the chain, including a transaction advice.

4.3.18.RELEASE Spring Integration 166

http://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/aop/framework/ReflectiveMethodInvocation.html

Spring Integration Reference Manual

Handle Message Advice

As discussed in the introduction to this section, advice objects in a request handler advice chain are
applied to just the current endpoint, not the downstream flow (if any). For MessageHandl er s that
produce a reply (Abst r act Repl yPr oduci ngMessageHandl er), the advice is applied to an internal
method handl eRequest Message() (called from MessageHandl| er . handl eMessage()). For other
message handlers, the advice is applied to MessageHand! er . handl eMessage() .

There are some circumstances where, even if a message handler is an
Abst r act Repl yPr oduci ngMessageHandl er, the advice must be applied to the handl eMessage
method - for example, the Idempotent Receiver might return nul | and this would cause an exception
if the handler’s r epl yRequi r ed property is true.

Starting with version 4.3.1, a new Handl eMessageAdvi ce and the
Abst r act Handl eMessageAdvi ce base implementation have been introduced. Advi ce s that
implement Handl eMessageAdvi ce will always be applied to the handl eMessage() method,
regardless of the handler type.

It is important to understand that Handl eMessageAdvi ce implementations (such as Idempotent
Receiver), when applied to a handler that returns a response, are dissociated from the advi ceChai n
and properly applied to the MessageHandl er . handl eMessage() method. Bear in mind, however,
that this means the advice chain order is not complied with; and, with configuration such as:

<sone-repl y- produci ng-endpoint ... >
<i nt:request-handl er - advi ce- chai n>
<tx:advice ... />

<bean ref ="nyHandl eMessageAdvi ce" />
</int:request-handl er-advi ce-chai n>
</ some-repl y- produci ng- endpoi nt >

The <t x: advi ce> is applied to the
Abst r act Repl yPr oduci ngMessageHandl er . handl eRequest Message(), but
nyHandl eMessageAdvi ce is applied for to MessageHandl er . handl eMessage() and, therefore,
invoked before the <t x: advi ce>. To retain the order, you should follow with standard Spring AOP
configuration approach and use endpoint i d together with the . handl er suffix to obtain the target
MessageHandl er bean. Note, however, that in that case, the entire downstream flow would be within
the transaction scope.

In the case of a MessageHand| er that does not return a response, the advice chain order is retained.

Advising Filters

There is an additional consideration when advising Fi | t er s. By default, any discard actions (when
the filter returns false) are performed within the scope of the advice chain. This could include all the flow
downstream of the discard channel. So, for example if an element downstream of the discard-channel
throws an exception, and there is a retry advice, the process will be retried. This is also the case if
throwExceptionOnRejection is set to true (the exception is thrown within the scope of the advice).

Setting discard-within-advice to "false” modifies this behavior and the discard (or exception) occurs after
the advice chain is called.

Advising Endpoints Using Annotations

When configuring certain endpoints using annotations (@i | t er , @er vi ceActi vator,@plitter,
and @ ansf or mer), you can supply a bean name for the advice chain in the advi ceChai n attribute.

4.3.18.RELEASE Spring Integration 167

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/aop-api.html

Spring Integration Reference Manual

In addition, the @i | t er annotation also has the di scar dW t hi nAdvi ce attribute, which can be used
to configure the discard behavior as discussed in the section called “Advising Filters”. An example with
the discard being performed after the advice is shown below.

@kssageEndpoi nt
public class MyAdvi sedFilter {

@i | ter (i nput Channel ="i nput", output Channel =" out put ",
advi ceChai n="advi ceChai n", di scardWt hi nAdvi ce="fal se")
public boolean filter(String s) {
return s.contains("good");

}

Ordering Advices within an Advice Chain

Advice classes are "around" advices and are applied in a nested fashion. The first advice is the
outermost, the last advice the innermost (closest to the handler being advised). It is important to put the
advice classes in the correct order to achieve the functionality you desire.

For example, let's say you want to add a retry advice and a transaction advice. You may want to place
the retry advice advice first, followed by the transaction advice. Then, each retry will be performed in a
new transaction. On the other hand, if you want all the attempts, and any recovery operations (in the retry
Recover yCal | back), to be scoped within the transaction, you would put the transaction advice first.

Advised Handler Properties

Sometimes, it is useful to access handler properties from within the advice. For example, most handlers
implement NanedConponent and you can access the component name.

The target object can be accessed via the target argument when subclassing
Abstract Request Handl er Advice or invocation. get Thi s() when implementing
org. aopal |l i ance. i nt er cept. Met hodl nt er cept or.

When the entire handler is advised (such as when the handler does not produce replies, or the advice
implements Handl eMessageAdvi ce), you can simply cast the target object to the desired implemented
interface, such as NamedConponent .

‘ String conponent Name = ((NanmedConponent) target).get Conponent Name();

or

‘ String conponent Nanme ((NamedConponent) invocation. get This()). get Conponent Nane() ;

when implementing Met hodl nt er cept or directly.

When only the handl eRequest Message() method is advised (in a reply-producing handler), you
need to access the full handler, which is an Abst r act Repl yPr oduci ngMessageHandl er ...

Abstract Repl yProduci ngMessageHandl er handl er =
((Abst ract Repl yProduci ngMessageHand| er . Request Handl er) target). get Advi sedHandl er ();

String conponent Name = handl er. get Conponent Nane() ;

Idempotent Receiver Enterprise Integration Pattern

Starting with version 4.1, Spring Integration provides an implementation of the Ildempotent
Receiver Enterprise Integration Pattern. It is a functional pattern and the whole idempotency

4.3.18.RELEASE Spring Integration 168

http://www.eaipatterns.com/IdempotentReceiver.html
http://www.eaipatterns.com/IdempotentReceiver.html

Spring Integration Reference Manual

logic should be implemented in the application, however to simplify the decision-making, the
| denpot ent Recei ver I nt er cept or component is provided. This is an AOP Advi ce, which is
applied to the MessageHandI er . handl eMessage() methodandcanfil t er arequest message or
mark it as a dupl i cat e, according to its configuration.

Previously, users could have implemented this pattern, by using a custom MessageSelector in a
<filter/> (Section 6.2, “Filter”), for example. However, since this pattern is really behavior of an
endpoint rather than being an endpoint itself, the Idempotent Receiver implementation doesn’t provide
an endpoint component; rather, it is applied to endpoints declared in the application.

The logic of the | denpot ent Recei ver | nt er cept or is based on the provided MessageSel ect or
and, if the message isn't accepted by that selector, it will be enriched with the dupl i cat eMessage
header set to t r ue. The target MessageHand| er (or downstream flow) can consult this header to
implement the correct idempotency logic. If the | denpot ent Recei ver I nt er cept or is configured
with a di scar dChannel and/or t hr owExcepti onOnRej ecti on = true, the duplicate Message
won't be sent to the target MessageHandl| er . handl eMessage(), but discarded. If you simply want
to discard (do nothing with) the duplicate Message, the di scar dChannel should be configured with a
Nul | Channel , such as the default nul | Channel bean.

To maintain state between messages and provide the ability to compare messages for the idempotency,
the Met adat aSt or eSel ect or is provided. It accepts a MessagePr ocessor implementation (which
creates a lookup key based on the Message) and an optional Concurrent Met adat aSt ore
(Section 9.5, “Metadata Store”). See the Metadat aStoreSel ector JavaDocs for more
information. The val ue for Concur r ent Met adat aSt or e also can be customized using additional
MessagePr ocessor . By default Met adat aSt or eSel ect or uses ti mest anp message header.

For convenience, the MetadataStoreSel ector options are configurable directly on the
<i denpot ent - r ecei ver > component:

<i denpot ent - r ecei ver
id="" 0O
endpoi nt="" [
selector="" 0O
di scard-channel ="" O
nmet adat a-store="" [
key-strategy="" 0O
key-expression="" [
val ue-strategy="" 0O
val ue-expression="" 0O

throw exception-on-rejection="" /> 0O

O Theid of the | denpot ent Recei ver | nt er cept or bean. Optional.

0 Consumer Endpoint name(s) or pattern(s) to which this interceptor will be applied.
Separate names (patterns) with commas (,) e.g. endpoi nt =" aaa, bbb*, *ccc,
ddd, eee*fff". Endpoint bean names matching these patterns are then used to
retrieve the target endpoint's MessageHandl er bean (using its . handl er suffix), and the
| denpot ent Recei ver | nt er cept or will be applied to those beans. Required.

O A MessageSel ect or bean reference. Mutually exclusive with net adat a- st ore and key-
strategy (key-expression).When sel ector is not provided, one of key- st rat egy or
key- st rat egy-expressi on is required.

O Identifies the channel to which to send a message when the
| denpot ent Recei ver | nt er cept or doesn’t accept it. When omitted, duplicate messages are
forwarded to the handler with a dupl i cat eMessage header. Optional.

4.3.18.RELEASE Spring Integration 169

Spring Integration Reference Manual

O AConcurrent Met adat aSt or e reference. Used by the underlying Met adat aSt or eSel ect or .
Mutually exclusive with sel ect or. Optional. The default Met adat aSt or eSel ect or uses an
internal Si npl eMet adat aSt or e which does not maintain state across application executions.

O AMessageProcessor reference. Used by the underlying Met adat aSt or eSel ect or . Evaluates
an i denpot ent Key from the request Message. Mutually exclusive with sel ect or and key-
expr essi on. When a sel ect or is not provided, one of key- st rat egy or key- st rat egy-

expr essi on is required.

0 A SpEL expression to populate an Expressi onEval uati ngMessagePr ocessor. Used by
the underlying Met adat aSt or eSel ect or. Evaluates an i denpot ent Key using the request
Message as the evaluation context root object. Mutually exclusive with sel ect or and key-
strategy. When a sel ector is not provided, one of key-strategy or key-strategy-

expr essi on is required.

O AMessageProcessor reference. Used by the underlying Met adat aSt or eSel ect or . Evaluates
a val ue for the i denpot ent Key from the request Message. Mutually exclusive with sel ect or
and val ue- expr essi on. By default, the MetadataStoreSelector uses the timestamp message

header as the Metadata value.

0 A SpEL expression to populate an Expr essi onEval uati ngMessagePr ocessor . Used by the
underlying Met adat aSt or eSel ect or . Evaluates a val ue for the i denpot ent Key using the
request Message as the evaluation context root object. Mutually exclusive with sel ect or and
val ue- str at egy. By default, the MetadataStoreSelector uses the timestamp message header

as the Metadata value.

O Throw an exception if the | denpot ent Recei ver | nt er cept or rejects the message defaults to

f al se. Itis applied regardless of whether or not a di scar d- channel is provided.

For Java configuration, the method level | denpot ent Recei ver annotation is provided. It is used to
mark a met hod that has a Messaging annotation (@er vi ceActi vat or, @Rout er etc.) to specify

which | denpot ent Recei ver | nt er cept or s will be applied to this endpoint:

@ean
publ i c | denpot ent Recei ver| nterceptor idenpotentReceiverlnterceptor() {
return new | denpot ent Recei ver | nt er cept or (new Met adat aSt or eSel ect or (m - >
m get Header s() . get (1 N\VO CE_NBR_HEADER))) ;
}

@ean
@er vi ceAct i vat or (i nput Channel = "input", outputChannel = "output")
@ denpot ent Recei ver ("i denpot ent Recei ver |l nterceptor")

publ i c MessageHandl er nyService() {

}

Note

The | denpot ent Recei ver | nt er cept or is designed only for the
MessageHandl er . handl eMessage(Message<?>) method and starting with version 4.3.1
it implements Handl eMessageAdvi ce, with the Abstract Handl eMessageAdvi ce as a
base class, for better dissociation. See the section called “Handle Message Advice” for more
information.

8.10 Logging Channel Adapter

The <l oggi ng- channel - adapt er/ > is often used in conjunction with a Wire Tap, as discussed in
the section called “Wire Tap”. However, it can also be used as the ultimate consumer of any flow. For
example, consider a flow that ends with a <ser vi ce- act i vat or/ > that returns a result, but you wish

4.3.18.RELEASE Spring Integration

Spring Integration Reference Manual

to discard that result. To do that, you could send the result to Nul | Channel . Alternatively, you can route
it to an | NFOlevel <I oggi ng- channel - adapt er/ >; that way, you can see the discarded message
when logging at | NFOlevel, but not see it when logging at, say, WARN level. With a Nul | Channel , you
would only see the discarded message when logging at DEBUG level.

<i nt: | oggi ng- channel - adapt er

channel ="" 0O

level ="INFO' 0O
expression="" 0O

l og-full -nmessage="fal se" O
| ogger - nanme="" /> 0O

O

The channel connecting the logging adapter to an upstream component.

The logging level at which messages sent to this adapter will be logged. Default: | NFO.

A SpEL expression representing exactly what part(s) of the message will be logged. Default:
payl oad - just the payload will be logged. This attribute cannot be specified if | og-ful I -
nmessage is specified.

When t rue, the entire message will be logged (including headers). Default: f al se - just the
payload will be logged. This attribute cannot be specified if expr essi on is specified.

Specifies the name of the logger (known as category in log4j) used for log
messages created by this adapter. This enables setting the log name (in the logging
subsystem) for individual adapters. By default, all adapters will log under the name
org. springframework. i ntegration. handl er. Loggi ngHandl er.

Configuring with Java Configuration

The following Spring Boot application provides an example of configuring the Loggi ngHandl er using
Java configuration:

4.3.18.RELEASE Spring Integration 171

Spring Integration Reference Manual

@Bpr i ngBoot Appl i cati on
public class Loggi nglavaApplication {

public static void main(String[] args) {
Conf i gur abl eAppl i cati onCont ext context =
new SpringAppl i cationBuil der (Loggi ngJavaAppl i cati on. cl ass)
.web(fal se)
.run(args);
M/Gat eway gateway = context.get Bean(MyGat eway. cl ass);
gat eway. sendToLogger ("fo00");

}

@Bean
publ i c MessageChannel | ogl nput Channel () {
return new Direct Channel ();

}

@Bean
@er vi ceAct i vat or (i nput Channel = "l ogChannel ")
public Loggi ngHandl er |ogging() {
Loggi ngHandl er adapter = new Loggi ngHandl er (Loggi ngHandl er. Level . DEBUG) ;
adapt er . set Logger Nane(" TEST_LOGGER") ;
adapt er. set LogExpressionString("headers.id + ': ' + payload");
return adapter;

@kssagi ngGat eway(def aul t Request Channel
public interface MyGateway {

"1 ogChannel ")

voi d sendToLogger (String data);

4.3.18.RELEASE Spring Integration 172

Spring Integration Reference Manual

9. System Management

9.1 Metrics and Management
Configuring Metrics Capture

Note

Prior to version 4.2 metrics were only available when JMX was enabled. See Section 9.2, “JMX
Support”.

To enable MessageSource, MessageChannel and MessageHandl er metrics, add an
<i nt: managemnent / > bean to the application context, or annotate one of your @onfi gurati on
classes with @tnabl el nt egr ati onManagenent. MessageSource s only maintain counts,
MessageChannel s and MessageHandl er s maintain duration statistics in addition to counts. See
the section called “MessageChannel Metric Features” and the section called “MessageHandler Metric
Features” below.

This causes the automatic registration of the I nt egr ati onManagenent Conf i gur er bean in the
application context. Only one such bean can exist in the context and it must have the bean name
i nt egrati onManagemnent Confi gur er if registered manually via a <bean/ > definition.

In addition to metrics, you can control debug logging in the main message flow. It has been found that
in very high volume applications, even calls to i sDebugEnabl ed() can be quite expensive with some
logging subsystems. You can disable all such logging to avoid this overhead; exception logging (debug
or otherwise) are not affected by this setting.

A number of options are available:

<i nt: managenent
def aul t -1 oggi ng- enabl ed="fal se" O
def aul t - count s- enabl ed="fal se" O
defaul t - st ats-enabl ed="fal se" O
count s- enabl ed- patterns="foo, !baz, ba*" 0O
st at s- enabl ed-patterns="fiz, buz" O
netrics-factory="nyMetricsFactory" /> 0O

@onfiguration
@nabl el nt egration
@Enabl el nt egr at i onManagenent (
def aul t Loggi ngEnabl ed = "fal se", O
def aul t Count sEnabl ed = "fal se", O
defaul t St at sEnabl ed = "fal se", O
countsEnabled = { "foo", "${count.patterns}” }, O
statsEnabled = { "qux", "!*" }, O
MetricsFactory = "nyMetricsFactory") O
public static class ContextConfiguration {

}

OO0 Settof al se todisable all logging in the main message flow, regardless of the log system category
settings. Set to true to enable debug logging (if also enabled by the logging subsystem).

OO Enable or disable count metrics for components not matching one of the patterns in <4>,

00O Enable or disable statistical metrics for components not matching one of the patterns in <5>.

4.3.18.RELEASE Spring Integration 173

Spring Integration Reference Manual

00O Acomma-delimited list of patterns for beans for which counts should be enabled; negate the pattern
with ! . First match wins (positive or negative). In the unlikely event that you have a bean name
starting with ! , escape the ! in the pattern: \'! f oo positively matches a bean named ! f 0o.

A comma-delimited list of patterns for beans for which statistical metrics should be enabled; negate
the pattern with ! . First match wins (positive or negative). In the unlikely event that you have a
bean name starting with ! , escape the ! in the pattern: \ ! f oo positively matches a bean named
! f 00. Stats implies counts.

OO0 Areferenceto a Metri csFact ory. See the section called “Metrics Factory”.

go

At runtime, counts and statistics can be obtained by calling | nt egr at i onManagenent Confi gur er
get Channel Metri cs, get Handl er Metrics and get Sour ceMetri cs, returning
MessageChannel Metri cs, MessageHandl er Metri cs and MessageSourceMetrics
respectively.

See the javadocs for complete information about these classes.

When JMX is enabled (see Section 9.2, “JMX Support”), these metrics are also exposed by the
I nt egrati onMBeanExporter.

MessageChannel Metric Features

Message channels report metrics according to their concrete type. If you are looking at a
Di r ect Channel , you will see statistics for the send operation. If it is a QueueChannel , you will also
see statistics for the receive operation, as well as the count of messages that are currently buffered by
this QueueChannel . In both cases there are some metrics that are simple counters (message count
and error count), and some that are estimates of averages of interesting quantities. The algorithms used

to calculate these estimates are described briefly in the section below.

Table 9.1. MessageChannel Metrics

Metric Type | Example Algorithm
Count Send Count Simple incrementer. Increases by one when an
event occurs.
Error Count Send Error Count Simple incrementer. Increases by one when an
send results in an error.
Duration Send Duration (method Exponential Moving Average with decay
execution time in milliseconds) | factor (10 by default). Average of the method
execution time over roughly the last 10 (default)
measurements.
Rate Send Rate (number of Inverse of Exponential Moving Average of the
operations per second) interval between events with decay in time
(lapsing over 60 seconds by default) and per
measurement (last 10 events by default).
Error Rate Send Error Rate (number of Inverse of Exponential Moving Average of the
errors per second) interval between error events with decay in time
(lapsing over 60 seconds by default) and per
measurement (last 10 events by default).
Ratio Send Success Ratio (ratio of Estimate the success ratio as the Exponential
successful to total sends) Moving Average of the series composed of

4.3.18.RELEASE

Spring Integration

174

Spring Integration Reference Manual

Metric Type Example Algorithm

values 1 for success and O for failure (decaying
as per the rate measurement over time and
events by default). Error ratio is 1 - success ratio.

MessageHandler Metric Features
The following table shows the statistics maintained for message handlers. Some metrics are simple

counters (message count and error count), and one is an estimate of averages of send duration. The
algorithms used to calculate these estimates are described briefly in the table below:

Table 9.2. MessageHandlerMetrics

Metric Type Example Algorithm

Count Handle Count Simple incrementer. Increases by one when an
event occurs.

Error Count Handler Error Count Simple incrementer. Increases by one when an
invocation results in an error.

Active Count | Handler Active Count Indicates the number of currently active
threads currently invoking the handler (or any
downstream synchronous flow).

Duration Handle Duration (method Exponential Moving Average with decay
execution time in milliseconds) | factor (10 by default). Average of the method
execution time over roughly the last 10 (default)
measurements.

Time-Based Average Estimates

A feature of the time-based average estimates is that they decay with time if no new measurements
arrive. To help interpret the behaviour over time, the time (in seconds) since the last measurement is
also exposed as a metric.

There are two basic exponential models: decay per measurement (appropriate for duration and anything
where the number of measurements is part of the metric), and decay per time unit (more suitable for rate
measurements where the time in between measurements is part of the metric). Both models depend
on the fact that

S(n) = sum(i=0,i=n) w(i) x(i) hasaspecial formwhenw(i) = r”i,withr=constant:

S(n) = x(n) + r S(n-1) (so you only have to store S(n-1), not the whole series x(i), to
generate a new metric estimate from the last measurement). The algorithms used in the duration metrics
use r =exp(- 1/ M with M=10. The net effect is that the estimate S(n) is more heavily weighted to
recent measurements and is composed roughly of the last Mmeasurements. So Mis the "window" or
lapse rate of the estimate In the case of the vanilla moving average, i is a counter over the number of
measurements. In the case of the rate we interpret i as the elapsed time, or a combination of elapsed
time and a counter (so the metric estimate contains contributions roughly from the last Mmeasurements
and the last T seconds).

4.3.18.RELEASE Spring Integration 175

Spring Integration Reference Manual

Metrics Factory

A new strategy interface MetricsFactory has been introduced allowing you to provide
custom channel metrics for your MessageChannel s and MessageHandl er s. By default, a
Def aul t Metri csFact ory provides default implementation of MessageChannel Metrics and
MessageHand| er Metri cs which are described in the next bullet. To override the default
Met ri csFact or y configure it as described above, by providing a reference to your Met ri csFact ory
bean instance. You can either customize the default implementations as described in the next bullet,
or provide completely different implementations by extending Abst r act MessageChannel Metri cs
and/or Abst r act MessageHandl er Metri cs.

In addition to the default metrics factory described above, the framework provides the
Aggregati ngMetri csFactory. This factory creates Aggregati ngMessageChannel Metrics
and Aggr egat i ngMessageHandl er Met ri cs. In very high volume scenarios, the cost of capturing
statistics can be prohibitive (2 calls to the system time and storing the data for each message). The
aggregating metrics aggregate the response time over a sample of messages. This can save significant
CPU time.

Caution

The statistics will be skewed if messages arrive in bursts. These metrics are intended for use with
high, constant-volume, message rates.

<bean id="aggregati ngMetri csFactory"
cl ass="org. springfranmework. integration. support.managenent. Aggregati ngMetri csFactory">
<constructor-arg val ue="1000" /> <!-- sanple size -->
</ bean>

The above configuration aggregates the duration over 1000 messages. Counts (send, error) are
maintained per-message but the statistics are per 1000 messages.

» Customizing the Default Channel/Handler Statistics

See the section called “Time-Based Average Estimates” and the Javadocs for the
Exponent i al Movi ngAver age* classes for more information about these values.

By default, the Def aul t MessageChannel Metri cs and Def aul t MessageHandl er Metri cs use a
wi ndow of 10 measurements, a rate period of 1 second (rate per second) and a decay lapse period
of 1 minute.

If you wish to override these defaults, you can provide a custom Metri csFactory that returns
appropriately configured metrics and provide a reference to it to the MBean exporter as described above.

Example:

4.3.18.RELEASE Spring Integration 176

Spring Integration Reference Manual

public static class CustomMVetrics inplenents MetricsFactory {

@verride
public Abstract MessageChannel Metrics createChannel Metrics(String nane) {
return new Def aul t MessageChannel Metri cs(nane,
new Exponenti al Movi ngAver age(20, 1000000.),
new Exponenti al Movi ngAver ageRat e(2000, 120000, 30, true),
new Exponenti al Movi ngAver ageRat i o(130000, 40, true),
new Exponenti al Movi ngAver ageRat e(3000, 140000, 50, true));
}

@verride
publ i c Abstract MessageHandl er Metrics createHandl er Metrics(String nane) {

return new Def aul t MessageHandl er Metri cs(nane, new Exponenti al Movi ngAver age(20, 1000000.));
}

» Advanced Customization

The customizations described above are wholesale and will apply to all appropriate beans exported by
the MBean exporter. This is the extent of customization available using XML configuration.

Individual beans can be provided with different implementations using java @Confi gurati on or
programmatically at runtime, after the application context has been refreshed, by invoking the
confi gureMetri cs methods on Abst r act MessageChannel and Abst ract MessageHandl er.

» Performance Improvement

Previously, the time-based metrics (see the section called “Time-Based Average Estimates”) were
calculated in real time. The statistics are now calculated when retrieved instead. This resulted in a
significant performance improvement, at the expense of a small amount of additional memory for each
statistic. As discussed in the bullet above, the statistics can be disabled altogether, while retaining the
MBean allowing the invocation of Li f ecycl e methods.

9.2 JMX Support

Spring Integration provides Channel Adapters for receiving and publishing JMX Notifications. There is
also an_Inbound Channel Adapter_ for polling JMX MBean attribute values, and an Outbound Channel
Adapter for invoking JMX MBean operations.

Notification Listening Channel Adapter

The Notification-listening Channel Adapter requires a JMX ObjectName for the MBean that publishes
notifications to which this listener should be registered. A very simple configuration might look like this:

<int-jnmx:notification-|istening-channel -adapter id="adapter"
channel =" channel "
obj ect - nane="exanpl e. domai n: name=publ i sher"/ >

Tip

The notification-listening-channel-adapter registers with an MBeanSer ver at startup, and the
default bean name is mbeanServer which happens to be the same bean name generated when
using Spring’s <context:mbean-server/> element. If you need to use a different name, be sure to
include the_mbean-server__ attribute.

4.3.18.RELEASE Spring Integration 177

Spring Integration Reference Manual

The adapter can also accept areferencetoaNoti fi cati onFi | t er and a handback Object to provide
some context that is passed back with each Notification. Both of those attributes are optional. Extending
the above example to include those attributes as well as an explicit MBeanSer ver bean name would
produce the following:

<int-jm:notification-|istening-channel -adapter id="adapter"
channel =" channel "
nbean- server =" soneSer ver"
obj ect - nane="exanpl e. domai n: nane=sonePubl i sher"
notification-filter="notificationFilter"
handback="nyHandback" / >

The Notification-listening Channel Adapter is event-driven and registered with the MBeanSer ver
directly. It does not require any poller configuration.

Note

For this component only, the object-name attribute can contain an ObjectName pattern (e.g.
"org.foo:type=Bar,name=*") and the adapter will receive notifications from all MBeans with
ObjectNames that match the pattern. In addition, the object-name attribute can contain a SpEL
reference to a <util:list/> of ObjectName patterns:

<jmx:notification-Iistening-channel-adapter id="manyNotificati onsAdapter"
channel ="nmanyNot i fi cat i onsChannel "
obj ect - nane="#{patterns}"/>

<util:list id="patterns">
<val ue>org. f oo: t ype=Foo, name=* </ val ue>
<val ue>org. f oo: t ype=Bar, nane=*</ val ue>
</util:list>

The names of the located MBean(s) will be logged when DEBUG level logging is enabled.

Notification Publishing Channel Adapter

The Noatification-publishing Channel Adapter is relatively simple. It only requires a JMX ObjectName in
its configuration as shown below.

<cont ext : mhean- export/>

<int-jnmx:notification-publishing-channel -adapter id="adapter"
channel =" channel "
obj ect - nanme="exanpl e. domai n: name=publ i sher"/ >

It does also require that an MBeanExpor t er be presentin the context. That is why the <context:mbean-
export/> element is shown above as well.

When Messages are sent to the channel for this adapter, the Notification is created from the Message
content. If the payload is a String it will be passed as the message text for the Notification. Any other
payload type will be passed as the userData of the Notification.

JMX Notifications also have a type, and it should be a dot-delimited String. There are two ways to
provide the type. Precedence will always be given to a Message header value associated with the
JmxHeader s. NOTI FI CATI ON_TYPE key. On the other hand, you can rely on a fallback default-
notification-type attribute provided in the configuration.

4.3.18.RELEASE Spring Integration 178

Spring Integration Reference Manual

<cont ext : mhean- export/>

<int-jnmx:notification-publishing-channel -adapter id="adapter"
channel =" channel "
obj ect - nanme="exanpl e. domai n: nanme=publ i sher"
defaul t-notification-type="sone.default.type"/>

Attribute Polling Channel Adapter

The Attribute Polling Channel Adapter is useful when you have a requirement, to periodically check on
some value that is available through an MBean as a managed attribute. The poller can be configured
in the same way as any other polling adapter in Spring Integration (or it's possible to rely on the default
poller). The object-name and attribute-name are required. An MBeanServer reference is also required,
but it will automatically check for a bean named mbeanServer by default, just like the Notification-
listening Channel Adapter described above.

<int-jnx:attribute-polling-channel -adapter id="adapter"
channel =" channel "
obj ect - nane="exanpl e. domai n: nane=soneSer vi ce"
attribute-name="|nvocati onCount" >
<int:poller max-messages-per-poll="1" fixed-rate="5000"/>
</int-jnx:attribute-polling-channel -adapter>

Tree Polling Channel Adapter

The Tree Polling Channel Adapter queries the JMX MBean tree and sends a message with a payload
that is the graph of objects that matches the query. By default the MBeans are mapped to primitives and
simple Objects like Map, List and arrays - permitting simple transformation, for example, to JSON. An
MBeanServer reference is also required, but it will automatically check for a bean named mbeanServer
by default, just like the Notification-listening Channel Adapter described above. A basic configuration
would be:

<int-jnx:tree-polling-channel -adapter id="adapter"
channel =" channel "
quer y- nane="exanpl e. domai n: t ype=*">
<int:poller max-nmessages-per-poll="1" fixed-rate="5000"/>
</int-jnx:tree-polling-channel -adapter>

This will include all attributes on the MBeans selected. You can filter the attributes by providing an
MBeanObj ect Convert er that has an appropriate filter configured. The converter can be provided
as a reference to a bean definition using the convert er attribute, or as an inner <bean/> definition.
A Def aul t MBeanObj ect Convert er is provided which can take a MBeanAttri buteFilter inits
constructor argument.

Two standard filters are provided; the NanedFi el dsMBeanAt tri but eFi | t er allows you to specify a
list of attributes to include and the Not NamedFi el dsiMBeanAttri but eFi | t er allows you to specify
a list of attributes to exclude. You can also implement your own filter

Operation Invoking Channel Adapter

The operation-invoking-channel-adapter enables Message-driven invocation of any managed operation
exposed by an MBean. Each invocation requires the operation name to be invoked and the ObjectName
of the target MBean. Both of these must be explicitly provided via adapter configuration:

<i nt-j mx: operati on-invoki ng- channel - adapt er i d="adapter"
obj ect - name="exanpl e. domai n: name=Test Bean"
oper at i on- name="pi ng"/ >

4.3.18.RELEASE Spring Integration 179

Spring Integration Reference Manual

Then the adapter only needs to be able to discover the mbeanServer bean. If a different bean name is
required, then provide the mbean-server attribute with a reference.

The payload of the Message will be mapped to the parameters of the operation, if any. A Map-typed
payload with String keys is treated as name/value pairs, whereas a List or array would be passed as
a simple argument list (with no explicit parameter names). If the operation requires a single parameter
value, then the payload can represent that single value, and if the operation requires no parameters,
then the payload would be ignored.

If you want to expose a channel for a single common operation to be invoked by Messages that need
not contain headers, then that option works well.

Operation Invoking Outbound Gateway

Similar to the operation-invoking-channel-adapter Spring Integration also provides a operation-invoking-
outbound-gateway, which could be used when dealing with non-void operations and a return value
is required. Such return value will be sent as message payload to the reply-channel specified by this
Gateway.

<i nt-j nmx: operati on-i nvoki ng- out bound- gat eway request - channel ="r equest Channel "
repl y-channel ="r epl yChannel "
obj ect-nanme="o0.s.i.jnx.config:type=Test Bean, nane=t est BeanGat eway"

oper ati on- nane="t est Wt hReturn"/>

If the reply-channel attribute is not provided, the reply message will be sent to the channel that is
identified by the | nt egr at i onMessageHeader Accessor . REPLY_CHANNEL header. That header
is typically auto-created by the entry point into a message flow, such as any Gateway component.
However, if the message flow was started by manually creating a Spring Integration Message and
sending it directly to a Channel, then you must specify the message header explicitly or use the provided
reply-channel attribute.

MBean Exporter

Spring Integration components themselves may be exposed as MBeans when
the Integrati onMBeanExporter is configured. To create an instance of the
I nt egrati onMBeanExport er, define a bean and provide a reference to an MBeanSer ver and
a domain name (if desired). The domain can be left out, in which case the default domain is
org.springframework.integration.

<i nt-j mx: nbean- export id="integrati onMBeanExporter"
def aul t - domai n="rmy. conpany. domai n" server ="nbeanServer"/ >

<bean id="nbeanServer" class="org.springfranmework.jnx.support.MBeanServer Fact or yBean">
<property name="| ocat eExi stingServerl|fPossible" value="true"/>
</ bean>

Important

The MBean exporter is orthogonal to the one provided in Spring core - it registers message
channels and message handlers, but not itself. You can expose the exporter itself, and certain
other components in Spring Integration, using the standard <cont ext : mbean- export/ > tag.
The exporter has a some metrics attached to it, for instance a count of the number of active
handlers and the number of queued messages.

It also has a useful operation, as discussed in the section called “Orderly Shutdown Managed
Operation”.

4.3.18.RELEASE Spring Integration 180

Spring Integration Reference Manual

Starting with Spring Integration 4.0 the @nabl el nt egr ati onMBeanExport annotation has been
introduced for convenient configuration of a default (i nt egr ati onMoeanExport er) bean of type
I nt egrati onMBeanExport er with several useful options at the @onf i gur ati on class level. For
example:

@onfiguration

@nabl el nt egration

@nabl el nt egr ati onMBeanExport (server = "nbeanServer", nmanagedConponents = "input")
public class ContextConfiguration {

@ean
publ i c MBeanSer ver Fact oryBean nbeanServer () {
return new MBeanSer ver Fact oryBean();
}
}

If there is a need to provide more options, or have several | nt egr at i onMBeanExport er beans e.g.
for different MBean Servers, or to avoid conflicts with the standard Spring MBeanExport er (e.g. via
@nabl eMBeanExport), you can simply configure an | nt egr at i onMBeanExport er as a generic
bean.

MBean ObjectNames

All the MessageChannel , MessageHandl er and MessageSour ce instances in the application are
wrapped by the MBean exporter to provide management and monitoring features. The generated JMX
object names for each component type are listed in the table below:

Table 9.3. MBean ObjectNames

Component Type ObjectName
MessageChannel 0.s.i:type=MessageChannel , name=<channel Nane>
MessageSource 0.s.i:type=MessageSour ce, nane=<channel Nane>, bean=<sour ce>

MessageHandler

0.s.i:type=MessageSour ce, nane=<channel Nanme>, bean=<sour ce>

The bean attribute in the object names for sources and handlers takes one of the values in the table
below:

Table 9.4. bean ObjectName Part

Bean Value Description

endpoint The bean name of the enclosing endpoint (e.g. <service-activator>) if
there is one

anonymous An indication that the enclosing endpoint didn’t have a user-specified bean

name, so the JMX name is the input channel name
internal For well-known Spring Integration default components

handler/source None of the above: fallback to the t oSt ri ng() of the object being
monitored (handler or source)

Custom elements can be appended to the object name by providing a reference to a Properties
object in the obj ect - nanme- st ati c- properti es attribute.

4.3.18.RELEASE Spring Integration 181

Spring Integration Reference Manual

Also, since Spring Integration 3.0, you can use a custom ObjectNamingStrategy using the obj ect -
nam ng- st rat egy attribute. This permits greater control over the naming of the MBeans. For
example, to group all Integration MBeans under an Integration type. A simple custom naming strategy
implementation might be:

public class Namer inplenents CbjectNam ngStrategy {

private final ObjectNam ngStrategy real Namer = new KeyNami ngStrategy();
@verride
publ i c Object Name get Obj ect Name(Obj ect managedBean, String beanKey) throws MalformedObj ect NameExcepti on
{
String actual BeanKey = beanKey. repl ace("type=", "type=lntegration, conponentType=");
return real Naner. get Obj ect Nane(managedBean, act ual BeanKey) ;

}

The beanKey argument is a String containing the standard object name beginning with the def aul t -
domai n and including any additional static properties. This example simply moves the standard t ype
part to conponent Type and sets the t ype to Integration, enabling selection of all Integration MBeans
in one query:" my. domai n: t ype=I nt egr ati on, *. This also groups the beans under one tree entry
under the domain in tools like VisualVM.

Note

The default naming strategy is a MetadataNamingStrategy. The exporter propagates the
def aul t - domai n to that object to allow it to generate a fallback object name if parsing of the
bean key fails. If your custom naming strategy is a Met adat aNamni ngSt r at egy (or subclass), the
exporter will not propagate the def aul t - donai n; you will need to configure it on your strategy
bean.

JMX Improvements

Version 4.2 introduced some important improvements, representing a fairly major overhaul to the JIMX
support in the framework. These resulted in a significant performance improvement of the JMX statistics
collection and much more control thereof, but has some implications for user code in a few specific
(uncommon) situations. These changes are detailed below, with a caution where necessary.

* Metrics Capture

Previously, MessageSour ce, MessageChannel and MessageHandl| er metrics were captured by
wrapping the object in a JDK dynamic proxy to intercept appropriate method calls and capture the
statistics. The proxy was added when an integration MBean exporter was declared in the context.

Now, the statistics are captured by the beans themselves; see Section 9.1, “Metrics and Management”
for more information.

Warning

This change means that you no longer automatically get an MBean or statistics
for custom MessageHandl er implementations, unless those custom handlers extend
Abstract MessageHandl er. The simplest way to resolve this is to extend
Abst ract MessageHandl er. If that's not possible, or desired, another work-around
is to implement the MessageHandl erMetrics interface. For convenience, a
Def aul t MessageHandl er Met ri cs is provided to capture and report statistics. Invoke the

4.3.18.RELEASE Spring Integration 182

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jmx/export/naming/ObjectNamingStrategy.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/jmx/export/naming/MetadataNamingStrategy.html

Spring Integration Reference Manual

bef or eHandl e and af t er Handl e at the appropriate times. Your MessageHand| er Metri cs
methods can then delegate to this object to obtain each statistic. Similarly,
MessageSour ce implementations must extend Abstract MessageSource or implement
MessageSour ceMetri cs. Message sources only capture a count so there is no provided
convenience class; simply maintain the count in an At om cLong field.

The removal of the proxy has two additional benefits; 1) stack traces in exceptions are reduced (when
JMX is enabled) because the proxy is not on the stack; 2) cases where 2 MBeans were exported for
the same bean now only export a single MBean with consolidated attributes/operations (see the MBean
consolidation bullet below).

» Resolution

Syst em nanoTi ne() is now used to capture times instead of System currentTimeM I lis().
This may provide more accuracy on some JVMs, espcially when durations of less than 1 millisecond
are expected

» Setting Initial Statistics Collection State

Previously, when JMX was enabled, all sources, channels, handlers captured statistics. It is now
possible to control whether the statisics are enabled on an individual component. Further, it is possible
to capture simple counts on MessageChannel s and MessageHand!| er s instead of the complete
time-based statistics. This can have significant performance implications because you can selectively
configure where you need detailed statistics, as well as enable/disable at runtime.

See Section 9.1, “Metrics and Management”.
* @IntegrationManagedResource

Similar to the @hlnagedResour ce annotation, the @ nt egr ati onManagedResour ce marks a
class as eligible to be exported as an MBean; however, it will only be exported if there is an
I nt egr ati onMBeanExport er in the application context.

Certain Spring Integration classes (in the org. springfranmework.integration) package)
that were previously annotated with>@ManagedResource® are now annotated with both
@managedResour ce and @ nt egr at i onManagedResour ce. This is for backwards compatibility
(see the next bullet). Such MBeans will be exported by any context MBeanServeror an
I nt egrati onMBeanExport er (but not both - if both exporters are present, the bean is exported by
the integration exporter if the bean matches a managed- conponent s pattern).

» Consolidated MBeans

Certain classes within the framework (mapping routers for example) have additional attributes/
operations over and above those provided by metrics and Li f ecycl e. We will use a Rout er as an
example here.

Previously, beans of these types were exported as two distinct MBeans:

1) the metrics MBean (with an objectName such as:
i nt Donai n: t ype=MessageHandl| er, nanme=nyRout er, bean=endpoi nt). This MBean had
metrics attributes and metrics/Lifecycle operations.

2) a second MBean (with an objectName such as:
ct xDomai n: name=or g. spri ngf ramewor k. i nt egrati on. confi g. Rout er Fact or yBean#0
, t ype=Met hodl nvoki ngRout er) was exported with the channel mappings attribute and operations.

4.3.18.RELEASE Spring Integration 183

Spring Integration Reference Manual

Now, the attributes and operations are consolidated into a single MBean. The objectName
will depend on the exporter. If exported by the integration MBean exporter, the objectName
will be, for example: i nt Domai n: t ype=MessageHandl er, name=nyRout er , bean=endpoi nt .
If exported by another exporter, the objectName will be, for example:
ct xDomai n: nane=or g. spri ngf ranmewor k. i nt egrati on. confi g. Rout er Fact or yBean#0

, t ype=Met hodl nvoki ngRout er. There is no difference between these MBeans (aside from the
objectName), except that the statistics will not be enabled (the attributes will be 0) by exporters other
than the integration exporter; statistics can be enabled at runtime using the JMX operations. When
exported by the integration MBean exporter, the initial state can be managed as described above.

Warning

If you are currently using the second MBean to change, for example, channel mappings, and you
are using the integration MBean exporter, note that the objectName has changed because of the
MBean consolidation. There is no change if you are not using the integration MBean exporter.

* MBean Exporter Bean Name Patterns

Previously, the managed- conponent s patterns were inclusive only. If a bean name matched one of
the patterns it would be included. Now, the pattern can be negated by prefixing it with ! . i.e. " ! f oo*,
f oox" will match all beans that don't start with f 00, except f oox. Patterns are evaluated left to right
and the first match (positive or negative) wins and no further patterns are applied.

Warning

The addition of this syntax to the pattern causes one possible (although perhaps unlikey) problem.
If you have a bean "!fo00"and you included a pattern "!f 00" in your MBean exporter's
managed- conponent s patterns; it will no long match; the pattern will now match all beans not
named f 00. In this case, you can escape the ! in the pattern with \ . The pattern "\ ! f 00" means
match a bean named "! f 00".

» IntegrationMBeanExporter changes

The | ntegrati onMBeanExporter no longer implements SmartLif ecycl e; this means that
start () and st op() operations are no longer available to register/unregister MBeans. The MBeans
are now registered during context initialization and unregistered when the context is destroyed.

Orderly Shutdown Managed Operation

The MBean exporter provides a JMX operation to shut down the application in an orderly manner,
intended for use before terminating the JVM.

public void stopActiveConponents(|long howLong)

Its use and operation are described in Section 9.7, “Orderly Shutdown”.

9.3 Message History

The key benefit of a messaging architecture is loose coupling where participating components do not

maintain any awareness about one another. This fact alone makes your application extremely flexible,

allowing you to change components without affecting the rest of the flow, change messaging routes,
message consuming styles (polling vs event driven), and so on. However, this unassuming style of

4.3.18.RELEASE Spring Integration 184

Spring Integration Reference Manual

architecture could prove to be difficult when things go wrong. When debugging, you would probably like
to get as much information about the message as you can (its origin, channels it has traversed, etc.)

Message History is one of those patterns that helps by giving you an option to maintain some level
of awareness of a message path either for debugging purposes or to maintain an audit trail. Spring
integration provides a simple way to configure your message flows to maintain the Message History
by adding a header to the Message and updating that header every time a message passes through
a tracked component.

Message History Configuration

To enable Message History all you need is to define the nessage- hi story element in your
configuration.

<i nt: nmessage- hi story/>

Now every named component (component that has an id defined) will be tracked. The framework will
set the history header in your Message. Its value is very simple - Li st <Pr operti es>.

<int:gateway id="sanpl eGat enay"
service-interface="org. springframework.integration.history. sanpl e. Sanpl eGat enay"
def aul t -request - channel =" bri dgel nChannel "/ >

<int:chain id="sanpl eChai n" input-channel ="chai nChannel " out put - channel ="fil t er Channel ">
<i nt: header-enricher>
<i nt:header nanme="baz" val ue="baz"/>
</i nt: header-enricher>
</int:chai n>

The above configuration will produce a very simple Message History structure:

[{nane=sanpl eGat eway, type=gateway, tinestanp=1283281668091},
{nane=sanpl eChai n, type=chain, tinestanp=1283281668094}]

To get access to Message History all you need is access the MessageHistory header. For example:

Iterator<Properties> historylterator =
nmessage. get Header s() . get (MessageHi st ory. HEADER_NAME, MessageHi story.class).iterator();
assert True(historylterator.hasNext());
Properties gatewayH story = historylterator.next();
assert Equal s("sanpl eGat enay", gatewayHi story.get("nanme"));
assert True(hi storylterator. hasNext());
Properties chainH story = historylterator.next();
assert Equal s("sanpl eChai n", chai nHi story. get("nanme"));

You might not want to track all of the components. To limit the history to certain components based
on their names, all you need is provide the t r acked- conponent s attribute and specify a comma-
delimited list of component names and/or patterns that match the components you want to track.

<i nt: nmessage- hi story tracked-conponent s="*Gat eway, sanple*, foo"/>

In the above example, Message History will only be maintained for all of the components that end with
Gateway, start with sample, or match the name foo exactly.

Starting with version 4.0, you can also use the @nabl eMessageHi story annotation in a
@configuration class. In addition, the MessageH st oryConfi gurer bean is now exposed
as a JMX MBean by the Integrati onMBeanExporter (see the section called “MBean
Exporter”), allowing the patterns to be changed at runtime. Note, however, that the bean must

4.3.18.RELEASE Spring Integration 185

Spring Integration Reference Manual

be stopped (turning off message history) in order to change the patterns. This feature might
be useful to temporarily turn on history to analyze a system. The MBean's object name is
"<domai n>: nane=nessageHi st oryConfi gurer, type=MessageH st oryConfi gurer".

Important

If multiple beans (declared by @nabl eMessageHi st ory and/or <nmessage- hi st or y/ >) they
all must have identical component name patterns (when trimmed and sorted). Do not use a
generic <bean/ > definition for the MessageHi st or yConfi gurer.

Note

Remember that by definition the Message History header is immutable (you can't re-write history,
although some try). Therefore, when writing Message History values, the components are either
creating brand new Messages (when the component is an origin), or they are copying the history
from a request Message, modifying it and setting the new list on a reply Message. In either case,
the values can be appended even if the Message itself is crossing thread boundaries. That means
that the history values can greatly simplify debugging in an asynchronous message flow.

9.4 Message Store

Enterprise Integration Patterns (EIP) identifies several patterns that have the capability to buffer
messages. For example, an Aggregator buffers messages until they can be released and a
QueueChannel buffers messages until consumers explicitly receive those messages from that channel.
Because of the failures that can occur at any point within your message flow, EIP components that buffer
messages also introduce a point where messages could be lost.

To mitigate the risk of losing Messages, EIP defines the Message Store pattern which allows EIP
components to store Messages typically in some type of persistent store (e.g. RDBMS).

Spring Integration provides support for the Message Store pattern by a) defining a
org. springframework. integration.store. MessageSt ore strategy interface, b) providing
several implementations of this interface, and c¢) exposing a nessage- st ore attribute on all
components that have the capability to buffer messages so that you can inject any instance that
implements the MessagesSt or e interface.

Details on how to configure a specific Message Store implementation and/or how to inject a
MessageSt or e implementation into a specific buffering component are described throughout the
manual (see the specific component, such as QueueChannel, Aggregator, Delayer etc.), but here are
a couple of samples to give you an idea:

QueueChannel

<i nt:channel id="myQueueChannel ">
<i nt:queue nmessage-store="ref ToMessageStore"/>
<i nt: channel >

Aggregator
<int:aggregator ..message-store="ref ToMessageStore"/>
By default Messages are stored in-memory using

org. springframework.integration.store. Si npl eMessageSt ore, an implementation of

4.3.18.RELEASE Spring Integration 186

http://eaipatterns.com/MessageStore.html

Spring Integration Reference Manual

MessagesSt or e. That might be fine for development or simple low-volume environments where the
potential loss of non-persistent messages is not a concern. However, the typical production application
will need a more robust option, not only to mitigate the risk of message loss but also to avoid potential
out-of-memory errors. Therefore, we also provide MessageStore implementations for a variety of data-
stores. Below is a complete list of supported implementations:

Section 18.4, “JDBC Message Store” - uses RDBMS to store Messages

Section 24.4, “Redis Message Store” - uses Redis key/value datastore to store Messages

Section 22.3, “MongoDB Message Store” - uses MongoDB document store to store Messages

Section 16.5, “Gemfire Message Store” - uses Gemfire distributed cache to store Messages

Important

However be aware of some limitations while using persistent implementations of the
MessageSt or e.

The Message data (payload and headers) is serialized and deserialized using different
serialization strategies depending on the implementation of the MessageSt or e. For example,
when using JdbcMessagesSt or e, only Seri al i zabl e data is persisted by default. In this case
non-Serializable headers are removed before serialization occurs. Also be aware of the protocol
specific headers that are injected by transport adapters (e.g., FTP, HTTP, JMS etc.). For example,
<ht t p: i nbound- channel - adapt er/ > maps HTTP-headers into Message Headers and one
of them is an ArraylLi st of non-Serializable or g. spri ngf ranewor k. http. Medi aType
instances. However you are able to inject your own implementation of the Seri al i zer and/
or Deseri al i zer strategy interfaces into some MessageSt or e implementations (such as
JdbcMessageStore) to change the behaviour of serialization and deserialization.

Special attention must be paid to the headers that represe