Spring Integration Reference Manual

5.0.12.RELEASE

Mark Fisher , Marius Bogoevici , Iwein Fuld , Jonas Partner , Oleg Zhurakousky , Gary
Russell , Dave Syer , Josh Long , David Turanski , Gunnar Hillert , Artem Bilan , Amol Nayak

Copyright © 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Pivotal Software, Inc. All Rights Reserved.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Integration Reference Manual

Table of Contents

TR 1= = Lo 1
=0 [T =T0 0= o1 £ ii
1. Compatible JAVa VEISIONScuuuiiiiiiii et e a e e e ii

2. Compatible Versions of the Spring Frameworkcccoiiiiiiiiiniiiiiiiineiin e ii

3. COUE CONVENTIONS .ovvveiieeeee ettt ettt e ettt e e ettt e b e e e e e e e e b e e i

1. Conventions iN thiS BOOKc..iiiiiiiii e e e e e 3
LAY = LS 1= 4
2. What's new in Spring INtegration 5.07ooiiiiiiiiiiii e 5
2.1, NEW COMPONENTS ittt ettt et et e et et e e et e et e e e et e e et e ea e en e aenaaenaen 5
JAVA DS et e 5

IS o TS o] Lo o A 5
MoNgODB OUthOUNd GAEWAYceeuniiiiniiiiiieei et et ean e ees 5

WebFlux Gateways and Channel Adaptersoovviiiiiniiiiiiinieiieee e 5

Content TYPE CONVEISIONcvuuiiiieiiiieeii et e e e e e e e e e e e e e e et e et e e et e eanas 5
ErrorMessagePublisher and ErrorMessageStrategyccooveevieiiiiieiinieiiieeieennn. 5

JDBC Metadata STOIEccuuiiiiiiiieiiii e 6

2.2. GENETAl ChANGES ...iiiiiieii i e e e e e e e 6
(0] (=IO =T g To [T S PP 6

GateWaY ChANGES .. .ooviiiiiii e 7
Aggregator Performance Changesccoouiiiiiiiiii i e 7

SPIEr CRANGES ...eniiiiei et e et e e e ean s 7

IMS CRANGES . et 7

= VLI 1 = Vg o 1= 8

FEEA CRANQES . .oeeiiiii et 8

Fle ChANQES ... et et 8

S L I 1 4T VgV [P 8
INtEGration PrOPEITIES ... ccuuiiiieei et e e e ean s 9

SrEAM CRANGES ...uiiiiiii et e et e e 9

=TT =T S O g = U o =T 9

AMOP ChanQES ...eniiiieiii e et e e e e e e e 10

HTTP ChaNGES ...ttt e e et e e erb e eee 10

(@ I 1 - T g To = 10

STOMP CRANQES ...ttt e e et e et e e eeanns 10

WeD ServiCeS ChaNQESoiiiiiiiiiiiii et e et e e e e e 10

=0 [SR O g T T T TSP 11

TCP CRANQGES ..ttt et e 11

GEMIire ChANGES .. oot e e 11

B [0 | o Yo @4 g T= T s To = 11

MELHCS CRANGES . .oeniiiiiii e e et et e e e e eeaaaees 11

2.3, TCP SUPPOIT ittt ettt e e et 12
@ENdPointld ANNOLALIONScvuiiiiiiciii e e e 12
Integration Flows: Generated bean Nnamescooooiiiiiiiii e 12

[ll. Overview of Spring Integration FrameWOIKcovoiiiiiiiiiiiii e 13
3. Spring INtEgration OVEIVIEWcc.uiiiiieiiiie e e e e e e e e e e e e et e et e et e e aaneeeens 14
0 I = ol (o | 01U o o NPT PTPTP 14

3.2. G0oals and PriNCIPIESuuniiiiiiii e 14

TR T Y/ - 11 T @] a1 o To) 1=) 15

5.0.12.RELEASE Spring Integration iii

Spring Integration Reference Manual

Y LS ES7= T [PPSR PPPRPRN 15
Message Channel ... e 15
MeESSAGE ENAPOINTuniiiiiii e et e et e e e 16

3.4. MeSSage ENAPOINTScieveiiiii i e e e e 16
TIANSTOMME ...ttt e e et e e e een e ees 17
= 17
ROULET .ot 17

S o110 TP PTR 17

P [| (=To =1 (o] PSPPI 18
SEIVICE ACHIVALON ...iiiiiiti ettt e et e e e e e e b e e eaaan s 18
Channel AAPLETc.uiiiie et e 19
ENdpoint Bean NAIMESoiiiiiiiiiii e 19

3.5. Configuration and @Enablelntegrationccoiiiiiiiiii e 22
3.6. Programming CoNSIAErationscccuuiiiuiiiiiieii et e e e e e e eees 23
3.7. Considerations When using Packaged (e.g. Shaded) Jarscccooeeiiiiiinniiininnnnn. 23
3.8. Programming Tips @nd TrCKSciuuiiiiiiiie e e e e e e e eaaeees 25
XML SCREMAS ... 25
Finding Class Names for Java and DSL Configurationcccoeeiveviiiinneiinnnnnn. 26

3.9. POJO Method INVOCALIONuuuiiiiiiiiee e 28
A oo] (Y [T S7= o o To [P UPT PP 30
4. Messaging Channels ... e 31
o I Y =T3S Vo [B O 4 = o 1= 31
The MessageChannel INterface ..o 31
PollableChannelooueiiiiii e 31
SubscribableChannel ... 31

Message Channel Implementationscc.oviiiiiiiiiiii e 31
PublishSubscribeChannelooiiiii e 32
QUEUECKNANNEL ... 32
PriorityChannel ... 32
ReNdezVOUSCRANNELuii e 33
DIreCtCRANNELeuiiiei s 33
EXECULOrCRaNNel 34

Scoped Channel ... 35

(O aT-Ta a1 I [0] (=T (o= o) (o =P 35
MeSSagINGTEMPIALE ... et et ean e 37
Configuring Message Channelscooouiiiiiiiiiii e 37
DirectChannel Configurationccovvvuiiiiiiiiii e 38

Datatype Channel Configurationcc.ooiiiiiiiiniiiii e 38
QueueChannel Configurationcori i 39
PublishSubscribeChannel Configurationccocoeviiiiiiiiicie e, 41
EXECULOrCRaNNelo 42
PriorityChannel Configurationcccuoiiiiiiiiiiii e 42
RendezvousChannel Configurationcccoevuiioiiiieiiii e 43

Scoped Channel Configurationcooouiiiiiiiiii e 43

Channel Interceptor Configurationccooiiiiiiiiiiiiiii e 43

Global Channel Interceptor Configurationcccooevviiiiiiiieiiiicci e, 43

AL CS I =T o I U PP PPRPPI 45
ConditioNal WIre TaPS ..vuueeeiiiieiiiii et 46

Global Wire Tap Configurationccoceuieiiiiiiiiieeie e e e e 47

Special Channels e a7

5.0.12.RELEASE Spring Integration iv

Spring Integration Reference Manual

B2, POHIEE s 47
POIlING CONSUMET ...ttt e et e e e e a7
Pollable MESSAJE SOUICEccuuuiiiiiii et 48
Deferred Acknowledgment Pollable Message SOUrCecoovvveveveiiieviineennens 48
Conditional Pollers for MeSSage SOUICEScieuuiiiiniiiiiieii et eeie e 50
BaCKGrOUNGo 50
"SMANt” POIING covniiiiie e 50
SimpleActiveldleMessageSoUrCeAdVICEcceuviiiiiiiiieiiee e 51
CompoundTrgGErAAVICEiiiiiiiie et 51
R T O g T Vo a1 A - o] (] 52
Configuring An Inbound Channel Adaptercoiiiiiiiiiiii e 52
Configuring An Outbound Channel Adapterccoiiiiiiiiiiiiii e 53
Channel Adapter EXpressions and SCHPLSccuuvvvriiiiiieeiii e e 54
4.4. MeSSaging Bridgec..oiiiiiiiii e 54
T 10T [T 1o) o PN 54
Configuring a Bridge With XIMLccuuiiiiii e e 55
Configuring a Bridge with Java Configurationcccoiiiiiiiiiiniii e, 55
Configuring a Bridge with the Java DSLcoooiiiiiiiiiiii e 56
LT L=YST Y= To [I O o] 1S 1 (1 [ox 1o o PP 57
T V[T (o [PRSPPI 57
The MeSSage INEIfACEuiiiiiiii e 57
MESSAJE HEAUEBISceveiiii e e 57
MessageHeaderAcCessor AP ... 58
Message ID GENEIALIONc.uuuieiiiii ettt ettt 60
Read-only HEAAEISccvviiiii e e e e e 60
Header Propagationocuioiiiiii i e 61
Message IMPIEMENTALIONScoeuuiiiii e 61
The MessageBuilder Helper Classcc.uoiiiiiiiiiiice e 62
6. MESSAGE ROULING ...eniitiiiiie ettt e e e et e et e et e e et e e eaaaeens 64
LT I oo 11 (=] £ PP 64
OVEBIVIBW ...ttt e et ettt e e e e et r e e et e e e e n e 64
Common RoOULEr PArameterscovuuiiiiiiiiiiiiiiiieie e 66
Inside and Outside of & Chainoooiiiiiiiiii e 66
Top-Level (Outside of @ Chain)c.ovviiiiiiiic e 67
Router IMplemeNntationSc..iiiiiii e 68
PayloadTyPEROULETuiiiiii e 68
HeaderValUEROULETovuiiiiieciiiieiie e 69
ReCIPIENTLISTROULET .. .eeiiiee e 70
RecipientListRouterManagementoooveiviiiiiiiiieee e 72
XPAth ROULET .oeiiiee e e 72
Routing and Error handling ... 72
Configuring & GENEIC ROULETiiiiiiiiiiee it 73
Configuring a Content Based Router with XMLc.ccoovviiiiiiiiiiiiieciceeeies 73
Configuring a Router with ANNOAtiONSc.cviiiiiiiiiiii e, 75
DYNAMIC ROULEIS .. ittt ettt e et e e 76
Manage Router Mappings using the Control BuScccooeviiiviiiiiiiieeennns 79
Manage Router Mappings usSing JMX ..o 79
ROULING SHP ot 79
Process Manager Enterprise Integration Patternccoevevviviiievineennnn. 82

8.2, BT et e 82

5.0.12.RELEASE Spring Integration v

Spring Integration Reference Manual

] o [N L1 1o o IR PRSPPI 82
ConfigUIING FIILEE ... e e 83
Configuring a Filter with XML ..o 83
Configuring a Filter with ANNOtAtioNScc.viviiiieiiiii e, 85

(SRS T o] 11 (=] PSP PT PP 85
T 10T [T 1o) o PN 85
Programming MOGELcoouiiiiii e 85
ConfiguIING SPIILEET ...ceeeee e e e e eeans 87
Configuring a Splitter USing XMLcoouuiiiiiiiiiei e 87
Configuring a Splitter with AnNNOtationscocoeiivii i, 88

R o [0 £=To I= | (o] AT 88
T 10T [T o) o S 88

LT] od 1T o=] Y 88
Programming MOAElcoouiiiii e 89
AggregatingMessageHandIercoooiiiiiiiiii 89
REIEASESITAIEUY ..vvvniiiieieii et 91
Aggregating Large GrOUPSuoeeeuaiiiaaiie ettt e e e e e e eenns 93
COITEIAtIONSITAIEGY ...eevveneiiiii ettt e 93
(0Tt =T 0] 1 Y/ PPN 94
Configuring @an AgQQIrEgALOLciuuu it 94
Configuring an Aggregator With XMLcc.oiiiiiiiiiiiii e 94
Configuring an Aggregator with Annotationscccoeveviveiiieviin e, 101

Managing State in an Aggregator: MessageGroupStoreccceevevnieiinneeenneenn. 102

O T =TT =T U 1=T o (o =T PP PPTPPT 104
INEFOTUCTION .ot e e e et e et e e et e e e eatn e eaees 104
FUNCHONAIILY ...eeeeee et e e e e 104
Configuring & RESEOUENCETcoeuuiiiiiiii ettt e 104

6.6. Message Handler Chainooiiiiiiiiii e e e e 106
INEFOAUCTION ..t ettt e b e e e et e et eeaa s 106
Configuring 8 ChaIN ... e 107

S o= 11 (=] el €1 1= S PP 109
INEFOAUCTION ..t ettt e b e e e et e et eeaa s 109
FUNCHONAIILY ...ttt e e e e e e eaa e eees 110
Configuring a Scatter-Gather Endpointcoovviiiiiiiiiii e 110

6.8. Thread Bartier ...t eaas 112
7. Message TranSfOorMAatioNoooeeiiiiiii et 115
A T I = 01 0] 11 1= PRSPPI 115
INEFOAUCTION ..t ettt e b e e e et e et eeaa s 115
Configuring TranSTOMMETiii i e 115
Configuring Transformer with XMLcocoiiiiiiiiii e, 115

CommoN TranSfOIMErSiiii e 116
Configuring a Transformer with Annotationscccoovviiiiiniiiiinn i, 121

HeEAdEr FltEr ..oveii e 122
Codec-Based TranSfOrMEersSco.uiiiiiiii e 122

R ©o] 1 1= A =] o] 1= PSRN 122
T o 11 Te1 1o o RSP PPPRTRN 122
Header ENFICNEr ... e 122
Configuring a Header Enricher with Java Configuration 124
Configuring a Header Enricher with the Java DSLccooevviiiiiiieiinens 124

Header Channel RegiSIIYcc..iiiiiiiiiii e 124

5.0.12.RELEASE Spring Integration Vi

Spring Integration Reference Manual

o\ [0 7= (o I =t ol 1= PP 125
CONFIQUIALION ...t et e e e ea e 126

EXAMPIES o 128

7.3, Claim CRECK ... 129
INEFOTUCTION .ottt ettt e e e e e e e e e e 129
Incoming Claim Check TranSfOrmerc.ooiviiiiiiiiii e 129
Outgoing Claim Check Transformerc.oovviiiiii e 130

A WOrd 0N MESSAGE STOTE ...ceuiiiii it 131

420 o To [T oS 132
INIFOAUCTION .. e e 132
EncodingPayloadTranSformMer 132
DecodingTranSIOrMETcooui e e 132

(700 [Tl |V 1T Y= To =T @0 o 1V =T o (= P 132

[N Yo T U 132
CUSIOMIZING KIYO ..t 132

T LoYSTSY= To [To T = o oo £ 135
8.1. MesSsage ENAPOINTSccuuiiiiiiiiiei e 135
MeSSAgE HANAIET ... e 135
EVENt DriVEN CONSUIMETcciiiiiiiiiiiee et ettt e et e e e e e e e e e e e e eeenes 135
POllING CONSUMETeiiiiiei et e e e 136
Endpoint Namespace SUPPOITciiere ittt 137
Change Polling Rate at RUNIMEooiiiiiiiic e e 141
Payload Type CONVEISIONc..uiiitiiiiiaeii et et eeaa s 142
Content TYPE CONVEISION ...ccuuuiiiiiiiiieeeeii ettt et e et e e et e e e eai e eeees 143
ASYNChronous POHINGoiueei e e 144
ENdpPoint INNEI BEANScuuiiiiiiiiiieee et 145

8.2. ENAPOINEt ROIES ..ot 145
8.3. Leadership Event Handlingooouuiiiiiiiiiiie e e e e e 147
8.4. MESSAQING GAIEWAY'Seeuuiitneiti ettt e et e et et e et et et e e et e et e e ean e ean e eeneeaens 147
Enter the GatewayProxyFactoryBeanc.covveviiiiiiiiiiiiieiiiin e 148
Gateway XML Namespace SUPPOIT . ceuiiniiieieie e e e e e 148
Setting the Default Reply Channel ... 148
Gateway Configuration with Annotations and/or XMLccoeveviiiiiiniiiineennnnn. 149
Mapping Method Arguments t0 @ MESSAJEccvuvvveiieeiiieiii e e e e e 150
@MessagingGateway ANNOTALIONc.uuiiiiiiiiiiiiii e 152
Invoking No-Argument Methodscoviiiiiiiiiiiii e 153

[o] gl o =T o |7V PN 153
GateWay TIMEOULSuiiei ittt e e e et e e e ean e eees 155
ASYNCNIONOUS GAIEWAYceevvinieiiiiiiee ettt e et e e et eeeebe e eees 156
INIFOAUCTION ... 156
LiStenabIEFULUIEoooiiiiiei e 157
ASYNCTASKEXECULOKiiiitiieeiiii et 157
ComPletablEFULUIEeeiii e e 158

5.0.12.RELEASE Spring Integration Vii

Part |. Preface

Spring Integration Reference Manual

Requirements

This section details the compatible Java and Spring Framework versions.

1 Compatible Java Versions

For Spring Integration 5.0.x, the minimum compatible Java version is Java SE 8. Older versions of
Java are not supported.

2 Compatible Versions of the Spring Framework

Spring Integration 5.0.x requires Spring Framework 5.0 or later.

3 Code Conventions

The Spring Framework 2.0 introduced support for namespaces, which simplifies the XML configuration
of the application context, and consequently Spring Integration provides broad namespace support. This
reference guide applies the following conventions for all code examples that use namespace support:

The int namespace prefix will be used for Spring Integration’s core namespace support. Each Spring
Integration adapter type (module) will provide its own namespace, which is configured using the following
convention:

int- followed by the name of the module, e.g. int-twitter, int-stream, ...

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://wwm. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:int="http://ww.springfranmework. org/ schenma/ i ntegration"”
xmns:int-twitter="http://ww:.springfranmework. org/schema/integration/twtter"
xm ns:int-streanF"http://ww. springfranmework. org/ schema/ i ntegration/streant
xsi : schenmaLocat i on="
htt p: // ww. spri ngf ranmewor k. or g/ schema/ beans
http://ww. spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springfranmewor k. or g/ schema/ i nt egrati on
http://ww. springfranmewor k. or g/ schema/ i ntegration/spring-integration. xsd
http://ww. springframework. org/ schema/integration/tw tter
http://ww. spri ngframewor k. org/ schema/integration/tw tter/spring-integration-twtter.xsd
http: // ww. spri ngfranmewor k. or g/ schema/ i nt egrati on/ stream
http://ww. springfranmework. org/ schema/ i ntegrati on/ stream spring-integration-stream xsd">

</ beans>

For a detailed explanation regarding Spring Integration’s namespace support see the section called
“CompletableFuture”.

Note

Please note that the namespace prefix can be freely chosen. You may even choose not to use any
namespace prefixes at all. Therefore, apply the convention that suits your application needs best.
Be aware, though, that SpringSource Tool Suite™ (STS) uses the same namespace conventions
for Spring Integration as used in this reference guide.

5.0.12.RELEASE Spring Integration ii

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.springsource.org/spring-framework

Spring Integration Reference Manual

1. Conventions in this Book

In some cases, to aid formatting, when specifying long fully-qualified class names, we shorten the
package or g. spri ngfranework to 0. s and org. spri ngframework.integrationtoo.s.i,
such as with 0. s.i.transaction. Transacti onSynchroni zati onFact ory.

5.0.12.RELEASE Spring Integration 3

Part Il. What’s new?

For those who are already familiar with Spring Integration, this chapter provides a brief overview of the
new features of version 5.0. If you are interested in the changes and features, that were introduced in
earlier versions, please see chapter: the section called “CompletableFuture”

Spring Integration Reference Manual

2. What’'s new in Spring Integration 5.07?

This chapter provides an overview of the new features and improvements that have been introduced
with Spring Integration 5.0. If you are interested in more details, please see the Issue Tracker tickets
that were resolved as part of the 5.0 development process.

2.1 New Components

Java DSL

The separate Spring Integration Java DSL project has now been merged into the core Spring Integration
project. The | nt egr at i onConponent Spec implementations for channel adapters and gateways are
distributed to their specific modules. See the section called “CompletableFuture” for more information
about Java DSL support. Also see the 4.3 to 5.0 Migration Guide for the required steps to move to
Spring Integration 5.0.

Testing Support

A new Spring Integration Test Framework has been created to assist with testing Spring
Integration applications. Now, with the @pri ngl nt egrati onTest annotation on test class and
Mockl nt egr at i on factory you can make your JUnit tests for integration flows somewhat easier.

See the section called “CompletableFuture” for more information.
MongoDB Outbound Gateway

The new MongoDbQut boundGat eway allows you to make queries to the database on demand by
sending a message to its request channel.

See the section called “CompletableFuture” for more information.
WebFlux Gateways and Channel Adapters

The new WebFlux support module has been introduced for Spring WebFlux Framework gateways and
channel adapters.

See the section called “CompletableFuture” for more information.
Content Type Conversion

Now that we use the new | nvocabl eHandl er Met hod -based infrastructure for service method
invocations, we can perform cont ent Type conversion from payload to target method argument.

See the section called “Content Type Conversion” for more information.
ErrorMessagePublisher and ErrorMessageStrategy

The ErrorMessagePublisher and the ErrorMessageStrategy are provided for creating
Er r or Message instances.

See the section called “CompletableFuture” for more information.

5.0.12.RELEASE Spring Integration 5

https://github.com/spring-projects/spring-integration-java-dsl
https://github.com/spring-projects/spring-integration/wiki/Spring-Integration-4.3-to-5.0-Migration-Guide#java-dsl

Spring Integration Reference Manual

JDBC Metadata Store

A JDBC implementation of Met adat aSt or e implementation is now provided. This is useful when it is
necessary to ensure transactional boundaries for metadata.

See the section called “CompletableFuture” for more information.

2.2 General Changes

Spring Integration is now fully based on Spring Framework 5. 0 and Project Reactor 3. 1. Previous
Project Reactor versions are no longer supported.

Core Changes

The @0l | er annotation now hasthe er r or Channel attribute for easier configuration of the underlying
MessagePubl i shi ngEr r or Handl er .

See the section called “CompletableFuture” for more information.

All the request-reply endpoints (based on Abst r act Repl yPr oduci ngMessageHandl| er) can now
start transaction and, therefore, make the whole downstream flow transactional.

See the section called “CompletableFuture” for more information.
The Smart Li f ecycl eRol eCont r ol | er now provides methods to obtain status of endpoints in roles.
See Section 8.2, “Endpoint Roles” for more information.

POJO methods are now invoked using an | nvocabl eHandl er Met hod by default, but can be
configured to use SpEL as before.

See Section 3.9, “POJO Method invocation” for more information.

When targeting POJO methods as message handlers, one of the service methods can now be marked
with the @ef aul t annotation to provide a fallback mechanism for non-matched conditions.

See the section called “CompletableFuture” for more information.

A simple PassThr oughTransacti onSynchroni zati onFactory is provided to always store a
polled message in the current transaction context. That message isused as af ai | edMessage property
of the Messagi ngExcept i on which wraps a raw exception thrown during transaction completion.

See the section called “CompletableFuture” for more information.

The aggregator expression-based Rel easeStrat egy now evaluates the expression against the
MessageG oup instead of just the collection of Message<?>.

See the section called “Aggregators and Spring Expression Language (SpEL)” for more information.
The Obj ect ToMapTr ansf or mer can now be supplied with a customised JsonQhbj ect Mapper .
See the section called “Aggregators and Spring Expression Language (SpEL)” for more information.

The @3 obal Channel | nt er cept or annotation and <i nt : channel -i nt er cept or > now support
negative patterns (via! prepending) for component names matching.

5.0.12.RELEASE Spring Integration 6

Spring Integration Reference Manual

See the section called “Global Channel Interceptor Configuration” for more information.

A new OnFai | edToAcqui r eMut exEvent is emitted now via Def aul t Leader Event Publ i sher by
the LockRegi stryLeader | ni ti at or, when candidate is failed to acquire the lock.

See Section 8.3, “Leadership Event Handling” for more information.
Gateway Changes

The gateway now correctly sets the err or Channel header when the gateway method has a voi d
return type and an error channel is provided. Previously, the header was not populated. This had the
effect that synchronous downstream flows (running on the calling thread) would send the exception to
the configured channel but an exception on an async downstream flow would be sent to the default
er r or Channel instead.

The Request Repl yExchanger interface now has at hr ows Messagi ngExcept i on clause to meet
all the proposed messages exchange contract.

The request and reply timeouts can now be specified as SpEL expressions.

See Section 8.4, “Messaging Gateways” for more information.
Aggregator Performance Changes

Aggregators now use a Si npl eSequenceSi zeRel easeSt r at egy by default, which is more efficient,
especially with large groups. Empty groups are now scheduled for removal after enpt y- gr oup- ni n-
ti meout .

See Section 6.4, “Aggregator” for more information.
Splitter Changes

The Splitter component now can handle and split Java Stream and Reactive Streams
Publ i sher objects. If the output channel is a Reacti veStreansSubscri babl eChannel, the
Abst ract MessageSpl i tter builds a Fl ux for subsequent iteration instead of a regular | t er at or
independent of object being split. In addition, Abstract MessageSpl i tter provides protected
obt ai nSi zel f Possi bl e() methods to allow the determination of the size of the I t er abl e and
| t er at or objects if that is possible.

See Section 6.3, “Splitter” for more information.
JMS Changes

Previously, Spring Integration JIMS XML configuration used a default bean name connect i onFact ory
for the JMS Connection Factory, allowing the property to be omitted from component definitions. It has
now been renamed to j nsConnect i onFact or y, which is the bean name used by Spring Boot to auto-
configure the JMS Connection Factory bean.

If your application is relying on the previous behavior, rename your connecti onFact ory bean to
j msConnect i onFact ory, or specifically configure your components to use your bean using its current
name.

See the section called “CompletableFuture” for more information.

5.0.12.RELEASE Spring Integration 7

Spring Integration Reference Manual

Mail Changes
Some inconsistencies with rendering IMAP mail content have been resolved.

See the note in the Mail-Receiving Channel Adapter Section for more information.

Feed Changes

Instead of the com r onet ool s. f et cher. FeedFet cher, which is deprecated in ROME, a new
Resour ce property has been introduced to the FeedEnt r yMessageSour ce.

See the section called “CompletableFuture” for more information.

File Changes

The new Fi | eHeader s. RELATI VE_PATH Message header has been introduced to represent relative
path in the Fi | eReadi ngMessageSour ce.

The tail adapter now supports i dl eEvent | nt er val to emit events when there is no data in the file
during that period.

The flush predicates for the Fi | eW i t i ngMessageHandl er now have an additional parameter.

The file outbound channel adapter and gateway (Fi | eWi ti ngMessageHandl er) now support the
REPLACE_| F_MODI FI EDFi | eExi st sMode.

They also now support setting file permissions on the newly written file.

Anew Fi | eSyst emvar ker Fi | ePresent Fi | eLi st Fi | t er is now available; see the section called
“CompletableFuture” for more information.

The Fi | eSplitter now provides afirstLi neAsHeader option to carry the first line of content as
a header in the messages emitted for the remaining lines.

See the section called “CompletableFuture” for more information.

(S)FTP Changes

The Inbound Channel Adapters now have a property max- f et ch- si ze which is used to limit the
number of files fetched during a poll when there are no files currently in the local directory. They also are
configured with a Fi | eSyst enPer si st ent Accept OnceFileListFilter inthelocal -filter
by default.

You can also provide a custom Di r ect or yScanner implementation to Inbound Channel Adapters via
the newly introduced scanner attribute.

The regex and pattern filters can now be configured to always pass directories. This can be useful when
using recursion in the outbound gateways.

All the Inbound Channel Adapters (streaming and synchronization-based) now use an appropriate
Abst ract Per si st ent Accept OnceFi | eLi st Fi | t er implementation by default to prevent remote
files duplicate downloads.

The FTP and SFTP outbound gateways now support the REPLACE | F_MODI FI EDFi | eExi st sMbde
when fetching remote files.

5.0.12.RELEASE Spring Integration 8

Spring Integration Reference Manual

The (S)FTP streaming inbound channel adapters now add remote file information in a message header.

The FTP and SFTP outbound channel adapters, as well as PUT command of the outbound gateways,
now support | nput St r eamas pay! oad, too.

The inbound channel adapters now can build file tree locally using a newly introduced
Recur si veDi r ect or yScanner . See scanner option for injection. Also these adapters can now be
switched to the WAt chSer vi ce instead.

The NLST command has been added to the Abstract Renot eFi | eCut boundGat eway to perform
only list files names remote command.

The Ft pQut boundGat eway can now be supplied with wor ki ngDi r Expr essi on to change the FTP
client working directory for the current request message.

The Renot eFi | eTenpl at e is supplied now with the i nvoke(Oper ati onsCal | back<F, T>
act i on) to perform several Renot eFi | eOper at i ons calls in the scope of the same, thread-bounded,
Sessi on.

New filters for detecting incomplete remote files are now provided.

The Ft pQut boundGat eway and Sft pQut boundGat eway now support an option to remove the
remote file after a successful transfer using the GET or MGET commands.

ARot at i ngSer ver Advi ce is now available to poll multiple servers and/or directories with the inbound
channel adapters.

Also inbound adapter | ocal Fi | enaneExpr essi on s can contain the variable #r enot eDi rect ory
which contains the remote directory being polled.

See the section called “CompletableFuture” and the section called “CompletableFuture” for more
information.

Integration Properties

Since version 4.3.2 a new spring. i ntegration.readOnly. headers global property has been
added to customize the list of headers which should not be copied to a newly created Message by the
MessageBui | der.

See the section called “CompletableFuture” for more information.
Stream Changes

There is a new option on the Char act er St r eanReadi ngMessageSour ce to allow it to be used to
"pipe" stdin and publish an application event when the pipe is closed.

See the section called “CompletableFuture” for more information.
Barrier Changes

The Barrier MessageHandl er now supports a discard channel to which late-arriving trigger
messages are sent.

See Section 6.8, “Thread Barrier” for more information.

5.0.12.RELEASE Spring Integration 9

Spring Integration Reference Manual

AMQP Changes

The AMQP outbound endpoints now support setting a delay expression for when using the RabbitMQ
Delayed Message Exchange plugin.

The inbound endpoints now support the Spring AMQP Di r ect MessagelLi st ener Cont ai ner.

Pollable AMQP-backed channels now block the poller thread for the poller's configured
recei veTi meout (default 1 second).

Headers, such as cont ent Type that are added to message properties by the message converter are
now used in the final message; previously, it depended on the converter type as to which headers/
message properties appeared in the final message. To override headers set by the converter, set the
header sMappedLast propertytotrue.

See the section called “CompletableFuture” for more information.
HTTP Changes

The Def aul t Ht t pHeader Mapper . user Def i nedHeader Pr ef i X property is now an empty string
by default instead of X- .

See the section called “CompletableFuture” for more information.

MQTT Changes

Inbound messages are now mapped with headers RECEI VED TOPI C, RECElI VED QOS and
RECEI VED_RETAI NED to avoid inadvertent propagation to outbound messages when an application is
relaying messages.

The outbound channel adapter now supports expressions for the topic, qos and retained properties; the
defaults remain the same.

See the section called “CompletableFuture” for more information.

STOMP Changes

The STOMP module has been changed to use React or NettyTcpSt onpd i ent, based on the
Project Reactor 3. 1 and reactor-netty extension. The React or 2TcpSt onpSessi onManager
has been renamed to the ReactorNettyTcpStonpSessi onManager according to the
React or Nett yTcpSt onpd i ent foundation.

See the section called “CompletableFuture” for more information.
Web Services Changes

» The WebServi ceQut boundGat eway s can now be supplied with an externally configured
WebSer vi ceTenpl at e instances.

» The Def aul t SoapHeader Mapper cannow map aj avax. xm . t r ansf or m Sour ce user-defined
header to a SOAP header element.

e Simple WebService Inbound and Outbound gateways can now deal with the complete
WebSer vi ceMessage as a pay!l oad, allowing the manipulation of MTOM attachments.

See the section called “CompletableFuture” for more information.

5.0.12.RELEASE Spring Integration 10

Spring Integration Reference Manual

Redis Changes

The Redi sSt oreW i ti ngMessageHandl er is supplied now with additional String-based setters for
SpEL expressions - for convenience with Java configuration. The zset | ncr ement Expr essi on can
now be configured on the Redi sSt oreW i ti ngMessageHandl er, as well. In addition this property
has been changed from t r ue to f al se since | NCR option on ZADD Redis command is optional.

The Redi sl nboundChannel Adapter can now be supplied with an Executor for
executing Redis listener invokers. In addition the received messages now contains a
Redi sHeader s. MESSAGE_SOURCE header to indicate the source of the message - topic or pattern.

See the section called “CompletableFuture” for more information.

TCP Changes

A new ThreadAf finityd i ent Connecti onFactory is provided that binds TCP connections to
threads.

You can now configure the TCP connection factories to support Pushbackl nput St r eams, allowing
deserializers to "unread” (push back) bytes after "reading ahead".

A Byt eArrayEl asti cRawDeseri al i zer has been added without naxMessageSi ze control and
buffer incoming data as needed.

See the section called “CompletableFuture” for more information.

Gemfire Changes

The GenfireMet adat aSt or e now implements Li st enabl eMet adat aSt or e, allowing users to
listen to cache events by providing Met adat aSt or eLi st ener instances to the store.

See the section called “CompletableFuture” for more information.

Jdbc Changes

The JdbcMessageChannel St ore now provides setter for the
Channel MessagesSt or ePr epar edSt at emrent Sett er allowing users to customize a message
insertion in the store.

The ExpressionEval uati ngSql Par amet er Sour ceFactory now provides setter for the
sqglParameterTypes allowing users to customize sql types of the parameters.

See the section called “CompletableFuture” for more information.
Metrics Changes

Micrometer application monitoring is now supported (since version 5.0.2). See the section called
“CompletableFuture” for more information.

Important

Changes were made to the Micrometer Met er s in version 5.0.3 to make them more suitable for
use in dimensional systems. Further changes were made in 5.0.4; if using Micrometer, a minimum
of version 5.0.4 is recommended.

5.0.12.RELEASE Spring Integration 11

http://micrometer.io/

Spring Integration Reference Manual

2.3 TCP Support

When using SSL, host verification can be configured, to prevent man-in-the-middle attacks with a trusted
certificate. See the section called “CompletableFuture” for more information.

In addition the key and trust store types can now be configured on the
Def aul t TcpSSLCont ext Support.

@Endpointld Annotations

Introduced in version 5.0.4, this annotation provides control over bean naming when using Java
configuration. See the section called “Endpoint Bean Names” for more information.

Integration Flows: Generated bean names

Starting with version 5.0.5, generated bean names for the components in an | nt egrati onFl ow
include the flow bean name, followed by a dot, as a prefix.

See the section called “CompletableFuture” for more information.

5.0.12.RELEASE Spring Integration 12

Part Ill. Overview of Spring
Integration Framework

Spring Integration provides an extension of the Spring programming model to support the well-known
Enterprise Integration Patterns. It enables lightweight messaging within Spring-based applications and
supports integration with external systems via declarative adapters. Those adapters provide a higher-
level of abstraction over Spring’s support for remoting, messaging, and scheduling. Spring Integration’s
primary goal is to provide a simple model for building enterprise integration solutions while maintaining
the separation of concerns that is essential for producing maintainable, testable code.

http://www.eaipatterns.com/

Spring Integration Reference Manual

3. Spring Integration Overview

3.1 Background

One of the key themes of the Spring Framework is inversion of control. In its broadest sense, this means
that the framework handles responsibilities on behalf of the components that are managed within its
context. The components themselves are simplified since they are relieved of those responsibilities. For
example, dependency injection relieves the components of the responsibility of locating or creating their
dependencies. Likewise, aspect-oriented programming relieves business components of generic cross-
cutting concerns by modularizing them into reusable aspects. In each case, the end result is a system
that is easier to test, understand, maintain, and extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model for
building enterprise applications. Developers benefit from the consistency of this model and especially
the fact that it is based upon well-established best practices such as programming to interfaces and
favoring composition over inheritance. Spring’s simplified abstractions and powerful support libraries
boost developer productivity while simultaneously increasing the level of testability and portability.

Spring Integration is motivated by these same goals and principles. It extends the Spring programming
model into the messaging domain and builds upon Spring’s existing enterprise integration support to
provide an even higher level of abstraction. It supports message-driven architectures where inversion of
control applies to runtime concerns, such as when certain business logic should execute and where the
response should be sent. It supports routing and transformation of messages so that different transports
and different data formats can be integrated without impacting testability. In other words, the messaging
and integration concerns are handled by the framework, so business components are further isolated
from the infrastructure and developers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options including annotations, XML with namespace support, XML with generic "bean”
elements, and of course direct usage of the underlying API. That API is based upon well-defined
strategy interfaces and non-invasive, delegating adapters. Spring Integration’s design is inspired by the
recognition of a strong affinity between common patterns within Spring and the well-known Enterprise
Integration Patterns as described in the book of the same name by Gregor Hohpe and Bobby Woolf
(Addison Wesley, 2004). Developers who have read that book should be immediately comfortable with
the Spring Integration concepts and terminology.

3.2 Goals and Principles

Spring Integration is motivated by the following goals:

» Provide a simple model for implementing complex enterprise integration solutions.
 Facilitate asynchronous, message-driven behavior within a Spring-based application.
* Promote intuitive, incremental adoption for existing Spring users.

Spring Integration is guided by the following principles:

» Components should be loosely coupled for modularity and testability.

» The framework should enforce separation of concerns between business logic and integration logic.

5.0.12.RELEASE Spring Integration 14

http://www.eaipatterns.com
http://www.eaipatterns.com

Spring Integration Reference Manual

» Extension points should be abstract in nature but within well-defined boundaries to promote reuse
and portability.

3.3 Main Components

From the vertical perspective, a layered architecture facilitates separation of concerns, and interface-
based contracts between layers promote loose coupling. Spring-based applications are typically
designed this way, and the Spring framework and portfolio provide a strong foundation for following
this best practice for the full-stack of an enterprise application. Message-driven architectures add a
horizontal perspective, yet these same goals are still relevant. Just as "layered architecture" is an
extremely generic and abstract paradigm, messaging systems typically follow the similarly abstract
"pipes-and-filters" model. The "filters" represent any component that is capable of producing and/or
consuming messages, and the "pipes" transport the messages between filters so that the components
themselves remain loosely-coupled. It is important to note that these two high-level paradigms are not
mutually exclusive. The underlying messaging infrastructure that supports the "pipes" should still be
encapsulated in a layer whose contracts are defined as interfaces. Likewise, the "filters" themselves
would typically be managed within a layer that is logically above the application’s service layer,
interacting with those services through interfaces much in the same way that a web-tier would.

Message

In Spring Integration, a Message is a generic wrapper for any Java object combined with metadata used
by the framework while handling that object. It consists of a payload and headers. The payload can be
of any type and the headers hold commonly required information such as id, timestamp, correlation id,
and return address. Headers are also used for passing values to and from connected transports. For
example, when creating a Message from a received File, the file name may be stored in a header to
be accessed by downstream components. Likewise, if a Message'’s content is ultimately going to be
sent by an outbound Mail adapter, the various properties (to, from, cc, subject, etc.) may be configured
as Message header values by an upstream component. Developers can also store any arbitrary key-
value pairs in the headers.

Message

Header

Payload

Figure 3.1. Message
Message Channel

A Message Channel represents the "pipe" of a pipes-and-filters architecture. Producers send Messages
to a channel, and consumers receive Messages from a channel. The Message Channel therefore
decouples the messaging components, and also provides a convenient point for interception and
monitoring of Messages.

5.0.12.RELEASE Spring Integration 15

Spring Integration Reference Manual

send{Message) receive()
Producer L Consumer

Message Channel
Figure 3.2. Message Channel

A Message Channel may follow either Point-to-Point or Publish/Subscribe semantics. With a Point-to-
Point channel, at most one consumer can receive each Message sent to the channel. Publish/Subscribe
channels, on the other hand, will attempt to broadcast each Message to all of its subscribers. Spring
Integration supports both of these.

Whereas "Point-to-Point" and "Publish/Subscribe" define the two options for how many consumers will
ultimately receive each Message, there is another important consideration: should the channel buffer
messages? In Spring Integration, Pollable Channels are capable of buffering Messages within a queue.
The advantage of buffering is that it allows for throttling the inbound Messages and thereby prevents
overloading a consumer. However, as the name suggests, this also adds some complexity, since a
consumer can only receive the Messages from such a channel if a poller is configured. On the other
hand, a consumer connected to a Subscribable Channel is simply Message-driven. The variety of
channel implementations available in Spring Integration will be discussed in detail in the section called
“Message Channel Implementations”.

Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise integration
solutions through inversion of control. This means that you should not have to implement consumers
and producers directly, and you should not even have to build Messages and invoke send or receive
operations on a Message Channel. Instead, you should be able to focus on your specific domain model
with an implementation based on plain Objects. Then, by providing declarative configuration, you can
"connect" your domain-specific code to the messaging infrastructure provided by Spring Integration. The
components responsible for these connections are Message Endpoints. This does not mean that you will
necessarily connect your existing application code directly. Any real-world enterprise integration solution
will require some amount of code focused upon integration concerns such as routing and transformation.
The important thing is to achieve separation of concerns between such integration logic and business
logic. In other words, as with the Model-View-Controller paradigm for web applications, the goal should
be to provide a thin but dedicated layer that translates inbound requests into service layer invocations,
and then translates service layer return values into outbound replies. The next section will provide an
overview of the Message Endpoint types that handle these responsibilities, and in upcoming chapters,
you will see how Spring Integration’s declarative configuration options provide a non-invasive way to
use each of these.

3.4 Message Endpoints

A Message Endpoint represents the “filter" of a pipes-and-filters architecture. As mentioned above, the
endpoint’s primary role is to connect application code to the messaging framework and to do so in a non-
invasive manner. In other words, the application code should ideally have no awareness of the Message
objects or the Message Channels. This is similar to the role of a Controller in the MVC paradigm. Just as
a Controller handles HTTP requests, the Message Endpoint handles Messages. Just as Controllers are
mapped to URL patterns, Message Endpoints are mapped to Message Channels. The goal is the same
in both cases: isolate application code from the infrastructure. These concepts are discussed at length
along with all of the patterns that follow in the Enterprise Integration Patterns book. Here, we provide

5.0.12.RELEASE Spring Integration 16

http://www.eaipatterns.com

Spring Integration Reference Manual

only a high-level description of the main endpoint types supported by Spring Integration and their roles.
The chapters that follow will elaborate and provide sample code as well as configuration examples.

Transformer

A Message Transformer is responsible for converting a Message’s content or structure and returning
the modified Message. Probably the most common type of transformer is one that converts the payload
of the Message from one format to another (e.g. from XML Document to java.lang.String). Similarly, a
transformer may be used to add, remove, or modify the Message’s header values.

Filter

A Message Filter determines whether a Message should be passed to an output channel at all. This
simply requires a boolean test method that may check for a particular payload content type, a property
value, the presence of a header, etc. If the Message is accepted, it is sent to the output channel, but if
not it will be dropped (or for a more severe implementation, an Exception could be thrown). Message
Filters are often used in conjunction with a Publish Subscribe channel, where multiple consumers may
receive the same Message and use the filter to narrow down the set of Messages to be processed
based on some criteria.

Note

Be careful not to confuse the generic use of "filter" within the Pipes-and-Filters architectural pattern
with this specific endpoint type that selectively narrows down the Messages flowing between two
channels. The Pipes-and-Filters concept of "filter" matches more closely with Spring Integration’s
Message Endpoint: any component that can be connected to Message Channel(s) in order to
send and/or receive Messages.

Router

A Message Router is responsible for deciding what channel or channels should receive the Message
next (if any). Typically the decision is based upon the Message’s content and/or metadata available in the
Message Headers. A Message Router is often used as a dynamic alternative to a statically configured
output channel on a Service Activator or other endpoint capable of sending reply Messages. Likewise,
a Message Router provides a proactive alternative to the reactive Message Filters used by multiple
subscribers as described above.

. Message Channel A
e Router
Channel B

Figure 3.3. Router
Splitter

A Splitter is another type of Message Endpoint whose responsibility is to accept a Message from its input
channel, split that Message into multiple Messages, and then send each of those to its output channel.

5.0.12.RELEASE Spring Integration 17

Spring Integration Reference Manual

This is typically used for dividing a "composite" payload object into a group of Messages containing the
sub-divided payloads.

Aggregator

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Endpoint that receives
multiple Messages and combines them into a single Message. In fact, Aggregators are often
downstream consumers in a pipeline that includes a Splitter. Technically, the Aggregator is more
complex than a Splitter, because it is required to maintain state (the Messages to-be-aggregated), to
decide when the complete group of Messages is available, and to timeout if necessary. Furthermore, in
case of a timeout, the Aggregator needs to know whether to send the partial results or to discard them to
a separate channel. Spring Integration providesa Corr el ati onSt r at egy, aRel easeSt r at egy and
configurable settings for: timeout, whether to send partial results upon timeout, and a discard channel.

Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system.
The input Message Channel must be configured, and if the service method to be invoked is capable of
returning a value, an output Message Channel may also be provided.

Note

The output channel is optional, since each Message may also provide its own Return Address
header. This same rule applies for all consumer endpoints.

The Service Activator invokes an operation on some service object to process the request Message,
extracting the request Message’s payload and converting if necessary (if the method does not expect
a Message-typed parameter). Whenever the service object’s method returns a value, that return value
will likewise be converted to a reply Message if necessary (if it's not already a Message). That reply
Message is sent to the output channel. If no output channel has been configured, then the reply will be
sent to the channel specified in the Message’s "return address" if available.

A request-reply "Service Activator" endpoint connects a target object's method to input and output
Message Channels.

Input E

Message

- = === ——————— — T — -
Qutput

Message

handle(Message)

Service
Activator

Message
Handler

Input
Channel

Output
Channel

Figure 3.4. Service Activator

Note

As discussed in Message Channel above, channels can be Pollable or Subscribable; in this
diagram, this is depicted by the "clock" symbol and the solid arrow (poll) and the dotted arrow
(subscribe).

5.0.12.RELEASE Spring Integration 18

Spring Integration Reference Manual

Channel Adapter

A Channel Adapter is an endpoint that connects a Message Channel to some other system or transport.
Channel Adapters may be either inbound or outbound. Typically, the Channel Adapter will do some
mapping between the Message and whatever object or resource is received-from or sent-to the other
system (File, HTTP Request, JMS Message, etc). Depending on the transport, the Channel Adapter
may also populate or extract Message header values. Spring Integration provides a number of Channel
Adapters, and they will be described in upcoming chapters.

@ Channel

Adapter
Figure 3.5. An inbound "Channel Adapter" endpoint connects a source system to a MessageChannel.

T,
Message —-

Message
Channel

Note

Message sources can be Pollable (e.g. POP3) or Message-Driven (e.g. IMAP Idle); in this
diagram, this is depicted by the "clock" symbol and the solid arrow (poll) and the dotted arrow

(message-driven).

al—
- ---1 Message ’-— Adapter
Message
Figure 3.6. An outbound "Channel Adapter" endpoint connects a MessageChannel to a target system.

Channel

Note

As discussed in Message Channel above, channels can be Pollable or Subscribable; in this
diagram, this is depicted by the "clock" symbol and the solid arrow (poll) and the dotted arrow
(subscribe).

Endpoint Bean Names

Consuming endpoints (anything with an i nput Channel) consist of two beans, the consumer and
message handler. The consumer has a reference to the message handler and invokes it as messages
arrive.

When configuring with XML:

<int:service-activator id = "sonmeService" ... />

the bean names will be as follows:

e Consumer: soneSer vi ce (thei d)

5.0.12.RELEASE Spring Integration 19

Spring Integration Reference Manual

» Handler: someSer vi ce. handl er
When using EIP annotations, the names depend on several factors.

When Annotating POJO Methods

@onponent
public class SoneConponent {

@er vi ceActi vat or (i nput Channel = ...)
public String soneMethod(...) {

}

the bean names will be as follows:
» Consumer: sonmeConponent . soneMet hod. servi ceActi vat or

» Handler: soneConponent . someMet hod. servi ceActi vat or. handl er

Starting with version 5.0.4, these names can be modified using the @ndpoi nt | d annotation:

@onponent
public class SonmeConponent {

@ndpoi nt1d("soneService")

@per vi ceActi vat or (i nput Channel = ...)
public String soneMethod(...) {

}

the bean names will be as follows:
» Consumer: soneServi ce
» Handler: soneServi ce. handl er

i.e. @ndpoi nt | d creates names as created by the i d attribute with XML configuration.

When Annotating @Beans

@onfi guratiom
public class SoneConfiguration {

@Bean
@er vi ceActi vat or (i nput Channel = ...)
publi c MessageHandl er soneHandl er () {

}

the bean names will be as follows:
e Consumer: soneConfi gurati on. someHandl er . servi ceActi vat or

» Handler: soneHandl er (the @ean name)

5.0.12.RELEASE Spring Integration

Spring Integration Reference Manual

Starting with version 5.0.4, these names can be modified using the @ndpoi nt | d annotation:

@onfiguratiom
public class SomeConfiguration {

@Bean("soneServi ce. handl er")

@ndpoi nt |1 d("soneSer vi ce")

@er vi ceAct i vat or (i nput Channel = ...)
publ i c MessageHandl er soneHandl er () {

}

» Consumer: soneServi ce
* Handler: soneSer vi ce. handl er

i.e. @ndpoi nt | d creates hames as created by the i d attribute with XML configuration, as long as you
use the convention of appending . handl er to the @ean name.

There is one special case where a third bean is created; for architectural reasons, ifa MessageHand! er
@ean does not define an Abst r act Repl yPr oduci ngMessageHandl er, the framework wraps the
provided bean in a Repl yProduci ngMessageHandl er W apper. This wrapper supports request
handler advice handling as well as emitting the normal produced no reply debug log messages. Its bean
name is the handler bean name plus . wr apper (when there is an @ndpoi nt | d, otherwise it's the
normal generated handler name).

Message Sources

Similarly Pollable Message Sources create two beans, a Sour cePol | i ngChannel Adapt er (SPCA)
and a MessageSour ce.

When configuring with XML.:

<i nt:inbound-channel -adapter id = "soneAdapter" ... />

the bean names will be as follows:
» SPCA: soneAdapt er (thei d)
e Handler: soneAdapt er. source

Using @ndpoi nt | d with Java configuration:

@ndpoi nt | d(" soneAdapt er ")
@ nboundChannel Adapt er (channel = "channel 3", poller = @Poller(fixedDelay = "5000"))
public String pojoSource() {

}

the bean names will be as follows:
* SPCA: soneAdapt er

» Handler: soneAdapt er. source

5.0.12.RELEASE Spring Integration 21

Spring Integration Reference Manual

@Bean(" soneAdapt er . sour ce")
@ndpoi nt 1 d("soneAdapt er")
@ nboundChannel Adapt er (channel = "channel 3", poller = @Poller(fixedDelay = "5000"))
publ i c MessageSour ce<?> source() {
return () -> {

b

the bean names will be as follows:
» SPCA: soneAdapt er

» Handler: soneAdapt er. sour ce (as long as you use the convention of appending . sour ce to the
@ean name)

3.5 Configuration and @Enablelntegration

Throughout this document you will see references to XML namespace support for declaring elements
in a Spring Integration flow. This support is provided by a series of namespace parsers that generate
appropriate bean definitions to implement a particular component. For example, many endpoints consist
of a MessageHand| er bean and a Consuner Endpoi nt Fact or yBean into which the handler and an
input channel name are injected.

The first time a Spring Integration namespace element is encountered, the framework automatically
declares a number of beans that are used to support the runtime environment (task scheduler, implicit
channel creator, etc).

Important

Starting with version 4.0, the @nabl el nt egr at i on annotation has been introduced, to allow
the registration of Spring Integration infrastructure beans (see JavaDocs). This annotation is
required when only Java & Annotation configuration is used, e.g. with Spring Boot and/or
Spring Integration Messaging Annotation support and Spring Integration Java DSL with no XML
integration configuration.

The @nabl el nt egr at i on annotation is also useful when you have a parent context with no Spring
Integration components and 2 or more child contexts that use Spring Integration. It enables these
common components to be declared once only, in the parent context.

The @nabl el nt egr at i on annotation registers many infrastructure components with the application
context:

* Reqgisters some built-in beans, e.g. er r or Channel andits Loggi ngHandl er, t askSchedul er for
pollers, j sonPat h SpEL-function etc.;

» Adds several BeanFact or yPost Processor sto enhance the BeanFact ory for global and default
integration environment;

» Adds several BeanPost Processor s to enhance and/or convert and wrap particular beans for
integration purposes;

» Adds annotations processors to parse Messaging Annotations and registers components for them
with the application context.

5.0.12.RELEASE Spring Integration 22

http://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/config/EnableIntegration.html

Spring Integration Reference Manual

The @ nt egrati onConponent Scan annotation has also been introduced to permit classpath
scanning. This annotation plays a similar role as the standard Spring Framework @onponent Scan
annotation, but it is restricted just to Spring Integration specific components and annotations, which
aren’'t reachable by the standard Spring Framework component scan mechanism. For example the
section called “@MessagingGateway Annotation”.

The @&nabl ePubl i sher annotation has been introduced to register a
Publ i sher Annot at i onBeanPost Processor bean and configure the defaul t-publisher-
channel for those @ubl i sher annotations which are provided without a channel attribute. If more
than one @nabl ePubl i sher annotation is found, they must all have the same value for the default
channel. See the section called “CompletableFuture” for more information.

The @3 obal Channel | nt er cept or annotation has been introduced to mark
Channel | nt er cept or beans for global channel interception. This annotation is an analogue of the
<i nt:channel -i nt ercept or > xml element (see the section called “Global Channel Interceptor
Configuration”). @34 obal Channel | nt er cept or annotations can be placed at the class level (with a
@onponent stereotype annotation), or on @ean methods within @Conf i gur at i on classes. In either
case, the bean must be a Channel I nt er cept or.

The @ntegrati onConverter annotation has been introduced to mark Converter,
Generi cConverter or ConverterFactory beans as candidate converters for
i nt egrati onConver si onSer vi ce. This annotation is an analogue of the <i nt : convert er > xml
element (see the section called “Payload Type Conversion”). @ nt egr at i onConvert er annotations
can be placed at the class level (with a @onponent stereotype annotation), or on @ean methods
within @onf i gur at i on classes.

Also see the section called “CompletableFuture” for more information about Messaging Annotations.

3.6 Programming Considerations

It is generally recommended that you use plain old java objects (POJOs) whenever possible and
only expose the framework in your code when absolutely necessary. See Section 3.9, “POJO Method
invocation” for more information.

If you do expose the framework to your classes, there are some considerations that need to be taken
into account, especially during application startup; some of these are listed here.

* If your component is ApplicationCont ext Aware, you should generally not "use" the
Appl i cati onCont ext in the set Appl i cati onCont ext () method; just store a reference and
defer such uses until later in the context lifecycle.

 If your componentisan | nitial i zi ngBean or uses @ost Const r uct methods, do not send any
messages from these initialization methods - the application context is not yet initialized when these
methods are called, and sending such messages will likely fail. If you need to send a messages
during startup, implement Appl i cati onLi st ener and wait for the Cont ext Ref r eshedEvent .
Alternatively, implement Smart Li f ecycl e, put your bean in a late phase, and send the messages
from the st art () method.

3.7 Considerations When using Packaged (e.g. Shaded) Jars

Spring Integration bootstraps certain features using Spring Framework’s SpringFactories
mechanism to load several | nt egrati onConfi gurationlnitializer classes. This includes the

5.0.12.RELEASE Spring Integration 23

Spring Integration Reference Manual

- cor e jar as well as certain others such as - ht t p, - j nx, etc. The information for this process is stored
in a file META- | NF/ spri ng. factori es in each jar.

Some developers prefer to repackage their application and all dependencies into a single jar using well-
known tools, such as the Apache Maven Shade Plugin.

By default, the shade plugin will not merge the spri ng. f act ori es files when producing the shaded
jar.

In addition to spring.factories, there are other META-INF files (spring. handlers,
spri ng. schenas) used for XML configuration. These also need to be merged.

Important

Spring Boot's executable jar mechanism takes a different approach in that it nests the jars, thus
retaining each spri ng. fact ori es file on the class path. So, with a Spring Boot application,
nothing more is needed, if you use its default executable jar format.

Even if you are not using Spring Boot, you can still use tooling provided by Boot to enhance the shade
plugin by adding transformers for the above mentioned files.

The following is an example configuration for the plugin at the time of writing. You may wish to consult
the current spring-boot-starter-parent pom to see the current settings that boot uses.

pom.xml.

5.0.12.RELEASE Spring Integration 24

https://maven.apache.org/plugins/maven-shade-plugin/
https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-starters/spring-boot-starter-parent/pom.xml

Spring Integration Reference Manual

<pl ugi ns>
<pl ugi n>
<groupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifact!|d>maven-shade-plugin</artifact|d>
<confi guration>
<keepDependenci esWt hPr ovi dedScope>t r ue</ keepDependenci esW t hPr ovi dedScope>
<cr eat eDependencyReducedPon®t r ue</ cr eat eDependencyReducedPon>
</ configuration>
<dependenci es>
<dependency> 0O
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
<versi on>${spring. boot . versi on} </ versi on>
</ dependency>
</ dependenci es>
<executions>
<execution>
<phase>package</ phase>
<goal s>
<goal >shade</ goal >
</ goal s>
<confi gurati on>
<transfornmers> O
<t r ansf or ner

i npl enent at i on="or g. apache. maven. pl ugi ns. shade. r esour ce. Appendi ngTr ansf or ner " >
<resour ce>META- | NF/ spri ng. handl er s</ resour ce>
</ transf or mer >
<t r ansf or ner

i npl enent ati on="or g. spri ngfranmewor k. boot . maven. Properti esMer gi ngResour ceTr ansf or mer" >
<resour ce>META- | NF/ spring. factories</resource>
</ transf or mer>
<transf or mer

i npl ement ati on="or g. apache. maven. pl ugi ns. shade. r esour ce. Appendi ngTr ansf or ner " >
<resour ce>META- | NF/ spri ng. schemas</ resour ce>
</ transformer>
<t ransf or mer

i npl enent ati on="or g. apache. maven. pl ugi ns. shade. r esour ce. Ser vi cesResour ceTransforner" />
</ transf or mer s>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>

Specifically,

0 addthe spring-boot - maven- pl ugi n as a dependency
O configure the transformers

Add a property for ${ spri ng. boot . ver si on} or use a version explicitly there.
3.8 Programming Tips and Tricks

XML Schemas

When using XML configuration, to avoid getting false schema validation errors, you should use a "Spring-
aware" IDE, such as the Spring Tool Suite (STS) (or eclipse with the Spring IDE plugins) or IntelliJ IDEA,
for example. These IDEs know how to resolve the correct XML schema from the classpath (using the

5.0.12.RELEASE Spring Integration 25

Spring Integration Reference Manual

META- | NF/ spri ng. schenas file in the jar(s)). When using STS, or eclipse with the plugin, be sure
to enable Spri ng Project Nature onthe project.

The schemas hosted on the internet for certain legacy modules (those that existed in version 1.0) are the
1.0 versions for compatibility reasons; if your IDE uses these schemas, you will likely see false errors.

Each of these online schemas has a warning similar to this:

Important

This schema is for the 1.0 version of Spring Integration Core. We cannot update it to the current
schema because that will break any applications using 1.0.3 or lower. For subsequent versions,
the unversioned schema is resolved from the classpath and obtained from the jar. Please refer
to github:

https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/
main/resources/org/springframework/integration/config

The affected modules are

e core (spring-integration.xsd)
. file

* http

e jms

* mail

* rmi

* security

+ stream

* WS

o« xml

Finding Class Names for Java and DSL Configuration

With XML configuration and Spring Integration Namespace support, the XML Parsers hide how
target beans are declared and wired together. For Java & Annotation Configuration, it is important to
understand the Framework API for target end-user applications.

The first class citizens for EIP implementation are Message, Channel and Endpoi nt (see Section 3.3,
“Main Components” above). Their implementations (contracts) are:

» org.springfranmewor k. messagi ng. Message - see Section 5.1, “Message”;
» org.springfranmewor k. messagi ng. MessageChannel - see Section 4.1, “Message Channels”;

e org.springframework.integration.endpoint. Abstract Endpoi nt - see Section 4.2,
“Poller”.

5.0.12.RELEASE Spring Integration 26

https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config
https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config

Spring Integration Reference Manual

The first two are simple enough to understand how to implement, configure and use, respectively; the
last one deserves more review.

The Abstract Endpoi nt is widely used throughout the Framework for different component
implementations; its main implementations are:

e Event Dri venConsuner , when we subscribe to a Subscri babl eChannel to listen for messages;
» Pol I i ngConsurmer , when we poll for messages from a Pol | abl eChannel .

Using Messaging Annotations and/or Java DSL, you shouldn’t worry about these components, because
the Framework produces them automatically via appropriate annotations and BeanPost Pr ocessor
s. When building components manually, the Consumer Endpoi nt Fact or yBean should be used to
help to determine the target Abst r act Endpoi nt consumer implementation to create, based on the
provided i nput Channel property.

On the other hand, the Consumer Endpoi nt Fact oryBean delegates to an another first
class citizen in the Framework - org.springframework. messagi ng. MessageHandl er.
The goal of the implementation of this interface is to handle the message
consumed by the endpoint from the channel. AIl EIP components in Spring
Integration are MessageHandl er implementations, e.g. Aggregati ngMessageHand! er,
MessageTr ansf or mi ngHandl er, Abstract MessageSplitter etc.; as well as the target
protocol outbound adapters are implementations too, e.g. Fil eWitingMessageHandl er,
Ht t pRequest Execut i ngMessageHand| er, Abstract Mytt MessageHandl er etc. When you
develop Spring Integration applications with Java & Annotation Configuration, you should take a look
into the Spring Integration module to find an appropriate MessageHand| er implementation to be used
for the @er vi ceAct i vat or configuration. For example to send an XMPP message (see the section
called “CompletableFuture”) we should configure something like this:

@Bean
@er vi ceAct i vat or (i nput Channel = "input")
publ i c MessageHandl er sendChat MessageHandl er (XMPPConnect i on xnppConnection) {
Chat MessageSendi ngMessageHandl er handl er = new Chat MessageSendi ngMessageHandl er (xnmppConnecti on) ;

Def aul t XmppHeader Mapper xnppHeader Mapper = new Def aul t XnppHeader Mapper () ;
xnppHeader Mapper . set Request Header Nanes("*");
handl er. set Header Mapper (xnppHeader Mapper) ;

return handl er;

The MessageHandl er implementations represent the outbound and processing part of the message
flow.

The inbound message flow side has its own components, which are divided to
polling and listening behaviors. The listening (message-driven) components are simple
and typically require only one target class implementation to be ready to produce
messages. Listening components can be one-way MessagePr oducer Support implementations,
e.g. Abstract Mgtt MessageDri venChannel Adapter and | mapl dl eChannel Adapter; and
request-reply - Messagi ngGat ewaySupport implementations, e.g. Angpl nboundGat eway and
Abst ract WebSer vi cel nboundGat eway.

Polling inbound endpoints are for those protocols which don’t provide a listener API or aren’t intended
for such a behavior. For example any File based protocol, as an FTP, any data bases (RDBMS or
NoSQL) etc.

5.0.12.RELEASE Spring Integration 27

Spring Integration Reference Manual

These inbound endpoints consist with two components: the poller configuration, to initiate the
polling task periodically, and message source class to read data from the target protocol and
produce a message for the downstream integration flow. The first class, for the poller configuration,
is a Sour cePol | i ngChannel Adapt er. It is one more Abstract Endpoi nt implementation, but
especially for polling to initiate an integration flow. Typically, with the Messaging Annotations or Java
DSL, you shouldn’t worry about this class, the Framework produces a bean for it, based on the
@ nboundChannel Adapt er configuration or a Java DSL Builder spec.

Message source components are more important for the target application development
and they all implement the MessageSource interface, e.g. MongoDbMessageSource and
Abstract Twi tt er MessageSour ce. With that in mind, our config for reading data from an RDBMS
table with JDBC may look like:

@Bean
@ nboundChannel Adapt er (val ue = "fooChannel ", poller = @ol |l er(fixedDel ay="5000"))
publ i c MessageSour ce<?> st or edProc(Dat aSour ce dat aSource) {
return new JdbcPol | i ngChannel Adapt er (dat aSour ce, "SELECT * FROM foo where status = 0");

}

All the required inbound and outbound classes for the target protocols you can find in the
particular Spring Integration module, in most cases in the respective package. For example spri ng-
i nt egration-websocket adapters are:

* 0.s.i.websocket. i nbound. WebSocket | nboundChannel Adapt er - implements
MessagePr oducer Support implementation to listen frames on the socket and produce message
to the channel;

* 0.S.i.websocket. out bound. WebSocket Qut boundMessageHandl er - the one-way
Abst r act MessageHandl er implementation to convert incoming messages to the appropriate
frame and send over websocket.

If you are familiar with Spring Integration XML configuration, starting with version 4.3, we provide
information in the XSD element definitions about which target classes are used to declare beans for
the adapter or gateway, for example:

<xsd: el enent nanme="out bound- async- gat enay" >
<xsd: annot ati on>
<xsd: docunent ati on>

Configures a Consunmer Endpoint for the 'o.s.i.angp. outbound. AsyncAngpQut boundGat eway'
that will publish an AMQP Message to the provided Exchange and expect a reply Message.
The sending thread returns immediately; the reply is sent asynchronously; uses

' AsyncRabbi t Tenpl at e. sendAndRecei ve() " .

</ xsd: docunent ati on>
</ xsd: annot ati on>

3.9 POJO Method invocation

As discussed in Section 3.6, “Programming Considerations”, it is generally recommended to use a POJO
programming style. For example,

@er vi ceAct i vat or
public String nyService(String payload) { ... }

In this case, the framework will extract a String payload, invoke your method, and wrap the result in
a message to send to the next component in the flow (the original headers will be copied to the new
message). In fact, if you are using XML configuration, you don’t even need the @er vi ceActi vat or
annotation:

5.0.12.RELEASE Spring Integration 28

Spring Integration Reference Manual

<int:service-activator ... ref="myPoj 0" method="myService" />

public String nyService(String payload) { ... }

You can omit the et hod attribute as long as there is no ambiguity in the public methods on the class.
Some further observations:

You can obtain header information in your POJO methods:

@er vi ceAct i vat or
public String nyService(@ayload String payl oad, @dader("foo") String fooHeader) { ... }

You can dereference properties on the message:

@er vi ceAct i vat or
public String nyService(@ayl oad("payl oad. foo") String foo, @ieader("bar.baz") String barbaz) { ... }

Because many any varied POJO method invocations are available, versions prior to 5.0 used SpEL
to invoke the POJO methods. SpEL (even interpreted) is usually "fast enough" for these operations,
when compared to the actual work usually done in the methods. However, starting with version 5.0,
the or g. spri ngframewor k. nessagi ng. handl er. i nvocati on. | nvocabl eHandl er Met hod is
used by default, when possible. This technique is usually faster to execute than interpreted SpEL and
is consistent with other Spring messaging projects. The | nvocabl eHandl er Met hod is similar to the
technique used to invoke controller methods in Spring MVC. There are certain methods that are still
always invoked using SpEL; examples include annotated parameters with dereferenced properties as
discussed above. This is because SpEL has the capability to navigate a property path.

There may be some other corner cases that we haven't considered that also won't work with
I nvocabl eHandl er Met hod s. For this reason, we automatically fall-back to using SpEL in those
cases.

If you wish, you can also set up your POJO method such that it always uses SpEL, with the
UseSpel | nvoker annotation:

@JseSpel | nvoker (conpi | er Mode = "I MVEDI ATE")
public void bar(String bar) { ... }

If the conpi |l er Mode property is omitted, the spring. expressi on. conpil er. node system
property will determine the compiler mode - see SpEL compilation for more information about compiled
SpEL.

5.0.12.RELEASE Spring Integration 29

http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/expressions.html#expressions-spel-compilation

Part IV. Core Messaging

This section covers all aspects of the core messaging APl in Spring Integration. Here you will learn about
Messages, Message Channels, and Message Endpoints. Many of the Enterprise Integration Patterns
are covered here as well, such as Filters, Routers, Transformers, Service-Activators, Splitters, and
Aggregators. The section also contains material about System Management, including the Control Bus
and Message History support.

Spring Integration Reference Manual

4. Messaging Channels

4.1 Message Channels

While the Message plays the crucial role of encapsulating data, it is the MessageChannel that
decouples message producers from message consumers.

The MessageChannel Interface

Spring Integration’s top-level MessageChannel interface is defined as follows.
public interface MessageChannel {
bool ean send(Message nessage);

bool ean send(Message nessage, |ong tineout);

When sending a message, the return value will be true if the message is sent successfully. If the send
call times out or is interrupted, then it will return false.

PollableChannel

Since Message Channels may or may not buffer Messages (as discussed in the overview), there are
two sub-interfaces defining the buffering (pollable) and non-buffering (subscribable) channel behavior.
Here is the definition of Pol | abl eChannel .

public interface Poll abl eChannel extends MessageChannel {
Message<?> receive();

Message<?> recei ve(long tineout);

Similar to the send methods, when receiving a message, the return value will be null in the case of a
timeout or interrupt.

SubscribableChannel

The Subscri babl eChannel base interface is implemented by channels that send Messages directly
to their subscribed MessageHandl er s. Therefore, they do not provide receive methods for polling, but
instead define methods for managing those subscribers:

public interface Subscribabl eChannel extends MessageChannel {
bool ean subscri be(MessageHandl er handl er);

bool ean unsubscri be(MessageHandl er handl er);

Message Channel Implementations

Spring Integration provides several different Message Channel implementations. Each is briefly
described in the sections below.

5.0.12.RELEASE Spring Integration 31

Spring Integration Reference Manual

PublishSubscribeChannel

The Publ i shSubscri beChannel implementation broadcasts any Message sent to it to all of its
subscribed handlers. This is most often used for sending Event Messages whose primary role
is notification as opposed to Document Messages which are generally intended to be processed
by a single handler. Note that the Publ i shSubscri beChannel is intended for sending only.
Since it broadcasts to its subscribers directly when its send(Message) method is invoked,
consumers cannot poll for Messages (it does not implement Pol | abl eChannel and therefore has no
recei ve() method). Instead, any subscriber must be a MessageHandl er itself, and the subscriber’s
handl eMessage(Message) method will be invoked in turn.

Prior to version 3.0, invoking the send method on a Publi shSubscri beChannel that had
no subscribers returned fal se. When used in conjunction with a Messagi ngTenpl ate, a
MessageDel i ver yExcept i on was thrown. Starting with version 3.0, the behavior has changed such
that a send is always considered successful if at least the minimum subscribers are present (and
successfully handle the message). This behavior can be modified by setting the m nSubscri bers
property, which defaults to 0.

Note

If a TaskExecut or is used, only the presence of the correct number of subscribers is used for
this determination, because the actual handling of the message is performed asynchronously.

QueueChannel

The QueueChannel implementation wraps a queue. Unlike the Publ i shSubscri beChannel , the
QueueChannel has point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Message sent to that channel. It provides a default no-
argument constructor (providing an essentially unbounded capacity of | nt eger . MAX_VALUE) as well
as a constructor that accepts the queue capacity:

publ i ¢ QueueChannel (int capacity)

A channel that has not reached its capacity limit will store messages in its internal queue, and the
send() method will return immediately even if no receiver is ready to handle the message. If the queue
has reached capacity, then the sender will block until room is available. Or, if using the send call that
accepts a timeout, it will block until either room is available or the timeout period elapses, whichever
occurs first. Likewise, a receive call will return immediately if a message is available on the queue, but
if the queue is empty, then a receive call may block until either a message is available or the timeout
elapses. In either case, it is possible to force an immediate return regardless of the queue’s state by
passing a timeout value of 0. Note however, that calls to the no-arg versions of send() andr ecei ve()
will block indefinitely.

PriorityChannel

Whereas the QueueChannel enforces first-inffirst-out (FIFO) ordering, the Pri orit yChannel is an
alternative implementation that allows for messages to be ordered within the channel based upon a
priority. By default the priority is determined by the pri ori t y header within each message. However,
for custom priority determination logic, a comparator of type Conpar at or <Message<?>> can be
provided to the Pri ori t yChannel 's constructor.

5.0.12.RELEASE Spring Integration 32

Spring Integration Reference Manual

RendezvousChannel

The RendezvousChannel enables a "direct-handoff* scenario where a sender will block until another
party invokes the channel’'s recei ve() method or vice-versa. Internally, this implementation is
quite similar to the QueueChannel except that it uses a Synchr onousQueue (a zero-capacity
implementation of Bl ocki ngQueue). This works well in situations where the sender and receiver
are operating in different threads but simply dropping the message in a queue asynchronously is not
appropriate. In other words, with a RendezvousChannel at least the sender knows that some receiver
has accepted the message, whereas with a QueueChannel , the message would have been stored to
the internal queue and potentially never received.

Tip

Keep in mind that all of these queue-based channels are storing messages in-memory only
by default. When persistence is required, you can either provide a message-store attribute
within the queue element to reference a persistent MessageStore implementation, or you can
replace the local channel with one that is backed by a persistent broker, such as a JMS-
backed channel or Channel Adapter. The latter option allows you to take advantage of any
JMS provider’s implementation for message persistence, and it will be discussed in the section
called “CompletableFuture”. However, when buffering in a queue is not necessary, the simplest
approach is to rely upon the Di r ect Channel discussed next.

The RendezvousChannel is also useful for implementing request-reply operations. The sender
can create a temporary, anonymous instance of RendezvousChannel which it then sets as
the replyChannel header when building a Message. After sending that Message, the sender can
immediately call receive (optionally providing a timeout value) in order to block while waiting for a reply
Message. This is very similar to the implementation used internally by many of Spring Integration’s
request-reply components.

DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the
Publ i shSubscri beChannel than any of the queue-based channel implementations described
above. It implements the Subscri babl eChannel interface instead of the Pol | abl eChannel
interface, so it dispatches Messages directly to a subscriber. As a point-to-point channel, however,
it differs from the Publ i shSubscri beChannel in that it will only send each Message to a single
subscribed MessageHandl er .

In addition to being the simplest point-to-point channel option, one of its most important features is
that it enables a single thread to perform the operations on "both sides" of the channel. For example,
if a handler is subscribed to a Di r ect Channel , then sending a Message to that channel will trigger
invocation of that handler's handl eMessage(Message) method directly in the sender’s thread, before
the send() method invocation can return.

The key motivation for providing a channel implementation with this behavior is to support transactions
that must span across the channel while still benefiting from the abstraction and loose coupling that the
channel provides. If the send call is invoked within the scope of a transaction, then the outcome of the
handler’s invocation (e.g. updating a database record) will play a role in determining the ultimate result
of that transaction (commit or rollback).

5.0.12.RELEASE Spring Integration 33

Spring Integration Reference Manual

Note

Since the Di r ect Channel is the simplest option and does not add any additional overhead that
would be required for scheduling and managing the threads of a poller, it is the default channel
type within Spring Integration. The general idea is to define the channels for an application and
then to consider which of those need to provide buffering or to throttle input, and then modify those
to be queue-based Pol | abl eChannel s. Likewise, if a channel needs to broadcast messages,
it should not be a Di r ect Channel but rather a Publ i shSubscri beChannel . Below you will
see how each of these can be configured.

The Di r ect Channel internally delegates to a Message Dispatcher to invoke its subscribed Message
Handlers, and that dispatcher can have a load-balancing strategy exposed via load-balancer or load-
balancer-ref attributes (mutually exclusive). The load balancing strategy is used by the Message
Dispatcher to help determine how Messages are distributed amongst Message Handlers in the case
that there are multiple Message Handlers subscribed to the same channel. As a convenience the
load-balancer attribute exposes enumeration of values pointing to pre-existing implementations of
LoadBal anci ngSt r at egy. The "round-robin" (load-balances across the handlers in rotation) and
"none" (for the cases where one wants to explicitely disable load balancing) are the only available values.
Other strategy implementations may be added in future versions. However, since version 3.0 you can
provide your own implementation of the LoadBal anci ngSt r at egy and inject it using load-balancer-
ref attribute which should point to a bean that implements LoadBal anci ngSt r at egy.

<i nt:channel id="|bRef Channel ">
<int:dispatcher | oad-bal ancer-ref="1b"/>
</int:channel >

<bean id="1b" class="fo0o0. bar. Sanpl eLoadBal anci ngStr at egy"/ >

Note that load-balancer or load-balancer-ref attributes are mutually exclusive.

The load-balancing also works in combination with a boolean failover property. If the "failover" value
is true (the default), then the dispatcher will fall back to any subsequent handlers as necessary when
preceding handlers throw Exceptions. The order is determined by an optional order value defined on
the handlers themselves or, if no such value exists, the order in which the handlers are subscribed.

If a certain situation requires that the dispatcher always try to invoke the first handler, then fallback
in the same fixed order sequence every time an error occurs, no load-balancing strategy should be
provided. In other words, the dispatcher still supports the failover boolean property even when no load-
balancing is enabled. Without load-balancing, however, the invocation of handlers will always begin with
the first according to their order. For example, this approach works well when there is a clear definition
of primary, secondary, tertiary, and so on. When using the namespace support, the "order" attribute on
any endpoint will determine that order.

Note

Keep in mind that load-balancing and failover only apply when a channel has more than one
subscribed Message Handler. When using the namespace support, this means that more than
one endpoint shares the same channel reference in the "input-channel" attribute.

ExecutorChannel

The Execut or Channel is a point-to-point channel that supports the same dispatcher configuration
as Di r ect Channel (load-balancing strategy and the failover boolean property). The key difference

5.0.12.RELEASE Spring Integration 34

Spring Integration Reference Manual

between these two dispatching channel types is that the Execut or Channel delegates to an instance
of TaskExecut or to perform the dispatch. This means that the send method typically will not block,
but it also means that the handler invocation may not occur in the sender’s thread. It therefore does not
support transactions spanning the sender and receiving handler.

Tip

Note that there are occasions where the sender may block. For example, when using
a TaskExecutor with a rejection-policy that throttles back on the client (such as the
Thr eadPool Execut or. Cal | er RunsPol i cy), the sender’s thread will execute the method
directly anytime the thread pool is at its maximum capacity and the executor’s work queue is full.
Since that situation would only occur in a non-predictable way, that obviously cannot be relied
upon for transactions.

Scoped Channel

Spring Integration 1.0 provided a Thr eadLocal Channel implementation, but that has been removed
as of 2.0. Now, there is a more general way for handling the same requirement by simply adding a
"scope" attribute to a channel. The value of the attribute can be any name of a Scope that is available
within the context. For example, in a web environment, certain Scopes are available, and any custom
Scope implementations can be registered with the context. Here’'s an example of a ThreadLocal-based
scope being applied to a channel, including the registration of the Scope itself.

<int:channel id="threadScopedChannel" scope="thread">
<int:queue />
</i nt: channel >

<bean cl ass="org. spri ngfranmewor k. beans. factory. confi g. Cust onScopeConfi gurer">
<property name="scopes">
<map>
<entry key="thread" val ue="org. springfranmework. context.support.Sinpl eThreadScope" />
</ map>
</ property>
</ bean>

The channel above also delegates to a queue internally, but the channel is bound to the current thread,
so the contents of the queue are as well. That way the thread that sends to the channel will later be able to
receive those same Messages, but no other thread would be able to access them. While thread-scoped
channels are rarely needed, they can be useful in situations where Di r ect Channel s are being used
to enforce a single thread of operation but any reply Messages should be sent to a "terminal" channel.
If that terminal channel is thread-scoped, the original sending thread can collect its replies from it.

Now, since any channel can be scoped, you can define your own scopes in addition to Thread Local.
Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and
capture meaningful information about the messages passing through the system in a non-invasive way.
Since the Message s are being sent to and received from MessageChannel s, those channels provide
an opportunity for intercepting the send and receive operations. The Channel | nt er cept or strategy
interface provides methods for each of those operations:

5.0.12.RELEASE Spring Integration 35

Spring Integration Reference Manual

public interface Channel I nterceptor {

Message<?> preSend(Message<?> nessage, MessageChannel channel);

voi d post Send(Message<?> nessage, MessageChannel channel, bool ean sent);

voi d afterSendConpl eti on(Message<?> nessage, MessageChannel channel, bool ean sent, Exception ex);

bool ean preRecei ve(MessageChannel channel);

Message<?> post Recei ve(Message<?> nessage, MessageChannel channel);

voi d afterRecei veConpl eti on(Message<?> nessage, MessageChannel channel, Exception ex);

After implementing the interface, registering the interceptor with a channel is just a matter of calling:

channel . addl nt er cept or (sonmeChannel | nt ercept or) ;

The methods that return a Message instance can be used for transforming the Message or can return
null to prevent further processing (of course, any of the methods can throw a RuntimeException). Also,
the pr eRecei ve method can return f al se to prevent the receive operation from proceeding.

Note

Keep in mind that recei ve() calls are only relevant for Pol | abl eChannel s. In fact the
Subscri babl eChannel interface does not even define a recei ve() method. The reason
for this is that when a Message is sent to a Subscri babl eChannel it will be sent directly to
one or more subscribers depending on the type of channel (e.g. a PublishSubscribeChannel
sends to all of its subscribers). Therefore, the preRecei ve(..), post Receive(..) and
af t er Recei veConpl eti on(..) interceptor methods are only invoked when the interceptor is
applied to a Pol | abl eChannel .

Spring Integration also provides an implementation of the Wire Tap pattern. It is a simple interceptor
that sends the Message to another channel without otherwise altering the existing flow. It can be very
useful for debugging and monitoring. An example is shown in the section called “Wire Tap”.

Because it is rarely necessary to implement all of the interceptor methods, a
Channel | nt er cept or Adapt er class is also available for sub-classing. It provides no-op methods
(the voi d method is empty, the Message returning methods return the Message as-is, and the bool ean
method returns true). Therefore, it is often easiest to extend that class and just implement the
method(s) that you need as in the following example.

public class CountingChannel | nterceptor extends Channel | nterceptorAdapter {
private final Atom clnteger sendCount = new Atonmi clnteger();

@verride

publi c Message<?> preSend(Message<?> nessage, MessageChannel channel) {
sendCount . i ncrenent AndCet () ;
return message;

Tip

The order of invocation for the interceptor methods depends on the type of channel. As described
above, the queue-based channels are the only ones where the receive method is intercepted in

5.0.12.RELEASE Spring Integration 36

http://eaipatterns.com/WireTap.html

Spring Integration Reference Manual

the first place. Additionally, the relationship between send and receive interception depends on
the timing of separate sender and receiver threads. For example, if a receiver is already blocked
while waiting for a message the order could be: preSend, preReceive, postReceive, postSend.
However, if a receiver polls after the sender has placed a message on the channel and already
returned, the order would be: preSend, postSend, (some-time-elapses) preReceive, postReceive.
The time that elapses in such a case depends on a number of factors and is therefore generally
unpredictable (in fact, the receive may never happen!). Obviously, the type of queue also plays a
role (e.g. rendezvous vs. priority). The bottom line is that you cannot rely on the order beyond the
fact that preSend will precede postSend and preReceive will precede postReceive.

Starting with Spring Framework 4.1 and Spring Integration 4.1, the Channel | nt er cept or provides
new methods - af t er SendConpl eti on() and aft er Recei veConpl eti on(). They are invoked
after send()/ recei ve() calls, regardless of any exception that is raised, thus allowing for resource
cleanup. Note, the Channel invokes these methods on the Channellnterceptor List in the reverse order
of the initial pr eSend() / pr eRecei ve() calls.

MessagingTemplate

As you will see when the endpoints and their various configuration options are introduced, Spring
Integration provides a foundation for messaging components that enables non-invasive invocation of
your application code from the messaging system. However, sometimes it is necessary to invoke the
messaging system from your application code. For convenience when implementing such use-cases,
Spring Integration provides a Messagi ngTenpl at e that supports a variety of operations across the
Message Channels, including request/reply scenarios. For example, it is possible to send a request and
wait for a reply.

Messagi ngTenpl ate tenpl ate = new Messagi ngTenpl ate();

Message reply = tenpl at e. sendAndRecei ve(soneChannel , new Generi cMessage("test"));

In that example, a temporary anonymous channel would be created internally by the template. The
sendTimeout and receiveTimeout properties may also be set on the template, and other exchange types
are also supported.

public bool ean send(final MessageChannel channel, final Message<?> nessage) { ...

}

publ i c Message<?> sendAndRecei ve(final MessageChannel channel, final Message<?> request) { ..

}

public Message<?> receive(final Pollabl eChannel <?> channel) { ...

}

Note

A less invasive approach that allows you to invoke simple interfaces with payload and/or
header values instead of Message instances is described in the section called “Enter the
GatewayProxyFactoryBean”.

Configuring Message Channels

To create a Message Channel instance, you can use the <channel/> element:

<i nt:channel id="exanpl eChannel"/>

5.0.12.RELEASE Spring Integration 37

Spring Integration Reference Manual

The default channel type is Point to Point. To create a Publish Subscribe channel, use the <publ i sh-
subscri be- channel / > element:

<i nt:publish-subscribe-channel id="exanpl eChannel"/>

When using the <channel / > element without any sub-elements, it will create a Di r ect Channel
instance (a Subscri babl eChannel).

However, you can alternatively provide a variety of <queue/ > sub-elements to create any of the pollable
channel types (as described in the section called “Message Channel Implementations”). Examples of
each are shown below.

DirectChannel Configuration

As mentioned above, Di r ect Channel is the default type.

<int:channel id="directChannel"/>

A default channel will have a round-robin load-balancer and will also have failover enabled (See the
discussion in the section called “DirectChannel” for more detail). To disable one or both of these, add
a <di spat cher/ > sub-element and configure the attributes:

<int:channel id="fail FastChannel ">
<int:dispatcher failover="false"/>
</ channel >

<int:channel id="channel WthFi xedOr der SequenceFai | over ">
<int:di spatcher | oad-bal ancer="none"/>
</int:channel >

Datatype Channel Configuration

There are times when a consumer can only process a particular type of payload and you need to
therefore ensure the payload type of input Messages. Of course the first thing that comes to mind is
Message Filter. However all that Message Filter will do is filter out Messages that are not compliant with
the requirements of the consumer. Another way would be to use a Content Based Router and route
Messages with non-compliant data-types to specific Transformers to enforce transformation/conversion
to the required data-type. This of course would work, but a simpler way of accomplishing the same thing
is to apply the Datatype Channel pattern. You can use separate Datatype Channels for each specific
payload data-type.

To create a Datatype Channel that only accepts messages containing a certain payload type, provide
the fully-qualified class name in the channel element’s dat at ype attribute:

<int:channel id="nunberChannel" datatype="java.l ang. Number"/>

Note that the type check passes for any type that is assignable to the channel’'s datatype. In other
words, the "numberChannel" above would accept messages whose payload is j ava. | ang. | nt eger
orj ava. | ang. Doubl e. Multiple types can be provided as a comma-delimited list:

<int:channel id="stringO NunberChannel" datatype="java.lang. String,java.lang. Nunber"/>

So the numberChannel above will only accept Messages with a data-type of j ava. | ang. Nunber.
But what happens if the payload of the Message is not of the required type? It depends on whether
you have defined a bean named i nt egr at i onConver si onSer vi ce that is an instance of Spring’s
Conversion Service. If not, then an Exception would be thrown immediately, but if you do have an

5.0.12.RELEASE Spring Integration 38

http://www.eaipatterns.com/DatatypeChannel.html
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-ConversionService-API

Spring Integration Reference Manual

"integrationConversionService" bean defined, it will be used in an attempt to convert the Message’s
payload to the acceptable type.

You can even register custom converters. For example, let's say you are sending a Message with a
String payload to the numberChannel we configured above.

MessageChannel inChannel = context.get Bean("nunber Channel ", MessageChannel . cl ass);
i nChannel . send(new Generi cMessage<String>("5"));

Typically this would be a perfectly legal operation, however since we are using Datatype Channel the
result of such operation would generate an exception:

Exception in thread "main" org.springfranework.integration. MessageDel i ver yExcepti on:
Channel ' number Channel*

expect ed one of the follow ng datataypes [class java.lang. Nunber],

but received [class java.lang. String]

And rightfully so since we are requiring the payload type to be a Number while sending a String. So we
need something to convert String to a Number. All we need to do is implement a Converter.

public static class StringTolntegerConverter inplenents Converter<String, |nteger> {
public Integer convert(String source) {
return | nteger.parselnt(source);
}
}

Then, register it as a Converter with the Integration Conversion Service:

<int:converter ref="strTolnt"/>

<bean id="strTolnt" class="org.springframework.integration.util.Denp.StringTol ntegerConverter"/>

When the converter element is parsed, it will create the "integrationConversionService" bean on-demand
if one is not already defined. With that Converter in place, the send operation would now be successful
since the Datatype Channel will use that Converter to convert the String payload to an Integer.

Note

For more information regarding Payload Type Conversion, please read the section called “Payload
Type Conversion”.

Beginning with version 4.0, the integrationConversionService is invoked by the
Def aul t Dat at ypeChannel MessageConvert er, which looks up the conversion service in the
application context. To use a different conversion technique, you can specify the nessage- convert er
attribute on the channel. This must be a reference to a MessageConver t er implementation. Only the
f r omvessage method is used, which provides the converter with access to the message headers (for
example if the conversion might need information from the headers, such as cont ent -t ype). The
method can return just the converted payload, or a full Message object. If the latter, the converter must
be careful to copy all the headers from the inbound message.

Alternatively, declare a <bean/> of type MessageConverter with an id
"dat at ypeChannel MessageConverter" and that converter will be used by all channels with a
dat at ype.

QueueChannel Configuration

To create a QueueChannel , use the <queue/ > sub-element. You may specify the channel’'s capacity:

5.0.12.RELEASE Spring Integration 39

Spring Integration Reference Manual

<i nt:channel id="queueChannel">
<queue capacity="25"/>
</int:channel >

Note

If you do not provide a value for the capacity attribute on this <queue/ > sub-element, the resulting
gueue will be unbounded. To avoid issues such as OutOfMemoryErrors, it is highly recommended
to set an explicit value for a bounded queue.

Persistent QueueChannel Configuration

Since a QueueChannel provides the capability to buffer Messages, but does so in-memory only
by default, it also introduces a possibility that Messages could be lost in the event of a system
failure. To mitigate this risk, a QueueChannel may be backed by a persistent implementation
of the MessageG oupSt or e strategy interface. For more details on MessageG oupSt or e and
MessagesSt or e see the section called “CompletableFuture”.

Important

The capaci t y attribute is not allowed when the nessage- st or e attribute is used.

When a QueueChannel receives a Message, it will add it to the Message Store, and when a Message
is polled from a QueueChannel , it is removed from the Message Store.

By default, a QueueChannel stores its Messages in an in-memory Queue and can therefore lead to the
lost message scenario mentioned above. However Spring Integration provides persistent stores, such
as the JdbcChannel MessageSt or e.

You can configure a Message Store for any QueueChannel by adding the nessage- st or e attribute
as shown in the next example.

<i nt:channel id="dbBackedChannel ">
<i nt:queue nmessage-store="channel Store"/>
</int:channel >

<bean id="channel Store" class="o0.s.i.jdbc.store.JdbcChannel MessageSt ore" >
<property name="dat aSource" ref="dataSource"/>
<property name="channel MessageSt or eQueryProvi der" ref="queryProvider"/>
</ bean>

The Spring Integration JDBC module also provides schema DDL for a number of popular databases.
These schemas are located in the org.springframework.integration.jdbc.store.channel package of that
module (spring-integration-jdbc).

Important

One important feature is that with any transactional persistent store (e.g.,
JdbcChannel MessageSt or e), as long as the poller has a transaction configured, a Message
removed from the store will only be permanently removed if the transaction completes
successfully, otherwise the transaction will roll back and the Message will not be lost.

Many other implementations of the Message Store will be available as the growing number of Spring
projects related to "NoSQL" data stores provide the underlying support. Of course, you can always

5.0.12.RELEASE Spring Integration 40

Spring Integration Reference Manual

provide your own implementation of the MessageGroupStore interface if you cannot find one that meets
your particular needs.

Since version 4.0, it is recommended that QueueChannel s are configured to use a
Channel MessageSt or e if possible. These are generally optimized for this use, when compared with
a general message store. If the Channel MessageSt ore is a Channel PriorityMessageStore
the messages will be received in FIFO within priority order. The notion of priority is determined by
the message store implementation. For example the Java Configuration for the the section called
“CompletableFuture™

@Bean

publ i ¢ Basi cMessageG oupSt or e nongoDbChannel MessageSt or e(MongoDbFact ory nongoDbFactory) {
MongoDbChannel MessageSt ore store = new MongoDbChannel MessageSt or e(nbngoDbFact ory) ;
store.setPriorityEnabl ed(true);
return store;

}

@Bean
publ i c Pol | abl eChannel priorityQueue(Basi cMessageG oupSt ore nongoDbChannel MessageStore) {
return new PriorityChannel (new MessageG oupQueue(nongoDbChannel MessageStore, "priorityQueue"));

}

Note

Pay attention to the MessageG oupQueue class. That is a Bl ocki ngQueue implementation to
utilize the MessageG oupSt or e operations.

The same with Java DSL may look like:

@Bean
public IntegrationFlow priorityFl owPriorityCapabl eChannel MessageSt ore nongoDbChannel MessageSt ore) {
return IntegrationFl ows. fron((Channels c) ->
c.priority("priorityChannel", nongoDbChannel MessageStore, "priorityG oup"))

.get();

Another option to customize the QueueChannel environment is provided by the r ef attribute of
the <i nt: queue> sub-element or particular constructor. This attribute implies the reference to any
java. util . Queue implementation. For example Hazelcast distributed | Queue:

@Bean
publ i c Hazel cast|nstance hazel castlnstance() {
return Hazel cast. newHazel cast | nstance(new Config()
.set Property("hazel cast.|ogging.type", "log4j"));
}

@Bean
publ i c Pol | abl eChannel di stributedQueue() {
return new QueueChannel (hazel cast ! nstance()
. get Queue("springl ntegrationQueue"));

PublishSubscribeChannel Configuration

To create a Publ i shSubscri beChannel , use the <publish-subscribe-channel/> element. When
using this element, you can also specify the t ask- execut or used for publishing Messages (if none
is specified it simply publishes in the sender’s thread):

<i nt:publish-subscribe-channel id="pubsubChannel" task-executor="someExecutor"/>

5.0.12.RELEASE Spring Integration 41

https://hazelcast.com/use-cases/imdg/imdg-messaging/

Spring Integration Reference Manual

Alongside with the Executor, an ErrorHandl er can be configured as well. By default the
Publ i shSubscri beChannel uses a MessagePubl i shi ngEr r or Handl er implementation to send
error to the MessageChannel from the er r or Channel header or a global er r or Channel instance.
If an Execut or is not configured, the Er r or Handl er is ignored and exceptions are thrown directly
to the caller’s Thread.

If you are providing a Resequencer or Aggregator downstream from a Publ i shSubscri beChannel ,
then you can set the apply-sequence property on the channeltot r ue. That will indicate that the channel
should set the sequence-size and sequence-number Message headers as well as the correlation id prior
to passing the Messages along. For example, if there are 5 subscribers, the sequence-size would be
set to 5, and the Messages would have sequence-number header values ranging from 1 to 5.

<i nt:publish-subscribe-channel id="pubsubChannel" apply-sequence="true"/>

Note

The appl y- sequence value is f al se by default so that a Publish Subscribe Channel can
send the exact same Message instances to multiple outbound channels. Since Spring Integration
enforces immutability of the payload and header references, the channel creates new Message
instances with the same payload reference but different header values when the flag is set to
true.

ExecutorChannel

To create an Execut or Channel , add the <dispatcher> sub-element along with a t ask- execut or
attribute. Its value can reference any TaskExecut or within the context. For example, this enables
configuration of a thread-pool for dispatching messages to subscribed handlers. As mentioned above,
this does break the "single-threaded" execution context between sender and receiver so that any active
transaction context will not be shared by the invocation of the handler (i.e. the handler may throw an
Exception, but the send invocation has already returned successfully).

<i nt:channel id="executorChannel ">
<i nt:di spatcher task-executor="someExecutor"/>
</int:channel >

Note

The | oad- bal ancer and f ai | over options are also both available on the <dispatcher/> sub-
element as described above in the section called “DirectChannel Configuration”. The same
defaults apply as well. So, the channel will have a round-robin load-balancing strategy with failover
enabled unless explicit configuration is provided for one or both of those attributes.

<int:channel id="executorChannel Wthout Fail over">
<int:dispatcher task-executor="soneExecutor" failover="false"/>
</int:channel >

PriorityChannel Configuration

To create a Pri ori t yChannel , use the <pri ority- queue/ > sub-element:

<int:channel id="priorityChannel">
<int:priority-queue capacity="20"/>
</i nt:channel >

5.0.12.RELEASE Spring Integration 42

Spring Integration Reference Manual

By default, the channel will consult the priority header of the message. However, a custom
Conpar at or reference may be provided instead. Also, note thatthe Pri ori t yChannel (like the other
types) does support the dat at ype attribute. As with the QueueChannel, it also supports a capaci ty
attribute. The following example demonstrates all of these:

<int:channel id="priorityChannel" datatype="exanple. Wdget">
<int:priority-queue conparator="w dget Conpar at or"
capaci ty="10"/>
</int:channel >

Since version 4.0, the priority-channel child element supports the nessage- st ore option
(conparator and capacity are not allowed in that case). The message store must
be a PriorityCapabl eChannel MessageSt ore and, in this case. Implementations of the
PriorityCapabl eChannel MessageSt or e are currently provided for Redi s, JDBC and MongoDB.
See the section called “QueueChannel Configuration” and the section called “CompletableFuture” for
more information. You can find sample configuration in the section called “CompletableFuture”.

RendezvousChannel Configuration

A RendezvousChannel is created when the queue sub-element is a <r endezvous- queue>. It does
not provide any additional configuration options to those described above, and its queue does not accept
any capacity value since it is a 0-capacity direct handoff queue.

<i nt:channel id="rendezvousChannel"/>
<i nt:rendezvous- queue/ >
</int:channel >

Scoped Channel Configuration

Any channel can be configured with a "scope" attribute.

<int:channel id="threadLocal Channel" scope="thread"/>

Channel Interceptor Configuration

Message channels may also have interceptors as described in the section called “Channel Interceptors”.
The <int ercept ors/ > sub-element can be added within a <channel / > (or the more specific
element types). Provide the r ef attribute to reference any Spring-managed object that implements the
Channel | nt er cept or interface:

<i nt:channel id="exanpl eChannel ">
<int:interceptors>
<ref bean="trafficMonitoringlnterceptor"/>
</int:interceptors>
</int:channel >

In general, it is a good idea to define the interceptor implementations in a separate location since they
usually provide common behavior that can be reused across multiple channels.

Global Channel Interceptor Configuration

Channel Interceptors provide a clean and concise way of applying cross-cutting behavior per individual
channel. If the same behavior should be applied on multiple channels, configuring the same set of
interceptors for each channel would not be the most efficient way. To avoid repeated configuration while
also enabling interceptors to apply to multiple channels, Spring Integration provides Global Interceptors.
Look at the example below:

5.0.12.RELEASE Spring Integration 43

Spring Integration Reference Manual

<int:channel -interceptor pattern="input*, bar*, foo, !baz*" order="3">
<bean cl ass="f 00. bar Sanpl el nterceptor"/>
</int:channel -interceptor>

or

<int:channel -interceptor ref="nylnterceptor" pattern="input*, bar*, foo, !baz*" order="3"/>

<bean id="nylnterceptor" class="foo.barSanpl el nterceptor"/>

Each <channel -i nt er cept or/ > element allows you to define a global interceptor which will be
applied on all channels that match any patterns defined via the pat t er n attribute. In the above case
the global interceptor will be applied on the foo channel and all other channels that begin with bar or
input and not to channel starting with baz (starting with version 5.0).

Warning

The addition of this syntax to the pattern causes one possible (although perhaps unlikely) problem.
If you have a bean "! f 00" and you included a pattern "! f 00" in your channel-interceptor’s
pat t er n patterns; it will no long match; the pattern will now match all beans not named f oo.
In this case, you can escape the ! in the pattern with \ . The pattern "\! f 00" means match a
bean named " ! f 00" .

The order attribute allows you to manage where this interceptor will be injected if there are multiple
interceptors on a given channel. For example, channel inputChannel could have individual interceptors
configured locally (see below):

<i nt:channel id="inputChannel">
<int:interceptors>
<int:wre-tap channel ="| ogger"/>
</int:interceptors>
</int:channel >

A reasonable question is how will a global interceptor be injected in relation to other interceptors
configured locally or through other global interceptor definitions? The current implementation provides a
very simple mechanism for defining the order of interceptor execution. A positive number in the or der
attribute will ensure interceptor injection after any existing interceptors and a negative number will ensure
that the interceptor is injected before existing interceptors. This means that in the above example, the
global interceptor will be injected AFTER (since its order is greater than 0) the wire-tap interceptor
configured locally. If there were another global interceptor with a matching pat t er n, its order would be
determined by comparing the values of the or der attribute. To inject a global interceptor BEFORE the
existing interceptors, use a negative value for the or der attribute.

Note

Note that both the or der and patt er n attributes are optional. The default value for or der will
be 0 and for pat t er n, the default is * (to match all channels).

Starting with version 4.3.15, you can configure a property
spring.integration. post ProcessDynani cBeans = true to apply any global interceptors to
dynamically created MessageChannel beans. See the section called “CompletableFuture” for more
information.

5.0.12.RELEASE Spring Integration 44

Spring Integration Reference Manual

Wire Tap

As mentioned above, Spring Integration provides a simple Wire Tap interceptor out of the box. You can
configure a Wire Tap on any channel within an <i nt er cept or s/ > element. This is especially useful for
debugging, and can be used in conjunction with Spring Integration’s logging Channel Adapter as follows:

<int:channel id="in">
<int:interceptors>
<int:wre-tap channel ="| ogger"/>
</int:interceptors>
</int:channel >

<int:| oggi ng- channel - adapter id="1ogger" |evel ="DEBUG'/ >

Tip

The logging-channel-adapter also accepts an expression attribute so that you can evaluate a
SpEL expression against payload and/or headers variables. Alternatively, to simply log the full
Message toString() result, provide a value of "true" for the log-full-message attribute. That is
f al se by default so that only the payload is logged. Setting that to t r ue enables logging of
all headers in addition to the payload. The expression option does provide the most flexibility,
however (e.g. expression="payload.user.name").

A little more on Wire Tap

One of the common misconceptions about the wire tap and other similar components (the section called
“CompletableFuture”) is that they are automatically asynchronous in nature. Wire-tap as a component is
not invoked asynchronously be default. Instead, Spring Integration focuses on a single unified approach
to configuring asynchronous behavior: the Message Channel. What makes certain parts of the message
flow sync or async is the type of Message Channel that has been configured within that flow. That is
one of the primary benefits of the Message Channel abstraction. From the inception of the framework,
we have always emphasized the need and the value of the Message Channel as a first-class citizen
of the framework. It is not just an internal, implicit realization of the EIP pattern, it is fully exposed
as a configurable component to the end user. So, the Wire-tap component is ONLY responsible for
performing the following 3 tasks:

* intercept a message flow by tapping into a channel (e.g., channelA)
e grab each message
» send the message to another channel (e.g., channelB)

It is essentially a variation of the Bridge, but it is encapsulated within a channel definition (and hence
easier to enable and disable without disrupting a flow). Also, unlike the bridge, it basically forks another
message flow. Is that flow synchronous or asynchronous? The answer simply depends on the type of
Message Channel that channelB is. And, now you know that we have: Direct Channel, Pollable Channel,
and Executor Channel as options. The last two do break the thread boundary making communication
via such channels asynchronous simply because the dispatching of the message from that channel
to its subscribed handlers happens on a different thread than the one used to send the message to
that channel. That is what is going to make your wire-tap flow sync or async. It is consistent with other
components within the framework (e.g., Message Publisher) and actually brings a level of consistency
and simplicity by sparing you from worrying in advance (other than writing thread safe code) whether
a particular piece of code should be implemented as sync or async. The actual wiring of two pieces of
code (component A and component B) via Message Channel is what makes their collaboration sync or

5.0.12.RELEASE Spring Integration 45

Spring Integration Reference Manual

async. You may even want to change from sync to async in the future and Message Channel is what's
going to allow you to do it swiftly without ever touching the code.

One final point regarding the Wire Tap is that, despite the rationale provided above for not being async
by default, one should keep in mind it is usually desirable to hand off the Message as soon as possible.
Therefore, it would be quite common to use an asynchronous channel option as the wire-tap’s outbound
channel. Nonetheless, another reason that we do not enforce asynchronous behavior by default is that
you might not want to break a transactional boundary. Perhaps you are using the Wire Tap for auditing
purposes, and you DO want the audit Messages to be sent within the original transaction. As an example,
you might connect the wire-tap to a JMS outbound-channel-adapter. That way, you get the best of both
worlds: 1) the sending of a IMS Message can occur within the transaction while 2) it is still a "fire-and-
forget" action thereby preventing any noticeable delay in the main message flow.

Important

Starting with version 4.0, it is important to avoid circular references when an interceptor (such
as WreTap) references a channel itself. You need to exclude such channels from those
being intercepted by the current interceptor. This can be done with appropriate patt er ns or
programmatically. If you have a custom Channel | nt er cept or that references a channel ,
consider implementing Vet oCapabl el nt er cept or. That way, the framework will ask the
interceptor if it's OK to intercept each channel that is a candidate based on the pattern. You can
also add runtime protection in the interceptor methods that ensures that the channel is not one
that is referenced by the interceptor. The W r eTap uses both of these techniques.

Starting with version 4.3, the W r eTap has additional constructors that take a channel Nane instead
of a MessageChannel instance. This can be convenient for Java Configuration and when channel
auto-creation logic is being used. The target MessageChannel bean is resolved from the provided
channel Nane later, on the first interaction with the interceptor.

Important

Channel resolution requires a BeanFact or y so the wire tap instance must be a Spring-managed
bean.

This late-binding approach also allows simplification of typical wire-tapping patterns with Java DSL
configuration:

@Bean
publ i c Pol | abl eChannel nyChannel () {
return MessageChannel s. queue()
.wi reTap("| oggi ngFl ow. i nput ")
.get();
}

@Bean
public IntegrationFl ow | oggi ngFl ow() {
return f -> f.log();

}

Conditional Wire Taps

Wire taps can be made conditional, using the sel ect or or sel ect or - expr essi on attributes.
The sel ect or references a MessageSel ect or bean, which can determine at runtime whether the
message should go to the tap channel. Similarly, the™ selector-expression’ is a boolean SpEL expression

5.0.12.RELEASE Spring Integration 46

Spring Integration Reference Manual

that performs the same purpose - if the expression evaluates to true, the message will be sent to the
tap channel.

Global Wire Tap Configuration

It is possible to configure a global wire tap as a special case of the the section called “Global Channel
Interceptor Configuration”. Simply configure a top level wi r e-t ap element. Now, in addition to the
normal wi r e-t ap namespace support, the pat t er n and or der attributes are supported and work in
exactly the same way as with the channel -i nt er cept or

<int:wire-tap pattern="input*, bar*, foo" order="3" channel ="w retapChannel "/>

Tip

A global wire tap provides a convenient way to configure a single channel wire tap externally
without modifying the existing channel configuration. Simply set the patt er n attribute to the
target channel name. For example, This technique may be used to configure a test case to verify
messages on a channel.

Special Channels

If namespace support is enabled, there are two special channels defined within the application context
by default: er r or Channel and nul | Channel . The nullChannel acts like / dev/ nul | , simply logging
any Message sent to it at DEBUG level and returning immediately. Any time you face channel
resolution errors for a reply that you don’t care about, you can set the affected component’s out put -
channel attribute to nullChannel (the name nullChannel is reserved within the application context).
The errorChannel is used internally for sending error messages and may be overridden with a custom
configuration. This is discussed in greater detail in the section called “CompletableFuture”.

See also the section called “CompletableFuture” in Java DSL chapter for more information about
message channel and interceptors.

4.2 Poller

Polling Consumer

When Message Endpoints (Channel Adapters) are connected to channels and instantiated, they
produce one of the following 2 instances:

* PollingConsumer

* EventDrivenConsumer

The actual implementation depends on which type of channel these Endpoints are
connected to. A channel adapter connected to a channel that implements the
org.springframework.messaging.SubscribableChannel interface will produce an instance of
Event Dri venConsuner. On the other hand, a channel adapter connected to a channel that
implements the org.springframework.messaging.PollableChannel interface (e.g. a QueueChannel) will
produce an instance of Pol | i ngConsurer .

Polling Consumers allow Spring Integration components to actively poll for Messages, rather than to
process Messages in an event-driven manner.

5.0.12.RELEASE Spring Integration 47

http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/EventDrivenConsumer.html
http://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/SubscribableChannel.html
http://docs.spring.io/spring/docs/current/javadoc-api/index.html?org/springframework/messaging/PollableChannel.html

Spring Integration Reference Manual

They represent a critical cross cutting concern in many messaging scenarios. In Spring Integration,
Polling Consumers are based on the pattern with the same name, which is described in the book
"Enterprise Integration Patterns" by Gregor Hohpe and Bobby Woolf. You can find a description of the
pattern on the book’s website at:

http://www.enterpriseintegrationpatterns.com/PollingConsumer.html

Pollable Message Source

Furthermore, in Spring Integration a second variation of the Polling Consumer pattern exists.
When Inbound Channel Adapters are being used, these adapters are often wrapped by a
Sour cePol | i ngChannel Adapt er. For example, when retrieving messages from a remote FTP
Server location, the adapter described in the section called “CompletableFuture” is configured with a
poller to retrieve messages periodically. So, when components are configured with Pollers, the resulting
instances are of one of the following types:

* PollingConsumer

» SourcePollingChannelAdapter

This means, Pollers are used in both inbound and outbound messaging scenarios. Here are some use-
cases that illustrate the scenarios in which Pollers are used:

» Polling certain external systems such as FTP Servers, Databases, Web Services
» Polling internal (pollable) Message Channels

» Polling internal services (E.g. repeatedly execute methods on a Java class)

Note

AOP Advice classes can be applied to pollers, in an advi ce-chai n. An example being
a transaction advice to start a transaction. Starting with version 4.1 a Pol | Ski pAdvi ce is
provided. Pollers use triggers to determine the time of the next poll. The Pol | Ski pAdvi ce
can be used to suppress (skip) a poll, perhaps because there is some downstream condition
that would prevent the message to be processed properly. To use this advice, you have to
provide it with an implementation of a Pol | Ski pSt r at egy. Starting with version 4.2.5, a
Si npl ePol | Ski pSt r at egy is provided. Add an instance as a bean to the application context,
inject it into a Pol | Ski pAdvi ce and add that to the poller's advice chain. To skip polling, call
ski pPol I s(), to resume polling, call r eset () . Version 4.2 added more flexibility in this area -
see the section called “Conditional Pollers for Message Sources”.

This chapter is meant to only give a high-level overview regarding Polling Consumers and how they
fit into the concept of message channels - Section 4.1, “Message Channels” and channel adapters
- Section 4.3, “Channel Adapter”. For more in-depth information regarding Messaging Endpoints in
general and Polling Consumers in particular, please see Section 8.1, “Message Endpoints”.

Deferred Acknowledgment Pollable Message Source

Starting with version 5.0.1, certain modules provide MessageSour ce implementations that support
deferring acknowledgment until the downstream flow completes (or hands off the message to another
thread). This is currently limited to the AngpMessageSour ce and the Kaf kaMessageSour ce provided
by the spring-kafka-integration extension project, version 3.0.1 or higher.

5.0.12.RELEASE Spring Integration 48

http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/PollingConsumer.html
http://static.springsource.org/spring-integration/api/org/springframework/integration/endpoint/SourcePollingChannelAdapter.html
https://github.com/spring-projects/spring-integration-kafka

Spring Integration Reference Manual

With these message sources, the
I nt egr ati onMessageHeader Accessor . ACKNOANLEDGVENT _CALLBACK header (see the section
called “MessageHeaderAccessor API") is added to the message. The value of the header is an instance
of Acknow edgnent Cal | back:

@-unctional Interface
public interface Acknow edgment Cal | back {

voi d acknl owl edge(Status status);
bool ean i sAcknow edged();

voi d noAut oAck();

def aul t bool ean i sAut oAck();

enum Status {

/**

* Mark the nmessage as accepted.
o/

ACCEPT,

/**

* Mark the nmessage as rejected.
*/

REJECT,

/**

* Reject the message and requeue so that it will be redelivered.
*/

REQUEUE

Not all message sources (e.g. Kafka) support the REJECT status; it is treated the same as ACCEPT.

Applications can acknowledge a message at any time:

Message<?> recei ved = source.receive();

St at i cMessageHeader Accessor . get Acknow edgnent Cal | back(recei ved)
. acknow edge(St at us. ACCEPT) ;

If the MessageSour ce is wired into a Sour cePol | i ngChannel Adapt er, when the poller thread
returns to the adapter after the downstream flow completes, the adapter will check if the
acknowledgment has already been acknowledged and, if not, ACCEPT it (or REJECT it if the flow throws
an exception).

To perform ad-hoc polling of a MessageSour ce a MessageSour cePol | i ngTenpl at e is provided;
this, too will take care of ACCEPT ing or REJECT ing the Acknowl edgment Cal | back when the
MessageHand| er callback returns (or throws an exception).

MessageSour cePol | i ngTenpl ate tenplate =
new MessageSour cePol | i ngTenpl ate(thi s. source);
templ ate. poll (h -> {

1)

5.0.12.RELEASE Spring Integration 49

Spring Integration Reference Manual

In both cases (Sour cePol | i ngChannel Adapt er and MessageSour cePol | i ngTenpl at e), you
can disable auto ack/nack by calling noAut oAck() on the callback. You might do this if you hand off
the message to another thread and wish to acknowledge later. Not all implementations support this (for
example Apache Kafka because the offset commit has to be performed on the same thread).

Conditional Pollers for Message Sources

Background

Advi ce objects, in an advi ce- chai n on a poller, advise the whole polling task (message retrieval
and processing). These "around advice" methods do not have access to any context for the poll, just
the poll itself. This is fine for requirements such as making a task transactional, or skipping a poll due
to some external condition as discussed above. What if we wish to take some action depending on the
result of the r ecei ve part of the poll, or if we want to adjust the poller depending on conditions?

"Smart" Polling

Version 4.2 introduced the Abst r act MessageSour ceAdvi ce. Any Advi ce objects in the advi ce-
chai n that subclass this class, are applied to just the receive operation. Such classes implement the
following methods:

bef or eRecei ve(MessageSour ce<?> sour ce)

This method is called before the MessageSour ce. recei ve() method. It enables you to examine
and or reconfigure the source at this time. Returning fal se cancels this poll (similar to the
Pol | Ski pAdvi ce mentioned above).

Message<?> after Recei ve(Message<?> result, MessageSour ce<?> source)

This method is called after the r ecei ve() method; again, you can reconfigure the source, or take any
action perhaps depending on the result (which can be nul | if there was no message created by the
source). You can even return a different message

Thread safety

You should not configure the poller with a TaskExecutor if an advice mutates the
MessageSour ce. If an advice mutates the source, such mutations are not thread safe and could
cause unexpected results, especially with high frequency pollers. Consider using a downstream
Execut or Channel instead of adding an executor to the poller if you need to process poll results
concurrently.

Advice Chain Ordering

It is important to understand how the advice chain is processed during initialization. Advi ce
objects that do not extend Abstract MessageSour ceAdvi ce are applied to the whole poll
process and are all invoked first, in order, before any Abst r act MessageSour ceAdvi ce; then
Abst ract MessageSour ceAdvi ce objects are invoked in order around the MessageSour ce
recei ve() method. If you have, say Advi ce objects a, b, ¢, d, where b and d are
Abst ract MessageSour ceAdvi ce, they will be applied in the order a, c, b, d. Also, ifa
MessageSour ce is already a Pr oxy, the Abstract MessageSour ceAdvi ce will be invoked
after any existing Advi ce objects. If you wish to change the order, you should wire up the proxy
yourself.

5.0.12.RELEASE Spring Integration 50

Spring Integration Reference Manual

SimpleActiveldleMessageSourceAdvice

This advice is a simple implementation of Abstract MessageSour ceAdvi ce, when used in
conjunction with a Dynami cPer i odi cTri gger, it adjusts the polling frequency depending on whether
or not the previous poll resulted in a message or not. The poller must also have a reference to the same

Dynami cPeri odi cTri gger.

Important: Async Handoff

This advice modifies the trigger based on the r ecei ve() result. This will only work if the advice
is called on the poller thread. It will not work if the poller has a t ask- execut or. To use this
advice where you wish to use async operations after the result of a poll, do the async handoff
later, perhaps by using an Execut or Channel .

CompoundTriggerAdvice

This advice allows the selection of one of two triggers based on whether a poll returns a message or
not. Consider a poller that uses a Cr onTr i gger ; CronTri gger s are immutable so cannot be altered
once constructed. Consider a use case where we want to use a cron expression to trigger a poll once
each hour but, if no message is received, poll once per minute and, when a message is retrieved, revert

to using the cron expression.

The advice (and poller) use a ConpoundTr i gger for this purpose. The trigger’s pr i mar y trigger can be
a CronTri gger . When the advice detects that no message is received, it adds the secondary trigger to
the ConpoundTr i gger . When the ConmpoundTr i gger 's next Execut i onTi me method is invoked,

it will delegate to the secondary trigger, if present; otherwise the primary trigger.

The poller must also have a reference to the same ConpoundTr i gger.

The following shows the configuration for the hourly cron expression with fall-back to every minute...

<i nt:inbound-channel - adapt er channel ="nul | Channel " aut o-startup="fal se">
<bean cl ass="org. spri ngfranmework.integration. endpoi nt. Pol | er Advi ceTests. Source" />
<int:poller trigger="conpoundTrigger">
<i nt:advi ce-chai n>
<bean cl ass="org. springframework.integrati on.aop. ConpoundTri gger Advi ce" >
<constructor-arg ref="conpoundTrigger"/>
<constructor-arg ref="secondary"/>
</ bean>
</int:advi ce-chai n>
</int:poller>
</int:inbound-channel - adapt er >

<bean id="conpoundTrigger" class="org.springframework.integration.util.ConpoundTrigger">
<constructor-arg ref="primry" />
</ bean>

<bean id="primary" class="org.springfranmework.schedul i ng.support.CronTrigger">
<constructor-arg value="0 0 * * * *" /> <I-- top of every hour -->
</ bean>

<bean id="secondary" class="org. springframework. schedul i ng. support. Periodi cTri gger">
<constructor-arg val ue="60000" />
</ bean>

Important: Async Handoff

This advice modifies the trigger based on the r ecei ve() result. This will only work if the advice
is called on the poller thread. It will not work if the poller has a t ask- execut or. To use this

5.0.12.RELEASE Spring Integration

51

Spring Integration Reference Manual

advice where you wish to use async operations after the result of a poll, do the async handoff
later, perhaps by using an Execut or Channel .

4.3 Channel Adapter

A Channel Adapter is a Message Endpoint that enables connecting a single sender or receiver to
a Message Channel. Spring Integration provides a number of adapters out of the box to support
various transports, such as JMS, File, HTTP, Web Services, Mail, and more. Those will be discussed
in upcoming chapters of this reference guide. However, this chapter focuses on the simple but flexible
Method-invoking Channel Adapter support. There are both inbound and outbound adapters, and each
may be configured with XML elements provided in the core namespace. These provide an easy way
to extend Spring Integration as long as you have a method that can be invoked as either a source or
destination.

Configuring An Inbound Channel Adapter

An "inbound-channel-adapter" element can invoke any method on a Spring-managed Object and send
a non-null return value to a MessageChannel after converting it to a Message. When the adapter’s
subscription is activated, a poller will attempt to receive messages from the source. The poller will be
scheduled with the TaskSchedul er according to the provided configuration. To configure the polling
interval or cron expression for an individual channel-adapter, provide a poller element with one of the
scheduling attributes, such as fixed-rate or cron.

<i nt:inbound-channel -adapter ref="sourcel" nmethod="nethodl" channel ="channel 1" >
<int:poller fixed-rate="5000"/>
</int:inbound-channel - adapt er >

<i nt:inbound-channel -adapter ref="source2" nethod="nethod2" channel ="channel 2" >
<int:poller cron="30 * 9-17 * * MON-FRI "/ >
</int:channel - adapt er >

Also see the section called “Channel Adapter Expressions and Scripts”.

Note

If no poller is provided, then a single default poller must be registered within the context. See the
section called “Endpoint Namespace Support” for more detail.

Important: Poller Configuration

Some i nbound- channel - adapt er types are backed by a
Sour cePol | i ngChannel Adapt er which means they contain Poller configuration which will
poll the MessageSour ce (invoke a custom method which produces the value that becomes a
Message payload) based on the configuration specified in the Poller.

For example:
<int:poller max-nmessages-per-poll="1" fixed-rate="1000"/>
<int:poller max-messages-per-poll="10" fixed-rate="1000"/>

In the the first configuration the polling task will be invoked once per poll and during such task
(poll) the method (which results in the production of the Message) will be invoked once based on
the max- nessages- per - pol | attribute value. In the second configuration the polling task will

5.0.12.RELEASE Spring Integration 52

Spring Integration Reference Manual

be invoked 10 times per poll or until it returns null thus possibly producing 10 Messages per poll
while each poll happens at 1 second intervals. However what if the configuration looks like this:

<int:poller fixed-rate="1000"/>

Note there is no max- nessages- per - pol | specified. As you'll learn later the identical poller
configuration in the Pol | i ngConsuner (e.g., service-activator, filter, router etc.) would have a
default value of -1 for max- messages- per - pol | which means "execute poling task non-stop
unless polling method returns null (e.g., no more Messages in the QueueChannel)" and then sleep
for 1 second.

However in the SourcePollingChannelAdapter it is a bit different. The default value for max-
nmessages- per - pol | will be set to 1 by default unless you explicitly set it to a negative value
(e.g., -1). Itis done so to make sure that poller can react to a LifeCycle events (e.g., start/stop) and
prevent it from potentially spinning in the infinite loop if the implementation of the custom method
of the MessageSour ce has a potential to never return null and happened to be non-interruptible.

However if you are sure that your method can return null and you need the behavior where you
want to poll for as many sources as available per each poll, then you should explicitly set nax-
nmessages- per - pol | to a negative value.

<int:poller max-messages-per-poll="-1" fixed-rate="1000"/>

Configuring An Outbound Channel Adapter

An "outbound-channel-adapter" element can also connect a MessageChannel to any POJO consumer
method that should be invoked with the payload of Messages sent to that channel.

<i nt:outbound-channel - adapt er channel ="channel 1" ref="target" nethod="handl e"/>

<beans: bean id="target" cl ass="org.Foo"/>

If the channel being adapted is a Pol | abl eChannel , provide a poller sub-element:

<i nt:out bound- channel - adapt er channel ="channel 2" ref="target" nethod="handl e">
<int:poller fixed-rate="3000" />
</int:out bound-channel - adapt er >

<beans: bean id="target" class="org.Foo"/>

Using a "ref" attribute is generally recommended if the POJO consumer implementation can be reused
in other <out bound- channel - adapt er > definitions. However if the consumer implementation is only
referenced by a single definition of the <out bound- channel - adapt er >, you can define it as inner
bean:

<i nt: out bound- channel - adapt er channel ="channel " net hod="handl e">
<beans: bean cl ass="org. Foo"/>
</i nt: out bound- channel - adapt er >

Note

Using both the "ref" attribute and an inner handler definition in the same <out bound- channel -
adapt er > configuration is not allowed as it creates an ambiguous condition. Such a configuration
will result in an Exception being thrown.

5.0.12.RELEASE Spring Integration 53

Spring Integration Reference Manual

Any Channel Adapter can be created without a "channel" reference in which case it will implicitly
create an instance of Di r ect Channel . The created channel's name will match the "id" attribute of
the <i nbound- channel - adapt er > or <out bound- channel - adapt er > element. Therefore, if the
"channel" is not provided, the "id" is required.

Channel Adapter Expressions and Scripts

Like many other Spring Integration components, the <i nbound-channel -adapter> and
<out bound- channel - adapt er > also provide support for SpEL expression evaluation. To use SpEL,
provide the expression string via the expression attribute instead of providing the ref and method
attributes that are used for method-invocation on a bean. When an Expression is evaluated, it follows
the same contract as method-invocation where: the expression for an <i nbound- channel - adapt er >
will generate a message anytime the evaluation result is a non-null value, while the expression for an
<out bound- channel - adapt er > must be the equivalent of a void returning method invocation.

Starting with Spring Integration 3.0, an <i nt : i nbound- channel - adapt er / > can also be configured
with a SpEL <expr essi on/ > (or even with <scri pt / >) sub-element, for when more sophistication is
required than can be achieved with the simple expression attribute. If you provide a script as a Resour ce
using the | ocat i on attribute, you can also set the refresh-check-delay allowing the resource to be
refreshed periodically. If you want the script to be checked on each poll, you would need to coordinate
this setting with the poller’s trigger:

<i nt:inbound-channel -adapter ref="sourcel" nethod="nethodl" channel ="channel 1">
<int:poller max-nmessages-per-poll="1" fixed-del ay="5000"/>
<script:script lang="ruby" |ocation="Foo.rb" refresh-check-del ay="5000"/>
</int:inbound-channel - adapt er >

Also see the cacheSeconds property on the Rel oadabl eResour ceBundl eExpr essi onSour ce
when using the <expr essi on/ > sub-element. For more information regarding expressions see the
section called “CompletableFuture”, and for scripts - the section called “CompletableFuture” and the
section called “CompletableFuture”.

Important

The <int:inbound-channel - adapt er/ > is an endpoint that starts a message flow via
periodic triggering to poll some underlying MessageSour ce. Since, at the time of polling, there
is not yet a message object, expressions and scripts don’t have access to a root Message, so
there are no payload or headers properties that are available in most other messaging SpEL
expressions. Of course, the script can generate and return a complete Message object with
headers and payload, or just a payload, which will be added to a message with basic headers.

4.4 Messaging Bridge
Introduction

A Messaging Bridge is a relatively trivial endpoint that simply connects two Message Channels
or Channel Adapters. For example, you may want to connect a Pol | abl eChannel to a
Subscri babl eChannel so that the subscribing endpoints do not have to worry about any polling
configuration. Instead, the Messaging Bridge provides the polling configuration.

By providing an intermediary poller between two channels, a Messaging Bridge can be used to throttle
inbound Messages. The poller’s trigger will determine the rate at which messages arrive on the second
channel, and the poller's "maxMessagesPerPoll" property will enforce a limit on the throughput.

5.0.12.RELEASE Spring Integration 54

Spring Integration Reference Manual

Another valid use for a Messaging Bridge is to connect two different systems. In such a scenario, Spring
Integration’s role would be limited to making the connection between these systems and managing a
poller if necessary. It is probably more common to have at least a Transformer between the two systems
to translate between their formats, and in that case, the channels would be provided as the input-channel
and output-channel of a Transformer endpoint. If data format translation is not required, the Messaging
Bridge may indeed be sufficient.

Configuring a Bridge with XML

The <bridge> element is used to create a Messaging Bridge between two Message Channels or Channel
Adapters. Simply provide the "input-channel” and "output-channel” attributes:

<int:bridge input-channel ="input" output-channel ="output"/>

As mentioned above, a common use case for the Messaging Bridge is to connect a Pol | abl eChannel
to a Subscri babl eChannel , and when performing this role, the Messaging Bridge may also serve
as a throttler:

<int:bridge input-channel ="pollabl e" output-channel ="subscri babl e">
<int:poller max-messages-per-poll="10" fixed-rate="5000"/>
</int:bridge>

Connecting Channel Adapters is just as easy. Here is a simple echo example between the "stdin" and
"stdout" adapters from Spring Integration’s "stream" namespace.

<i nt-stream stdi n-channel -adapter id="stdin"/>
<i nt - stream st dout - channel - adapt er id="stdout"/>

<int:bridge id="echo" input-channel ="stdin" out put-channel ="stdout"/>

Of course, the configuration would be similar for other (potentially more useful) Channel Adapter bridges,
such as File to JMS, or Mail to File. The various Channel Adapters will be discussed in upcoming
chapters.

Note

If no output-channel is defined on a bridge, the reply channel provided by the inbound Message
will be used, if available. If neither output or reply channel is available, an Exception will be thrown.

Configuring a Bridge with Java Configuration

@Bean
publ i c Pol | abl eChannel polled() {
return new QueueChannel ();

}

@Bean
@ri dgeFron(val ue = "polled", poller = @oller(fixedDelay = "5000", maxMessagesPerPoll = "10"))
publ i c Subscri babl eChannel direct() {

return new Direct Channel ();

}

or

5.0.12.RELEASE Spring Integration 55

Spring Integration Reference Manual

@Bean
@ri dgeTo(value = "direct", poller = @oller(fixedDelay = "5000", nmaxMessagesPerPoll = "10"))

public Pol | abl eChannel polled() {
return new QueueChannel ();

}

@Bean
public Subscribabl eChannel direct() {
return new Direct Channel ();

}

Or, using a Bri dgeHandl er:

@ean
@er vi ceAct i vat or (i nput Channel = "pol | ed",
pol ler = @Pol | er (fixedRate = "5000", maxMessagesPerPoll = "10"))
public BridgeHandl er bridge() {
Bri dgeHandl er bridge = new BridgeHandl er();
bri dge. set Qut put Channel Nane("direct");
return bridge;

Configuring a Bridge with the Java DSL

@Bean
public IntegrationFlow bridgeFl ow() {
return I ntegrationFl ows. from"polled")
.bridge(e -> e.poller(Pollers.fixedDel ay(5000). maxMessagesPer Pol | (10)))
.channel ("direct")
-get();

5.0.12.RELEASE Spring Integration

Spring Integration Reference Manual

5. Message Construction

5.1 Message

The Spring Integration Message is a generic container for data. Any object can be provided as the
payload, and each Message also includes headers containing user-extensible properties as key-value
pairs.

The Message Interface

Here is the definition of the Message interface:

public interface Message<T> {
T get Payl oad();

MessageHeader s get Headers();

The Message is obviously a very important part of the API. By encapsulating the data in a generic
wrapper, the messaging system can pass it around without any knowledge of the data’s type. As an
application evolves to support new types, or when the types themselves are modified and/or extended,
the messaging system will not be affected by such changes. On the other hand, when some component
in the messaging system does require access to information about the Message, such metadata can
typically be stored to and retrieved from the metadata in the Message Headers.

Message Headers

Just as Spring Integration allows any Object to be used as the payload of a Message, it also supports
any Object types as header values. In fact, the MessageHeader s class implements the java.util. Map
interface:

public final class MessageHeaders inplenents Map<String, Object>, Serializable {

}

Note

Even though the MessageHeaders implements Map, it is effectively a read-only implementation.
Any attempt to put a value in the Map will result in an Unsuppor t edOper at i onExcepti on. The
same applies for remove and clear. Since Messages may be passed to multiple consumers, the
structure of the Map cannot be modified. Likewise, the Message’s payload Object can not be set
after the initial creation. However, the mutability of the header values themselves (or the payload
Object) is intentionally left as a decision for the framework user.

As an implementation of Map, the headers can obviously be retrieved by calling get (. .) with the name
of the header. Alternatively, you can provide the expected Class as an additional parameter. Even better,
when retrieving one of the pre-defined values, convenient getters are available. Here is an example of
each of these three options:

5.0.12.RELEASE Spring Integration 57

Spring Integration Reference Manual

bj ect soneVal ue =

Custorer|d custonerld

nmessage. get Header s() . get ("sonmeKey") ;

message. get Header s(). get (“custoner|d", Custonerld.class);

Long ti mestanp = nmessage. get Header s(). get Ti mest anp() ;

The following Message headers are pre-defined:

Table 5.1. Pre-defined Message Headers

Header Name

Header Type

Usage

‘ MessageHeaders. | D

java.util.UU D

MessageHeader s. java.l ang. Long
TI MESTAWP
java. |l ang. bj ect

MessageHeader s.
REPLY_CHANNEL

MessageHeader s.
ERROR_CHANNEL

(String or
MessageChannel)

java. |l ang. Ooj ect
(String or
MessageChannel)

An identifier for this message instance. Changes each
time a message is mutated.

The time the message was created. Changes each
time a message is mutated.

A channel to which a reply (if any) will be sent

when no explicit output channel is configured and
there is no ROUTI NG_SLI P or the ROUTI NG_SLI P

is exhausted. If the value is a St ri ng it must
represent a bean name, or have been generated by a
Channel Regi stry.

A channel to which errors will be sent. If the value is a
St ri ng it must represent a bean name, or have been

generated by a Channel Regi stry.

Many inbound and outbound adapter implementations will also provide and/or expect certain headers,
and additional user-defined headers can also be configured. Constants for these headers can be found
in those modules where such headers exist, for example AngpHeader s, JnsHeader s etc.

MessageHeaderAccessor API

Starting with Spring Framework 4.0 and Spring Integration 4.0, the core Messaging abstraction
has been moved to the spring-messaging module and the new MessageHeader Accessor
APl has been introduced to provide additional abstraction over Messaging implementations.
All (core) Spring Integration specific Message Headers constants are now declared in the
I nt egr ati onMessageHeader Accessor class:

Table 5.2. Pre-defined Message Headers

Header Name Header Type Usage
I nt egr at i onMessageHeader Accessor . java. | ang. Qbj ect ‘ Used to correlate two or more
CORRELATI ON_I D messages.
I nt egr ati onMessageHeader Accessor . java. | ang. | nt eger ‘ UsuaIIy a sequence number

SEQUENCE_NUMBER

with a group of messages with a
SEQUENCE_SI ZE but can also be
used in a <r esequencer/ >to
resequence an unbounded group of
messages.

The number of messages within a
group of correlated messages.

I nt egr at i onMessageHeader Accessor .
SEQUENCE_SI ZE

java. |l ang. | nt eger

5.0.12.RELEASE Spring Integration 58

Spring Integration Reference Manual

Header Name Header Type Usage
I nt egr at i onMessageHeader Accessor . java.l ang. Long Indicates when a message is
EXPI RATI ON_DATE expired. Not used by the framework

directly but can be set with a
header enricher and used in a
<filter/> configured with an
Unexpi r edMessageSel ect or .

I nt egr at i onMessageHeader Accessor . java.lang. I nt eger ‘ Message priority; for example within
PRIGRITY aPriorityChannel

I nt egr at i onMessageHeader Accessor . j ava. | ang. Bool ean ‘ True ifa message was detected as a
DUPLI CATE_MESSAGE duplicate by an idempotent receiver

interceptor. See the section called
“CompletableFuture”.

I nt egr at i onMessageHeader Accessor . java.io.d oseabl e ‘ This header is present if the
CLOSEABLE_RESOURCE message is associated with a

C oseabl e which should be

closed when message processing

is complete. An example is the

Sessi on associated with a

streamed file transfer using FTP,

SFTP, etc.
I nt egr at i onMessageHeader Accessor . j ava. | ang. If a message-driven channel adapter
DELI VERY_ATTEMPT Atomi cl nt eger supports the configuration of a

Ret r yTenpl at e this header
contains the current delivery attempt.

I nt egr ati onMessageHeader Accessor . 0.S.i.support. If a message source supports it,
ACKNONL EDGVENT_CALLBACK ’é;:‘lngv“ Edgn‘?m a call back to accept, reject, or
ac

requeue a message - see the section
called “Deferred Acknowledgment
Pollable Message Source”.

Convenient typed getters for some of these headers are provided on the
I nt egr ati onMessageHeader Accessor class:

I nt egrati onMessageHeader Accessor accessor = new | ntegrati onMessageHeader Accessor (message) ;
i nt sequenceNunber = accessor. get SequenceNunber ();
Obj ect correlationld = accessor.getCorrelationld();

The following headers also appear in the | nt egr at i onMessageHeader Accessor but are generally
not used by user code; their inclusion here is for completeness:

Table 5.3. Pre-defined Message Headers

Header Name Header Type Usage
| nt egr at i onMessageHeader Accessor . java.util.List< A stack of correlation data used
SECIENCERRE LS Li'st <Chj ect >> when nested correlation is

needed (e.g. splitter->...-

5.0.12.RELEASE Spring Integration 59

Spring Integration Reference Manual

Header Name Header Type Usage
>splitter->...->aggregator-
>...->aggregator).

I nt egr at i onMessageHeader Accessor . java. util.Mp< See the section called “Routing Slip”.
ROUTI NG_SLI P Li st <Obj ect >,
I nt eger >

Message ID Generation

When a message transitions through an application, each time it is mutated (e.g. by a transformer) a new
message id is assigned. The message id is a UUI D. Beginning with Spring Integration 3.0, the default
strategy used for id generation is more efficient than the previous j ava. uti | . UUl D. r andonJul D()
implementation. It uses simple random numbers based on a secure random seed, instead of creating
a secure random number each time.

A different UUID generation strategy can be selected by declaring a bean that implements
org. springframework. util.ldGenerator inthe application context.

Important

Only one UUID generation strategy can be used in a classloader. This means that if two or more
application contexts are running in the same classloader, they will share the same strategy. If one
of the contexts changes the strategy, it will be used by all contexts. If two or more contexts in the
same classloader declare a bean of type or g. spri ngf ranewor k. util .| dGener at or, they
must all be an instance of the same class, otherwise the context attempting to replace a custom
strategy will fail to initialize. If the strategy is the same, but parameterized, the strategy in the first
context to initialize will be used.

In addition to the default strategy, two additional |dGenerators are provided;
org. springframework. util.JdkldGenerator uses the previous UUl D.randonJul IX)
mechanism; 0. s. i . support. | dGenerators. Si npl el ncrenmenti ngl dGener at or can be used
in cases where a UUID is not really needed and a simple incrementing value is sufficient.

Read-only Headers

The MessageHeaders. | D and MessageHeaders. TI MESTAMP are read-only headers and they
cannot be overridden.

Since version 4.3.2, the MessageBuil der provides the readOnlyHeaders(String...
readOnl yHeader s) API to customize a list of headers which should not be copied from an upstream
Message. Just the MessageHeaders. | D and MessageHeaders. TI MESTAMP are read only by
default. The global spring.integration.readOnly. headers property (see the section called
“CompletableFuture”) is provided to customize Def aul t MessageBui | der Fact ory for Framework
components. This can be useful when you would like do not populate some out-of-the-box headers, like
cont ent Type by the Obj ect ToJsonTr ansf or ner (see the section called “JSON Transformers”).

When you try to build a new message using MessageBui | der, this kind of headers are ignored and
particular I NFOmessage is emitted to logs.

Starting with version 5.0, Messaging Gateway, Header Enricher, Content Enricher and
Header Filter don’t allow to configure MessageHeaders. | D and MessageHeader s. TI MESTAWP

5.0.12.RELEASE Spring Integration 60

Spring Integration Reference Manual

header names when DefaultMessageBuil derFactory is used and they throw
Beanl nitializati onExcepti on.

Header Propagation

When messages are processed (and modified) by message-producing endpoints (such as a service
activator), in general, inbound headers are propagated to the outbound message. One exception to this
is a transformer, when a complete message is returned to the framework; in that case, the user code is
responsible for the entire outbound message. When a transformer just returns the payload; the inbound
headers are propagated. Also, a header is only propagated if it does not already exist in the outbound
message, allowing user code to change header values as needed.

Starting with version 4.3.10, you can configure message handlers (that modify messages and produce
output) to suppress the propagation of specific headers. Call the set Not Pr opagat edHeader s()
or addNot Pr opagat edHeader s() methods on the MessagePr oduci ngMessageHand| er abstract
class, to configure the header(s) you don’t want to be copied.

You can also globally suppress propagation of specific message headers by setting the
readOnl yHeader s property in META-I NF/ spring.integration.properties to a comma-
delimited list of headers.

Starting with version 5.0, the set Not Propagat edHeaders() implementation on the
Abst ract MessagePr oduci ngHandl er applies the simple patterns (Xxx*, *XxXXX, *XxXx* or
xxx*yyy) to allow filtering headers with a common suffix or prefix. See PatternMatchUtils
JavaDocs for more information. When one of the patterns is * (asterisk), no headers are propagated; all
other patterns are ignored. In this case the Service Activator behaves the same way as Transformer and
any required headers must be supplied in the Message returned from the service method. The option
not Propagat edHeader s() is available in the Consumer Endpoi nt Spec for Java DSL, as well as
for XML configuration of the <ser vi ce- acti vat or > component as a not - pr opagat ed- header s
attribute.

Important

Header propagation suppression does not apply to those endpoints that don’t modify the message,
e.g. bridges and routers.

Message Implementations

The base implementation of the Message interface is Generi cMessage<T>, and it provides two
constructors:

new Generi cMessage<T>(T payl oad);

new Generi cMessage<T>(T payl oad, Map<String, Object> headers)

When a Message is created, a random unique id will be generated. The constructor that accepts a Map
of headers will copy the provided headers to the newly created Message.

There is also a convenient implementation of Message designed to communicate error conditions. This
implementation takes Thr owabl e object as its payload:

Error Message nessage = new Error Message(soneThr owabl e) ;

Throwabl e t = message. get Payl oad();

5.0.12.RELEASE Spring Integration 61

Spring Integration Reference Manual

Notice that this implementation takes advantage of the fact that the Generi cMessage base class is
parameterized. Therefore, as shown in both examples, no casting is necessary when retrieving the
Message payload Object.

The MessageBuilder Helper Class

You may notice that the Message interface defines retrieval methods for its payload and headers but
no setters. The reason for this is that a Message cannot be modified after its initial creation. Therefore,
when a Message instance is sent to multiple consumers (e.g. through a Publish Subscribe Channel), if
one of those consumers needs to send a reply with a different payload type, it will need to create a new
Message. As a result, the other consumers are not affected by those changes. Keep in mind, that multiple
consumers may access the same payload instance or header value, and whether such an instance is
itself immutable is a decision left to the developer. In other words, the contract for Messages is similar to
that of an unmodifiable Collection, and the MessageHeaders' map further exemplifies that; even though
the MessageHeaders class implements j ava. uti | . Map, any attempt to invoke a put operation (or
remove or clear) on the MessageHeaders will result in an Unsupport edQper at i onExcept i on.

Rather than requiring the creation and population of a Map to pass into the GenericMessage constructor,
Spring Integration does provide a far more convenient way to construct Messages: MessageBui | der .
The MessageBuilder provides two factory methods for creating Messages from either an existing
Message or with a payload Object. When building from an existing Message, the headers and payload
of that Message will be copied to the new Message:

Message<String> nessagel = MessageBuil der. wit hPayl oad("test")
. set Header ("foo", "bar")
Lbuild();

Message<String> message2 = MessageBui |l der. from\Vessage(nessagel). build();

assert Equal s("test", nessage2. getPayl oad());
assert Equal s("bar", nessage2. get Headers().get("fo0"));

If you need to create a Message with a new payload but still want to copy the headers from an existing
Message, you can use one of the copy methods.

Message<String> nmessage3 = MessageBui | der. wi t hPayl oad("test 3")
. copyHeader s(nessagel. get Headers())
.bui 1 d();

Message<Stri ng> nessage4 = MessageBui |l der. wi t hPayl oad("t est4")
. set Header ("foo", 123)
. copyHeader s| f Absent (nmessagel. get Headers())
.bui 1 d();

assert Equal s("bar", nessage3. get Headers().get("fo00"));
assert Equal s(123, nessage4. get Headers().get("fo00"));

Notice that the copyHeader sl f Absent does not overwrite existing values. Also, in the second
example above, you can see how to set any user-defined header with set Header . Finally, there are
set methods available for the predefined headers as well as a non-destructive method for setting any
header (MessageHeaders also defines constants for the pre-defined header names).

5.0.12.RELEASE Spring Integration 62

Spring Integration Reference Manual

Message<I| nt eger > i nport ant Message = MessageBui | der. wi t hPayl oad(99)
.setPriority(5)
Lbuild();

assert Equal s(5, inportant Message. get Headers().getPriority());
Message<I| nt eger > | essl nport ant Message = MessageBui | der. fromVessage(i nport ant Message)
. set Header | f Absent (| nt egr ati onMessageHeader Accessor. PRICRI TY, 2)

bui 1d();

assert Equal s(2, | esslnportant Message. get Headers().getPriority());

The pri ori ty header is only considered when using a Pri ori t yChannel (as described in the next
chapter). It is defined as java.lang.Integer.

5.0.12.RELEASE Spring Integration 63

Spring Integration Reference Manual

6. Message Routing

6.1 Routers

Overview

Routers are a crucial element in many messaging architectures. They consume Messages from a
Message Channel and forward each consumed message to one or more different Message Channel
depending on a set of conditions.

Spring Integration provides the following routers out-of-the-box:

Payload Type Router

Header Value Router

Recipient List Router

XPath Router (Part of the XML Module)

* Error Message Exception Type Router

(Generic) Router

Router implementations share many configuration parameters. Yet, certain differences exist between
routers. Furthermore, the availability of configuration parameters depends on whether Routers are used
inside or outside of a chain. In order to provide a quick overview, all available attributes are listed in
the 2 tables below.

Table 6.1. Routers Outside of a Chain

Attribute router header xpath payload recipient |exception
value router type list router |type
router router router

apply-sequence Ve Ve Ve Ve & &

default-output-channel | <+~ 4 4 4 & &
resolution-required e " " " Ve Ve

ignore-send-failures & <« <« <« v v

timeout &« &« &« &« & &

id <« <« <« & & &

auto-startup &« &« &« &« & &

input-channel 4 4 4 4 & &
order 4 4 4 4 & &

5.0.12.RELEASE Spring Integration 64

Spring Integration Reference Manual

Attribute router header xpath payload recipient |exception
value router type list router |type
router router router

method &

ref &

expression &

header-name &

evaluate-as-string &

xpath-expression-ref &

converter v

Table 6.2. Routers Inside of a Chain

Attribute router header xpath payload recipient |exception
value router type list router |type
router router router

apply-sequence 4 4 4 4 & &

default-output-channel | <+~ <« <« <« v v

resolution-required <« <« <« <« v v

ignore-send-failures " Ve Ve Ve & &

timeout 4 4 4 4 & &

id

auto-startup

input-channel

order

method &

ref &

expression &

header-name &

evaluate-as-string &

5.0.12.RELEASE Spring Integration 65

Spring Integration Reference Manual

Attribute router header xpath payload recipient |exception
value router type list router |type
router router router

xpath-expression-ref &

converter &

Important

Router parameters have been more standardized across all router implementations with Spring
Integration 2.1. Consequently, there are a few minor changes that leave the possibility of breaking
older Spring Integration based applications.

Since Spring Integration 2.1 the i gnor e- channel - nane-r esol uti on-f ai | ur es attribute is
removed in favor of consolidating its behavior with the r esol ut i on-r equi r ed attribute. Also,
the resol uti on-requi r ed attribute now defaultsto t r ue.

Prior to these changes, the resol uti on-required attribute defaulted to f al se causing
messages to be silently dropped when no channel was resolved and no def aul t - out put -
channel was set. The new behavior will require at least one resolved channel and by default will
throw an MessageDel i ver yExcept i on if no channel was determined (or an attempt to send
was not successful).

If you do desire to drop messages silently simply set default-output-
channel =" nul | Channel ".

Common Router Parameters
Inside and Outside of a Chain
The following parameters are valid for all routers inside and outside of chains.

apply-sequence
This attribute specifies whether sequence number and size headers should be added to each
Message. This optional attribute defaults to false.

default-output-channel
If set, this attribute provides a reference to the channel, where Messages should be sent, if channel
resolution fails to return any channels. If no default output channel is provided, the router will throw
an Exception. If you would like to silently drop those messages instead, add the nul | Channel as
the default output channel attribute value.

Note

A Message will only be sent to the def aul t - out put - channel if resol uti on-requiredis
false and the channel is not resolved.

resolution-required
If true this attribute specifies that channel names must always be successfully resolved to channel
instances that exist. If set to true, a Messagi ngExcept i on will be raised, in case the channel

5.0.12.RELEASE Spring Integration 66

Spring Integration Reference Manual

cannot be resolved. Setting this attribute to false, will cause any unresovable channels to be ignored.
This optional attribute will, if not explicitly set, default to true.

Note

A Message will only be sent to the default-output-channel, if specified, when
resol uti on-requi red is false and the channel is not resolved.

ignore-send-failures
If set to true, failures to send to a message channel will be ignored. If set to false, a
MessageDel i ver yExcept i on will be thrown instead, and if the router resolves more than one
channel, any subsequent channels will not receive the message.

The exact behavior of this attribute depends on the type of the Channel messages are sent to. For
example, when using direct channels (single threaded), send-failures can be caused by exceptions
thrown by components much further down-stream. However, when sending messages to a simple queue
channel (asynchronous) the likelihood of an exception to be thrown is rather remote.

Note

While most routers will route to a single channel, they are allowed to return more than one channel
name. Ther eci pi ent -1 i st -rout er, forinstance, does exactly that. If you set this attribute to
true on a router that only routes to a single channel, any caused exception is simply swallowed,
which usually makes little sense to do. In that case it would be better to catch the exception in
an error flow at the flow entry point. Therefore, setting the i gnor e- send- f ai | ur es attribute to
true usually makes more sense when the router implementation returns more than one channel
name, because the other channel(s) following the one that fails would still receive the Message.

This attribute defaults to false.

timeout
Theti meout attribute specifies the maximum amount of time in milliseconds to wait, when sending
Messages to the target Message Channels. By default the send operation will block indefinitely.

Top-Level (Outside of a Chain)
The following parameters are valid only across all top-level routers that are ourside of chains.
id
Identifies the underlying Spring bean definition which in case of Routers is an instance of

EventDrivenConsumer or PollingConsumer depending on whether the Router’s input-channel is a
SubscribableChannel or PollableChannel, respectively. This is an optional attribute.

auto-startup
This Li f ecycl e attribute signaled if this component should be started during startup of the
Application Context. This optional attribute defaults to true.

input-channel
The receiving Message channel of this endpoint.

order
This attribute defines the order for invocation when this endpoint is connected as a subscriber to a
channel. This is particularly relevant when that channel is using a failover dispatching strategy. It
has no effect when this endpoint itself is a Polling Consumer for a channel with a queue.

5.0.12.RELEASE Spring Integration 67

Spring Integration Reference Manual

Router Implementations

Since content-based routing often requires some domain-specific logic, most use-cases will require
Spring Integration’s options for delegating to POJOs using the XML namespace support and/or
Annotations. Both of these are discussed below, but first we present a couple implementations that are
available out-of-the-box since they fulfill common requirements.

PayloadTypeRouter
A Payl oadTypeRout er will send Messages to the channel as defined by payload-type mappings.

<bean i d="payl oadTypeRout er "
class="org. springfranmework.integration.router.Payl oadTypeRout er ">
<property nanme="channel Mappi ng" >
<rTHp>
<entry key="java.lang. String" val ue-ref="stringChannel "/ >
<entry key="java.lang.|nteger" val ue-ref="integerChannel "/>
</ map>
</ property>
</ bean>

Configuration of the Payl oadTypeRout er is also supported via the namespace provided by Spring
Integration (see the section called “CompletableFuture”), which essentially simplifies configuration by
combining the <r out er / > configuration and its corresponding implementation defined using a <bean/
> element into a single and more concise configuration element. The example below demonstrates
a Payl oadTypeRout er configuration which is equivalent to the one above using the namespace
support:

<i nt: payl oad-type-router input-channel ="routingChannel ">
<int:mapping type="java.lang. String" channel ="stringChannel " />
<int:mapping type="java.lang.|nteger" channel ="i nteger Channel " />
</int: payl oad-type-router>

The equivalent router, using Java configuration:

@er vi ceAct i vat or (i nput Channel = "routingChannel ")

@Bean

publ i c Payl oadTypeRouter router() {
Payl oadTypeRout er router = new Payl oadTypeRout er () ;
rout er. set Channel Mappi ng(String. cl ass. get Name(), "stringChannel");
rout er. set Channel Mappi ng(| nteger.cl ass. get Nane(), "integerChannel");
return router;

When using the Java DSL, there are two options; 1) define the router object as above...

@Bean
public IntegrationFl ow routerFl owl() {
return IntegrationFl ows. fron("routingChannel ")
.route(router())
.get();
}

publ i ¢ Payl oadTypeRouter router() {
Payl oadTypeRout er router = new Payl oadTypeRout er () ;
rout er. set Channel Mappi ng(String. cl ass. get Name(), "stringChannel");
rout er. set Channel Mappi ng(I nteger. cl ass. get Nane(), "integerChannel");
return router;

Note that the router can be, but doesn’t have to be, a @ean - the flow will register it if it is not.

2) define the routing function within the DSL flow itself...

5.0.12.RELEASE Spring Integration 68

Spring Integration Reference Manual

@Bean
public IntegrationFl ow routerFl ow2() {
return IntegrationFl ows. fron("routingChannel ")
.<oj ect, Class<?>>route(Cbject::getCass, m->m
. channel Mappi ng(String. cl ass, "stringChannel ")
. channel Mappi ng(I nteger. class, "integerChannel "))
.get();

HeaderValueRouter

A Header Val ueRout er will send Messages to the channel based on the individual header value
mappings. When a Header Val ueRout er is created it is initialized with the name of the header to be
evaluated. The value of the header could be one of two things:

1. Arbitrary value
2. Channel name

If arbitrary then additional mappings for these header values to channel names is required, otherwise
no additional configuration is needed.

Spring Integration provides a simple namespace-based XML configuration to configure a
Header Val ueRout er . The example below demonstrates two types of namespace-based configuration
for the Header Val ueRout er .

1. Configuration where mapping of header values to channels is required

<i nt:header-val ue-router input-channel ="routingChannel" header-nanme="t est Header" >
<i nt:mappi ng val ue="soneHeader Val ue" channel ="channel A" />
<i nt:mappi ng val ue="someQ her Header Val ue" channel ="channel B" />
</int:header-val ue-router>

During the resolution process this router may encounter channel resolution failures, causing an
exception. If you want to suppress such exceptions and send unresolved messages to the default output
channel (identified with the def aul t - out put - channel attribute) set resol uti on-required to
fal se.

Normally, messages for which the header value is not explicitly mapped to a channel will be sent to
the def aul t - out put - channel . However, in cases where the header value is mapped to a channel
name but the channel cannot be resolved, setting the r esol ut i on-r equi r ed attribute to f al se will
result in routing such messages to the def aul t - out put - channel .

Important

With Spring Integration 2.1 the attribute was changed from i gnore-channel - nane-
resol ution-failures toresol ution-required. Attribute resol uti on-required will
defaultto t r ue.

The equivalent router, using Java configuration:

@er vi ceAct i vat or (i nput Channel = "routingChannel ")

@Bean

publ i ¢ Header Val ueRout er router() {
Header Val ueRout er router = new Header Val ueRout er ("t est Header");
rout er. set Channel Mappi ng(" soneHeader Val ue", "channel A");
rout er. set Channel Mappi ng("sonmeQ her Header Val ue", "channel B");
return router;

5.0.12.RELEASE Spring Integration 69

Spring Integration Reference Manual

When using the Java DSL, there are two options; 1) define the router object as above...

@Bean
public IntegrationFlow routerFl owl() {
return IntegrationFlows. from("routingChannel")
.route(router())
.get();
}

publ i ¢ Header Val ueRout er router() {
Header Val ueRout er router = new Header Val ueRout er ("t est Header");
rout er. set Channel Mappi ng(" soneHeader Val ue", "channel A");
rout er. set Channel Mappi ng("someQ her Header Val ue", "channel B");
return router;

Note that the router can be, but doesn’t have to be, a @ean - the flow will register it if it is not.

2) define the routing function within the DSL flow itself...

@Bean
public IntegrationFl ow routerFl ow2() {
return IntegrationFlows. from("routingChannel")
. <Message<?>, String>route(m-> m getHeaders().get("testHeader", String.class), m->m

. channel Mappi ng(" soneHeader Val ue", "channel A")
. channel Mappi ng("soneC her Header Val ue", "channel B"),
e -> e.id("headerVal ueRouter"))

.get();

2. Configuration where mapping of header values to channel names is not required since header values
themselves represent channel names

<i nt: header-val ue-router input-channel ="routingChannel" header-nanme="t est Header"/ >

Note

Since Spring Integration 2.1 the behavior of resolving channels is more explicit. For example,
if you ommit the def aul t - out put - channel attribute and the Router was unable to resolve
at least one valid channel, and any channel name resolution failures were ignored by setting
resol uti on-requiredtofal se,thenaMessageDel i ver yExcepti on is thrown.

Basically, by default the Router must be able to route messages successfully to at least one
channel. If you really want to drop messages, you must also have def aul t - out put - channel
set to nul | Channel .

RecipientListRouter

A Reci pi ent Li st Rout er will send each received Message to a statically defined list of Message
Channels:

<bean id="reci pi entLi st Router"
cl ass="org. springframework.integration.router.RecipientListRouter">
<property name="channel s">
<list>
<ref bean="channel 1"/ >
<ref bean="channel 2"/>
<ref bean="channel 3"/>
</list>
</ property>
</ bean>

5.0.12.RELEASE Spring Integration 70

Spring Integration Reference Manual

Spring Integration also provides namespace support for the Reci pi ent Li st Rout er configuration
(see the section called “CompletableFuture”) as the example below demonstrates.

<int:recipient-list-router id="custonRouter" input-channel ="routingChannel"
timeout ="1234"
i gnore-send-failures="true"
appl y- sequence="true" >
<int:recipient channel ="channel 1"/ >
<int:recipient channel ="channel 2"/>
</int:recipient-list-router>

The equivalent router, using Java configuration:

@er vi ceAct i vat or (i nput Channel = "routingChannel ")
@Bean
publ i c Reci pi entListRouter router() {
Reci pi ent Li st Router router = new Reci pi entLi st Router();
rout er. set SendTi meout (1_234L);
rout er. setl gnoreSendFai |l ures(true);
rout er. set Appl ySequence(true);
rout er. addReci pi ent ("channel 1");
rout er. addReci pi ent (" channel 2");
rout er. addReci pi ent (" channel 3");
return router;

The equivalent router, using the Java DSL:

@Bean
public IntegrationFl ow routerFl ow() {
return IntegrationFl ows. fron("routingChannel ")
.rout eToReci pients(r ->r

. appl ySequence(true)
.ignoreSendFai | ures(true)
.recipient("channel 1")
. recipi ent ("channel 2")
. recipi ent ("channel 3")
. sendTi neout (1_234L))

.get();

Note

The apply-sequence flag here has the same effect as it does for a publish-subscribe-channel, and
like a publish-subscribe-channel, it is disabled by default on the recipient-list-router. Refer to the
section called “PublishSubscribeChannel Configuration” for more information.

Another convenient option when configuring a Reci pi ent Li st Rout er is to use Spring Expression
Language (SpEL) support as selectors for individual recipient channels. This is similar to using a Filter at
the beginning of chain to act as a "Selective Consumer". However, in this case, it's all combined rather
concisely into the router’s configuration.

<int:recipient-list-router id="custonRouter" input-channel="routingChannel ">
<int:recipient channel ="channel 1" sel ector - expr essi on="payl oad. equal s(' foo"')"/>
<int:recipient channel ="channel 2" sel ect or - expressi on="headers. cont ai nsKey(' bar')"/>
</int:recipient-list-router>

In the above configuration a SpEL expression identified by the sel ect or - expr essi on attribute will be
evaluated to determine if this recipient should be included in the recipient list for a given input Message.
The evaluation result of the expression must be a boolean. If this attribute is not defined, the channel
will always be among the list of recipients.

5.0.12.RELEASE Spring Integration 71

Spring Integration Reference Manual

RecipientListRouterManagement

Starting with version 4.1, the Reci pi ent Li st Rout er provides several operation to manipulate
with recipients dynamically at runtime. These management operations are presented by
Reci pi ent Li st Rout er Managenent @mhanagedResour ce. They are available using the section
called “CompletableFuture” as well as via JMX:

<control -bus input-channel ="control Bus"/>

<recipient-list-router id="sinpleRouter" input-channel ="routingChannel A">
<reci pi ent channel ="channel 1"/ >
</recipient-list-router>

<channel id="channel 2"/>

messagi ngTenpl at e. convert AndSend(control Bus, "@ si npl eRout er. handl er' . addReci pi ent (' channel 2')");

From the application start up the si npl eRout er will have only one channel 1 recipient. But after the
addReci pi ent command above the new channel 2 recipient will be added. It is a "registering an
interest in something that is part of the Message" use case, when we may be interested in messages
from the router at some time period, so we are subscribing to the the r eci pi ent -1i st -rout er and
in some point decide to unsubscribe our interest.

Having the runtime management operation for the <r eci pi ent - | i st - r out er >, it can be configured
without any <r eci pi ent > from the start. In this case the behaviour of Reci pi ent Li st Rout er is
the same, when there is no one matching recipient for the message: if def aul t Qut put Channel is
configured, the message will be sent there, otherwise the MessageDel i ver yExcept i on is thrown.

XPath Router
The XPath Router is part of the XML Module. See the section called “CompletableFuture”.
Routing and Error handling

Spring Integration also provides a special type-based router called
Error MessageExcept i onTypeRout er for routing Error Messages (Messages whose payl oad
is a Throwabl e instance). Error MessageExcepti onTypeRouter is very similar to the
Payl oadTypeRouter. In fact they are almost identical. The only difference is that
while Payl oadTypeRout er navigates the instance hierarchy of a payload instance (e.g.,
payl oad. get O ass() . get Supercl ass()) to find the most specific type/channel mappings,
the Error MessageExcepti onTypeRout er navigates the hierarchy of exception causes (e.g.,
payl oad. get Cause()) to find the most specific Thr owabl e type/channel mappings and uses
mappi ngd ass. i sl nst ance(cause) to match the cause to the class or any super class.

Note

Since version 4.3 the Er r or MessageExcept i onTypeRout er loads all mapping classes during
the initialization phase to fail-fast for a G assNot FoundExcept i on.

Below is a sample configuration for Er r or MessageExcept i onTypeRout er .

5.0.12.RELEASE Spring Integration 72

Spring Integration Reference Manual

<int:exception-type-router input-channel ="inputChannel"
def aul t - out put - channel =" def aul t Channel ">
<int:mappi ng exception-type="java.l ang. ||| egal Argunment Excepti on"
channel ="i | | egal Channel "/ >

<i nt: mappi ng exception-type="java. | ang. Nul | Poi nt er Excepti on"
channel ="npeChannel "/ >
</int:exception-type-router>

<int:channel id="illegal Channel" />
<int:channel id="npeChannel" />

Configuring a Generic Router
Configuring a Content Based Router with XML

The "router" element provides a simple way to connect a router to an input channel and also accepts
the optional def aul t - out put - channel attribute. The r ef attribute references the bean name of a
custom Router implementation (extending Abst r act MessageRout er):

<int:router ref="payl oadTypeRouter" input-channel ="input1"
def aul t - out put - channel =" def aul t Qut put 1"/ >

<int:router ref="recipientListRouter" input-channel ="input2"
def aul t - out put - channel =" def aul t Qut put 2"/ >

<int:router ref="custonRouter" input-channel ="input 3"
def aul t - out put - channel =" def aul t Qut put 3"/ >

<beans: bean i d="cust onRout er Bean" cl ass="org. f 0o. MyCust onRouter"/ >

Alternatively, r ef may point to a simple POJO that contains the @Router annotation (see below), or the
r ef may be combined with an explicit met hod name. Specifying a net hod applies the same behavior
described in the @Router annotation section below.

<int:router input-channel="input" ref="somePojo" nethod="sonmeMethod"/>

Using a r ef attribute is generally recommended if the custom router implementation is referenced in
other <r out er > definitions. However if the custom router implementation should be scoped to a single
definition of the <r out er >, you may provide an inner bean definition:

<int:router nethod="sonmeMethod" input-channel ="input 3"
def aul t - out put - channel =" def aul t Qut put 3" >
<beans: bean cl ass="org. f 0o. M/Cust onRouter"/ >
</int:router>

Note

Using both the r ef attribute and an inner handler definition in the same <r out er > configuration
is not allowed, as it creates an ambiguous condition, and an Exception will be thrown.

Important

If the "ref" attribute references a bean that extends Abstract MessagePr oduci ngHandl er
(such as routers provided by the framework itself), the configuration is optimized referencing the
router directly. In this case, each "ref" must be to a separate bean instance (or a pr ot ot ype-
scoped bean), or use the inner <bean/ > configuration type. However, this optimization only
applies if you don’t provide any router-specific attributes in the router XML definition. If
you inadvertently reference the same message handler from multiple beans, you will get a
configuration exception.

5.0.12.RELEASE Spring Integration 73

Spring Integration Reference Manual

The equivalent router, using Java Configuration:

@Bean

@Rout er (i nput Channel = "routingChannel ")

publ i c Abstract MessageRout er nyCust onRouter () {
return new Abstract MessageRouter () {

@verride
protected Col | ecti on<MessageChannel > det er mi neTar get Channel s(Message<?> nessage) {
return // determ ne channel (s) for nessage

}

The equivalent router, using the Java DSL:

@Bean
public IntegrationFl ow routerFl ow() {
return IntegrationFl ows. fron("routingChannel ")
.route(nyCustonRouter())
.get();
}

publ i c Abstract MessageRout er nyCust onRouter () {
return new Abstract MessageRouter () {

@verride
protected Col | ecti on<MessageChannel > det er mi neTar get Channel s(Message<?> nessage) {
return // determ ne channel (s) for nessage

}

or, if you can route on just some message payload data:

@Bean
public IntegrationFlow routerFlow) {
return IntegrationFlows. from("routingChannel")
.route(String.class, p -> p.contains("foo") ? "fooChannel" : "bar Channel ")
.get();

Routers and the Spring Expression Language (SpEL)

Sometimes the routing logic may be simple and writing a separate class for it and configuring it as a
bean may seem like overkill. As of Spring Integration 2.0 we offer an alternative where you can now use
SpEL to implement simple computations that previously required a custom POJO router.

Note

For more information about the Spring Expression Language, please refer to the respective
chapter in the Spring Framework Reference Documentation at:

Generally a SpEL expression is evaluated and the result is mapped to a channel:

<int:router input-channel="inChannel" expression="payl oad. paynment Type" >
<i nt: mappi ng val ue="CASH' channel =" cashPaynent Channel "/ >
<i nt: mappi ng val ue="CREDI T* channel ="aut hori zePaynent Channel "/ >
<i nt: mappi ng val ue="DEBI T" channel ="aut hori zePaynment Channel "/ >
</int:router>

The equivalent router, using Java Configuration:

5.0.12.RELEASE Spring Integration 74

Spring Integration Reference Manual

@Rout er (i nput Channel = "routingChannel ")
@Bean
publ i ¢ Expressi onEval uati ngRouter router() {
Expr essi onEval uati ngRouter router = new Expressi onEval uati ngRout er (" payl oad. paynent Type");
rout er. set Channel Mappi ng(" CASH', "cashPaynent Channel ");
rout er. set Channel Mappi ng(" CREDI T*, "aut hori zePaynment Channel ") ;
rout er. set Channel Mappi ng("DEBI T", "aut hori zePaynent Channel ") ;
return router;

The equivalent router, using the Java DSL:

@Bean
public IntegrationFl ow routerFl ow() {
return IntegrationFl ows. fron("routingChannel ")
.route("payl oad. paynent Type", r ->r
. channel Mappi ng(" CASH', "cashPaynent Channel ")
. channel Mappi ng(" CREDI T", "aut hori zePaynent Channel ")
. channel Mappi ng(" DEBI T*, "aut hori zePaynent Channel "))

.get();

To simplify things even more, the SpEL expression may evaluate to a channel name:

<int:router input-channel ="inChannel" expression="payl oad + ' Channel'"/>

In the above configuration the result channel will be computed by the SpEL expression which simply
concatenates the value of the payl oad with the literal String Channel.

Another value of SpEL for configuring routers is that an expression can actually return a Col | ect i on,
effectively making every <r out er > a Recipient List Router. Whenever the expression returns multiple
channel values the Message will be forwarded to each channel.

<int:router input-channel ="inChannel" expression="headers.channels"/>

In the above configuration, if the Message includes a header with the name channels the value of which
is a Li st of channel names then the Message will be sent to each channel in the list. You may also
find Collection Projection and Collection Selection expressions useful to select multiple channels. For
further information, please see:

» Collection Projection

» Collection Selection

Configuring a Router with Annotations

When using @out er to annotate a method, the method may return either a MessageChannel or
St ri ng type. In the latter case, the endpoint will resolve the channel name as it does for the default
output channel. Additionally, the method may return either a single value or a collection. If a collection
is returned, the reply message will be sent to multiple channels. To summarize, the following method
signatures are all valid.

5.0.12.RELEASE Spring Integration 75

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-projection
http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-selection

Spring Integration Reference Manual

@Rout er
publ i c MessageChannel route(Message nessage) {...}

@Rout er
public List<MessageChannel > rout e(Message nessage) {...}

@Rout er
public String route(Foo payload) {...}

@Rout er
public List<String> route(Foo payload) {...}

In addition to payload-based routing, a Message may be routed based on metadata available within the
message header as either a property or attribute. In this case, a method annotated with @Rout er may
include a parameter annotated with @eader which is mapped to a header value as illustrated below
and documented in the section called “CompletableFuture”.

@Rout er
public List<String> route(@ader("orderStatus”) OrderStatus status)

Note

For routing of XML-based Messages, including XPath support, see the section called
“CompletableFuture”.

Also see the section called “CompletableFuture” in Java DSL chapter for more information about routers
configuration.

Dynamic Routers

So as you can see, Spring Integration provides quite a few different router configurations for common
content-based routing use cases as well as the option of implementing custom routers as POJOs. For
example Payl oadTypeRout er provides a simple way to configure a router which computes channel s
based on the payl oad t ype of the incoming Message while Header Val ueRout er provides the same
convenience in configuring a router which computes channel s by evaluating the value of a particular
Message Header. There are also expression-based (SpEL) routers where the channel is determined
based on evaluating an expression. Thus, these type of routers exhibit some dynamic characteristics.

However these routers all require static configuration. Even in the case of expression-based routers, the
expression itself is defined as part of the router configuration which means that_the same expression
operating on the same value will always result in the computation of the same channel_. This is
acceptable in most cases since such routes are well defined and therefore predictable. But there are
times when we need to change router configurations dynamically so message flows may be routed to
a different channel.

Example:

You might want to bring down some part of your system for maintenance and temporarily re-reroute
messages to a different message flow. Or you may want to introduce more granularity to your message
flow by adding another route to handle a more concrete type of j ava. | ang. Nunber (in the case of
Payl oadTypeRout er).

Unfortunately with static router configuration to accomplish this, you would have to bring down your
entire application, change the configuration of the router (change routes) and bring it back up. This is
obviously not the solution.

5.0.12.RELEASE Spring Integration 76

Spring Integration Reference Manual

The Dynamic Router pattern describes the mechanisms by which one can change/configure routers
dynamically without bringing down the system or individual routers.

Before we getinto the specifics of how this is accomplished in Spring Integration, let’s quickly summarize
the typical flow of the router, which consists of 3 simple steps:

» Step 1 - Compute channel identi fier which is avalue calculated by the router once it receives
the Message. Typically itis a St ri ng or and instance of the actual MessageChannel .

» Step 2 - Resolve channel identifier tochannel name.We’'ll describe specifics of this process
in a moment.

» Step 3 - Resolve channel nane to the actual MessageChannel

There is not much that can be done with regard to dynamic routing if Step 1 results in the actual instance
of the MessageChannel , simply because the MessageChannel is the final product of any router’s job.
However, if Step 1 results in a channel identifier thatis not an instance of MessageChannel ,
then there are quite a few possibilities to influence the process of deriving the Message Channel . Lets
look at couple of the examples in the context of the 3 steps mentioned above:

Payload Type Router

<i nt: payl oad-type-router input-channel ="routingChannel ">
<int:mappi ng type="java.lang. String" channel ="channel 1" />
<int:mappi ng type="java.l ang. | nteger" channel ="channel 2" />
</int: payl oad-type-router>

Within the context of the Payload Type Router the 3 steps mentioned above would be realized as:

e Step 1- Compute channel identifier which is the fully qualified name of the payload type (e.qg.,
java.lang.String).

» Step 2 - Resolve channel identifier tochannel name where the result of the previous step is
used to select the appropriate value from the payload type mapping defined via mappi ng element.

» Step 3 - Resolve channel nane to the actual instance of the MessageChannel as a reference
to a bean within the Application Context (which is hopefully a MessageChannel) identified by the
result of the previous step.

In other words, each step feeds the next step until the process completes.

Header Value Router

<i nt:header-val ue-router input-channel ="i nput Channel " header - name="t est Header " >
<i nt: mappi ng val ue="foo0" channel ="fooChannel " />
<i nt:mappi ng val ue="bar" channel ="bar Channel " />

</int: header-val ue-router>

Similar to the PayloadTypeRouter:

» Step 1- Compute channel identifier which isthe value of the header identified by the header -
nane attribute.

» Step 2 - Resolve channel identifier tochannel name where the result of the previous step is
used to select the appropriate value from the general mapping defined via mappi ng element.

5.0.12.RELEASE Spring Integration 77

http://www.eaipatterns.com/DynamicRouter.html

Spring Integration Reference Manual

» Step 3 - Resolve channel nane to the actual instance of the MessageChannel as a reference
to a bean within the Application Context (which is hopefully a MessageChannel) identified by the
result of the previous step.

The above two configurations of two different router types look almost identical. However if we look at
the alternate configuration of the Header Val ueRout er we clearly see that there is no mappi ng sub
element:

<i nt:header-val ue-router input-channel ="input Channel " header-nane="t est Header " >

But the configuration is still perfectly valid. So the natural question is what about the mapping in the
Step 27?

What this means is that Step 2 is now an optional step. If mappi ng is not defined then the channel
i denti fi er value computed in Step 1 will automatically be treated as the channel nane, which will
now be resolved to the actual MessageChannel asin Step 3. What it also means is that Step 2 is one
of the key steps to provide dynamic characteristics to the routers, since it introduces a process which
allows you to change the way channel identifier resolves to ‘channel name’, thus influencing the process
of determining the final instance of the MessageChannel from the initial channel identifier.

For Example:

In the above configuration let's assume that the t est Header value is kermit which is now a channel
i dentifier (Step 1). Since there is no mapping in this router, resolving this channel i dentifier
toachannel nane (Step 2) isimpossible and this channel i denti fi er isnow treated as channel
nane. However what if there was a mapping but for a different value? The end result would still be the
same and that is: if a new value cannot be determined through the process of resolving the channel
identifier to a channel name, such channel identifier becomes channel name.

So all that is left is for Step 3 to resolve the channel nane (kermit) to an actual instance of the
MessageChannel identified by this name. That basically involves a bean lookup for the name provided.
So now all messages which contain the header/value pair as t est Header =ker m t are going to be
routed to a MessageChannel whose bean name (id) is kermit.

But what if you want to route these messages to the simpson channel? Obviously changing a static
configuration will work, but will also require bringing your system down. However if you had access to
the channel identifier map,thenyou could justintroduce a new mapping where the header/value
pair is now ker nmi t =si npson, thus allowing Step 2 to treat kermit as a channel identifier while
resolving it to simpson as the channel nane.

The same obviously applies for Payl oadTypeRout er, where you can now remap or remove a
particular payload type mapping. In fact, it applies to every other router, including expression-based
routers, since their computed values will now have a chance to go through Step 2 to be additionally
resolved to the actual channel nane.

Any router that is a subclass of the Abstract Mappi ngMessageRout er (which includes most
framework defined routers) is a Dynamic Router simply because the channel Mappi ng is defined
at the Abst r act Mappi ngMessageRout er level. That map’s setter method is exposed as a public
method along with setChannelMapping and removeChannelMapping methods. These allow you to
change/add/remove router mappings at runtime as long as you have a reference to the router itself. It
also means that you could expose these same configuration options via JMX (see the section called
“CompletableFuture”) or the Spring Integration ControlBus (see the section called “CompletableFuture”)
functionality.

5.0.12.RELEASE Spring Integration 78

Spring Integration Reference Manual

Manage Router Mappings using the Control Bus

One way to manage the router mappings is through the Control Bus pattern which exposes a Control
Channel where you can send control messages to manage and monitor Spring Integration components,
including routers.

Note

For more information about the Control Bus, please see chapter the section called
“CompletableFuture”.

Typically you would send a control message asking to invoke a particular operation on a particular
managed component (e.g. router). Two managed operations (methods) that are specific to changing
the router resolution process are:

e public void setChannel Mappi ng(String key, String channel Nane) - will allow you to
add a new or modify an existing mapping between channel identifier andchannel name

* public void renpveChannel Mappi ng(String key) - will allow you to remove a particular
channel mapping, thus disconnecting the relationship between channel i denti fi er andchannel
nane

Note that these methods can be used for simple changes (updating a single route or adding/removing
a route). However, if you want to remove one route and add another, the updates are not atomic. This
means the routing table may be in an indeterminate state between the updates. Starting with version
4.0, you can now use the control bus to update the entire routing table atomically.

e public Map<String, String>getChannel Mappi ngs() returns the current mappings.

« public void replaceChannel Mappi ngs(Properties channel Mappi ngs) updates the
mappings. Notice that the parameter is a properties object; this allows the use of the inbuilt
StringToPropertiesConverter by a control bus command, for example:

"@router. handl er'.repl aceChannel Mappi ngs(' f oo=qux \n baz=bar')"

» note that each mapping is separated by a newline character (\ n). For programmatic changes to the
map, it is recommended that the set Channel Mappi ngs method is used instead, for type-safety.
Any non-String keys or values passed into r epl aceChannel Mappi ngs are ignored.

Manage Router Mappings using JMX

You can also expose a router instance with Spring’s JMX support, and then use your favorite JMX client
(e.g., JConsole) to manage those operations (methods) for changing the router’s configuration.

Note

For more information about Spring Integration’s JMX support, please see chapter the section
called “CompletableFuture”.

Routing Slip

Starting with version 4.1, Spring Integration provides an implementation of the Routing Slip Enterprise
Integration Pattern. It is implemented as ar out i ngSl i p message header which is used to determine

5.0.12.RELEASE Spring Integration 79

http://www.eaipatterns.com/ControlBus.html
http://www.eaipatterns.com/RoutingTable.html

Spring Integration Reference Manual

the next channel in Abstract MessagePr oduci ngHandl er s, when an out put Channel isn't
specified for the endpoint. This pattern is useful in complex, dynamic, cases when it can become difficult
to configure multiple routers to determine message flow. When a message arrives at an endpoint that
has no out put - channel , the rout i ngSl i p is consulted to determine the next channel to which the
message will be sent. When the routing slip is exhausted, normal r epl yChannel processing resumes.

Configuration for the Routing Slip is presented as a Header Enri cher option - a semicolon-separated
Routing Slip pat h entries:

<util:properties id="properties">

<beans: prop key="nyRout ePat h1" >channel 1</ beans: pr op>

<beans: prop key="nyRout ePat h2" >r equest . header s[myRout i ngSl i pChannel] </ beans: pr op>
</util:properties>

<cont ext: property-pl acehol der properties-ref="properties"/>

<header - enri cher input-channel ="input" output-channel ="process">
<routing-slip
val ue="${nyRout ePat h1}; @ outingSli pRoutingPojo.get(request, reply);
routingSlipRoutingStrategy; ${nyRoutePath2}; finishChannel"/>
</ header - enri cher >

In this sample we have:

* A <context:property-pl acehol der> configuration to demonstrate that the entries in the
Routing Slip pat h can be specified as resolvable keys.

» The <header-enricher> <routing-slip> sub-element is used to populate the
Rout i ngSl i pHeader Val ueMessagePr ocessor to the Header Enri cher handler.

» The Rout i ngSl i pHeader Val ueMessagePr ocessor accepts a String array of resolved Routing
Slip pat h entries and returns (from pr ocessMessage()) a si ngl et onMap with the pat h as key
and 0 as initial r out i ngSl i pl ndex.

Routing Slip pat h entries can contain MessageChannel bean names,
Routi ngSli pRouteStrategy bean names and also Spring expressions (SpEL). The
Rout i ngSl i pHeader Val ueMessagePr ocessor checks each Routing Slip pat h entry against the
BeanFact or y on the first pr ocessMessage invocation. It converts entries, which aren’t bean names
in the application context, to Expr essi onEval uati ngRout i ngSl i pRout eSt r at egy instances.
Rout i ngSl i pRout eSt r at egy entries are invoked multiple times, until they return null, or an empty
String.

Since the Routing Slip is involved in the get Qut put Channel process we have a request-
reply context. The RoutingSli pRouteStrategy has been introduced to determine the next
out put Channel using the request Message, as well as the repl y object. An implementation
of this strategy should be registered as a bean in the application context and its bean name
is used in the Routing Slip path. The Expressi onEval uati ngRouti ngSl i pRout eStr at egy
implementation is provided. It accepts a SpEL expression, and an internal
Expr essi onEval uati ngRout i ngSl i pRout eSt r at egy. Request AndRepl y object is used as the
root object of the evaluation context. This is to avoid the overhead of Eval uati onCont ext
creation for each ExpressionEval uatingRoutingSlipRouteStrategy. getNextPath()
invocation. It is a simple Java Bean with two properties - Message<?> request
and Object reply. With this expression implementation, we can specify
Routing Slip path entries using SpEL (@outingSlipRoutingPojo.get(request,
reply), request. headers[nyRoutingSlipChannel]) avoiding a bean definition for the
Routi ngSl i pRout eStr at egy.

5.0.12.RELEASE Spring Integration 80

Spring Integration Reference Manual

Note

The request Message argument is always a Message<?>; depending on context, the reply
object may be a Message<?>, an Abstract | nt egrati onMessageBui | der or an arbitrary
application domain object (if, for example, it is returned by a POJO method invoked by a service
activator). In the first two cases, the usual "message" properties are available (payl oad and
header s) when using SpEL (or a Java implementation). When an arbitrary domain object,
these properties are, obviously, not available. Care should be taken when using routing slips in
conjunction with POJO methods if the result is used to determine the next path.

Important

If a Routing Slip is involved in a distributed environment - cross-JVM application, r equest -
r epl y through a Message Broker (e.g. the section called “CompletableFuture”, the section called
“CompletableFuture”), or persistence MessageSt or e (the section called “CompletableFuture”)
is used in the integration flow, etc., - it is recommended to not use inline expressions for
the Routing Slip pat h. The framework (Routi ngSli pHeader Val ueMessagePr ocessor)
converts them to Expr essi onEval uati ngRout i ngSl i pRout eSt r at egy objects and they
are used in the routi ngSl i p message header. Since this class isn't Seri al i zabl e (and it
can't be, because it depends on the BeanFact or y) the entire Message becomes non-serializable
and in any distributed operation we end up with Not Seri al i zabl eExcepti on. To overcome
this limitation, register an Expr essi onEval uat i ngRout i ngSI i pRout eSt r at egy bean with
the desired SpEL and use its bean name in the Routing Slip pat h configuration.

For Java configuration, simply add a Rout i ngSl i pHeader Val ueMessagePr ocessor instance to
the Header Enr i cher bean definition:

@Bean

@ ansf or mer (i nput Channel = "routingSlipHeader Channel ")

publ i ¢ Header Enri cher headerEnricher () {

return new Header Enri cher (Col | ecti ons. si ngl et onMap(| nt egr at i onMessageHeader Accessor . ROUTI NG_SLI P,
new Rout i ngSl i pHeader Val ueMessagePr ocessor (" myRout ePat h1",

"@outingSlipRoutingPojo.get(request, reply)",
"routingSlipRoutingStrategy",
"request . header s[myRout i ngSl i pChannel 1",
"finishChannel ")));

}

The Routing Slip algorithm works as follows when an endpoint produces a reply and there is no
out put Channel defined:

The routi ngSli pl ndex is used to get a value from the Routing Slip pat h list.
If the value by r out i ngSl i pl ndex is Stri ng, it is used to get a bean from BeanFact ory.

If a returned bean is an instance of MessageChannel , it is used as the next out put Channel and
therouti ngSl i pl ndex is incremented in the reply message header (the Routing Slip pat h entries
remain unchanged).

If a returned bean is an instance of Rout i ngSl i pRout eSt r at egy and its get Next Pat h doesn't
return an empty String, that result is used a bean name for the next out put Channel . The
routingSli pl ndex remains unchanged.

If RoutingSlipRouteStrategy. get Next Path returns an empty String, the
routingSlipl ndex is incremented and the get Qut put Channel FronRout i ngSl i p is invoked
recursively for the next Routing Slip pat h item;

5.0.12.RELEASE Spring Integration 81

Spring Integration Reference Manual

« If the next Routing Slip path entry isnt a String it must be an instance of
Rout i ngSl i pRout eSt r at egy;

* Whenthe routi ngSl i pl ndex exceeds the size of the Routing Slip pat h list, the algorithm moves
to the default behavior for the standard r epl yChannel header.

Process Manager Enterprise Integration Pattern

The EIP also defines the Process Manager pattern. This pattern can now easily be implemented
using custom Process Manager logic encapsulated in a RoutingSli pRout eStrategy within
the routing slip. In addition to a bean name, the Routi ngSl i pRout eStrat egy can return any
MessageChannel object; and there is no requirement that this MessageChannel instance is a
bean in the application context. This way, we can provide powerful dynamic routing logic, when
there is no prediction which channel should be used; a MessageChannel can be created within
the Rout i ngSl i pRout eSt r at egy and returned. A Fi xedSubscr i ber Channel with an associated
MessageHandl er implementation is good combination for such cases. For example we can route to
a Reactor Stream:

@Bean
public Pol | abl eChannel resultsChannel () {
return new QueueChannel ();
}
@Bean
public RoutingSlipRouteStrategy routeStrategy() {
return (request Message, reply) -> requestMessage. get Payl oad() instanceof String
? new Fi xedSubscri ber Channel (m - >
Mono. just ((String) m get Payl oad())
.map(String::toUpper Case)
.subscribe(v -> nessagi ngTenpl at e() . convert AndSend(resul t sChannel (), Vv)))
: new Fi xedSubscri ber Channel (m - >
Mono. just ((I nteger) m getPayl oad())
.map(v -> v * 2)
.subscribe(v -> messagi ngTenpl at e(). convert AndSend(resul t sChannel (), v)));

6.2 Filter

Introduction

Message Filters are used to decide whether a Message should be passed along or dropped based on
some criteria such as a Message Header value or Message content itself. Therefore, a Message Filter
is similar to a router, except that for each Message received from the filter's input channel, that same
Message may or may not be sent to the filter’s output channel. Unlike the router, it makes no decision
regarding which Message Channel to send the Message to but only decides whether to send.

Note

As you will see momentarily, the Filter also supports a discard channel, so in certain cases it can
play the role of a very simple router (or "switch") based on a boolean condition.

In Spring Integration, a Message Filter may be configured as a Message Endpoint that delegates to an
implementation of the MessageSel ect or interface. That interface is itself quite simple:

public interface MessageSel ector {

bool ean accept (Message<?> nessage) ;

5.0.12.RELEASE Spring Integration 82

http://www.eaipatterns.com/ProcessManager.html
https://github.com/reactor/reactor/wiki/Streams

Spring Integration Reference Manual

The MessageFi | t er constructor accepts a selector instance:

MessageFilter filter = new MessageFilter(soneSel ector)

In combination with the namespace and SpEL, very powerful filters can be configured with very little
java code.

Configuring Filter
Configuring a Filter with XML

The <filter> element is used to create a Message-selecting endpoint. In addition to i nput - channel
and out put - channel attributes, it requires a ref . The ref may point to a MessageSel ect or
implementation:

<int:filter input-channel ="input" ref="selector" output-channel ="output"/>

<bean id="sel ector" class="exanpl e. MessageSel ectorlnpl"/>

Alternatively, the net hod attribute can be added at which point the r ef may refer to any object. The
referenced method may expect either the Message type or the payload type of inbound Messages.
The method must return a boolean value. If the method returns true, the Message will be sent to the
output-channel.

<int:filter input-channel ="input" output-channel ="output"
ref =" exanpl eCbj ect" net hod="soneBool eanRet ur ni ngMet hod"/ >

<bean i d="exanpl e(bj ect" cl ass="exanpl e. Somehj ect"/ >

If the selector or adapted POJO method returns f al se, there are a few settings that control the handling
of the rejected Message. By default (if configured like the example above), rejected Messages will be
silently dropped. If rejection should instead resultin an error condition, then setthe t hr ow except i on-
on-rej ection attribute to t r ue:

<int:filter input-channel ="input" ref="selector"
out put - channel ="out put" throw exception-on-rejection="true"/>

If you want rejected messages to be routed to a specific channel, provide that reference as the
di scard-channel :

<int:filter input-channel ="input" ref="selector"
out put - channel =" out put" di scard-channel ="rej ect edMessages"/ >

Also see the section called “CompletableFuture”.

Note

Message Filters are commonly used in conjunction with a Publish Subscribe Channel. Many filter
endpoints may be subscribed to the same channel, and they decide whether or not to pass the
Message to the next endpoint which could be any of the supported types (e.g. Service Activator).
This provides a reactive alternative to the more proactive approach of using a Message Router
with a single Point-to-Point input channel and multiple output channels.

Using ar ef attribute is generally recommended if the custom filter implementation is referenced in other
<filter> definitions. However if the custom filter implementation is scoped to a single <filter>
element, provide an inner bean definition:

5.0.12.RELEASE Spring Integration 83

Spring Integration Reference Manual

<int:filter method="sonmeMethod" input-channel ="i nChannel" out put-channel =" out Channel ">
<beans: bean cl ass="org.foo. MyCustonFilter"/>

</filter>

Note

Using both the r ef attribute and an inner handler definition in the same <fi | t er > configuration
is not allowed, as it creates an ambiguous condition, and an Exception will be thrown.

Important

If the "ref" attribute references a bean that extends MessageFi | t er (such as filters provided
by the framework itself), the configuration is optimized by injecting the output channel into
the filter bean directly. In this case, each "ref' must be to a separate bean instance (or
a prot ot ype-scoped bean), or use the inner <bean/ > configuration type. However, this
optimization only applies if you don’t provide any filter-specific attributes in the filter XML definition.
If you inadvertently reference the same message handler from multiple beans, you will get a
configuration exception.

With the introduction of SpEL support, Spring Integration added the expr essi on attribute to the filter
element. It can be used to avoid Java entirely for simple filters.

<int:filter input-channel="input" expression="payl oad. equal s(' nonsense')"/>

The string passed as the expression attribute will be evaluated as a SpEL expression with the Message
available in the evaluation context. If it is necessary to include the result of an expression in the scope
of the application context you can use the #{} notation as defined in the SpEL reference documentation.

<int:filter input-channel="input"
expressi on="payl oad. mat ches(#{filterPatterns. nonsensePattern})"/>

If the Expression itself needs to be dynamic, then an expression sub-element may be used. That
provides a level of indirection for resolving the Expression by its key from an ExpressionSource. That
is a strategy interface that you can implement directly, or you can rely upon a version available in
Spring Integration that loads Expressions from a "resource bundle" and can check for modifications
after a given number of seconds. All of this is demonstrated in the following configuration sample where
the Expression could be reloaded within one minute if the underlying file had been modified. If the
ExpressionSource bean is named "expressionSource", then it is not necessary to provide the™ source
attribute on the <expression> element, but in this case it's shown for completeness.

<int:filter input-channel ="input" output-channel ="out put">
<int:expression key="filterPatterns.exanple" source="nyExpressions"/>
</int:filter>

<beans: bean id="nyExpressions" id="nmyExpressions"
cl ass="0.s.i.expression. Rel oadabl eResour ceBundl eExpr essi onSour ce" >
<beans: property name="basenanme" val ue="confi g/integration/expressions"/>
<beans: property name="cacheSeconds" val ue="60"/>

</ beans: bean>

Then, the config/integration/expressions.properties file (or any more specific version with a locale
extension to be resolved in the typical way that resource-bundles are loaded) would contain a key/value
pair:

filterPatterns. exanpl e=payl oad > 100

5.0.12.RELEASE Spring Integration 84

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-beandef

Spring Integration Reference Manual

Note

All of these examples that use expr essi on as an attribute or sub-element can also be applied
within transformer, router, splitter, service-activator, and header-enricher elements. Of course,
the semantics/role of the given component type would affect the interpretation of the evaluation
result in the same way that the return value of a method-invocation would be interpreted. For
example, an expression can return Strings that are to be treated as Message Channel names by
a router component. However, the underlying functionality of evaluating the expression against
the Message as the root object, and resolving bean names if prefixed with @ is consistent across
all of the core EIP components within Spring Integration.

Configuring a Filter with Annotations

A filter configured using annotations would look like this.

public class PetFilter {

@ilter 0O
publ i c bool ean dogsOnl y(String input) {

}

O An annotation indicating that this method shall be used as a filter. Must be specified if this class
will be used as a filter.

All of the configuration options provided by the xml element are also available for the @il ter
annotation.

The filter can be either referenced explicitly from XML or, if the @/essageEndpoi nt annotation is
defined on the class, detected automatically through classpath scanning.

Also see the section called “CompletableFuture”.

6.3 Splitter

Introduction

The Splitter is a component whose role is to partition a message in several parts, and send the resulting
messages to be processed independently. Very often, they are upstream producers in a pipeline that
includes an Aggregator.

Programming model

The API for performing splitting consists of one base class, Abst r act MessageSplitter, whichis a
MessageHandl er implementation, encapsulating features which are common to splitters, such as filling
in the appropriate message headers CORRELATI ON_| D, SEQUENCE_SI ZE, and SEQUENCE NUVBER
on the messages that are produced. This enables tracking down the messages and the results of their
processing (in a typical scenario, these headers would be copied over to the messages that are produced
by the various transforming endpoints), and use them, for example, in a Composed Message Processor
scenario.

An excerpt from Abst r act MessageSpl i tt er can be seen below:

5.0.12.RELEASE Spring Integration 85

http://www.eaipatterns.com/DistributionAggregate.html

Spring Integration Reference Manual

public abstract class Abstract MessageSplitter
ext ends Abstract Repl yProduci ngMessageConsuner {

protected abstract Cbject splitMessage(Message<?> nessage);

To implement a specific Splitter in an application, extend Abst r act MessageSpl i tt er and implement
the spl i t Message method, which contains logic for splitting the messages. The return value may be
one of the following:

 ACol | ecti onoranarray of Messages,oranlterabl e (orlt erat or)thatiterates over Messages
- in this case the messages will be sent as such (after the CORRELATI ON_| D, SEQUENCE_SI ZE and
SEQUENCE_NUMBER are populated). Using this approach gives more control to the developer, for
example for populating custom message headers as part of the splitting process.

« A Coll ection or an array of non-Message objects, or an | t er abl e (or | t er at or) that iterates
over non-Message objects - works like the prior case, except that each collection element will be used
as a Message payload. Using this approach allows developers to focus on the domain objects without
having to consider the Messaging system and produces code that is easier to test.

» aMessage or non-Message object (but not a Collection or an Array) - it works like the previous cases,
except a single message will be sent out.

In Spring Integration, any POJO can implement the splitting algorithm, provided that it defines a method
that accepts a single argument and has a return value. In this case, the return value of the method will
be interpreted as described above. The input argument might either be a Message or a simple POJO.
In the latter case, the splitter will receive the payload of the incoming message. Since this decouples the
code from the Spring Integration API and will typically be easier to test, it is the recommended approach.

Iterators

Starting with version 4.1, the Abstract MessageSplitter supports the |Iterator type for the
val ue to split. Note, in the case of an Iterator (or Iterable), we don't have access to the
number of underlying items and the SEQUENCE S| ZE header is set to 0. This means that the
default SequenceSi zeRel easeSt r at egy of an <aggr egat or > won’t work and the group for the
CORRELATI ON_I Dfrom the spl i tter won't be released; it will remain as i nconpl et e. In this case
you should use an appropriate custom Rel easeSt r at egy or rely on send- parti al -resul t - on-
expi ry together with gr oup-ti neout ora MessageG oupSt or eReaper .

Starting with version 5.0, the AbstractMessageSplitter provides protected
obt ai nSi zel f Possi bl e() methods to allow the determination of the size of the |t er abl e and
| t er at or objects if that is possible. For example XPat hMessageSpl i tt er can determine the size
of the underlying NodeLi st object. And starting with version 5.0.9, this method also properly returns a
size of the com f ast erxml . j ackson. cor e. Tr eeNode.

An |t er at or object is useful to avoid the need for building an entire collection in the memory before
splitting. For example, when underlying items are populated from some external system (e.g. DataBase
or FTP MGET) using iterations or streams.

Stream and Flux

Starting with version 5.0, the Abst r act MessageSpl i tt er supports the Java St r eamand Reactive
Streams Publ i sher types for the val ue to split. In this case the target | t er at or is built on their
iteration functionality.

5.0.12.RELEASE Spring Integration 86

Spring Integration Reference Manual

In addition, if Splitter’s output channel is an instance of aReact i veSt r eansSubscri babl eChannel ,
the Abstract MessageSpl i tter produces a Fl ux result instead of an It er at or and the output

channel is subscribed to this FI ux for back-pressure based splitting on downstream flow demand.
Configuring Splitter
Configuring a Splitter using XML

A splitter can be configured through XML as follows:
<i nt:channel id="inputChannel"/>

<int:splitter id="splitter" 0O
ref="splitterBean" 0O
met hod="split" 0O
i nput - channel ="i nput Channel " 0O
out put - channel =" out put Channel " /> 0O

<i nt:channel id="outputChannel"/>

<beans: bean id="splitterBean" class="sanple.PojoSplitter"/>

O The id of the splitter is optional.

O Areference to a bean defined in the application context. The bean must implement the splitting logic
as described in the section above .Optional. If reference to a bean is not provided, then itis assumed
that the payload of the Message that arrived on the i nput - channel is an implementation
of java. util. Col |l ecti on and the default splitting logic will be applied to the Collection,

incorporating each individual element into a Message and sending it to the out put - channel .
0 The method (defined on the bean specified above) that implements the splitting logic.Optional.

The input channel of the splitter. Required.

O

O The channel to which the splitter will send the results of splitting the incoming message. Optional

(because incoming messages can specify a reply channel themselves).

Using ar ef attribute is generally recommended if the custom splitter implementation may be referenced
in other <spl i tter> definitions. However if the custom splitter handler implementation should be

scoped to a single definition of the <spl i t t er >, configure an inner bean definition:

<int:splitter id="testSplitter" input-channel ="inChannel" method="split"
out put - channel =" out Channel ">
<beans: bean cl ass="org.foo. TestSplitter"/>
</int:splitter>

Note

Using both a ref attribute and an inner handler definition in the same <int:splitter>
configuration is not allowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

Important

If the "ref" attribute references a bean that extends Abst r act MessagePr oduci ngHandl er
(such as splitters provided by the framework itself), the configuration is optimized by injecting
the output channel into the handler directly. In this case, each "ref' must be to a separate bean
instance (or a pr ot ot ype-scoped bean), or use the inner <bean/ > configuration type. However,
this optimization only applies if you don’t provide any splitter-specific attributes in the splitter XML

5.0.12.RELEASE Spring Integration

87

Spring Integration Reference Manual

definition. If you inadvertently reference the same message handler from multiple beans, you will
get a configuration exception.

Configuring a Splitter with Annotations

The @plitter annotation is applicable to methods that expect either the Message type or the
message payload type, and the return values of the method should be a Col | ect i on of any type. If
the returned values are not actual Message objects, then each item will be wrapped in a Message as
its payload. Each message will be sent to the designated output channel for the endpoint on which the
@Bpl itter is defined.

@plitter
Li st <Li nel ten> extractltens(Order order) {
return order.getltens()

}

Also see the section called “CompletableFuture”.

Also see the section called “CompletableFuture” in Java DSL chapter.
6.4 Aggregator

Introduction

Basically a mirror-image of the Splitter, the Aggregator is a type of Message Handler that receives
multiple Messages and combines them into a single Message. In fact, an Aggregator is often a
downstream consumer in a pipeline that includes a Splitter.

Technically, the Aggregator is more complex than a Splitter, because it is stateful as it must hold the
Messages to be aggregated and determine when the complete group of Messages is ready to be
aggregated. In order to do this it requires a MessageSt or e.

Functionality

The Aggregator combines a group of related messages, by correlating and storing them, until the group
is deemed complete. At that point, the Aggregator will create a single message by processing the whole
group, and will send the aggregated message as output.

Implementing an Aggregator requires providing the logic to perform the aggregation (i.e., the creation
of a single message from many). Two related concepts are correlation and release.

Correlation determines how messages are grouped for aggregation. In Spring Integration correlation is
done by default based onthe | nt egr at i onMessageHeader Accessor . CORRELATI ON_| Dmessage
header. Messages with the same | nt egr at i onMessageHeader Accessor . CORRELATI ON_| D will
be grouped together. However, the correlation strategy may be customized to allow other ways of
specifying how the messages should be grouped together by implementing a Cor r el at i onSt r at egy
(see below).

To determine the point at which a group of messages is ready to be processed,
a Rel easeStrategy is consulted. The default release strategy for the Aggregator will
release a group when all messages included in a sequence are present, based on the
I nt egrati onMessageHeader Accessor . SEQUENCE_SI ZE header. This default strategy may be
overridden by providing a reference to a custom Rel easeSt r at egy implementation.

5.0.12.RELEASE Spring Integration 88

Spring Integration Reference Manual

Programming model
The Aggregation API consists of a number of classes:

* The interface MessageG oupPr ocessor, and its subclasses:
Met hodl nvoki ngAggr egat i ngMessageG oupPr ocessor and
Expr essi onEval uat i ngMessageG oupPr ocessor

* The Rel easeSt r at egy interface and its default implementation
Si npl eSequenceSi zeRel easeStr at egy

* The Correl ati onStrat egy interface and its default implementation
Header Attri buteCorrel ati onStrat egy

AggregatingMessageHandler

The Aggr egat i ngMessageHand| er (subclass of Abst ract Corr el ati ngMessageHandl er) is a
MessageHandl er implementation, encapsulating the common functionalities of an Aggregator (and
other correlating use cases), which are:

 correlating messages into a group to be aggregated

* maintaining those messages in a MessageSt or e until the group can be released
 deciding when the group can be released

» aggregating the released group into a single message

* recognizing and responding to an expired group

The responsibility of deciding how the messages should be grouped together is delegated to a
Correl ati onSt r at egy instance. The responsibility of deciding whether the message group can be
released is delegated to a Rel easeSt r at egy instance.

Here is a brief highlight of the base Abstract Aggregati ngMessageG oupProcessor (the
responsibility of implementing the aggr egat ePayl| oads method is left to the developer):

public abstract class AbstractAggregati ngMessageG oupProcessor
i npl enents MessageG oupProcessor {

protected Map<String, Object> aggregat eHeader s(MessageG oup group) {
/1 default inplenentation exists

}

protected abstract Object aggregatePayl oads(MessageG oup group, Map<String, Object> defaul t Headers);

The Correl ati onStrat egy is owned by the Abst r act Corr el ati ngMessageHandl er and it has
a default value based on the | nt egr at i onMessageHeader Accessor . CORRELATI ON_| Dmessage
header:

5.0.12.RELEASE Spring Integration 89

Spring Integration Reference Manual

publ i c Abstract Correl ati ngMessageHand! er (MessageG oupProcessor processor, MessageG oupStore store,
CorrelationStrategy correlationStrategy, ReleaseStrategy rel easeStrategy) {

this.correlationStrategy = correlationStrategy == null ?
new Header Attri buteCorrel ati onStrategy(|ntegrati onMessageHeader Accessor . CORRELATI ON_I D) :
correl ati onStrategy;
this.releaseStrategy = releaseStrategy == null ? new Sinpl eSequenceSi zeRel easeStrat egy() :
rel easeStrat egy;

As for actual processing of the message group, the default implementation is the
Def aul t Aggr egat i ngMessageG oupProcessor. It creates a single Message whose payload
is a List of the payloads received for a given group. This works well for simple Scatter Gather
implementations with either a Splitter, Publish Subscribe Channel, or Recipient List Router upstream.

Note

When using a Publish Subscribe Channel or Recipient List Router in this type of scenario, be sure
to enable the flag to appl y- sequence. That will add the necessary headers (CORRELATI ON_| D,
SEQUENCE_NUMBER and SEQUENCE_SI ZE). That behavior is enabled by default for Splitters in
Spring Integration, but it is not enabled for the Publish Subscribe Channel or Recipient List Router
because those components may be used in a variety of contexts in which these headers are not
necessary.

When implementing a specific aggregator strategy for an application, a developer can extend
Abst r act Aggr egat i ngMessageG oupProcessor and implement the aggregat ePayl oads
method. However, there are better solutions, less coupled to the API, for implementing the aggregation
logic which can be configured easily either through XML or through annotations.

In general, any POJO can implement the aggregation algorithm if it provides a method that accepts a
single j ava. util . Li st as an argument (parameterized lists are supported as well). This method will
be invoked for aggregating messages as follows:

« if the argument is a java. util. Col |l ecti on<T>, and the parameter type T is assignable to
Message, then the whole list of messages accumulated for aggregation will be sent to the aggregator

« if the argument is a non-parameterized j ava. util. Col | ecti on or the parameter type is not
assignable to Message, then the method will receive the payloads of the accumulated messages

« if the return type is not assignable to Message, then it will be treated as the payload for a Message
that will be created automatically by the framework.

Note

In the interest of code simplicity, and promoting best practices such as low coupling, testability,
etc., the preferred way of implementing the aggregation logic is through a POJO, and using the
XML or annotation support for configuring it in the application.

Important

The Si mpl eMessageG oup. get Messages() method returns an
unnodi fi abl eCol | ecti on, therefore, if your aggregating POJO method has a
Col | ecti on<Message> parameter, the argument passed in wil be exactly that

5.0.12.RELEASE Spring Integration 90

Spring Integration Reference Manual

Col |l ecti on instance and, when a Si npl eMessageStore is used for the Aggregator,
that original Col | ecti on<Message> will be cleared after releasing the group. Hence the
Col | ecti on<Message> variable in the POJO will be cleared too, if passed out of the aggregator.
If you wish to simply release that collection as-is for further processing, it is required that you build
anew Col | ection (e.g.new ArraylLi st <Message>(messages)) Starting with _version 4.3,
the Framework no longer copies the messages to a new collection, to avoid undesired extra object
creation.

If the MessageG oupPr ocessor 's processMessageG oup method returns a collection, it must be
a collection of Message<?> s. In this case, the messages are released individually. Prior to version
4.2, it was not possible to provide a MessageG oupPr ocessor using XML configuration, only POJO
methods could be used for aggregation. Now, if the framework detects that the referenced (or inner)
bean implements MessagePr ocessor , it is used as the aggregator’s output processor.

If you wish to release a collection of objects from a custom MessageG oupPr ocessor as the payload
of a message, your class should extend Abstract Aggr egati ngMessage& oupPr ocessor and
implement aggr egat ePayl oads() .

Also, since version 4.2, a Si npl eMessageG oupPr ocessor is provided; which simply returns the
collection of messages from the group, which, as indicated above, causes the released messages to
be sent individually.

This allows the aggregator to work as a message barrier where arriving messages are held until the
release strategy fires, and the group is released, as a sequence of individual messages.

ReleaseStrategy

The Rel easeSt r at egy interface is defined as follows:

public interface Rel easeStrategy {

bool ean canRel ease(MessageG oup group);

In general, any POJO can implement the completion decision logic if it provides a method that accepts
asingle j ava. util.Li st as an argument (parameterized lists are supported as well), and returns a
boolean value. This method will be invoked after the arrival of each new message, to decide whether
the group is complete or not, as follows:

 iftheargumentisaj ava. util . Li st <T>, and the parameter type T is assignable to Message, then
the whole list of messages accumulated in the group will be sent to the method

« if the argument is a non-parametrized j ava. uti | . Li st or the parameter type is not assignable to
Message, then the method will receive the payloads of the accumulated messages

» the method must return true if the message group is ready for aggregation, and false otherwise.

For example:

public class M/Rel easeStrategy {

@Rel easeStrat egy
publ i c bool ean canMessagesBeRel eased(Li st <Message<?>>) {...}

5.0.12.RELEASE Spring Integration 91

Spring Integration Reference Manual

public class M/Rel easeStrategy {

@=el easeStrat egy
public bool ean canMessagesBeRel eased(List<String>) {...}

As you can see based on the above signatures, the POJO-based Release Strategy will be passed
a Col | ecti on of not-yet-released Messages (if you need access to the whole Message) or a
Col I ecti on of payload objects (if the type parameter is anything other than Message). Typically
this would satisfy the majority of use cases. However if, for some reason, you need to access the full
MessageG oup then you should simply provide an implementation of the Rel easeSt r at egy interface.

Warning

When handling potentially large groups, it is important to understand how these methods are
invoked because the release strategy may be invoked multiple times before the group is released.
The most efficient is an implementation of Rel easeSt r at egy because the aggregator can
invoke it directly. The second most efficient is a POJO method with a Col | ect i on<Message<?
>> parameter type. The least efficient is a POJO method with a Col | ect i on<Foo> type - the
framework has to copy the payloads from the messages in the group into a new collection (and
possibly attempt conversion on the payloads to Foo) every time the release strategy is called.
Col | ect i on<?> avoids the conversion but still requires creating the new Col | ecti on.

For these reasons, for large groups, it is recommended that you implement
Rel easeSt r at egy.

When the group is released for aggregation, all its not-yet-released messages are processed and
removed from the group. If the group is also complete (i.e. if all messages from a sequence have
arrived or if there is no sequence defined), then the group is marked as complete. Any new messages
for this group will be sent to the discard channel (if defined). Setting expi r e- gr oups- upon-
conpl eti on to true (default is f al se) removes the entire group and any new messages, with the
same correlation id as the removed group, will form a new group. Partial sequences can be released
by using a MessageG oupSt or eReaper together with send- parti al - resul t - on- expi ry being
settotrue.

Important

To facilitate discarding of late-arriving messages, the aggregator must maintain state about the
group after it has been released. This can eventually cause out of memory conditions. To avoid
such situations, you should consider configuring a MessageG oupSt or eReaper to remove the
group metadata; the expiry parameters should be set to expire groups after it is not expected
that late messages will arrive. For information about configuring a reaper, see the section called
“Managing State in an Aggregator: MessageGroupStore”.

Spring Integration provides an out-of-the box implementation for Rel easeStrategy, the
Si npl eSequenceSi zeRel easeSt rat egy. This implementation consults the SEQUENCE NUVBER
and SEQUENCE_SI ZE headers of each arriving message to decide when a message group is complete
and ready to be aggregated. As shown above, it is also the default strategy.

5.0.12.RELEASE Spring Integration 92

Spring Integration Reference Manual

Note

Before version 5.0, the default release strategy was SequenceSi zeRel easeSt r at egy which
does not perform well with large groups. With that strategy, duplicate sequence numbers are
detected and rejected; this operation can be expensive.

If you are aggregating large groups, you don't need to release partial groups, and you don't need
to detect/reject duplicate sequences, consider using the Si npl eSequenceSi zeRel easeSt r at egy
instead - it is much more efficient for these use cases, and is the default since version 5.0 when partial
group release is not specified.

Aggregating Large Groups

The 4.3 release changed the default Col | ecti on for messages in a Si npl eMessageG oup to
HashSet (it was previously a Bl ocki ngQueue). This was expensive when removing individual
messages from large groups (an O(n) linear scan was required). Although the hash set is generally
much faster for removing, it can be expensive for large messages because the hash has to be
calculated (on both inserts and removes). If you have messages that are expensive to hash,
consider using some other collection type. As discussed in the section called “CompletableFuture”,
a Si npl eMessageG oupFactory is provided so you can select the Col | ection that best
suits your needs. You can also provide your own factory implementation to create some other
Col | ecti on<Message<?>>,

Here is an example of how to configure an aggregator with the previous implementation and a
Si npl eSequenceSi zeRel easeStr at egy.

<i nt:aggregator input-channel ="aggregate"
out put - channel ="out" nessage-store="store" rel ease-strategy="rel easer" />

<bean id="store" class="org.springframework.integration.store.Si npl eMessageSt ore">
<property nanme="nessageG oupFactory">
<bean cl ass="org. springfranmework.integration.store.Si npl eMessageG oupFact ory" >
<constructor-arg val ue="BLOCKI NG_QUEUE"/ >
</ bean>
</ property>
</ bean>

<bean id="rel easer" class="Si npl eSequenceSi zeRel easeStrategy" />

CorrelationStrategy

The Correl ati onStr at egy interface is defined as follows:

public interface Correl ationStrategy {

Obj ect get Correl ati onKey(Message<?> nessage) ;

The method returns an Object which represents the correlation key used for associating the message
with a message group. The key must satisfy the criteria used for a key in a Map with respect to the
implementation of equal s() and hashCode() .

In general, any POJO can implement the correlation logic, and the rules for mapping a message to a
method’s argument (or arguments) are the same as for a Ser vi ceAct i vat or (including support for
@Header annotations). The method must return a value, and the value must not be nul | .

5.0.12.RELEASE Spring Integration 93

Spring Integration Reference Manual

Spring Integration provides an out-of-the box implementation for Correl ati onStrat egy, the
Header Attri but eCorrel ati onStrat egy. This implementation returns the value of one of the
message headers (whose name is specified by a constructor argument) as the correlation key. By
default, the correlation strategy is a Header At tri but eCorrel ati onStr at egy returning the value
of the CORRELATI ON_I D header attribute. If you have a custom header name you would like to use for
correlation, then simply configure that on an instance of Header At t ri but eCorr el ati onStr at egy
and provide that as a reference for the Aggregator’s correlation-strategy.

LockRegistry

Changes to groups are thread safe; a LockRegi stry is used to obtain a lock for the resolved
correlation id. A Def aul t LockRegi stry is used by default (in-memory). For synchronizing updates
across servers, where a shared MessageG oupSt or e is being used, a shared lock registry must be
configured. See the section called “Configuring an Aggregator” below for more information.

Configuring an Aggregator
See the section called “CompletableFuture” for configuring an Aggregator in Java DSL.
Configuring an Aggregator with XML

Spring Integration supports the configuration of an aggregator via XML through the <aggr egat or/ >
element. Below you can see an example of an aggregator.

5.0.12.RELEASE Spring Integration 94

Spring Integration Reference Manual

<channel id="input Channel"/>

<int:aggregator id="nyAggregator" 0O
auto-startup="true" 0O

i nput - channel ="i nput Channel " 0O
out put - channel =" out put Channel " O
di scar d- channel ="t hr owAwayChannel " 0O

nmessage- st or e="persi st ent MessageStore" 0O
order="1" 0O

send-partial -result-on-expiry="false" 0O
send- ti nmeout ="1000" O

correl ation-strategy="correl ati onStrat egyBean" 0O
correl ation-strategy-nethod="correl ate"
correl ation-strategy-expressi on="headers['foo']"

ref =" aggr egat or Bean"
met hod="aggr egat e"

rel ease-strategy="rel easeStrat egyBean"
rel ease- strat egy- met hod="rel ease"

rel ease-strategy-expressi on="si ze() == 5"

expi re- groups-upon-conpl eti on="f al se"
enpt y- group-m n-ti meout =" 60000"

| ock-registry="1 ockRegi stry"
group-ti meout =" 60000"
group-timeout - expressi on="si ze() ge 2 ? 100 : -1"
expi re-groups-upon-timeout="true"
schedul er ="t askSchedul er" >
<expire-transactional / >
<expi r e- advi ce- chai n/ >
</ aggr egat or >
<i nt:channel id="outputChannel"/>
<int:channel id="throwAwayChannel "/ >
<bean id="persistent MessageStore" class="org. springframework.integration.]jdbc.store.JdbcMessageStore">
<constructor-arg ref="dataSource"/>
</ bean>
<bean i d="aggregat or Bean" cl ass="sanpl e. Poj 0Aggregator"/>

<bean id="rel easeStrat egyBean" cl ass="sanpl e. Poj oRel easeStrat egy"/ >

<bean id="correl ati onStrategyBean" class="sanpl e. PojoCorrel ati onStrategy"/>

O The id of the aggregator is Optional.

O Lifecycle attribute signaling if aggregator should be started during Application Context startup.
Optional (default is true).

O The channel from which where aggregator will receive messages. Required.

0 The channel to which the aggregator will send the aggregation results. Optional (because incoming
messages can specify a reply channel themselves via replyChannel Message Header).

O The channel to which the aggregator will send the messages that timed out (if send- parti al -
resul t - on- expi ry is false). Optional.

O Areference to a MessageG oupSt or e used to store groups of messages under their correlation
key until they are complete. Optional, by default a volatile in-memory store.

0 Order of this aggregator when more than one handle is subscribed to the same DirectChannel (use
for load balancing purposes). Optional.

5.0.12.RELEASE Spring Integration 95

Spring Integration Reference Manual

Indicates that expired messages should be aggregated and sent to the output-
channel or replyChannel once their containing MessageG oup is expired (see
MessageG oupSt or e. expi reMessageG oups(| ong)). One way of expiring MessageG oup
s is by configuring a MessageG oupSt or eReaper . However MessageG oup s can alternatively
be expired by simply calling MessageG oupSt or e. expi r eMessage& oups(ti nmeout) . That
could be accomplished via a Control Bus operation or by simply invoking that method if you have a
reference to the MessageG oupSt or e instance. Otherwise by itself this attribute has no behavior.
It only serves as an indicator of what to do (discard or send to the output/reply channel) with
Messages that are still in the MessageGr oup that is about to be expired. Optional. Default - false.
NOTE: This attribute is more properly send- parti al -resul t - on-ti meout because the group
may not actually expire if expi r e- gr oups- upon-ti meout is settof al se.

The timeout interval to wait when sending a reply Message to the out put-channel
or di scard-channel . Defaults to -1 - blocking indefinitely. It is applied only if the
output channel has some sending limitations, e.g. QueueChannel with a fixed capacity.
In this case a MessageDel i ver yExcepti on is thrown. The send-ti neout is ignored in
case of Abstract Subscri babl eChannel implementations. In case of group-ti nmeout (-
expr essi on) the MessageDel i ver yExcept i on from the scheduled expire task leads this task
to be rescheduled. Optional.

A reference to a bean that implements the message correlation (grouping) algorithm. The bean can
be an implementation of the Cor r el at i onSt r at egy interface or a POJO. In the latter case the
correlation-strategy-method attribute must be defined as well. Optional (by default, the aggregator
will use the | nt egr at i onMessageHeader Accessor . CORRELATI ON_| D header).

A method defined on the bean referenced by correl ati on-strat egy, that implements the
correlation decision algorithm. Optional, with restrictions (requires corr el ati on-strat egy to
be present).

A SpEL expression representing the correlation strategy. Example: " headers[' foo']". Only
one ofcorrel ati on-strategy orcorrel ati on-strategy-expression is allowed.

A reference to a bean defined in the application context. The bean must implement the aggregation
logic as described above. Optional (by default the list of aggregated Messages will become a
payload of the output message).

A method defined on the bean referenced by r ef , that implements the message aggregation
algorithm. Optional, depends on r ef attribute being defined.

A reference to a bean that implements the release strategy. The bean can be an implementation
of the Rel easeStrategy interface or a POJO. In the latter case the release-strategy-
method attribute must be defined as well. Optional (by default, the aggregator will use the
I nt egr ati onMessageHeader Accessor . SEQUENCE_SI ZE header attribute).

A method defined on the bean referenced by rel ease-strategy, that implements the
completion decision algorithm. Optional, with restrictions (requires r el ease- strat egy to be
present).

A SpEL expression representing the release strategy; the root object for the expression is a
MessageG oup. Example: "si ze() == 5". Only one of rel ease-strategy orrel ease-
st rat egy- expressi on is allowed.

When set to true (default false), completed groups are removed from the message store, allowing
subsequent messages with the same correlation to form a new group. The default behavior is to
send messages with the same correlation as a completed group to the discard-channel.

Only applies if a MessageG oupSt or eReaper is configured for the <aggregator>'s
MessagesSt or e. By default, when a MessageG oupSt or eReaper is configured to expire partial
groups, empty groups are also removed. Empty groups exist after a group is released normally.
This is to enable the detection and discarding of late-arriving messages. If you wish to expire empty
groups on a longer schedule than expiring partial groups, set this property. Empty groups will then

5.0.12.RELEASE Spring Integration 96

Spring Integration Reference Manual

not be removed from the MessagesSt or e until they have not been modified for at least this number
of milliseconds. Note that the actual time to expire an empty group will also be affected by the
reaper’s timeout property and it could be as much as this value plus the timeout.
Areferencetoaorg. springframework. integration.util.LockRegi stry bean; used to
obtain a Lock based on the gr oupl d for concurrent operations on the MessageG oup. By default,
an internal Def aul t LockRegi stry is used. Use of a distributed LockRegi stry, such as the
Zookeeper LockRegi st ry, ensures only one instance of the aggregator will operate on a group
concurrently. See the section called “CompletableFuture”, the section called “CompletableFuture”,
the section called “CompletableFuture” for more information.

A timeout in milliseconds to force the MessageG oup complete, when the Rel easeSt r at egy
doesn’t release the group when the current Message arrives. This attribute provides a built-in
Time-base Release Strategy for the aggregator, when there is a need to emit a partial result (or
discard the group), if a new Message does not arrive for the MessageG oup within the timeout.
When a new Message arrives at the aggregator, any existing Schedul edFut ur e<?> for its
MessageG oup is canceled. If the Rel easeStrat egy returns f al se (don't release) and the
groupTi meout > 0 a new task will be scheduled to expire the group. Setting this attribute
to zero is not advised because it will effectively disable the aggregator because every message
group will be immediately completed. It is possible, however to conditionally set it to zero using
an expression; see gr oup-ti nmeout - expr essi on for information. The action taken during the
completion depends on the Rel easeSt r at egy and the send- parti al - gr oup- on- expiry
attribute. See the section called “Aggregator and Group Timeout” for more information. Mutually
exclusive with group-timeout-expression attribute.

The SpEL expression that evaluates to a gr oupTi meout with the MessageG oup as the #r oot
evaluation context object. Used for scheduling the MessageG oup to be forced complete. If the
expression evaluates to null or < 0, the completion is not scheduled. If it evaluates to zero, the
group is completed immediately on the current thread. In effect, this provides a dynamic gr oup-
ti meout property. See group-ti meout for more information. Mutually exclusive with group-
timeout attribute.

When a group is completed due to a timeout (or by a MessageG oupSt or eReaper), the group
is expired (completely removed) by default. Late arriving messages will start a new group. Set this
to f al se to complete the group but have its metadata remain so that late arriving messages will
be discarded. Empty groups can be expired later using a MessageG oupSt or eReaper together
with the enpt y- gr oup- i n- ti meout attribute. Default: true.

A TaskSchedul er bean reference to schedule the MessageG oup to be forced complete
if no new message arrives for the MessageG oup within the groupTi neout. If not
provided, the default scheduler t askSchedul er, registered in the Appli cati onCont ext
(Thr eadPool TaskSchedul er) will be used. This attribute does not apply if gr oup-ti neout or
group-ti meout - expr essi on is not specified.

Since version 4.1. Allows a transaction to be started for the f or ceConpl et e operation. It is
initiated from a gr oup-ti meout (- expressi on) or by a MessageG oupSt or eReaper and
is not applied to the normal add/r el ease/ di scard operations. Only this sub-element or
<expi r e- advi ce- chai n/ > is allowed.

Since version 4.1. Allows the configuration of any Advi ce for the f or ceConpl et e operation.
It is initiated from a gr oup-ti meout (- expressi on) or by a MessageG oupSt or eReaper
and is not applied to the normal add/ r el ease/ di scar d operations. Only this sub-element or
<expire-transactional / > is allowed. A transaction Advi ce can also be configured here
using the Spring t X hamespace.

5.0.12.RELEASE Spring Integration 97

Spring Integration Reference Manual

Expiring Groups

There are two attributes related to expiring (completely removing) groups. When a group is
expired, there is no record of it and if a new message arrives with the same correlation, a
new group is started. When a group is completed (without expiry), the empty group remains
and late arriving messages are discarded. Empty groups can be removed later using a
MessageG oupSt or eReaper in combination with the enpt y- gr oup- i n-ti meout attribute.

expi re-groups-upon-conpl eti on relates to “"normal® completion - when the
Rel easeSt r at egy releases the group. This defaults to f al se.

If a group is not completed normally, but is released or discarded because of a timeout, the group
is normally expired. Since version 4.1, you can now control this behavior using expi r e- gr oups-
upon-ti neout ; this defaults to t r ue for backwards compatibility.

Note

When a group is timed out, the Rel easeSt r at egy is given one more opportunity to release
the group; if it does so, and expi r e- gr oups- upon-ti nmeout is false, then expiration is
controlled by expi r e- gr oups- upon- conpl eti on. If the group is not released by the
release strategy during timeout, then the expiration is controlled by the expi r e- gr oups-
upon-ti neout . Timed-out groups are either discarded, or a partial release occurs (based
onsend-partial -result-on-expiry).

Starting with version 5.0 empty groups are also scheduled for removal after
enpty-group-nin-tinmeout. If expireG oupsUponConpl etion == fal se and
m ni munili meout For Enpt yGroups > 0, the task to remove the group is scheduled, when
normal or partial sequences release happens.

Using ar ef attribute is generally recommended if a custom aggregator handler implementation may be
referenced in other <aggr egat or > definitions. However if a custom aggregator implementation is only
being used by a single definition of the <aggr egat or >, you can use an inner bean definition (starting
with version 1.0.3) to configure the aggregation POJO within the <aggr egat or > element:

<aggregat or input-channel ="input" nethod="suni out put-channel =" out put">
<beans: bean cl ass="org. f 00. Poj 0Aggregator"/ >
</ aggr egat or >

Note

Using both ar ef attribute and an inner bean definition in the same <aggr egat or > configuration
is not allowed, as it creates an ambiguous condition. In such cases, an Exception will be thrown.

An example implementation of the aggregator bean looks as follows:

public class Poj oAggregator {

public Long add(List<Long> results) {
long total = 0Ol ;
for (long partial Result: results) {
total += partial Result;

}

return total;

5.0.12.RELEASE Spring Integration 98

Spring Integration Reference Manual

An implementation of the completion strategy bean for the example above may be as follows:

public class PojoRel easeStrategy {

publi c bool ean canRel ease(Li st <Long> nunbers) {
int sum= 0;
for (long nunber: nunbers) {

sum += nunber ;

}
return sum >= maxVal ue;

}

}

Note

Wherever it makes sense, the release strategy method and the aggregator method can be
combined in a single bean.

An implementation of the correlation strategy bean for the example above may be as follows:

public class PojoCorrel ationStrategy {

public Long groupNunbersByLast Di gi t (Long nunber) {
return number % 10;

}
}

For example, this aggregator would group numbers by some criterion (in our case the remainder after
dividing by 10) and will hold the group until the sum of the numbers provided by the payloads exceeds
a certain value.

Note

Wherever it makes sense, the release strategy method, correlation strategy method and the
aggregator method can be combined in a single bean (all of them or any two).

Aggregators and Spring Expression Language (SpEL)

Since Spring Integration 2.0, the various strategies (correlation, release, and aggregation) may be
handled with SpEL which is recommended if the logic behind such release strategy is relatively simple.
Let's say you have a legacy component that was designed to receive an array of objects. We know that
the default release strategy will assemble all aggregated messages in the List. So how we have two
problems. First we need to extract individual messages from the list, and then we need to extract the
payload of each message and assemble the array of objects (see code below).

public String[] processRel ease(List<Message<String>> nessages){
Li st<String> stringList = new ArrayList<String>();
for (Message<String> nessage : nessages) {
stringlLi st. add(message. get Payl oad());

}
return stringlist.toArray(new String[]{});

However, with SpEL such a requirement could actually be handled relatively easily with a one-line
expression, thus sparing you from writing a custom class and configuring it as a bean.

<i nt:aggregator input-channel ="aggChannel "
out put - channel ="r epl yChannel "
expression="#this.![payload].toArray()"/>

5.0.12.RELEASE Spring Integration 99

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Spring Integration Reference Manual

In the above configuration we are using a Collection Projection expression to assemble a hew collection
from the payloads of all messages in the list and then transforming it to an Array, thus achieving the
same result as the java code above.

The same expression-based approach can be applied when dealing with custom Release and
Correlation strategies.

Instead of defining a bean for a custom Correl ati onStrat egy via the correl ati on-strategy
attribute, you can implement your simple correlation logic via a SpEL expression and configure it via
the correl ati on-strat egy-expressi on attribute.

For example:

correl ati on-strategy-expressi on="payl oad. person.id"

In the above example it is assumed that the payload has an attribute per son with an i d which is going
to be used to correlate messages.

Likewise, for the Rel easeSt r at egy you can implement your release logic as a SpEL expression and
configure it viathe r el ease- strat egy- expr essi on attribute. The root object for evaluation context
is the MessageG oup itself. The List of messages can be referenced using the nessage property of
the group within the expression.

Note

In releases prior to version 5.0, the root object was the collection of Message<?>.

For example:

rel ease- strategy- expressi on="! messages. ?[payl oad==5] . enpt y"

In this example the root object of the SpEL Evaluation Context is the MessageG oup itself, and you are
simply stating that as soon as there are a message with payload as 5 in this group, it should be released.

Aggregator and Group Timeout

Starting with version 4.0, two new mutually exclusive attributes have been introduced: gr oup- t i meout
and group-ti nmeout - expr essi on (see the description above). There are some cases where it is
needed to emit the aggregator result (or discard the group) after a timeout if the Rel easeSt r at egy
doesn'’t release when the current Message arrives. For this purpose the gr oupTi neout option allows
scheduling the MessageG oup to be forced complete:

<aggregat or input-channel ="input" output-channel ="out put"
send-partial -resul t-on-expiry="true"
group-ti meout - expressi on="si ze() ge 2 ? 10000 : -1"

rel ease-strategy-expressi on="nessages|[0] . header s. sequenceNunber ==
nmessages|[0] . header s. sequenceSi ze"/ >

With this example, the normal release will be possible if the aggregator receives the last message in
sequence as defined by the r el ease- strat egy- expressi on. If that specific message does not
arrive, the gr oupTi meout will force the group complete after 10 seconds as long as the group contains
at least 2 Messages.

The results of forcing the group complete depends on the Rel easeSt r at egy andthe send- parti al -
resul t - on- expi ry. First, the release strategy is again consulted to see if a normal release is to be

5.0.12.RELEASE Spring Integration 100

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-collection-projection

Spring Integration Reference Manual

made - while the group won't have changed, the Rel easeSt r at egy can decide to release the group
at this time. If the release strategy still does not release the group, it will be expired. If send- parti al -
resul t-on-expiryistrue, existing messages in the (partial) MessageG oup will be released as a
normal aggregator reply Message to the out put - channel , otherwise it will be discarded.

There is a difference between gr oupTi neout behavior and MessageG oupSt or eReaper (see
the section called “Configuring an Aggregator”). The reaper initiates forced completion for all
MessageG oup s in the MessageG oupSt or e periodically. The gr oupTi meout does it for each
MessageG oup individually, if a new Message doesn’t arrive during the gr oupTi meout . Also, the
reaper can be used to remove empty groups (empty groups are retained in order to discard late
messages, if expi r e- gr oups- upon- conpl eti on is false).

Configuring an Aggregator with Annotations

An aggregator configured using annotations would look like this.

public class Waiter {

@\ggregator 0O
public Delivery aggregatingMethod(Li st<Orderltenr itens) {

}

@Rel easeStrategy 0O
publ i c bool ean rel easeChecker (Li st<Message<?>> nessages) {

}

@orrelationStrategy 0O
public String correlateBy(Oderltemitem {

}

O An annotation indicating that this method shall be used as an aggregator. Must be specified if this
class will be used as an aggregator.

0 An annotation indicating that this method shall be used as the release strategy
of an aggregator. If not present on any method, the aggregator will use the
Si npl eSequenceSi zeRel easeSt r at egy.

0 An annotation indicating that this method shall be used as the correlation strategy
of an aggregator. If no correlation strategy is indicated, the aggregator will use the
Header Attri but eCorrel ati onStrat egy based on CORRELATI ON_I D.

All of the configuration options provided by the xml element are also available for the @\ggr egat or
annotation.

The aggregator can be either referenced explicitly from XML or, if the @vessageEndpoi nt is defined
on the class, detected automatically through classpath scanning.

Annotation configuration (@A\ggr egat or and others) for the Aggregator component covers only simple
use cases, where most default options are sufficient. If you need more control over those options using
Annotation configuration, consider using a @ean definition for the Aggr egat i ngMessageHand| er
and mark its @ean method with @er vi ceActi vat or:

5.0.12.RELEASE Spring Integration 101

Spring Integration Reference Manual

@er vi ceAct i vat or (i nput Channel = "aggr egat or Channel ")
@Bean
publ i c MessageHandl er aggregat or (MessageG oupSt ore jdbcMessageG oupStore) {
Aggr egat i ngMessageHand| er aggregator =
new Aggr egat i ngMessageHandl er (new Def aul t Aggr egat i ngMessageG oupPr ocessor (),
j dbcMessageGroupSt ore) ;
aggr egat or . set Qut put Channel (resul t sChannel ());
aggr egat or. set G oupTi meout Expr essi on(new Val ueExpr essi on<>(500L)) ;
aggr egat or. set TaskSchedul er (t hi s. taskSchedul er);
return aggregator;

See the section called “Programming model” and the section called “CompletableFuture” for more
information.

Note

Starting with the version 4.2 the Aggr egat or Fact or yBean is available, to simplify Java
configuration for the Aggr egat i ngMessageHand| er .

Managing State in an Aggregator: MessageGroupStore

Aggregator (and some other patterns in Spring Integration) is a stateful pattern that requires decisions
to be made based on a group of messages that have arrived over a period of time, all with the same
correlation key. The design of the interfaces in the stateful patterns (e.g. Rel easeSt r at egy) is driven
by the principle that the components (whether defined by the framework or a user) should be able to
remain stateless. All state is carried by the MessageG oup and its management is delegated to the
MessageG oupSt or e.

public interface MessageG oupStore {
i nt get MessageCount For Al | MessageG oups() ;
i nt get Mar kedMessageCount For Al | MessageG oups() ;
i nt get MessageGr oupCount () ;
MessageG oup get MessageG oup(Obj ect groupl d);
MessageG oup addMessageToG oup(Obj ect groupld, Message<?> nessage);
MessageG oup mar kMessageG oup(MessageG oup group);
MessageG oup renpveMessageFr onGroup(Obj ect key, Message<?> nessageToRenove);
MessageG oup mar kMessageFr onGr oup(Obj ect key, Message<?> nessageToMarKk) ;
voi d renmoveMessageG oup(Qbj ect groupld);
voi d regi st er MessageG oupExpi ryCal | back(MessageG oupCal | back cal | back);

i nt expireMessageG oups(long tineout);

For more information please refer to the JavaDoc.

The MessageG oupSt or e accumulates state information in MessageG oups while waiting for a
release strategy to be triggered, and that event might not ever happen. So to prevent stale messages
from lingering, and for volatile stores to provide a hook for cleaning up when the application shuts down,
the MessageG oupSt or e allows the user to register callbacks to apply to its MessageG oups when
they expire. The interface is very straightforward:

5.0.12.RELEASE Spring Integration 102

http://docs.spring.io/spring-integration/api/org/springframework/integration/store/MessageGroupStore.html

Spring Integration Reference Manual

public interface MessageG oupCal | back {

voi d execut e(MessageG oupSt ore nessageG oupSt ore, MessageG oup group);

The callback has direct access to the store and the message group so it can manage the persistent
state (e.g. by removing the group from the store entirely).

The MessageG oupStore maintains a list of these callbacks which it applies, on demand,
to all messages whose timestamp is earlier than a time supplied as a parameter (see
the r egi st er MessageG oupExpi ryCal | back(..) and expi reMessageG oups(..) methods
above).

Important

It is important not to use the same MessageG oupSt or e instance in different aggregator
components, when you intend to rely on the expi reMessageG oups functionality. Every
Abst ract Corr el ati ngMessageHandl er registers its own MessageG oupCal | back based
on the f or ceConpl et e() callback. This way each group for expiration may be completed or
discarded by the wrong aggregator. Starting with version 5.0.10, a Uni queExpi ryCal | back
is used from the Abst ract Corr el ati ngMessageHandl er for the registration callback in the
MessageG oupSt or e. The MessageG oupsSt or e, in turn, checks for presence an instance of
this class and logs an error with an appropriate message if one is already present in the callbacks
set. This way the Framework disallows usage of the MessageG oupSt or e instance in different
aggregators/resequencers to avoid the mentioned side effect of expiration the groups not created
by the particular correlation handler.

You can call the expi r eMessageG oups method with a timeout value. Any message older than the
current time minus this value is expired and has the callbacks applied. Thus, it is the user of the store
that defines what is meant by message group "expi ry".

As a convenience for users, Spring Integration provides a wrapper for the message expiry in the form
of a MessageG oupSt or eReaper :

<bean id="reaper" class="org...MssageG oupSt or eReaper ">
<property name="nessageG oupStore" ref="nessageStore"/>
<property name="tinmeout" val ue="30000"/>

</ bean>

<t ask: schedul ed-t asks schedul er ="schedul er">
<t ask: schedul ed ref="reaper" nmethod="run" fixed-rate="10000"/>
</ task: schedul ed-t asks>

The reaper is a Runnabl e, and all that is happening in the example above is that the message group
store’s expire method is being called once every 10 seconds. The timeout itself is 30 seconds.

Note

It is important to understand that the timeout property of the MessageG oupSt or eReaper is
an approximate value and is impacted by the the rate of the task scheduler since this property
will only be checked on the next scheduled execution of the MessageG oupSt or eReaper
task. For example if the timeout is set for 10 min, but the MessageG oupSt or eReaper task is
scheduled to run every 60 min and the last execution of the MessageG oupSt or eReaper task

5.0.12.RELEASE Spring Integration 103

Spring Integration Reference Manual

happened 1 min before the timeout, the MessageG oup will not expire for the next 59 min. So it
is recommended to set the rate at least equal to the value of the timeout or shorter.

In addition to the reaper, the expiry callbacks are invoked when the application shuts down via a lifecycle
callback in the Abst r act Correl ati ngMessageHand| er.

The Abstract Correl ati ngMessageHandl| er registers its own expiry callback, and this is the link
with the boolean flag send- parti al - resul t - on- expi ry in the XML configuration of the aggregator.
If the flag is set to true, then when the expiry callback is invoked, any unmarked messages in groups
that are not yet released can be sent on to the output channel.

Important

When a shared MessageSt or e is used for different correlation endpoints, it is necessary to
configure a proper Correl ati onStrat egy to ensure uniqueness for group ids. Otherwise
unexpected behavior may happen when one correlation endpoint may release or expire messages
from others - messages with the same correlation key are stored in the same message group.

Some MessageSt ore implementations allow using the same physical resources, by
partitioning the data; for example, the JdbcMessageStore has a regi on property; the
MongoDbMessageSt or e has a col | ecti onNane property.

For more information about MessageSt or e interface and its implementations, please read the
section called “CompletableFuture”.

6.5 Resequencer

Introduction

Related to the Aggregator, albeit different from a functional standpoint, is the Resequencer.

Functionality

The Resequencer works in a similar way to the Aggregator, in the sense that it uses the
CORRELATI ON_I D to store messages in groups, the difference being that the Resequencer does not
process the messages in any way. It simply releases them in the order of their SEQUENCE NUVBER
header values.

With respect to that, the user might opt to release all messages at once (after the whole sequence,
according to the SEQUENCE_SI ZE, has been released), or as soon as a valid sequence is available.

Important

The resequencer is intended to resequence relatively short sequences of messages with small
gaps. If you have a large number of disjoint sequences with many gaps, you may experience
performance issues.

Configuring a Resequencer

See the section called “CompletableFuture” for configuring a Resequencer in Java DSL.

5.0.12.RELEASE Spring Integration 104

Spring Integration Reference Manual

Configuring a resequencer requires only including the appropriate element in XML.

A sample resequencer configuration is shown below.

<i nt:channel id="inputChannel"/>

<i nt:channel id="outputChannel"/>

<int:resequencer id="conpl etel yDefi nedResequencer" 0O

i nput - channel ="i nput Channel " 0O
out put - channel =" out put Channel " 0O
di scard- channel ="di scardChannel " O

rel ease-partial -sequences="true" 0O

nessage- st ore="nessageStore" 0O

send-partial -resul t-on-expiry="true" 0O

send- ti meout ="86420000" O

correl ation-strategy="correl ati onStrat egyBean" 0O
correl ati on-strategy-nmethod="correlate" 0O

correl ati on-strategy-expressi on="headers['foo']"
rel ease-strategy="rel easeStrat egyBean"

rel ease-strategy- nmet hod="rel ease"

rel ease-strategy-expressi on="si ze() == 10"
enpt y- group-m n-ti meout =" 60000"

| ock-regi stry="I ockRegi stry"

group-ti meout =" 60000"
group-tinmeout - expressi on="size() ge 2 ? 100 : -1"
schedul er="t askSchedul er" />

expi re-group-upon-timeout="fal se" />

The id of the resequencer is optional.

The input channel of the resequencer. Required.

The channel to which the resequencer will send the reordered messages. Optional.

The channel to which the resequencer will send the messages that timed out (if send- parti al -

resul t-on-tineout is false). Optional.

O Whether to send out ordered sequences as soon as they are available, or only after the whole
message group arrives. Optional (false by default).

0 Avreference to a MessageG oupSt or e that can be used to store groups of messages under their
correlation key until they are complete. Optional with default a volatile in-memory store.

0 Whether, upon the expiration of the group, the ordered group should be sent out (even if some of
the messages are missing). Optional (false by default). See the section called “Managing State in
an Aggregator: MessageGroupStore”.

0 The timeout interval to wait when sending a reply Message to the out put-channel
or di scard-channel . Defaults to -1 - blocking indefinitely. It is applied only if the
output channel has some sending limitations, e.g. QueueChannel with a fixed capacity.
In this case a MessageDel i ver yExcepti on is thrown. The send-ti neout is ignored in
case of Abstract Subscri babl eChannel implementations. In case of group-ti nmeout (-
expr essi on) the MessageDel i ver yExcept i on from the scheduled expire task leads this task
to be rescheduled. Optional.

O Areference to a bean that implements the message correlation (grouping) algorithm. The bean can
be an implementation of the Cor r el at i onSt r at egy interface or a POJO. In the latter case the
correlation-strategy-method attribute must be defined as well. Optional (by default, the aggregator
will use the | nt egr at i onMessageHeader Accessor . CORRELATI ON_| D header).

O A method defined on the bean referenced by correl ati on- st r at egy, that implements the

correlation decision algorithm. Optional, with restrictions (requires corr el ati on-strat egy to

be present).

Oo0Ooodg

5.0.12.RELEASE Spring Integration 105

Spring Integration Reference Manual

A SpEL expression representing the correlation strategy. Example: " headers[' foo']". Only
oneofcorrel ati on-strategy orcorrel ati on-strategy-expression is allowed.

A reference to a bean that implements the release strategy. The bean can be an implementation
of the Rel easeStrategy interface or a POJO. In the latter case the release-strategy-
method attribute must be defined as well. Optional (by default, the aggregator will use the
I nt egr ati onMessageHeader Accessor . SEQUENCE_SI ZE header attribute).

A method defined on the bean referenced by rel ease-strategy, that implements the
completion decision algorithm. Optional, with restrictions (requires r el ease- strat egy to be

present).
A SpEL expression representing the release strategy; the root object for the expression is a
MessageG oup. Example: "si ze() == 5". Only one of rel ease-strategy orrel ease-

st rat egy- expressi on is allowed.
Only applies if a MessageGroupSt or eReaper is configured for the <resequencer>
MessagesSt or e. By default, when a MessageG oupSt or eReaper is configured to expire partial
groups, empty groups are also removed. Empty groups exist after a group is released normally.
This is to enable the detection and discarding of late-arriving messages. If you wish to expire empty
groups on a longer schedule than expiring partial groups, set this property. Empty groups will then
not be removed from the MessagesSt or e until they have not been modified for at least this number
of milliseconds. Note that the actual time to expire an empty group will also be affected by the
reaper’s timeout property and it could be as much as this value plus the timeout.
See the section called “Configuring an Aggregator with XML”".
See the section called “Configuring an Aggregator with XML”".
See the section called “Configuring an Aggregator with XML".
See the section called “Configuring an Aggregator with XML”".
When a group is completed due to a timeout (or by a MessageG oupSt or eReaper), the empty
group’s metadata is retained by default. Late arriving messages will be immediately discarded.
Set this to t r ue to remove the group completely; then, late arriving messages will start a new
group and won't be discarded until the group again times out. The new group will never be
released normally because of the "hole" in the sequence range that caused the timeout. Empty
groups can be expired (completely removed) later using a MessageG oupSt or eReaper together
with the enpt y- gr oup- m n-ti meout attribute. Starting with version 5.0 empty groups are also
scheduled for removal after enpt y- gr oup- mi n-ti meout . Default: false.

N RN
EEEEE

Note

Since there is no custom behavior to be implemented in Java classes for resequencers, there is
no annotation support for it.

6.6 Message Handler Chain

Introduction

The MessageHandl er Chai n is an implementation of MessageHandl er that can be configured as
a single Message Endpoint while actually delegating to a chain of other handlers, such as Filters,
Transformers, Splitters, and so on. This can lead to a much simpler configuration when several handlers
need to be connected in a fixed, linear progression. For example, it is fairly common to provide a
Transformer before other components. Similarly, when providing a Filter before some other component
in a chain, you are essentially creating a Selective Consumer. In either case, the chain only requires
a single i nput - channel and a single out put - channel eliminating the need to define channels for
each individual component.

5.0.12.RELEASE Spring Integration 106

http://www.eaipatterns.com/MessageSelector.html

Spring Integration Reference Manual

Tip

Spring Integration’s Fi | t er provides a boolean property t hr owExcepti onOnRej ecti on.
When providing multiple Selective Consumers on the same point-to-point channel with different
acceptance criteria, this value should be set to true (the default is false) so that the dispatcher
will know that the Message was rejected and as a result will attempt to pass the Message on to
other subscribers. If the Exception were not thrown, then it would appear to the dispatcher as if
the Message had been passed on successfully even though the Filter had dropped the Message
to prevent further processing. If you do indeed want to "drop” the Messages, then the Filter's
discard-channel might be useful since it does give you a chance to perform some operation with
the dropped message (e.g. send to a JIMS queue or simply write to a log).

The handler chain simplifies configuration while internally maintaining the same degree of loose
coupling between components, and it is trivial to modify the configuration if at some point a non-linear
arrangement is required.

Internally, the chain will be expanded into a linear setup of the listed endpoints, separated by anonymous
channels. The reply channel header will not be taken into account within the chain: only after the last
handler is invoked will the resulting message be forwarded on to the reply channel or the chain’s output
channel. Because of this setup all handlers except the last required to implement the MessageProducer
interface (which provides a setOutputChannel() method). The last handler only needs an output channel
if the outputChannel on the MessageHandlerChain is set.

Note

As with other endpoints, the out put - channel is optional. If there is a reply Message at the
end of the chain, the output-channel takes precedence, but if not available, the chain handler will
check for a reply channel header on the inbound Message as a fallback.

In most cases there is no need to implement MessageHandlers yourself. The next section will focus on
namespace support for the chain element. Most Spring Integration endpoints, like Service Activators
and Transformers, are suitable for use within a MessageHandl| er Chai n.

Configuring a Chain

The <chain> element provides an i nput - channel attribute, and if the last element in the chain is
capable of producing reply messages (optional), it also supports an out put - channel attribute. The
sub-elements are then filters, transformers, splitters, and service-activators. The last element may also
be a router or an outbound-channel-adapter.

<int:chain input-channel ="input" output-channel ="out put">
<int:filter ref="soneSel ector" throw exception-on-rejection="true"/>
<i nt: header-enricher>
<i nt:header name="foo" val ue="bar"/>
</int:header-enricher>
<int:service-activator ref="someService" nethod="someMet hod"/>
</int:chai n>

The <header-enricher> element used in the above example will set a message header named "foo" with
a value of "bar" on the message. A header enricher is a specialization of Tr ansf or mer that touches
only header values. You could obtain the same result by implementing a MessageHandler that did the
header modifications and wiring that as a bean, but the header-enricher is obviously a simpler option.

5.0.12.RELEASE Spring Integration 107

Spring Integration Reference Manual

The <chain> can be configured as the last black-box consumer of the message flow. For this solution it
is enough to put at the end of the <chain> some <outbound-channel-adapter>:

<int:chain input-channel ="i nput">
<int-xm :marshal | i ng-transformer marshal |l er="marshal ler" result-type="StringResult" />
<int:service-activator ref="someService" nethod="soneMethod"/>
<i nt: header-enricher>
<i nt:header nanme="foo" val ue="bar"/>
</int:header-enricher>
<int:| oggi ng- channel - adapter |evel ="INFO' | og-full-nmessage="true"/>
</int:chai n>

Disallowed Attributes and Elements

It is important to note that certain attributes, such as order and input-channel are not allowed to be
specified on components used within a chain. The same is true for the poller sub-element.

Important

For the Spring Integration core components, the XML Schema itself will enforce some of
these constraints. However, for non-core components or your own custom components, these
constraints are enforced by the XML namespace parser, not by the XML Schema.

These XML namespace parser constraints were added with Spring Integration 2.2. The XML
namespace parser will throw an BeanDefi ni ti onParsi ngExcepti on if you try to use
disallowed attributes and elements.

'id" Attribute

Beginning with Spring Integration 3.0, if a chain element is given an id, the bean name for the element is
a combination of the chain’s id and the id of the element itself. Elements without an id are not registered
as beans, but they are given conponent Nane s that include the chain id. For example:

<int:chain id="fooChain" input-channel ="input">
<int:service-activator id="fooService" ref="sonmeService" nethod="sonmeMet hod"/>
<int:object-to-json-transformer/>

</int:chai n>

e The <chai n> root element has an id fooChain. So, the Abstract Endpoi nt implementation
(Pol I i ngConsuner or Event Dri venConsurer , depending on the input-channel type) bean takes
this value as it's bean name.

* The MessageHandl er Chai n bean acquires a bean alias fooChain.handler, which allows direct
access to this bean from the BeanFact ory.

» The <service-activator> is not a fully-fledged Messaging Endpoint (Pol | i ngConsuner or
Event Dri venConsuner) - it is simply a MessageHand!| er within the <chai n>. In this case, the
bean name registered with the BeanFact or y is fooChain$child.fooService.handler.

» The componentName of this Ser vi ceAct i vat i ngHandl er takes the same value, but without the
.handler suffix - fooChain$child.fooService.

» The last <chai n> sub-component, <obj ect-to-json-transformer>, doesn't have an id
attribute. Its componentName is based on its position in the <chai n>. In this case, it is fooChain
$child#1. (The final element of the name is the order within the chain, beginning with #0). Note, this
transformer isn’t registered as a bean within the application context, so, it doesn’'t get a beanName,
however its componentName has a value which is useful for logging etc.

5.0.12.RELEASE Spring Integration 108

Spring Integration Reference Manual

The id attribute for <chai n> elements allows them to be eligible for IMX export and they are trackable
via Message History. They can also be accessed from the BeanFact or y using the appropriate bean
name as discussed above.

Tip

It is useful to provide an explicit id attribute on <chai n> s to simplify the identification of sub-
components in logs, and to provide access to them from the BeanFact ory etc.

Calling a Chain from within a Chain

Sometimes you need to make a nested call to another chain from within a chain and then come back and
continue execution within the original chain. To accomplish this you can utilize a Messaging Gateway
by including a <gateway> element. For example:

<int:chain id="mai n-chain" input-channel ="in" output-channel ="out">
<i nt:header-enricher>
<int:header name="nanme" val ue="Many" />
</int:header-enricher>
<int:service-activator>
<bean cl ass="org. f 00. Sanpl eServi ce" />
</int:service-activator>
<i nt:gateway request-channel ="i nput A"/ >
</int:chai n>

<int:chain id="nested-chai n-a" input-channel ="i nput A">
<i nt: header-enricher>
<i nt:header name="nanme" val ue="Me" />
</int:header-enricher>
<i nt:gateway request-channel ="i nputB"/>
<int:service-activator>
<bean cl ass="org. f 00. Sanpl eServi ce" />
</int:service-activator>
</int:chai n>

<int:chain id="nested-chai n-b" input-channel ="inputB">
<i nt: header-enricher>
<int:header nanme="nane" val ue="Jack" />
</int:header-enricher>
<int:service-activator>
<bean cl ass="org. f 00. Sanpl eServi ce" />
</int:service-activator>
</int:chai n>

In the above example the nested-chain-a will be called at the end of main-chain processing by the
gateway element configured there. While in nested-chain-a a call to a nested-chain-b will be made after
header enrichment and then it will come back to finish execution in nested-chain-b. Finally the flow
returns to the main-chain. When the nested version of a <gateway> element is defined in the chain, it
does not require the ser vi ce- i nt er f ace attribute. Instead, it simple takes the message in its current
state and places it on the channel defined via the r equest - channel attribute. When the downstream
flow initiated by that gateway completes, a Message will be returned to the gateway and continue its
journey within the current chain.

6.7 Scatter-Gather

Introduction

Starting with version 4.1, Spring Integration provides an implementation of the Scatter-Gather Enterprise
Integration Pattern. It is a compound endpoint, where the goal is to send a message to the recipients

5.0.12.RELEASE Spring Integration 109

http://www.eaipatterns.com/BroadcastAggregate.html

Spring Integration Reference Manual

and aggregate the results. Quoting the EIP Book, it is a component for scenarios like best quote, when
we need to request information from several suppliers and decide which one provides us with the best
term for the requested item.

Previously, the pattern could be configured using discrete components, this enhancement brings more
convenient configuration.

The Scat t er Gat her Handl er is a request-reply endpoint that combines
a Publ i shSubscri beChannel (or Reci pi ent Li st Rout er) and an
Aggr egat i ngMessageHand| er. The request message is sent to the scatter channel and the
Scat t er Gat her Handl er waits for the reply from the aggregator to sends to the out put Channel .

Functionality

The Scatter-Gather pattern suggests two scenarios - Auction and Distribution. In both
cases, the aggregation function is the same and provides all options available for
the Aggregati ngMessageHandl er. Actually the Scatter Gat her Handl er just requires an
Aggr egat i ngMessageHand| er as a constructor argument. See Section 6.4, “Aggregator” for more
information.

Auction

The Auction Scatt er - Gat her variant uses publ i sh- subscri be logic for the request message,
where the scatter channel is a Publ i shSubscri beChannel with appl y-sequence="true".
However, this channel can be any MessageChannel implementation as is the case with the r equest -
channel in the Cont ent Enri cher (see Section 7.2, “Content Enricher”) but, in this case, the end-
user should support his own custom corr el ati onSt r at egy for the aggr egat i on function.

Distribution

The Distribution Scatt er- Gat her variant is based on the Reci pi entLi st Router (see the
section called “RecipientListRouter”) with all available options for the Reci pi ent Li st Rout er . This
is the second Scatter Gat her Handl er constructor argument. If you want to rely just on the
default correl ati onStrategy for the recipient-list-router and the aggregator, you
should specify appl y- sequence="t r ue" . Otherwise, a custom correl ati onSt r at egy should be
supplied for the aggr egat or . Unlike the Publ i shSubscri beChannel (Auction) variant, having a
reci pient-list-router sel ector option, we can filter target suppliers based on the message.
With appl y- sequence="true" the default sequenceSi ze will be supplied and the aggr egat or
will be able to release the group correctly. The Distribution option is mutually exclusive with the Auction
option.

In both cases, the request (scatter) message is enriched with the gat her Resul t Channel
QueueChannel header, to wait for a reply message from the aggr egat or .

By default, all suppliers should send their result to the r epl yChannel header (usually by omitting the

out put - channel from the ultimate endpoint). However, the gat her Channel option is also provided,
allowing suppliers to send their reply to that channel for the aggregation.

Configuring a Scatter-Gather Endpoint

For Java and Annotation configuration, the bean definition for the Scat t er - Gat her is:

5.0.12.RELEASE Spring Integration 110

Spring Integration Reference Manual

@Bean
publ i c MessageHandl er distributor() {
Reci pi ent Li st Router router = new Reci pi entLi st Router();
rout er. set Appl ySequence(true);
rout er. set Channel s(Arrays. asLi st (di stri buti onChannel 1(), distributionChannel 2(),
di stributionChannel 3()));
return router;

}

@Bean
publ i c MessageHandl er gatherer() {
return new Aggregati ngMessageHand! er (
new Expressi onEval uati ngMessageG oupProcessor ("~[payl oad gt 5] ?: -1D"),
new Si npl eMessageStore(),
new Header AttributeCorrel ationStrategy(
I nt egrati onMessageHeader Accessor . CORRELATI ON_I D),

new Expressi onEval uati ngRel easeStrategy("size() == 2"));
}
@Bean
@er vi ceAct i vat or (i nput Channel = "di stri buti onChannel ")

publ i c MessageHandl er scatterGatherDistribution() {
Scat t er Gat her Handl er handl er = new Scatter Gat her Handl er (di stri butor(), gatherer());
handl er. set Qut put Channel (output());
return handl er;

}

Here, we configure the Reci pi ent Li st Rout er di stri but or bean, withappl ySequence="true"
and the list of recipient channels. The next bean is for an Aggr egat i ngMessageHandl er . Finally,
we inject both those beans into the Scatt er Gat her Handl er bean definition and mark it as a
@ber vi ceAct i vat or to wire the Scatter-Gather component into the integration flow.

Configuring the <scat t er - gat her > endpoint using the XML namespace:

<scatter-gather
id="" 0O
auto-startup="" 0O
i nput - channel ="" 0O
out put - channel ="" 0O
scatter-channel ="" 0O
gat her - channel ="" 0O
order="" 0O
phase="" 0O
send-tinmeout="" 0O
gather-tineout="" [
requires-reply="" >
<scatterer/>
<gat herer/>
</ scatter-gather>

0 The id of the Endpoint. The Scatter Gat her Handl er bean is registered with id +
' . handl er' alias. The Reci pientListRouter - withid + '.scatterer'. And the
Aggr egat i ngMessageHandl er withid + '.gatherer'. Optional (a default id is generated
value by BeanFact ory).

O Lifecycle attribute signaling if the Endpoint should be started during Application Context
initialization. In addition, the Scat t er Gat her Handl er also implements Li f ecycl e and starts/
stops the gat her Endpoi nt, which is created internally if a gat her - channel is provided.
Optional (default is t r ue).

0 The channel to receive request messages to handle them in the Scatt er Gat her Handl er .
Required.

5.0.12.RELEASE Spring Integration 111

Spring Integration Reference Manual

O The channel to which the Scatter-Gather will send the aggregation results. Optional (because
incoming messages can specify a reply channel themselves via r epl yChannel Message
Header).

O The channel to send the scatter message for the Auction scenario. Optional. Mutually exclusive
with <scat t er er > sub-element.

0 The channel to receive replies from each supplier for the aggregation. is used
as the replyChannel header in the scatter message. Optional. By default the
Fi xedSubscri ber Channel is created.

0 Order of this component when more than one handler is subscribed to the same DirectChannel
(use for load balancing purposes). Optional.

O Specify the phase in which the endpoint should be started and stopped. The startup order proceeds
from lowest to highest, and the shutdown order is the reverse of that. By default this value is
Integer. MAX_VALUE meaning that this container starts as late as possible and stops as soon as
possible. Optional.

0 The timeout interval to wait when sending a reply Message to the out put-channel .
By default the send will block for one second. It applies only if the output channel
has some sending limitations, e.g. a QueueChannel with a fixed capacity and is full. In
this case, a MessageDel i ver yExcepti on is thrown. The send-ti neout is ignored in
case of Abstract Subscri babl eChannel implementations. In case of group-ti nmeout (-
expr essi on) the MessageDel i ver yExcept i on from the scheduled expire task leads this task
to be rescheduled. Optional.

O Allows you to specify how long the Scatter-Gather will wait for the reply message before returning.
By default it will wait indefinitely. null is returned if the reply times out. Optional. Defaults to - 1 -
indefinitely.

Specify whether the Scatter-Gather must return a non-null value. This value is t r ue by default,
hence a Repl yRequi r edExcept i on will be thrown when the underlying aggregator returns a
null value after gat her - ti neout . Note, if nul | is a possibility, the gat her - t i meout should be
specified to avoid an indefinite wait.

The <recipient-list-router> options. Optional. Mutually exclusive with scatter-
channel attribute.

The <aggr egat or > options. Required.

6.8 Thread Barrier

Sometimes, we need to suspend a message flow thread until some other asynchronous event occurs.
For example, consider an HTTP request that publishes a message to RabbitMQ. We might wish to
not reply to the user until the RabbitMQ broker has issued an acknowledgment that the message was
received.

Spring Integration version 4.2 introduced the <barrier/> component for this purpose. The
underlying MessageHandl er is the Barrier MessageHandl er; this class also implements
MessageTri gger Acti on where a message passed to the trigger() method releases a
corresponding thread in the handl eRequest Message() method (if present).

The suspended thread and trigger thread are correlated by invoking a Correl ati onStr at egy
on the messages. When a message is sent to the i nput - channel , the thread is suspended for
up to ti meout milliseconds, waiting for a corresponding trigger message. The default correlation
strategy uses the | ntegrati onMessageHeader Accessor. CORRELATI ONLI D header. When a
trigger message arrives with the same correlation, the thread is released. The message sent to
the out put - channel after release is constructed using a MessageG oupPr ocessor . By default,

5.0.12.RELEASE Spring Integration 112

Spring Integration Reference Manual

the message is a Col | ecti on<?> of the two payloads and the headers are merged, using a
Def aul t Aggr egat i ngMessageG oupPr ocessor .

Caution

Ifthet ri gger () method is invoked first (or after the main thread times out), it will be suspended
foruptoti meout waiting for the suspending message to arrive. If you do not want to suspend the
trigger thread, consider handing off to a TaskExecut or instead so its thread will be suspended
instead.

The requi res-repl y property determines the action if the suspended thread times out before the
trigger message arrives. By default, it is f al se which means the endpoint simply returns nul | , the flow
ends and the thread returns to the caller. When t r ue, a Repl yRequi r edExcept i on is thrown.

You can call the trigger () method programmatically (obtain the bean reference using the name
barri er. handl er - where barrier is the bean name of the barrier endpoint) or you can configure an
<out bound- channel - adapt er/ > to trigger the release.

Important

Only one thread can be suspended with the same correlation; the same correlation can be used
multiple times but only once concurrently. An exception is thrown if a second thread arrives with
the same correlation.

<int:barrier id="barrierl" input-channel ="in" output-channel ="out"
correl ation-strategy-expressi on="headers[' nyHeader']"
out put - processor =" nyQut put Processor"
di scard- channel ="1 at eTri gger Channel "
ti meout ="10000" >
</int:barrier>

<i nt:out bound- channel - adapter channel ="rel ease" ref="barrier1. handl er" nethod="trigger" />

In this example, a custom header is used for correlation. Either the thread sending a message to i n
or the one sending a message to r el ease will wait for up to 10 seconds until the other arrives. When
the message is released, the out channel will be sent a message combining the result of invoking the
custom MessageG oupPr ocessor bean nyQut put Processor . If the main thread times out and a
trigger arrives later, you can configure a discard channel to which the late trigger will be sent. Java
configuration is shown below.

5.0.12.RELEASE Spring Integration 113

Spring Integration Reference Manual

@onfi guration
@Enabl el nt egrati on
public class Config {

@er vi ceAct i vat or (i nput Channel ="i n")
@Bean
public BarrierMessageHandl er barrier() {
Barri er MessageHandl er barrier = new Barrier MessageHandl er (10000) ;
barri er. set Qut put Channel (out());
barrier.setDi scardChannel (I ateTriggers());
return barrier;

}

@ervi ceActivator (inputChannel ="rel ease")
@ean
public MessageHandl er releaser() {

return new MessageHandl er () {

@verride
public voi d handl eMessage(Message<?> nessage) throws Messagi ngException {
barrier().trigger(nmessage);

}

See the barrier sample application for an example of this component.

5.0.12.RELEASE Spring Integration 114

https://github.com/spring-projects/spring-integration-samples/tree/master/basic/barrier

Spring Integration Reference Manual

7. Message Transformation

7.1 Transformer

Introduction

Message Transformers play a very important role in enabling the loose-coupling of Message Producers
and Message Consumers. Rather than requiring every Message-producing component to know what
type is expected by the next consumer, Transformers can be added between those components.
Generic transformers, such as one that converts a String to an XML Document, are also highly reusable.

For some systems, it may be best to provide a Canonical Data Model, but Spring Integration’s general
philosophy is not to require any particular format. Rather, for maximum flexibility, Spring Integration
aims to provide the simplest possible model for extension. As with the other endpoint types, the use of
declarative configuration in XML and/or Annotations enables simple POJOs to be adapted for the role
of Message Transformers. These configuration options will be described below.

Note

For the same reason of maximizing flexibility, Spring does not require XML-based Message
payloads. Nevertheless, the framework does provide some convenient Transformers for dealing
with XML-based payloads if that is indeed the right choice for your application. For more
information on those transformers, see the section called “CompletableFuture”.

Configuring Transformer
Configuring Transformer with XML

The <transformer> element is used to create a Message-transforming endpoint. In addition to "input-
channel" and "output-channel" attributes, it requires a "ref". The "ref" may either point to an Object that
contains the @Transformer annotation on a single method (see below) or it may be combined with an
explicit method name value provided via the "method" attribute.

<int:transforner id="testTransfornmer" ref="testTransfornerBean" input-channel ="i nChannel"
nmet hod="t ransf ornf' out put - channel =" out Channel "/ >
<beans: bean i d="t est Transf or mer Bean" cl ass="org. foo. Test Transfornmer" />

Using a r ef attribute is generally recommended if the custom transformer handler implementation
can be reused in other <transf ormer > definitions. However if the custom transformer handler
implementation should be scoped to a single definition of the <t r ansf or mer >, you can define an inner
bean definition:

<int:transformer id="testTransforner" input-channel="inChannel" nethod="transf ornf
out put - channel =" out Channel ">
<beans: bean cl ass="org. f0o. Test Transfornmer"/>
</ transformer>

Note

Using both the "ref" attribute and an inner handler definition in the same <t ransf or mer >
configuration is not allowed, as it creates an ambiguous condition and will result in an Exception
being thrown.

5.0.12.RELEASE Spring Integration 115

http://www.eaipatterns.com/CanonicalDataModel.html

Spring Integration Reference Manual

Important

If the "ref" attribute references a bean that extends Abstract MessagePr oduci ngHandl er
(such as transformers provided by the framework itself), the configuration is optimized by injecting
the output channel into the handler directly. In this case, each "ref* must be to a separate
bean instance (or a pr ot ot ype-scoped bean), or use the inner <bean/ > configuration type.
If you inadvertently reference the same message handler from multiple beans, you will get a
configuration exception.

When using a POJO, the method that is used for transformation may expect either the Message type
or the payload type of inbound Messages. It may also accept Message header values either individually
or as a full map by using the @Header and @Header s parameter annotations respectively. The return
value of the method can be any type. If the return value is itself a Message, that will be passed along
to the transformer’s output channel.

As of Spring Integration 2.0, a Message Transformer’s transformation method can no longer return
nul | . Returning nul | will result in an exception since a Message Transformer should always be
expected to transform each source Message into a valid target Message. In other words, a Message
Transformer should not be used as a Message Filter since there is a dedicated <fi | t er > option for
that. However, if you do need this type of behavior (where a component might return NULL and that
should not be considered an error), a service-activator could be used. Its r equi r es-r epl y value is
FALSE by default, but that can be set to TRUE in order to have Exceptions thrown for NULL return
values as with the transformer.

Transformers and Spring Expression Language (SpEL)

Just like Routers, Aggregators and other components, as of Spring Integration 2.0 Transformers can
also benefit from SpEL support (http://docs.spring.io/spring/docs/current/spring-framework-reference/
html/expressions.html) whenever transformation logic is relatively simple.

<int:transforner input-channel ="inChannel"
out put - channel =" out Channel "
expressi on="payl oad. t oUpperCase() + '- [' + T(java.lang.System).currentTimeMIlis() + ']'"/>

In the above configuration we are achieving a simple transformation of the payload with a simple SpEL
expression and without writing a custom transformer. Our payload (assuming String) will be upper-cased
and concatenated with the current timestamp with some simple formatting.

Common Transformers
There are also a few Transformer implementations available out of the box.
Object-to-String Transformer

Because, it is fairly common to use the t oSt ri ng() representation of an Object, Spring Integration
provides an Qbj ect ToSt ri ngTr ansf or mer whose output is a Message with a String payl oad. That
String is the result of invoking the t oSt ri ng() operation on the inbound Message’s payload.

<int:object-to-string-transfornmer input-channel ="in" output-channel ="out"/>

A potential example for this would be sending some arbitrary object to the outbound-channel-adapter in
the file namespace. Whereas that Channel Adapter only supports String, byte-array, orj ava. i o. Fi |l e
payloads by default, adding this transformer immediately before the adapter will handle the necessary
conversion. Of course, that works fine as long as the result of the t oSt ri ng() call is what you want

5.0.12.RELEASE Spring Integration 116

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Spring Integration Reference Manual

to be written to the File. Otherwise, you can just provide a custom POJO-based Transformer via the
generic transformer element shown previously.

Tip

When debugging, this transformer is not typically necessary since the logging-channel-adapter is
capable of logging the Message payload. Refer to the section called “Wire Tap” for more detail.

Note

The object-to-string-transformer is very simple; it invokes t oSt ri ng() on the inbound payload.
There are two exceptions to this (since 3.0): if the payload is a char[], it invokes new
String(payl oad) ;ifthe payloadisabyt e[], itinvokes new Stri ng(payl oad, charset),
where char set is "UTF-8" by default. The char set can be modified by supplying the charset
attribute on the transformer.

For more sophistication (such as selection of the charset dynamically, at runtime), you can use a
SpEL expression-based transformer instead; for example:

<int:transformer input-channel ="in" output-channel ="out"
expressi on="new j ava. |l ang. Stri ng(payl oad, headers[' nyCharset']" />

If you need to serialize an Object to a byte array or deserialize a byte array back into an Object, Spring
Integration provides symmetrical serialization transformers. These will use standard Java serialization
by default, but you can provide an implementation of Spring 3.0’s Serializer or Deserializer strategies
via the serializer and deserializer attributes, respectively.

<int:payl oad-serializing-transforner input-channel ="objectsln" output-channel ="bytesQut"/>

<i nt: payl oad-deseri al i zi ng-transforner input-channel ="bytesln" output-channel ="obj ectsQut"
whi te-list="comnmycom *, com yourcom *"/>

Important

When deserializing data from untrusted sources, you should consider adding a whi t e-1i st of
package/class patterns. By default, all classes will be deserialized.

Object-to-Map and Map-to-Object Transformers

Spring Integration also provides Object-to-Map and Map-to-Object transformers which utilize the JSON
to serialize and de-serialize the object graphs. The object hierarchy is introspected to the most primitive
types (String, int, etc.). The path to this type is described via SpEL, which becomes the key in the
transformed Map. The primitive type becomes the value.

For example:

public class Parent{
private Child child;
private String nane;
/] setters and getters are onmitted

}

public class Child{
private String nane;
private List<String> nickNanes;
/] setters and getters are onmitted

5.0.12.RELEASE Spring Integration 117

Spring Integration Reference Manual

..will be transformed to a Map which looks like this: {person. nane=Geor ge,
per son. chi | d. nane=Jenna, person. child. ni ckNanes[0]=Binbo ... etc}

The JSON-based Map allows you to describe the object structure without sharing the actual types
allowing you to restore/rebuild the object graph into a differently typed Object graph as long as you
maintain the structure.

For example: The above structure could be easily restored back to the following Object graph via the
Map-to-Object transformer:

public class Father {
private Kid child;
private String nane;
/] setters and getters are onmitted

}

public class Kid {
private String nane;
private List<String> nickNanes;
/] setters and getters are omitted

If you need to create a "structured” map, you can provide the flatten attribute. The default value for this
attribute is true meaning the default behavior; if you provide a false value, then the structure will be a
map of maps.

For example:

public class Parent {
private Child child;
private String nane;
/] setters and getters are omtted

}

public class Child {

private String nane;

private List<String> ni ckNares;

/] setters and getters are omtted

}

...will be transformed to a Map which looks like this: { name=George, chil d={nanme=Jenna,
ni ckNanes=[Bi nbo, ...]}}

To configure these transformers, Spring Integration provides namespace support Object-to-Map:

<int:obj ect-to-map-transfornmer input-channel ="directlnput" output-channel ="output"/>

or

<int:object-to-map-transfornmer input-channel ="directlnput" output-channel ="output” flatten="fal se"/>

Map-to-Object

<i nt: map-to-obj ect-transforner input-channel ="input"
out put - channel =" out put "
type="org. f oo. Person"/>

or

<i nt: map-to- obj ect-transforner input-channel ="inputA"
out put - channel =" out put A"
ref="person"/>

<bean id="person" class="org.foo0.Person" scope="prototype"/>

5.0.12.RELEASE Spring Integration 118

Spring Integration Reference Manual

Note

NOTE: ref and type attributes are mutually exclusive. You can only use one. Also, if using the ref
attribute, you must point to a prototype scoped bean, otherwise a BeanCr eat i onExcept i on
will be thrown.

Starting with version 5.0, the Obj ect ToMapTr ansf or mer can be supplied with the customized
Jsonbj ect Mapper, for example in use-cases when we need special formats for dates or nulls
for empty collections. See the section called “JSON Transformers” for more information about
JsonObj ect Mapper implementations.

Stream Transformer

The St r eanr ansf or mer transforms | nput St r eampayloadstoabyte[] oraStri ngifacharset
is provided.

<int:streamtransformer input-channel ="directlnput" output-channel ="output"/> <!-- byte[] -->

<int:streamtransforner id="w thCharset" charset="UTF-8"
i nput - channel =" char set Channel " out put - channel ="out put"/> <!-- String -->

@Bean
@ ansf or mer (i nput Channel = "streani, outputChannel = "data")
public Streaniransforner streanfToBytes() {

return new Streaniransfornmer(); // transforns to byte[]

}

@Bean
@ ansf or mer (i nput Channel = "streani, outputChannel = "data")
public StreanTransforner streanToString() {

return new Streaniransformer("UTF-8"); // transforns to String

}

JSON Transformers

Object to JSON and JSON to Object transformers are provided.

<int:object-to-json-transformer input-channel ="objectMapperlnput"/>

<int:]son-to-object-transfornmer input-channel ="objectMpperlnput"
type="f oo. MyDomai nQbj ect "/ >

These use a vanilla JsonQhj ect Mapper by default based on implementation from classpath. You can
provide your own custom JsonQbj ect Mapper implementation with appropriate options or based on
required library (e.g. GSON).

<int:json-to-object-transforner input-channel ="objectMpperlnput"
type="f oo. MyDomai nCbj ect" obj ect - mapper =" cust onhj ect Mapper"/ >

Note

Beginning with version 3.0, the obj ect - mapper attribute references an instance of a new
strategy interface JsonCbj ect Mapper . This abstraction allows multiple implementations of json
mappers to be used. Implementations that wraphttps://github.com/RichardHightower/boon[Boon]
and Jackson 2 are provided, with the version being detected on the classpath. These classes are
BoonJsonhj ect Mapper and Jackson2JsonObj ect Mapper .

Note, BoonJsonChj ect Mapper is provided since version 4.1.

5.0.12.RELEASE Spring Integration 119

https://github.com/FasterXML

Spring Integration Reference Manual

Important

If there are requirements to use both Jackson libraries and/or Boon in the same application, keep
in mind that before version 3.0, the JSON transformers used only Jackson 1.x. From 4.1 on, the
framework will select Jackson 2 by default ahead of the Boon implementation if both are on the
classpath. Jackson 1.x is no longer supported by the framework internally but, of course, you
can still use it within your code. To avoid unexpected issues with JSON mapping features, when
using annotations, there may be a need to apply annotations from both Jacksons and/or Boon
on domain classes:

@r g. codehaus. j ackson. annot at e. Jsonl gnor eProperti es(i gnor eUnknown=t r ue)
@om fasterxnl .jackson. annot ati on. Jsonl gnor eProperti es(i gnoreUnknown=t r ue)
@r g. boon. j son. annot at i ons. Jsonl gnor eProperties("foo")

public class Foo {

@r g. codehaus. j ackson. annot at e. JsonProperty("fooBar")
@om fasterxnl .jackson. annot ati on. JsonProperty("fooBar")
@r g. boon. j son. annot at i ons. JsonProperty("fooBar")

public Object bar;

You may wish to consider using a FactoryBean or simple factory method to create the

JsonOhj ect Mapper with the required characteristics.

public class ObjectMapperFactory {

public static Jackson2JsonObj ect Mapper get Mapper () {
Obj ect Mapper mapper = new Cbj ect Mapper () ;
mapper . confi gure(JsonPar ser. Feat ure. ALLONV COMVENTS, true);
return new Jackson2JsonObj ect Mapper (mapper) ;

<bean id="cust onbj ect Mapper" cl ass="fo0o. Obj ect Mapper Factory"
fact ory- net hod="get Mapper"/ >

Important

Beginning with version 2.2, the obj ect -t 0-j son-transf or ner sets the content-type header
to appl i cati on/j son, by default, if the input message does not already have that header
present.

It you wish to set the content type header to some other value, or explicitly overwrite any existing
header with some value (including appl i cati on/j son), use the cont ent -t ype attribute. If
you wish to suppress the setting of the header, set the cont ent -t ype attribute to an empty
string (" "). This will result in a message with no cont ent -t ype header, unless such a header
was present on the input message.

Beginning with version 3.0, the Cbj ect ToJsonTr ansf or mer adds headers, reflecting the source
type, to the message. Similarly, the JsonToObj ect Tr ansf or mer can use those type headers when
converting the JSON to an object. These headers are mapped in the AMQP adapters so that they are

entirely compatible with the Spring-AMQP JsonMessageConverter.

This enables the following flows to work without any special configuration...

... ->angp- out bound- adapter---->

5.0.12.RELEASE Spring Integration

120

http://docs.spring.io/spring-amqp/api/

Spring Integration Reference Manual

- --->angp- i nbound- adapt er - >j son-t o- obj ect-transforner->. ..

Where the outbound adapter is configured with a JsonMessageConver t er and the inbound adapter
uses the default Si npl eMessageConverter.

. ->0bj ect -t o-j son-transf or ner - >angp- out bound- adapter---->
- --->angp- i nbound- adapter->. ..

Where the outbound adapter is configured with a Si npl eMessageConvert er and the inbound adapter
uses the default JsonMessageConverter.

...->0bj ect-to-json-transforner->angp-out bound- adapter---->
- --->angp- i nbound- adapt er - >j son-t o- obj ect-transf or nmer->

Where both adapters are configured with a Si npl eMessageConverter.

Note

When using the headers to determine the type, you should not provide a cl ass attribute, because
it takes precedence over the headers.

In addition to JSON Transformers, Spring Integration provides a built-in #jsonPath SpEL function for
use in expressions. For more information see the section called “CompletableFuture”.

#xpath SpEL Function

Since version 3.0, Spring Integration also provides a built-in #xpath SpEL function for use in expressions.
For more information see the section called “CompletableFuture”.

Beginning with version 4.0, the Obj ect ToJsonTr ansf or mer supports the r esul t Type property,
to specify the node JSON representation. The result node tree representation depends on the
implementation of the provided JsonQbj ect Mapper . By default, the Obj ect ToJsonTr ansf or ner
uses a Jackson2JsonObj ect Mapper and delegates the conversion of the object to the node tree
to the Obj ect Mapper #val ueToTr ee method. The node JSON representation provides efficiency for
using the JsonPr oper t yAccessor , when the downstream message flow uses SpEL expressions with
access to the properties of the JSON data. See the section called “CompletableFuture”. When using
Boon, the NODE representation is a Map<Stri ng, bj ect >

Configuring a Transformer with Annotations

The @' ansf or mer annotation can also be added to methods that expect either the Message type or
the message payload type. The return value will be handled in the exact same way as described above
in the section describing the <transformer> element.

@r ansf or ner
Order generateOrder(String productld) {
return new O der(productld);

}

Transformer methods may also accept the @Header and @Headers annotations that is documented
in the section called “CompletableFuture”

@r ansf or mer
O der generateOrder(String productld, @leader("custonmerNane") String customer) {
return new Order(productld, custoner);

}

5.0.12.RELEASE Spring Integration 121

Spring Integration Reference Manual

Also see the section called “CompletableFuture”.

Header Filter

Some times your transformation use case might be as simple as removing a few headers. For such a
use case, Spring Integration provides a Header Filter which allows you to specify certain header names
that should be removed from the output Message (e.g. for security reasons or a value that was only
needed temporarily). Basically, the Header Filter is the opposite of the Header Enricher. The latter is
discussed in the section called “Header Enricher”.

<int:header-filter input-channel="inputChannel"
out put - channel =" out put Channel " header - nanes="1 ast Nane, state"/>

As you can see, configuration of a Header Filter is quite simple. It is a typical endpoint with input/output
channels and a header - nanes attribute. That attribute accepts the names of the header(s) (delimited
by commas if there are multiple) that need to be removed. So, in the above example the headers named
lastName and state will not be present on the outbound Message.

Codec-Based Transformers

See Section 7.4, “Codec”.
7.2 Content Enricher

Introduction

At times you may have a requirement to enhance a request with more information than was provided by
the target system. The Content Enricher pattern describes various scenarios as well as the component
(Enricher), which allows you to address such requirements.

The Spring Integration Cor e module includes 2 enrichers:

» Header Enricher

» Payload Enricher

Furthermore, several Adapter specific Header Enrichers are included as well:

» XPath Header Enricher (XML Module)

* Mail Header Enricher (Mail Module)

« XMPP Header Enricher (XMPP Module)

Please go to the adapter specific sections of this reference manual to learn more about those adapters.

For more information regarding expressions support, please see the section called “CompletableFuture”.

Header Enricher

If you only need to add headers to a Message, and they are not dynamically determined by the Message
content, then referencing a custom implementation of a Transformer may be overkill. For that reason,
Spring Integration provides support for the Header Enricher pattern. It is exposed via the <header -
enri cher > element.

5.0.12.RELEASE Spring Integration 122

http://www.eaipatterns.com/DataEnricher.html

Spring Integration Reference Manual

<i nt:header-enricher input-channel ="in" output-channel ="out">
<i nt:header name="foo" val ue="123"/>
<int:header name="bar" ref="sonmeBean"/>
</int:header-enricher>

The Header Enricher also provides helpful sub-elements to set well-known header names.

<i nt:header-enricher input-channel ="in" output-channel ="out">
<int:error-channel ref="applicationErrorChannel"/>
<int:reply-channel ref="quoteReplyChannel"/>
<int:correlation-id val ue="123"/>
<int:priority val ue="H GHEST"/ >

<int:header name="bar" ref="sonmeBean"/>
</int:header-enricher>

<routing-slip value="channel 1; routingSlipRoutingStrategy; request.headers[nyRoutingSlipChannel]"/>

In the above configuration you can clearly see that for well-known headers such as er r or Channel ,
correlationld, priority, replyChannel, routing-slip etc., instead of using generic
<header> sub-elements where you would have to provide both header name and value, you can use

convenient sub-elements to set those values directly.

Starting with version 4.1 the Header Enricher provides r out i ng- sl i p sub-element. See the section

called “Routing Slip” for more information.

POJO Support

Often a header value cannot be defined statically and has to be determined dynamically based on some
content in the Message. That is why Header Enricher allows you to also specify a bean reference using
the r ef and net hod attribute. The specified method will calculate the header value. Let's look at the

following configuration:

<i nt:header-enricher input-channel ="in" output-channel ="out">
<int:header name="foo" nethod="conputeVal ue" ref="nyBean"/>
</int:header-enricher>

<bean id="nyBean" cl ass="foo. bar. M/Bean"/ >

public class MyBean {

public String conputeVal ue(String payl oad){
return payl oad.toUpper Case() + "_US";
}

You can also configure your POJO as inner bean:

<int:header-enricher input-channel ="inputChannel" out put-channel ="out put Channel ">

<i nt: header name="some_header" >
<bean cl ass="org. Wy Enri cher"/>
</i nt: header >
</int:header-enricher>

as well as point to a Groovy script:

<int:header-enricher input-channel ="inputChannel" out put-channel ="out put Channel ">

<i nt: header nanme="sone_header" >

<int-groovy:script |ocation="org/Sanpl eG oovyHeader Enri cher. groovy"/>

</int:header>
</int:header-enricher>

SpEL Support

5.0.12.RELEASE Spring Integration

123

Spring Integration Reference Manual

In Spring Integration 2.0 we have introduced the convenience of the Spring Expression Language
(SpEL) to help configure many different components. The Header Enricher is one of them. Looking
again at the POJO example above, you can see that the computation logic to determine the header
value is actually pretty simple. A natural question would be: "is there a simpler way to accomplish this?".
That is where SpEL shows its true power.

<i nt:header-enricher input-channel ="in" output-channel ="out">
<int:header name="foo0" expression="payl oad.toUpperCase() + '_US "/>
</int:header-enricher>

As you can see, by using SpEL for such simple cases, we no longer have to provide a separate class
and configure it in the application context. All we need is the expression attribute configured with a valid
SpEL expression. The payload and headers variables are bound to the SpEL Evaluation Context, giving
you full access to the incoming Message.

Configuring a Header Enricher with Java Configuration

The following are some examples of Java Configuration for header enrichers:

@Bean
@ ansf or mer (i nput Channel = "enrichHeader sChannel ", out put Channel = "enai |l Channel ")
publ i ¢ Header Enri cher enrichHeaders() {

Map<String, ? extends HeaderVal ueMessageProcessor <?>> header sToAdd =

Col | ecti ons. si ngl etonMap("enai | Ul ",
new St ati cHeader Val ueMessagePr ocessor <>(this.impUrl));
Header Enri cher enricher = new Header Enri cher (header sToAdd) ;
return enricher;

}

@ean

@r ansf or ner (i nput Channel ="enri chHeader sChannel ", out put Channel =" enai | Channel ")

publ i ¢ Header Enri cher enrichHeaders() {
Map<String, Header Val ueMessagePr ocessor <?>> header sToAdd = new HashMap<>();
header sToAdd. put ("emai | Url ", new Stati cHeader Val ueMessageProcessor<String>(this.impUl));
Expressi on expressi on = new Spel Expr essi onPar ser (). par seExpressi on("payl oad. fronf0].toString()");
header sToAdd. put ("front',

new Expressi onEval uati ngHeader Val ueMessagePr ocessor <>(expression, String.class));

Header Enri cher enricher = new Header Enri cher (header sToAdd) ;
return enricher;

The first adds a single literal header. The second adds two headers - a literal header and one based
on a SpEL expression.

Configuring a Header Enricher with the Java DSL

The following is an example of Java DSL Configuration for a header enricher:

@Bean
public IntegrationFl ow enrichHeaderslnFl ow() {
return f ->f

.enrichHeaders(h -> h.header("enmail Url", this.emilUl)
. header Expressi on("front, "payload.fron{0].toString()"))
.handle(...);

Header Channel Registry

Starting with Spring Integration 3.0, a new sub-element <i nt : header - channel s-to-string/>is
available; it has no attributes. This converts existing r epl yChannel and error Channel headers
(whenthey are a MessageChannel) to a String and stores the channel(s) in aregistry for later resolution

5.0.12.RELEASE Spring Integration 124

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html

Spring Integration Reference Manual

when it is time to send a reply, or handle an error. This is useful for cases where the headers might be
lost; for example when serializing a message into a message store or when transporting the message
over JMS. If the header does not already exist, or it is not a MessageChannel , no changes are made.

Use of this functionality requires the presence of a Header Channel Regi stry bean. By default,
the framework creates a Def aul t Header Channel Regi st ry with the default expiry (60 seconds).
Channels are removed from the registry after this time. To change this, simply define a bean with id
i nt egr ati onHeader Channel Regi st ry and configure the required default delay using a constructor
argument (milliseconds).

Since version 4.1, you can set a property r enoveOnGet to true on the <bean/ > definition, and
the mapping entry will be removed immediately on first use. This might be useful in a high-volume
environment and when the channel is only used once, rather than waiting for the reaper to remove it.

The Header Channel Regi stry has a si ze() method to determine the current size of the registry.
The runReaper () method cancels the current scheduled task and runs the reaper immediately; the
task is then scheduled to run again based on the current delay. These methods can be invoked directly
by getting a reference to the registry, or you can send a message with, for example, the following content
to a control bus:

" @ nt egr at i onHeader Channel Regi stry. runReaper ()"

This sub-element is a convenience only, and is the equivalent of specifying:

<int:reply-channel
expressi on=" @ nt egr at i onHeader Channel Regi stry. channel ToChannel Nane(header s. r epl yChannel)"
overwite="true" />

<int:error-channel
expr essi on=" @ nt egr at i onHeader Channel Regi st ry. channel ToChannel Nane(header s. er r or Channel)"
overwite="true" />

Starting with version 4.1, you can now override the registry’s configured reaper delay, so the the channel
mapping is retained for at least the specified time, regardless of the reaper delay:

<i nt:header-enricher input-channel ="inputTtl" output-channel ="next">
<i nt:header-channel s-to-string time-to-1ive-expressi on="120000" />
</i nt:header-enricher>

<int:header-enricher input-channel ="inputCustonilt|" output-channel ="next">
<i nt: header - channel s-to-string
time-to-live-expressi on="headers['channel TTL'] ?: 120000" />
</i nt:header-enricher>

In the first case, the time to live for every header channel mapping will be 2 minutes; in the second
case, the time to live is specified in the message header and uses an elvis operator to use 2 minutes
if there is no header.

Payload Enricher

In certain situations the Header Enricher, as discussed above, may not be sufficient and payloads
themselves may have to be enriched with additional information. For example, order messages that
enter the Spring Integration messaging system have to look up the order’s customer based on the
provided customer number and then enrich the original payload with that information.

Since Spring Integration 2.1, the Payload Enricher is provided. A Payload Enricher defines an endpoint
that passes a Message to the exposed request channel and then expects a reply message. The reply
message then becomes the root object for evaluation of expressions to enrich the target payload.

5.0.12.RELEASE Spring Integration 125

Spring Integration Reference Manual

The Payload Enricher provides full XML namespace support via the enri cher element. In order to
send request messages, the payload enricher has a r equest - channel attribute that allows you to
dispatch messages to a request channel.

Basically by defining the request channel, the Payload Enricher acts as a Gateway, waiting for the
message that were sent to the request channel to return, and the Enricher then augments the message’s
payload with the data provided by the reply message.

When sending messages to the request channel you also have the option to only send a subset of the
original payload using the r equest - payl oad- expr essi on attribute.

The enriching of payloads is configured through SpEL expressions, providing users with a maximum
degree of flexibility. Therefore, users are not only able to enrich payloads with direct values from the
reply channel’'s Message, but they can use SpEL expressions to extract a subset from that Message,
only, or to apply addtional inline transformations, allowing them to further manipulate the data.

If you only need to enrich payloads with static values, you don’t have to provide the r equest - channel
attribute.

Note

Enrichers are a variant of Transformers and in many cases you could use a Payload Enricher
or a generic Transformer implementation to add additional data to your messages payloads.
Thus, familiarize yourself with all transformation-capable components that are provided by Spring
Integration and carefully select the implementation that semantically fits your business case best.

Configuration

Below, please find an overview of all available configuration options that are available for the payload
enricher:

<int:enricher request-channel =
auto-startup="true"
i d=""

out put - channel =""

request - payl oad- expr essi on=
repl y- channel =""

error-channel =

send-ti meout =

Ooooooogoogao

shoul d- cl one- payl oad="f al se" >
<int:poller></int:poller>
<int:property name="" expression= nul | -resul t-expression=""Could not determnine the name'"/>
<int:property name="" val ue="23" type="java.lang.|nteger" null-result-expression="'0""/>
<int:header name="" expression="" null-result-expression=""/>
<int:header name="" val ue="" overwite="" type="" null-result-expression=""/>
</int:enricher>

O Channel to which a Message will be sent to get the data to use for enrichment. Optional.

O Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true.Optional.

O Id of the underlying bean definition, which is either an Event Dri venConsuner or a
Pol | i ngConsuner . Optional.

0 Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a "failover" dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Optional.

5.0.12.RELEASE Spring Integration 126

Spring Integration Reference Manual

Identifies the Message channel where a Message will be sent after it is being processed by this
endpoint.Optional.

By default the original message’s payload will be used as payload that will be send to the
r equest - channel . By specifying a SpEL expression as value for the r equest - payl oad-
expr essi on attribute, a subset of the original payload, a header value or any other resolvable
SpEL expression can be used as the basis for the payload, that will be sent to the request-channel.
For the Expression evaluation the full message is available as the root object. For instance the
following SpEL expressions (among others) are possible: payl oad. f 0o, header s. f oobar , new
java.util.Date(), ' foo' + 'bar'.

Channel where a reply Message is expected. This is optional; typically the auto-generated
temporary reply channel is sufficient. Optional.

Channel to which an Err or Message will be sent if an Excepti on occurs downstream of the
r equest - channel . This enables you to return an alternative object to use for enrichment. This
is optional; if it is not set then Except i on is thrown to the caller. Optional.

Maximum amount of time in milliseconds to wait when sending a message to the channel,
if such channel may block. For example, a Queue Channel can block until space is
available, if its maximum capacity has been reached. Internally the send timeout is set on
the Messagi ngTenpl at e and ultimately applied when invoking the send operation on the
MessageChannel . By default the send timeout is set to -1, which may cause the send operation
on the MessageChannel , depending on the implementation, to block indefinitely. Optional.
Boolean value indicating whether any payload that implements Cl oneabl e should be cloned prior
to sending the Message to the request chanenl for acquiring the enriching data. The cloned version
would be used as the target payload for the ultimate reply. Default is f al se. Optional.

Allows you to configure a Message Poller if this endpoint is a Polling Consumer. Optional.

Each pr oper t y sub-element provides the name of a property (via the mandatory nane attribute).
That property should be settable on the target payload instance. Exactly one of the val ue or
expr essi on attributes must be provided as well. The former for a literal value to set, and the
latter for a SpEL expression to be evaluated. The root object of the evaluation context is the
Message that was returned from the flow initiated by this enricher, the input Message if there is
no request channel, or the application context (using the @<beanName>.<beanProperty> SpEL
syntax). Starting with 4.0, when specifying a val ue attribute, you can also specify an optional
t ype attribute. When the destination is a typed setter method, the framework will coerce the value
appropriately (as long as a Pr opert yEdi t or) exists to handle the conversion. If however, the
target payload is a Map the entry will be populated with the value without conversion. The t ype
attribute allows you to, say, convert a String containing a number to an | nt eger value in the
target payload. Starting with 4.1, you can also specify an optional nul | - resul t - expr essi on
attribute. When the enri cher returns null, it will be evaluated and the output of the evaluation
will be returned instead.

Each header sub-element provides the name of a Message header (via the mandatory nane
attribute). Exactly one of the val ue or expressi on attributes must be provided as well. The
former for a literal value to set, and the latter for a SpEL expression to be evaluated. The root
object of the evaluation context is the Message that was returned from the flow initiated by this
enricher, the input Message if there is no request channel, or the application context (using the
@<beanName>.<beanProperty> SpEL syntax). Note, similar to the <header - enri cher >, the
<enri cher >'s header element has t ype and overwri t e attributes. However, a difference is
that, with the <enri cher >, the overwri t e attribute is t r ue by default, to be consistent with
<enri cher >'s <property> sub-element. Starting with 4.1, you can also specify an optional
nul | - resul t - expr essi on attribute. When the enr i cher returns null, it will be evaluated and
the output of the evaluation will be returned instead.

5.0.12.RELEASE Spring Integration 127

Spring Integration Reference Manual

Examples
Below, please find several examples of using a Payload Enricher in various situations.

In the following example, a User object is passed as the payload of the Message. The User has several
properties but only the user nane is set initially. The Enricher's r equest - channel attribute below is
configured to pass the User on to the f i ndUser Ser vi ceChannel .

Through the implicitly set r epl y- channel a User object is returned and using the pr operty sub-
element, properties from the reply are extracted and used to enrich the original payload.

<int:enricher id="findUserEnricher"
i nput - channel ="fi ndUser Enri cher Channel "
request - channel ="fi ndUser Servi ceChannel " >
<int:property name="email" expr essi on="payl oad. emai | "/ >
<int:property name="password" expressi on="payl oad. password"/ >
</int:enricher>

Note

The code samples shown here, are part of the Spring Integration Samples project. Please feel
free to check it out in the the section called “CompletableFuture”.

How do | pass only a subset of data to the request channel?

Using ar equest - payl oad- expr essi on attribute a single property of the payload can be passed on
to the request channel instead of the full message. In the example below on the username property is
passed on to the request channel. Keep in mind, that although only the username is passed on, the
resulting message send to the request channel will contain the full set of MessageHeader s.

<int:enricher id="findUserByUsernameEnricher"
i nput - channel ="fi ndUser ByUser naneEnri cher Channel "
request - channel ="fi ndUser ByUser naneSer vi ceChannel "
request - payl oad- expr essi on="payl oad. user nane" >
<int:property name="email" expr essi on="payl oad. emai | "/ >
<int:property name="password" expression="payl oad. password"/ >
</int:enricher>

How can | enrich payloads that consist of Collection data?

In the following example, instead of a User object, a Map is passed in. The Map contains the username
under the map key user nane. Only the user nane is passed on to the request channel. The reply
contains a full User object, which is ultimately added to the Map under the user key.

<int:enricher id="findUser WthMapEnricher"
i nput - channel ="fi ndUser Wt hMapEnri cher Channel "
request - channel ="fi ndUser ByUser naneSer vi ceChannel "
request - payl oad- expr essi on="payl oad. user nane" >
<int:property name="user" expression="payl oad"/>
</int:enricher>

How can | enrich payloads with static information without using a request channel?

Here is an example that does not use a request channel at all, but solely enriches the message’s payload
with static values. But please be aware that the word static is used loosely here. You can still use SpEL
expressions for setting those values.

5.0.12.RELEASE Spring Integration 128

Spring Integration Reference Manual

<int:enricher id="userEnricher"
i nput - channel ="i nput " >
<int:property name="user.updateDate" expression="new java.util.Date()"/>
<int:property name="user.firstNane" val ue="foo"/>
<int:property name="user.|ast Nane" val ue="bar"/>
<int:property name="user.age" val ue="42"/>
</int:enricher>

7.3 Claim Check

Introduction

In the earlier sections we've covered several Content Enricher type components that help you deal with
situations where a message is missing a piece of data. We also discussed Content Filtering which lets
you remove data items from a message. However there are times when we want to hide data temporarily.
For example, in a distributed system we may receive a Message with a very large payload. Some
intermittent message processing steps may not need access to this payload and some may only need
to access certain headers, so carrying the large Message payload through each processing step may
cause performance degradation, may produce a security risk, and may make debugging more difficult.

The Claim Check pattern describes a mechanism that allows you to store data in a well known place
while only maintaining a pointer (Claim Check) to where that data is located. You can pass that pointer
around as a payload of a new Message thereby allowing any component within the message flow to get
the actual data as soon as it needs it. This approach is very similar to the Certified Mail process where
you'll get a Claim Check in your mailbox and would have to go to the Post Office to claim your actual
package. Of course it's also the same idea as baggage-claim on a flight or in a hotel.

Spring Integration provides two types of Claim Check transformers:
* Incoming Claim Check Transformer
e Outgoing Claim Check Transformer

Convenient namespace-based mechanisms are available to configure them.
Incoming Claim Check Transformer

An Incoming Claim Check Transformer will transform an incoming Message by storing it in the Message
Store identified by its message- st or e attribute.

<int:clai mcheck-in id="checkin"
i nput - channel =" checki nChannel "
nmessage- st ore="t est MessageSt or e
out put - channel =" out put "/ >

In the above configuration the Message that is received on the i nput - channel will be persisted to
the Message Store identified with the nessage- st or e attribute and indexed with generated ID. That
ID is the Claim Check for that Message. The Claim Check will also become the payload of the new
(transformed) Message that will be sent to the out put - channel .

Now, lets assume that at some point you do need access to the actual Message. You can of course
access the Message Store manually and get the contents of the Message, or you can use the same
approach as before except now you will be transforming the Claim Check to the actual Message by
using an Outgoing Claim Check Transformer.

Here is an overview of all available parameters of an Incoming Claim Check Transformer:

5.0.12.RELEASE Spring Integration 129

http://www.eaipatterns.com/StoreInLibrary.html

Spring Integration Reference Manual

<int:clai mcheck-in auto-startup="true" 0O
id=""
i nput - channel =""
nessage- st or e=" messageSt or e"
order=""
out put - channel =

send-ti meout ="">

O O0OO0O0Ooogoaog

<int:poller></int:poller>
</int:clai mcheck-in>

O Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Attribute is not available inside a Chai n element. Optional.

O Id identifying the underlying bean definition (MessageTr ansf or mi ngHandl er). Attribute is not
available inside a Chai n element. Optional.

0 Thereceiving Message channel of this endpoint. Attribute is not available inside a Chai n element.
Optional.

0 Reference to the MessageStore to be used by this Claim Check transformer. If not specified, the
default reference will be to a bean named messageStore. Optional.

0 Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a failover dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Attribute is not
available inside a Chai n element. Optional.

O Identifies the Message channel where Message will be sent after its being processed by this
endpoint. Attribute is not available inside a Chai n element. Optional.

0 Specify the maximum amount of time in milliseconds to wait when sending a reply Message to
the output channel. Defaults to - 1 - blocking indefinitely. Attribute is not available inside a Chai n
element. Optional.

O Defines a poller. Element is not available inside a Chai n element. Optional.

Outgoing Claim Check Transformer

An Outgoing Claim Check Transformer allows you to transform a Message with a Claim Check payload
into a Message with the original content as its payload.

<int:clai mcheck-out id="checkout"
i nput - channel =" checkout Channel "
nmessage- st ore="t est MessageSt or e"
out put - channel =" out put "/ >

In the above configuration, the Message that is received on the i nput - channel should have a Claim
Check as its payload and the Outgoing Claim Check Transformer will transform it into a Message with
the original payload by simply querying the Message store for a Message identified by the provided
Claim Check. It then sends the newly checked-out Message to the out put - channel .

Here is an overview of all available parameters of an Outgoing Claim Check Transformer:

<int:claimcheck-out auto-startup="true" 0O
id=""
i nput - channel =""
nessage- st or e=" nessageSt ore"
order=""
out put - channel =""
renove- nessage="f al se"

send-ti meout ="">

O0Oo0Oo0Oogooad

<int:poller></int:poller>
</int:clai mcheck-out>

5.0.12.RELEASE Spring Integration 130

Spring Integration Reference Manual

O Lifecycle attribute signaling if this component should be started during Application Context startup.
Defaults to true. Attribute is not available inside a Chai n element. Optional.

O Id identifying the underlying bean definition (MessageTr ansf or mi ngHandl er). Attribute is not
available inside a Chai n element. Optional.

0 Thereceiving Message channel of this endpoint. Attribute is not available inside a Chai n element.
Optional.

0 Reference to the MessageStore to be used by this Claim Check transformer. If not specified, the
default reference will be to a bean named messageStore. Optional.

0 Specifies the order for invocation when this endpoint is connected as a subscriber to a channel.
This is particularly relevant when that channel is using a failover dispatching strategy. It has no
effect when this endpoint itself is a Polling Consumer for a channel with a queue. Attribute is not
available inside a Chai n element. Optional.

O Identifies the Message channel where Message will be sent after its being processed by this
endpoint. Attribute is not available inside a Chai n element. Optional.

O If settotrue the Message will be removed from the MessageStore by this transformer. Useful
when Message can be "claimed" only once. Defaults to f al se. Optional.

O Specify the maximum amount of time in milliseconds to wait when sending a reply Message to
the output channel. Defaults to - 1 - blocking indefinitely. Attribute is not available inside a Chai n
element. Optional.

0 Defines a poller. Element is not available inside a Chai n element. Optional.

Claim Once

There are scenarios when a particular message must be claimed only once. As an analogy, consider the
airplane luggage check-in/out process. Checking-in your luggage on departure and and then claiming
it on arrival is a classic example of such a scenario. Once the luggage has been claimed, it can not be
claimed again without first checking it back in. To accommodate such cases, we introduced a r enove-
nmessage boolean attribute on the cl ai m check- out transformer. This attribute is set to f al se by
default. However, if setto t r ue, the claimed Message will be removed from the MessageStore, so that
it can no longer be claimed again.

This is also something to consider in terms of storage space, especially in the case of the in-memory
Map-based Si npl eMessagesSt or e, where failing to remove the Messages could ultimately lead to an
Qut O Menor yExcept i on. Therefore, if you don’t expect multiple claims to be made, it's recommended
that you set the r enove- nessage attribute’s value to t r ue.

<int:clai mcheck-out id="checkout"
i nput - channel =" checkout Channel "
nmessage- st ore="t est MessageSt or e"
out put - channel =" out put "
renove- nessage="true"/ >

A word on Message Store

Although we rarely care about the details of the claim checks as long as they work, it is still worth
knowing that the current implementation of the actual Claim Check (the pointer) in Spring Integration
is a UUID to ensure uniqueness.

org. springframework.integration.store. MessageStore is a strategy interface for storing
and retrieving messages. Spring Integration provides two convenient implementations of it.
Si npl eMessageSt or e: an in-memory, Map-based implementation (the default, good for testing) and
JdbcMessagesSt or e: an implementation that uses a relational database via JDBC.

5.0.12.RELEASE Spring Integration 131

Spring Integration Reference Manual

7.4 Codec

Introduction

Spring Integration version 4.2 introduces the Codec abstraction. Codecs are used to encode/decode
objects to/from byt e[]. They are an alternative to Java Serialization. One advantage is, typically,
objects do not have to implement Ser i al i zabl e. One implementation, using Kryo for serialization, is
provided but you can provide your own implementation for use in any of these components:

e Encodi ngPayl oadTr ansf or mer
» Decodi ngTr ansf or ner
» CodecMessageConverter

See their JavaDocs for more information.

EncodingPayloadTransformer

This transformer encodes the payload to a byt e[] using the codec. It does not affect message headers.

DecodingTransformer

This transformer decodes a byt e[] using the codec; it needs to be configured with the Class to which
the object should be decoded (or an expression that resolves to a Class). If the resulting object is a
Message<?>, inbound headers will not be retained.

CodecMessageConverter

Certain endpoints (e.g. TCP, Redis) have no concept of message headers; they support the use of a
MessageConvert er and the CodecMessageConvert er can be used to convert a message to/from
a byt e[] for transmission.

Kryo

Currently, this is the only implementation of Codec. There are two Codec s - Poj oCodec which can be
used in the transformers and MessageCodec which can be used in the CodecMessageConvert er.

Several custom serializers are provided by the framework:
» FileSerializer

 MessageHeadersSeri ali zer

» Mut abl eMessageHeader sSeri al i zer

The first can be used with the Poj oCodec, by initializing it with the Fi | eKr yoRegi st r ar. The second
and third are used with the MessageCodec, which is initialized with the MessageKr yoRegi st rar.

Customizing Kryo

By default, Kryo delegates unknown Java types to its Fi el dSeri alizer. Kryo also registers
default serializers for each primitive type along with String, Col | ecti on and Map serializers.

5.0.12.RELEASE Spring Integration 132

https://github.com/EsotericSoftware/kryo

Spring Integration Reference Manual

Fi el dSeri al i zer uses reflection to navigate the object graph. A more efficient approach is to
implement a custom serializer that is aware of the object’s structure and can directly serialize selected

primitive fields:
public class AddressSerializer extends Serializer<Address> {
@verride
output.witeString(address.getStreet());

output.witeString(address.getCity());
output.witeString(address. getCountry());

}

@verride

}

public void wite(Kryo kryo, Qutput output, Address address) {

public Address read(Kryo kryo, Input input, O ass<Address> type) {
return new Address(input.readString(), input.readString(),

i nput . readstring());

The Seri al i zer interface exposes Kryo, | nput , and Qut put which provide complete control over

which fields are included and other internal settings as described in the documentation.

Note

the registrars mentioned above.

Using a Custom Kryo Serializer

When registering your custom serializer, you need a registration ID. The registration IDs are
arbitrary but in our case must be explicitly defined because each Kryo instance across the
distributed application must use the same IDs. Kryo recommends small positive integers, and
reserves a few ids (value < 10). Spring Integration currently defaults to using 40, 41 and 42 (for
the file and message header serializers mentioned above); we recommend you start at, say 60, to
allow for expansion in the framework. These framework defaults can be overridden by configuring

If custom serialization is indicated, please consult the Kryo documentation since you will be using the

native API. For an example, see the MessageCodec.

Implementing KryoSerializable

If you have write access to the domain object source code it may implement KryoSeri al i zabl e
as described here. In this case the class provides the serialization methods itself and no further
configuration is required. This has the advantage of being much simpler to use with XD, however

benchmarks have shown this is not quite as efficient as registering a custom serializer explicitly:

public class Address inplenments KryoSerializable {

@verride

public void wite(Kryo kryo, Qutput output) {
output.witeString(this.street);
output.witeString(this.city);
output.witeString(this.country);

}

@verride
public void read(Kryo kryo, Input input) {
this.street = input.readString();

this.city = input.readString();
this.country = input.readString();

5.0.12.RELEASE Spring Integration

133

https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo#kryoserializable

Spring Integration Reference Manual

Note that this technique can also be used to wrap a serialization library other than Kryo.
Using DefaultSerializer Annotation

Kryo also provides an annotation as described here.

@ef aul t Seri al i zer (SoneCl assSeri al i zer. cl ass)
public class Somed ass {
...

}

If you have write access to the domain object this may be a simpler alternative to specify a custom
serializer. Note this does not register the class with an ID, so your mileage may vary.

5.0.12.RELEASE Spring Integration 134

https://github.com/EsotericSoftware/kryo#default-serializers

Spring Integration Reference Manual

8. Messaging Endpoints

8.1 Message Endpoints

The first part of this chapter covers some background theory and reveals quite a bit about the underlying
API that drives Spring Integration’s various messaging components. This information can be helpful if
you want to really understand what's going on behind the scenes. However, if you want to get up and
running with the simplified namespace-based configuration of the various elements, feel free to skip
ahead to the section called “Endpoint Namespace Support” for now.

As mentioned in the overview, Message Endpoints are responsible for connecting the various
messaging components to channels. Over the next several chapters, you will see a number of different
components that consume Messages. Some of these are also capable of sending reply Messages.
Sending Messages is quite straightforward. As shown above in Section 4.1, “Message Channels”, it's
easy to send a Message to a Message Channel. However, receiving is a bit more complicated. The main
reason is that there are two types of consumers: Polling Consumers and Event Driven Consumers.

Of the two, Event Driven Consumers are much simpler. Without any need to manage and schedule a
separate poller thread, they are essentially just listeners with a callback method. When connecting to one
of Spring Integration’s subscribable Message Channels, this simple option works great. However, when
connecting to a buffering, pollable Message Channel, some component has to schedule and manage the
polling thread(s). Spring Integration provides two different endpoint implementations to accommodate
these two types of consumers. Therefore, the consumers themselves can simply implement the callback
interface. When polling is required, the endpoint acts as a container for the consumer instance. The
benefit is similar to that of using a container for hosting Message Driven Beans, but since these
consumers are simply Spring-managed Objects running within an ApplicationContext, it more closely
resembles Spring’s own MessageListener containers.

Message Handler

Spring Integration’s MessageHandl er interface is implemented by many of the components within
the framework. In other words, this is not part of the public API, and a developer would not typically
implement MessageHandl er directly. Nevertheless, it is used by a Message Consumer for actually
handling the consumed Messages, and so being aware of this strategy interface does help in terms of
understanding the overall role of a consumer. The interface is defined as follows:

public interface MessageHandl er {
voi d handl eMessage(Message<?> nessage) ;

}

Despite its simplicity, this provides the foundation for most of the components that will be covered
in the following chapters (Routers, Transformers, Splitters, Aggregators, Service Activators, etc).
Those components each perform very different functionality with the Messages they handle, but the
requirements for actually receiving a Message are the same, and the choice between polling and event-
driven behavior is also the same. Spring Integration provides two endpoint implementations that host
these callback-based handlers and allow them to be connected to Message Channels.

Event Driven Consumer

Because it is the simpler of the two, we will cover the Event Driven Consumer endpoint first.
You may recall that the Subscri babl eChannel interface provides a subscri be() method

5.0.12.RELEASE Spring Integration 135

http://www.eaipatterns.com/PollingConsumer.html
http://www.eaipatterns.com/EventDrivenConsumer.html

Spring Integration Reference Manual

and that the method accepts a MessageHandl er parameter (as shown in the section called
“SubscribableChannel”):

subscri babl eChannel . subscri be(messageHandl er) ;

Since a handler that is subscribed to a channel does not have to actively poll that channel, this
is an Event Driven Consumer, and the implementation provided by Spring Integration accepts a a
Subscri babl eChannel and a MessageHandl er:

Subscri babl eChannel channel = context.getBean("subscribabl eChannel ", Subscri babl eChannel . cl ass);

Event Dri venConsuner consunmer = new Event Dri venConsuner (channel, exanpl eHandl er);

Polling Consumer

Spring Integration also provides a Pol | i ngConsuner, and it can be instantiated in the same way
except that the channel must implement Pol | abl eChannel :

Pol | abl eChannel channel = context.getBean("pol | abl eChannel ", Pol | abl eChannel . cl ass);

Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , exanpl eHandl er);

Note

For more information regarding Polling Consumers, please also read Section 4.2, “Poller” as well
as Section 4.3, “Channel Adapter”.

There are many other configuration options for the Polling Consumer. For example, the trigger is a
required property:

Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , handl er);

consuner. set Tri gger (new | nterval Tri gger (30, TinmeUnit.SECONDS));
Spring Integration currently provides two implementations of the Trigger interface:
Interval Tri gger and CronTri gger. The | nterval Tri gger is typically defined with a simple

interval (in milliseconds), but also supports an initialDelay property and a boolean fixedRate property
(the default is false, i.e. fixed delay):

Interval Trigger trigger = new Interval Trigger(1000);
trigger.setlnitial Del ay(5000);
trigger.setFi xedRate(true);

The CronTri gger simply requires a valid cron expression (see the Javadoc for details):

CronTrigger trigger = new CronTrigger("*/10 * * * * MON-FRI");

In addition to the trigger, several other polling-related configuration properties may be specified:

Pol I i ngConsuner consuner = new Pol | i ngConsuner (channel , handl er);

consumer . set MaxMessagesPer Pol | (10);
consuner . set Recei veTi meout (5000) ;

The maxMessagesPerPoll property specifies the maximum number of messages to receive within a
given poll operation. This means that the poller will continue calling receive() without waiting until either
nul | is returned or that max is reached. For example, if a poller has a 10 second interval trigger and

5.0.12.RELEASE Spring Integration 136

Spring Integration Reference Manual

a maxMessagesPerPoll setting of 25, and it is polling a channel that has 100 messages in its queue,
all 100 messages can be retrieved within 40 seconds. It grabs 25, waits 10 seconds, grabs the next
25, and so on.

The receiveTimeout property specifies the amount of time the poller should wait if no messages are
available when it invokes the receive operation. For example, consider two options that seem similar on
the surface but are actually quite different: the first has an interval trigger of 5 seconds and a receive
timeout of 50 milliseconds while the second has an interval trigger of 50 milliseconds and a receive
timeout of 5 seconds. The first one may receive a message up to 4950 milliseconds later than it arrived
on the channel (if that message arrived immediately after one of its poll calls returned). On the other
hand, the second configuration will never miss a message by more than 50 milliseconds. The difference
is that the second option requires a thread to wait, but as a result it is able to respond much more
quickly to arriving messages. This technique, known as long polling, can be used to emulate event-
driven behavior on a polled source.

A Polling Consumer may also delegate to a Spring TaskExecut or, as illustrated in the following
example:

Pol | i ngConsuner consunmer = new Pol | i ngConsuner (channel , handl er);

TaskExecutor taskExecutor = context.getBean("exanpl eExecutor”, TaskExecutor.class);
consuner . set TaskExecut or (t askExecut or) ;

Furthermore, a Pol | i ngConsumer has a property called adviceChain. This property allows you to
specify a Li st of AOP Advices for handling additional cross cutting concerns including transactions.
These advices are applied around the doPol | () method. For more in-depth information, please see the
sections AOP Advice chains and Transaction Support under the section called “Endpoint Namespace
Support”.

The examples above show dependency lookups, but keep in mind that these consumers will most often
be configured as Spring bean definitions. In fact, Spring Integration also provides a Fact or yBean called
Consumer Endpoi nt Fact or yBean that creates the appropriate consumer type based on the type of
channel, and there is full XML namespace support to even further hide those details. The namespace-
based configuration will be featured as each component type is introduced.

Note

Many of the MessageHandl| er implementations are also capable of generating reply Messages.
As mentioned above, sending Messages is trivial when compared to the Message reception.
Nevertheless,when and how many reply Messages are sent depends on the handler type. For
example, an Aggregator waits for a number of Messages to arrive and is often configured as
a downstream consumer for a Splitter which may generate multiple replies for each Message
it handles. When using the namespace configuration, you do not strictly need to know all
of the details, but it still might be worth knowing that several of these components share a
common base class, the Abstract Repl yProduci ngMessageHand| er, and it provides a
set Qut put Channel (. .) method.

Endpoint Namespace Support

Throughout the reference manual, you will see specific configuration examples for endpoint elements,
such as router, transformer, service-activator, and so on. Most of these will support an input-channel
attribute and many will support an output-channel attribute. After being parsed, these endpoint elements

5.0.12.RELEASE Spring Integration 137

Spring Integration Reference Manual

produce an instance of either the Pol | i ngConsumer or the Event Dri venConsuner depending
on the type of the input-channel that is referenced: Pol | abl eChannel or Subscri babl eChannel
respectively. When the channel is pollable, then the polling behavior is determined based on the
endpoint element’s poller sub-element and its attributes.

In the configuration below you find a poller with all available configuration options:

<int:poller cron=

defaul t="fal se"
error-channel =""
fixed-del ay=""
fixed-rate=""

id=""

max- nessages- per - pol | =""

receive-tinmeout =
t ask- execut or =""
ti me-unit="M LLI SECONDS"

EEEEDDDDDDDDDD

trigger="">
<int:advice-chain />
<int:transactional />

</int:poller>

Provides the ability to configure Pollers using Cron expressions. The underlying implementation
usesanorg. spri ngfranmewor k. schedul i ng. support. CronTri gger . Ifthis attribute is set,
none of the following attributes must be specified: f i xed- del ay, tri gger,fi xed-rate, ref.
By setting this attribute to true, it is possible to define exactly one (1) global default
poller. An exception is raised if more than one default poller is defined in the
application context. Any endpoints connected to a PollableChannel (PollingConsumer) or any
SourcePollingChannelAdapter that does not have any explicitly configured poller will then use the
global default Poller. Optional. Defaults to f al se.

Identifies the channel which error messages will be sent to if a failure occurs in this poller's
invocation. To completely suppress Exceptions, provide a reference to the nul | Channel .
Optional.

The fixed delay trigger uses a Peri odi cTri gger under the covers. If the ti ne-uni t attribute
is not used, the specified value is represented in milliseconds. If this attribute is set, none of the
following attributes must be specified: fi xed-rate, tri gger,cron,ref.

The fixed rate trigger uses a Peri odi cTri gger under the covers. If the ti me-unit attribute
is not used the specified value is represented in milliseconds. If this attribute is set, none of the
following attributes must be specified: f i xed- del ay, tri gger,cron,ref.

The Id referring to the Poller's underlying bean-definition, which is of type
org. springframework. i ntegration. scheduling. Pol | er Met adat a. The id attribute is
required for a top-level poller element unless it is the default poller (def aul t ="t rue").

Please see the section called “Configuring An Inbound Channel Adapter” for more information.
Optional. If not specified the default values used depends on the context. If a Pol | i ngConsuner
is used, this atribute will default to -1. However, if a Sour cePol | i ngChannel Adapt er is used,
then the max- messages- per - pol | attribute defaults to 1.

Value is set on the underlying class Pol | er Met adat a. Optional. If not specified it defaults to 1000
(milliseconds).

Bean reference to another top-level poller. The r ef attribute must not be present on the top-level
pol | er element. However, if this attribute is set, none of the following attributes must be specified:
fixed-rate,trigger,cron,fixed-del ay.

Provides the ability to reference a custom task executor. Please see the section below titled
TaskExecutor Support for further information. Optional.

5.0.12.RELEASE Spring Integration 138

Spring Integration Reference Manual

This attribute specifies the java.util.concurrent.TineUnit enum value on the
underlying or g. spri ngf ranewor k. schedul i ng. support. Peri odi cTri gger. Therefore,
this attribute can ONLY be used in combination with the f i xed- del ay or fi xed- r at e attributes.
If combined with either cr on oratri gger reference attribute, it will cause a failure. The minimal
supported granularity for a Per i odi cTri gger is MILLISECONDS. Therefore, the only available
options are MILLISECONDS and SECONDS. If this value is not provided, then any f i xed- del ay
or fi xed-rat e value will be interpreted as MILLISECONDS by default. Basically this enum
provides a convenience for SECONDS-based interval trigger values. For hourly, daily, and monthly
settings, consider using a cr on trigger instead.

Reference to any spring configured bean which implements the
org. spri ngframewor k. schedul i ng. Tri gger interface. Optional. However, if this attribute
is set, none of the following attributes must be specified: f i xed- del ay, fi xed-rat e,cron,ref.

Allows to specify extra AOP Advices to handle additional cross cutting concerns. Please see the
section below titled Transaction Support for further information. Optional.

Pollers can be made transactional. Please see the section below titled AOP Advice chains for
further information. Optional.

Examples

For example, a simple interval-based poller with a 1-second interval would be configured like this:

<int:transforner input-channel ="poll abl e"
ref ="transforner"
out put - channel =" out put " >
<int:poller fixed-rate="1000"/>
</int:transforner>

As an alternative to fixed-rate you can also use the fixed-delay attribute.

For a poller based on a Cron expression, use the cron attribute instead:

<int:transformer input-channel ="pollable"
ref="transforner"
out put - channel =" out put " >
<int:poller cron="*/10 * * * * MON-FRI"/>
</int:transforner>

If the input channel is a Pol | abl eChannel , then the poller configuration is required. Specifically, as
mentioned above, the trigger is a required property of the PollingConsumer class. Therefore, if you omit
the poller sub-element for a Polling Consumer endpoint’s configuration, an Exception may be thrown.
The exception will also be thrown if you attempt to configure a poller on the element that is connected
to a non-pollable channel.

It is also possible to create top-level pollers in which case only a ref is required:

<int:poller id="weekdayPoller" cron="*/10 * * * * MON-FRI"/>

<int:transformer input-channel ="pollable"
ref ="transforner"
out put - channel =" out put " >
<int:poller ref="weekdayPol|er"/>
</int:transforner>

Note

The ref attribute is only allowed on the inner-poller definitions. Defining this attribute on a top-level
poller will result in a configuration exception thrown during initialization of the Application Context.

5.0.12.RELEASE Spring Integration 139

Spring Integration Reference Manual

Global Default Pollers

In fact, to simplify the configuration even further, you can define a global default poller. A single top-level
poller within an ApplicationContext may have the def aul t attribute with a value of true. In that case, any
endpoint with a PollableChannel for its input-channel that is defined within the same ApplicationContext
and has no explicitly configured poller sub-element will use that default.

<int:poller id="defaultPoller" default="true" max-nmessages-per-poll="5" fixed-rate="3000"/>

<I-- No <poller/> sub-elenent is necessary since there is a default -->
<int:transforner input-channel ="poll abl e"

ref="transforner"

out put - channel =" out put "/ >

Transaction Support

Spring Integration also provides transaction support for the pollers so that each receive-and-forward
operation can be performed as an atomic unit-of-work. To configure transactions for a poller, simply add
the_<transactional/>_ sub-element. The attributes for this element should be familiar to anyone who
has experience with Spring’s Transaction management:

<int:poller fixed-delay="1000">
<int:transactional transaction-nmanager="txManager"
propagat i on=" REQUI RED"
i sol ati on=" REPEATABLE_READ"
ti meout =" 10000"
read-only="fal se"/ >
</int:poller>

For more information please refer to the section called “CompletableFuture”.
AOP Advice chains

Since Spring transaction support depends on the Proxy mechanism with Tr ansact i onl nt er cept or
(AOP Advice) handling transactional behavior of the message flow initiated by the poller, some times
there is a need to provide extra Advice(s) to handle other cross cutting behavior associated with the
poller. For that poller defines an advice-chain element allowing you to add more advices - class that
implements Met hodl nt er cept or interface...

<int:service-activator id="advicedSa" input-channel ="goodl nput WthAdvi ce" ref="testBean"
nmet hod="good" out put - channel =" out put ">
<int:poller max-messages-per-poll="1" fixed-rate="10000">
<i nt:advi ce-chai n>
<ref bean="adviceA" />
<beans: bean cl ass="org. bar. Sanpl eAdvi ce" />
<ref bean="txAdvice" />
</ i nt:advi ce-chai n>
</int:poller>
</int:service-activator>

For more information on how to implement MethodInterceptor please refer to AOP sections of Spring
reference manual (section 8 and 9). Advice chain can also be applied on the poller that does not have
any transaction configuration essentially allowing you to enhance the behavior of the message flow
initiated by the poller.

Important

When using an advice chain, the <t r ansact i onal / > child element cannot be specified; instead,
declare a <t x: advi ce/ > bean and add it to the <advi ce- chai n/ >. See the section called
“CompletableFuture” for complete configuration.

5.0.12.RELEASE Spring Integration 140

Spring Integration Reference Manual

TaskExecutor Support

The polling threads may be executed by any instance of Spring’s TaskExecut or abstraction. This
enables concurrency for an endpoint or group of endpoints. As of Spring 3.0, there is a task namespace
in the core Spring Framework, and its <executor/> element supports the creation of a simple thread
pool executor. That element accepts attributes for common concurrency settings such as pool-size and
gueue-capacity. Configuring a thread-pooling executor can make a substantial difference in how the
endpoint performs under load. These settings are available per-endpoint since the performance of an
endpoint is one of the major factors to consider (the other major factor being the expected volume
on the channel to which the endpoint subscribes). To enable concurrency for a polling endpoint that
is configured with the XML namespace support, provide the task-executor reference on its <poller/>
element and then provide one or more of the properties shown below:

<int:poller task-executor="pool" fixed-rate="1000"/>

<t ask: execut or id="pool"
pool - si ze="5- 25"
queue- capaci t y="20"
keep-al i ve="120"/>

If no task-executor is provided, the consumer’s handler will be invoked in the caller’s thread. Note that
the caller is usually the default TaskSchedul er (see the section called “CompletableFuture”). Also,
keep in mind that the task-executor attribute can provide a reference to any implementation of Spring’s
TaskExecut or interface by specifying the bean name. The executor element above is simply provided
for convenience.

As mentioned in the background section for Polling Consumers above, you can also configure a Polling
Consumer in such a way as to emulate event-driven behavior. With a long receive-timeout and a short
interval-trigger, you can ensure a very timely reaction to arriving messages even on a polled message
source. Note that this will only apply to sources that have a blocking wait call with a timeout. For example,
the File poller does not block, each receive() call returns immediately and either contains new files or
not. Therefore, even if a poller contains a long receive-timeout, that value would never be usable in such
a scenario. On the other hand when using Spring Integration’s own queue-based channels, the timeout
value does have a chance to participate. The following example demonstrates how a Polling Consumer
will receive Messages nearly instantaneously.

<int:service-activator input-channel="sonmeQueueChannel"
out put - channel =" out put " >
<int:poller receive-tinmeout="30000" fixed-rate="10"/>

</int:service-activator>

Using this approach does not carry much overhead since internally it is nothing more then a timed-wait
thread which does not require nearly as much CPU resource usage as a thrashing, infinite while loop
for example.

Change Polling Rate at Runtime

When configuring Pollers with a f i xed- del ay or fi xed- r at e attribute, the default implementation
willuse a Peri odi cTri gger instance. The Peri odi cTri gger is part of the Core Spring Framework
and it accepts the interval as a constructor argument, only. Therefore it cannot be changed at runtime.

However, you can define your own implementation of the
or g. spri ngframewor k. schedul i ng. Tri gger interface. You could even use the PeriodicTrigger
as a starting point. Then, you can add a setter for the interval (period), or you could even embed your
own throttling logic within the trigger itself if desired. The period property will be used with each call to

5.0.12.RELEASE Spring Integration 141

Spring Integration Reference Manual

nextExecutionTime to schedule the next poll. To use this custom trigger within pollers, declare the bean
definition of the custom Trigger in your application context and inject the dependency into your Poller
configuration using the t r i gger attribute, which references the custom Trigger bean instance. You can
now obtain a reference to the Trigger bean and the polling interval can be changed between polls.

For an example, please see the Spring Integration Samples project. It contains a sample called dynamic-
poller, which uses a custom Trigger and demonstrates the ability to change the polling interval at runtime.

https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate

The sample provides a custom Trigger which implements the org.springframework.scheduling.Trigger
interface. The sample’'s Trigger is based on Spring’s PeriodicTrigger implementation. However, the
fields of the custom trigger are not final and the properties have explicit getters and setters, allowing to
dynamically change the polling period at runtime.

Note

It is important to note, though, that because the Trigger method is nextExecutionTime(), any
changes to a dynamic trigger will not take effect until the next poll, based on the existing
configuration. It is not possible to force a trigger to fire before it's currently configured next
execution time.

Payload Type Conversion

Throughout the reference manual, you will also see specific configuration and implementation examples
of various endpoints which can accept a Message or any arbitrary Object as an input parameter.
In the case of an Object, such a parameter will be mapped to a Message payload or part of the
payload or header (when using the Spring Expression Language). However there are times when the
type of input parameter of the endpoint method does not match the type of the payload or its part.
In this scenario we need to perform type conversion. Spring Integration provides a convenient way
for registering type converters (using the Spring Conver si onSer vi ce) within its own instance of a
conversion service bean named integrationConversionService. That bean is automatically created as
soon as the first converter is defined using the Spring Integration infrastructure. To register a Converter
all you need is to implement or g. spri ngframewor k. core. convert. converter. Converter,
org. springframework. core. convert. converter. Generi cConverter or
org. spri ngframework. core. convert.converter. ConverterFactory.

The Convert er implementation is the simplest and converts from a single type to another. For more
sophistication, such as converting to a class hierarchy, you would implement a Gener i cConverter
and possibly a Condi ti onal Convert er. These give you complete access to the from and to type
descriptors enabling complex conversions. For example, if you have an abstract class Foo that is
the target of your conversion (parameter type, channel data type etc) and you have two concrete
implementations Bar and Baz and you wish to convert to one or the other based on the input type,
the Generi cConverter would be a good fit. Refer to the JavaDocs for these interfaces for more
information.

When you have implemented your converter, you can register it with convenient namespace support:

<int:converter ref="sanpl eConverter"/>

<bean id="sanpl eConverter" class="fo0o0.bar. Test Converter"/>

or as an inner bean:

5.0.12.RELEASE Spring Integration 142

https://github.com/SpringSource/spring-integration-samples/tree/master/intermediate
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/scheduling/Trigger.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/scheduling/support/PeriodicTrigger.html

Spring Integration Reference Manual

<int:converter>
<bean cl ass="o0.s.i.config.xnl.ConverterParserTests$Test Converter3"/>
</int:converter>

Starting with Spring Integration 4.0, the above configuration is available using annotations:

@onponent
@ nt egrati onConverter
public class TestConverter inplenments Converter<Bool ean, Nunber> {

publ i c Nunmber convert (Bool ean source) {
return source ? 1 : O;

}

or as a @onfi gurati on part:

@onfi guration
@nabl el nt egration
public class ContextConfiguration {

@Bean

@ nt egrati onConvert er

public SerializingConverter serializingConverter() {
return new SerializingConverter();

}

Important

When configuring an Application Context, the Spring Framework allows you to add a
conversionService bean (see Configuring a ConversionService chapter). This service is used,
when needed, to perform appropriate conversions during bean creation and configuration.

In contrast, the integrationConversionService is used for runtime conversions. These uses are
quite different; converters that are intended for use when wiring bean constructor-args and
properties may produce unintended results if used at runtime for Spring Integration expression
evaluation against Messages within Datatype Channels, Payload Type transformers etc.

However, if you do want to use the Spring conversionService as the Spring Integration
integrationConversionService, you can configure an alias in the Application Context:

<al i as nanme="conversi onServi ce" alias="integrati onConversi onService"/>

In this case the conversionService's Converters will be available for Spring Integration runtime
conversion.

Content Type Conversion

Starting with version 5.0, by default, the method invocation mechanism is based on
the org. springframewor k. mnessagi ng. handl er. i nvocati on. | nvocabl eHandl er Met hod
infrastructure. Its Handl er Met hodAr gurrent Resol ver implementations (e.g.
Payl oadAr gunent Resol ver and MessageMet hodAr gunent Resol ver) can use the
MessageConvert er abstraction to convert an incoming payl oad to the target method argument
type. The conversion can be based on the cont ent Type message header. For this purpose Spring
Integration provides the Conf i gur abl eConposi t eMessageConvert er that delegates to a list of

5.0.12.RELEASE Spring Integration 143

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/validation.html#core-convert-Spring-config

Spring Integration Reference Manual

registered converters to be invoked until one of them returns a non-null result. By default this converter
provides (in strict order):

* Mappi ngJackson2MessageConvert er if Jackson processor is present in classpath;

* Byt eArrayMessageConverter

oj ect St ri ngMessageConverter
e CGeneri cMessageConverter

Please, consult their JavaDocs for more information about their purpose and appropriate cont ent Type
value for conversion. The Confi gur abl eConposi t eMessageConvert er is used because it can
be be supplied with any other MessageConvert er s including or excluding above mentioned default
converters and registered as an appropriate bean in the application context overriding the default one:

@ean(nane = I ntegrationContextUtils. ARGUVENT _RESOLVER MESSAGE_CONVERTER BEAN_NAME)
publ i ¢ Confi gurabl eConposi t eMessageConverter conpositeMssageConverter () {
Li st <MessageConverter> converters =
Arrays. asLi st (new Marshal | i ngMessageConverter (j axb2Marshal l er()),
new JavaSeri al i zati onMessageConverter());
return new Confi gurabl eConposit eMessageConverter (converters);

}

And those two new converters will be registered in the composite before the defaults. You can also not
use a Confi gur abl eConposi t eMessageConvert er, but provide your own MessageConvert er
by registering a bean with the name i nt egrati onArgunment Resol ver MessageConverter
(IntegrationContextUWils. ARGUVMENT _RESOLVER MESSAGE CONVERTER_BEAN_NANME
constant).

Note

The MessageConvert er -based (including cont ent Type header) conversion isn’t available
when using SpEL method invocation. In this case, only regular class to class conversion
mentioned above in the the section called “Payload Type Conversion” is available.

Asynchronous polling

If you want the polling to be asynchronous, a Poller can optionally specify a task-executor attribute
pointing to an existing instance of any TaskExecut or bean (Spring 3.0 provides a convenient
namespace configuration via the t ask namespace). However, there are certain things you must
understand when configuring a Poller with a TaskExecutor.

The problem is that there are two configurations in place. The Poller and the TaskExecutor, and they
both have to be in tune with each other otherwise you might end up creating an artificial memory leak.

Let's look at the following configuration provided by one of the users on the Spring Integration Forum:

<int:channel id="publishChannel">
<int:queue />
</int:channel >

<int:service-activator input-channel ="publishChannel" ref="nyService">
<int:poller receive-tinmeout="5000" task-executor="taskExecutor" fixed-rate="50" />

</int:service-activator>

<t ask: execut or id="taskExecutor" pool -size="20" />

The above configuration demonstrates one of those out of tune configurations.

5.0.12.RELEASE Spring Integration 144

http://forum.spring.io/forum/spring-projects/integration/87155-spring-integration-poller-configuration

Spring Integration Reference Manual

By default, the task executor has an unbounded task queue. The poller keeps scheduling new tasks
even though all the threads are blocked waiting for either a new message to arrive, or the timeout to
expire. Given that there are 20 threads executing tasks with a 5 second timeout, they will be executed
at a rate of 4 per second (5000/20 = 250ms). But, new tasks are being scheduled at a rate of 20 per
second, so the internal queue in the task executor will grow at a rate of 16 per second (while the process
is idle), so we essentially have a memory leak.

One of the ways to handle this is to set the queue- capaci ty attribute of the Task Executor; and
even 0 is a reasonable value. You can also manage it by specifying what to do with messages that can
not be queued by setting the r ej ecti on- pol i cy attribute of the Task Executor (e.g., DISCARD). In
other words, there are certain details you must understand with regard to configuring the TaskExecutor.
Please refer to Task Execution and Scheduling of the Spring reference manual for more detail on the
subject.

Endpoint Inner Beans

Many endpoints are composite beans; this includes all consumers and all polled inbound channel
adapters. Consumers (polled or event- driven) delegate to a MessageHandl er ; polled adapters obtain
messages by delegating to a MessageSour ce. Often, it is useful to obtain a reference to the delegate
bean, perhaps to change configuration at runtime, or for testing. These beans can be obtained from
the Appli cati onCont ext with well-known names. MessageHandl er s are registered with the
application context with a bean id soneConsuner . handl er (where consumer is the endpoint's i d
attribute). MessageSour ce s are registered with a bean id sonePol | edAdapt er. sour ce, again
where somePolledAdapter is the id of the adapter.

The above only applies to the framework component itself. If you use an inner bean definition such as
this:

<int:service-activator id="exanpleServiceActivator" input-channel="i nChannel"
out put - channel = "out Channel " nethod="f 00" >
<beans: bean cl ass="org. f 00. Exanpl eServi ceActivator"/>
</int:service-activator>

the bean is treated like any inner bean declared that way and is not registered with the application
context. If you wish to access this bean in some other manner, declare it at the top level with an i d and
use the r ef attribute instead. See the Spring Documentation for more information.

8.2 Endpoint Roles

Starting with version 4.2, endpoints can be assigned to roles. Roles allow endpoints to be started and
stopped as a group; this is particularly useful when using leadership election where a set of endpoints
can be started or stopped when leadership is granted or revoked respectively.

You can assign endpoints to roles using XML, Java configuration, or programmatically:

<i nt:inbound-channel -adapter id="ica" channel ="sonmeChannel " expression="'foo'" role="cluster"
aut o-startup="fal se">
<int:poller fixed-rate="60000" />
</int:inbound-channel - adapt er >

@Bean
@er vi ceAct i vat or (i nput Channel = "sendAsyncChannel ", autoStartup="fal se")
@Rol e("cluster™)
publ i c MessageHandl er sendAsyncHandl er () {
return // sone MessageHandl er

}

5.0.12.RELEASE Spring Integration 145

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/scheduling.html
http://docs.spring.io/spring-framework/docs/current/spring-framework-reference/html/beans.html#beans-inner-beans

Spring Integration Reference Manual

@Payl| oad("#args[0] .t oLower Case()")

@Rol e("cluster")

public String handl e(String payl oad) {
return payl oad. t oUpper Case();

}

@\ut owi r ed
private SmartLifecycl eRol eController roleController;

this.rol eController.addSmartLifeCycl eToRol e("cluster”, soneEndpoint);

IntegrationFlow flow -> flow
.handle(..., e -> e.role("cluster"));

Each of these adds the endpoint to the role cl ust er.

Invoking rol eController.startlLifecycleslnRole("cluster") (and the -corresponding
st op. . . method) will start/stop the endpoints.

Note

Any object implementing Smar t Li f ecycl e can be programmatically added, not just endpoints.

The Smart Li f ecycl eRol eControll er implements
Appl i cationLi st ener <Abstract Leader Event > and it will automatically start/stop its configured
Smart Li fecycl e objects when leadership is granted/revoked (when some bean publishes
OnG ant edEvent or OnRevokedEvent respectively).

Important

When using leadership election to start/stop components, it is important to setthe aut o- st art up
XML attribute (aut oSt ar t up bean property) to f al se so the application context does not start
the components during context intialization.

Starting with _version 4.3.8, the SmartLifecycl eRol eControl |l er provides several status
methods:

public Collection<String> getRoles() O
publ i ¢ bool ean al | Endpoi nt sRunni ng(String role) O
publ i ¢ bool ean noEndpoi nt sRunni ng(String role) O

public Map<String, Bool ean> get Endpoi nt sRunni ngStatus(String role) O

Returns a list of the roles being managed.

Returns true if all endpoints in the role are running.

Returns true if none of the endpoints in the role are running.

Returns a map of conponent nane : running status - the component name is usually
the bean name.

O o0Oood

5.0.12.RELEASE Spring Integration 146

Spring Integration Reference Manual

8.3 Leadership Event Handling

Groups of endpoints can be started/stopped based on leadership being granted or revoked respectively.
This is useful in clustered scenarios where shared resources must only be consumed by a single
instance. An example of this is a file inbound channel adapter that is polling a shared directory. (See
the section called “CompletableFuture”).

To participate in a leader election and be notified when elected leader, when leadership is revoked
or, failure to acquire the resources to become leader, an application creates a component in the
application context called a "leader initiator". Normally a leader initiator is a Smart Li f ecycl e so
it starts up (optionally) automatically when the context starts, and then publishes notifications when
leadership changes. Users can also receive failure notifications by setting the publ i shFai | edEvent s
to t r ue (starting with version 5.0), in cases when they want take a specific action if a failure occurs.
By convention, the user provides a Candi dat e that receives the callbacks and also can revoke
the leadership through a Cont ext object provided by the framework. User code can also listen
fororg. springframework. i ntegration.| eader. event. Abstract Leader Event s (the super
class of OnGr ant edEvent and OnRevokedEvent), and respond accordingly, for instance using a
Smart Li f ecycl eRol eControl | er. The events contain a reference to the Cont ext object:

public interface Context {

bool ean i sLeader ();

void yield();

String getRole();

Starting with version 5.0.6, the context provides a reference to the candidate’s role.

There is a basic implementation of a leader initiator based on the LockRegi st ry abstraction. To use
it you just need to create an instance as a bean, for example:

@Bean
public LockRegi stryLeaderlnitiator |eaderlnitiator(LockRegistry |ocks) {
return new LockRegi stryLeaderlnitiator(locks);

}

If the lock registry is implemented correctly, there will only ever be at most one leader. If the lock registry
also provides locks which throw exceptions (ideally | nt er r upt edExcept i on) when they expire or are
broken, then the duration of the leaderless periods can be as short as is allowed by the inherent latency
in the lock implementation. By default there is a busyVWai t M | | i s property that adds some additional
latency to prevent CPU starvation in the (more usual) case that the locks are imperfect and you only
know they expired by trying to obtain one again.

See the section called “CompletableFuture” for more information about leadership election and events
using Zookeeper.

8.4 Messaging Gateways

The primary purpose of a Gateway is to hide the messaging API provided by Spring Integration. It allows
your application’s business logic to be completely unaware of the Spring Integration APl and using a
generic Gateway, your code interacts instead with a simple interface, only.

5.0.12.RELEASE Spring Integration 147

Spring Integration Reference Manual

Enter the GatewayProxyFactoryBean

As mentioned above, it would be great to have no dependency on the Spring Integration
APl at all - including the gateway class. For that reason, Spring Integration provides the
Gat ewayPr oxyFact or yBean that generates a proxy for any interface and internally invokes the
gateway methods shown below. Using dependency injection you can then expose the interface to your
business methods.

Here is an example of an interface that can be used to interact with Spring Integration:
package org.cafeteria;
public interface Cafe {

voi d placeOrder(Order order);

Gateway XML Namespace Support

Namespace support is also provided which allows you to configure such an interface as a service as
demonstrated by the following example.

<int:gateway id="cafeService"
service-interface="org.cafeteria. Cafe"

def aul t - request - channel ="r equest Channel "
defaul t-reply-timeout="10000"
def aul t-repl y- channel ="repl yChannel "/ >

With this configuration defined, the "cafeService" can now be injected into other beans, and the code
that invokes the methods on that proxied instance of the Cafe interface has no awareness of the Spring
Integration API. The general approach is similar to that of Spring Remoting (RMI, Httpinvoker, etc.). See
the "Samples" Appendix for an example that uses this "gateway" element (in the Cafe demo).

The defaults in the configuration above are applied to all methods on the gateway interface; if a reply
timeout is not specified, the calling thread will wait indefinitely for a reply. See the section called
“CompletableFuture”.

The defaults can be overridden for individual methods; see the section called “Gateway Configuration
with Annotations and/or XML".

Setting the Default Reply Channel

Typically you don't have to specify the def aul t - r epl y- channel , since a Gateway will auto-create
a temporary, anonymous reply channel, where it will listen for the reply. However, there are some
cases which may prompt you to define adef aul t - r epl y- channel (orrepl y- channel with adapter
gateways such as HTTP, JMS, etc.).

For some background, we'll quickly discuss some of the inner-workings of the Gateway. A Gateway
will create a temporary point-to-point reply channel which is anonymous and is added to the Message
Headers with the name r epl yChannel . When providing an explicit def aul t - r epl y- channel
(repl y- channel with remote adapter gateways), you have the option to point to a publish-subscribe
channel, which is so named because you can add more than one subscriber to it. Internally Spring
Integration will create a Bridge between the temporary r epl yChannel and the explicitly defined
def aul t-repl y-channel .

5.0.12.RELEASE Spring Integration 148

Spring Integration Reference Manual

So let's say you want your reply to go not only to the gateway, but also to some other consumer. In
this case you would want two things: a) a named channel you can subscribe to and b) that channel
is a publish-subscribe-channel. The default strategy used by the gateway will not satisfy those needs,
because the reply channel added to the header is anonymous and point-to-point. This means that no
other subscriber can get a handle to it and even if it could, the channel has point-to-point behavior such
that only one subscriber would get the Message. So by defining a def aul t - r epl y- channel you can
point to a channel of your choosing, which in this case would be a publ i sh- subscri be- channel .
The Gateway would create a bridge from it to the temporary, anonymous reply channel that is stored
in the header.

Another case where you might want to provide a reply channel explicitly is for monitoring or auditing via
an interceptor (e.g., wiretap). You need a named channel in order to configure a Channel Interceptor.

Gateway Configuration with Annotations and/or XML

public interface Cafe {

@zat eway(r equest Channel =" orders")
voi d placeOrder (COrder order);

You may alternatively provide such content in met hod sub-elements if you prefer XML configuration
(see the next paragraph).

It is also possible to pass values to be interpreted as Message headers on the Message that is created

and sent to the request channel by using the @Header annotation:

public interface FileWiter {

@zat eway (request Channel ="fil esCQut")
void wite(byte[] content, @deader(FileHeaders. FI LENAMVE) String fil enane);

If you prefer the XML approach of configuring Gateway methods, you can provide method sub-elements
to the gateway configuration.

<int:gateway id="nyGateway" service-interface="org.foo.bar. Test Gat enay"

def aul t - request - channel ="i nput C' >
<int:defaul t-header name="cal | edMet hod" expressi on="+#gat ewayMet hod. nane"/ >
<int:nmethod name="echo" request-channel ="input A" reply-tinmeout="2" request-timeout="200"/>
<i nt: et hod nane="echoUpper Case" request-channel ="i nput B"/ >
<int:nmethod nane="echoVi aDefaul t"/>

</int: gat enay>

You can also provide individual headers per method invocation via XML. This could be very useful if
the headers you want to set are static in nature and you don’t want to embed them in the gateway’s
method signature via @Header annotations. For example, in the Loan Broker example we want to
influence how aggregation of the Loan quotes will be done based on what type of request was initiated
(single quote or all quotes). Determining the type of the request by evaluating what gateway method
was invoked, although possible, would violate the separation of concerns paradigm (the method is a
java artifact), but expressing your intention (meta information) via Message headers is natural in a
Messaging architecture.

5.0.12.RELEASE Spring Integration 149

Spring Integration Reference Manual

<int:gateway id="IoanBroker Gat enay"
servi ce-interface="org.springframework.integration.| oanbroker. LoanBroker Gat eway" >
<int:nmethod name="get LoanQuote" request-channel ="| oanBr oker PrePr ocessi ngChannel ">
<i nt: header nanme="RESPONSE_TYPE"' val ue="BEST"/>
</int:nmethod>
<int:nmethod name="get Al | LoanQuot es" request-channel ="| oanBr oker Pr ePr ocessi ngChannel ">
<int:header name="RESPONSE TYPE' val ue="ALL"/>
</i nt: met hod>
</int:gat enay>

In the above case you can clearly see how a different value will be set for the RESPONSE_TYPE header
based on the gateway’s method.

Expressions and "Global" Headers

The <header/ > element supports expr essi on as an alternative to val ue. The SpEL expression is
evaluated to determine the value of the header. There is no #r oot object but the following variables
are available:

#args - an Obj ect [] containing the method arguments

#gatewayMethod - the j ava. refl ect. Met hod object representing the method in the servi ce-
i nt erface that was invoked. A header containing this variable can be used later in the flow, for
example, for routing. For example, if you wish to route on the simple method name, you might add a
header, with expression #gat ewayMet hod. nane.

Note

The j ava. ref | ect. Met hod is not serializable; a header with expression #gat eway Met hod
will be lost if you later serialize the message. So, you may wish to use #gat eway Met hod. nane
or #gat ewayMet hod. t oSt ri ng() in those cases; the t oSt ri ng() method provides a String
representation of the method, including parameter and return types.

Since 3.0, <def aul t - header/ > s can be defined to add headers to all messages produced by the
gateway, regardless of the method invoked. Specific headers defined for a method take precedence
over default headers. Specific headers defined for a method here will override any @Header annotations
in the service interface. However, default headers will NOT override any @1eader annotations in the
service interface.

The gateway now also supports a def aul t - payl oad- expr essi on which will be applied for all
methods (unless overridden).

Mapping Method Arguments to a Message

Using the configuration techniques in the previous section allows control of how method arguments are
mapped to message elements (payload and header(s)). When no explicit configuration is used, certain
conventions are used to perform the mapping. In some cases, these conventions cannot determine
which argument is the payload and which should be mapped to headers.

public String sendl(Object foo, Map bar);

public String send2(Map foo, Map bar);

In the first case, the convention will map the first argument to the payload (as long as it is not a Map)
and the contents of the second become headers.

5.0.12.RELEASE Spring Integration 150

Spring Integration Reference Manual

In the second case (or the first when the argument for parameter f 0o is a Map), the framework cannot
determine which argument should be the payload; mapping will fail. This can generally be resolved
using a payl oad- expr essi on, a @&ayl oad annotation and/or a @Header s annotation.

Alternatively, and whenever the conventions break down, you can take the entire responsibility for
mapping the method calls to messages. To do this, implement an Met hodAr gsMessageMapper and
provide it to the <gat eway/ > using the mapper attribute. The mapper maps a Met hodAr gsHol der,
which is a simple class wrapping the j ava. r ef | ect . Met hod instance and an Cbj ect[] containing
the arguments. When providing a custom mapper, the def aul t - payl oad- expr essi on attribute and
<def aul t - header / > elements are not allowed on the gateway; similarly, the payl oad- expr essi on
attribute and <header / > elements are not allowed on any <nmet hod/ > elements.

Mapping Method Arguments

Here are examples showing how method arguments can be mapped to the message (and some
examples of invalid configuration):

public interface MyGateway {
voi d payl oadAndHeader MapW t hout Annot ati ons(String s, Map<String, Object> nap);
voi d payl oadAndHeader MapW t hAnnot ati ons(@ayl| oad String s, @leaders Map<String, Object> map);

voi d header Val uesAndPayl oadW t hAnnot ati ons(@eader ("k1") String x, @ayload String s, @ader("k2")
String y);

void mapOnl y(Map<String, Object> map); // the payload is the map and no custom headers are added

voi d t wMapsAndOneAnnot at edW t hPayl oad(@ayl oad Map<String, Cbject> payl oad, Map<String, OCbject>
headers);

@ayl oad("#args[0] + #args[1l] + '!'")
voi d payl oadAnnot at i onAt Met hodLevel (String a, String b);

@ayl oad(" @oneBean. excl ai n{#args[0])")
voi d payl oadAnnot ati onAt Met hodLevel Usi ngBeanResol ver (String s);

voi d payl oadAnnot ati onW t hExpr essi on(@ay| oad("toUpper Case()") String s);

voi d payl oadAnnot at i onW t hExpr essi onUsi ngBeanResol ver (@ay| oad(" @oneBean. sun(#this)") String s); //
O

/1 invalid
voi d twoMapsW t hout Annot ati ons(Map<String, Cbject> ml, Map<String, Object> nR);

/1l invalid
voi d twoPayl oads(@ayl oad String sl, @ayload String s2);

/1 invalid
voi d payl oadAndHeader Annot at i onsOnSanePar anet er (@ayl| oad @deader ("x") String s);

/1l invalid
voi d payl oadAndHeader sAnnot at i onsOnSanePar anet er (@ayl oad @deaders Map<String, Cbject> nap);

0 Note that in this example, the SpEL variable #t hi s refers to the argument - in this case, the value
of's".

The XML equivalent looks a little different, since there is no #t hi s context for the method argument,
but expressions can refer to method arguments using the #ar gs variable:

5.0.12.RELEASE Spring Integration 151

Spring Integration Reference Manual

<int:gateway id="nyGateway" service-interface="org.foo.bar. MyGat enay" >
<int:nmethod name="sendl" payl oad- expressi on="#args[0] + 'bar'"/>
<int:nmethod name="send2" payl oad- expressi on="@onmeBean. sun(#args[0])"/>
<int:nethod nane="send3" payl oad- expressi on="#net hod"/ >
<int:nethod nane="send4">

<int:header nanme="foo" expression="#args[2].toUpperCase()"/>

</int: method>

</int: gat enay>

@MessagingGateway Annotation

Starting with version 4.0, gateway service interfaces can be marked with a @wessagi ngGat eway
annotation instead of requiring the definition of a <gat eway /> xml element for configuration. The
following compares the two approaches for configuring the same gateway:

<int:gateway id="nmyGateway" service-interface="org.foo.bar. Test Gat enay"

def aul t - request - channel ="i nput C' >
<int:defaul t-header name="cal | edMet hod" expressi on="+#gat ewayMet hod. nane"/ >
<i nt:nmethod nane="echo" request-channel ="i nput A" reply-tineout="2" request-tinmeout="200"/>
<i nt: et hod nane="echoUpper Case" request-channel ="i nput B">

<i nt:header nanme="foo" val ue="bar"/>
</int: method>
<int:nmethod name="echoVi aDefaul t"/>
</int: gat enay>

@kssagi ngGat eway(name = "nyGat eway", defaul t Request Channel = "inputC',
def aul t Headers = @t ewayHeader (nanme = "cal | edMet hod",
expr essi on="#gat ewayMet hod. nane"))
public interface TestGateway {

@zt eway(request Channel = "inputA", replyTineout = 2, requestTi neout = 200)
String echo(String payl oad);

@zat eway(request Channel = "inputB", headers = @atewayHeader(nane = "foo", value="bar"))
String echoUpper Case(String payl oad);

String echoVi aDefaul t (String payl oad);

Important

As with the XML version, Spring Integration creates the proxy implementation with its
messaging infrastructure, when discovering these annotations during a component scan.
To perform this scan and register the BeanDefinition in the application context,
add the @ ntegrati onConmponent Scan annotation to a @Confi guration class. The
standard @onponent Scan infrastructure doesn't deal with interfaces, therefore the custom
@ nt egr at i onConponent Scan logic has been introduced to determine @/kssagi ngGat eway
annotation on the interfaces and register Gat ewayPr oxyFact or yBean s for them. See also the
section called “CompletableFuture”

Along with the @vessagi ngGat eway annotation you can mark a service interface with the @r of i | e
annotation to avoid the bean creation, if such a profile is not active.

Note

If you have no XML configuration, the @nabl el nt egr at i on annotation is required on at least
one @onfi gurati on class. See Section 3.5, “Configuration and @Enablelntegration” for more
information.

5.0.12.RELEASE Spring Integration 152

Spring Integration Reference Manual

Invoking No-Argument Methods

When invoking methods on a Gateway interface that do not have any arguments, the default behavior
is to receive a Message from a Pol | abl eChannel .

At times however, you may want to trigger no-argument methods so that you can in fact interact
with other components downstream that do not require user-provided parameters, e.g. triggering no-
argument SQL calls or Stored Procedures.

In order to achieve send-and-receive semantics, you must provide a payload. In order to generate a
payload, method parameters on the interface are not necessary. You can either use the @ayl oad
annotation or the payl oad- expr essi on attribute in XML on the et hod sub-element. Below please
find a few examples of what the payloads could be:

a literal string

#gatewayMethod.name
e new java.util.Date()
* @someBean.someMethod()'s return value

Here is an example using the @ay| oad annotation:

public interface Cafe {

@Payl oad("new java.util.Date()")
Li st<Order> retrieveOpenOrders();

If a method has no argument and no return value, but does contain a payload expression, it will be
treated as a send-only operation.

Error Handling

Of course,