TCP and UDP Support

Spring Integration provides channel adapters for receiving and sending messages over internet protocols. Both UDP (User Datagram Protocol) and TCP (Transmission Control Protocol) adapters are provided. Each adapter provides for one-way communication over the underlying protocol. In addition, Spring Integration provides simple inbound and outbound TCP gateways. These are used when two-way communication is needed.

You need to include this dependency into your project:

Maven
<dependency>
    <groupId>org.springframework.integration</groupId>
    <artifactId>spring-integration-ip</artifactId>
    <version>5.5.14</version>
</dependency>
Gradle
compile "org.springframework.integration:spring-integration-ip:5.5.14"

Introduction

Two flavors each of UDP inbound and outbound channel adapters are provided:

  • UnicastSendingMessageHandler sends a datagram packet to a single destination.

  • UnicastReceivingChannelAdapter receives incoming datagram packets.

  • MulticastSendingMessageHandler sends (broadcasts) datagram packets to a multicast address.

  • MulticastReceivingChannelAdapter receives incoming datagram packets by joining to a multicast address.

TCP inbound and outbound channel adapters are provided:

  • TcpSendingMessageHandler sends messages over TCP.

  • TcpReceivingChannelAdapter receives messages over TCP.

An inbound TCP gateway is provided. It allows for simple request-response processing. While the gateway can support any number of connections, each connection can only be processed serially. The thread that reads from the socket waits for, and sends, the response before reading again. If the connection factory is configured for single use connections, the connection is closed after the socket times out.

An outbound TCP gateway is provided. It allows for simple request-response processing. If the associated connection factory is configured for single-use connections, a new connection is immediately created for each new request. Otherwise, if the connection is in use, the calling thread blocks on the connection until either a response is received or a timeout or I/O error occurs.

The TCP and UDP inbound channel adapters and the TCP inbound gateway support the error-channel attribute. This provides the same basic functionality as described in Enter the GatewayProxyFactoryBean.

UDP Adapters

This section describes how to configure and use the UDP adapters.

Outbound UDP Adapters (XML Configuration)

The following example configures a UDP outbound channel adapter:

<int-ip:udp-outbound-channel-adapter id="udpOut"
    host="somehost"
    port="11111"
    multicast="false"
    socket-customizer="udpCustomizer"
    channel="exampleChannel"/>
When setting multicast to true, you should also provide the multicast address in the host attribute.

UDP is an efficient but unreliable protocol. Spring Integration adds two attributes to improve reliability: check-length and acknowledge. When check-length is set to true, the adapter precedes the message data with a length field (four bytes in network byte order). This enables the receiving side to verify the length of the packet received. If a receiving system uses a buffer that is too short to contain the packet, the packet can be truncated. The length header provides a mechanism to detect this.

Starting with version 4.3, you can set the port to 0, in which case the operating system chooses the port. The chosen port can be discovered by invoking getPort() after the adapter is started and isListening() returns true.

Starting with version 5.3.3, you can add a SocketCustomizer bean to modify the DatagramSocket after it is created (for example, call setTrafficClass(0x10)).

The following example shows an outbound channel adapter that adds length checking to the datagram packets:

<int-ip:udp-outbound-channel-adapter id="udpOut"
    host="somehost"
    port="11111"
    multicast="false"
    check-length="true"
    channel="exampleChannel"/>
The recipient of the packet must also be configured to expect a length to precede the actual data. For a Spring Integration UDP inbound channel adapter, set its check-length attribute.

The second reliability improvement allows an application-level acknowledgment protocol to be used. The receiver must send an acknowledgment to the sender within a specified time.

The following example shows an outbound channel adapter that adds length checking to the datagram packets and waits for an acknowledgment:

<int-ip:udp-outbound-channel-adapter id="udpOut"
    host="somehost"
    port="11111"
    multicast="false"
    check-length="true"
    acknowledge="true"
    ack-host="thishost"
    ack-port="22222"
    ack-timeout="10000"
    channel="exampleChannel"/>
Setting acknowledge to true implies that the recipient of the packet can interpret the header added to the packet containing acknowledgment data (host and port). Most likely, the recipient is a Spring Integration inbound channel adapter.
When multicast is true, an additional attribute (min-acks-for-success) specifies how many acknowledgments must be received within the ack-timeout.

Starting with version 4.3, you can set the ackPort to 0, in which case the operating system chooses the port.

Outbound UDP Adapters (Java Configuration)

The following example shows how to configure an outbound UDP adapter with Java:

@Bean
@ServiceActivator(inputChannel = "udpOut")
public UnicastSendingMessageHandler handler() {
    return new UnicastSendingMessageHandler("localhost", 11111);
}

(or MulticastSendingChannelAdapter for multicast).

Outbound UDP Adapters (Java DSL Configuration)

The following example shows how to configure an outbound UDP adapter with the Java DSL:

@Bean
public IntegrationFlow udpOutFlow() {
    return f -> f.handle(Udp.outboundAdapter("localhost", 1234)
                    .configureSocket(socket -> socket.setTrafficClass(0x10)))
                .get();
}

Inbound UDP Adapters (XML Configuration)

The following example shows how to configure a basic unicast inbound udp channel adapter.

<int-ip:udp-inbound-channel-adapter id="udpReceiver"
    channel="udpOutChannel"
    port="11111"
    receive-buffer-size="500"
    multicast="false"
    socket-customizer="udpCustomizer"
    check-length="true"/>

The following example shows how to configure a basic multicast inbound udp channel adapter:

<int-ip:udp-inbound-channel-adapter id="udpReceiver"
    channel="udpOutChannel"
    port="11111"
    receive-buffer-size="500"
    multicast="true"
    multicast-address="225.6.7.8"
    check-length="true"/>

By default, reverse DNS lookups are done on inbound packets to convert IP addresses to host names for use in message headers. In environments where DNS is not configured, this can cause delays. You can override this default behavior by setting the lookup-host attribute to false.

Starting with version 5.3.3, you can add a SocketCustomizer bean to modify the DatagramSocket after it is created. It is called for the receiving socket and any sockets created for sending acks.

Inbound UDP Adapters (Java Configuration)

The following example shows how to configure an inbound UDP adapter with Java:

@Bean
public UnicastReceivingChannelAdapter udpIn() {
    UnicastReceivingChannelAdapter adapter = new UnicastReceivingChannelAdapter(11111);
    adapter.setOutputChannelName("udpChannel");
    return adapter;
}

The following example shows how to configure an inbound UDP adapter with the Java DSL:

Inbound UDP Adapters (Java DSL Configuration)

@Bean
public IntegrationFlow udpIn() {
    return IntegrationFlows.from(Udp.inboundAdapter(11111))
            .channel("udpChannel")
            .get();
}

Server Listening Events

Starting with version 5.0.2, a UdpServerListeningEvent is emitted when an inbound adapter is started and has begun listening. This is useful when the adapter is configured to listen on port 0, meaning that the operating system chooses the port. It can also be used instead of polling isListening(), if you need to wait before starting some other process that will connect to the socket.

Advanced Outbound Configuration

The <int-ip:udp-outbound-channel-adapter> (UnicastSendingMessageHandler) has destination-expression and socket-expression options.

You can use the destination-expression as a runtime alternative to the hardcoded host-port pair to determine the destination address for the outgoing datagram packet against a requestMessage (with the root object for the evaluation context). The expression must evaluate to an URI, a String in the URI style (see RFC-2396), or a SocketAddress. You can also use the inbound IpHeaders.PACKET_ADDRESS header for this expression. In the framework, the DatagramPacketMessageMapper populates this header when we receive datagrams in the UnicastReceivingChannelAdapter and convert them to messages. The header value is exactly the result of DatagramPacket.getSocketAddress() of the incoming datagram.

With the socket-expression, the outbound channel adapter can use (for example) an inbound channel adapter socket to send datagrams through the same port which they were received. It is useful in a scenario where our application works as a UDP server and clients operate behind network address translation (NAT). This expression must evaluate to a DatagramSocket. The requestMessage is used as the root object for the evaluation context. You cannot use the socket-expression parameter with the multicast and acknowledge parameters. The following example shows how to configure a UDP inbound channel adapter with a transformer that converts to upper case and uses a socket:

<int-ip:udp-inbound-channel-adapter id="inbound" port="0" channel="in" />

<int:channel id="in" />

<int:transformer expression="new String(payload).toUpperCase()"
                       input-channel="in" output-channel="out"/>

<int:channel id="out" />

<int-ip:udp-outbound-channel-adapter id="outbound"
                        socket-expression="@inbound.socket"
                        destination-expression="headers['ip_packetAddress']"
                        channel="out" />

The following example shows the equivalent configuration with the Java DSL:

@Bean
public IntegrationFlow udpEchoUpcaseServer() {
    return IntegrationFlows.from(Udp.inboundAdapter(11111).id("udpIn"))
            .<byte[], String>transform(p -> new String(p).toUpperCase())
            .handle(Udp.outboundAdapter("headers['ip_packetAddress']")
                    .socketExpression("@udpIn.socket"))
            .get();
}

TCP Connection Factories

Overview

For TCP, the configuration of the underlying connection is provided by using a connection factory. Two types of connection factory are provided: a client connection factory and a server connection factory. Client connection factories establish outgoing connections. Server connection factories listen for incoming connections.

An outbound channel adapter uses a client connection factory, but you can also provide a reference to a client connection factory to an inbound channel adapter. That adapter receives any incoming messages that are received on connections created by the outbound adapter.

An inbound channel adapter or gateway uses a server connection factory. (In fact, the connection factory cannot function without one). You can also provide a reference to a server connection factory to an outbound adapter. You can then use that adapter to send replies to incoming messages on the same connection.

Reply messages are routed to the connection only if the reply contains the ip_connectionId header that was inserted into the original message by the connection factory.
This is the extent of message correlation performed when sharing connection factories between inbound and outbound adapters. Such sharing allows for asynchronous two-way communication over TCP. By default, only payload information is transferred using TCP. Therefore, any message correlation must be performed by downstream components such as aggregators or other endpoints. Support for transferring selected headers was introduced in version 3.0. For more information, see TCP Message Correlation.

You may give a reference to a connection factory to a maximum of one adapter of each type.

Spring Integration provides connection factories that use java.net.Socket and java.nio.channel.SocketChannel.

The following example shows a simple server connection factory that uses java.net.Socket connections:

<int-ip:tcp-connection-factory id="server"
    type="server"
    port="1234"/>

The following example shows a simple server connection factory that uses java.nio.channel.SocketChannel connections:

<int-ip:tcp-connection-factory id="server"
    type="server"
    port="1234"
    using-nio="true"/>
Starting with Spring Integration version 4.2, if the server is configured to listen on a random port (by setting the port to 0), you can get the actual port chosen by the OS by using getPort(). Also, getServerSocketAddress() lets you get the complete SocketAddress. See the Javadoc for the TcpServerConnectionFactory interface for more information.
<int-ip:tcp-connection-factory id="client"
    type="client"
    host="localhost"
    port="1234"
    single-use="true"
    so-timeout="10000"/>

The following example shows a client connection factory that uses java.net.Socket connections and creates a new connection for each message:

<int-ip:tcp-connection-factory id="client"
    type="client"
    host="localhost"
    port="1234"
    single-use="true"
    so-timeout="10000"
    using-nio=true/>

Starting with version 5.2, the client connection factories support the property connectTimeout, specified in seconds, which defaults to 60.

Message Demarcation (Serializers and Deserializers)

TCP is a streaming protocol. This means that some structure has to be provided to data transported over TCP so that the receiver can demarcate the data into discrete messages. Connection factories are configured to use serializers and deserializers to convert between the message payload and the bits that are sent over TCP. This is accomplished by providing a deserializer and a serializer for inbound and outbound messages, respectively. Spring Integration provides a number of standard serializers and deserializers.

ByteArrayCrlfSerializer* converts a byte array to a stream of bytes followed by carriage return and linefeed characters (\r\n). This is the default serializer (and deserializer) and can be used (for example) with telnet as a client.

The ByteArraySingleTerminatorSerializer* converts a byte array to a stream of bytes followed by a single termination character (the default is 0x00).

The ByteArrayLfSerializer* converts a byte array to a stream of bytes followed by a single linefeed character (0x0a).

The ByteArrayStxEtxSerializer* converts a byte array to a stream of bytes preceded by an STX (0x02) and followed by an ETX (0x03).

The ByteArrayLengthHeaderSerializer converts a byte array to a stream of bytes preceded by a binary length in network byte order (big endian). This an efficient deserializer because it does not have to parse every byte to look for a termination character sequence. It can also be used for payloads that contain binary data. The preceding serializers support only text in the payload. The default size of the length header is four bytes (an Integer), allowing for messages up to (2^31 - 1) bytes. However, the length header can be a single byte (unsigned) for messages up to 255 bytes, or an unsigned short (2 bytes) for messages up to (2^16 - 1) bytes. If you need any other format for the header, you can subclass ByteArrayLengthHeaderSerializer and provide implementations for the readHeader and writeHeader methods. The absolute maximum data size is (2^31 - 1) bytes. Starting with version 5.2, the header value can include the length of the header in addition to the payload. Set the inclusive property to enable that mechanism (it must be set to the same for producers and consumers).

The ByteArrayRawSerializer*, converts a byte array to a stream of bytes and adds no additional message demarcation data. With this serializer (and deserializer), the end of a message is indicated by the client closing the socket in an orderly fashion. When using this serializer, message reception hangs until the client closes the socket or a timeout occurs. A timeout does not result in a message. When this serializer is being used and the client is a Spring Integration application, the client must use a connection factory that is configured with single-use="true". Doing so causes the adapter to close the socket after sending the message. The serializer does not, by itself, close the connection. You should use this serializer only with the connection factories used by channel adapters (not gateways), and the connection factories should be used by either an inbound or outbound adapter but not both. See also ByteArrayElasticRawDeserializer, later in this section. However, since version 5.2, the outbound gateway has a new property closeStreamAfterSend; this allows the use of raw serializers/deserializers because the EOF is signaled to the server, while leaving the connection open to receive the reply.

Before version 4.2.2, when using non-blocking I/O (NIO), this serializer treated a timeout (during read) as an end of file, and the data read so far was emitted as a message. This is unreliable and should not be used to delimit messages. It now treats such conditions as an exception. In the unlikely event that you use it this way, you can restore the previous behavior by setting the treatTimeoutAsEndOfMessage constructor argument to true.

Each of these is a subclass of AbstractByteArraySerializer, which implements both org.springframework.core.serializer.Serializer and org.springframework.core.serializer.Deserializer. For backwards compatibility, connections that use any subclass of AbstractByteArraySerializer for serialization also accept a String that is first converted to a byte array. Each of these serializers and deserializers converts an input stream that contains the corresponding format to a byte array payload.

To avoid memory exhaustion due to a badly behaved client (one that does not adhere to the protocol of the configured serializer), these serializers impose a maximum message size. If an incoming message exceeds this size, an exception is thrown. The default maximum message size is 2048 bytes. You can increase it by setting the maxMessageSize property. If you use the default serializer or deserializer and wish to increase the maximum message size, you must declare the maximum message size as an explicit bean with the maxMessageSize property set and configure the connection factory to use that bean.

The classes marked with * earlier in this section use an intermediate buffer and copy the decoded data to a final buffer of the correct size. Starting with version 4.3, you can configure these buffers by setting a poolSize property to let these raw buffers be reused instead of being allocated and discarded for each message, which is the default behavior. Setting the property to a negative value creates a pool that has no bounds. If the pool is bounded, you can also set the poolWaitTimeout property (in milliseconds), after which an exception is thrown if no buffer becomes available. It defaults to infinity. Such an exception causes the socket to be closed.

If you wish to use the same mechanism in custom deserializers, you can extend AbstractPooledBufferByteArraySerializer (instead of its super class, AbstractByteArraySerializer) and implement doDeserialize() instead of deserialize(). The buffer is automatically returned to the pool. AbstractPooledBufferByteArraySerializer also provides a convenient utility method: copyToSizedArray().

Version 5.0 added the ByteArrayElasticRawDeserializer. This is similar to the deserializer side of ByteArrayRawSerializer above, except that it is not necessary to set a maxMessageSize. Internally, it uses a ByteArrayOutputStream that lets the buffer grow as needed. The client must close the socket in an orderly manner to signal end of message.

This deserializer should only be used when the peer is trusted; it is susceptible to a DoS attach due to out of memory conditions.

The MapJsonSerializer uses a Jackson ObjectMapper to convert between a Map and JSON. You can use this serializer in conjunction with a MessageConvertingTcpMessageMapper and a MapMessageConverter to transfer selected headers and the payload in JSON.

The Jackson ObjectMapper cannot demarcate messages in the stream. Therefore, the MapJsonSerializer needs to delegate to another serializer or deserializer to handle message demarcation. By default, a ByteArrayLfSerializer is used, resulting in messages with a format of <json><LF> on the wire, but you can configure it to use others instead. (The next example shows how to do so.)

The final standard serializer is org.springframework.core.serializer.DefaultSerializer, which you can use to convert serializable objects with Java serialization. org.springframework.core.serializer.DefaultDeserializer is provided for inbound deserialization of streams that contain serializable objects.

If you do not wish to use the default serializer and deserializer (ByteArrayCrLfSerializer), you must set the serializer and deserializer attributes on the connection factory. The following example shows how to do so:

<bean id="javaSerializer"
      class="org.springframework.core.serializer.DefaultSerializer" />
<bean id="javaDeserializer"
      class="org.springframework.core.serializer.DefaultDeserializer" />

<int-ip:tcp-connection-factory id="server"
    type="server"
    port="1234"
    deserializer="javaDeserializer"
    serializer="javaSerializer"/>

A server connection factory that uses java.net.Socket connections and uses Java serialization on the wire.

For full details of the attributes available on connection factories, see the reference at the end of this section.

By default, reverse DNS lookups are done on inbound packets to convert IP addresses to host names for use in message headers. In environments where DNS is not configured, this can cause connection delays. You can override this default behavior by setting the lookup-host attribute to false.

You can also modify the attributes of sockets and socket factories. See SSL/TLS Support for more information. As noted there, such modifications are possible whether or not SSL is being used.

Custom Serializers and Deserializers

If your data is not in a format supported by one of the standard deserializers, you can implement your own; you can also implement a custom serializer.

To implement a custom serializer and deserializer pair, implement the org.springframework.core.serializer.Deserializer and org.springframework.core.serializer.Serializer interfaces.

When the deserializer detects a closed input stream between messages, it must throw a SoftEndOfStreamException; this is a signal to the framework to indicate that the close was "normal". If the stream is closed while decoding a message, some other exception should be thrown instead.

Starting with version 5.2, SoftEndOfStreamException is now a RuntimeException instead of extending IOException.

TCP Caching Client Connection Factory

As noted earlier, TCP sockets can be 'single-use' (one request or response) or shared. Shared sockets do not perform well with outbound gateways in high-volume environments, because the socket can only process one request or response at a time.

To improve performance, you can use collaborating channel adapters instead of gateways, but that requires application-level message correlation. See TCP Message Correlation for more information.

Spring Integration 2.2 introduced a caching client connection factory, which uses a pool of shared sockets, letting a gateway process multiple concurrent requests with a pool of shared connections.

TCP Failover Client Connection Factory

You can configure a TCP connection factory that supports failover to one or more other servers. When sending a message, the factory iterates over all its configured factories until either the message can be sent or no connection can be found. Initially, the first factory in the configured list is used. If a connection subsequently fails, the next factory becomes the current factory. The following example shows how to configure a failover client connection factory:

<bean id="failCF" class="o.s.i.ip.tcp.connection.FailoverClientConnectionFactory">
    <constructor-arg>
        <list>
            <ref bean="clientFactory1"/>
            <ref bean="clientFactory2"/>
        </list>
    </constructor-arg>
</bean>
When using the failover connection factory, the singleUse property must be consistent between the factory itself and the list of factories it is configured to use.

The connection factory has two properties related to failing back, when used with a shared connection (singleUse=false):

  • refreshSharedInterval

  • closeOnRefresh

Consider the following scenario based on the above configuration: Let’s say clientFactory1 cannot establish a connection but clientFactory2 can. When the failCF getConnection() method is called after the refreshSharedInterval has passed, we will again attempt to connect using clientFactory1; if successful, the connection to clientFactory2 will be closed. If closeOnRefresh is false, the "old" connection will remain open and may be reused in future if the first factory fails once more.

Set refreshSharedInterval to only attempt to reconnect with the first factory after that time has expired; setting it to Long.MAX_VALUE (default) if you only want to fail back to the first factory when the current connection fails.

Set closeOnRefresh to close the "old" connection after a refresh actually creates a new connection.

These properties do not apply if any of the delegate factories is a CachingClientConnectionFactory because the connection caching is handled there; in that case the list of connection factories will always be consulted to get a connection.

Starting with version 5.3, these default to Long.MAX_VALUE and true so the factory only attempts to fail back when the current connection fails. To revert to the default behavior of previous versions, set them to 0 and false.

TCP Thread Affinity Connection Factory

Spring Integration version 5.0 introduced this connection factory. It binds a connection to the calling thread, and the same connection is reused each time that thread sends a message. This continues until the connection is closed (by the server or the network) or until the thread calls the releaseConnection() method. The connections themselves are provided by another client factory implementation, which must be configured to provide non-shared (single-use) connections so that each thread gets a connection.

The following example shows how to configure a TCP thread affinity connection factory:

@Bean
public TcpNetClientConnectionFactory cf() {
    TcpNetClientConnectionFactory cf = new TcpNetClientConnectionFactory("localhost",
            Integer.parseInt(System.getProperty(PORT)));
    cf.setSingleUse(true);
    return cf;
}

@Bean
public ThreadAffinityClientConnectionFactory tacf() {
    return new ThreadAffinityClientConnectionFactory(cf());
}

@Bean
@ServiceActivator(inputChannel = "out")
public TcpOutboundGateway outGate() {
    TcpOutboundGateway outGate = new TcpOutboundGateway();
    outGate.setConnectionFactory(tacf());
    outGate.setReplyChannelName("toString");
    return outGate;
}

Testing Connections

In some scenarios, it can be useful to send some kind of health-check request when a connection is first opened. One such scenario might be when using a TCP Failover Client Connection Factory so that we can fail over if the selected server allowed a connection to be opened but reports that it is not healthy.

In order to support this feature, add a connectionTest to the client connection factory.

/**
 * Set a {@link Predicate} that will be invoked to test a new connection; return true
 * to accept the connection, false the reject.
 * @param connectionTest the predicate.
 * @since 5.3
 */
public void setConnectionTest(@Nullable Predicate<TcpConnectionSupport> connectionTest) {
    this.connectionTest = connectionTest;
}

To test the connection, attach a temporary listener to the connection within the test. If the test fails, the connection is closed and an exception thrown. When used with the TCP Failover Client Connection Factory this triggers trying the next server.

Only the first reply from the server will go to the test listener.

In the following example, the server is considered healthy if the server replies PONG when we send PING.

Message<String> ping = new GenericMessage<>("PING");
byte[] pong = "PONG".getBytes();
clientFactory.setConnectionTest(conn -> {
    CountDownLatch latch = new CountDownLatch(1);
    AtomicBoolean result = new AtomicBoolean();
    conn.registerTestListener(msg -> {
        if (Arrays.equals(pong, (byte[]) msg.getPayload())) {
            result.set(true);
        }
        latch.countDown();
        return false;
    });
    conn.send(ping);
    try {
        latch.await(10, TimeUnit.SECONDS);
    }
    catch (InterruptedException e) {
        Thread.currentThread().interrupt();
    }
    return result.get();
});

TCP Connection Interceptors

You can configure connection factories with a reference to a TcpConnectionInterceptorFactoryChain. You can use interceptors to add behavior to connections, such as negotiation, security, and other options. No interceptors are currently provided by the framework, but see InterceptedSharedConnectionTests in the source repository for an example.

The HelloWorldInterceptor used in the test case works as follows:

The interceptor is first configured with a client connection factory. When the first message is sent over an intercepted connection, the interceptor sends 'Hello' over the connection and expects to receive 'world!'. When that occurs, the negotiation is complete and the original message is sent. Further messages that use the same connection are sent without any additional negotiation.

When configured with a server connection factory, the interceptor requires the first message to be 'Hello' and, if it is, returns 'world!'. Otherwise it throws an exception that causes the connection to be closed.

All TcpConnection methods are intercepted. Interceptor instances are created for each connection by an interceptor factory. If an interceptor is stateful, the factory should create a new instance for each connection. If there is no state, the same interceptor can wrap each connection. Interceptor factories are added to the configuration of an interceptor factory chain, which you can provide to a connection factory by setting the interceptor-factory attribute. Interceptors must extend TcpConnectionInterceptorSupport. Factories must implement the TcpConnectionInterceptorFactory interface. TcpConnectionInterceptorSupport has passthrough methods. By extending this class, you only need to implement those methods you wish to intercept.

The following example shows how to configure a connection interceptor factory chain:

<bean id="helloWorldInterceptorFactory"
    class="o.s.i.ip.tcp.connection.TcpConnectionInterceptorFactoryChain">
    <property name="interceptors">
        <array>
            <bean class="o.s.i.ip.tcp.connection.HelloWorldInterceptorFactory"/>
        </array>
    </property>
</bean>

<int-ip:tcp-connection-factory id="server"
    type="server"
    port="12345"
    using-nio="true"
    single-use="true"
    interceptor-factory-chain="helloWorldInterceptorFactory"/>

<int-ip:tcp-connection-factory id="client"
    type="client"
    host="localhost"
    port="12345"
    single-use="true"
    so-timeout="100000"
    using-nio="true"
    interceptor-factory-chain="helloWorldInterceptorFactory"/>

TCP Connection Events

Beginning with version 3.0, changes to TcpConnection instances are reported by TcpConnectionEvent instances. TcpConnectionEvent is a subclass of ApplicationEvent and can thus be received by any ApplicationListener defined in the ApplicationContext — for example an event inbound channel adapter.

TcpConnectionEvents have the following properties:

  • connectionId: The connection identifier, which you can use in a message header to send data to the connection.

  • connectionFactoryName: The bean name of the connection factory to which the connection belongs.

  • throwable: The Throwable (for TcpConnectionExceptionEvent events only).

  • source: The TcpConnection. You can use this, for example, to determine the remote IP Address with getHostAddress() (cast required).

In addition, since version 4.0, the standard deserializers discussed in TCP Connection Factories now emit TcpDeserializationExceptionEvent instances when they encounter problems while decoding the data stream. These events contain the exception, the buffer that was in the process of being built, and an offset into the buffer (if available) at the point where the exception occurred. Applications can use a normal ApplicationListener or an ApplicationEventListeningMessageProducer (see Receiving Spring Application Events) to capture these events, allowing analysis of the problem.

Starting with versions 4.0.7 and 4.1.3, TcpConnectionServerExceptionEvent instances are published whenever an unexpected exception occurs on a server socket (such as a BindException when the server socket is in use). These events have a reference to the connection factory and the cause.

Starting with version 4.2, TcpConnectionFailedCorrelationEvent instances are published whenever an endpoint (inbound gateway or collaborating outbound channel adapter) receives a message that cannot be routed to a connection because the ip_connectionId header is invalid. Outbound gateways also publish this event when a late reply is received (the sender thread has timed out). The event contains the connection ID as well as an exception in the cause property, which contains the failed message.

Starting with version 4.3, a TcpConnectionServerListeningEvent is emitted when a server connection factory is started. This is useful when the factory is configured to listen on port 0, meaning that the operating system chooses the port. It can also be used instead of polling isListening(), if you need to wait before starting some other process that connects to the socket.

To avoid delaying the listening thread from accepting connections, the event is published on a separate thread.

Starting with version 4.3.2, a TcpConnectionFailedEvent is emitted whenever a client connection cannot be created. The source of the event is the connection factory, which you can use to determine the host and port to which the connection could not be established.

TCP Adapters

TCP inbound and outbound channel adapters that use connection factories mentioned earlier are provided. These adapters have two relevant attributes: connection-factory and channel. The connection-factory attribute indicates which connection factory is to be used to manage connections for the adapter. The channel attribute specifies the channel on which messages arrive at an outbound adapter and on which messages are placed by an inbound adapter. While both inbound and outbound adapters can share a connection factory, server connection factories are always “owned” by an inbound adapter. Client connection factories are always “owned” by an outbound adapter. Only one adapter of each type may get a reference to a connection factory. The following example shows how to define client and server TCP connection factories:

<bean id="javaSerializer"
      class="org.springframework.core.serializer.DefaultSerializer"/>
<bean id="javaDeserializer"
      class="org.springframework.core.serializer.DefaultDeserializer"/>

<int-ip:tcp-connection-factory id="server"
    type="server"
    port="1234"
    deserializer="javaDeserializer"
    serializer="javaSerializer"
    using-nio="true"
    single-use="true"/>

<int-ip:tcp-connection-factory id="client"
    type="client"
    host="localhost"
    port="#{server.port}"
    single-use="true"
    so-timeout="10000"
    deserializer="javaDeserializer"
    serializer="javaSerializer"/>

<int:channel id="input" />

<int:channel id="replies">
    <int:queue/>
</int:channel>

<int-ip:tcp-outbound-channel-adapter id="outboundClient"
    channel="input"
    connection-factory="client"/>

<int-ip:tcp-inbound-channel-adapter id="inboundClient"
    channel="replies"
    connection-factory="client"/>

<int-ip:tcp-inbound-channel-adapter id="inboundServer"
    channel="loop"
    connection-factory="server"/>

<int-ip:tcp-outbound-channel-adapter id="outboundServer"
    channel="loop"
    connection-factory="server"/>

<int:channel id="loop"/>

In the preceding configuration, messages arriving in the input channel are serialized over connections created by client connection factory, received at the server, and placed on the loop channel. Since loop is the input channel for outboundServer, the message is looped back over the same connection, received by inboundClient, and deposited in the replies channel. Java serialization is used on the wire.

Normally, inbound adapters use a type="server" connection factory, which listens for incoming connection requests. In some cases, you may want to establish the connection in reverse, such that the inbound adapter connects to an external server and then waits for inbound messages on that connection.

This topology is supported by setting client-mode="true" on the inbound adapter. In this case, the connection factory must be of type client and must have single-use set to false.

Two additional attributes support this mechanism. The retry-interval specifies (in milliseconds) how often the framework attempts to reconnect after a connection failure. The scheduler supplies a TaskScheduler to schedule the connection attempts and to test that the connection is still active.

If you don’t provide a scheduler, the framework’s default taskScheduler bean is used.

For an outbound adapter, the connection is normally established when the first message is sent. The client-mode="true" on an outbound adapter causes the connection to be established when the adapter is started. By default, adapters are automatically started. Again, the connection factory must be of type client and have single-use="false". A retry-interval and scheduler are also supported. If a connection fails, it is re-established either by the scheduler or when the next message is sent.

For both inbound and outbound, if the adapter is started, you can force the adapter to establish a connection by sending a <control-bus /> command: @adapter_id.retryConnection(). Then you can examine the current state with @adapter_id.isClientModeConnected().

TCP Gateways

The inbound TCP gateway TcpInboundGateway and outbound TCP gateway TcpOutboundGateway use a server and client connection factory, respectively. Each connection can process a single request or response at a time.

The inbound gateway, after constructing a message with the incoming payload and sending it to the requestChannel, waits for a response and sends the payload from the response message by writing it to the connection.

For the inbound gateway, you must retain or populate, the ip_connectionId header, because it is used to correlate the message to a connection. Messages that originate at the gateway automatically have the header set. If the reply is constructed as a new message, you need to set the header. The header value can be captured from the incoming message.

As with inbound adapters, inbound gateways normally use a type="server" connection factory, which listens for incoming connection requests. In some cases, you may want to establish the connection in reverse, such that the inbound gateway connects to an external server and then waits for and replies to inbound messages on that connection.

This topology is supported by using client-mode="true" on the inbound gateway. In this case, the connection factory must be of type client and must have single-use set to false.

Two additional attributes support this mechanism. retry-interval specifies (in milliseconds) how often the framework tries to reconnect after a connection failure. scheduler supplies a TaskScheduler to schedule the connection attempts and to test that the connection is still active.

If the gateway is started, you may force the gateway to establish a connection by sending a <control-bus/> command: @adapter_id.retryConnection() and examine the current state with @adapter_id.isClientModeConnected().

The outbound gateway, after sending a message over the connection, waits for a response, constructs a response message, and puts it on the reply channel. Communications over the connections are single-threaded. Only one message can be handled at a time. If another thread attempts to send a message before the current response has been received, it blocks until any previous requests are complete (or time out). If, however, the client connection factory is configured for single-use connections, each new request gets its own connection and is processed immediately. The following example configures an inbound TCP gateway:

<int-ip:tcp-inbound-gateway id="inGateway"
    request-channel="tcpChannel"
    reply-channel="replyChannel"
    connection-factory="cfServer"
    reply-timeout="10000"/>

If a connection factory configured with the default serializer or deserializer is used, messages is \r\n delimited data and the gateway can be used by a simple client such as telnet.

The following example shows an outbound TCP gateway:

<int-ip:tcp-outbound-gateway id="outGateway"
    request-channel="tcpChannel"
    reply-channel="replyChannel"
    connection-factory="cfClient"
    request-timeout="10000"
    remote-timeout="10000"/> <!-- or e.g.
remote-timeout-expression="headers['timeout']" -->

client-mode is not currently available with the outbound gateway.

Starting with version 5.2, the outbound gateway can be configured with the property closeStreamAfterSend. If the connection factory is configured for single-use (a new connection for each request/reply) the gateway will close the output stream; this signals EOF to the server. This is useful if the server uses the EOF to determine the end of message, rather than some delimiter in the stream, but leaves the connection open in order to receive the reply.

Normally, the calling thread will block in the gateway, waiting for the reply (or a timeout). Starting with version 5.3, you can set the async property on the gateway and the sending thread is released to do other work. The reply (or error) will be sent on the receiving thread. This only applies when using the TcpNetClientConnectionFactory, it is ignored when using NIO because there is a race condition whereby a socket error that occurs after the reply is received can be passed to the gateway before the reply.

When using a shared connection (singleUse=false), a new request, while another is in process, will be blocked until the current reply is received. Consider using the CachingClientConnectionFactory if you wish to support concurrent requests on a pool of long-lived connections.

Starting with version 5.4, the inbound can be configured with an unsolicitedMessageChannel. Unsolicited inbound messages will be sent to this channel, as well as late replies (where the client timed out). To support this on the server side, you can now register multiple TcpSender s with the connection factory. Gateways and Channel Adapters automatically register themselves. When sending unsolicited messages from the server, you must add the appropriate IpHeaders.CONNECTION_ID to the messages sent.

TCP Message Correlation

One goal of the IP endpoints is to provide communication with systems other than Spring Integration applications. For this reason, only message payloads are sent and received by default. Since 3.0, you can transfer headers by using JSON, Java serialization, or custom serializers and deserializers. See Transferring Headers for more information. No message correlation is provided by the framework (except when using the gateways) or collaborating channel adapters on the server side. Later in this document, we discuss the various correlation techniques available to applications. In most cases, this requires specific application-level correlation of messages, even when message payloads contain some natural correlation data (such as an order number).

Gateways

Gateways automatically correlate messages. However, you should use an outbound gateway for relatively low-volume applications. When you configure the connection factory to use a single shared connection for all message pairs ('single-use="false"'), only one message can be processed at a time. A new message has to wait until the reply to the previous message has been received. When a connection factory is configured for each new message to use a new connection ('single-use="true"'), this restriction does not apply. While this setting can give higher throughput than a shared connection environment, it comes with the overhead of opening and closing a new connection for each message pair.

Therefore, for high-volume messages, consider using a collaborating pair of channel adapters. However, to do so, you need to provide collaboration logic.

Another solution, introduced in Spring Integration 2.2, is to use a CachingClientConnectionFactory, which allows the use of a pool of shared connections.

Collaborating Outbound and Inbound Channel Adapters

To achieve high-volume throughput (avoiding the pitfalls of using gateways, as mentioned earlier) you can configure a pair of collaborating outbound and inbound channel adapters. You can also use collaborating adapters (server-side or client-side) for totally asynchronous communication (rather than with request-reply semantics). On the server side, message correlation is automatically handled by the adapters, because the inbound adapter adds a header that allows the outbound adapter to determine which connection to use when sending the reply message.

On the server side, you must populate the ip_connectionId header, because it is used to correlate the message to a connection. Messages that originate at the inbound adapter automatically have the header set. If you wish to construct other messages to send, you need to set the header. You can get the header value from an incoming message.

On the client side, the application must provide its own correlation logic, if needed. You can do so in a number of ways.

If the message payload has some natural correlation data (such as a transaction ID or an order number) and you have no need to retain any information (such as a reply channel header) from the original outbound message, the correlation is simple and would be done at the application level in any case.

If the message payload has some natural correlation data (such as a transaction ID or an order number), but you need to retain some information (such as a reply channel header) from the original outbound message, you can retain a copy of the original outbound message (perhaps by using a publish-subscribe channel) and use an aggregator to recombine the necessary data.

For either of the previous two scenarios, if the payload has no natural correlation data, you can provide a transformer upstream of the outbound channel adapter to enhance the payload with such data. Such a transformer may transform the original payload to a new object that contains both the original payload and some subset of the message headers. Of course, live objects (such as reply channels) from the headers cannot be included in the transformed payload.

If you choose such a strategy, you need to ensure the connection factory has an appropriate serializer-deserializer pair to handle such a payload (such as DefaultSerializer and DefaultDeserializer, which use java serialization, or a custom serializer and deserializer). The ByteArray*Serializer options mentioned in TCP Connection Factories, including the default ByteArrayCrLfSerializer, do not support such payloads unless the transformed payload is a String or byte[].

Before the 2.2 release, when collaborating channel adapters used a client connection factory, the so-timeout attribute defaulted to the default reply timeout (10 seconds). This meant that, if no data were received by the inbound adapter for this period of time, the socket was closed.

This default behavior was not appropriate in a truly asynchronous environment, so it now defaults to an infinite timeout. You can reinstate the previous default behavior by setting the so-timeout attribute on the client connection factory to 10000 milliseconds.

Starting with version 5.4, multiple outbound channel adapters and one TcpInboundChannelAdapter can share the same connection factory. This allows an application to support both request/reply and arbitrary server → client messaging. See TCP Gateways for more information.

Transferring Headers

TCP is a streaming protocol. Serializers and Deserializers demarcate messages within the stream. Prior to 3.0, only message payloads (String or byte[]) could be transferred over TCP. Beginning with 3.0, you can transfer selected headers as well as the payload. However, “live” objects, such as the replyChannel header, cannot be serialized.

Sending header information over TCP requires some additional configuration.

The first step is to provide the ConnectionFactory with a MessageConvertingTcpMessageMapper that uses the mapper attribute. This mapper delegates to any MessageConverter implementation to convert the message to and from some object that can be serialized and deserialized by the configured serializer and deserializer.

Spring Integration provides a MapMessageConverter, which allows the specification of a list of headers that are added to a Map object, along with the payload. The generated Map has two entries: payload and headers. The headers entry is itself a Map and contains the selected headers.

The second step is to provide a serializer and a deserializer that can convert between a Map and some wire format. This can be a custom Serializer or Deserializer, which you typically need if the peer system is not a Spring Integration application.

Spring Integration provides a MapJsonSerializer to convert a Map to and from JSON. It uses a Spring Integration JsonObjectMapper. You can provide a custom JsonObjectMapper if needed. By default, the serializer inserts a linefeed (0x0a) character between objects. See the Javadoc for more information.

The JsonObjectMapper uses whichever version of Jackson is on the classpath.

You can also use standard Java serialization of the Map, by using the DefaultSerializer and DefaultDeserializer.

The following example shows the configuration of a connection factory that transfers the correlationId, sequenceNumber, and sequenceSize headers by using JSON:

<int-ip:tcp-connection-factory id="client"
    type="client"
    host="localhost"
    port="12345"
    mapper="mapper"
    serializer="jsonSerializer"
    deserializer="jsonSerializer"/>

<bean id="mapper"
      class="o.sf.integration.ip.tcp.connection.MessageConvertingTcpMessageMapper">
    <constructor-arg name="messageConverter">
        <bean class="o.sf.integration.support.converter.MapMessageConverter">
            <property name="headerNames">
                <list>
                    <value>correlationId</value>
                    <value>sequenceNumber</value>
                    <value>sequenceSize</value>
                </list>
            </property>
        </bean>
    </constructor-arg>
</bean>

<bean id="jsonSerializer" class="o.sf.integration.ip.tcp.serializer.MapJsonSerializer" />

A message sent with the preceding configuration, with a payload of 'something' would appear on the wire as follows:

{"headers":{"correlationId":"things","sequenceSize":5,"sequenceNumber":1},"payload":"something"}

About Non-blocking I/O (NIO)

Using NIO (see using-nio in IP Configuration Attributes) avoids dedicating a thread to read from each socket. For a small number of sockets, you are likely to find that not using NIO, together with an asynchronous hand-off (such as to a QueueChannel), performs as well as or better than using NIO.

You should consider using NIO when handling a large number of connections. However, the use of NIO has some other ramifications. A pool of threads (in the task executor) is shared across all the sockets. Each incoming message is assembled and sent to the configured channel as a separate unit of work on a thread selected from that pool. Two sequential messages arriving on the same socket might be processed by different threads. This means that the order in which the messages are sent to the channel is indeterminate. Strict ordering of the messages arriving on the socket is not maintained.

For some applications, this is not an issue. For others, it is a problem. If you require strict ordering, consider setting using-nio to false and using an asynchronous hand-off.

Alternatively, you can insert a resequencer downstream of the inbound endpoint to return the messages to their proper sequence. If you set apply-sequence to true on the connection factory, messages arriving on a TCP connection have sequenceNumber and correlationId headers set. The resequencer uses these headers to return the messages to their proper sequence.

Starting with version 5.1.4, priority is given to accepting new connections over reading from existing connections. This should, generally, have little impact unless you have a very high rate of new incoming connections. If you wish to revert to the previous behavior of giving reads priority, set the multiAccept property on the TcpNioServerConnectionFactory to false.

Pool Size

The pool size attribute is no longer used. Previously, it specified the size of the default thread pool when a task-executor was not specified. It was also used to set the connection backlog on server sockets. The first function is no longer needed (see the next paragraph). The second function is replaced by the backlog attribute.

Previously, when using a fixed thread pool task executor (which was the default) with NIO, it was possible to get a deadlock and processing would stop. The problem occurred when a buffer was full, a thread reading from the socket was trying to add more data to the buffer, and no threads were available to make space in the buffer. This only occurred with a very small pool size, but it could be possible under extreme conditions. Since 2.2, two changes have eliminated this problem. First, the default task executor is a cached thread pool executor. Second, deadlock detection logic has been added such that, if thread starvation occurs, instead of deadlocking, an exception is thrown, thus releasing the deadlocked resources.

Now that the default task executor is unbounded, it is possible that an out-of-memory condition might occur with high rates of incoming messages, if message processing takes extended time. If your application exhibits this type of behavior, you should use a pooled task executor with an appropriate pool size, but see the next section.

Thread Pool Task Executor with CALLER_RUNS Policy

You should keep in mind some important considerations when you use a fixed thread pool with the CallerRunsPolicy (CALLER_RUNS when using the <task/> namespace) and the queue capacity is small.

The following does not apply if you do not use a fixed thread pool.

With NIO connections, there are three distinct task types. The I/O selector processing is performed on one dedicated thread (detecting events, accepting new connections, and dispatching the I/O read operations to other threads by using the task executor). When an I/O reader thread (to which the read operation is dispatched) reads data, it hands off to another thread to assemble the incoming message. Large messages can take several reads to complete. These “assembler” threads can block while waiting for data. When a new read event occurs, the reader determines if this socket already has an assembler and, if not, runs a new one. When the assembly process is complete, the assembler thread is returned to the pool.

This can cause a deadlock when the pool is exhausted, the CALLER_RUNS rejection policy is in use, and the task queue is full. When the pool is empty and there is no room in the queue, the IO selector thread receives an OP_READ event and dispatches the read by using the executor. The queue is full, so the selector thread itself starts the read process. Now it detects that there is no assembler for this socket and, before it does the read, fires off an assembler. Again, the queue is full, and the selector thread becomes the assembler. The assembler is now blocked, waiting for the data to be read, which never happens. The connection factory is now deadlocked because the selector thread cannot handle new events.

To avoid this deadlock, we must avoid the selector (or reader) threads performing the assembly task. We want to use separate pools for the IO and assembly operations.

The framework provides a CompositeExecutor, which allows the configuration of two distinct executors: one for performing IO operations and one for message assembly. In this environment, an IO thread can never become an assembler thread, and the deadlock cannot occur.

In addition, the task executors should be configured to use an AbortPolicy (ABORT when using <task>). When an I/O task cannot be completed, it is deferred for a short time and continually retried until it can be completed and have an assembler allocated. By default, the delay is 100ms, but you can change it by setting the readDelay property on the connection factory (read-delay when configuring with the XML namespace).

The following three examples shows how to configure the composite executor:

@Bean
private CompositeExecutor compositeExecutor() {
    ThreadPoolTaskExecutor ioExec = new ThreadPoolTaskExecutor();
    ioExec.setCorePoolSize(4);
    ioExec.setMaxPoolSize(10);
    ioExec.setQueueCapacity(0);
    ioExec.setThreadNamePrefix("io-");
    ioExec.setRejectedExecutionHandler(new AbortPolicy());
    ioExec.initialize();
    ThreadPoolTaskExecutor assemblerExec = new ThreadPoolTaskExecutor();
    assemblerExec.setCorePoolSize(4);
    assemblerExec.setMaxPoolSize(10);
    assemblerExec.setQueueCapacity(0);
    assemblerExec.setThreadNamePrefix("assembler-");
    assemblerExec.setRejectedExecutionHandler(new AbortPolicy());
    assemblerExec.initialize();
    return new CompositeExecutor(ioExec, assemblerExec);
}
<bean id="myTaskExecutor" class="org.springframework.integration.util.CompositeExecutor">
    <constructor-arg ref="io"/>
    <constructor-arg ref="assembler"/>
</bean>

<task:executor id="io" pool-size="4-10" queue-capacity="0" rejection-policy="ABORT" />
<task:executor id="assembler" pool-size="4-10" queue-capacity="0" rejection-policy="ABORT" />
<bean id="myTaskExecutor" class="org.springframework.integration.util.CompositeExecutor">
    <constructor-arg>
        <bean class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
            <property name="threadNamePrefix" value="io-" />
            <property name="corePoolSize" value="4" />
            <property name="maxPoolSize" value="8" />
            <property name="queueCapacity" value="0" />
            <property name="rejectedExecutionHandler">
                <bean class="java.util.concurrent.ThreadPoolExecutor.AbortPolicy" />
            </property>
        </bean>
    </constructor-arg>
    <constructor-arg>
        <bean class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
            <property name="threadNamePrefix" value="assembler-" />
            <property name="corePoolSize" value="4" />
            <property name="maxPoolSize" value="10" />
            <property name="queueCapacity" value="0" />
            <property name="rejectedExecutionHandler">
                <bean class="java.util.concurrent.ThreadPoolExecutor.AbortPolicy" />
            </property>
        </bean>
    </constructor-arg>
</bean>

SSL/TLS Support

Secure Sockets Layer/Transport Layer Security is supported. When using NIO, the JDK 5+ SSLEngine feature is used to handle handshaking after the connection is established. When not using NIO, standard SSLSocketFactory and SSLServerSocketFactory objects are used to create connections. A number of strategy interfaces are provided to allow significant customization. The default implementations of these interfaces provide for the simplest way to get started with secure communications.

Getting Started

Regardless of whether you use NIO, you need to configure the ssl-context-support attribute on the connection factory. This attribute references a <bean/> definition that describes the location and passwords for the required key stores.

SSL/TLS peers require two key stores each:

  • A keystore that contains private and public key pairs to identify the peer

  • A truststore that contains the public keys for peers that are trusted. See the documentation for the keytool utility provided with the JDK. The essential steps are

    1. Create a new key pair and store it in a keystore.

    2. Export the public key.

    3. Import the public key into the peer’s truststore.

    4. Repeat for the other peer.

It is common in test cases to use the same key stores on both peers, but this should be avoided for production.

After establishing the key stores, the next step is to indicate their locations to the TcpSSLContextSupport bean and provide a reference to that bean to the connection factory.

The following example configures an SSL connection:

<bean id="sslContextSupport"
    class="o.sf.integration.ip.tcp.connection.support.DefaultTcpSSLContextSupport">
    <constructor-arg value="client.ks"/>
    <constructor-arg value="client.truststore.ks"/>
    <constructor-arg value="secret"/>
    <constructor-arg value="secret"/>
</bean>

<ip:tcp-connection-factory id="clientFactory"
    type="client"
    host="localhost"
    port="1234"
    ssl-context-support="sslContextSupport" />

The DefaultTcpSSLContextSupport class also has an optional protocol property, which can be SSL or TLS (the default).

The keystore file names (the first two constructor arguments) use the Spring Resource abstraction. By default, the files are located on the classpath, but you can override this by using the file: prefix (to find the files on the filesystem instead).

Starting with version 4.3.6, when you use NIO, you can specify an ssl-handshake-timeout (in seconds) on the connection factory. This timeout (the default is 30 seconds) is used during SSL handshake when waiting for data. If the timeout is exceeded, the process is stopped and the socket is closed.

Host Verification

Starting with version 5.0.8, you can configure whether or not to enable host verification. Starting with version 5.1, it is enabled by default; the mechanism to disable it depends on whether or not you are using NIO.

Host verification is used to ensure the server you are connected to matches information in the certificate, even if the certificate is trusted.

When using NIO, configure the DefaultTcpNioSSLConnectionSupport, for example.

@Bean
public DefaultTcpNioSSLConnectionSupport connectionSupport() {
    DefaultTcpSSLContextSupport sslContextSupport = new DefaultTcpSSLContextSupport("test.ks",
            "test.truststore.ks", "secret", "secret");
    sslContextSupport.setProtocol("SSL");
    DefaultTcpNioSSLConnectionSupport tcpNioConnectionSupport =
            new DefaultTcpNioSSLConnectionSupport(sslContextSupport, false);
    return tcpNioConnectionSupport;
}

The second constructor argument disables host verification. The connectionSupport bean is then injected into the NIO connection factory.

When not using NIO, the configuration is in the TcpSocketSupport:

connectionFactory.setTcpSocketSupport(new DefaultTcpSocketSupport(false));

Again, the constructor argument disables host verification.

Advanced Techniques

This section covers advanced techniques that you may find to be helpful in certain situations.

Strategy Interfaces

In many cases, the configuration described earlier is all that is needed to enable secure communication over TCP/IP. However, Spring Integration provides a number of strategy interfaces to allow customization and modification of socket factories and sockets:

  • TcpSSLContextSupport

  • TcpSocketFactorySupport

  • TcpSocketSupport

  • TcpNetConnectionSupport

  • TcpNioConnectionSupport

The TcpSSLContextSupport Strategy Interface

The following listing shows the TcpSSLContextSupport strategy interface:

public interface TcpSSLContextSupport {

    SSLContext getSSLContext() throws Exception;

}

Implementations of the TcpSSLContextSupport interface are responsible for creating an SSLContext object. The implementation provided by the framework is the DefaultTcpSSLContextSupport, described earlier. If you require different behavior, implement this interface and provide the connection factory with a reference to a bean of your class' implementation.

The TcpSocketFactorySupport Strategy Interface

The following listing shows the definition of the TcpSocketFactorySupport strategy interface:

public interface TcpSocketFactorySupport {

    ServerSocketFactory getServerSocketFactory();

    SocketFactory getSocketFactory();

}

Implementations of this interface are responsible for obtaining references to ServerSocketFactory and SocketFactory. Two implementations are provided. The first is DefaultTcpNetSocketFactorySupport for non-SSL sockets (when no ssl-context-support attribute is defined). This uses the JDK’s default factories. The second implementation is DefaultTcpNetSSLSocketFactorySupport. By default, this is used when an ssl-context-support attribute is defined. It uses the SSLContext created by that bean to create the socket factories.

This interface applies only if using-nio is false. NIO does not use socket factories.
The TcpSocketSupport Strategy Interface

The following listing shows the definition of the TcpSocketSupport strategy interface:

public interface TcpSocketSupport {

    void postProcessServerSocket(ServerSocket serverSocket);

    void postProcessSocket(Socket socket);

}

Implementations of this interface can modify sockets after they are created and after all configured attributes have been applied but before the sockets are used. This applies whether you use NIO or not. For example, you could use an implementation of this interface to modify the supported cipher suites on an SSL socket, or you could add a listener that gets notified after SSL handshaking is complete. The sole implementation provided by the framework is the DefaultTcpSocketSupport, which does not modify the sockets in any way.

To supply your own implementation of TcpSocketFactorySupport or TcpSocketSupport, provide the connection factory with references to beans of your custom type by setting the socket-factory-support and socket-support attributes, respectively.

The TcpNetConnectionSupport Strategy Interface

The following listing shows the definition of the TcpNetConnectionSupport strategy interface:

public interface TcpNetConnectionSupport {

    TcpNetConnection createNewConnection(Socket socket,
            boolean server, boolean lookupHost,
            ApplicationEventPublisher applicationEventPublisher,
            String connectionFactoryName) throws Exception;

}

This interface is invoked to create objects of type TcpNetConnection (or its subclasses). The framework provides a single implementation (DefaultTcpNetConnectionSupport), which, by default, creates simple TcpNetConnection objects. It has two properties: pushbackCapable and pushbackBufferSize. When push back is enabled, the implementation returns a subclass that wraps the connection’s InputStream in a PushbackInputStream. Aligned with the PushbackInputStream default, the buffer size defaults to 1. This lets deserializers “unread” (push back) bytes into the stream. The following trivial example shows how it might be used in a delegating deserializer that “peeks” at the first byte to determine which deserializer to invoke:

public class CompositeDeserializer implements Deserializer<byte[]> {

    private final ByteArrayStxEtxSerializer stxEtx = new ByteArrayStxEtxSerializer();

    private final ByteArrayCrLfSerializer crlf = new ByteArrayCrLfSerializer();

    @Override
    public byte[] deserialize(InputStream inputStream) throws IOException {
        PushbackInputStream pbis = (PushbackInputStream) inputStream;
        int first = pbis.read();
        if (first < 0) {
            throw new SoftEndOfStreamException();
        }
        pbis.unread(first);
        if (first == ByteArrayStxEtxSerializer.STX) {
            this.receivedStxEtx = true;
            return this.stxEtx.deserialize(pbis);
        }
        else {
            this.receivedCrLf = true;
            return this.crlf.deserialize(pbis);
        }
    }

}
The TcpNioConnectionSupport Strategy Interface

The following listing shows the definition of the TcpNioConnectionSupport strategy interface:

public interface TcpNioConnectionSupport {

    TcpNioConnection createNewConnection(SocketChannel socketChannel,
            boolean server, boolean lookupHost,
            ApplicationEventPublisher applicationEventPublisher,
            String connectionFactoryName) throws Exception;

}

This interface is invoked to create TcpNioConnection objects (or objects from subclasses). Spring Integration provides two implementations: DefaultTcpNioSSLConnectionSupport and DefaultTcpNioConnectionSupport. Which one is used depends on whether SSL is in use. A common use case is to subclass DefaultTcpNioSSLConnectionSupport and override postProcessSSLEngine. See the SSL client authentication example. As with the DefaultTcpNetConnectionSupport, these implementations also support push back.

Example: Enabling SSL Client Authentication

To enable client certificate authentication when you use SSL, the technique depends on whether you use NIO. When you do not NIO , provide a custom TcpSocketSupport implementation to post-process the server socket:

serverFactory.setTcpSocketSupport(new DefaultTcpSocketSupport() {

    @Override
    public void postProcessServerSocket(ServerSocket serverSocket) {
        ((SSLServerSocket) serverSocket).setNeedClientAuth(true);
    }

});

(When you use XML configuration, provide a reference to your bean by setting the socket-support attribute).

When you use NIO, provide a custom TcpNioSslConnectionSupport implementation to post-process the SSLEngine, as the following example shows:

@Bean
public DefaultTcpNioSSLConnectionSupport tcpNioConnectionSupport() {
    return new DefaultTcpNioSSLConnectionSupport(serverSslContextSupport) {

            @Override
            protected void postProcessSSLEngine(SSLEngine sslEngine) {
                sslEngine.setNeedClientAuth(true);
            }

    }
}

@Bean
public TcpNioServerConnectionFactory server() {
    ...
    serverFactory.setTcpNioConnectionSupport(tcpNioConnectionSupport());
    ...
}

(When you use XML configuration, since version 4.3.7, provide a reference to your bean by setting the nio-connection-support attribute).

IP Configuration Attributes

The following table describes attributes that you can set to configure IP connections:

Table 1. Connection Factory Attributes
Attribute Name Client? Server? Allowed Values Attribute Description

type

Y

Y

client, server

Determines whether the connection factory is a client or a server.

host

Y

N

The host name or IP address of the destination.

port

Y

Y

The port.

serializer

Y

Y

An implementation of Serializer used to serialize the payload. Defaults to ByteArrayCrLfSerializer

deserializer

Y

Y

An implementation of Deserializer used to deserialize the payload. Defaults to ByteArrayCrLfSerializer

using-nio

Y

Y

true, false

Whether or not connection uses NIO. Refer to the java.nio package for more information. See About Non-blocking I/O (NIO). Default: false.

using-direct-buffers

Y

N

true, false

When using NIO, whether or not the connection uses direct buffers. Refer to the java.nio.ByteBuffer documentation for more information. Must be false if using-nio is false.

apply-sequence

Y

Y

true, false

When you use NIO, it may be necessary to resequence messages. When this attribute is set to true, correlationId and sequenceNumber headers are added to received messages. See About Non-blocking I/O (NIO). Default: false.

so-timeout

Y

Y

Defaults to 0 (infinity), except for server connection factories with single-use="true". In that case, it defaults to the default reply timeout (10 seconds).

so-send-buffer-size

Y

Y

See java.net.Socket. setSendBufferSize().

so-receive-buffer-size

Y

Y

See java.net.Socket. setReceiveBufferSize().

so-keep-alive

Y

Y

true, false

See java.net.Socket.setKeepAlive().

so-linger

Y

Y

Sets linger to true with the supplied value. See java.net.Socket.setSoLinger().

so-tcp-no-delay

Y

Y

true, false

See java.net.Socket.setTcpNoDelay().

so-traffic-class

Y

Y

See java.net.Socket. setTrafficClass().

local-address

N

Y

On a multi-homed system, specifies an IP address for the interface to which the socket is bound.

task-executor

Y

Y

Specifies a specific executor to be used for socket handling. If not supplied, an internal cached thread executor is used. Needed on some platforms that require the use of specific task executors, such as a WorkManagerTaskExecutor.

single-use

Y

Y

true, false

Specifies whether a connection can be used for multiple messages. If true, a new connection is used for each message.

pool-size

N

N

This attribute is no longer used. For backward compatibility, it sets the backlog, but you should use backlog to specify the connection backlog in server factories.

backlog

N

Y

Sets the connection backlog for server factories.

lookup-host

Y

Y

true, false

Specifies whether reverse lookups are done on IP addresses to convert to host names for use in message headers. If false, the IP address is used instead. Default: true.

interceptor-factory-chain

Y

Y

See TCP Connection Interceptors.

ssl-context-support

Y

Y

See SSL/TLS Support.

socket-factory-support

Y

Y

See SSL/TLS Support.

socket-support

Y

Y

See SSL/TLS Support.

nio-connection-support

Y

Y

See Advanced Techniques.

read-delay

Y

Y

long > 0

The delay (in milliseconds) before retrying a read after the previous attempt failed due to insufficient threads. Default: 100. Only applies if using-nio is true.

The following table describes attributes that you can set to configure UDP inbound channel adapters:

Table 2. UDP Inbound Channel Adapter Attributes
Attribute Name Allowed Values Attribute Description

port

The port on which the adapter listens.

multicast

true, false

Whether or not the UDP adapter uses multicast.

multicast-address

When multicast is true, the multicast address to which the adapter joins.

pool-size

Specifies how many packets can be handled concurrently. It only applies if task-executor is not configured. Default: 5.

task-executor

Specifies a specific executor to be used for socket handling. If not supplied, an internal pooled executor is used. Needed on some platforms that require the use of specific task executors such as a WorkManagerTaskExecutor. See pool-size for thread requirements.

receive-buffer-size

The size of the buffer used to receive DatagramPackets. Usually set to the maximum transmission unit (MTU) size. If a smaller buffer is used than the size of the sent packet, truncation can occur. You can detect this by using the check-length attribute..

check-length

true, false

Whether or not a UDP adapter expects a data length field in the packet received. Used to detect packet truncation.

so-timeout

See the setSoTimeout() methods in java.net.DatagramSocket for more information.

so-send-buffer-size

Used for UDP acknowledgment packets. See the setSendBufferSize() methods in java.net.DatagramSocket for more information.

so-receive-buffer-size

See java.net.DatagramSocket.setReceiveBufferSize() for more information.

local-address

On a multi-homed system, specifies an IP address for the interface to which the socket is bound.

error-channel

If a downstream component throws an exception, the MessagingException message that contains the exception and failed message is sent to this channel.

lookup-host

true, false

Specifies whether reverse lookups are done on IP addresses to convert to host names for use in message headers. If false, the IP address is used instead. Default: true.

The following table describes attributes that you can set to configure UDP outbound channel adapters:

Table 3. UDP Outbound Channel Adapter Attributes
Attribute Name Allowed Values Attribute Description

host

The host name or ip address of the destination. For multicast udp adapters, the multicast address.

port

The port on the destination.

multicast

true, false

Whether or not the udp adapter uses multicast.

acknowledge

true, false

Whether or not a UDP adapter requires an acknowledgment from the destination. When enabled, it requires setting the following four attributes: ack-host, ack-port, ack-timeout, and min-acks-for- success.

ack-host

When acknowledge is true, indicates the host or IP address to which the acknowledgment should be sent. Usually the current host, but may be different — for example, when Network Address Translation (NAT) is being used.

ack-port

When acknowledge is true, indicates the port to which the acknowledgment should be sent. The adapter listens on this port for acknowledgments.

ack-timeout

When acknowledge is true, indicates the time in milliseconds that the adapter waits for an acknowledgment. If an acknowledgment is not received in time, the adapter throws an exception.

min-acks-for- success

Defaults to 1. For multicast adapters, you can set this to a larger value, which requires acknowledgments from multiple destinations.

check-length

true, false

Whether or not a UDP adapter includes a data length field in the packet sent to the destination.

time-to-live

For multicast adapters, specifies the time-to-live attribute for the MulticastSocket. Controls the scope of the multicasts. Refer to the Java API documentation for more information.

so-timeout

See java.net.DatagramSocket setSoTimeout() methods for more information.

so-send-buffer-size

See the setSendBufferSize() methods in java.net.DatagramSocket for more information.

so-receive-buffer-size

Used for UDP acknowledgment packets. See the setReceiveBufferSize() methods in java.net.DatagramSocket for more information.

local-address

On a multi-homed system, for the UDP adapter, specifies an IP address for the interface to which the socket is bound for reply messages. For a multicast adapter, it also determines which interface the multicast packets are sent over.

task-executor

Specifies a specific executor to be used for acknowledgment handling. If not supplied, an internal single threaded executor is used. Needed on some platforms that require the use of specific task executors, such as a WorkManagerTaskExecutor. One thread is dedicated to handling acknowledgments (if the acknowledge option is true).

destination-expression

SpEL expression

A SpEL expression to be evaluated to determine which SocketAddress to use as a destination address for the outgoing UDP packets.

socket-expression

SpEL expression

A SpEL expression to be evaluated to determine which datagram socket use for sending outgoing UDP packets.

The following table describes attributes that you can set to configure TCP inbound channel adapters:

Table 4. TCP Inbound Channel Adapter Attributes
Attribute Name Allowed Values Attribute Description

channel

The channel to which inbound messages is sent.

connection-factory

If the connection factory has a type of server, the factory is “owned” by this adapter. If it has a type of client, it is “owned” by an outbound channel adapter, and this adapter receives any incoming messages on the connection created by the outbound adapter.

error-channel

If an exception is thrown by a downstream component, the MessagingException message containing the exception and the failed message is sent to this channel.

client-mode

true, false

When true, the inbound adapter acts as a client with respect to establishing the connection and then receiving incoming messages on that connection. Default: false. See also retry-interval and scheduler. The connection factory must be of type client and have single-use set to false.

retry-interval

When in client-mode, specifies the number of milliseconds to wait between connection attempts or after a connection failure. Default: 60000 (60 seconds).

scheduler

true, false

Specifies a TaskScheduler to use for managing the client-mode connection. If not specified, it defaults to the global Spring Integration taskScheduler bean, which has a default pool size of 10. See Configuring the Task Scheduler.

The following table describes attributes that you can set to configure TCP outbound channel adapters:

Table 5. TCP Outbound Channel Adapter Attributes
Attribute Name Allowed Values Attribute Description

channel

The channel on which outbound messages arrive.

connection-factory

If the connection factory has a type of client, the factory is “owned” by this adapter. If it has a type of server, it is “owned” by an inbound channel adapter, and this adapter tries to correlate messages to the connection on which an original inbound message was received.

client-mode

true, false

When true, the outbound adapter tries to establish the connection as soon as it is started. When false, the connection is established when the first message is sent. Default: false. See also retry-interval and scheduler. The connection factory must be of type client and have single-use set to false.

retry-interval

When in client-mode, specifies the number of milliseconds to wait between connection attempts or after a connection failure. Default: 60000 (60 seconds).

scheduler

true, false

Specifies a TaskScheduler to use for managing the client-mode connection. If not specified, it defaults to the global Spring Integration taskScheduler bean, which has a default pool size of 10. See Configuring the Task Scheduler.

The following table describes attributes that you can set to configure TCP inbound gateways:

Table 6. TCP Inbound Gateway Attributes
Attribute Name Allowed Values Attribute Description

connection-factory

The connection factory must be of type server.

request-channel

The channel to which incoming messages are sent.

reply-channel

The channel on which reply messages may arrive. Usually, replies arrive on a temporary reply channel added to the inbound message header.

reply-timeout

The time in milliseconds for which the gateway waits for a reply. Default: 1000 (1 second).

error-channel

If an exception is thrown by a downstream component, the MessagingException message containing the exception and the failed message is sent to this channel. Any reply from that flow is then returned as a response by the gateway.

client-mode

true, false

When true, the inbound gateway acts as a client with respect to establishing the connection and then receiving (and replying to) incoming messages on that connection. Default: false. See also retry-interval and scheduler. The connection factory must be of type client and have single-use set to false.

retry-interval

When in client-mode, specifies the number of milliseconds to wait between connection attempts or after a connection failure. Default: 60000 (60 seconds).

scheduler

true, false

Specifies a TaskScheduler to use for managing the client-mode connection. If not specified, it defaults to the global Spring Integration taskScheduler bean, which has a default pool size of 10. See Configuring the Task Scheduler.

The following table describes attributes that you can set to configure TCP outbound gateways:

Table 7. TCP Outbound Gateway Attributes
Attribute Name Allowed Values Attribute Description

connection-factory

The connection factory must be of type client.

request-channel

The channel on which outgoing messages arrive.

reply-channel

Optional. The channel to which reply messages are sent.

remote-timeout

The time in milliseconds for which the gateway waits for a reply from the remote system. Mutually exclusive with remote-timeout-expression. Default: 10000 (10 seconds). Note: In versions prior to 4.2 this value defaulted to reply-timeout (if set).

remote-timeout-expression

A SpEL expression that is evaluated against the message to determine the time in milliseconds for which the gateway waits for a reply from the remote system. Mutually exclusive with remote-timeout.

request-timeout

If a single-use connection factory is not being used, the time in milliseconds for which the gateway waits to get access to the shared connection.

reply-timeout

The time in milliseconds for which the gateway waits when sending the reply to the reply-channel. Only applies if the reply-channel might block (such as a bounded QueueChannel that is currently full).

async

Release the sending thread after the send; the reply (or error) will be sent on the receiving thread.

unsolicited MessageChannel

A channel to which to send unsolicited messages and late replies.

IP Message Headers

IP Message Headers

This module uses the following MessageHeader instances:

Header Name IpHeaders Constant Description

ip_hostname

HOSTNAME

The host name from which a TCP message or UDP packet was received. If lookupHost is false, this contains the IP address.

ip_address

IP_ADDRESS

The IP address from which a TCP message or UDP packet was received.

ip_port

PORT

The remote port for a UDP packet.

ip_localInetAddress

IP_LOCAL_ADDRESS

The local InetAddress to which the socket is connected (since version 4.2.5).

ip_ackTo

ACKADDRESS

The remote IP address to which UDP application-level acknowledgments are sent. The framework includes acknowledgment information in the data packet.

ip_ackId

ACK_ID

A correlation ID for UDP application-level acknowledgments. The framework includes acknowledgment information in the data packet.

ip_tcp_remotePort

REMOTE_PORT

The remote port for a TCP connection.

ip_connectionId

CONNECTION_ID

A unique identifier for a TCP connection. Set by the framework for inbound messages. When sending to a server-side inbound channel adapter or replying to an inbound gateway, this header is required so that the endpoint can determine the connection to which to send the message.

ip_actualConnectionId

ACTUAL_CONNECTION_ID

For information only. When using a cached or failover client connection factory, it contains the actual underlying connection ID.

contentType

MessageHeaders. CONTENT_TYPE

An optional content type for inbound messages Described after this table. Note that, unlike the other header constants, this constant is in the MessageHeaders class, not the IpHeaders class.

For inbound messages, ip_hostname, ip_address, ip_tcp_remotePort, and ip_connectionId are mapped by the default TcpHeaderMapper. If you set the mapper’s addContentTypeHeader property to true, the mapper sets the contentType header (application/octet-stream;charset="UTF-8", by default). You can change the default by setting the contentType property. You can add additional headers by subclassing TcpHeaderMapper and overriding the supplyCustomHeaders method. For example, when you use SSL, you can add properties of the SSLSession by obtaining the session object from the TcpConnection object, which is provided as an argument to the supplyCustomHeaders method.

For outbound messages, String payloads are converted to byte[] with the default (UTF-8) charset. Set the charset property to change the default.

When customizing the mapper properties or subclassing, declare the mapper as a bean and provide an instance to the connection factory by using the mapper property.

Annotation-Based Configuration

The following example from the samples repository shows some of the configuration options available when you use annotations instead of XML:

@EnableIntegration (1)
@IntegrationComponentScan (2)
@Configuration
public static class Config {

    @Value(${some.port})
    private int port;

    @MessagingGateway(defaultRequestChannel="toTcp") (3)
    public interface Gateway {

        String viaTcp(String in);

    }

    @Bean
    @ServiceActivator(inputChannel="toTcp") (4)
    public MessageHandler tcpOutGate(AbstractClientConnectionFactory connectionFactory) {
        TcpOutboundGateway gate = new TcpOutboundGateway();
        gate.setConnectionFactory(connectionFactory);
        gate.setOutputChannelName("resultToString");
        return gate;
    }

    @Bean (5)
    public TcpInboundGateway tcpInGate(AbstractServerConnectionFactory connectionFactory)  {
        TcpInboundGateway inGate = new TcpInboundGateway();
        inGate.setConnectionFactory(connectionFactory);
        inGate.setRequestChannel(fromTcp());
        return inGate;
    }

    @Bean
    public MessageChannel fromTcp() {
        return new DirectChannel();
    }

    @MessageEndpoint
    public static class Echo { (6)

        @Transformer(inputChannel="fromTcp", outputChannel="toEcho")
        public String convert(byte[] bytes) {
            return new String(bytes);
        }

        @ServiceActivator(inputChannel="toEcho")
        public String upCase(String in) {
            return in.toUpperCase();
        }

        @Transformer(inputChannel="resultToString")
        public String convertResult(byte[] bytes) {
            return new String(bytes);
        }

    }

    @Bean
    public AbstractClientConnectionFactory clientCF() { (7)
        return new TcpNetClientConnectionFactory("localhost", this.port);
    }

    @Bean
    public AbstractServerConnectionFactory serverCF() { (8)
        return new TcpNetServerConnectionFactory(this.port);
    }

}
1 Standard Spring Integration annotation enabling the infrastructure for an integration application.
2 Searches for @MessagingGateway interfaces.
3 The entry point to the client-side of the flow. The calling application can use @Autowired for this Gateway bean and invoke its method.
4 Outbound endpoints consist of a MessageHandler and a consumer that wraps it. In this scenario, the @ServiceActivator configures the endpoint, according to the channel type.
5 Inbound endpoints (in the TCP/UDP module) are all message-driven and so only need to be declared as simple @Bean instances.
6 This class provides a number of POJO methods for use in this sample flow (a @Transformer and @ServiceActivator on the server side and a @Transformer on the client side).
7 The client-side connection factory.
8 The server-side connection factory.

Using the Java DSL for TCP Components

DSL support for TCP components includes specs for adapters and gateways, the Tcp class with factory methods to create connection factory beans, and the TcpCodecs class with factory methods to create serializers and deserializers. Refer to their javadocs for more information.

Here are some examples of using the DSL to configure flows using the DSL.

Example 1. Server Adapter Flow
@Bean
public IntegrationFlow server() {
    return IntegrationFlows.from(Tcp.inboundAdapter(Tcp.netServer(1234)
                            .deserializer(TcpCodecs.lengthHeader1())
                            .backlog(30))
                        .errorChannel("tcpIn.errorChannel")
                        .id("tcpIn"))
            .transform(Transformers.objectToString())
            .channel("tcpInbound")
            .get();
}
Example 2. Client Adapter Flow
@Bean
public IntegrationFlow client() {
    return f -> f.handle(Tcp.outboundAdapter(Tcp.nioClient("localhost", 1234)
                        .serializer(TcpCodecs.lengthHeader1())));
}
Example 3. Server Gateway Flow
@Bean
public IntegrationFlow server() {
    return IntegrationFlows.from(Tcp.inboundGateway(Tcp.netServer(1234)
                            .deserializer(TcpCodecs.lengthHeader1())
                            .serializer(TcpCodecs.lengthHeader1())
                            .backlog(30))
                        .errorChannel("tcpIn.errorChannel")
                        .id("tcpIn"))
            .transform(Transformers.objectToString())
            .channel("tcpInbound")
            .get();
}
Example 4. Client Gateway Flow
@Bean
public IntegrationFlow client() {
    return f -> f.handle(Tcp.outboundGateway(Tcp.nioClient("localhost", 1234)
                        .deserializer(TcpCodecs.lengthHeader1())
                        .serializer(TcpCodecs.lengthHeader1())));
}