Spring Integration Reference Guide

Mark Fisher, Marius Bogoevici, Iwein Fuld, Jonas Partner, Oleg Zhurakousky,
Gary Russell, Dave Syer, Josh Long, David Turanski, Gunnar Hillert, Artem Bilan,
Amol Nayak, Jay Bryant

Version 5.4.0

Table of Contents

Preface
1. Requirements
1.1. Compatible Java Versions
1.2. Compatible Versions of the Spring Framework
2. Code Conventions
3. Conventions in This Guide
WhatOs New?
4. WhatOs New in Spring Integration 5.4?
4.1. New Components
4.2. General Changes
4.3. TCP/UDP Changes
4.4. RMI Changes
4.5. AMQP Changes
4.6. Mail Changes
Overview of Spring Integration Framework
5. Spring Integration Overview
5.1. Background
5.2. Goals and Principles
5.3. Main Components
5.4. Message Endpoints
5.5. Configuration and @Enablelntegration
5.6. Programming Considerations
5.7. Programming Tips and Tricks
5.8. POJO Method invocation
Core Messaging
6. Messaging Channels
6.1. Message Channels
6.2. Poller
6.3. Channel Adapter
6.4. Messaging Bridge
7. Message
7.1. The Messagdnterface
7.2. Message Headers
7.3. Message Implementations
7.4. The MessageBuilderHelper Class
8. Message Routing
8.1. Routers
8.2. Filter

© o o b b N N N O U WL W

O OO OO b o 1w w w NN PEP P PRERPERR
© © o o~ O P Fk O N »dM PP v W O o o

74
{4
A7
A7
102

8.3. Splitter 106

8.4. Aggregator 410
8.5. Resequencer 134
8.6. Message Handler Chain 138
8.7. Scatter-Gather 142
8.8. Thread Barrier 146
9. Message Transformation 149
9.1. Transformer 149
9.2. Content Enricher 159
9.3. Claim Check 168
9.4. Codec 172
10. Messaging Endpoints 176
10.1. Message Endpoints 176
10.2. Endpoint Roles 190
10.3. Leadership Event Handling 192
10.4. Messaging Gateways 193
10.5. Service Activator 214
10.6. Delayer 219
10.7. Scripting Support 224
10.8. Groovy support 228
10.9. Adding Behavior to Endpoints 232
10.10. Logging Channel Adapter 256
10.11. java.util.function Interfaces Support 258
11. Java DSL 262
11.1. DSL Basics 263
11.2. Message Channels 265
11.3. Pollers 267
11.4. DSL and Endpoint Configuration 268
11.5. Transformers 269
11.6. Inbound Channel Adapters 269
11.7. Message Routers 270
11.8. Splitters 2712
11.9. Aggregators and Resequencers 273
11.10. Service Activators and the .handle() method 274
11.11. Operator log() 275
11.12. Operator intercept() 275
11.13. MessageChannelSpec.wireTap() 276
11.14. Working With Message Flows 277
11.15. FunctionExpression 278
11.16. Sub-flows support 278

11.17. Using Protocol Adapters 282

11.18
11.19
11.20
11.21
12. Kotli

. IntegrationFlowAdapter

. Dynamic and Runtime Integration Flows
. IntegrationFlow as a Gateway

. DSL Extensions

n DSL

13. System Management

13.1.
13.2.
13.3.
13.4.
13.5.
13.6.
13.7.
13.8.
13.9.

Integration

Metrics and Management
JMX Support

Message History

Message Store

Metadata Store

Control Bus

Orderly Shutdown
Integration Graph
Integration Graph Controller

Endpoints

14. Endpoint Quick Reference Table
15. AMQP Support

15.1.
15.2.
15.3.
15.4.
15.5.
15.6.
15.7.
15.8.
15.9.

15.10.
15.11.
15.12.
15.13.
15.14.
15.15.
15.16.
15.17.

Inbound Channel Adapter

Polled Inbound Channel Adapter
Inbound Gateway

Inbound Endpoint Acknowledge Mode
Outbound Channel Adapter
Outbound Channel Adapter
Outbound Gateway

Asynchronous Outbound Gateway
Alternative Mechanism for Publisher Confirms and Returns
Inbound Message Conversion
Outbound Message Conversion
Outbound User ID

Delayed Message Exchange
AMQP-backed Message Channels
AMQP Message Headers

Strict Message Ordering

AMQP Samples

16. Spring ApplicationEvent Support

16.1.
16.2.

Receiving Spring Application Events

Sending Spring Application Events

17. Feed Adapter

17.1.
17.2.

Feed Inbound Channel Adapter

Duplicate Entries

284
287
290
292
294
296
296
299
307
309
313
315
316
317
324
326
327
331
331
339
339
343
344
344
349
354
360
361
361
363
363
364
367
370
371
373
373
375
378
378
379

17.3.
17.4.

Other Options
Java DSL Configuration

18. File Support

18.1.
18.2.
18.3.
18.4.
18.5.

Reading Files
Writing files

File Transformers
File Splitter

Remote Persistent File List Filters

19. FTP/FTPS Adapters

19.1.
19.2.
19.3.
19.4.
19.5.
19.6.
19.7.
19.8.
19.9.

FTP Session Factory

Advanced Configuration

Delegating Session Factory

FTP Inbound Channel Adapter

FTP Streaming Inbound Channel Adapter

Inbound Channel Adapters: Polling Multiple Servers and Directories
Inbound Channel Adapters: Controlling Remote File Fetching

FTP Outbound Channel Adapter

FTP Outbound Gateway

19.10. FTP Session Caching
19.11. Using RemoteFileTemplate

19.12. Using MessageSessionCallback
19.13. Apache Mina FTP Server Events

19.14. Remote File Information

20. Pivotal GemFire and Apache Geode Support

20.1.
20.2.
20.3.
20.4.
20.5.
20.6.

Inbound Channel Adapter

Continuous Query Inbound Channel Adapter
Outbound Channel Adapter

Gemfire Message Store

Gemfire Lock Registry

Gemfire Metadata Store

21. HTTP Support

21.1.
21.2.
21.3.
21.4.
21.5.
21.6.
21.7.
21.8.
21.9.

Http Inbound Components

HTTP Outbound Components

HTTP Namespace Support
Configuring HTTP Endpoints with Java
Timeout Handling

HTTP Proxy configuration

HTTP Header Mappings

Integration Graph Controller

HTTP Samples

22. JDBC Support

379
380
381
381
394
402
403
407
409
409
411
413
414
422
425
426
427
433
441
A42
443
444
445
446
447
448
449
450
451
452
454
454
457
A58
A70
471
AT4
475
476
A1l
479

22.1.
22.2.
22.3.
22.4.
22.5.
22.6.
22.7.

Inbound Channel Adapter
Outbound Channel Adapter
Outbound Gateway

JDBC Message Store
Stored Procedures

JDBC Lock Registry

JDBC Metadata Store

23. JPA Support

23.1.
23.2.
23.3.
23.4.
23.5.
23.6.
23.7.

Functionality

Supported Persistence Providers
Java Implementation
Namespace Support

Inbound Channel Adapter
Outbound Channel Adapter

Outbound Gateways

24. JMS Support

24.1.
24.2.
24.3.
24.4.
24.5.
24.6.
24.7.
24.8.
24.9.

Inbound Channel Adapter

Message-driven Channel Adapter

Outbound Channel Adapter

Inbound Gateway

Outbound Gateway

Mapping Message Headers to and from JMS Message
Message Conversion, Marshalling, and Unmarshalling
JMS-backed Message Channels

Using JMS Message Selectors

24.10. JMS Samples
24.11. JMX Support
25. Spring for Apache Kafka Support

25.1.
25.2.
25.3.
25.4.
25.5.
25.6.
25.7.
25.8.
25.9.

Overview

Outbound Channel Adapter
Message-driven Channel Adapter
Inbound Channel Adapter
Outbound Gateway

Inbound Gateway

Channels Backed by Kafka Topics
Message Conversion

Null Payloads and Log Compaction ‘Tombstone' Records

25.10. Calling a Spring Integration flow from a KStream

25.11. Performance Considerations for read/process/write Scenarios
26. Mail Support

26.1.

Mail-sending Channel Adapter

AT9
483
486
487
492
503
504
506
507
507
507
508
512
517
525
536
537
538
540
541
543
550
552
552
554
554
555
564
564
564
568
571
573
575
577
581
582
582
583
587
587

26.2. Mail-receiving Channel Adapter
26.3. Inbound Mail Message Mapping
26.4. Mail Namespace Support
26.5. Marking IMAP Messages When \Recent Is Not Supported
26.6. Email Message Filtering
26.7. Transaction Synchronization
26.8. Configuring channel adapters with the Java DSL
27. MongoDb Support
27.1. Connecting to MongoDb
27.2. MongoDB Message Store
27.3. MongoDB Inbound Channel Adapter
27.4. MongoDB Change Stream Inbound Channel Adapter
27.5. MongoDB Outbound Channel Adapter
27.6. MongoDB Outbound Gateway
27.7. MongoDB Reactive Channel Adapters
28. MQTT Support
28.1. Inbound (Message-driven) Channel Adapter
28.2. Outbound Channel Adapter
28.3. Events
29. R2DBC Support
29.1. R2DBC Inbound Channel Adapter
29.2. R2DBC Outbound Channel Adapter
30. Redis Support
30.1. Connecting to Redis
30.2. Messaging with Redis
30.3. Redis Message Store
30.4. Redis Metadata Store
30.5. Redis Store Inbound Channel Adapter
30.6. RedisStore Outbound Channel Adapter
30.7. Redis Outbound Command Gateway
30.8. Redis Queue Outbound Gateway
30.9. Redis Queue Inbound Gateway
30.10. Redis Stream Outbound Channel Adapter
30.11. Redis Stream Inbound Channel Adapter
30.12. Redis Lock Registry
31. Resource Support
31.1. Resource Inbound Channel Adapter
32. RMI Support
32.1. Outbound RMI
32.2. Inbound RMI
32.3. RMI namespace support

588
590
591
597
597
598
600
601
601
603
606
608
609
610
613
615
615
621
625
626
626
627
629
629
631
637
638
639
642
643
645
646
648
648
650
651
651
653
653
653
654

32.4. Configuring with Java Configuration
33. RSocket Support
33.1. RSocket Inbound Gateway
33.2. RSocket Outbound Gateway
33.3. RSocket Namespace Support
33.4. Configuring RSocket Endpoints with Java
34. SFTP Adapters
34.1. SFTP Session Factory
34.2. Proxy Factory Bean
34.3. Delegating Session Factory
34.4. SFTP Session Caching
34.5. Using RemoteFileTemplate
34.6. SFTP Inbound Channel Adapter
34.7. SFTP Streaming Inbound Channel Adapter
34.8. Inbound Channel Adapters: Polling Multiple Servers and Directories
34.9. Inbound Channel Adapters: Controlling Remote File Fetching
34.10. SFTP Outbound Channel Adapter
34.11. SFTP Outbound Gateway
34.12. SFTP/JSCH Logging
34.13. MessageSessionCallback
34.14. Apache Mina SFTP Server Events
34.15. Remote File Information
35. STOMP Support
35.1. Overview
35.2. STOMP Inbound Channel Adapter
35.3. STOMP Outbound Channel Adapter
35.4. STOMP Headers Mapping
35.5. STOMP Integration Events
35.6. STOMP Adapters Java Configuration
35.7. STOMP Namespace Support
36. Stream Support
36.1. Reading from Streams
36.2. Writing to Streams
36.3. Stream Namespace Support
37. Syslog Support
37.1. Syslog Inbound Channel Adapter
38. TCP and UDP Support
38.1. Introduction
38.2. UDP Adapters
38.3. TCP Connection Factories

38.4. Testing Connections

655
656
658
659
660
662
665
665
668
668
669
670
671
678
681
682
683
688
696
697
697
698
700
/00
701
701
701
702
702
704
707
707
709
709
711
711
715
715
716
721
728

38.5. TCP Connection Interceptors €29

38.6. TCP Connection Events 730
38.7. TCP Adapters 731
38.8. TCP Gateways £33
38.9. TCP Message Correlation 735
38.10. About Non-blocking I/0O (NIO) 738
38.11. SSL/TLS Support 742
38.12. Advanced Techniques 744
38.13. IP Configuration Attributes 749
38.14. IP Message Headers 756
38.15. Annotation-Based Configuration J57
39. WebFlux Support 760
39.1. WebFlux Inbound Components 760
39.2. WebFlux Outbound Components 762
39.3. WebFlux Namespace Support 763
39.4. Configuring WebFlux Endpoints with Java 766
39.5. WebFlux Header Mappings 768
40. WebSockets Support 769
40.1. Overview 770
40.2. WebSocket Inbound Channel Adapter A71
40.3. WebSocket Outbound Channel Adapter A712
40.4. WebSockets Namespace Support d72
40.5. Using ClientStompEncoder 778
41. Web Services Support 780
41.1. Outbound Web Service Gateways 780
41.2. Inbound Web Service Gateways 781
41.3. Web Service Namespace Support 782
41.4. Web Service Java DSL Support 783
41.5. Outbound URI Configuration 785
41.6. WS Message Headers /86
41.7. MTOM Support /89
42. XML Support - Dealing with XML Payloads 791
42.1. Namespace Support 792
42.2. Transforming XML Payloads 796
42.3. Transforming XML Messages with XPath 803
42.4. Splitting XML Messages 805
42.5. Routing XML Messages with XPath 807
42.6. XPath Header Enricher 809
42.7. Using the XPath Filter 812
42.8. #xpath SpEL Function 813

42.9. XML Validating Filter 814

43. XMPP Support
43.1. XMPP Connection
43.2. XMPP Messages
43.3. XMPP Presence
43.4. Advanced Configuration
43.5. XMPP Message Headers
43.6. XMPP Extensions
44, ZeroMQ Support
44.1. ZeroMQ Proxy
44.2. ZeroMQ Message Channel
44.3. ZeroMQ Inbound Channel Adapter
44.4. ZeroMQ Outbound Channel Adapter
44.5. ZeroMQ Java DSL Support
45. Zookeeper Support
45.1. Zookeeper Metadata Store
45.2. Zookeeper Lock Registry
45.3. Zookeeper Leadership Event Handling
Appendices
Appendix A: Error Handling
Appendix B: Spring Expression Language (SpEL)
B.1. SpEL Evaluation Context Customization
B.2. SpEL Functions
B.3. Property Accessors
Appendix C: Message Publishing
C.1. Message Publishing Configuration
Appendix D: Transaction Support
D.1. Understanding Transactions in Message flows
D.2. Transaction Boundaries
D.3. Transaction Synchronization
D.4. Pseudo Transactions
D.5. Reactive Transactions
Appendix E: Security in Spring Integration
E.1. Securing channels
E.2. Security Context Propagation
Appendix F: Configuration
F.1. Namespace Support
F.2. Configuring the Task Scheduler
F.3. Global Properties
F.4. Annotation Support
F.5. Messaging Meta-Annotations

F.6. Message Mapping Rules and Conventions

816
817
817
820
821
823
823
827
827
828
829
830
831
832
832
833
833
835
836
838
838
840
842
843
843
852
852
855
855
858
858
859
859
861
864
864
866
867
869
876
881

Appendix G: Testing support

G.1.
G.2.
G.3.
G.4.

Testing Utilities
Spring Integration and the Test Context
Integration Mocks

Other Resources

Appendix H: Spring Integration Samples

H.1.

H.2. Submitting Samples or Sample Requests

H.3.
H.4.

Where to Get Samples

Samples Structure

Samples

Appendix |: Additional Resources

Appendix J: Change History

J.1.
J.2.
J.3.
J.4.
J.5.
J.6.
J.7.
J.8.
J.9.

J.10.
J.11.
J.12.
J.13.
J.14.
J.15.
J.16.
J.17.
J.18.
J.19.
J.20.
J.21.
J.22.
J.23.
J.24.
J.25.
J.26.
J.27.

Changes between 5.2 and 5.3
New Components

General Changes

AMQP Changes

HTTP Changes

Web Services Changes

TCP Changes

RSocket Changes

Zookeeper Changes

MQTT Changes

(S)FTP Changes

File Changes

Changes between 5.1 and 5.2
Package and Class Changes
Behavior Changes

New Components

General Changes

Changes between 5.0 and 5.1
Changes between 4.3 and 5.0
Changes between 4.2 and 4.3
Changes between 4.1 and 4.2
Changes between 4.0 and 4.1
Changes between 3.0 and 4.0
Changes Between 2.2 and 3.0
Changes between 2.1 and 2.2
Changes between 2.0 and 2.1

Changes between Versions 1.0 and 2.0

887
888
892
894
896
897
897
898
898
900
912
913
913
913
914
914
915
915
915
915
915
915
916
916
916
916
916
916
917
919
924
931
937
944
948
953
962
966
970

© 2009 - 2020 Pivotal Software, Inc. All rights reserved.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Preface

This chapter includes:

¥ Requirements
¥ Code Conventions

¥ Conventions in This Guide

Chapter 1. Requirements

This section details the compatible Java and Spring Framework versions.

1.1. Compatible Java Versions

For Spring Integration 5.2.x, the minimum compatible Java version is Java SE 8. Older versions of
Java are not supported.

1.2. Compatible Versions of the Spring Framework

Spring Integration 5.2.x requires Spring Framework 5.2 or later.

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://spring.io/projects/spring-framework

Chapter 2. Code Conventions

Spring Framework 2.0 introduced support for namespaces, which simplifies the XML configuration
of the application context and lets Spring Integration provide broad namespace support.

In this reference guide, the

int namespace prefix is used for Spring IntegrationOs core namespace

support. Each Spring Integration adapter type (also called a module) provides its own namespace,
which is configured by using the following convention:

The following example shows the int , int-event , and int-stream namespaces in use:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmIns="http://www.springframework.org/schema/beans "

E xmins:xsi =" http://www.w3.0rg/2001/XMLSchema-instance"

E xmins:int =" http://www.springframework.org/schema/integration "

E xmins:int-webflux ="http://www.springframework.org/schema/integration/webflux

E xmins:int-stream ="http://www.springframework.org/schemalintegration/stream

xsi:schemalocation ="
http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration
https://www.springframework.org/schema/integration/spring-integration.xsd
http://www.springframework.org/schema/integration/webflux
https://www.springframework.org/schema/integration/webflux/spring-integration-

webflux.xsd

E http://www.springframework.org/schemal/integration/stream

E https://www.springframework.org/schema/integration/stream/spring-integration-

stream.xsd" >

E

</beans>

[T > [T e T e [T

For a detailed explanation regarding Spring IntegrationOs namespace support, see
Support .

Namespace

The namespace prefix can be freely chosen. You may even choose not to use any
namespace prefixes at all. Therefore, you should apply the convention that best
suits your application. Be aware, though, that SpringSource Tool Suite? (STS) uses
the same namespace conventions for Spring Integration as used in this reference

guide.

./configuration.pdf#configuration-namespace
./configuration.pdf#configuration-namespace

Chapter 3. Conventions in This Guide

In some cases, to aid formatting when specifying long fully qualified class names, we shorten
org.springframework to o.s and org.springframework.integration to o.s.i , such as with
o.s.i.transaction.TransactionSynchronizationFactory

WhatOs New?

For those who are already familiar with Spring Integration, this chapter provides a brief overview
of the new features of version 5.4.

If you are interested in the changes and features that were introduced in earlier versions, see the
Change History .

./history.pdf#history

Chapter 4. WhatOs New in Spring Integration
5.47?

If you are interested in more details, see the Issue Tracker tickets that were resolved as part of the
5.4 development process.

4.1. New Components

4.1.1. Apache Kafka Channel Adapters

The standalone Spring Integration Kafka project has been merged as a spring-integration-kafka
module to this project.

The KafkaProducerMessageHandlesendTimeoutExpressiondefault has changed.
You can now access the Future<?>for underlying send() operations.

See Spring for Apache Kafka Support ~ for more information.

4.1.2. R2DBC Channel Adapters

The Channel Adapters for R2DBC database interaction have been introduced. See R2DBC Support
for more information.

4.1.3. Redis Stream Support

The Channel Adapters for Redis Stream support have been introduced. See Redis Stream Outbound
Channel Adapter for more information.

4.1.4. Renewable Lock Registry

A Renewable lock registry has been introduced to allow renew lease of a distributed lock. See JDBC
implementation for more information.

4.1.5. ZeroMQ Support

ZeroMgChannelZeroMgMessageHandleand ZeroMgMessageProducdrave been introduced. See ZeroMQ
Support for more information.

4.2. General Changes

The one-way messaging gateway (the void method return type) now sets a nullChannel explicitly
into the replyChannel header to ignore any possible downstream replies. See Setting the Default
Reply Channel for more information.

Also the gateway method invokers (GatewayProxyFactoryBean.MethodInvocationGatewgy are now
supplied with the managed bean name as a combination of gateway proxy bean name plus method

https://projects.spring.io/spring-integration-kafka/
./kafka.pdf#kafka
./r2dbc.pdf#r2dbc
./redis.pdf#redis-stream-outbound
./redis.pdf#redis-stream-outbound
./jdbc.pdf#jdbc-lock-registry
./jdbc.pdf#jdbc-lock-registry
./zeromq.pdf#zeromq
./zeromq.pdf#zeromq
./gateway.pdf#gateway-default-reply-channel
./gateway.pdf#gateway-default-reply-channel

signature. For example: sampleGateway#echo(String) This effects message history and metrics
exposed for the gateway method calls and also give fine-grained logs during start and close of
application context.

The aggregator (and resequencer) can now expire orphaned groups (groups in a persistent store
where no new messages arrive after an application restart). See Aggregator Expiring Groups for
more information.

The legacy metrics that were replaced by Micrometer meters have been removed.

The Thread Barrier has now two separate timeout options: requestTimeout and triggerTimeout .

4.3. TCP/UDP Changes

Connection factories now support multiple sending components (TcpSendey; they remain limited to
one receiving component (TcpListener). This allows, for example, an inbound gateway and
outbound channel adapter to share the same factory, supporting both request/reply and arbitrary
messaging from the server to the client. Shared factories should not be used with outbound
gateways, unless single-use connections or the ThreadAffinityClientConnectionFactory are being
used. See Collaborating Channel Adapters and TCP Gateways for more information.

The UDP channel adapters can now be configured with a SocketCustomizer which allows the setting
of socket properties that are not directly supported by the adapters. See UDP Adapters for more
information.

4.4. RMI Changes

The spring-integration-rmi module is deprecated with no replacement and is going to be removed
in the next major version. See RMI Support for more information.

4.5. AMQP Changes

The outbound endpoints now have a new mechanism for handling publisher confirms and returns.
SeeAlternative Mechanism for Publisher Confirms and Returns for more information.

A new BatchMode.EXTRACT_PAYLOAD_ WITH_H&ADE®&ed by the AmqgplnboundChannelAdapteSee
Inbound Channel Adapter for more information.

4.6. Mail Changes

The AbstractMailReceiver can now produce the MimeMessagas-is without eager fetching its content.
SeeMail-receiving Channel Adapter for more information.

./aggregator.pdf#aggregator-expiring-groups
./barrier.pdf#barrier
./ip.pdf#ip-collaborating-adapters
./ip.pdf#tcp-gateways
./ip.pdf#udp-adapters
./rmi.pdf#rmi
./amqp.pdf#alternative-confirms-returns
./amqp.pdf#amqp-inbound-channel-adapter
./mail.pdf#mail-inbound

Overview of Spring Integration
Framework

Spring Integration provides an extension of the Spring programming model to support the well
known Enterprise Integration Patterns . It enables lightweight messaging within Spring-based
applications and supports integration with external systems through declarative adapters. Those
adapters provide a higher level of abstraction over SpringOs support for remoting, messaging, and
scheduling.

Spring IntegrationOs primary goal is to provide a simple model for building enterprise integration
solutions while maintaining the separation of concerns that is essential for producing
maintainable, testable code.

https://www.enterpriseintegrationpatterns.com/

Chapter 5. Spring Integration Overview

This chapter provides a high-level introduction to Spring IntegrationOs core concepts and
components. It includes some programming tips to help you make the most of Spring Integration.

5.1. Background

One of the key themes of the Spring Framework is Inversion of Control (IoC). In its broadest sense,
this means that the framework handles responsibilities on behalf of the components that are
managed within its context. The components themselves are simplified, because they are relieved
of those responsibilities. For example, dependency injection relieves the components of the
responsibility of locating or creating their dependencies. Likewise, aspect-oriented programming
relieves business components of generic cross-cutting concerns by modularizing them into reusable
aspects. In each case, the end result is a system that is easier to test, understand, maintain, and
extend.

Furthermore, the Spring framework and portfolio provide a comprehensive programming model
for building enterprise applications. Developers benefit from the consistency of this model and
especially from the fact that it is based upon well established best practices, such as programming
to interfaces and favoring composition over inheritance. SpringOs simplified abstractions and
powerful support libraries boost developer productivity while simultaneously increasing the level

of testability and portability.

Spring Integration is motivated by these same goals and principles. It extends the Spring
programming model into the messaging domain and builds upon SpringOs existing enterprise
integration support to provide an even higher level of abstraction. It supports message-driven
architectures where inversion of control applies to runtime concerns, such as when certain
business logic should run and where the response should be sent. It supports routing and
transformation of messages so that different transports and different data formats can be
integrated without impacting testability. In other words, the messaging and integration concerns
are handled by the framework. Business components are further isolated from the infrastructure,
and developers are relieved of complex integration responsibilities.

As an extension of the Spring programming model, Spring Integration provides a wide variety of
configuration options, including annotations, XML with namespace support, XML with generic
ObeanO elements, and direct usage of the underlying API. That API is based upon well defined
strategy interfaces and non-invasive, delegating adapters. Spring IntegrationOs design is inspired by
the recognition of a strong affinity between common patterns within Spring and the well known
patterns described in Enterprise Integration Patterns , by Gregor Hohpe and Bobby Woolf (Addison
Wesley, 2004). Developers who have read that book should be immediately comfortable with the
Spring Integration concepts and terminology.

5.2. Goals and Principles

Spring Integration is motivated by the following goals:

¥ Provide a simple model for implementing complex enterprise integration solutions.

10

https://www.enterpriseintegrationpatterns.com/

¥ Facilitate asynchronous, message-driven behavior within a Spring-based application.

¥ Promote intuitive, incremental adoption for existing Spring users.
Spring Integration is guided by the following principles:

¥ Components should be loosely coupled for modularity and testability.

¥ The framework should enforce separation of concerns between business logic and integration
logic.

¥ Extension points should be abstract in nature (but within well-defined boundaries) to promote
reuse and portability.

5.3. Main Components

From a vertical perspective, a layered architecture facilitates separation of concerns, and interface-
based contracts between layers promote loose coupling. Spring-based applications are typically
designed this way, and the Spring framework and portfolio provide a strong foundation for
following this best practice for the full stack of an enterprise application. Message-driven
architectures add a horizontal perspective, yet these same goals are still relevant. Just as Olayered
architectureO is an extremely generic and abstract paradigm, messaging systems typically follow
the similarly abstract Opipes-and-filtersO model. The OfiltersO represent any components capable of
producing or consuming messages, and the OpipesO transport the messages between filters so that
the components themselves remain loosely-coupled. It is important to note that these two high-level
paradigms are not mutually exclusive. The underlying messaging infrastructure that supports the
OpipesO should still be encapsulated in a layer whose contracts are defined as interfaces. Likewise,
the OfiltersO themselves should be managed within a layer that is logically above the applicationOs
service layer, interacting with those services through interfaces in much the same way that a web
tier would.

5.3.1. Message

In Spring Integration, a message is a generic wrapper for any Java object combined with metadata
used by the framework while handling that object. It consists of a payload and headers. The
payload can be of any type, and the headers hold commonly required information such as ID,
timestamp, correlation 1D, and return address. Headers are also used for passing values to and
from connected transports. For example, when creating a message from a received file, the file
name may be stored in a header to be accessed by downstream components. Likewise, if a
messageOs content is ultimately going to be sent by an outbound mail adapter, the various
properties (to, from, cc, subject, and others) may be configured as message header values by an
upstream component. Developers can also store any arbitrary key-value pairs in the headers.

11

Message h

Header

Payload

Figure 1. Message

5.3.2. Message Channel

A message channel represents the OpipeO of a pipes-and-filters architecture. Producers send
messages to a channel, and consumers receive messages from a channel. The message channel
therefore decouples the messaging components and also provides a convenient point for
interception and monitoring of messages.

send{Message)

receive()

Producer Consumer

Message Channel

Figure 2. Message Channel

A message channel may follow either point-to-point or publish-subscribe semantics. With a point-
to-point channel, no more than one consumer can receive each message sent to the channel.
Publish-subscribe channels, on the other hand, attempt to broadcast each message to all
subscribers on the channel. Spring Integration supports both of these models.

Whereas Opoint-to-pointO and "publish-subscribe" define the two options for how many consumers
ultimately receive each message, there is another important consideration: Should the channel
buffer messages? In Spring Integration, pollable channels are capable of buffering Messages within

a queue. The advantage of buffering is that it allows for throttling the inbound messages and
thereby prevents overloading a consumer. However, as the name suggests, this also adds some
complexity, since a consumer can only receive the messages from such a channel if a poller is
configured. On the other hand, a consumer connected to a subscribable channel is simply message-
driven. Message Channel Implementations has a detailed discussion of the variety of channel
implementations available in Spring Integration.

5.3.3. Message Endpoint

One of the primary goals of Spring Integration is to simplify the development of enterprise
integration solutions through inversion of control. This means that you should not have to
implement consumers and producers directly, and you should not even have to build messages and
invoke send or receive operations on a message channel. Instead, you should be able to focus on
your specific domain model with an implementation based on plain objects. Then, by providing
declarative configuration, you can OconnectO your domain-specific code to the messaging
infrastructure provided by Spring Integration. The components responsible for these connections

12

./channel.pdf#channel-implementations

are message endpoints. This does not mean that you should necessarily connect your existing
application code directly. Any real-world enterprise integration solution requires some amount of
code focused upon integration concerns such as routing and transformation. The important thing is
to achieve separation of concerns between the integration logic and the business logic. In other
words, as with the Model-View-Controller (MVC) paradigm for web applications, the goal should be
to provide a thin but dedicated layer that translates inbound requests into service layer invocations
and then translates service layer return values into outbound replies. The next section provides an
overview of the message endpoint types that handle these responsibilities, and, in upcoming
chapters, you can see how Spring IntegrationOs declarative configuration options provide a non-
invasive way to use each of these.

5.4. Message Endpoints

A Message Endpoint represents the OfilterO of a pipes-and-filters architecture. As mentioned earlier,
the endpointOs primary role is to connect application code to the messaging framework and to do so

in a non-invasive manner. In other words, the application code should ideally have no awareness

of the message objects or the message channels. This is similar to the role of a controller in the MVC
paradigm. Just as a controller handles HTTP requests, the message endpoint handles messages. Just
as controllers are mapped to URL patterns, message endpoints are mapped to message channels.
The goal is the same in both cases: isolate application code from the infrastructure. These concepts
and all of the patterns that follow are discussed at length in the Enterprise Integration Patterns
book. Here, we provide only a high-level description of the main endpoint types supported by
Spring Integration and the roles associated with those types. The chapters that follow elaborate and
provide sample code as well as configuration examples.

5.4.1. Message Transformer

A message transformer is responsible for converting a messageOs content or structure and
returning the modified message. Probably the most common type of transformer is one that
converts the payload of the message from one format to another (such as from XML to
java.lang.String). Similarly, a transformer can add, remove, or modify the messageOs header
values.

5.4.2. Message Filter

A message filter determines whether a message should be passed to an output channel at all. This
simply requires a boolean test method that may check for a particular payload content type, a
property value, the presence of a header, or other conditions. If the message is accepted, it is sent to

the output channel. If not, it is dropped (or, for a more severe implementation, an Exception could
be thrown). Message filters are often used in conjunction with a publish-subscribe channel, where
multiple consumers may receive the same message and use the criteria of the filter to narrow down

the set of messages to be processed.

13

https://www.enterpriseintegrationpatterns.com/

Be careful not to confuse the generic use of OfilterO within the pipes-and-filters
architectural pattern with this specific endpoint type that selectively narrows
down the messages flowing between two channels. The pipes-and-filters concept of

a OfilterO matches more closely with Spring IntegrationOs message endpoint: any
component that can be connected to a message channel in order to send or receive

messages.

5.4.3. Message Router

A message router is responsible for deciding what channel or channels (if any) should receive the
message next. Typically, the decision is based upon the messageOs content or the metadata available
in the message headers. A message router is often used as a dynamic alternative to a statically
configured output channel on a service activator or other endpoint capable of sending reply
messages. Likewise, a message router provides a proactive alternative to the reactive message
filters used by multiple subscribers, as described earlier.

Channel A

Message

o ge Router

Channel B

Figure 3. Message Router

5.4.4. Splitter

A splitter is another type of message endpoint whose responsibility is to accept a message from its
input channel, split that message into multiple messages, and send each of those to its output
channel. This is typically used for dividing a OcompositeO payload object into a group of messages
containing the subdivided payloads.

5.4.5. Aggregator

Basically a mirror-image of the splitter, the aggregator is a type of message endpoint that receives
multiple messages and combines them into a single message. In fact, aggregators are often
downstream consumers in a pipeline that includes a splitter. Technically, the aggregator is more
complex than a splitter, because it is required to maintain state (the messages to be aggregated), to
decide when the complete group of messages is available, and to timeout if necessary. Furthermore,

in case of a timeout, the aggregator needs to know whether to send the partial results, discard

them, or send them to a separate channel. Spring Integration provides a CorrelationStrategy , a
ReleaseStrategy, and configurable settings for timeout, whether to send partial results upon
timeout, and a discard channel.

5.4.6. Service Activator

A Service Activator is a generic endpoint for connecting a service instance to the messaging system.
The input message channel must be configured, and, if the service method to be invoked is capable

14

of returning a value, an output message Channel may also be provided.

I The output channel is optional, since each message may also provide its own
. 'Return Address' header. This same rule applies for all consumer endpoints.

The service activator invokes an operation on some service object to process the request message,
extracting the request messageOs payload and converting (if the method does not expect a message-
typed parameter). Whenever the service objectOs method returns a value, that return value is
likewise converted to a reply message if necessary (if it is not already a message type). That reply
message is sent to the output channel. If no output channel has been configured, the reply is sent to
the channel specified in the messageOs Oreturn addressO, if available.

A request-reply service activator endpoint connects a target objectOs method to input and output
Message Channels.

handle(Message) M;"'F’m
- - e - - Message
Input Activator Dutputb" Handler
Message
Channel -

Output
Channel

Figure 4. Service Activator

As discussed earlier, in Message Channel, channels can be pollable or subscribable.
| In the preceding diagram, this is depicted by the OclockO symbol and the solid
arrow (poll) and the dotted arrow (subscribe).

5.4.7. Channel Adapter

A channel adapter is an endpoint that connects a message channel to some other system or
transport. Channel adapters may be either inbound or outbound. Typically, the channel adapter
does some mapping between the message and whatever object or resource is received from or sent
to the other system (file, HTTP Request, JIMS message, and others). Depending on the transport, the
channel adapter may also populate or extract message header values. Spring Integration provides a
number of channel adapters, which are described in upcoming chapters.

E Channel

Adapter

-
e — D

Message
Channel

Figure 5. An inbound channel adapter endpoint connects a source systemtoa MessageChannel

15

Message sources can be pollable (for example, POP3) or message-driven (for
example, IMAP Idle). In the preceding diagram, this is depicted by the OclockO
symbol and the solid arrow (poll) and the dotted arrow (message-driven).

Channel
ezt -
Message

Adapter
Channel

Figure 6. An outbound channel adapter endpoint connects a MessageChanndb a target system.

As discussed earlier in Message Channel, channels can be pollable or subscribable.
In the preceding diagram, this is depicted by the OclockO symbol and the solid
arrow (poll) and the dotted arrow (subscribe).

5.4.8. Endpoint Bean Names

Consuming endpoints (anything with an inputChannel) consist of two beans, the consumer and the
message handler. The consumer has a reference to the message handler and invokes it as messages
arrive.

Consider the following XML example:

<int:service-activator id = "someService' ... />

Given the preceding example, the bean names are as follows:

¥ Consumer: someService(the id)

¥ Handler: someService.handler

When using Enterprise Integration Pattern (EIP) annotations, the names depend on several factors.
Consider the following example of an annotated POJO:

public class SomeComponefit

(inputChannel = ...)
public String someMethad..) {

m m> mp [mp

—

16

Given the preceding example, the bean names are as follows:

¥ Consumer: someComponent.someMethod.serviceActivator

¥ Handler: someComponent.someMethod.serviceActivator.handler

Starting with version 5.0.4, you can modify these names by using the @Endpointldannotation, as the
following example shows:

@Component
public class SomeComponefit

E @Endpointld " someService')

E @ServiceActivator (inputChannel = ...)
E public String someMethad..) {

E

E }

}

Given the preceding example, the bean names are as follows:
¥ Consumer: someService
¥ Handler: someService.handler

The @Endpointldcreates names as created by the id attribute with XML configuration. Consider the
following example of an annotated bean:

@Configuration
public class SomeConfiguration {

@Bean
@ServiceActivator (inputChannel = ...)
public MessageHandlersomeHandlef) {

[T M > [Ty mp

Given the preceding example, the bean names are as follows:

¥ Consumer: someConfiguration.someHandler.serviceActivator

¥ Handler: someHandlethe @Beaname)

Starting with version 5.0.4, you can modify these names by using the @Endpointldannotation, as the

17

following example shows:

@Configuration
public class SomeConfiguration {

@Bed'tsomeService.handler™) !
@Endpointld " someService') "
@ServiceActivator (inputChannel = ...)
public MessageHandlersomeHandlef) {

T T mp My me mp

I Handler: someService.handler (the bean name)

Consumer: someService(the endpoint ID)

The @Endpointldannotation creates names as created by the id attribute with XML configuration, as
long as you use the convention of appending .handler to the @Beaname.

There is one special case where a third bean is created: For architectural reasons, if a
MessageHandler@Beardoes not define an AbstractReplyProducingMessageHandler the framework
wraps the provided bean in a ReplyProducingMessageHandlerWrappeilhis wrapper supports request
handler advice handling and emits the normal 'produced no reply' debug log messages. Its bean

name is the handler bean name plus .wrapper (when there is an @EndpointldN!otherwise, it is the
normal generated handler name).

Similarly Pollable Message Sources create two beans, a SourcePollingChannelAdapter (SPCA) and a
MessageSource

Consider the following XML configuration:

<int:inbound-channel-adapter id = "someAdaptet ... />

Given the preceding XML configuration, the bean names are as follows:

¥ SPCA:someAdapter(the id)

¥ Handler: someAdapter.source

Consider the following Java configuration of a POJO to define an @Endpointld

18

./polling-consumer.pdf#pollable-message-source

("someAdaptet)

¢channel = "channel3", poller = (fixedDelay = "5000'
)
public String pojoSource() {

E
}

Given the preceding Java configuration example, the bean names are as follows:

¥ SPCA:someAdapter

¥ Handler: someAdapter.source

Consider the following Java configuration of a bean to define an @EndpointID

(" someAdapter.source")
(" someAdaptet)

¢channel = "channel3", poller = (fixedDelay = "5000
))

public MessageSource?> source() {
return () ->{

h

=~ [T [T T

Given the preceding example, the bean names are as follows:

¥ SPCA:someAdapter

¥ Handler: someAdapter.source (as long as you use the convention of appending .source to the
@Beaname)

5.5. Configuration and ~ @Enablelntegration

Throughout this document, you can see references to XML namespace support for declaring
elements in a Spring Integration flow. This support is provided by a series of namespace parsers

that generate appropriate bean definitions to implement a particular component. For example,

many endpoints consist of a MessageHandlebean and a ConsumerEndpointFactoryBeatnto which the
handler and an input channel name are injected.

The first time a Spring Integration namespace element is encountered, the framework
automatically declares a number of beans (a task scheduler, an implicit channel creator, and
others) that are used to support the runtime environment.

19

Version 4.0 introduced the ~@Enablelntegration annotation, to allow the registration
of Spring Integration infrastructure beans (see the Javadoc). This annotation is
required when only Java configuration is used!N!for example with Spring Boot or
Spring Integration Messaging Annotation support and Spring Integration Java DSL
with no XML integration configuration.

The @Enablelntegration annotation is also useful when you have a parent context with no Spring
Integration components and two or more child contexts that use Spring Integration. It lets these
common components be declared once only, in the parent context.

The @Enablelntegration annotation registers many infrastructure components with the application
context. In particular, it:

¥ Registers some built-in beans, such as errorChannel and its LoggingHandler, taskScheduler for
pollers, jsonPath SpEL-function, and others.

¥ Adds several BeanFactoryPostProcessor instances to enhance the BeanFactory for global and
default integration environment.

¥ Adds several BeanPostProcessorinstances to enhance or convert and wrap particular beans for
integration purposes.

¥ Adds annotation processors to parse messaging annotations and registers components for them
with the application context.

The @IntegrationComponentScamannotation also permits classpath scanning. This annotation plays a

similar role as the standard Spring Framework @ComponentScamnotation, but it is restricted to
components and annotations that are specific to Spring Integration, which the standard Spring
Framework component scan mechanism cannot reach. For an example, see @MessagingGateway
Annotation .

The @EnablePublisher annotation registers a PublisherAnnotationBeanPostProcessor bean and
configures the default-publisher-channel for those @Publisher annotations that are provided
without a channel attribute. If more than one ~ @EnablePublisherannotation is found, they must all
have the same value for the default channel. See Annotation-driven Configuration with the
@Publisher Annotation for more information.

The @GlobalChannelinterceptor annotation has been introduced to mark Channelinterceptor beans
for global channel interception. This annotation is an analogue of the <int:channel-interceptor>
XML element (see Global Channel Interceptor Configuration). @GlobalChannelinterceptor
annotations can be placed at the class level (with a @Componestereotype annotation) or on ~ @Bean
methods within ~ @Configuration classes. In either case, the bean must implement Channellnterceptor .

Starting with version 5.1, global channel interceptors apply to dynamically registered
channels!N!such as beans that are initialized by using beanFactory.initializeBean() or through the
IntegrationFlowContext when using the Java DSL. Previously, interceptors were not applied when
beans were created after the application context was refreshed.

The @IntegrationConverter annotation marks Converter, GenericConverter, or ConverterFactory beans
as candidate converters for integrationConversionService . This annotation is an analogue of the
<int:converter> XML element (see Payload Type Conversion). You can place @IntegrationConverter

20

https://docs.spring.io/spring-integration/docs/latest-ga/api/org/springframework/integration/config/EnableIntegration.html
./gateway.pdf#messaging-gateway-annotation
./gateway.pdf#messaging-gateway-annotation
./gateway.pdf#messaging-gateway-annotation
./message-publishing.pdf#publisher-annotation
./message-publishing.pdf#publisher-annotation
./message-publishing.pdf#publisher-annotation
./channel.pdf#global-channel-configuration-interceptors
./endpoint.pdf#payload-type-conversion

annotations at the class level (with a ~ @Componestereotype annotation) or on ~ @Beamethods within
@cConfiguration classes.

SeeAnnotation Support for more information about messaging annotations.

5.6. Programming Considerations

You should use plain old java objects (POJOs) whenever possible and only expose the framework in
your code when absolutely necessary. See POJO Method invocation for more information.

If you do expose the framework to your classes, there are some considerations that need to be taken
into account, especially during application startup:

¥ If your component is ApplicationContextAware , you should generally not use the
ApplicationContext in the setApplicationContext() = method. Instead, store a reference and defer
such uses until later in the context lifecycle.

¥ If your component is an InitializingBean or uses @PostConstruct methods, do not send any
messages from these initialization methods. The application context is not yet initialized when
these methods are called, and sending such messages is likely to fail. If you need to send a
messages during startup, implement ApplicationListener and wait for the
ContextRefreshedEvent Alternatively, implement SmartLifecycle , put your bean in a late phase,
and send the messages from the start() method.

5.6.1. Considerations When Using Packaged (for example, Shaded) Jars

Spring Integration bootstraps certain features by using Spring FrameworkOs SpringFactories
mechanism to load several IntegrationConfigurationlnitializer classes. This includes the -core jar
as well as certain others, including -http and -jmx. The information for this process is stored in a
META-INF/spring.factories file in each jar.

Some developers prefer to repackage their application and all dependencies into a single jar by
using well known tools, such as the Apache Maven Shade Plugin .

By default, the shade plugin does not merge the spring.factories files when producing the shaded
jar.

In addition to spring.factories , other META-INFiles (spring.handlers and spring.schemas) are used
for XML configuration. These files also need to be merged.

Spring BootOs executable jar mechanism takes a different approach, in that it nests

n the jars, thus retaining each spring.factories file on the class path. So, with a
Spring Boot application, nothing more is needed if you use its default executable
jar format.

Even if you do not use Spring Boot, you can still use the tooling provided by Boot to enhance the
shade plugin by adding transformers for the above mentioned files.

You may wish to consult the current spring-boot-starter-parent pom to see the current settings that
boot uses. The following example shows how to configure the plugin:

21

./configuration.pdf#annotations
https://maven.apache.org/plugins/maven-shade-plugin/
https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-starters/spring-boot-starter-parent/pom.xml

Example 1. pom.xml

22

m M mp m> e o

<plugins>
<plugin>

<groupld>org.apache.maven.plugins </groupld>
<artifactld> maven-shade-plugin</artifactld>
<configuration>

<keepDependenciesWithProvidedScope>

true </keepDependenciesWithProvidedScope>

> > e [T e me > > e e e me T m» e e e e m

<createDependencyReducedPdnue </createDependencyReducedPom>

</configuration>
<dependencies>

<dependency>!
<groupld>org.springframework.boot </groupld>
<artifactld> spring-boot-maven-plugin </artifactld>
<version>${spring.boot.version} </version>
</dependency>

</dependencies>
<executions>

<execution>
<phasepackage</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers> "
<transformer
implementation =

"org.apache.maven.plugins.shade.resource.AppendingTransformer ">

T > mp mp

<resource>META-INF/spring.handlers </resource>
</transformer>
<transformer

implementation =

" org.springframework.boot.maven.PropertiesMergingResourceTransformer ">

T > mp [mp

<resource>META-INF/spring.factories </resource>
</transformer>
<transformer

implementation =

"org.apache.maven.plugins.shade.resource.AppendingTransformer ">

T T mp [Th

<resource>META-INF/spring.schemas/resource>
</transformer>
<transformer

implementation =

"org.apache.maven.plugins.shade.resource.ServicesResourceTransformer " />

T T mp Ty me mp

</transformers>
</configuration>
</execution>

</executions>
</plugin>

</plugins>

23

Specifically,

I Add the spring-boot-maven-plugin as a dependency.

Configure the transformers.

You can add a property for ${spring.boot.version} or use an explicit version.

5.7. Programming Tips and Tricks

This section documents some of the ways to get the most from Spring Integration.

5.7.1. XML Schemas

When using XML configuration, to avoid getting false schema validation errors, you should use a
OSpring-awareO IDE, such as the Spring Tool Suite (STS), Eclipse with the Spring IDE plugins, or
IntelliJ IDEA. These IDEs know how to resolve the correct XML schema from the classpath (by using
the META-INF/spring.schemasfile in the jars). When using STS or Eclipse with the plugin, you must
enable Spring Project Nature on the project.

The schemas hosted on the internet for certain legacy modules (those that existed in version 1.0)
are the 1.0 versions for compatibility reasons. If your IDE uses these schemas, you are likely to see
false errors.

Each of these online schemas has a warning similar to the following:

This schema is for the 1.0 version of Spring Integration Core. We cannot update it
to the current schema because that will break any applications using 1.0.3 or
lower. For subsequent versions, the unversioned schema is resolved from the
classpath and obtained from the jar. Please refer to github:

github.com/spring-projects/spring-integration/tree/master/spring-integration-core/
src/main/resources/org/springframework/integration/config

The affected modules are

¥ core (spring-integration.xsd)
¥ file

¥ http

¥ jms

¥ mail

¥ rmi

¥ security

¥ stream

¥ ws

24

https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config
https://github.com/spring-projects/spring-integration/tree/master/spring-integration-core/src/main/resources/org/springframework/integration/config

¥ xml

5.7.2. Finding Class Names for Java and DSL Configuration

With XML configuration and Spring Integration Namespace support, the XML parsers hide how
target beans are declared and wired together. For Java configuration, it is important to understand
the Framework API for target end-user applications.

The first-class citizens for EIP implementation are Message Channe| and Endpoint (see Main
Components , earlier in this chapter). Their implementations (contracts) are:

¥ org.springframework.messaging.Message: See Message;
¥ org.springframework.messaging.MessageChannel See Message Channels;

¥ org.springframework.integration.endpoint.AbstractEndpoint : SeePoller.

The first two are simple enough to understand how to implement, configure, and use. The last one
deserves more attention

The AbstractEndpoint is widely used throughout the Spring Framework for different component
implementations. Its main implementations are:

¥ EventDrivenConsumerused when we subscribe to a SubscribableChannel to listen for messages.

¥ PollingConsumer, used when we poll for messages froma PollableChannel .

When you use messaging annotations or the Java DSL, you need to worry about these components,
because the Framework automatically produces them with appropriate annotations and
BeanPostProcessor implementations. When building components manually, you should use the
ConsumerEndpointFactoryBean to help determine the target AbstractEndpoint ~ consumer
implementation to create, based on the provided inputChannel property.

On the other hand, the ConsumerEndpointFactoryBeaulelegates to an another first class citizen in the
Framework - org.springframework.messaging.MessageHandler. The goal of the implementation of this
interface is to handle the message consumed by the endpoint from the channel. All EIP components

in Spring Integration are MessageHandleimplementations (for example, AggregatingMessageHandler
MessageTransformingHandley AbstractMessageSplitter , and others). The target protocol outbound
adapters (FileWritingMessageHandler , HttpRequestExecutingMessageHandler
AbstractMqttMessageHandler, and others) are also MessageHandlerimplementations. When you
develop Spring Integration applications with Java configuration, you should look into the Spring
Integration module to find an appropriate MessageHandler implementation to use for the
@ServiceActivator configuration. For example, to send an XMPP message (see XMPP Support) you
should configure something like the following:

25

./message.pdf#message
./channel.pdf#channel
./polling-consumer.pdf#polling-consumer
./xmpp.pdf#xmpp

(inputChannel = "input ")
public MessageHandlersendChatMessageHandléXMPPConnectioxmppConnectioh {
E ChatMessageSendingMessageHandlbandler = new
ChatMessageSendingMessageHandlgmppConnectioh;

E DefaultXmppHeaderMappexmppHeaderMapper new DefaultXmppHeaderMappg):
E xmppHeaderMappesetRequestHeaderNames*") ;

E handler. setHeaderMappefxmppHeaderMapper

E return handler;

}

The MessageHandleimplementations represent the outbound and processing part of the message
flow.

The inbound message flow side has its own components, which are divided into polling and
listening behaviors. The listening (message-driven) components are simple and typically require
only one target class implementation to be ready to produce messages. Listening components can

be one-way MessageProducerSupport implementations, (such as
AbstractMqttMessageDrivenChannelAdapter and ImapldleChannelAdapter) or request-reply
MessagingGatewaySupport implementations (such as AmgplnboundGateway and

AbstractWebServicelnboundGateway

Polling inbound endpoints are for those protocols that do not provide a listener API or are not
intended for such a behavior, including any file based protocol (such as FTP), any data bases
(RDBMS or NoSQL), and others.

These inbound endpoints consist of two components: the poller configuration, to initiate the polling

task periodically, and a message source class to read data from the target protocol and produce a
message for the downstream integration flow. The first class for the poller configuration is a
SourcePollingChannelAdapter. It is one more AbstractEndpoint implementation, but especially for
polling to initiate an integration flow. Typically, with the messaging annotations or Java DSL, you
should not worry about this class. The Framework produces a bean for it, based on the
@InboundChannelAdapteronfiguration or a Java DSL builder spec.

Message source components are more important for the target application development, and they

all implement the MessageSource interface (for example, MongoDbMessageSourceand
AbstractTwitterMessageSource). With that in mind, our config for reading data from an RDBMS table

with JDBC could resemble the following:

26

¢tvalue = "fooChannel', poller = (fixedDelay ="5000"))
public MessageSource?> storedProc (DataSource dataSource) {

E return newJdbcPollingChannelAdapter (dataSource, "SELECT * FROM foo where
status=0 ");

}

You can find all the required inbound and outbound classes for the target protocols in the
particular Spring Integration module (in most cases, in the respective package). For example, the
spring-integration-websocket adapters are:

¥ o.s.i.websocket.inbound.WebSocketinboundChannelAdapter: Implements MessageProducerSupporto
listen for frames on the socket and produce message to the channel.

¥ o.s.i.websocket.outbound.WebSocketOutboundMessageHandler The one-way
AbstractMessageHandlerimplementation to convert incoming messages to the appropriate frame
and send over websocket.

If you are familiar with Spring Integration XML configuration, starting with version 4.3, we provide
information in the XSD element definitions about which target classes are used to declare beans for
the adapter or gateway, as the following example shows:

<xsd:element name"outbound-async-gateway'>

E <xsd:annotation>

E <xsd:documentation>

Configures a Consumer Endpoint for the
'o.s.i.amgp.outbound.AsyncAmqpOutboundGateway"

that will publish an AMQP Message to the provided Exchange and expect a reply
Message.

The sending thread returns immediately; the reply is sent asynchronously; uses
'‘AsyncRabbitTemplate.sendAndReceive()'.

E </xsd:documentation>

E </xsd:annotation>

5.8. POJO Method invocation

As discussed in Programming Considerations , we recommend using a POJO programming style, as
the following example shows:

public String myService(String payload) { ... }

27

In this case, the framework extracts a String payload, invokes your method, and wraps the result in

a message to send to the next component in the flow (the original headers are copied to the new
message). In fact, if you use XML configuration, you do not even need the @ServiceActivator
annotation, as the following paired examples show:

<int:service-activator ... ref ="myPoj6 method&" myService' />

public String myServiceg(String payload) { ... }

You can omit the methodattribute as long as there is no ambiguity in the public methods on the
class.

You can also obtain header information in your POJO methods, as the following example shows:

public String myServicg String payload, ¢'foo") String fooHeader)
{ ...}

You can also dereference properties on the message, as the following example shows:

public String myServicg ("' payload.foo ") String foo, ¢I'bar.baz")
String barbaz) { ... }

Because various POJO method invocations are available, versions prior to 5.0 used SpEL (Spring
Expression Language) to invoke the POJO methods. SpEL (even interpreted) is usually Ofast enoughO
for these operations, when compared to the actual work usually done in the methods. However,
starting with version 5.0, the
org.springframework.messaging.handler.invocation.InvocableHandlerMethod is used by default
whenever possible. This technique is usually faster to execute than interpreted SpEL and is
consistent with other Spring messaging projects. The InvocableHandlerMethod is similar to the
technique used to invoke controller methods in Spring MVC. There are certain methods that are still
always invoked when using SpEL. Examples include annotated parameters with dereferenced
properties, as discussed earlier. This is because SpEL has the capability to navigate a property path.

There may be some other corner cases that we have not considered that also do not work with
InvocableHandlerMethod instances. For this reason, we automatically fall back to using SpEL in those
cases.

If you wish, you can also set up your POJO method such that it always uses SpEL, with the

28

UseSpellnvoker annotation, as the following example shows:

@UseSpellnvokdrcompilerMode = "IMMEDIATIE
public void bar(String bar) { ... }

If the compilerMode property is omitted, the spring.expression.compiler.mode system property

determines the compiler mode. See

SpEL compilation for more information about compiled SpEL.

29

https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/core.html#expressions-spel-compilation

Core Messaging

This section covers all aspects of the core messaging API in Spring Integration. It covers messages,
message channels, and message endpoints. It also covers many of the enterprise integration
patterns, such as filter, router, transformer, service activator , splitter, and aggregator.

This section also contains material about system management, including the control bus and
message history support.

30

Chapter 6. Messaging Channels

6.1. Message Channels

While the Messageplays the crucial role of encapsulating data, it is the MessageChannedhat decouples
message producers from message consumers.

6.1.1. The MessageChannel Interface

Spring IntegrationOs top-level MessageChannéhterface is defined as follows:

public interface MessageChanne{

E boolean send Messagemessagg;
E boolean send Messagemessage long timeout);
}

When sending a message, the return value is true if the message is sent successfully. If the send call
times out or is interrupted, it returns false .

PollableChannel

Since message channels may or may not buffer messages (as discussed in the Spring Integration
Overview), two sub-interfaces define the buffering (pollable) and non-buffering (subscribable)
channel behavior. The following listing shows the definition of the PollableChannel interface:

public interface PollableChannel extends MessageChanne{

E Message?> receive ();
E Message?> receive (long timeout);
}

As with the send methods, when receiving a message, the return value is null in the case of a
timeout or interrupt.

SubscribableChannel

The SubscribableChannel base interface is implemented by channels that send messages directly to
their subscribed MessageHandlerinstances. Therefore, they do not provide receive methods for
polling. Instead, they define methods for managing those subscribers. The following listing shows
the definition of the SubscribableChannel interface:

31

./overview.pdf#overview
./overview.pdf#overview

public interface SubscribableChannel extends MessageChanne{

E boolean subscribe (MessageHandlerhandler);
E boolean unsubscribe (MessageHandlerhandler);
}

6.1.2. Message Channel Implementations

Spring Integration provides several different message channel implementations. The following
sections briefly describe each one.

PublishSubscribeChannel

The PublishSubscribeChannel implementation broadcasts any Messagesent to it to all of its
subscribed handlers. This is most often used for sending event messages, whose primary role is
notification (as opposed to document messages, which are generally intended to be processed by a

single handler). Note that the PublishSubscribeChannel is intended for sending only. Since it
broadcasts to its subscribers directly when its send(Message)method is invoked, consumers cannot

poll for messages (it does not implement PollableChannel and therefore has no receive() method).
Instead, any subscriber must itself be a MessageHandlerand the subscriberOs handleMessage(Message)
method is invoked in turn.

Prior to version 3.0, invoking the ~ sendmethod on a PublishSubscribeChannel that had no subscribers
returned false . When used in conjunction witha MessagingTemplatea MessageDeliveryException was
thrown. Starting with version 3.0, the behavior has changed such that a sendis always considered
successful if at least the minimum subscribers are present (and successfully handle the message).

This behavior can be modified by setting the minSubscribers property, which defaultsto 0.

If you use a TaskExecutor, only the presence of the correct number of subscribers is
used for this determination, because the actual handling of the message is
performed asynchronously.

QueueChannel

The QueueChannelimplementation wraps a queue. Unlike the PublishSubscribeChannel, the
QueueChannelhas point-to-point semantics. In other words, even if the channel has multiple
consumers, only one of them should receive any Messagesent to that channel. It provides a default
no-argument constructor (providing an essentially unbounded capacity of Integer.MAX_VALUEas
well as a constructor that accepts the queue capacity, as the following listing shows:

public QueueChannéint capacity)

32

A channel that has not reached its capacity limit stores messages in its internal queue, and the
send(Message<?>jnethod returns immediately, even if no receiver is ready to handle the message. If

the queue has reached capacity, the sender blocks until room is available in the queue.
Alternatively, if you use the send method that has an additional timeout parameter, the queue
blocks until either room is available or the timeout period elapses, whichever occurs first. Similarly,

a receive() call returns immediately if a message is available on the queue, but, if the queue is
empty, then a receive call may block until either a message is available or the timeout, if provided,
elapses. In either case, it is possible to force an immediate return regardless of the queueOs state by
passing a timeout value of 0. Note, however, that calls to the versions of send() and receive() with
no timeout parameter block indefinitely.

PriorityChannel

Whereas the QueueChannelenforces first-in-first-out (FIFO) ordering, the PriorityChannel is an
alternative implementation that allows for messages to be ordered within the channel based upon

a priority. By default, the priority is determined by the priority header within each message.
However, for custom priority determination logic, a comparator of type Comparator<Message<?xan
be provided to the PriorityChannel constructor.

RendezvousChannel

The RendezvousChannetnables a Odirect-handoffO scenario, wherein a sender blocks until another
party invokes the channelOs receive() method. The other party blocks until the sender sends the
message. Internally, this implementation is quite similar to the QueueChannelexcept that it uses a
SynchronousQueuéa zero-capacity implementation of BlockingQueug. This works well in situations
where the sender and receiver operate in different threads, but asynchronously dropping the
message in a queue is not appropriate. In other words, with a RendezvousChanngethe sender knows
that some receiver has accepted the message, whereas witha QueueChannethe message would have
been stored to the internal queue and potentially never received.

Keep in mind that all of these queue-based channels are storing messages in-
memory only by default. When persistence is required, you can either provide a
‘message-store’ attribute within the 'queue’ element to reference a persistent
MessageStoreimplementation or you can replace the local channel with one that is

I backed by a persistent broker, such as a JMS-backed channel or channel adapter.
The latter option lets you take advantage of any JMS providerOs implementation for
message persistence, as discussed in JMS Support. However, when buffering in a
gueue is not necessary, the simplest approach is to rely upon the DirectChannel,
discussed in the next section.

The RendezvousChanneis also useful for implementing request-reply operations. The sender can
Create a temporary, anonymous instance of RendezvousChannel which it then sets as the
'replyChannel' header when building a Message After sending that Message the sender can
immediately call receive (optionally providing a timeout value) in order to block while waiting for

a reply Message This is very similar to the implementation used internally by many of Spring
IntegrationOs request-reply components.

33

./jms.pdf#jms

DirectChannel

The DirectChannel has point-to-point semantics but otherwise is more similar to the
PublishSubscribeChannel than any of the queue-based channel implementations described earlier. It
implements the SubscribableChannel interface instead of the PollableChannel interface, so it
dispatches messages directly to a subscriber. As a point-to-point channel, however, it differs from

the PublishSubscribeChannel in that it sends each Messagdo a single subscribed MessageHandler

In addition to being the simplest point-to-point channel option, one of its most important features is

that it enables a single thread to perform the operations on Oboth sidesO of the channel. For
example, if a handler subscribes to a DirectChannel, then sending a Messagdo that channel triggers
invocation of that handlerOs handleMessage(Messagejnethod directly in the senderOs thread, before
the send() method invocation can return.

The key motivation for providing a channel implementation with this behavior is to support
transactions that must span across the channel while still benefiting from the abstraction and loose
coupling that the channel provides. If the send call is invoked within the scope of a transaction, the
outcome of the handlerOs invocation (for example, updating a database record) plays a role in
determining the ultimate result of that transaction (commit or rollback).

Since the DirectChannel is the simplest option and does not add any additional
overhead that would be required for scheduling and managing the threads of a
poller, it is the default channel type within Spring Integration. The general idea is

to define the channels for an application, consider which of those need to provide
buffering or to throttle input, and modify those to be queue-based
PollableChannels . Likewise, if a channel needs to broadcast messages, it should not
be a DirectChannel but rather a PublishSubscribeChannel. Later, we show how each
of these channels can be configured.

The DirectChannel internally delegates to a message dispatcher to invoke its subscribed message
handlers, and that dispatcher can have a load-balancing strategy exposed by load-balancer or load-
balancer-ref attributes (mutually exclusive). The load balancing strategy is used by the message
dispatcher to help determine how messages are distributed amongst message handlers when
multiple message handlers subscribe to the same channel. As a convenience, the load-balancer
attribute exposes an enumeration of values pointing to pre-existing implementations of
LoadBalancingStrategy . round-robin (load-balances across the handlers in rotation) and none (for the
cases where one wants to explicitly disable load balancing) are the only available values. Other
strategy implementations may be added in future versions. However, since version 3.0, you can
provide your own implementation of the LoadBalancingStrategy and inject it by using the load-
balancer-ref attribute, which should point to a bean that implements LoadBalancingStrategy, as the
following example shows:

A FixedSubscriberChannel is a SubscribableChannel that only supports a single MessageHandler
subscriber that cannot be unsubscribed. This is useful for high-throughput performance use-cases
when no other subscribers are involved and no channel interceptors are needed.

34

<int:channel id="IbRefChannel">
E <int:dispatcher load-balancer-ref ='Ib"/>
</int:channel>

<beanid="Ib" class ="foo.bar.SampleLoadBalancingStrategy "/>

Note that the load-balancer and load-balancer-ref attributes are mutually exclusive.

The load-balancing also works in conjunction with a boolean failover property. If the failover
value is true (the default), the dispatcher falls back to any subsequent handlers (as necessary) when
preceding handlers throw exceptions. The order is determined by an optional order value defined

on the handlers themselves or, if no such value exists, the order in which the handlers subscribed.

If a certain situation requires that the dispatcher always try to invoke the first handler and then fall

back in the same fixed order sequence every time an error occurs, no load-balancing strategy
should be provided. In other words, the dispatcher still supports the failover boolean property
even when no load-balancing is enabled. Without load-balancing, however, the invocation of
handlers always begins with the first, according to their order. For example, this approach works

well when there is a clear definition of primary, secondary, tertiary, and so on. When using the
namespace support, the order attribute on any endpoint determines the order.

Keep in mind that load-balancing and failover apply only when a channel has
more than one subscribed message handler. When using the namespace support,
this means that more than one endpoint shares the same channel reference
defined in the input-channel attribute.

Starting with version 5.2, when failover is true, a failure of the current handler together with the
failed message is logged under debugor info if configured respectively.

ExecutorChannel

The ExecutorChannelis a point-to-point channel that supports the same dispatcher configuration as
DirectChannel (load-balancing strategy and the failover boolean property). The key difference
between these two dispatching channel types is that the ExecutorChannel delegates to an instance of
TaskExecutor to perform the dispatch. This means that the send method typically does not block, but

it also means that the handler invocation may not occur in the senderOs thread. It therefore does not
support transactions that span the sender and receiving handler.

The sender can sometimes block. For example, when using a TaskExecutor with a
rejection policy that throttles the client (such as the
ThreadPoolExecutor.CallerRunsPolicy), the senderOs thread can execute the method

any time the thread pool is at its maximum capacity and the executorOs work
queue is full. Since that situation would only occur in a non-predictable way, you
should not rely upon it for transactions.

35

FluxMessageChannel

The FluxMessageChannelis an org.reactivestreams.Publisher implementation for "sinking" sent
messages into an internal reactor.core.publisher.Flux for on demand consumption by reactive
subscribers downstream. This channel implementation is neither a SubscribableChannel, nor a
PollableChannel, so only org.reactivestreams.Subscriber instances can be used to consume from
this channel honoring back-pressure nature of reactive streams. On the other hand, the
FluxMessageChannel implements a ReactiveStreamsSubscribableChannel with its
subscribeTo(Publisher<Message<?>>) contract allowing receiving events from reactive source
publishers, bridging a reactive stream into the integration flow. To achieve fully reactive behavior

for the whole integration flow, such a channel must be placed between all the endpoints in the flow.

SeeReactive Streams Support for more information about interaction with Reactive Streams.

Scoped Channel

Spring Integration 1.0 provided a ThreadLocalChannelimplementation, but that has been removed as
of 2.0. Now the more general way to handle the same requirement is to add a scope attribute to a
channel. The value of the attribute can be the name of a scope that is available within the context.

For example, in a web environment, certain scopes are available, and any custom scope
implementations can be registered with the context. The following example shows a thread-local
scope being applied to a channel, including the registration of the scope itself:

<int:channel id ="threadScopedChannél scope="thread">
E <intqueue />
</int:channel>

<bean class =" org.springframework.beans.factory.config.CustomScopeConfigurer ">
E <property name"scopes'>

E <map>

E <entry key="thread" value=
"org.springframework.context.support.SimpleThreadScope " />
E </map>

E </property>

</bean>

The channel defined in the previous example also delegates to a queue internally, but the channel is
bound to the current thread, so the contents of the queue are similarly bound. That way, the thread
that sends to the channel can later receive those same messages, but no other thread would be able
to access them. While thread-scoped channels are rarely needed, they can be useful in situations
where DirectChannel instances are being used to enforce a single thread of operation but any reply
messages should be sent to a OterminalO channel. If that terminal channel is thread-scoped, the
original sending thread can collect its replies from the terminal channel.

Now, since any channel can be scoped, you can define your own scopes in addition to thread-Local.

36

./reactive-streams.pdf#reactive-streams

6.1.3. Channel Interceptors

One of the advantages of a messaging architecture is the ability to provide common behavior and
capture meaningful information about the messages passing through the system in a non-invasive

way. Since the Messageinstances are sent to and received from MessageChanneinstances, those

channels provide an opportunity for intercepting the send and receive operations. The
Channelinterceptor strategy interface, shown in the following listing, provides methods for each of
those operations:

public interface Channelinterceptor {

»

Message?> preSend Message?> message MessageChannethannel);
E void postSend Message?> message MessageChannethannel, boolean sent);

E void afterSendCompletion(Message?> message MessageChannethannel, boolean
sent, Exception ex);

m»

boolean preReceive(MessageChannethannel);
E Message?> postReceive(Message?> message MessageChannethannel);

E void afterReceiveCompletion (Message?> message MessageChannethannel,
Exception ex);

}

After implementing the interface, registering the interceptor with a channel is just a matter of
making the following call:

channel. addinterceptor (someChannellinterceptor);

The methods that return a Messaganstance can be used for transforming the Messageor can return
‘null’ to prevent further processing (of course, any of the methods can throw a RuntimeException).

Also, the preReceive method can return false to prevent the receive operation from proceeding.

Keep in mind that receive() calls are only relevant for PollableChannels. In fact,
the SubscribableChannel interface does not even define a receive() method. The
reason for this is that when a Messageis sent to a SubscribableChannel, it is sent
directly to zero or more subscribers, depending on the type of channel (for
example, a PublishSubscribeChannel sends to all of its subscribers). Therefore, the

preReceive(E) , postReceive(E) , and afterReceiveCompletion(E) interceptor
methods are invoked only when the interceptor is applied to a PollableChannel .
Spring Integration also provides an implementation of the Wire Tap pattern. It is a simple

37

https://www.enterpriseintegrationpatterns.com/WireTap.html

interceptor that sends the Messageo another channel without otherwise altering the existing flow.
It can be very useful for debugging and monitoring. An example is shown in Wire Tap .

Because it is rarely necessary to implement all of the interceptor methods, the interface provides
no-op methods (methods returning void method have no code, the Messageeturning methods
return the Messageas-is, and the boolean method returns true).

The order of invocation for the interceptor methods depends on the type of
channel. As described earlier, the queue-based channels are the only ones where

the receive method is intercepted in the first place. Additionally, the relationship
between send and receive interception depends on the timing of the separate
sender and receiver threads. For example, if a receiver is already blocked while
waiting for a message, the order could be as follows: preSend preReceive,
postReceive, postSend However, if a receiver polls after the sender has placed a
message on the channel and has already returned, the order would be as follows:
preSend postSend (some-time-elapses), preReceive, postReceive. The time that
elapses in such a case depends on a number of factors and is therefore generally
unpredictable (in fact, the receive may never happen). The type of queue also
plays a role (for example, rendezvous versus priority). In short, you cannot rely on

the order beyond the fact that preSendprecedes postSendand preReceive precedes
postReceive.

Starting with Spring Framework 4.1 and Spring Integration 4.1, the Channelinterceptor provides
new methods: afterSendCompletion() and afterReceiveCompletion() . They are invoked after send()'
and 'receive() calls, regardless of any exception that is raised, which allow for resource cleanup.
Note that the channel invokes these methods on the Channelinterceptor list in the reverse order of
the initial preSend() and preReceive() calls.

Starting with version 5.1, global channel interceptors now apply to dynamically registered channels

- such as through beans that are initialized by using beanFactory.initializeBean() or
IntegrationFlowContext when using the Java DSL. Previously, interceptors were not applied when
beans were created after the application context was refreshed.

Also, starting with version 5.1, Channelinterceptor.postReceive() is no longer called when no
message is received; it is no longer necessary to check fora null Message<?>Previously, the method
was called. If you have an interceptor that relies on the previous behavior, implement
afterReceiveCompleted() instead, since that method is invoked, regardless of whether a message is
received or not.

Starting with version 5.2, the ChannelinterceptorAware is deprecated in favor of
InterceptableChannel from the Spring Messaging module, which it extends now for
backward compatibility.

6.1.4. MessagingTemplate

When the endpoints and their various configuration options are introduced, Spring Integration
provides a foundation for messaging components that enables non-invasive invocation of your
application code from the messaging system. However, it is sometimes necessary to invoke the

38

messaging system from your application code. For convenience when implementing such use cases,
Spring Integration provides a MessagingTemplatethat supports a variety of operations across the
message channels, including request and reply scenarios. For example, it is possible to send a
request and wait for a reply, as follows:

MessagingTemplatetemplate = new MessagingTemplaté) ;

Messagereply = template . sendAndReceivésomeChannel new GenericMessagg'test ")) ;

In the preceding example, a temporary anonymous channel would be created internally by the
template. The 'sendTimeout' and 'receiveTimeout' properties may also be set on the template, and
other exchange types are also supported. The following listing shows the signatures for such
methods:

public boolean send final MessageChannethannel, final Message?> message { ...

}

public Message?> sendAndReceivéfinal MessageChannethannel, final Message?>
request) { ...

}

public Message?> receive (final PollableChannel <?> channel) { ...

}

A less invasive approach that lets you invoke simple interfaces with payload or
header values instead of Message instances is described in Enter the
GatewayProxyFactoryBean

6.1.5. Configuring Message Channels

To create a message channel instance, you can use the <channel/> element, as follows:

<int:channel id ="exampleChannél/>

The equivalent Java configuration declares a DirectChannel @Bean

39

./gateway.pdf#gateway-proxy
./gateway.pdf#gateway-proxy

@Bean
public MessageChanneexampleChannd]) {
E return new DirectChannel();

}

The default channel type is point-to-point. To create a publish-subscribe channel, use the <publish-
subscribe-channel/> element, as follows:

<int:publish-subscribe-channel id =" exampleChannel/>

The Java configuration is:

@Bean
public MessageChanneéxampleChanndl) {
E return new PublishSubscribeChannel();

}

When you use the <channel/> element without any sub-elements, it creates a DirectChannel instance
(a SubscribableChannel).

However, you can alternatively provide a variety of <queue/> sub-elements to create any of the
pollable channel types (as described in Message Channel Implementations). The following sections
shows examples of each channel type.

DirectChannel Configuration

As mentioned earlier, DirectChannel is the default type. The following listing shows who to define
one:

<int:channel id ="directChannel "/>

In Java Configuration:

40

