Spring JavaConfig

Reference Documentation

version 1.0-m2

2007.05.08
Rod Johnson, Costin Leau

Copyright (c) 2005-2007 Interface21

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

2.4, @SCOPEAPTOXYuivteieeiiteeeeeaite e e e ettt e e ettt e e e st ee e e e e aab e e e e e e sttt e e e e abee e e e aasbe e e e e e nbe e e e e anner e e e e nnnreee s
s BEAN VISIDIHITY oo e e a e e e e raaaaeas

0N AW
5
=
Q
a
>
8
<

Spring JavaConfig version 1.0-m2

Chapter 1. Introduction

As mentioned in the |oC chapter [http://static.springframework.org/spring/docs/2.0.x/reference/beans.html], at
the core of Spring 10C is the bean concept which defines the way in which an object isinstantiated, assembled
and managed by the Spring container. XML isthe most popular way of describing beans configuration, though
Spring itself can read from virtually any type of metadata that can be translated into Java code. Annotations
[http://java.sun.com/j2se/1.5.0/docs/guide/l anguage/annotations.html], available in JIDK 5+, constitute such a
type as they alow source code components to provide additional metadata which can affect the runtime
semantics, making them a great configuration candidate.

Spring JavaConfig version 1.0-m2

http://static.springframework.org/spring/docs/2.0.x/reference/beans.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

Chapter 2. Components

Java Configuration uses annotations to leverage Java constructs allowing beans to be created and configured by
the developer without leaving the Javaworld. In short, the developer will instantiate and configure the beans
through Java code and then instruct the container to use them. Before moving forward, please note that the
Spring semantics remain the same no matter how the configuration takes place: Javaor XML.

Let'slook at the most important annotations on which JavaConfig relies:

2.1. @onfiguration

The @onfi gur at i on annotation indicates configuration classes:

@Configuration
public class WebConfiguration {
/1 bean definitions follow

}

@onfiguration isaclass (type) level annotation and indicates the defaults for the bean definitions definied by
the configuration:

@onfi guration(defaul t Autowire = Autowi re. BY_TYPE, defaultlazy = Lazy. FALSE)
public cl ass DataSourceConfiguration

extends ConfigurationSupport {
}

It can be considered the equivalent of <beans/> tag. It is advisable that classes with @onf i gur ati on annotation
extend the Conf i gur at i onSupport asit offers several utility methods.

2.2. @ean

Asthe name implies, @ean indicates a bean definition (the <bean/> tag). Let's start with a simple example:

@Bean (scope = Defaul t Scopes. SESSI ON)
publ i ¢ Exanpl eBean exanpl eBean() {
return new Exanpl eBean();

}

The code above instructed the Spring container to create a bean using the method name (as bean name) and
return value (for the actual bean instance). The bean has session
[http://static.springframework.org/spring/docs/2.0.x/ref erence/beans.html#beans-factory-scopes-session] scope,
which means the exanpl eBean() method will be called to create a new bean instance per HTTP session.

Since pure Javais used, there is no need to use:

- factory-method
[http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-cl ass-stati c-factory-method)]
when dealing with static methods:

@ean
publ i ¢ Exanpl eBean exanpl eBean() {
return Exanpl eFactory. creat eBean();

}

Spring JavaConfig version 1.0-m2 2

http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-scopes-session
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-class-static-factory-method

Components

or

- FactoryBean
[http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-extensi on-factorybean] /M ethodl nv
[http://static.springframework.org/spring/docs/2.0.x/api/index.html] for complex object creation:

@Bean(aliases = { "anniversaries" })

publ i c List<Date> birthdays() {
Li st <Dat e> dates = new Arrayli st <Dat e>();
Cal endar cal endar = Cal endar. get | nstance();

cal endar. set (1977, 05, 28);
dat es. add(cal endar. get Ti ne());
dat es. add(conput eMbt her | nLawBi rt hday()) ;

return dates;

@ean isamethod level annotation and indicates the Java code used for creating and configuring a bean
instance. The annotation supports most of the options offered by an XML bean definition such as autowiring
[http://static.springframework.org/spring/docs/2.0.x/ref erence/beans.html#beans-factory-autowire], lazy-init
[http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-lazy-init],
dependency-check

[http://static.springframework.org/spring/docs/2.0.x/ref erence/beans.html#beans-factory-dependencied],
depends-on

[http://static.springframework.org/spring/docs/2.0.x/ref erence/beans.html#beans-factory-dependson] and
scoping [http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-scopes]. Also,
the lifecycle [http://static.springframework.org/spring/docs/2.0.x/ref erence/beans.html#beans-factory-nature]
methods and * Aware interfaces are fully supported:

public class AwareBean i npl enents BeanFactoryAware {
private BeanFactory factory;

/| BeanFact oryAware setter
public void setBeanFactory(BeanFactory beanFactory) throws BeansException {
this.factory = beanFactory;

}

public void close(){
/! do cl ean-up
}
}

@Bean(destroyMet hodName = "cl ose", |lazy = Lazy. TRUE)
publ i c Awar eBean creat eBeanFact or yAwar eBean() {
return new Awar eBean();

}

Besides dest r oyMet hodNane, @ean annotation supports alsoi ni t Met hodName though its usage is discourage as
one aready has control over the object creation and thus can call the initializing method if needed.

2.3. @xt er nal Bean

@xt er nal Bean isasimple markup annotation used for injecting 'externa’ beans, defined in a parent application
context. Let'slook at example:

@Configuration
public abstract class External BeanConfiguration {

@Bean

Spring JavaConfig version 1.0-m2 3

http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-extension-factorybean
http://static.springframework.org/spring/docs/2.0.x/api/index.html
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-autowire
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-lazy-init
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-dependencies
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-dependson
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-scopes
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-nature

Components

public TestBean janmes() {
Test Bean j ames = new Test Bean();
/1 inject dependency from ann()
j ames. set Spouse(ann());
return janes;

}

// W1l be taken fromthe parent context
@&xt er nal Bean
public abstract TestBean ann();

When JavaConfig encounter @xt er nal Bean, it will override the owning method so that anytime the method is
being called, the parent application context will be looked for the bean under the method name (please see the
naming chapter for more details). Thisway, your configuration remains pure Java and refactoring friendly.

Note that @xt er nal Bean works on normal method also; the example above uses the abstract method to avoid
writing dummy code that doesn't execute:

@Configuration
public cl ass External BeanOnNor mal Met hod {

@Ext er nal Bean
public TestBean ann(){
Systemout.printin("this code will not execute as the nethod " +
"will be overriden with a bean | ook up at runtine");

2.4. @copedPr oxy

Spring offers a convenient way of working with scoped dependencies through scoped proxies
[http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-scopes-other-injection] (pl ease
see the link for an in-depth discussion on the matter). The easiest way to create such a proxy, when using the

XML configuration, isthe <aop: scoped- pr oxy/ > element. JavaConfig offers as alternative the @copedpPr oxy
annotation which provides the same semantic and configuration options.

The reference documentation XML scoped proxy example, looks like this under JavaConfig:

// a HTTP Sessi on-scoped bean exposed as a proxy

@ean(scope = Def aul t Scopes. SESSI ON)

@copedPr oxy

public UserPreferences userPreferences() {
return new User Preferences();

}

@ean
public Service userService() {
User Servi ce service = new Si npl eUser Servi ce();
/1l a reference to the proxied 'userPreferences' bean
servi ce. seUser Pref erences(user Preferences());
return service;

}

Spring JavaConfig version 1.0-m2 4

http://static.springframework.org/spring/docs/2.0.x/reference/beans.html#beans-factory-scopes-other-injection

Chapter 3. Bean Visibility

A nice JavaConfig feature is bean visibility. JavaConfig uses a method visibilty modifiers to determine if the
bean resulted from that method can be accessed through by owning application context / bean factory or not.

Consider the following configuration:

@Configuration
public abstract class VisibilityConfiguration {

@Bean

publi c Bean publicBean() {
Bean bean = new Bean();
bean. set Dependency(hi ddenBean());
return bean;

}

@ean
prot ect ed H ddenBean hi ddenBean() {
return new Bean("protected bean");

}
@Bean

private H ddenBean secretBean() {
Bean bean = new Bean("private bean");
/1 hidden beans can access beans defined in the 'owning context
bean. set Dependency(out si deBean());

}

@&xt er nal Bean
public abstract Bean outsi deBean()

used along side the following XML configuration (for more information on mixing configuration strategies see
this chapter) :

<beans>
<I-- the configuration above -->
<bean class="ny.java.config.VisibilityConfiguration"/>

<l-- Java Configuration post processor -->
<bean cl ass="org. spri ngframework. confi g.j ava. process. Confi gurati onPost Processor"/>

<bean i d="nmai nBean" cl ass="my. conpany. Bean">

<l-- this will work -->

<property nanme="dependency" ref="publicBean"/>

<l-- this will *not* work -->

<property nanme="anot her Dependency" ref="hi ddenBean"/>
</ bean>
</ beans>

One JavaConfig will encounter the configuration above, it will create 3 beans: publ i cBean, hi ddenBean and
secr et Bean. All of them can see each other however, beans created in the ‘'owning' application context (the
application context that bootstraps JavaConfig) will see only publ i cBean. Both hi ddenBean and secr et Bean
can be accessed only by beans created inside Vi si bi | i t yConfi gurati on.

Any @ean annotated method, which is not publ i ¢ (i.e. with prot ect ed, pri vat e and def aul t visibility), will
createa' hi dden' bean.

In the example above, mai nBean has been configured with both publ i cBean and hi ddenBean. However, since
the latter is (as the name imply) hidden, at runtime Spring will throw:

org. springframewor k. beans. fact ory. NoSuchBeanDef i ni ti onExcepti on: No bean naned ' hi ddenBean' is defined

Spring JavaConfig version 1.0-m2 5

Bean Visibility

To provide the visibility functionality, JavaConfig takes advantage of the application context hierarchy
[http://static.springframework.org/spring/docs/2.0.x/reference/beans.html] provided by the Spring container,
placing all hidden beans for a particular configuration class, inside a child application context Thus, the hidden
beans can access beans defined in the parent (or owning) context but not the other way around.

Spring JavaConfig version 1.0-m2 6

http://static.springframework.org/spring/docs/2.0.x/reference/beans.html

Chapter 4. Wire dependencies

To assemble a bean, one simply has to use the constructs provided by Java:

@ean(scope = Def aul t Scopes. SI NGLETON)
public Person rod() {
return new Person("Rod Johnson");

}

@Bean(scope = Def aul t Scopes. PROTOTYPE)

publ i c Book book() {
Book book = new Book("Expert One-on-One J2EE Desi gn and Devel opnent");
book. set Aut hor (rod()); // rod() nmethod is actually a bean reference !
return book;

}

In the example above, the book author is using the return value of rod method. However, since both book and
rod methods are marked with @ean, the resulting beans, managed by Spring, will respect the container
semantics: rod bean will be a singleton while book bean a prototype. When creating the configuration, Spring is
aware of the annotation context and will replaces the rod() method invocation with a reference to the bean
named 'rod".

The container will return a new Book instance (prototype) each time book bean is request but will return the
same instance (asingleton) for rod bean.

The code above is equivalent to:

<bean i d="rod" cl ass="Person" scope="singl eton">
<construct or - arg>Rod Johnson</ constructor-ar g>
</ bean>

<bean i d="book" cl ass="Book" scope="prototype">
<constructor-arg>Expert One-on- One J2EE Desi gn and Devel opnent </ construct or - ar g>
<property nanme="aut hor" ref="rod"/>

</ bean>

Note that while the examples above used two common scopes types, any type of scoping can be specified:

@Bean (scope = "custoner")

public Bag shopi ngBag() {
return new Basket ();

}

@ean (scope = "shift")
publ i c Manager shopManager () ({

}

Spring JavaConfig version 1.0-m2 7

Chapter 5. Naming strategy

In all the examples so far, the bean resulting from the method invocation, carried the method name:

@Configuration

public class Col oursConfiguration {
Il create a bean with nanme 'blue
@Bean
public Color blue() {

}

/! dependency | ookup for the blue col our
appl i cati onCont ext . get Bean("bl ue");

In some cases, this naming scheme is not suitable as methods with the same name, from different classes will
override each other definitions. To customize the behavior, one can implement BeanNani ngSt r at egy interface
to provide its own naming generation strategy.

However, before writing your own code, take alook at the options provided by the default implementation:
Met hodNameSt r at egy.

<l-- Java Configuration post processor -->
<bean cl ass="org. spri ngframework. confi g.java. process. Confi gur ati onPost Processor ">
<property nanme="nam ngStrategy">
<bean cl ass="org. spri ngframework. confi g.j ava. nam ng. Met hodNaneSt r at egy" >
<property name="prefix" val ue="CLASS"/>
</ bean>
</ property>
</ bean>

With this configuration, the bean creation method enclosing class will be appended to the name:

/!l dependency | ookup for the blue col our using the new naning scheme
appl i cati onCont ext . get Bean(" Col our sConfi gurati on. bl ue");

Spring JavaConfig version 1.0-m2

Chapter 6. Mixing XML and annotations

Javaand XML configuration are not exclusive - both can be used inside the same Spring application. In order
to retrieve a bean from an XML file, one has to use the Spring container. As mentioned, one can achieve this
with @External Bean annotation (the recommended way). For cases where thisis not suitable or desired, the
underlying beanFactory used for the @onf i gur ati on class can be access. Out of the box, this can be achieved

by extending configuration classes from Conf i gur ati onSupport or by implementing the BeanFact or yAwar e
interface.

Consider the following XML configuration:

<bean i d="nyBean" cl ass="M/Bean"/>

In order to refer to myBean bean when using Java, one can use the following snippets:

@Configuration
public class MyConfig extends Configurati onSupport {

@Bean
publ i ¢ Exanpl eBean anot her Bean() {
Exanpl eBean bean = new Exanpl eBean("anot her Bean");

bean. set Dep(get Bean("nyBean")); // use utility nmethod to get a hold of 'nyBean'
return bean;

@Configuration
public class MyQtherConfig inplenents BeanFact oryAware {
private BeanFactory beanFactory;

public void setBeanFactory(BeanFactory beanFactory) {
/'l get access to the owning bean factory
t hi s. beanFactory = beanFactory;

}

@Bean

publ i ¢ Exanpl eBean yet Anot her Bean() {
Exanpl eBean bean = new Exanpl eBean("yet Anot her Bean") ;
bean. set Dep(beanFact ory. get Bean("nyBean")); // use dependency | ookup
return bean;

Again, please consider twice before using Conf i gur at i onSupport and/or BeanFact or yAwar e 8S
@ext er nal Bean Offers the same capability in arefactoring friendly manner.

JavaConfig distribution contains a converted Petclinic sample that replaces some XML configuration parts,
with Java and Groovy [http://groovy.codehaus.org/] - please see the samples folder for more info.

Spring JavaConfig version 1.0-m2 9

http://groovy.codehaus.org/

Chapter 7. Using Java Configuration

To use annotations for configuring your application, one can use:

* Annot ati onAppl i cati onCont ext

which accepts a Ant-style pattern of class names which will scanned for annotations:

Appl i cati onCont ext oneConfig =

new Annot ati onAppl i cati onCont ext (Si npl eConfi gurati on. cl ass. get Nane());
Appl i cati onCont ext aBunchOf Configs =

new Annot at i onAppl i cati onCont ext ("**/confi guration/*Configuration.class");

This specialized application context will automatically read and add as beans the classpath classes matching

the given pattern. The downside of this approach is that no parameterization of the configuration instances
can be made.

* Configuration post processor

<beans>
<l-- Spring configuration -->
<bean cl ass="org. spri ngframewor k. sanpl es. petclinic.JdbcConfiguration"/>

<l-- Java Configuration post processor -->

<bean cl ass="org. spri ngframework. confi g.j ava. process. Confi gurati onPost Processor"/>
</ beans>

This second approach allows more configuration options ,as it gives control not just over the configuration
processing (through Conf i gur at i onPost Processor) but also over the configuration instance itself.

By defining the configuration as a bean, the Spring container can be used for configuring the configuration
(set properties or use a certain constructor):

<beans>

<l-- a possible configurable configuration -->

<bean cl ass="org. ny. conpany. confi g. AppConfi gurati on">
<property name="env" val ue="TESTI NG'/ >
<property name="nonitoring" value="true"/>

<property name="certificates" val ue="cl asspat h:/ META-| NF/ confi g/ MyConpany. certs"/>
</ bean>

<l-- Java Configuration post processor -->
<bean cl ass="org. spri ngfranmework. confi g.j ava. process. Confi gurati onPost Processor"/>

</ beans>

Spring JavaConfig version 1.0-m2 10

Chapter 8. Roadmap

The project is relatively young and can be considered in beta (hence, the milestone release). Future
development will be focused on automatic configuration discovery and simplifications.

Feedback, bugs and suggestions are welcomed at Spring forum [http://forum.springframework.org] and Spring
issue tracking [http://opensource.atl assian.com/projects/spring/].

Spring JavaConfig version 1.0-m2 11

http://forum.springframework.org
http://opensource.atlassian.com/projects/spring/
http://opensource.atlassian.com/projects/spring/

	Spring JavaConfig
	Chapter 1. Introduction
	Chapter 2. Components
	2.1. @Configuration
	2.2. @Bean
	2.3. @ExternalBean
	2.4. @ScopedProxy

	Chapter 3. Bean Visibility
	Chapter 4. Wire dependencies
	Chapter 5. Naming strategy
	Chapter 6. Mixing XML and annotations
	Chapter 7. Using Java Configuration
	Chapter 8. Roadmap

