Spring for Apache Kafka

Gary Russell, Artem Bilan, Biju Kunjummen, Jay Bryant

Version 2.2.15.RELEASE

Table of Contents

1. Preface
2. What’s new?
2.1. What’s New in 2.2 Since 2.1

2.1.1. Kafka Client Version

2.1.2. Class and Package Changes

2.1.3. After Rollback Processing

2.1.4. ConcurrentKafkalistenerContainerFactory Changes
2.1.5. Listener Container Changes

2.1.6. @KafkaListener Changes

2.1.7. Header Mapping Changes

2.1.8. Embedded Kafka Changes

2.1.9. JsonSerializer/Deserializer Enhancements
2.1.10. Kafka Streams Changes

2.1.11. Transactional ID

3. Introduction

3.1. Quick Tour for the Impatient

3.1.1. Compatibility

3.1.2. A Very, Very Quick Example
3.1.3. With Java Configuration

3.1.4. Even Quicker, with Spring Boot

4. Reference
4.1. Using Spring for Apache Kafka

4.1.1. Configuring Topics

4.1.2. Sending Messages
Using KafkaTemplate
Transactions
Using ReplyingKafkaTemplate

4.1.3. Receiving Messages
Message Listeners
Message Listener Containers
@Kafkalistener Annotation
Container Thread Naming
@KafkalListener as a Meta Annotation
@KafkalListener on a Class
@Kafkalistener Lifecycle Management
@Kafkalistener @Payload Validation
Rebalancing Listeners
Forwarding Listener Results using @SendTo

© OO O O O U U s s bR W W W W W W W N

B R W W W WN NN NN R R R R R R
A O © 001 N © U1 Wwow o 0w w NN DN o

Filtering Messages
Retrying Deliveries
Stateful Retry
Detecting Idle and Non-Responsive Consumers
Topic/Partition Initial Offset
Seeking to a Specific Offset
Container factory
Thread Safety
4.1.4. Pausing and Resuming Listener Containers
4.1.5. Events
4.1.6. Serialization, Deserialization, and Message Conversion
Mapping Types
Spring Messaging Message Conversion
Using ErrorHandlingDeserializer
Payload Conversion with Batch Listeners
ConversionService Customization
4.1.7. Message Headers
4.1.8. Null Payloads and Log Compaction of 'Tombstone' Records
4.1.9. Handling Exceptions
Listener Error Handlers
Container Error Handlers
Consumer-Aware Container Error Handlers
Seek To Current Container Error Handlers
Container Stopping Error Handlers
After-rollback Processor
Publishing Dead-letter Records
4.1.10. Kerberos

4.2. Kafka Streams Support

4.2.1. Basics

4.2.2. Spring Management

4.2.3. JSON Serialization and Deserialization
4.2.4. Using KafkaStreamBrancher

4.2.5. Configuration

4.2.6. Kafka Streams Example

4.3. Testing Applications

4.3.1. JUnit

4.3.2. Configuring Topics

4.3.3. Using the Same Brokers for Multiple Test Classes

4.3.4. @EmbeddedKafka Annotation

4.3.5. Embedded Broker in @SpringBootTest Annotations
JUnit4 Class Rule

48
49
49
50
52
52
54
35
35
58
39
61
62
63
65
67
67
71
72
72
74
75
75
77
77
78
79
80
80
81
82
83
83
84
85
86
88
89
90
93
94

@EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean 94

4.3.6. Hamcrest Matchers 95
4.3.7. Assert] Conditions 96
4.3.8. Example 97

5. Spring Integration 100
5.1. Spring Integration for Apache Kafka 100
5.1.1. Outbound Channel Adapter 100
5.1.2. Message-driven Channel Adapter 104
5.1.3. Outbound Gateway 108
5.1.4. Inbound Gateway 109
5.1.5. Message Conversion 111
5.1.6. Null Payloads and Log Compaction 'Tombstone' Records 112
5.1.7. What’s New in Spring Integration for Apache Kafka 112
2.1x 112

2.2.X 112

2.3X 112

3.0.x 113

3.1.x 113

6. Other Resources 114
Appendix A: Override Dependencies to use the 2.1.x kafka-clients with an Embedded Broker 115
Appendix B: Change History 118
B.1. Changes between 2.0 and 2.1 118
B.1.1. Kafka Client Version 118
B.1.2. JSON Improvements 118
B.1.3. Container Stopping Error Handlers 118
B.1.4. Pausing and Resuming Containers 118
B.1.5. Stateful Retry 118
B.1.6. Client ID 118
B.1.7. Logging Offset Commits 118
B.1.8. Default @KafkaHandler 119
B.1.9. ReplyingKafkaTemplate 119
B.1.10. ChainedKafkaTransactionManager 119
B.1.11. Migration Guide from 2.0 119

B.2. Changes Between 1.3 and 2.0 119
B.2.1. Spring Framework and Java Versions 119
B.2.2. @Kafkalistener Changes 119
B.2.3. Message Listeners 119
B.2.4. Using ConsumerAwareRebalanceListener 119

B.3. Changes Between 1.2 and 1.3 119
B.3.1. Support for Transactions 119

B.3.2. Support for Headers 120

B.3.3. Creating Topics

B.3.4. Support for Kafka Timestamps

B.3.5. @KafkalListener Changes

B.3.6. 0EmbeddedKafka Annotation

B.3.7. Kerberos Configuration
B.4. Changes between 1.1 and 1.2
B.5. Changes between 1.0 and 1.1

B.5.1. Kafka Client

B.5.2. Batch Listeners

B.5.3. Null Payloads

B.5.4. Initial Offset

B.5.5. Seek

120
120
120
120
120
120
120
120
121
121
121
121

2.2.15.RELEASE
© 2016 - 2019 by Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Chapter 1. Preface

The Spring for Apache Kafka project applies core Spring concepts to the development of Kafka-
based messaging solutions. We provide a “template” as a high-level abstraction for sending

messages. We also provide support for Message-driven POJOs.

Chapter 2. What’s new?

2.1. What’s New in 2.2 Since 2.1

This section covers the changes made from version 2.1 to version 2.2.

2.1.1. Kafka Client Version

This version requires the 2.0.0 kafka-clients or higher.

2.1.2. Class and Package Changes

The ContainerProperties class has been moved from org.springframework.kafka.listener.config to
org.springframework.kafka.listener.

The AckMode enum has been moved from AbstractMessagelListenerContainer to ContainerProperties.

The setBatchErrorHandler() and setErrorHandler() methods have been moved from
ContainerProperties to both AbstractMessagelistenerContainer and
AbstractKafkalistenerContainerFactory.

2.1.3. After Rollback Processing

A new AfterRollbackProcessor strategy is provided. See After-rollback Processor for more
information.

2.1.4. ConcurrentKafkalListenerContainerFactory Changes

You can now use the ConcurrentKafkalistenerContainerFactory to create and configure any
ConcurrentMessagelistenerContainer, not only those for @Kafkalistener annotations. See Container
factory for more information.

2.1.5. Listener Container Changes

A new container property (missingTopicsFatal) has been added. See Using
KafkaMessagelListenerContainer for more information.

A ConsumerStoppedEvent is now emitted when a consumer terminates. See Thread Safety for more
information.

Batch listeners can optionally receive the complete ConsumerRecords<?, 7> object instead of a
List<ConsumerRecord<?, 7>.See Batch listeners for more information.

The DefaultAfterRollbackProcessor and SeekToCurrentErrorHandler can now recover (skip) records
that keep failing, and, by default, does so after 10 failures. They can be configured to publish failed
records to a dead-letter topic.

Starting with version 2.2.4, the consumer’s group ID can be used while selecting the dead letter
topic name.

See After-rollback Processor, Seek To Current Container Error Handlers, and Publishing Dead-letter
Records for more information.

The ConsumerStoppingEvent has been added. See Events for more information.

The SeekToCurrentErrorHandler can now be configured to commit the offset of a recovered record
when the container is configured with AckMode.MANUAL_IMMEDIATE (since 2.2.4). See Seek To Current
Container Error Handlers for more information.

You can now suppress logging entire ConsumerRecord s in error, debug logs etc., by setting the
onlyLogRecordMetadata container property to true.

2.1.6. @KafkaListener Changes

You can now override the concurrency and autoStartup properties of the listener container factory
by setting properties on the annotation. You can now add configuration to determine which
headers (if any) are copied to a reply message. See @KafkalListener Annotation for more information.

You can now use @Kafkalistener as a meta-annotation on your own annotations. See @Kafkalistener
as a Meta Annotation for more information.

It is now easier to configure a Validator for @Payload validation. See @KafkalListener @Payload
Validation for more information.

You can now specify kafka consumer properties directly on the annotation; these will override any
properties with the same name defined in the consumer factory (since version 2.2.4). See
Annotation Properties for more information.

2.1.7. Header Mapping Changes

Headers of type MimeType and MediaType are now mapped as simple strings in the RecordHeader value.
Previously, they were mapped as JSON and only MimeType was decoded. MediaType could not be
decoded. They are now simple strings for interoperability.

Also, the DefaultKafkaHeaderMapper has a new addToStringClasses method, allowing the specification
of types that should be mapped by using toString() instead of JSON. See Message Headers for more
information.

2.1.8. Embedded Kafka Changes

The KafkaEmbedded class and its KafkaRule interface have been deprecated in favor of the
EmbeddedKafkaBroker and its JUnit 4 EmbeddedKafkaRule wrapper. The @EmbeddedKafka annotation now
populates an EmbeddedKafkaBroker bean instead of the deprecated KafkaEmbedded. This change allows
the use of @EmbeddedKafka in JUnit 5 tests. The @EmbeddedKafka annotation now has the attribute ports
to specify the port that populates the EmbeddedKafkaBroker. See Testing Applications for more
information.

2.1.9. JsonSerializer/Deserializer Enhancements

You can now provide type mapping information by using producer and consumer properties.

New constructors are available on the deserializer to allow overriding the type header information
with the supplied target type.

The JsonDeserializer now removes any type information headers by default.

You can now configure the JsonDeserializer to ignore type information headers by using a Kafka
property (since 2.2.3).

See Serialization, Deserialization, and Message Conversion for more information.

2.1.10. Kafka Streams Changes

The streams configuration bean must now be a KafkaStreamsConfiguration object instead of a
StreamsConfig object.

The StreamsBuilderFactoryBean has been moved from package --core to :*-config.

The KafkaStreamBrancher has been introduced for better end-user experience when conditional
branches are built on top of KStream instance.

See Kafka Streams Support and Configuration for more information.

2.1.11. Transactional ID

When a transaction is started by the listener container, the transactional.id is now the
transactionIdPrefix appended with <group.id>.<topic>.<partition>. This change allows proper
fencing of zombies, as described here.

https://www.confluent.io/blog/transactions-apache-kafka/

Chapter 3. Introduction

This first part of the reference documentation is a high-level overview of Spring for Apache Kafka
and the underlying concepts and some code snippets that can help you get up and running as
quickly as possible.

3.1. Quick Tour for the Impatient

This is the five-minute tour to get started with Spring Kafka.

Prerequisites: You must install and run Apache Kafka. Then you must grab the spring-kafka JAR
and all of its dependencies. The easiest way to do that is to declare a dependency in your build tool.
The following example shows how to do so with Maven:

<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>2.2.15.RELEASE</version>
</dependency>

The following example shows how to do so with Gradle:

compile 'org.springframework.kafka:spring-kafka:2.2.15.RELEASE'

3.1.1. Compatibility
This quick tour works with the following versions:

» Apache Kafka Clients 2.0.0
* Spring Framework 5.1.x
* Minimum Java version: 8
3.1.2. A Very, Very Quick Example

As the following example shows, you can use plain Java to send and receive a message:

@Test
public void testAutoCommit() throws Exception {
logger.info("Start auto");
ContainerProperties containerProps = new ContainerProperties("topicl”,
"topic2");
final CountDownLatch latch = new CountDownlLatch(4);
containerProps.setMessagelistener(new Messagelistener<Integer, String>() {

@0verride

public void onMessage(ConsumerRecord<Integer, String> message) {
logger.info("received: " + message);
latch.countDown();

3

KafkaMessagelistenerContainer<Integer, String> container =
createContainer(containerProps);

container.setBeanName("testAuto");

container.start();

Thread.sleep(1000); // wait a bit for the container to start

KafkaTemplate<Integer, String> template = createTemplate();

template.setDefaultTopic(topicl);

template.sendDefault(@, "foo");

template.sendDefault(2, "bar");

template.sendDefault(@, "baz");

template.sendDefault(2, "qux");

template.flush();

assertTrue(latch.await(60, TimeUnit.SECONDS));

container.stop();

logger.info("Stop auto");

private KafkaMessagelListenerContainer<Integer, String> createContainer(
ContainerProperties containerProps) {
Map<String, Object> props = consumerProps();
DefaultKafkaConsumerFactory<Integer, String> cf =
new DefaultKafkaConsumerFactory<Integer,
String>(props);
KafkaMessagelistenerContainer<Integer, String> container =
new KafkaMessagelListenerContainer<>(cf,
containerProps);
return container;

}

private KafkaTemplate<Integer, String> createTemplate() {
Map<String, Object> senderProps = senderProps();
ProducerFactory<Integer, String> pf =
new DefaultKafkaProducerFactory<Integer, String>(senderProps);
KafkaTemplate<Integer, String> template = new KafkaTemplate<>(pf);
return template;

}

private Map<String, Object> consumerProps() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG, group);
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true);
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "100");
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "15000");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
IntegerDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
StringDeserializer.class);
return props;

}

private Map<String, Object> senderProps() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.RETRIES_CONFIG, 0@);
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
IntegerSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
StringSerializer.class);
return props;

}

3.1.3. With Java Configuration

You can do the same work as appears in the previous example with Spring configuration in Java.
The following example shows how to do so:

@Autowired
private Listener listener;

@Autowired
private KafkaTemplate<Integer, String> template;

@Test
public void testSimple() throws Exception {
template.send("annotated1", @, "foo");
template.flush();
assertTrue(this.listener.latch1.await(10, TimeUnit.SECONDS));
}

@Configuration
@EnableKafka
public class Config {

@Bean
ConcurrentKafkalistenerContainerFactory<Integer, String>
kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
return factory;

}

@Bean
public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());

}

@Bean
public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,
embeddedKafka.getBrokersAsString());

return props;

}

@Bean
public Listener listener() {
return new Listener();

}

©@Bean
public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());

}

@Bean
public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
embeddedKafka.getBrokersAsString());

return props;

}

@Bean
public KafkaTemplate<Integer, String> kafkaTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory());

}

public class Listener {
private final CountDownlLatch latch1 = new CountDownLatch(1);
@KafkalListener(id = "foo", topics = "annotated1")
public void listen1(String foo) {

this.latch1.countDown();
}

3.1.4. Even Quicker, with Spring Boot

Spring Boot can make things even simpler. The following Spring Boot application sends three
messages to a topic, receives them, and stops:

10

@SpringBootApplication
public class Application implements CommandLineRunner {

public static Logger logger = LoggerFactory.getlLogger(Application.class);

public static void main(String[] args) {
SpringApplication.run(Application.class, args).close();
}

@Autowired
private KafkaTemplate<String, String> template;

private final CountDownlLatch latch = new CountDownlLatch(3);

@0verride

public void run(String... args) throws Exception {
this.template.send("myTopic", "fool1");
this.template.send("myTopic", "foo2");
this.template.send("myTopic", "foo3");
latch.await (60, TimeUnit.SECONDS);
logger.info("All received");

}

@Kafkalistener(topics = "myTopic")

public void listen(ConsumerRecord<?, ?> cr) throws Exception {
logger.info(cr.toString());
latch.countDown();

Boot takes care of most of the configuration. When we use a local broker, the only properties we
need are the following:

Example 1. application.properties

spring.kafka.consumer.group-id=foo
spring.kafka.consumer.auto-offset-reset=earliest

We need the first property because we are using group management to assign topic partitions to
consumers, so we need a group. The second property ensures the new consumer group gets the
messages we sent, because the container might start after the sends have completed.

11

Chapter 4. Reference

This part of the reference documentation details the various components that comprise Spring for
Apache Kafka. The main chapter covers the core classes to develop a Kafka application with Spring.

4.1. Using Spring for Apache Kafka

This section offers detailed explanations of the various concerns that impact using Spring for
Apache Kafka. For a quick but less detailed introduction, see Quick Tour for the Impatient.

4.1.1. Configuring Topics

If you define a KafkaAdmin bean in your application context, it can automatically add topics to the
broker. To do so, you can add a NewTopic @Bean for each topic to the application context. The
following example shows how to do so:

@Bean

public KafkaAdmin admin() {
Map<String, Object> configs = new HashMap<>();
configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG,

StringUtils.arrayToCommaDelimitedString(embeddedKafka().getBrokerAddresses()));
return new KafkaAdmin(configs);

}

@Bean
public NewTopic topicl() {

return new NewTopic("thing1", 10, (short) 2);
}

@Bean
public NewTopic topic2() {

return new NewTopic("thing2", 10, (short) 2);
}

By default, if the broker is not available, a message is logged, but the context continues to load. You
can programmatically invoke the admin’s initialize() method to try again later. If you wish this
condition to be considered fatal, set the admin’s fatalIfBrokerNotAvailable property to true. The
context then fails to initialize.

If the broker supports it (1.0.0 or higher), the admin increases the number of
partitions if it is found that an existing topic has fewer partitions than the

NewTopic.numPartitions.

For more advanced features, such as assigning partitions to replicas, you can use the Admin(Client
directly. The following example shows how to do so:

12

@Autowired
private KafkaAdmin admin;

AdminClient client = AdminClient.create(admin.getConfig());

client.close();

4.1.2. Sending Messages

This section covers how to send messages.

Using KafkaTemplate

This section covers how to use KafkaTemplate to send messages.

Overview

The KafkaTemplate wraps a producer and provides convenience methods to send data to Kafka
topics. The following listing shows the relevant methods from KafkaTemplate:

13

ListenableFuture<SendResult<K, V>> sendDefault(V data);
ListenableFuture<SendResult<K, V>> sendDefault(K key, V data);
ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, K key, V data);

ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, Long timestamp,
K key, V data);

ListenableFuture<SendResult<K, V>> send(String topic, V data);
ListenableFuture<SendResult<K, V>> send(String topic, K key, V data);

ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, K key, V
data);

ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, Long
timestamp, K key, V data);

ListenableFuture<SendResult<K, V>> send(ProducerRecord<K, V> record);
ListenableFuture<SendResult<K, V>> send(Message<?> message);
Map<MetricName, ? extends Metric> metrics();

List<PartitionInfo> partitionsFor(String topic);

<T> T execute(ProducerCallback<K, V, T> callback);

// Flush the producer.

void flush();

interface ProducerCallback<K, V, T> {

T doInKafka(Producer<K, V> producer);

See the Javadoc for more detail.
The sendDefault API requires that a default topic has been provided to the template.

The API takes in a timestamp as a parameter and stores this timestamp in the record. How the user-
provided timestamp is stored depends on the timestamp type configured on the Kafka topic. If the
topic is configured to use CREATE_TIME, the user specified timestamp is recorded (or generated if not
specified). If the topic is configured to use LOG_APPEND_TIME, the user-specified timestamp is ignored
and the broker adds in the local broker time.

14

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/core/KafkaTemplate.html

The metrics and partitionsFor methods delegate to the same methods on the underlying Producer.
The execute method provides direct access to the underlying Producer.

To use the template, you can configure a producer factory and provide it in the template’s
constructor. The following example shows how to do so:

@Bean
public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());

}

@Bean
public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
StringSerializer.class);
// See https://kafka.apache.org/documentation/#producerconfigs for more
properties
return props;

}

@Bean
public KafkaTemplate<Integer, String> kafkaTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory());

}

You can also configure the template by using standard <bean/> definitions.
Then, to use the template, you can invoke one of its methods.

When you use the methods with a Message<?> parameter, the topic, partition, and key information is
provided in a message header that includes the following items:

« KafkaHeaders.TOPIC

« KafkaHeaders.PARTITION_ID
« KafkaHeaders.MESSAGE_KEY
« KafkaHeaders.TIMESTAMP

The message payload is the data.

Optionally, you can configure the KafkaTemplate with a ProducerlListener to get an asynchronous
callback with the results of the send (success or failure) instead of waiting for the Future to
complete. The following listing shows the definition of the ProducerListener interface:

15

https://kafka.apache.org/0101/javadoc/org/apache/kafka/clients/producer/Producer.html
https://kafka.apache.org/0101/javadoc/org/apache/kafka/clients/producer/Producer.html

public interface ProducerListener<K, V> {

void onSuccess(String topic, Integer partition, K key, V value, RecordMetadata
recordMetadata);

void onError(String topic, Integer partition, K key, V value, Exception
exception);

boolean isInterestedInSuccess();

By default, the template is configured with a LoggingProducerListener, which logs errors and does
nothing when the send is successful.

onSuccess is called only if isInterestedInSuccess returns true.

For convenience, the abstract ProducerListenerAdapter is provided in case you want to implement
only one of the methods. It returns false for isInterestedInSuccess.

Notice that the send methods return a ListenableFuture<SendResult>. You can register a callback
with the listener to receive the result of the send asynchronously. The following example shows
how to do so:

ListenableFuture<SendResult<Integer, String>> future = template.send("something");
future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() {

@0verride
public void onSuccess(SendResult<Integer, String> result) {

}

@0verride
public void onFailure(Throwable ex) {

}
1

SendResult has two properties, a ProducerRecord and RecordMetadata. See the Kafka API
documentation for information about those objects.

The Throwable in onFailure can be cast to a KafkaProducerException; its producerRecord property
contains the failed record.

16

If you wish to block the sending thread to await the result, you can invoke the future’s get()
method. You may wish to invoke flush() before waiting or, for convenience, the template has a
constructor with an autoFlush parameter that causes the template to flush() on each send. Flushing
is only needed if you have set the linger.ms producer property and want to immediately send a
partial batch.

Examples
This section shows examples of sending messages to Kafka:

Example 2. Non Blocking (Async)

public void sendToKafka(final MyOutputData data) {
final ProducerRecord<String, String> record = createRecord(data);

ListenableFuture<SendResult<Integer, String>> future = template.send(record);
future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>()

@0verride
public void onSuccess(SendResult<Integer, String> result) {
handleSuccess(data);

}
@override
public void onFailure(Throwable ex) {

handleFailure(data, record, ex);

}
1

Blocking (Sync)

public void sendToKafka(final MyOutputData data) {
final ProducerRecord<String, String> record = createRecord(data);

try {
template.send(record).get(10, TimeUnit.SECONDS);
handleSuccess(data);

}

catch (ExecutionException e) {
handleFailure(data, record, e.getCause());

}

catch (TimeoutException | InterruptedException e) {
handleFailure(data, record, e);

}

17

Transactions

This section describes how Spring for Apache Kafka supports transactions.

Overview

The 0.11.0.0 client library added support for transactions. Spring for Apache Kafka adds support in
the following ways:

» KafkaTransactionManager: Used with normal Spring transaction support (@Transactional,
TransactionTemplate etc).

» Transactional KafkaMessagelListenerContainer

» Local transactions with KafkaTemplate

Transactions are enabled by providing the DefaultKafkaProducerFactory with a transactionIdPrefix.
In that case, instead of managing a single shared Producer, the factory maintains a cache of
transactional producers. When the user calls close() on a producer, it is returned to the cache for
reuse instead of actually being closed. The transactional.id property of each producer is
transactionIdPrefix + n, where n starts with @ and is incremented for each new producer, unless the
transaction is started by a listener container with a record-based listener. In that case, the
transactional.id is <transactionIdPrefix>.<group.id>.<topic>.<partition>. This is to properly
support fencing zombies, as described here. This new behavior was added in versions 1.3.7, 2.0.6,
2.1.10, and 2.2.0. If you wish to revert to the previous behavior, you can set the
producerPerConsumerPartition property on the DefaultKafkaProducerFactory to false.

O While transactions are supported with batch listeners, zombie fencing cannot be
supported because a batch may contain records from multiple topics or partitions.

Using KafkaTransactionManager

The KafkaTransactionManager is an implementation of Spring Framework’s
PlatformTransactionManager. It is provided with a reference to the producer factory in its
constructor. If you provide a custom producer factory, it must support transactions. See
ProducerFactory.transactionCapable().

You can use the KafkaTransactionManager with normal Spring transaction support (@Transactional,
TransactionTemplate, and others). If a transaction is active, any KafkaTemplate operations performed
within the scope of the transaction use the transaction’s Producer. The manager commits or rolls
back the transaction, depending on success or failure. You must configure the KafkaTemplate to use
the same ProducerFactory as the transaction manager.

Transactional Listener Container and Exactly Once Processing

You can provide a listener container with a KafkaAwareTransactionManager instance. When so
configured, the container starts a transaction before invoking the listener. Any KafkaTemplate
operations performed by the listener participate in the transaction. If the listener successfully
processes the record (or multiple records, when using a BatchMessagelListener), the container sends
the offsets to the transaction by using producer.sendOffsetsToTransaction()), before the transaction
manager commits the transaction. If the listener throws an exception, the transaction is rolled back

18

https://www.confluent.io/blog/transactions-apache-kafka/

and the consumer is repositioned so that the rolled-back record(s) can be retrieved on the next poll.
See After-rollback Processor for more information and for handling records that repeatedly fail.

Transaction Synchronization

If you need to synchronize a Kafka transaction with some other transaction, configure the listener
container with the appropriate transaction manager (one that supports synchronization, such as
the DataSourceTransactionManager). Any operations performed on a transactional KafkaTemplate from
the listener participate in a single transaction. The Kafka transaction is committed (or rolled back)
immediately after the controlling transaction. Before exiting the listener, you should invoke one of
the template’s sendOffsetsToTransaction methods (unless you use a
ChainedKafkaTransactionManager). For convenience, the listener container binds its consumer group
ID to the thread, so, generally, you can use the first method. The following listing shows the two
method signatures:

void sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets);

void sendOffsetsToTransaction(Map<TopicPartition, OffsetAndMetadata> offsets,
String consumerGroupId);

The following example shows how to use the first signature of the sendOffsetsToTransaction
method:

@Bean
KafkaMessagelistenerContainer container(ConsumerFactory<String, String> cf,
final KafkaTemplate template) {
ContainerProperties props = new ContainerProperties("foo");
props.setGroupId("group");
props.setTransactionManager(new SomeOtherTransactionManager());

props.setMessagelListener ((MessagelListener<String, String>) m -> {
template.send("foo", "bar");
template.send("baz", "qux");
template.sendOffsetsToTransaction(
Collections.singletonMap(new TopicPartition(m.topic(), m.partition()),
new OffsetAndMetadata(m.offset() + 1)));

};
return new KafkaMessagelistenerContainer<>(cf, props);
}
O The offset to be committed is one greater than the offset of the records processed
by the listener.

19

You should call this should only when you use transaction synchronization. When
a listener container is configured to use a KafkaTransactionManager, it takes care of
sending the offsets to the transaction.

Using ChainedKafkaTransactionManager

The ChainedKafkaTransactionManager was introduced in version 2.1.3. This is a subclass of
ChainedTransactionManager that can have exactly one KafkaTransactionManager. Since it is a
KafkaAwareTransactionManager, the container can send the offsets to the transaction in the same way
as when the container is configured with a simple KafkaTransactionManager. This provides another
mechanism for synchronizing transactions without having to send the offsets to the transaction in
the listener code. You should chain your transaction managers in the desired order and provide the
ChainedTransactionManager in the ContainerProperties.

KafkaTemplate Local Transactions

You can use the KafkaTemplate to execute a series of operations within a local transaction. The
following example shows how to do so:

boolean result = template.executeInTransaction(t -> {
t.sendDefault("thing1", "thing2");
t.sendDefault("cat", "hat");
return true;

b

The argument in the callback is the template itself (this). If the callback exits normally, the
transaction is committed. If an exception is thrown, the transaction is rolled back.

0 If there is a KafkaTransactionManager (or synchronized) transaction in process, it is
not used. Instead, a new "nested" transaction is used.
Using ReplyingKafkaTemplate

Version 2.1.3 introduced a subclass of KafkaTemplate to provide request/reply semantics. The class is
named ReplyingKafkaTemplate and has one method (in addition to those in the superclass). The
following listing shows the method’s signature:

RequestReplyFuture<K, V, R> sendAndReceive(ProducerRecord<K, V> record);

The result is a ListenableFuture that is asynchronously populated with the result (or an exception,
for a timeout). The result also has a sendFuture property, which is the result of calling
KafkaTemplate.send(). You can use this future to determine the result of the send operation.

The following Spring Boot application shows an example of how to use the feature:

20

@SpringBootApplication
public class KRequestingApplication {

public static void main(String[] args) {
SpringApplication.run(KRequestingApplication.class, args).close();
}

@Bean
public ApplicationRunner runner(ReplyingKafkaTemplate<String, String, String>
template) {
return args -> {
ProducerRecord<String, String> record = new
ProducerRecord<>("kRequests", "foo");
RequestReplyFuture<String, String, String> replyFuture =
template.sendAndReceive(record);
SendResult<String, String> sendResult =
replyFuture.getSendFuture().get();
System.out.println("Sent ok: " + sendResult.getRecordMetadata());
ConsumerRecord<String, String> consumerRecord = replyFuture.get();
System.out.println("Return value: " + consumerRecord.value());
b
}

@Bean

public ReplyingKafkaTemplate<String, String, String> replyingTemplate(
ProducerFactory<String, String> pf,
ConcurrentMessagelListenerContainer<Long, String> repliesContainer) {

return new ReplyingKafkaTemplate<>(pf, repliesContainer);

}

@Bean
public ConcurrentMessagelistenerContainer<String, String> repliesContainer(
ConcurrentKafkalistenerContainerFactory<String, String>
containerFactory) {

ConcurrentMessagelistenerContainer<String, String> repliesContainer =
containerFactory.createContainer("replies");

repliesContainer.getContainerProperties().setGroupId("repliesGroup");

repliesContainer.setAutoStartup(false);

return repliesContainer;

}

@Bean
public NewTopic kRequests() {
return new NewTopic("kRequests", 10, (short) 2);

}

@Bean

21

public NewTopic kReplies() {
return new NewTopic("kReplies", 10, (short) 2);

}

Note that we can use Boot’s auto-configured container factory to create the reply container.

The template sets a header called KafkaHeaders.CORRELATION_ID, which must be echoed back by the
server side.

In this case, the following eKafkalistener application responds:

@SpringBootApplication
public class KReplyingApplication {

public static void main(String[] args) {
SpringApplication.run(KReplyingApplication.class, args);
}

@KafkalListener(id="server", topics = "kRequests")

@SendTo // use default replyTo expression

public String listen(String in) {
System.out.println("Server received:
return in.toUpperCase();

+1n);
}

@Bean
public NewTopic kRequests() {
return new NewTopic("kRequests", 10, (short) 2);

}

@Bean // not required if Jackson is on the classpath
public MessagingMessageConverter simpleMapperConverter() {
MessagingMessageConverter messagingMessageConverter = new
MessagingMessageConverter();
messagingMessageConverter.setHeaderMapper (new SimpleKafkaHeaderMapper());
return messagingMessageConverter;

The @Kafkalistener infrastructure echoes the correlation ID and determines the reply topic.

See Forwarding Listener Results using @SendTo for more information about sending replies. The
template uses the default header KafKaHeaders.REPLY_TOPIC to indicate the topic to which the reply
goes.

22

Starting with version 2.2, the template tries to detect the reply topic or partition from the
configured reply container. If the container is configured to listen to a single topic or a single
TopicPartitionInitialOffset, it is used to set the reply headers. If the container is configured
otherwise, the user must set up the reply headers. In this case, an INFO log message is written
during initialization. The following example uses KafkaHeaders.REPLY_TOPIC:

record.headers().add(new RecordHeader (KafkaHeaders.REPLY TOPIC,
"kReplies".getBytes()));

When you configure with a single reply TopicPartitionInitialOffset, you can use the same reply
topic for multiple templates, as long as each instance listens on a different partition. When
configuring with a single reply topic, each instance must use a different group.id. In this case, all
instances receive each reply, but only the instance that sent the request finds the correlation ID.
This may be useful for auto-scaling, but with the overhead of additional network traffic and the
small cost of discarding each unwanted reply. When you use this setting, we recommend that you
set the template’s sharedReplyTopic to true, which reduces the logging level of unexpected replies to
DEBUG instead of the default ERROR.

If you have multiple client instances and you do not configure them as discussed
in the preceding paragraph, each instance needs a dedicated reply topic. An
alternative is to set the KafkaHeaders.REPLY_PARTITION and use a dedicated partition
o for each instance. The Header contains a four-byte int (big-endian). The server must
use this header to route the reply to the correct topic (eKafkalistener does this). In
this case, though, the reply container must not use Kafka’s group management
feature and must be configured to listen on a fixed partition (by using a
TopicPartitionInitialOffset in its ContainerProperties constructor).

The DefaultKafkaHeaderMapper requires Jackson to be on the classpath (for the

0 @KafkalListener). If it is not available, the message converter has no header mapper,
so you must configure a MessagingMessageConverter with a SimpleKafkaHeaderMapper,
as shown earlier.

4.1.3. Receiving Messages

You can receive messages by configuring a MessagelistenerContainer and providing a message
listener or by using the @Kafkalistener annotation.

Message Listeners

When you use a message listener container, you must provide a listener to receive data. There are
currently eight supported interfaces for message listeners. The following listing shows these
interfaces:

public interface Messagelistener<K, V> { @

23

24

void onMessage(ConsumerRecord<K, V> data);

}
public interface AcknowledgingMessagelistener<K, V> { @

void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment);

}

public interface ConsumerAwareMessagelistener<K, V> extends Messagelistener<K, V>

{®
void onMessage(ConsumerRecord<K, V> data, Consumer<?, 7> consumer);

}

public interface AcknowledgingConsumerAwareMessagelistener<K, V> extends
MessagelListener<K, V> { @

void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment,
Consumer<?, ?> consumer);

}
public interface BatchMessagelistener<K, V> { ®
void onMessage(List<ConsumerRecord<K, V>> data);
}
public interface BatchAcknowledgingMessagelistener<K, V> { ®

void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment
acknowledgment);

}

public interface BatchConsumerAwareMessagelistener<K, V> extends
BatchMessagelListener<K, V> { @

void onMessage(List<ConsumerRecord<K, V>> data, Consumer<?, ?> consumer);

}

public interface BatchAcknowledgingConsumerAwareMessagelistener<K, V> extends
BatchMessagelistener<K, V> {

void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment,
Consumer<?, ?> consumer);

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using auto-commit or one of the container-
managed commit methods.

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using one of the manual commit methods.

® Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using auto-commit or one of the container-
managed commit methods. Access to the Consumer object is provided.

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using one of the manual commit methods. Access to
the Consumer object is provided.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using auto-commit or one of the container-managed
commit methods. AckMode.RECORD is not supported when you use this interface, since the
listener is given the complete batch.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using one of the manual commit methods.

@ Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using auto-commit or one of the container-managed
commit methods. AckMode.RECORD is not supported when you use this interface, since the
listener is given the complete batch. Access to the Consumer object is provided.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using one of the manual commit methods. Access to the
Consumer object is provided.

o The Consumer object is not thread-safe. You must only invoke its methods on the
thread that calls the listener.

Message Listener Containers

Two MessagelistenerContainer implementations are provided:

o KafkaMessageListenerContainer

o ConcurrentMessagelistenerContainer

The KafkaMessagelListenerContainer receives all message from all topics or partitions on a single
thread. The ConcurrentMessagelListenerContainer delegates to one or more
KafkaMessagelListenerContainer instances to provide multi-threaded consumption.

Starting with version 2.1.7, you can add a RecordInterceptor to the listener container; it will be
invoked before calling the listener allowing inspection or modification of the record. If the
interceptor returns null, the listener is not called. The interceptor is not invoked when the listener

25

is a batch listener.

Using KafkalMessagelistenerContainer

The following constructors are available:

public KafkaMessagelListenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

public KafkaMessagelistenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties,
TopicPartitionInitialOffset... topicPartitions)

Each takes a ConsumerFactory and information about topics and partitions, as well as other
configuration in a ContainerProperties object. The second constructor is used by the
ConcurrentMessagelListenerContainer (described later) to distribute TopicPartitionInitialOffset
across the consumer instances. ContainerProperties has the following constructors:

public ContainerProperties(TopicPartitionInitialOffset... topicPartitions)
public ContainerProperties(String... topics)

public ContainerProperties(Pattern topicPattern)

The first constructor takes an array of TopicPartitionInitialOffset arguments to explicitly instruct
the container about which partitions to use (using the consumer assign() method) and with an
optional initial offset. A positive value is an absolute offset by default. A negative value is relative to
the current last offset within a partition by default. A constructor for TopicPartitionInitialOffset
that takes an additional boolean argument is provided. If this is true, the initial offsets (positive or
negative) are relative to the current position for this consumer. The offsets are applied when the
container is started. The second takes an array of topics, and Kafka allocates the partitions based on
the group.id property — distributing partitions across the group. The third uses a regex Pattern to
select the topics.

To assign a Messagelistener to a container, you can use the ContainerProps.setMessagelistener
method when creating the Container. The following example shows how to do so:

26

ContainerProperties containerProps = new ContainerProperties("topic1", "topic2");
containerProps.setMessagelistener(new Messagelistener<Integer, String>() {

});
DefaultKafkaConsumerFactory<Integer, String> cf =

new DefaultKafkaConsumerFactory<Integer,
String>(consumerProps());
KafkaMessagelistenerContainer<Integer, String> container =

new KafkaMessagelListenerContainer<>(cf, containerProps);
return container;

Refer to the Javadoc for ContainerProperties for more information about the various properties that
you can set.

Since version 2.1.1, a new property called logContainerConfig is available. When true and INFO
logging is enabled each listener container writes a log message summarizing its configuration
properties.

By default, logging of topic offset commits is performed at the DEBUG logging level. Starting with
version 2.1.2, a property in ContainerProperties called commitLoglevel lets you specify the log level
for these messages. For example, to change the log level to INFO, you can use
containerProperties.setCommitLoglevel(LogIfLevelEnabled.Level.INFO);.

Starting with version 2.2, a new container property called missingTopicsFatal has been added
(default: true). This prevents the container from starting if any of the configured topics are not
present on the broker. It does not apply if the container is configured to listen to a topic pattern
(regex). Previously, the container threads looped within the consumer.poll() method waiting for the
topic to appear while logging many messages. Aside from the logs, there was no indication that
there was a problem. To restore the previous behavior, you can set the property to false.

Using ConcurrentMessagelistenerContainer

The single constructor is similar to the first KafkalistenerContainer constructor. The following
listing shows the constructor’s signature:

public ConcurrentMessagelistenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

It also has a concurrency property. For example, container.setConcurrency(3) creates three
KafkaMessagelListenerContainer instances.

For the first constructor, Kafka distributes the partitions across the consumers using its group
management capabilities.

27

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/listener/ContainerProperties.html

When listening to multiple topics, the default partition distribution may not be
what you expect. For example, if you have three topics with five partitions each
and you want to use concurrency=15, you see only five active consumers, each
assigned one partition from each topic, with the other 10 consumers being idle.
This is because the default Kafka PartitionAssignor is the RangeAssignor (see its
Javadoc). For this scenario, you may want to consider using the RoundRobinAssignor
instead, which distributes the partitions across all of the consumers. Then, each
consumer is assigned one topic or partition. To change the PartitionAssignor, you
can set the partition.assignment.strategy consumer property

0 (ConsumerConfigs.PARTITION_ASSIGNMENT_STRATEGY_CONFIG) in the properties provided
to the DefaultKafkaConsumerFactory.

When using Spring Boot, you can assign set the strategy as follows:

spring.kafka.consumer.properties.partition.assignment.strategy=\
org.apache.kafka.clients.consumer.RoundRobinAssignor

For the second constructor, the ConcurrentMessagelistenerContainer distributes the TopicPartition
instances across the delegate KafkaMessageListenerContainer instances.

If, say, six TopicPartition instances are provided and the concurrency is 3; each container gets two
partitions. For five TopicPartition instances, two containers get two partitions, and the third gets
one. If the concurrency is greater than the number of TopicPartitions, the concurrency is adjusted
down such that each container gets one partition.

The client.id property (if set) is appended with -n where n is the consumer
instance that corresponds to the concurrency. This is required to provide unique
names for MBeans when JMX is enabled.

Starting with version 1.3, the MessagelistenerContainer provides access to the metrics of the
underlying KafkaConsumer. In the case of ConcurrentMessagelListenerContainer, the metrics() method
returns the metrics for all the target KafkaMessagelListenerContainer instances. The metrics are
grouped into the Map<MetricName, ? extends Metric> by the client-id provided for the underlying
KafkaConsumer.

Committing Offsets

Several options are provided for committing offsets. If the enable.auto.commit consumer property is
true, Kafka auto-commits the offsets according to its configuration. If it is false, the containers
support several AckMode settings (described in the next list).

The consumer poll() method returns one or more ConsumerRecords. The MessagelListener is called for
each record. The following lists describes the action taken by the container for each AckMode:

» RECORD: Commit the offset when the listener returns after processing the record.

* BATCH: Commit the offset when all the records returned by the pol1() have been processed.

28

* TIME: Commit the offset when all the records returned by the poll() have been processed, as
long as the ackTime since the last commit has been exceeded.

* COUNT: Commit the offset when all the records returned by the poll() have been processed, as
long as ackCount records have been received since the last commit.

o COUNT_TIME: Similar to TIME and COUNT, but the commit is performed if either condition is true.

* MANUAL: The message listener is responsible to acknowledge() the Acknowledgment. After that, the
same semantics as BATCH are applied.

o MANUAL_IMMEDIATE: Commit the offset immediately when the Acknowledgment.acknowledge()
method is called by the listener.

MANUAL, and MANUAL_IMMEDIATE require the listener to be an
AcknowledgingMessagelistener or a BatchAcknowledgingMessagelistener. See Message
Listeners.

Depending on the syncCommits container property, the commitSync() or commitAsync() method on the
consumer is used.

The Acknowledgment has the following method:

public interface Acknowledgment {

void acknowledge();

This method gives the listener control over when offsets are committed.

Listener Container Auto Startup

The listener containers implement SmartlLifecycle, and autoStartup is true by default. The
containers are started in a late phase (Integer.MAX-VALUE - 100). Other components that implement
SmartLifecycle, to handle data from listeners, should be started in an earlier phase. The - 100
leaves room for later phases to enable components to be auto-started after the containers.

@Kafkalistener Annotation

The @Kafkalistener annotation is used to designate a bean method as a listener for a listener
container. The bean is wrapped in a MessagingMessagelistenerAdapter configured with various
features, such as converters to convert the data, if necessary, to match the method parameters.

You can configure most attributes on the annotation with SpEL by using #{:-*} or property
placeholders (${::-}). See the Javadoc for more information.

29

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/annotation/KafkaListener.html

Record Listeners

The @Kafkalistener annotation provides a mechanism for simple POJO listeners. The following
example shows how to use it:

public class Listener {

@Kafkalistener(id = "foo", topics = "myTopic", clientIdPrefix = "myClientId")
public void listen(String data) {

}

This mechanism requires an @EnableKafka annotation on one of your @Configuration classes and a
listener container factory, which is used to configure the underlying
ConcurrentMessagelListenerContainer. By default, a bean with name kafkalistenerContainerFactory is
expected. The following example shows how to use ConcurrentMessagelListenerContainer:

30

@Configuration
@EnableKafka
public class KafkaConfig {

@Bean
KafkalListenerContainerFactory<ConcurrentMessagelistenerContainer<Integer,
String>>
kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setConcurrency(3);
factory.getContainerProperties().setPollTimeout(3000);
return factory;

@Bean
public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());

}

@Bean
public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
embeddedKafka.getBrokersAsString());

return props;

Notice that, to set container properties, you must use the getContainerProperties() method on the
factory. It is used as a template for the actual properties injected into the container.

Starting with version 2.1.1, you can now set the client.id property for consumers created by the
annotation. The clientIdPrefix is suffixed with -n, where n is an integer representing the container
number when using concurrency.

Starting with version 2.2, you can now override the container factory’s concurrency and autoStartup
properties by using properties on the annotation itself. The properties can be simple values,
property placeholders, or SpEL expressions. The following example shows how to do so:

31

@Kafkalistener(id = "myListener", topics = "myTopic",
autoStartup = "${listen.auto.start:true}", concurrency =

"${listen.concurrency:3}")

public void listen(String data) {

}

You can also configure POJO listeners with explicit topics and partitions (and, optionally, their
initial offsets). The following example shows how to do so:

@Kafkalistener(id = "thing2", topicPartitions =
{ @TopicPartition(topic = "topic1", partitions = { "0", "1" }),
@TopicPartition(topic = "topic2", partitions = "@",
partitionOffsets = @PartitionOffset(partition = "1", initialOffset =

"100"))
1))

public void listen(ConsumerRecord<?, ?> record) {

}

You can specify each partition in the partitions or partition0ffsets attribute but not both.

When using manual AckMode, you can also provide the listener with the Acknowledgment. The
following example also shows how to use a different container factory.

@Kafkalistener(id = "cat", topics = "myTopic",
containerFactory = "kafkaManualAckListenerContainerFactory")
public void listen(String data, Acknowledgment ack) {

ack.acknowledge();

Finally, metadata about the message is available from message headers. You can use the following
header names to retrieve the headers of the message:

« KafkaHeaders.OFFSET

o KafkaHeaders.RECEIVED MESSAGE_KEY
o KafkaHeaders.RECEIVED _TOPIC

o KafkaHeaders.RECEIVED PARTITION_ID
o KafkaHeaders.RECEIVED _TIMESTAMP

o KafkaHeaders.TIMESTAMP_TYPE

32

The following example shows how to use the headers:

@Kafkalistener(id = "qux", topicPattern = "myTopicl")

public void listen(@Payload String foo,
@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) Integer key,
@Header (KafkaHeaders.RECEIVED_PARTITION_ID) int partition,
@Header (KafkaHeaders.RECEIVED_TOPIC) String topic,
@Header (KafkaHeaders.RECEIVED_TIMESTAMP) long ts
) {

Batch listeners

Starting with version 1.1, you can configure @Kafkalistener methods to receive the entire batch of
consumer records received from the consumer poll. To configure the listener container factory to
create batch listeners, you can set the batchListener property. The following example shows how to
do so:

©Bean
public KafkalistenerContainerFactory<?> batchFactory() {
ConcurrentKafkalListenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setBatchListener(true); // <<<<<<LLLLLLLLLLLLLLLLLLK
return factory;

The following example shows how to receive a list of payloads:

@KafkalListener(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> list) {

}

The topic, partition, offset, and so on are available in headers that parallel the payloads. The
following example shows how to use the headers:

33

@Kafkalistener(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> list,
@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) List<Integer> keys,
@Header (KafkaHeaders.RECEIVED_PARTITION_ID) List<Integer> partitions,
@Header (KafkaHeaders.RECEIVED_TOPIC) List<String> topics,
@Header (KafkaHeaders.OFFSET) List<Long> offsets) {

Alternatively, you can receive a List of Message<?> objects with each offset and other details in each
message, but it must be the only parameter (aside from optional Acknowledgment, when using
manual commits, and/or Consumer<?, 7> parameters) defined on the method. The following example
shows how to do so:

@KafkalListener(id = "listMsg", topics = "myTopic", containerFactory =
"batchFactory")
public void listen14(List<Message<?>> list) {

}

@Kafkalistener(id = "listMsgAck", topics = "myTopic", containerFactory =
"batchFactory")
public void listen15(List<Message<?>> list, Acknowledgment ack) {

}

@KafkalListener(id = "listMsgAckConsumer", topics = "myTopic", containerFactory =
"batchFactory")

public void listen16(List<Message<?>> list, Acknowledgment ack, Consumer<?, 7>
consumer) {

}

No conversion is performed on the payloads in this case.

If the BatchMessagingMessageConverter is configured with a RecordMessageConverter, you can also add
a generic type to the Message parameter and the payloads are converted. See Payload Conversion
with Batch Listeners for more information.

You can also receive a list of ConsumerRecord<?, 7> objects, but it must be the only parameter (aside
from optional Acknowledgment, when using manual commits and Consumer<?, 7> parameters) defined
on the method. The following example shows how to do so:

34

@Kafkalistener(id = "listCRs", topics = "myTopic", containerFactory =
"batchFactory")
public void listen(List<ConsumerRecord<Integer, String>> list) {

}

@Kafkalistener(id = "listCRsAck", topics = "myTopic", containerFactory =
"batchFactory")
public void listen(List<ConsumerRecord<Integer, String>> list, Acknowledgment ack)

{

Starting with version 2.2, the listener can receive the complete ConsumerRecords<?, 7> object
returned by the poll() method, letting the listener access additional methods, such as partitions()
(which returns the TopicPartition instances in the list) and records(TopicPartition) (which gets
selective records). Again, this must be the only parameter (aside from optional Acknowledgment,
when using manual commits or Consumer<?, 7> parameters) on the method. The following example
shows how to do so:

@Kafkalistener(id = "pollResults", topics = "myTopic", containerFactory =
"batchFactory")
public void pollResults(ConsumerRecords<?, ?> records) {

}

If the container factory has a RecordFilterStrategy configured, it is ignored for
ConsumerRecords<?, 7> listeners, with a WARN log message emitted. Records can only
be filtered with a batch listener if the <List<?>> form of listener is used.

Annotation Properties

Starting with version 2.0, the id property (if present) is used as the Kafka consumer group.id
property, overriding the configured property in the consumer factory, if present. You can also set
groupId explicitly or set idIsGroup to false to restore the previous behavior of using the consumer
factory group.id.

You can use property placeholders or SpEL expressions within most annotation properties, as the
following example shows:

35

@Kafkalistener(topics = "${some.property}")

@Kafkalistener(topics = "#{someBean.someProperty}",
groupIld = "#{someBean.someProperty}.group")

Starting with version 2.1.2, the SpEL expressions support a special token: __Tistener. It is a pseudo
bean name that represents the current bean instance within which this annotation exists.

Consider the following example:

@Bean
public Listener listener1() {
return new Listener("topic1");

}

@Bean
public Listener listener2() {
return new Listener("topic2");

}

Given the beans in the previous example, we can then use the following:

public class Listener {
private final String topic;
public Listener(String topic) {

this.topic = topic;
}

@KafkalListener(topics = "#{__listener.topic}",
groupld = "#{__listener.topic}.group")
public void listen(...) {

}

public String getTopic() {
return this.topic;

}

36

If, in the unlikely event that you have an actual bean called __listener, you can change the
expression token byusing the beanRef attribute. The following example shows how to do so:

@Kafkalistener(beanRef = "__x", topics = "#{__x.topic}",

groupld = "#{__x.topic}.group")

Starting with version 2.2.4, you can specify Kafka consumer properties directly on the annotation,
these will override any properties with the same name configured in the consumer factory. You
cannot specify the group.id and client.id properties this way; they will be ignored; use the groupId
and clientIdPrefix annotation properties for those.

The properties are specified as individual strings with the normal Java Properties file format:
foo:bar, foo=bar, or foo bar.

@Kafkalistener(topics = "myTopic", groupId="group", properties= {
"max.poll.interval.ms:60000",
ConsumerConfig.MAX_POLL_RECORDS_CONFIG + "=100"

1))

Container Thread Naming

Listener containers currently use two task executors, one to invoke the consumer and another that
is used to invoke the listener when the kafka consumer property enable.auto.commit is false. You
can provide custom executors by setting the consumerExecutor and listenerExecutor properties of
the container’s ContainerProperties. When using pooled executors, be sure that enough threads are
available to handle the concurrency across all the containers in which they are used. When using
the ConcurrentMessagelistenerContainer, a thread from each is used for each consumer (
concurrency).

If you do not provide a consumer executor, a SimpleAsyncTaskExecutor is used. This executor creates
threads with names similar to <beanName>-C-1 (consumer thread). For the
ConcurrentMessagelListenerContainer, the <beanName> part of the thread name becomes <beanName>-m,
where m represents the consumer instance. n increments each time the container is started. So, with
a bean name of container, threads in this container will be named container-0-C-1, container-1-C-1
etc., after the container is started the first time; container-0-C-2, container-1-C-2 etc., after a stop
and subsequent start.

@Kafkalistener as a Meta Annotation

Starting with version 2.2, you can now use @Kafkalistener as a meta annotation. The following
example shows how to do so:

37

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Kafkalistener

public @interface MyThreeConsumersListener {

@AliasFor(annotation = Kafkalistener.class, attribute = "id")
String id();
@AliasFor(annotation = Kafkalistener.class, attribute = "topics")

String[] topics();

@AliasFor(annotation = Kafkalistener.class, attribute = "concurrency")
String concurrency() default "3";

You must alias at least one of topics, topicPattern, or topicPartitions (and, usually, id or groupId
unless you have specified a group.id in the consumer factory configuration). The following example
shows how to do so:

@MyThreeConsumersListener(id = "my.group", topics = "my.topic")
public void listen1(String in) {

}

@KafkalListener on a Class

When you use @KafkalListener at the class-level, you must specify @KafkaHandler at the method level.
When messages are delivered, the converted message payload type is used to determine which
method to call. The following example shows how to do so:

38

@Kafkalistener(id = "multi", topics = "myTopic")
static class MultilistenerBean {

@KafkaHandler
public void listen(String foo) {

}

@KafkaHandler
public void listen(Integer bar) {

}

@KafkaHandler (isDefault = true')
public void listenDefault(Object object) {

}

Starting with version 2.1.3, you can designate a @KafkaHandler method as the default method that is
invoked if there is no match on other methods. At most, one method can be so designated. When
using @KafkaHandler methods, the payload must have already been converted to the domain object
(so the match can be performed). Use a custom deserializer, the JsonDeserializer, or the
(String|Bytes)JsonMessageConverter with its TypePrecedence set to TYPE_ID. See Serialization,
Deserialization, and Message Conversion for more information.

@Kafkalistener Lifecycle Management

The listener containers created for @Kafkalistener annotations are not beans in the application
context. Instead, they are registered with an infrastructure bean of type
KafkalListenerEndpointRegistry. This bean is automatically declared by the framework and manages
the containers' lifecycles; it will auto-start any containers that have autoStartup set to true. All
containers created by all container factories must be in the same phase. See Listener Container Auto
Startup for more information. You can manage the lifecycle programmatically by using the registry.
Starting or stopping the registry will start or stop all the registered containers. Alternatively, you
can get a reference to an individual container by using its id attribute. You can set autoStartup on
the annotation, which overrides the default setting configured into the container factory. You can
get a reference to the bean from the application context, such as auto-wiring, to manage its
registered containers. The following examples show how to do so:

39

@KafkalListener(id = "myContainer", topics = "myTopic", autoStartup = "false")
public void listen(...) { ... }

@Autowired
private KafkalistenerEndpointRegistry registry;

this.registry.getListenerContainer("myContainer").start();

The registry only maintains the life cycle of containers it manages; containers declared as beans are
not managed by the registry and can be obtained from the application context. A collection of
managed containers can be obtained by calling the registry’s getListenerContainers() method.
Version 2.2.5 added a convenience method getAllListenerContainers(), which returns a collection
of all containers, including those managed by the registry and those declared as beans. The
collection returned will include any prototype beans that have been initialized, but it will not
initialize any lazy bean declarations.

@Kafkalistener @Payload Validation

Starting with version 2.2, it is now easier to add a Validator to validate @Kafkalistener @Payload
arguments. Previously, you had to configure a custom DefaultMessageHandlerMethodFactory and add
it to the registrar. Now, you can add the validator to the registrar itself. The following code shows
how to do so:

@Configuration
@EnableKafka
public class Config implements KafkalListenerConfigurer {

@0verride
public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)
{
registrar.setValidator(new MyValidator());
}
}
O When you use Spring Boot with the validation starter, a LocalValidatorFactoryBean

is auto-configured, as the following example shows:

40

@Configuration
@EnableKafka
public class Config implements KafkalListenerConfigurer {

@Autowired
private LocalValidatorFactoryBean validator;

@0verride
public void configureKafkalisteners(KafkalistenerEndpointRegistrar registrar)
{
registrar.setValidator(this.validator);
}
¥

The follwing examples show how to validate:

41

public static class Validated(Class {

@Max(10)
private int bar;

public int getBar() {
return this.bar;

}

public void setBar(int bar) {
this.bar = bar;

}

@Kafkalistener(id="validated", topics = "annotated35", errorHandler =
"validationErrorHandler",

containerFactory = "kafkalsonListenerContainerFactory")
public void validatedlListener(@Payload @Valid Validated(Class val) {

}

@Bean
public KafkalistenerErrorHandler validationErrorHandler() {
return (m, e) -> {

};

Rebalancing Listeners

ContainerProperties has a property called consumerRebalancelistener, which takes an
implementation of the Kafka client’s ConsumerRebalancelistener interface. If this property is not
provided, the container configures a logging listener that logs rebalance events at the INFO level.
The framework also adds a sub-interface ConsumerAwareRebalancelistener. The following listing
shows the ConsumerAwareRebalancelistener interface definition:

42

public interface ConsumerAwareRebalancelistener extends ConsumerRebalancelistener

{

void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions);

void onPartitionsRevokedAfterCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions);

void onPartitionsAssigned(Consumer<?, ?> consumer, Collection<TopicPartition>
partitions);

}

Notice that there are two callbacks when partitions are revoked. The first is called immediately. The
second is called after any pending offsets are committed. This is useful if you wish to maintain
offsets in some external repository, as the following example shows:

containerProperties.setConsumerRebalancelistener(new
ConsumerAwareRebalancelListener() {

@0verride
public void onPartitionsRevokedBeforeCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions) {
// acknowledge any pending Acknowledgments (if using manual acks)

}

@0verride
public void onPartitionsRevokedAfterCommit(Consumer<?, ?> consumer,
Collection<TopicPartition> partitions) {

/] ...
store(consumer.position(partition));
/] ...
}
@0verride
public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
/] ...
consumer.seek(partition, offsetTracker.getOffset() + 1);
/] ...
}

1

43

Forwarding Listener Results using @SendTo

Starting with version 2.0, if you also annotate a @KafkalListener with a @SendTo annotation and the
method invocation returns a result, the result is forwarded to the topic specified by the @SendTo.

The @SendTo value can have several forms:

@SendTo("someTopic") routes to the literal topic

@SendTo("#{someExpression}") routes to the topic determined by evaluating the expression once
during application context initialization.

@SendTo("!{someExpression}") routes to the topic determined by evaluating the expression at
runtime. The #root object for the evaluation has three properties:

o request: The inbound ConsumerRecord (or ConsumerRecords object for a batch listener))
o source: The org.springframework.messaging.Message<?> converted from the request.

o result: The method return result.

@SendTo (no properties): This is treated as !{source.headers['kafka_replyTopic']} (since version
2.1.3).

Starting with versions 2.1.11 and 2.2.1, property placeholders are resolved within @SendTo values.

The result of the expression evaluation must be a String that represents the topic name. The
following examples show the various ways to use @SendTo:

44

@Kafkalistener(topics = "annotated21")
@SendTo("!{request.value()}") // runtime SpEL
public String replyinglListener(String in) {

}

@Kafkalistener(topics = "${some.property:annotated22}")
@SendTo("#{myBean.replyTopic}") // config time SpEL
public Collection<String> replyingBatchListener(List<String> in) {

}

@Kafkalistener(topics = "annotated23", errorHandler = "replyErrorHandler")
@SendTo("annotated23reply") // static reply topic definition
public String replyinglListenerWithErrorHandler(String in) {

}

@Kafkalistener(topics = "annotated25")
@SendTo("annotated25reply1")
public class MultilListenerSendTo {

@KafkaHandler
public String foo(String in) {

}

@KafkaHandler

@SendTo("!{'annotated25reply2'}")

public String bar(@Payload(required = false) KafkaNull nul,
@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) int key) {

Starting with version 2.2, you can add a ReplyHeadersConfigurer to the listener container factory.
This is consulted to determine which headers you want to set in the reply message. The following
example shows how to add a ReplyHeadersConfigurer:

45

@Bean

public ConcurrentKafkalistenerContainerFactory<Integer, String>

kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =

new ConcurrentKafkalistenerContainerFactory<>();

factory.setConsumerFactory(cf());
factory.setReplyTemplate(template());
factory.setReplyHeadersConfigurer((k, v) -> k.equals("cat"));
return factory;

You can also add more headers if you wish. The following example shows how to do so:

@Bean

public ConcurrentKafkalistenerContainerFactory<Integer, String>

kafkalListenerContainerFactory() {
ConcurrentKafkalListenerContainerFactory<Integer, String> factory =

new ConcurrentKafkalistenerContainerFactory<>();

factory.setConsumerFactory(cf());
factory.setReplyTemplate(template());
factory.setReplyHeadersConfigurer(new ReplyHeadersConfigurer() {

@0verride
public boolean shouldCopy(String headerName, Object headerValue) {
return false;

}

@0verride
public Map<String, Object> additionalHeaders() {
return Collections.singletonMap("qux", "fiz");

}
1

return factory;

When you use @SendTo, you must configure the ConcurrentKafkalistenerContainerFactory with a
KafkaTemplate in its replyTemplate property to perform the send.

Unless you use request/reply semantics only the simple send(topic, value) method

is used, so you may wish to create a subclass to generate the partition or key. The
following example shows how to do so:

46

@Bean
public KafkaTemplate<String, String> myReplyingTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory()) {

@0verride
public ListenableFuture<SendResult<String, String>> send(String topic,
String data) {
return super.send(topic, partitionForData(data), keyForData(data),

data);

}
¥

}
If the listener method returns Message<?> or Collection<Message<?>>, the listener
method is responsible for setting up the message headers for the reply. For
example, when handling a request from a ReplyingKafkaTemplate, you might do the
following:

@Kafkalistener(id = "messageReturned", topics = "someTopic")
public Message<?> listen(String in,
o @Header (KafkaHeaders.REPLY_TOPIC) byte[] replyTo,
@Header (KafkaHeaders.CORRELATION_ID) byte[] correlation) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.TOPIC, replyTo)
.setHeader (KafkaHeaders.MESSAGE_KEY, 42)
.setHeader (KafkaHeaders.CORRELATION ID, correlation)
.setHeader ("someOtherHeader", "someValue")
.build();

When using request/reply semantics, the target partition can be requested by the sender.

47

You can annotate a @Kafkalistener method with @SendTo even if no result is
returned. This is to allow the configuration of an errorHandler that can forward
information about a failed message delivery to some topic. The following example
shows how to do so:

@Kafkalistener(id = "voidListenerWithReplyingErrorHandler", topics
= "someTopic",
errorHandler = "voidSendToErrorHandler")
@SendTo("failures")
public void voidlListenerWithReplyingErrorHandler(String in) {
ﬂ throw new RuntimeException("fail");

}

@Bean
public KafkalistenerErrorHandler voidSendToErrorHandler() {
return (m, e) -> {
return ... // some information about the failure and input
data

};

See Handling Exceptions for more information.

Filtering Messages

In certain scenarios, such as rebalancing, a message that has already been processed may be
redelivered. The framework cannot know whether such a message has been processed or not. That
is an application-level function. This is known as the Idempotent Receiver pattern and Spring
Integration provides an implementation of it.

The Spring for Apache Kafka project also provides some assistance by means of the
FilteringMessagelistenerAdapter class, which can wrap your Messagelistener. This class takes an
implementation of RecordFilterStrategy in which you implement the filter method to signal that a
message is a duplicate and should be discarded. This has an additional property called
ackDiscarded, which indicates whether the adapter should acknowledge the discarded record. It is
false by default.

When you use @Kafkalistener, set the RecordFilterStrategy (and optionally ackDiscarded) on the
container factory so that the listener is wrapped in the appropriate filtering adapter.

In addition, a FilteringBatchMessagelistenerAdapter is provided, for when you use a batch message
listener.

The FilteringBatchMessagelistenerAdapter is ignored if your @Kafkalistener

o receives a ConsumerRecords<?, 7> instead of List<ConsumerRecord<?, 7>>, because
ConsumerRecords is immutable.

48

https://www.enterpriseintegrationpatterns.com/patterns/messaging/IdempotentReceiver.html
https://docs.spring.io/spring-integration/reference/html/#idempotent-receiver

Retrying Deliveries

If your listener throws an exception, the default behavior is to invoke the ErrorHandler, if
configured, or logged otherwise.

ﬁ Two error handler interfaces (ErrorHandler and BatchErrorHandler) are provided.
You must configure the appropriate type to match the message listener.

To retry deliveries, a convenient listener adapter RetryingMessagelListenerAdapter is provided.

You can configure it with a RetryTemplate and Recovery(Callback<Void> - see the spring-retry project
for information about these components. If a recovery callback is not provided, the exception is
thrown to the container after retries are exhausted. In that case, the ErrorHandler is invoked, if
configured, or logged otherwise.

When you use @Kafkalistener, you can set the RetryTemplate (and optionally recoveryCallback) on
the container factory. When you do so, the listener is wrapped in the appropriate retrying adapter.

The contents of the RetryContext passed into the RecoveryCallback depend on the type of listener.
The context always has a record attribute, which is the record for which the failure occurred. If
your listener is acknowledging or consumer aware, additional acknowledgment or consumer attributes
are available. For convenience, the RetryingMessagelistenerAdapter provides static constants for
these keys. See its Javadoc for more information.

A retry adapter is not provided for any of the batch message listeners, because the framework has
no knowledge of where in a batch the failure occurred. If you need retry capabilities when you use
a batch listener, we recommend that you use a RetryTemplate within the listener itself.

Stateful Retry

You should understand that the retry discussed in the preceding section suspends the consumer
thread (if a BackOffPolicy is used). There are no calls to Consumer.poll() during the retries. Kafka
has two properties to determine consumer health. The session.timeout.ms is used to determine if
the consumer is active. Since version 0.10.1.0, heartbeats are sent on a background thread, so a
slow consumer no longer affects that. max.poll.interval.ms (default: five minutes) is used to
determine if a consumer appears to be hung (taking too long to process records from the last poll).
If the time between poll() calls exceeds this, the broker revokes the assigned partitions and
performs a rebalance. For lengthy retry sequences, with back off, this can easily happen.

Since version 2.1.3, you can avoid this problem by using stateful retry in conjunction with a
SeekToCurrentErrorHandler. In this case, each delivery attempt throws the exception back to the
container, the error handler re-seeks the unprocessed offsets, and the same message is redelivered
by the next poll(). This avoids the problem of exceeding the max.poll.interval.ms property (as long
as an individual delay between attempts does not exceed it). So, when you use an
ExponentialBackOffPolicy, you must ensure that the maxInterval 1is less than the
max.poll.interval.ms property. To enable stateful retryy, you can use the
RetryingMessagelistenerAdapter constructor that takes a stateful boolean argument (set it to true).
When you configure the listener container factory (for @Kafkalistener), set the factory’s
statefulRetry property to true.

49

https://github.com/spring-projects/spring-retry
https://docs.spring.io/spring-kafka/api/org/springframework/kafka/listener/adapter/AbstractRetryingMessageListenerAdapter.html

Detecting Idle and Non-Responsive Consumers

While efficient, one problem with asynchronous consumers is detecting when they are idle. You
might want to take some action if no messages arrive for some period of time.

You can configure the listener container to publish a ListenerContainerIdleEvent when some time
passes with no message delivery. While the container is idle, an event is published every
idleEventInterval milliseconds.

To configure this feature, set the idleEventInterval on the container. The following example shows
how to do so:

@Bean
public KafkaMessagelistenerContainer(ConsumerFactory<String, String>
consumerFactory) {

ContainerProperties containerProps = new ContainerProperties("topicl",
"topic2");

containerProps.setIdleEventInterval(60000L);

KafkaMessagelistenerContainer<String, String> container = new
KafKaMessagelListenerContainer<>(...);
return container;

}

The following example shows how to set the idleEventInterval for a @Kafkalistener:

@Bean
public ConcurrentKafkalistenerContainerFactory kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<String, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.getContainerProperties().setIdleEventInterval(60000L);

return factory;

In each of these cases, an event is published once per minute while the container is idle.

In addition, if the broker is unreachable, the consumer pol1() method does not exit, so no messages
are received and idle events cannot be generated. To solve this issue, the container publishes a
NonResponsiveConsumerEvent if a poll does not return within 3x the pollTimeout property. By default,
this check is performed once every 30 seconds in each container. You can modify this behavior by
setting the monitorInterval (default 30 seconds) and noPollThreshold (default 3.0) properties in the
ContainerProperties when configuring the listener container. The noPol1Threshold should be greater

50

than 1.0 to avoid getting spurious events due to a race condition. Receiving such an event lets you
stop the containers, thus waking the consumer so that it can terminate.

Event Consumption

You can capture these events by implementing ApplicationlListener —either a general listener or
one narrowed to only receive this specific event. You can also use @EventListener, introduced in
Spring Framework 4.2.

The next example combines @Kafkalistener and @EventListener into a single class. You should
understand that the application listener gets events for all containers, so you may need to check the
listener ID if you want to take specific action based on which container is idle. You can also use the
@EventListener condition for this purpose.

See Events for information about event properties.

The event is normally published on the consumer thread, so it is safe to interact with the Consumer
object.

The following example uses both @KafkalListener and @EventListener:

public class Listener {

@KafkalListener(id = "qux", topics = "annotated")
public void listen4(@Payload String foo, Acknowledgment ack) {

}

@EventListener(condition = "event.listenerId.startsWith('qux-")")
public void eventHandler(ListenerContainerIdleEvent event) {

Event listeners see events for all containers. Consequently, in the preceding
example, we narrow the events received based on the listener ID. Since containers

o created for the @Kafkalistener support concurrency, the actual containers are
named id-n where the n is a unique value for each instance to support the
concurrency. That is why we use startsWith in the condition.

If you wish to use the idle event to stop the lister container, you should not call
container.stop() on the thread that calls the listener. Doing so causes delays and
‘ unnecessary log messages. Instead, you should hand off the event to a different
thread that can then stop the container. Also, you should not stop() the container
instance if it is a child container. You should stop the concurrent container instead.

51

Current Positions when Idle

Note that you can obtain the current positions when idle is detected by implementing
ConsumerSeekAware in your listener. See onIdleContainer() in “Seeking to a Specific Offset.

Topic/Partition Initial Offset

There are several ways to set the initial offset for a partition.

When manually assigning partitions, you can set the initial offset (if desired) in the configured
TopicPartitionInitialOffset arguments (see Message Listener Containers). You can also seek to a
specific offset at any time.

When you use group management where the broker assigns partitions:

» For a new group.id, the initial offset is determined by the auto.offset.reset consumer property
(earliest or latest).

» For an existing group ID, the initial offset is the current offset for that group ID. You can,
however, seek to a specific offset during initialization (or at any time thereafter).

Seeking to a Specific Offset

In order to seek, your listener must implement ConsumerSeekAware, which has the following
methods:

void registerSeekCallback(ConsumerSeekCallback callback);

void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback);

void onIdleContainer(Map<TopicPartition, Long> assignments, ConsumerSeekCallback
callback);

The first method is called when the container is started. You should use this callback when seeking
at some arbitrary time after initialization. You should save a reference to the callback. If you use
the same listener in multiple containers (or in a ConcurrentMessagelListenerContainer), you should
store the callback in a ThreadLocal or some other structure keyed by the listener Thread.

When using group management, the second method is called when assignments change. You can
use this method, for example, for setting initial offsets for the partitions, by calling the callback. You
must use the callback argument, not the one passed into registerSeekCallback. This method is never
called if you explicitly assign partitions yourself. Use the TopicPartitionInitialOffset in that case.

The callback has the following methods:

52

void seek(String topic, int partition, long offset);
void seekToBeginning(String topic, int partition);

void seekToEnd(String topic, int partition);

You can also perform seek operations from onIdleContainer() when an idle container is detected.
See Detecting Idle and Non-Responsive Consumers for how to enable idle container detection.

To arbitrarily seek at runtime, use the callback reference from the registerSeekCallback for the
appropriate thread.

Here is a trivial Spring Boot application that demonstrates how to use the callback; it sends 10
records to the topic; hitting <Enter> in the console causes all partitions to seek to the beginning.

@SpringBootApplication
public class SeekExampleApplication {

public static void main(String[] args) {

SpringApplication.run(SeekExampleApplication.class, args);
}

@Bean
public ApplicationRunner runner(Listener listener, KafkaTemplate<String,
String> template) {
return args -> {
IntStream.range(@, 10).forEach(i -> template.send(
new ProducerRecord<>("seekExample", i % 3, "foo", "bar")));
while (true) {
System.in.read();
listener.seekToStart();

b
}

@Bean
public NewTopic topic() {
return new NewTopic("seekExample", 3, (short) 1);

}
}

@Component
class Listener implements ConsumerSeekAware {

private static final Logger logger = LoggerFactory.getlLogger(Listener.class);

53

private final Map<TopicPartition, ConsumerSeekCallback> callbacks = new
ConcurrentHashMap<>();

private static final ThreadlLocal<ConsumerSeek(Callback> callbackForThread = new
ThreadlLocal<>();

@0verride

public void registerSeekCallback(ConsumerSeekCallback callback) {
callbackForThread.set(callback);

}

@0verride
public void onPartitionsAssigned(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {
assignments.keySet().forEach(tp -> this.callbacks.put(tp,
callbackForThread.get()));
}

@0verride

public void onIdleContainer(Map<TopicPartition, Long> assignments,
ConsumerSeekCallback callback) {

}

@KafkalListener(id = "seekExample", topics = "seekExample", concurrency = "3")

public void listen(ConsumerRecord<String, String> in) {
logger.info(in.toString());

}

public void seekToStart() {
this.callbacks.forEach((tp, callback) ->
callback.seekToBeginning(tp.topic(), tp.partition()));

}

Container factory

As discussed in @KafkalListener Annotation, a ConcurrentKafkalistenerContainerFactory is used to
create containers for annotated methods.

Starting with version 2.2, you can wuse the same factory to create any
ConcurrentMessagelListenerContainer. This might be useful if you want to create several containers
with similar properties or you wish to use some externally configured factory, such as the one
provided by Spring Boot auto-configuration. Once the container is created, you can further modify
its properties, many of which are set by using container.getContainerProperties(). The following
example configures a ConcurrentMessagelistenerContainer:

54

@Bean
public ConcurrentMessagelistenerContainer<String, String>(
ConcurrentKafkalListenerContainerFactory<String, String> factory) {

ConcurrentMessagelistenerContainer<String, String> container =
factory.createContainer("topic1", "topic2");

container.setMessagelListener(m -> { ... });

return container;

}
Containers created this way are not added to the endpoint registry. They should be
created as @Bean definitions so that they are registered with the application
context.
Thread Safety

When using a concurrent message listener container, a single listener instance is invoked on all
consumer threads. Listeners, therefore, need to be thread-safe, and it is preferable to use stateless
listeners. If it is not possible to make your listener thread-safe or adding synchronization would
significantly reduce the benefit of adding concurrency, you can use one of a few techniques:

* Use n containers with concurrency=1 with a prototype scoped MessagelListener bean so that each
container gets its own instance (this is not possible when using @Kafkalistener).

* Keep the state in ThreadLocal<?> instances.

* Have the singleton listener delegate to a bean that is declared in SimpleThreadScope (or a similar
scope).

To facilitate cleaning up thread state (for the second and third items in the preceding list), starting
with version 2.2, the listener container publishes a ConsumerStoppedEvent when each thread exits.
You can consume these events with an ApplicationListener or @EventListener method to remove
Threadlocal<?> instances or remove() thread-scoped beans from the scope. Note that
SimpleThreadScope does not destroy beans that have a destruction interface (such as DisposableBean),
so you should destroy() the instance yourself.

By default, the application context’s event multicaster invokes event listeners on
the calling thread. If you change the multicaster to use an async executor, thread
cleanup is not effective.

4.1.4. Pausing and Resuming Listener Containers

Version 2.1.3 added pause() and resume() methods to listener containers. Previously, you could
pause a consumer within a ConsumerAwareMessagelListener and resume it by listening for a
ListenerContainerIdleEvent, which provides access to the Consumer object. While you could pause a
consumer in an idle container by using an event listener, in some cases, this was not thread-safe,
since there is no guarantee that the event listener is invoked on the consumer thread. To safely

55

pause and resume consumers, you should use the pause and resume methods on the listener
containers. A pause() takes effect just before the next poll(); a resume() takes effect just after the
current poll() returns. When a container is paused, it continues to poll() the consumer, avoiding a
rebalance if group management is being used, but it does not retrieve any records. See the Kafka
documentation for more information.

Starting with version 2.1.5, you can call isPauseRequested() to see if pause() has been called.
However, the consumers might not have actually paused yet. isConsumerPaused() returns true if all
Consumer instances have actually paused.

In addition (also since 2.1.5), ConsumerPausedEvent and ConsumerResumedEvent instances are published
with the container as the source property and the TopicPartition instances involved in the
partitions property.

The following simple Spring Boot application demonstrates by using the container registry to get a
reference to a @Kafkalistener method’s container and pausing or resuming its consumers as well as
receiving the corresponding events:

56

@SpringBootApplication
public class Application implements ApplicationListener<KafkaEvent> {

public static void main(String[] args) {
SpringApplication.run(Application.class, args).close();

}

@0verride
public void onApplicationEvent(KafkaEvent event) {
System.out.println(event);

}

@Bean
public ApplicationRunner runner(KafkalListenerEndpointRegistry registry,
KafkaTemplate<String, String> template) {
return args -> {
template.send("pause.resume.topic", "thing1");
Thread.sleep(10_000);
System.out.println("pausing");
registry.getListenerContainer("pause.resume").pause();
Thread.sleep(10_000);
template.send("pause.resume.topic", "thing2");
Thread.sleep(10_000);
System.out.println("resuming");
registry.getListenerContainer("pause.resume").resume();
Thread.sleep(10_000);
I
}

@KafkalListener(id = "pause.resume", topics = "pause.resume.topic")
public void listen(String in) {

System.out.println(in);
}

@Bean
public NewTopic topic() {
return new NewTopic("pause.resume.topic", 2, (short) 1);

}

The following listing shows the results of the preceding example:

partitions assigned: [pause.resume.topic-1, pause.resume.topic-0]

thing1

pausing

ConsumerPausedEvent [partitions=[pause.resume.topic-1, pause.resume.topic-0]]
resuming

ConsumerResumedEvent [partitions=[pause.resume.topic-1, pause.resume.topic-0]]
thing2

4.1.5. Events

The following events are published by listener containers and their consumers:

ContainerIdleEvent: Issued when no messages have been received in idleInterval (if
configured).

NonResponsiveConsumerEvent: Issued when the consumer appears to be blocked in the poll
method.

ConsumerPausedEvent: Issued by each consumer when the container is paused.
ConsumerResumedEvent: Issued by each consumer when the container is resumed.
ConsumerStoppingEvent: Issued by each consumer just before stopping.
ConsumerStoppedEvent: Issued after the consumer is closed. See Thread Safety.

ContainerStoppedEvent: Issued when all consumers have terminated.

By default, the application context’s event multicaster invokes event listeners on

o the calling thread. If you change the multicaster to use an async executor, you
must not invoke any Consumer methods when the event contains a reference to the
consumer.

The ContainerIdleEvent has the following properties:

58

source: The listener container instance that published the event.

container: The listener container or the parent listener container, if the source container is a
child.

id: The listener ID (or container bean name).
idleTime: The time the container had been idle when the event was published.

topicPartitions: The topics and partitions that the container was assigned at the time the event
was generated.

consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

paused: Whether the container is currently paused. See Pausing and Resuming Listener
Containers for more information.

The NonResponsiveConsumerEvent has the following properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e id: The listener ID (or container bean name).
* timeSincelastPoll: The time just before the container last called poll().

* topicPartitions: The topics and partitions that the container was assigned at the time the event
was generated.

» consumer: A reference to the Kafka Consumer object. For example, if the consumer’s pause()
method was previously called, it can resume() when the event is received.

* paused: Whether the container is currently paused. See Pausing and Resuming Listener

Containers for more information.

The ConsumerPausedEvent, ConsumerResumedEvent, and ConsumerStopping events have the following
properties:
 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

e partitions: The TopicPartition instances involved.
The ConsumerStoppedEvent and ContainerStoppedEvent events have the following properties:

 source: The listener container instance that published the event.

» container: The listener container or the parent listener container, if the source container is a
child.

All containers (whether a child or a parent) publish ContainerStoppedEvent. For a parent container,
the source and container properties are identical.

4.1.6. Serialization, Deserialization, and Message Conversion

Apache Kafka provides a high-level API for serializing and deserializing record values as well as
their keys. It is present with the org.apache.kafka.common.serialization.Serializer<T> and
org.apache.kafka.common.serialization.Deserializer<T> abstractions with some built-in
implementations. Meanwhile, we can specify serializer and deserializer classes by using Producer or
Consumer configuration properties. The following example shows how to do so:

59

props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
IntegerDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
StringDeserializer.class);

props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);

For more complex or particular cases, the KafkaConsumer (and, therefore, KafkaProducer) provides
overloaded constructors to accept Serializer and Deserializer instances for keys and values,
respectively.

When you use this API, the DefaultKafkaProducerFactory and DefaultKafkaConsumerFactory also
provide properties (through constructors or setter methods) to inject custom Serializer and
Deserializer instances into the target Producer or Consumer.

Spring for Apache Kafka also provides JsonSerializer and JsonDeserializer implementations that
are based on the Jackson JSON object mapper. The JsonSerializer allows writing any Java object as
a JSON byte[]. The JsonDeserializer requires an additional (lass<?> targetType argument to allow
the deserialization of a consumed byte[] to the proper target object. The following example shows
how to create a JsonDeserializer:

JsonDeserializer<Thing> thingDeserializer = new JsonDeserializer<>(Thing.class);

You can customize both JsonSerializer and JsonDeserializer with an ObjectMapper. You can also
extend them to implement some particular configuration logic in the configure(Map<String, 7>
configs, boolean isKey) method.

Starting with version 2.1, you can convey type information in record Headers, allowing the handling
of multiple types. In addition, you can configure the serializer and deserializer by using the
following Kafka properties:

* JsonSerializer.ADD_TYPE_INFO_HEADERS (default true): You can set it to false to disable this
feature on the JsonSerializer (sets the addTypeInfo property).
» JsonSerializer.TYPE_MAPPINGS (default empty): See Mapping Types.

* JsonDeserializer.USE_TYPE_INFO_HEADERS (default true): You can set it to false to ignore headers
set by the serializer.

e JsonDeserializer.REMOVE _TYPE_INFO_HEADERS (default true): You can set it to false to retain
headers set by the serializer.

* JsonDeserializer.KEY_DEFAULT_TYPE: Fallback type for deserialization of keys if no header
information is present.

» JsonDeserializer.VALUE_DEFAULT_TYPE: Fallback type for deserialization of values if no header

60

information is present.

e JsonDeserializer.TRUSTED_PACKAGES (default java.util, java.lang): Comma-delimited list of
package patterns allowed for deserialization. * means deserialize all.

* JsonDeserializer.TYPE_MAPPINGS (default empty): See Mapping Types.

Starting with version 2.2, the type information headers (if added by the serializer) are removed by
the deserializer. You can revert to the previous behavior by setting the removeTypeHeaders property
to false, either directly on the deserializer or with the configuration property described earlier.

Mapping Types

Starting with version 2.2, you can now provide type mappings by using the properties in the
preceding list. Previously, you had to customize the type mapper within the serializer and
deserializer. Mappings consist of a comma-delimited list of token:className pairs. On outbound, the
payload’s class name is mapped to the corresponding token. On inbound, the token in the type
header is mapped to the corresponding class name.

The following example creates a set of mappings:

senderProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
JsonSerializer.class);
senderProps.put(JsonSerializer.TYPE_MAPPINGS, "cat:com.mycat.Cat,
hat:com.myhat.hat");

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
JsonDeserializer.class);
consumerProps.put(JsonDeSerializer.TYPE_MAPPINGS, "cat:com.yourcat.(Cat,
hat:com.yourhat.hat");

o The corresponding objects must be compatible.

If you use Spring Boot, you can provide these properties in the application.properties (or yaml)
file. The following example shows how to do so:

spring.kafka.producer.value-
serializer=org.springframework.kafka.support.serializer.JsonSerializer
spring.kafka.producer.properties.spring.json.type.mapping=cat:com.mycat.Cat,hat:co
m.myhat.Hat

61

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-messaging.html#boot-features-kafka

You can perform only simple configuration with properties. For more advanced
configuration (such as using a custom ObjectMapper in the serializer and
deserializer), you should use the producer and consumer factory constructors that
accept a pre-built serializer and deserializer. The following Spring Boot example
overrides the default factories:

@Bean

public ConsumerFactory<Foo, Bar>

kafkaConsumerFactory(KafkaProperties properties,
JsonDeserializer customDeserializer) {

return new
DefaultKafkaConsumerFactory<>(properties.buildConsumerProperties(),
o customDeserializer, customDeserializer);

}

@Bean

public ProducererFactory<Foo, Bar>

kafkaProducerFactory(KafkaProperties properties,
JsonSerializer customSerializer) {

return new
DefaultKafkaProducerFactory<>(properties.buildProducerProperties(),
customSerializer, customSerializer);

}

Setters are also provided, as an alternative to using these constructors.

Starting with version 2.2, you can explicitly configure the deserializer to use the supplied target
type and ignore type information in headers by using one of the overloaded constructors that have
a boolean useHeadersIfPresent (which is true by default). The following example shows how to do
so:

DefaultKafkaConsumerFactory<Integer, Cat1> cf = new
DefaultKafkaConsumerFactory<>(props,
new IntegerDeserializer(), new JsonDeserializer<>(Cat1.class, false));

Spring Messaging Message Conversion

Although the Serializer and Deserializer API is quite simple and flexible from the low-level Kafka
Consumer and Producer perspective, you might need more flexibility at the Spring Messaging level,
when using either @Kafkalistener or Spring Integration. To let you easily convert to and from
org.springframework.messaging.Message, Spring for Apache Kafka provides a MessageConverter
abstraction with the MessagingMessageConverter implementation and its StringJsonMessageConverter

62

and BytesJsonMessageConverter customization. You can inject the MessageConverter into a
KafkaTemplate instance directly and by using AbstractKafkalistenerContainerFactory bean definition
for the pKafkalListener.containerFactory() property. The following example shows how to do so:

©Bean
public KafkalistenerContainerFactory<?> kafkalsonListenerContainerFactory() {
ConcurrentKafkalListenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setMessageConverter(new StringJsonMessageConverter());
return factory;

}

@KafkalListener(topics = "jsonData",
containerFactory = "kafkalsonListenerContainerFactory")
public void jsonlListener(Cat cat) {

}

When you use a @Kafkalistener, the parameter type is provided to the message converter to assist
with the conversion.

This type inference can be achieved only when the @Kafkalistener annotation is

0 declared at the method level. With a class-level @KafkalListener, the payload type is
used to select which @KafkaHandler method to invoke, so it must already have been
converted before the method can be chosen.

When vyou wuse the StringJsonMessageConverter, you should wuse a
StringDeserializer in the Kafka consumer configuration and a StringSerializer in
the Kafka producer configuration when you use Spring Integration or the
KafkaTemplate.send(Message<?> message) method. When you wuse the

0 BytesJsonMessageConverter, you should use a BytesDeserializer in the Kafka
consumer configuration and BytesSerializer in the Kafka producer configuration
when you use Spring Integration or the KafkaTemplate.send(Message<?> message)
method (see Using KafkaTemplate). Generally, the BytesJsonMessageConverter is more
efficient because it avoids a String to and from byte[] conversion.

Using ErrorHandlingDeserializer

When a deserializer fails to deserialize a message, Spring has no way to handle the problem,
because it occurs before the poll() returns. To solve this problem, version 2.2 introduced the
ErrorHandlingDeserializer2. This deserializer delegates to a real deserializer (key or value). If the
delegate fails to deserialize the record content, the ErrorHandlingDeserializer2 returns a null value
and a DeserializationException in a header that contains the cause and the raw bytes. When you
use a record-level MessageListener, if the ConsumerRecord contains a DeserializationException header
for either the key or value, the container’s ErrorHandler is called with the failed ConsumerRecord. The

63

record is not passed to the listener.

Alternatively, you can configure the ErrorHandlingDeserializer2 to create a custom value by
providing a failedDeserializationFunction, which is a Function<FailedDeserializationInfo, T>. This
function is invoked to create an instance of T, which is passed to the listener in the usual fashion.
An object of type FailedDeserializationInfo, which contains all the contextual information is
provided to the function. You can find the DeserializationException (as a serialized Java object) in
headers. See the Javadoc for the ErrorHandlingDeserializer2 for more information.

' When you use a BatchMessagelListener, you must provide a
—_— failedDeserializationFunction. Otherwise, the batch of records are not type safe.

You can use the DefaultKafkaConsumerFactory constructor that takes key and value Deserializer
objects and wire in appropriate ErrorHandlingDeserializer2 instances that you have configured
with the proper delegates. Alternatively, you can use consumer configuration properties (which are
used by the ErrorHandlingDeserializer) to instantiate the delegates. The property names are
ErrorHandlingDeserializer2.KEY_DESERIALIZER_CLASS and
ErrorHandlingDeserializer2.VALUE_DESERIALIZER_CLASS. The property value can be a class or class
name. The following example shows how to set these properties:

... // other props
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
ErrorHandlingDeserializer2.class);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
ErrorHandlingDeserializer2.class);
props.put(ErrorHandlingDeserializer.KEY_DESERIALIZER_CLASS,
JsonDeserializer.class);
props.put(JsonDeserializer.KEY_DEFAULT_TYPE, "com.example.MyKey")
props.put(ErrorHandlingDeserializer.VALUE_DESERIALIZER_CLASS,
JsonDeserializer.class.getName());
props.put(JsonDeserializer.VALUE_DEFAULT_TYPE, "com.example.MyValue")
props.put(JsonDeserializer.TRUSTED_PACKAGES, "com.example")
return new DefaultKafkaConsumerFactory<>(props);

The following example uses a failedDeserializationFunction.

64

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/support/serializer/ErrorHandlingDeserializer2.html

public class BadFoo extends Foo {
private final FailedDeserializationInfo failedDeserializationInfo;

public BadFoo(FailedDeserializationInfo failedDeserializationInfo) {
this.failedDeserializationInfo = failedDeserializationInfo;

}

public FailedDeserializationInfo getFailedDeserializationInfo() {
return this.failedDeserializationInfo;

}
}

public class FailedFooProvider implements Function<FailedDeserializationInfo, Foo>

{

@0verride
public Foo apply(FailedDeserializationInfo info) {
return new BadFoo(info);

}

The preceding example uses the following configuration:

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
ErrorHandlingDeserializer2.class);
consumerProps.put(ErrorHandlingDeserializer2.VALUE_DESERIALIZER_CLASS,
JsonDeserializer.class);
consumerProps.put(ErrorHandlingDeserializer2.VALUE_FUNCTION,
FailedFooProvider.class);

Payload Conversion with Batch Listeners

Starting with version 1.3.2, you can also wuse a StringlsonMessageConverter or
BytesJsonMessageConverter within a BatchMessagingMessageConverter to convert batch messages
when you use a batch listener container factory. See Serialization, Deserialization, and Message
Conversion for more information.

By default, the type for the conversion is inferred from the listener argument. If you configure the
(Bytes|String)JsonMessageConverter with a DefaultJackson2TypeMapper that has its TypePrecedence set
to TYPE_ID (instead of the default INFERRED), the converter uses the type information in headers (if

65

present) instead. This allows, for example, listener methods to be declared with interfaces instead
of concrete classes. Also, the type converter supports mapping, so the deserialization can be to a
different type than the source (as long as the data is compatible). This is also useful when you use
class-level @Kafkalistener instances where the payload must have already been converted to
determine which method to invoke. The following example creates beans that use this method:

@Bean

public KafkalListenerContainerFactory<?> kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =

new ConcurrentKafkalistenerContainerFactory<>();

factory.setConsumerFactory(consumerFactory());
factory.setBatchListener(true);
factory.setMessageConverter(new BatchMessagingMessageConverter(converter()));
return factory;

}

@Bean
public StringlsonMessageConverter converter() {
return new StringJsonMessageConverter();

}

Note that, for this to work, the method signature for the conversion target must be a container
object with a single generic parameter type, such as the following:

@Kafkalistener(topics = "blel")
public void listen(List<Foo> foos, @Header(KafkaHeaders.OFFSET) List<Long>
offsets) {

}

Note that you can still access the batch headers.

If the batch converter has a record converter that supports it, you can also receive a list of messages
where the payloads are converted according to the generic type. The following example shows how
to do so:

@Kafkalistener(topics = "ble3", groupIld = "blc3")
public void listen1(List<Message<Foo>> foolMessages) {

}

66

ConversionService Customization

Starting with version 2.1.1, the org.springframework.core.convert.ConversionService used by the
default 0.s.messaging.handler.annotation.support.MessageHandlerMethodFactory to resolve
parameters for the invocation of a listener method is supplied with all beans that implement any of
the following interfaces:

« org.springframework.core.convert.converter.Converter
« org.springframework.core.convert.converter.GenericConverter

o org.springframework.format.Formatter

This lets you further customize listener deserialization without changing the default configuration
for ConsumerFactory and KafkalistenerContainerFactory.

Setting a custom MessageHandlerMethodFactory on the
KafkalistenerEndpointRegistrar through a KafkalistenerConfigurer bean disables
this feature.

4.1.7. Message Headers

The 0.11.0.0 client introduced support for headers in messages. As of version 2.0, Spring for Apache
Kafka now supports mapping these headers to and from spring-messaging MessageHeaders.

Previous versions mapped ConsumerRecord and ProducerRecord to spring-messaging
0 Message<?>, where the value property is mapped to and from the payload and other
properties (topic, partition, and so on) were mapped to headers. This is still the

case, but additional (arbitrary) headers can now be mapped.

Apache Kafka headers have a simple API, shown in the following interface definition:

public interface Header {
String key();

byte[] value();

The KafkaHeaderMapper strategy is provided to map header entries between Kafka Headers and
MessageHeaders. Its interface definition is as follows:

67

public interface KafkaHeaderMapper {
void fromHeaders(MessageHeaders headers, Headers target);

void toHeaders(Headers source, Map<String, Object> target);

The DefaultKafkaHeaderMapper maps the key to the MessageHeaders header name and, in order to
support rich header types for outbound messages, JSON conversion is performed. A “special”
header (with a key of spring_json_header_types) contains a JSON map of <key>:<type>. This header is
used on the inbound side to provide appropriate conversion of each header value to the original

type.

On the inbound side, all Kafka Header instances are mapped to MessageHeaders. On the outbound
side, by default, all MessageHeaders are mapped, except id, timestamp, and the headers that map to
ConsumerRecord properties.

You can specify which headers are to be mapped for outbound messages, by providing patterns to
the mapper. The following listing shows a number of example mappings:

68

public DefaultKafkaHeaderMapper() { @

}

public DefaultKafkaHeaderMapper(ObjectMapper objectMapper) { @

}

public DefaultKafkaHeaderMapper(String... patterns) { ®

}

public DefaultKafkaHeaderMapper(ObjectMapper objectMapper, String... patterns) {
@

@ Uses a default Jackson ObjectMapper and maps most headers, as discussed before the
example.

@ Uses the provided Jackson ObjectMapper and maps most headers, as discussed before the
example.

® Uses a default Jackson ObjectMapper and maps headers according to the provided patterns.

@ Uses the provided Jackson ObjectMapper and maps headers according to the provided
patterns.

Patterns are rather simple and can contain a leading wildcard (), a trailing wildcard, or both
(for example, .cat.*). You can negate patterns with a leading !. The first pattern that matches a
header name (whether positive or negative) wins.

When you provide your own patterns, we recommend including !id and !timestamp, since these
headers are read-only on the inbound side.

By default, the mapper deserializes only classes in java.lang and java.util. You
can trust other (or all) packages by adding trusted packages with the

o addTrustedPackages method. If you receive messages from untrusted sources, you
may wish to add only those packages you trust. To trust all packages, you can use
mapper.addTrustedPackages("*").

0 Mapping String header values in a raw form is useful when communicating with
systems that are not aware of the mapper’s JSON format.

Starting with version 2.2.5, you can specify that certain string-valued headers should not be
mapped using JSON, but to/from a raw byte[]. The AbstractkafkaHeaderMapper has new properties;
mapAllStringsOut when set to true, all string-valued headers will be converted to byte[] using the
charset property (default UTF-8). In addition, there is a property rawMappedHeaders, which is a map of

69

header name : boolean; if the map contains a header name, and the header contains a String value,
it will be mapped as a raw byte[] using the charset. This map is also used to map raw incoming
byte[] headers to String using the charset if, and only if, the boolean in the map value is true. If the
boolean is false, or the header name is not in the map with a true value, the incoming header is
simply mapped as the raw unmapped header.

The following test case illustrates this mechanism.

@Test
public void testSpecificStringConvert() {
DefaultKafkaHeaderMapper mapper = new DefaultKafkaHeaderMapper();
Map<String, Boolean> rawMappedHeaders = new HashMap<>();
rawMappedHeaders.put("thisOnesAString", true);
rawMappedHeaders.put("thisOnesBytes", false);
mapper .setRawMappedHaeaders(rawMappedHeaders);
Map<String, Object> headersMap = new HashMap<>();
headersMap.put("thisOnesAString", "thing1");
headersMap.put("thisOnesBytes", "thing2");
headersMap.put("alwaysRaw", "thing3".getBytes());
MessageHeaders headers = new MessageHeaders(headersMap);
Headers target = new RecordHeaders();
mapper . fromHeaders(headers, target);
assertThat(target).containsExactlyInAnyOrder(
new RecordHeader ("thisOnesAString", "thing1".getBytes()),
new RecordHeader ("thisOnesBytes", "thing2".getBytes()),
new RecordHeader("alwaysRaw", "thing3".getBytes()));
headersMap.clear();
mapper .toHeaders(target, headersMap);
assertThat(headersMap).contains(
entry("thisOnesAString", "thing1"),
entry("thisOnesBytes", "thing2".getBytes()),
entry("alwaysRaw", "thing3".getBytes()));

By default, the DefaultKafkaHeaderMapper is wused in the MessagingMessageConverter and
BatchMessagingMessageConverter, as long as Jackson is on the class path.

With the batch converter, the converted headers are available in the
KafkaHeaders.BATCH_CONVERTED_HEADERS as a List<Map<String, Object>> where the map in a position
of the list corresponds to the data position in the payload.

If there is no converter (either because Jackson is not present or it is explicitly set to null), the
headers from the consumer record are provided unconverted in the KafkaHeaders.NATIVE_HEADERS
header. This header is a Headers object (or a List<Headers> in the case of the batch converter), where
the position in the list corresponds to the data position in the payload).

70

Certain types are not suitable for JSON serialization, and a simple toString()
serialization might be preferred for these types. The DefaultKafkaHeaderMapper has
o a method called addToStringClasses() that lets you supply the names of classes that
should be treated this way for outbound mapping. During inbound mapping, they
are mapped as String. By default, only org.springframework.util.MimeType and
org.springframework.http.MediaType are mapped this way.

4.1.8. Null Payloads and Log Compaction of 'Tombstone' Records

When you use Log Compaction, you can send and receive messages with null payloads to identify
the deletion of a key.

You can also receive null values for other reasons, such as a Deserializer that might return null
when it cannot deserialize a value.

To send a null payload by using the KafkaTemplate, you can pass null into the value argument of the
send() methods. One exception to this is the send(Message<?> message) variant. Since spring-
messaging Message<?> cannot have a null payload, you can use a special payload type called
KafkaNull, and the framework sends null. For convenience, the static KafkaNull.INSTANCE is
provided.

When you use a message listener container, the received ConsumerRecord has a null value().

To configure the @KafkalListener to handle null payloads, you must use the @Payload annotation with
required = false. If it is a tombstone message for a compacted log, you usually also need the key so
that your application can determine which key was “deleted”. The following example shows such a
configuration:

@Kafkalistener(id = "deletablelistener", topics = "myTopic")
public void listen(@Payload(required = false) String value,
@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) String key) {

// value == null represents key deletion

}

When you use a class-level eKafkalistener with multiple @KafkaHandler methods, some additional
configuration is needed. Specifically, you need a @KafkaHandler method with a KafkaNull payload.
The following example shows how to configure one:

71

https://kafka.apache.org/documentation/#compaction

@Kafkalistener(id = "multi", topics = "myTopic")
static class MultilistenerBean {

@KafkaHandler
public void listen(String cat) {

}

@KafkaHandler
public void listen(Integer hat) {

}
@KafkaHandler

public void delete(@Payload(required = false) KafkaNull nul,
@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) int key) {

}

Note that the argument is null, not KafkaNul1.

4.1.9. Handling Exceptions

This section describes how to handle various exceptions that may arise when you use Spring for
Apache Kafka.

Listener Error Handlers

Starting with version 2.0, the @Kafkalistener annotation has a new attribute: errorHandler.
By default, this attribute is not configured.

You can use the errorHandler to provide the bean name of a KafkalistenerErrorHandler
implementation. This functional interface has one method, as the following listing shows:

@Functionallnterface
public interface KafkalistenerErrorHandler {

Object handleError(Message<?> message, ListenerExecutionFailedException
exception) throws Exception;

}

72

You have access to the spring-messaging Message<?> object produced by the message converter and
the exception that was thrown by the listener, which is wrapped in a
ListenerExecutionFailedException. The error handler can throw the original or a new exception,
which is thrown to the container. Anything returned by the error handler is ignored.

It has a sub-interface (ConsumerAwarelListenerErrorHandler) that has access to the consumer object,
through the following method:

Object handleError(Message<?> message, ListenerExecutionFailedException exception,
Consumer<?, ?> consumer);

If your error handler implements this interface, you can, for example, adjust the offsets
accordingly. For example, to reset the offset to replay the failed message, you could do something
like the following:

©Bean
public ConsumerAwarelListenerErrorHandler listen3ErrorHandler() {
return (m, e, ¢) -> {
this.listen3Exception = e;
MessageHeaders headers = m.getHeaders();
c.seek(new org.apache.kafka.common.TopicPartition(
headers.get(KafkaHeaders.RECEIVED_TOPIC, String.class),
headers.get(KafkaHeaders.RECEIVED_PARTITION_ID, Integer.class)),
headers.get(KafkaHeaders.OFFSET, Long.class));
return null;

};

Similarly, you could do something like the following for a batch listener:

73

©Bean
public ConsumerAwareListenerErrorHandler listen10ErrorHandler() {
return (m, e, ¢) -> {

this.listen10Exception = e;

MessageHeaders headers = m.getHeaders();

List<String> topics = headers.get(KafkaHeaders.RECEIVED_TOPIC,
List.class);

List<Integer> partitions = headers.get(KafkaHeaders.RECEIVED_PARTITION_ID,
List.class);

List<Long> offsets = headers.get(KafkaHeaders.OFFSET, List.class);

Map<TopicPartition, Long> offsetsToReset = new HashMap<>();

for (int i = @; i < topics.size(); i++) {

int index = 1i;
offsetsToReset.compute(new TopicPartition(topics.get(i),
partitions.get(i)),
(k, v) -> v == null ? offsets.get(index) : Math.min(v,

offsets.get(index)));

}

offsetsToReset.forEach((k, v) -> c.seek(k, v));

return null;

};

This resets each topic/partition in the batch to the lowest offset in the batch.

0 The preceding two examples are simplistic implementations, and you would

probably want more checking in the error handler.

Container Error Handlers

You can specify a global error handler to be used for all listeners in the container factory. The
following example shows how to do so:

74

@Bean
public KafkalistenerContainerFactory<ConcurrentMessagelistenerContainer<Integer,
String>>
kafkalListenerContainerFactory() {
ConcurrentKafkalListenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.setErrorHandler (myErrorHandler);

return factory;

Similarly, you can set a global batch error handler:

@Bean
public KafkalistenerContainerFactory<ConcurrentMessagelistenerContainer<Integer,
String>>
kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();

factory.setBatchErrorHandler (myBatchErrorHandler);

return factory;

By default, if an annotated listener method throws an exception, it is thrown to the container, and
the message is handled according to the container configuration.

Consumer-Aware Container Error Handlers

The container-level error handlers (ErrorHandler and BatchErrorHandler) have sub-interfaces called
ConsumerAwareErrorHandler and ConsumerAwareBatchErrorHandler. The handle method of the
ConsumerAwareErrorHandler has the following signature:

void handle(Exception thrownException, ConsumerRecord<?, ?> data, Consumer<?, 7>
consumer);

The handle method of the ConsumerAwareBatchErrorHandler has the following signature:

void handle(Exception thrownException, ConsumerRecords<?, ?> data, Consumer<?, 7>
consumer);

Similar to the @KafkalListener error handlers, you can reset the offsets as needed, based on the data
that failed.

Unlike the listener-level error handlers, however, you should set the ackOnError
container property to false when making adjustments. Otherwise, any pending
acks are applied after your repositioning.

Seek To Current Container Error Handlers

If an ErrorHandler implements RemainingRecordsErrorHandler, the error handler is provided with the
failed record and any unprocessed records retrieved by the previous poll(). Those records are not

75

passed to the listener after the handler exits. The following listing shows the
RemainingRecordsErrorHandler interface definition:

@Functionallnterface
public interface RemainingRecordsErrorHandler extends ConsumerAwareErrorHandler {

void handle(Exception thrownException, List<ConsumerRecord<?, ?>> records,
Consumer<?, ?> consumer);

This interface lets implementations seek all unprocessed topics and partitions so that the current
record (and the others remaining) are retrieved by the next poll. SeekToCurrentErrorHandler does
exactly this.

The container commits any pending offset commits before calling the error handler.
To configure the listener container with this handler, add it to the ContainerProperties.

For example, with the @Kafkalistener container factory, you can add SeekToCurrentErrorHandler as
follows:

©Bean

public ConcurrentKafkalistenerContainerFactory<String, String>

kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<String, String> factory = new

ConcurrentKafkalistenerContainerFactory();
factory.setConsumerFactory(consumerFactory());
factory.getContainerProperties().setAckOnError(false);
factory.getContainerProperties().setAckMode(AckMode.RECORD);
factory.setErrorHandler(new SeekToCurrentErrorHandler());
return factory;

As an example; if the poll returns six records (two from each partition 0, 1, 2) and the listener
throws an exception on the fourth record, the container acknowledges the first three messages by
committing their offsets. The SeekToCurrentErrorHandler seeks to offset 1 for partition 1 and offset 0
for partition 2. The next pol1() returns the three unprocessed records.

If the AckMode was BATCH, the container commits the offsets for the first two partitions before calling
the error handler.

Starting with version 2.2, the SeekToCurrentErrorHandler can now recover (skip) a record that keeps
failing. By default, after ten failures, the failed record is logged (at the ERROR level). You can
configure the handler with a custom recoverer (BiConsumer) and maximum failures. Setting the

76

maxFailures property to a negative number causes infinite retries. The following example
configures recovery after three tries:

SeekToCurrentErrorHandler errorHandler =
new SeekToCurrentErrorHandler((record, exception) -> {
// recover after 3 failures - e.g. send to a dead-letter topic

Y 3);

Starting with version 2.2.4, when the container is configured with AckMode.MANUAL_IMMEDIATE, the
error handler can be configured to commit the offset of recovered records; set the commitRecovered
property to true.

See also Publishing Dead-letter Records.

When using transactions, similar functionality is provided by the DefaultAfterRollbackProcessor.
See After-rollback Processor.

The SeekToCurrentBatchErrorHandler seeks each partition to the first record in each partition in the
batch, so the whole batch is replayed. This error handler does not support recovery, because the
framework cannot know which message in the batch is failing.

After seeking, an exception that wraps the ListenerExecutionFailedException is thrown. This is to
cause the transaction to roll back (if transactions are enabled).

0 If the recoverer fails (throws an exception), the record will be included in the
seeks and recovery will be attempted again during the next delivery.

Container Stopping Error Handlers

The ContainerStoppingErrorHandler (used with record listeners) stops the container if the listener
throws an exception. When the AckMode is RECORD, offsets for already processed records are
committed. When the AckMode is any manual value, offsets for already acknowledged records are
committed. When the AckMode is BATCH, the entire batch is replayed when the container is restarted
(unless transactions are enabled — in which case, only the unprocessed records are re-fetched).

The ContainerStoppingBatchErrorHandler (used with batch listeners) stops the container, and the
entire batch is replayed when the container is restarted.

After the container stops, an exception that wraps the ListenerExecutionFailedException is thrown.
This is to cause the transaction to roll back (if transactions are enabled).

After-rollback Processor

When using transactions, if the listener throws an exception (and an error handler, if present,
throws an exception), the transaction is rolled back. By default, any unprocessed records (including
the failed record) are re-fetched on the next poll. This is achieved by performing seek operations in
the DefaultAfterRollbackProcessor. With a batch listener, the entire batch of records is reprocessed

77

(the container has no knowledge of which record in the batch failed). To modify this behavior, you
can configure the listener container with a custom AfterRollbackProcessor. For example, with a
record-based listener, you might want to keep track of the failed record and give up after some
number of attempts, perhaps by publishing it to a dead-letter topic.

Starting with version 2.2, the DefaultAfterRollbackProcessor can now recover (skip) a record that
keeps failing. By default, after ten failures, the failed record is logged (at the ERROR level). You can
configure the processor with a custom recoverer (BiConsumer) and maximum failures. Setting the
maxFailures property to a negative number causes infinite retries. The following example
configures recovery after three tries:

AfterRollbackProcessor<String, String> processor =
new DefaultAfterRollbackProcessor((record, exception) -> {
// recover after 3 failures - e.g. send to a dead-letter topic

}, 3);

When you do not use transactions, you can achieve similar functionality by configuring a
SeekToCurrentErrorHandler. See Seek To Current Container Error Handlers.

Recovery is not possible with a batch listener, since the framework has no
o knowledge about which record in the batch keeps failing. In such cases, the
application listener must handle a record that keeps failing.

See also Publishing Dead-letter Records.

Starting with version 2.2.5, the DefaultAfterRollbackProcessor can be invoked in a new transaction
(started after the failed transaction rolls back). Then, if you are wusing the
DeadLetterPublishingRecoverer to publish a failed record, the processor will send the recovered
record’s offset in the original topic/partition to the transaction. To enable this feature, set the
processInTransaction and kafkaTemplate properties on the DefaultAfterRollbackProcessor.

o If the recoverer fails (throws an exception), the record will be included in the
seeks and recovery will be attempted again during the next delivery.

Publishing Dead-letter Records

As discussed earlier, you can configure the SeekToCurrentErrorHandler and
DefaultAfterRollbackProcessor with a record recoverer when the maximum number of failures is
reached for a record. The framework provides the DeadLetterPublishingRecoverer, which publishes
the failed message to another topic. The recoverer requires a KafkaTemplate<Object, Object>, which
is used to send the record. You can also, optionally, configure it with a BiFunction<ConsumerRecord<?,
7>, Exception, TopicPartition>, which is called to resolve the destination topic and partition. By
default, the dead-letter record is sent to a topic named <originalTopic>.DLT (the original topic name
suffixed with .DLT) and to the same partition as the original record. Therefore, when you use the
default resolver, the dead-letter topic must have at least as many partitions as the original topic. If
the returned TopicPartition has a negative partition, the partition is not set in the ProducerRecord,

78

so the partition is selected by Kafka. Starting with version 2.24, any
ListenerExecutionFailedException (thrown, for example, when an exception is detected in a
@Kafkalistener method) is enhanced with the groupId property. This allows the destination resolver
to use this, in addition to the information in the ConsumerRecord to select the dead letter topic.

The following example shows how to wire a custom destination resolver:

DeadLetterPublishingRecoverer recoverer = new
DeadlLetterPublishingRecoverer(template,
(r, e) > {
if (e instanceof FooException) {
return new TopicPartition(r.topic() + ".Foo.failures",
r.partition());
}
else {
return new TopicPartition(r.topic() +
r.partition());
+
b

ErrorHandler errorHandler = new SeekToCurrentErrorHandler(recoverer, 3);

'.other.failures",

The record sent to the dead-letter topic is enhanced with the following headers:

» KafkaHeaders.DLT_EXCEPTION_FQCN: The Exception class name.

» KafkaHeaders.DLT_EXCEPTION_STACKTRACE: The Exception stack trace.

* KafkaHeaders.DLT_EXCEPTION_MESSAGE: The Exception message.

» KafkaHeaders.DLT_ORIGINAL_TOPIC: The original topic

* KafkaHeaders.DLT_ORIGINAL_PARTITION: The original partition.

» KafkaHeaders.DLT_ORIGINAL_OFFSET: The original offset.

» KafkaHeaders.DLT_ORIGINAL_TIMESTAMP: The original timestamp.

» KafkaHeaders.DLT_ORIGINAL_TIMESTAMP_TYPE: The original timestamp type.

4.1.10. Kerberos

Starting with version 2.0, a KafkaJaasLoginModuleInitializer class has been added to assist with
Kerberos configuration. You can add this bean, with the desired configuration, to your application
context. The following example configures such a bean:

79

@Bean
public KafkalaasLoginModuleInitializer jaasConfig() throws IOException {
KafkalaasLoginModuleInitializer jaasConfig = new
KafkaJaasLoginModuleInitializer();
jaasConfig.setControlFlag("REQUIRED");
Map<String, String> options = new HashMap<>();
options.put("useKeyTab", "true");
options.put("storeKey", "true");
options.put("keyTab", "/etc/security/keytabs/kafka_client.keytab");
options.put("principal”, "kafka-client-1@EXAMPLE.COM");
jaasConfig.setOptions(options);
return jaasConfig;

4.2. Kafka Streams Support

Starting with version 1.1.4, Spring for Apache Kafka provides first-class support for Kafka Streams.
To use it from a Spring application, the kafka-streams jar must be present on classpath. It is an
optional dependency of the spring-kafka project and is not downloaded transitively.

4.2.1. Basics

The reference Apache Kafka Streams documentation suggests the following way of using the API:

// Use the builders to define the actual processing topology, e.g. to specify
// from which input topics to read, which stream operations (filter, map, etc.)
// should be called, and so on.

StreamsBuilder builder = ...; // when using the Kafka Streams DSL

// Use the configuration to tell your application where the Kafka cluster is,
// which serializers/deserializers to use by default, to specify security
settings,

// and so on.

StreamsConfig config = ...;

KafkaStreams streams = new KafkaStreams(builder, config);

// Start the Kafka Streams instance
streams.start();

// Stop the Kafka Streams instance
streams.close();

80

https://kafka.apache.org/documentation/streams

So, we have two main components:

e StreamsBuilder: With an API to build KStream (or KTable) instances.

* KafkaStreams: To manage the lifecycle of those instances.

All KStream instances exposed to a KafkaStreams instance by a single StreamsBuilder
are started and stopped at the same time, even if they have different logic. In other

0 words, all streams defined by a StreamsBuilder are tied with a single lifecycle
control. Once a KafkaStreams instance has been closed by streams.close(), it cannot
be restarted. Instead, a new KafkaStreams instance to restart stream processing
must be created.

4.2.2. Spring Management

To simplify using Kafka Streams from the Spring application context perspective and use the
lifecycle management through a container, the Spring for Apache Kafka introduces
StreamsBuilderFactoryBean. This is an AbstractFactoryBean implementation to expose a
StreamsBuilder singleton instance as a bean. The following example creates such a bean:

@Bean

public FactoryBean<StreamsBuilderFactoryBean>

myKStreamBuilder (KafkaStreamsConfiguration streamsConfig) {
return new StreamsBuilderFactoryBean(streamsConfig);

}

o Starting with version 2.2, the stream configuration is now provided as a
KafkaStreamsConfiguration object rather than a StreamsConfig.

The StreamsBuilderFactoryBean also implements SmartlLifecycle to manage the lifecycle of an
internal KafkaStreams instance. Similar to the Kafka Streams API, you must define the KStream
instances before you start the KafkaStreams. That also applies for the Spring API for Kafka Streams.
Therefore, when you use default autoStartup = true on the StreamsBuilderFactoryBean, you must
declare KStream instances on the StreamsBuilder before the application context is refreshed. For
example, KStream can be a regular bean definition, while the Kafka Streams API is used without any
impacts. The following example shows how to do so:

@Bean
public KStream<?, 7> kStream(StreamsBuilder kStreamBuilder) {

KStream<Integer, String> stream = kStreamBuilder.stream(STREAMING_TOPIC1);
// Fluent KStream API
return stream;

81

If you would like to control the lifecycle manually (for example, stopping and starting by some
condition), you can reference the StreamsBuilderFactoryBean bean directly by using the factory bean
(&) prefix. Since StreamsBuilderFactoryBean use its internal KafkaStreams instance, it is safe to stop
and restart it again. A new KafkaStreams is created on each start(). You might also consider using
different StreamsBuilderFactoryBean instances, if you would like to control the lifecycles for KStream
instances separately.

You also can specify KafkaStreams.Statelistener, Thread.UncaughtExceptionHandler, and
StateRestorelistener options on the StreamsBuilderFactoryBean, which are delegated to the internal
KafkaStreams instance. Also, apart from setting those options indirectly on
StreamsBuilderFactoryBean, starting with version 2.1.5, you can use a KafkaStreamsCustomizer
callback interface to configure an inner KafkaStreams instance. Note that KafkaStreamsCustomizer
overrides the options provided by StreamsBuilderFactoryBean. If you need to perform some
KafkaStreams operations directly, you can access that internal KafkaStreams instance by using
StreamsBuilderFactoryBean.getKafkaStreams(). You can autowire StreamsBuilderFactoryBean bean by
type, but you should be sure to use the full type in the bean definition, as the following example
shows:

@Bean
public StreamsBuilderFactoryBean myKStreamBuilder(KafkaStreamsConfiguration
streamsConfig) {

return new StreamsBuilderFactoryBean(streamsConfig);

}

@Autowired
private StreamsBuilderFactoryBean myKStreamBuilderFactoryBean;

Alternatively, you can add @Qualifier for injection by name if you use interface bean definition. The
following example shows how to do so:

@Bean
public FactoryBean<StreamsBuilder> myKStreamBuilder(KafkaStreamsConfiguration
streamsConfig) {

return new StreamsBuilderFactoryBean(streamsConfig);

}

@Autowired

@Qualifier("&myKStreamBuilder")

private StreamsBuilderFactoryBean myKStreamBuilderFactoryBean;

4.2.3. JSON Serialization and Deserialization

For serializing and deserializing data when reading or writing to topics or state stores in JSON
format, Spring Kafka provides a JsonSerde implementation that uses JSON, delegating to the

82

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html#beans-factory-extension-factorybean

JsonSerializer and IJsonDeserializer described in Serialization, Deserialization, and Message
Conversion. The JsonSerde implementation provides the same configuration options through its
constructor (target type or ObjectMapper). In the following example, we use the JsonSerde to serialize
and deserialize the Cat payload of a Kafka stream (the JsonSerde can be used in a similar fashion
wherever an instance is required):

stream.through(Serdes.Integer(), new JsonSerde<>((Cat.class), "cats");

o Since Kafka Streams do not support headers, the addTypeInfo property on the
JsonSerializer is ignored.

4.2.4. Using KafkaStreamBrancher

The KafkaStreamBrancher class introduces a more convenient way to build conditional branches on
top of KStream.

Consider the following example that does not use KafkaStreamBrancher:

KStream<String, String>[] branches = builder.stream("source").branch(

(key, value) -> value.contains("A"),

(key, value) -> value.contains("B"),

(key, value) -> true

)i
branches[0].to("A");
branches[1].to("B");
branches[2].to("C")

I

The following example uses KafkaStreamBrancher:

new KafkaStreamBrancher<String, String>()
.branch((key, value) -> value.contains("A"), ks -> ks.to("A"))
.branch((key, value) -> value.contains("B"), ks -> ks.to("B"))
//default branch should not necessarily be defined in the end of the chain!
.defaultBranch(ks -> ks.to("C"))
.onTopOf(builder.stream("source"));
//onTopOf method returns the provided stream so we can continue with method
chaining

4.2.5. Configuration

To configure the Kafka Streams environment, the StreamsBuilderFactoryBean requires a

83

KafkaStreamsConfiguration instance. See the Apache Kafka documentation for all possible options.

o Starting with version 2.2, the stream configuration is now provided as a
KafkaStreamsConfiguration object, rather than as a StreamsConfig.

To avoid boilerplate code for most cases, especially when you develop microservices, Spring for
Apache Kafka provides the @EnableKafkaStreams annotation, which you should placed on a
@Configuration class. All you need is to declare a KafkaStreamsConfiguration bean named
defaultKafkaStreamsConfig. A StreamsBuilder bean, named defaultKafkaStreamsBuilder, is
automatically declared in the application context. You can declare and use any additional
StreamsBuilderFactoryBean beans as well.

By default, when the factory bean is stopped, the KafkaStreams.cleanUp() method is called. Starting
with version 2.1.2, the factory bean has additional constructors, taking a CleanupConfig object that
has properties to let you control whether the cleanUp() method is called during start() or stop() or
neither.

4.2.6. Kafka Streams Example

The following example combines all the topics we have covered in this chapter:

84

https://kafka.apache.org/0102/documentation/#streamsconfigs

@Configuration

@EnableKafka

@EnableKafkaStreams

public static class KafkaStreamsConfig {

©Bean(name =
KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public KafkaStreamsConfiguration kStreamsConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "testStreams");
props.put(StreamsConfig.KEY_SERDE_CLASS_CONFIG,
Serdes.Integer().getClass().getName());
props.put(StreamsConfig.VALUE_SERDE_CLASS_CONFIG,
Serdes.String().getClass().getName());
props.put(StreamsConfig.TIMESTAMP_EXTRACTOR_CLASS_CONFIG,
WallclockTimestampExtractor.class.getName());
return new KafkaStreamsConfiguration(props);

}

@Bean
public KStream<Integer, String> kStream(StreamsBuilder kStreamBuilder) {
KStream<Integer, String> stream =
kStreamBuilder.stream("streamingTopic1");
stream
.mapValues(String::toUpperCase)
.groupByKey()
.reduce((String valuel, String value2) -> valuel + value2,
TimeWindows.of(1000),
"windowStore")
.toStream()
.map((windowedId, value) -> new KeyValue<>(windowedId.key(),
value))
.filter((i, s) -> s.length() > 40)
.to("streamingTopic2");

stream.print();

return stream;

4.3. Testing Applications

The spring-kafka-test jar contains some useful utilities to assist with testing your applications.

85

4.3.1. JUnit

0.s.kafka.test.utils.KafkaTestUtils provides some static methods to set up producer and
consumer properties. The following listing shows those method signatures:

/**

* Set up test properties for an {@code <Integer, String>} consumer.

* @param group the group id.

* @param autoCommit the auto commit.

* @param embeddedKafka a {@link EmbeddedKafkaBroker} instance.

* @return the properties.

*/

public static Map<String, Object> consumerProps(String group, String autoCommit,
EmbeddedKafkaBroker embeddedKafka) { ... }

/*'k

* Set up test properties for an {@code <Integer, String>} producer.

* @param embeddedKafka a {@link EmbeddedKafkaBroker} instance.

* @return the properties.

*/

public static Map<String, Object> senderProps(EmbeddedKafkaBroker embeddedKafka) {
. F

A JUnit 4 eRule wrapper for the EmbeddedKafkaBroker is provided to create an embedded Kafka and
an embedded Zookeeper server. (See @EmbeddedKafka Annotation for information about using
@EmbeddedKafka with JUnit 5). The following listing shows the signatures of those methods:

86

* Create embedded Kafka brokers.

* @param count the number of brokers.

* @param controlledShutdown passed into TestUtils.createBrokerConfig.

* @param topics the topics to create (2 partitions per).

*/

public EmbeddedKafkaRule(int count, boolean controlledShutdown, String... topics)
{...}

/**

Create embedded Kafka brokers.

@param count the number of brokers.

@param controlledShutdown passed into TestUtils.createBrokerConfig.

* @param partitions partitions per topic.

* @param topics the topics to create.

*/

public EmbeddedKafkaRule(int count, boolean controlledShutdown, int partitions,
String... topics) { ... }

L I I

The EmbeddedKafkaBroker class has a utility method that lets you consume for all the topics it created.
The following example shows how to use it:

Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT", "false",
embeddedKafka);
DefaultKafkaConsumerFactory<Integer, String> cf = new
DefaultKafkaConsumerFactory<Integer, String>(

consumerProps);
Consumer<Integer, String> consumer = cf.createConsumer();
embeddedKafka.consumeFromAl1EmbeddedTopics(consumer);

The KafkaTestUtils has some utility methods to fetch results from the consumer. The following
listing shows those method signatures:

87

* Poll the consumer, expecting a single record for the specified topic.

* @param consumer the consumer.

* @param topic the topic.

* @return the record.

* @throws org.junit.ComparisonFailure if exactly one record is not received.

*/

public static <K, V> ConsumerRecord<K, V> getSingleRecord(Consumer<K, V> consumer,
String topic) { ... }

/**

* Poll the consumer for records.

* @param consumer the consumer.

* @return the records.

*/

public static <K, V> ConsumerRecords<K, V> getRecords(Consumer<K, V> consumer) {

.}

The following example shows how to use KafkaTestUtils:

template.sendDefault(@, 2, "bar");
ConsumerRecord<Integer, String> received =
KafkaTestUtils.getSingleRecord(consumer, "topic");

When the embedded Kafka and embedded Zookeeper server are started by the EmbeddedKafkaBroker,
a system property named spring.embedded.kafka.brokers is set to the address of the Kafka brokers
and a system property named spring.embedded.zookeeper.connect is set to the address of Zookeeper.
Convenient constants (EmbeddedKafkaBroker.SPRING_EMBEDDED_KAFKA_BROKERS and
EmbeddedKafkaBroker.SPRING_EMBEDDED_ZOOKEEPER_CONNECT) are provided for this property.

With the EmbeddedKafkaBroker.brokerProperties(Map<String, String>), you can provide additional
properties for the Kafka servers. See Kafka Config for more information about possible broker
properties.

4.3.2. Configuring Topics

The following example configuration creates topics called cat and hat with five partitions, a topic
called thing1 with 10 partitions, and a topic called thing2 with 15 partitions:

88

https://kafka.apache.org/documentation/#brokerconfigs

public class MyTests {

@ClassRule
private static EmbeddedKafkaRule embeddedKafka = new EmbeddedKafkaRule(1,
false, 5, "cat", "hat");

@Test
public void test() {
embeddedKafkaRule.getEmbeddedKafka()
.addTopics(new NewTopic("thing1", 10, (short) 1), new
NewTopic("thing2", 15, (short) 1));

}

4.3.3. Using the Same Brokers for Multiple Test Classes

There is no built-in support for doing so, but you can use the same broker for multiple test classes
with something similar to the following:

89

public final class EmbeddedKafkaHolder {

private static EmbeddedKafkaRule embeddedKafka = new EmbeddedKafkaRule(1,
false);

private static boolean started;

public static EmbeddedKafkaRule getEmbeddedKafka() {
if (!started) {
try {
embeddedKafka.before();

}
catch (Exception e) {
throw new KafkaException(e);

}

started = true;

}
return embeddedKafka;

}

private EmbeddedKafkaHolder() {
super();

}

Then, in each test class, you can use something similar to the following:

static {
EmbeddedKafkaHolder.getEmbeddedKafka().addTopics(topicl, topic2);
}

private static EmbeddedKafkaRule embeddedKafka =
EmbeddedKafkaHolder.getEmbeddedKafka();

The preceding example provides no mechanism for shutting down the brokers
when all tests are complete. This could be a problem if, say, you run your tests in a

o Gradle daemon. You should not use this technique in such a situation, or you
should use something to call destroy() on the EmbeddedKafkaBroker when your tests
are complete.

4.3.4. @dEmbeddedKafka Annotation

We generally recommend that you use the rule as a @ClassRule to avoid starting and stopping the

90

broker between tests (and use a different topic for each test). Starting with version 2.0, if you use
Spring’s test application context caching, you can also declare a EmbeddedKafkaBroker bean, so a
single broker can be used across multiple test classes. For convenience, we provide a test class-level

annotation called eEmbeddedKafka to register the EmbeddedKafkaBroker bean. The following example
shows how to use it:

91

@RunWith(SpringRunner.class)
@DirtiesContext
@EmbeddedKafka(partitions = 1,
topics = {
KafkaStreamsTests.STREAMING TOPICT,
KafkaStreamsTests.STREAMING _TOPIC2 })
public class KafkaStreamsTests {

@Autowired
private EmbeddedKafkaBroker embeddedKafka;

@Test
public void someTest() {
Map<String, Object> consumerProps =
KafkaTestUtils.consumerProps("testGroup”, "true", this.embeddedKafka);
consumerProps.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
ConsumerFactory<Integer, String> cf = new
DefaultKafkaConsumerFactory<>(consumerProps);
Consumer<Integer, String> consumer = cf.createConsumer();
this.embeddedKafka.consumeFromAnEmbeddedTopic(consumer,
KafkaStreamsTests.STREAMING TOPIC2);
ConsumerRecords<Integer, String> replies =
KafkaTestUtils.getRecords(consumer);
assertThat(replies.count()).isGreaterThanOrEqualTo(1);

}

@Configuration
@EnableKafkaStreams
public static class KafkaStreamsConfiguration {

@Value("${" + EmbeddedKafkaBroker.SPRING_EMBEDDED_KAFKA BROKERS + "1}")
private String brokerAddresses;

@Bean(name =
KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
public KafkaStreamsConfiguration kStreamsConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, "testStreams");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,
this.brokerAddresses);
return new KafkaStreamsConfiguration(props);

}

Starting with version 2.2.4, you can also use the @EmbeddedKafka annotation to specify the Kafka

92

ports property.

The following example sets the topics, brokerProperties, and brokerPropertiesLocation attributes of
@EmbeddedKafka support property placeholder resolutions:

@TestPropertySource(locations = "classpath:/test.properties")
@EmbeddedKafka(topics = { "any-topic", "${kafka.topics.another-topic}" },
brokerProperties = { "log.dir=${kafka.broker.logs-dir}",

"listeners=PLAINTEXT://localhost:${kafka.broker.port}",
"auto.create.topics.enable=${kafka.broker.topics-
enable:true}" }
brokerPropertieslLocation = "classpath:/broker.properties")

In the preceding example, the property placeholders ${kafka.topics.another-topic},
${kafka.broker.logs-dir}, and ${kafka.broker.port} are resolved from the Spring Environment. In
addition, the broker properties are loaded from the broker.properties classpath resource specified
by the brokerPropertiesLocation. Property placeholders are resolved for the
brokerPropertiesLocation URL and for any property placeholders found in the resource. Properties
defined by brokerProperties override properties found in brokerPropertiesLocation.

You can use the @EmbeddedKafka annotation with JUnit 4 or JUnit 5.

4.3.5. Embedded Broker in @SpringBootTest Annotations

Spring Initializr now automatically adds the spring-kafka-test dependency in test scope to the
project configuration.

If your application uses the Kafka binder in spring-cloud-stream and if you want to
use an embedded broker for tests, you must remove the spring-cloud-stream-test-
support dependency, because it replaces the real binder with a test binder for test
cases. If you wish some tests to use the test binder and some to use the embedded
broker, tests that use the real binder need to disable the test binder by excluding
the binder auto configuration in the test class. The following example shows how
to do so:

@RunWith(SpringRunner.class)
@SpringBootTest(properties = "spring.autoconfigure.exclude="

+
"org.springframework.cloud.stream.test.binder.TestSupportBinderAuto
Configuration")
public class MyApplicationTests {

}

93

https://start.spring.io/

There are several ways to use an embedded broker in a Spring Boot application test.
They include:

* JUnit4 Class Rule

¢ @EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean

JUnit4 Class Rule

The following example shows how to use a JUnit4 class rule to create an embedded broker:

@RunWith(SpringRunner.class)
@SpringBootTest
public class MyApplicationTests {

@ClassRule
public static EmbeddedKafkaRule broker = new EmbeddedKafkaRule(1,
false, "someTopic");

@BeforeClass
public static void setup() {
System.setProperty("spring.kafka.bootstrap-servers",
broker.getEmbeddedKafka().getBrokersAsString());

}

@Autowired
private KafkaTemplate<String, String> template;

@Test
public void test() {

}

@EmbeddedKaftka Annotation or EmbeddedKafkaBroker Bean

The following example shows how to use an @EmbeddedKafka Annotation to create an embedded
broker:

94

@RunWith(SpringRunner.class)
@EmbeddedKafka(topics = "someTopic")
public class MyApplicationTests {

static {
System.setProperty(EmbeddedKafkaBroker.BROKER_LIST_PROPERTY,
"spring.kafka.bootstrap-servers");

}

@Autowired
private KafkaTemplate<String, String> template;

@Test
public void test() {

}

4.3.6. Hamcrest Matchers

The o.s.kafka.test.hamcrest.KafkaMatchers provides the following matchers:

95

/**

* @param key the key

* @param <K> the type.

* @return a Matcher that matches the key in a consumer record.

*/

public static <K> Matcher<ConsumerRecord<K, ?>> hasKey(K key) { ... }

/**

* @param value the value.

* @param <V> the type.

* @return 3 Matcher that matches the value in a consumer record.

*/

public static <V> Matcher<ConsumerRecord<?, V>> hasValue(V value) { ... }

/**

* @param partition the partition.

* @return a Matcher that matches the partition in a consumer record.

*/

public static Matcher<ConsumerRecord<?, 7>> hasPartition(int partition) { ... }

/**

* Matcher testing the timestamp of a {@link ConsumerRecord} asssuming the topic
has been set with
* {@link org.apache.kafka.common.record.TimestampType#CREATE_TIME CreateTime}.
*
* @param ts timestamp of the consumer record.
* @return a Matcher that matches the timestamp in a consumer record.
*/
public static Matcher<ConsumerRecord<?, 7?>> hasTimestamp(long ts) {
return hasTimestamp(TimestampType.CREATE_TIME, ts);

}

/**

* Matcher testing the timestamp of a {@link ConsumerRecord}

* @param type timestamp type of the record

* @param ts timestamp of the consumer record.

* @return a Matcher that matches the timestamp in a consumer record.

*/

public static Matcher<ConsumerRecord<?, 7?>> hasTimestamp(TimestampType type, long
ts) {

return new ConsumerRecordTimestampMatcher(type, ts);

}

4.3.7. Assert] Conditions

You can use the following Assert] conditions:

96

/**

* @param key the key

* @param <K> the type.

* @return a Condition that matches the key in a consumer record.

*/

public static <K> Condition<ConsumerRecord<K, 7>> key(K key) { ... }

/**

* @param value the value.

* @param <V> the type.

* @return 3 Condition that matches the value in a consumer record.

*/

public static <V> Condition<ConsumerRecord<?, V>> value(V value) { ... }

/**

* @param partition the partition.

* @return a Condition that matches the partition in a consumer record.

*/

public static Condition<ConsumerRecord<?, ?>> partition(int partition) { ... }

/**

* @param value the timestamp.
* @return a Condition that matches the timestamp value in a consumer record.
*/
public static Condition<ConsumerRecord<?, 7>> timestamp(long value) {
return new ConsumerRecordTimestampCondition(TimestampType.CREATE_TIME, value);

}

/**

* @param type the type of timestamp
* @param value the timestamp.
* @return a Condition that matches the timestamp value in a consumer record.
*/
public static Condition<ConsumerRecord<?, 7>> timestamp(TimestampType type, long
value) {
return new ConsumerRecordTimestampCondition(type, value);

}

4.3.8. Example

The following example brings together most of the topics covered in this chapter:

public class KafkaTemplateTests {

private static final String TEMPLATE_TOPIC = "templateTopic";

97

98

@ClassRule
public static EmbeddedKafkaRule embeddedKafka = new EmbeddedKafkaRule(1, true,
TEMPLATE _TOPIC);

@Test
public void testTemplate() throws Exception {
Map<String, Object> consumerProps = KafkaTestUtils.consumerProps("testT",
"false",
embeddedKafka);
DefaultKafkaConsumerFactory<Integer, String> cf =
new DefaultKafkaConsumerFactory<Integer,
String>(consumerProps);
ContainerProperties containerProperties = new
ContainerProperties(TEMPLATE_TOPIC);
KafkaMessagelListenerContainer<Integer, String> container =
new KafkaMessagelistenerContainer<>(cf,
containerProperties);
final BlockingQueue<ConsumerRecord<Integer, String>> records = new
LinkedBlockingQueue<>();
container.setupMessagelListener(new MessagelListener<Integer, String>() {

@0verride

public void onMessage(ConsumerRecord<Integer, String> record) {
System.out.println(record);
records.add(record);

1)

container.setBeanName("templateTests");

container.start();

ContainerTestUtils.waitForAssignment(container,
embeddedKafka.getEmbeddedKafka().getPartitionsPerTopic());

Map<String, Object> senderProps =

KafkaTestUtils.senderProps(embeddedKafka.getEmbeddedKafka().getBrokersAsString());
ProducerFactory<Integer, String> pf =
new DefaultKafkaProducerFactory<Integer,
String>(senderProps);
KafkaTemplate<Integer, String> template = new KafkaTemplate<>(pf);
template.setDefaultTopic(TEMPLATE_TOPIC);
template.sendDefault("foo");
assertThat(records.poll(10, TimeUnit.SECONDS), hasValue("foo"));
template.sendDefault(@, 2, "bar");
ConsumerRecord<Integer, String> received = records.poll(10,
TimeUnit.SECONDS);
assertThat(received, hasKey(2));
assertThat(received, hasPartition(0));
assertThat(received, hasValue("bar"));
template.send(TEMPLATE_TOPIC, @, 2, "baz");
received = records.poll(10, TimeUnit.SECONDS);
assertThat(received, hasKey(2));

assertThat(received, hasPartition(0));
assertThat(received, hasValue("baz"));

The preceding example uses the Hamcrest matchers. With Assert], the final part looks like the
following code:

assertThat(records.pol1(10, TimeUnit.SECONDS)).has(value("foo0"));
template.sendDefault(@, 2, "bar");

ConsumerRecord<Integer, String> received = records.poll(10, TimeUnit.SECONDS);
assertThat(received).has(key(2));
assertThat(received).has(partition(0));
assertThat(received).has(value("bar"));
template.send(TEMPLATE_TOPIC, @, 2, "baz");

received = records.poll(10, TimeUnit.SECONDS);
assertThat(received).has(key(2));
assertThat(received).has(partition(0));
assertThat(received).has(value("baz"));

99

Chapter 5. Spring Integration

This part of the reference guide shows how to use the spring-integration-kafka module of Spring
Integration.

5.1. Spring Integration for Apache Kafka

This documentation pertains to versions 2.0.0 and above. For documentation for earlier releases,
see the 1.3.x README.

Spring Integration Kafka is now based on the Spring for Apache Kafka project. It provides the
following components:

* Outbound Channel Adapter

* Message-driven Channel Adapter

* Outbound Gateway

* Inbound Gateway

5.1.1. Outbound Channel Adapter

The Outbound channel adapter is used to publish messages from a Spring Integration channel to
Kafka topics. The channel is defined in the application context and then wired into the application
that sends messages to Kafka. Sender applications can publish to Kafka by using Spring Integration
messages, which are internally converted to Kafka messages by the outbound channel adapter, as
follows:

* The payload of the Spring Integration message is used to populate the payload of the Kafka
message.
* By default, the kafka_messageKey header of the Spring Integration message is used to populate

the key of the Kafka message.

You can customize the target topic and partition for publishing the message through the
kafka_topic and kafka_partitionId headers, respectively.

In addition, the <int-kafka:outbound-channel-adapter> provides the ability to extract the key, target
topic, and target partition by applying SpEL expressions on the outbound message. To that end, it
supports three mutually exclusive pairs of attributes:

* topic and topic-expression

* message-key and message-key-expression

e partition-id and partition-id-expression

These let you specify topic, message-key, and partition-id, respectively, as static values on the
adapter or to dynamically evaluate their values at runtime against the request message.

100

https://github.com/spring-projects/spring-integration-kafka/blob/1.3.x/README.md
https://projects.spring.io/spring-kafka/

The KafkaHeaders interface (provided by spring-kafka) contains constants used for
interacting with headers. The messageKey and topic default headers now require a
kafka_ prefix. When migrating from an earlier version that used the old headers,
o you need to specify message-key-expression="headers['messageKey']" and topic-
expression="headers['topic']" on the <int-kafka:outbound-channel-adapter>.
Alternatively, you can change the headers upstream to the new headers from
KafkaHeaders by using a <header-enricher> or a MessageBuilder. If you use constant
values, you can also configure them on the adapter by using topic and message-key.

NOTE : If the adapter is configured with a topic or message key (either with a constant or
expression), those are used and the corresponding header is ignored. If you wish the header to
override the configuration, you need to configure it in an expression, such as the following:

topic-expression="headers['topic'] != null ? headers['topic'] : 'myTopic""

The adapter requires a KafkaTemplate.

The following example shows how to configure the Kafka outbound channel adapter with XML:

<int-kafka:outbound-channel-adapter id="kafkaOutboundChannelAdapter"
kafka-template="template"
auto-startup="false"
channel="1inputToKafka"
topic="foo"
sync="false"
message-key-expression=""bar""
send-failure-channel="failures"
send-success-channel="successes"
error-message-strategy="ems"
partition-id-expression="2">

</int-kafka:outbound-channel-adapter>

<bean id="template" class="org.springframework.kafka.core.KafkaTemplate">
<constructor-arg>
<bean class="org.springframework.kafka.core.DefaultKafkaProducerFactory">
<constructor-arg>
<map>
<entry key="bootstrap.servers" value="localhost:9092" />
. <!-- more producer properties -->
</map>
</constructor-arg>
</bean>
</constructor-arg>
</bean>

101

The adapter requires a KafkaTemplate, which, in turn, requires a suitably configured
KafkaProducerFactory.

The following example shows how to configure the Kafka outbound channel adapter with Java:

@Bean

@ServiceActivator(inputChannel = "toKafka")
public MessageHandler handler() throws Exception {
KafkaProducerMessageHandler<String, String> handler =

handler.
handler.
handler.
handler.

new KafkaProducerMessageHandler<>(kafkaTemplate());
setTopicExpression(new LiteralExpression("someTopic"));
setMessageKeyExpression(new LiteralExpression("someKey"));
setSuccessChannel(successes());
setFailureChannel(failures());

return handler;

}

@Bean

public KafkaTemplate<String, String> kafkaTemplate() {
return new KafkaTemplate<>(producerFactory());

}

@Bean

public ProducerFactory<String, String> producerFactory() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddress);
// set more properties
return new DefaultKafkaProducerFactory<>(props);

The following example shows how to configure the Kafka outbound channel adapter Spring
Integration Java DSL:

102

@Bean
public ProducerFactory<Integer, String> producerFactory() {

return new
DefaultKafkaProducerFactory<>(KafkaTestUtils.producerProps(embeddedKafka));
}

@Bean
public IntegrationFlow sendToKafkaFlow() {
return f -> f
.<String>split(p -> Stream.generate(() -> p).limit(101).iterator(),
null)
.publishSubscribeChannel(c -> ¢
.subscribe(sf -> sf.handle(
kafkaMessageHandler (producerFactory(), TEST_TOPIC1)

.timestampExpression("T(Long).valueOf('1487694048633")"),
e -> e.id("kafkaProducer1")))
.subscribe(sf -> sf.handle(
kafkaMessageHandler (producerFactory(), TEST_TOPIC2)
.timestamp(m -> 1487694048644L),
e -> e.id("kafkaProducer2")))
)i
}

@Bean

public DefaultKafkaHeaderMapper mapper() {
return new DefaultKafkaHeaderMapper();

}

private KafkaProducerMessageHandlerSpec<Integer, String, 7> kafkaMessageHandler(
ProducerFactory<Integer, String> producerFactory, String topic) {
return Kafka

.outboundChannelAdapter (producerFactory)

.messageKey(m -> m
.getHeaders()
.get(IntegrationMessageHeaderAccessor.SEQUENCE_NUMBER))

.headerMapper (mapper())

.partitionId(m -> 10)

.topicExpression("headers[kafka_topic] ?: + topic + "'")

.configureKafkaTemplate(t -> t.id("kafkaTemplate:" + topic));

If a send-failure-channel (sendFailureChannel) is provided and a send failure (sync or async) is
received, an ErrorMessage is sent to the channel. The payload is a KafkaSendFailureException with
failedMessage, record (the ProducerRecord) and cause properties. You can override the
DefaultErrorMessageStrategy by setting the error-message-strategy property.

If a send-success-channel (sendSuccessChannel) is provided, a message with a payload of type

103

org.apache.kafka.clients.producer.RecordMetadata is sent after a successful send.

5.1.2. Message-driven Channel Adapter

The KafkaMessageDrivenChannelAdapter (<int-kafka:message-driven-channel-adapter>) uses a spring-
kafka KafkaMessagelListenerContainer or ConcurrentListenerContainer.

Starting with spring-integration-kafka version 2.1, the mode attribute is available. It can accept
values of record or batch (default: record). For record mode, each message payload is converted
from a single ConsumerRecord. For batch mode, the payload is a list of objects that are converted from
all the ConsumerRecord instances returned by the consumer poll. As with the batched @KafkalListener,
the KafkaHeaders.RECEIVED MESSAGE_KEY, KafkaHeaders.RECEIVED_PARTITION_ID,
KafkaHeaders.RECEIVED_TOPIC, and KafkaHeaders.OFFSET headers are also lists, with positions
corresponding to the position in the payload.

The following example shows how to configure a message-driven channel adapter with XML:

104

<int-kafka:message-driven-channel-adapter
id="kafkalListener"
listener-container="container1"
auto-startup="false"
phase="100"
send-timeout="5000"
mode="record"
retry-template="template"
recovery-callback="callback"
error-message-strategy="ems"
channel="someChannel"
error-channel="errorChannel" />

<bean id="container1"
class="org.springframework.kafka.listener.KafkaMessagelListenerContainer">
<constructor-arg>

<bean class="org.springframework.kafka.core.DefaultKafkaConsumerFactory">

<constructor-arg>
<map>
<entry key="bootstrap.servers" value="localhost:9092" />
</map>
</constructor-arg>
</bean>
</constructor-arg>
<constructor-arg>
<bean
class="org.springframework.kafka.listener.config.ContainerProperties">
<constructor-arg name="topics" value="foo" />
</bean>
</constructor-arg>

</bean>

The following example shows how to configure a message-driven channel adapter with Java:

105

@Bean
public KafkaMessageDrivenChannelAdapter<String, String>
adapter(KafkaMessageListenerContainer<String, String> container) {
KafkaMessageDrivenChannelAdapter<String, String>
kafkaMessageDrivenChannelAdapter =
new KafkaMessageDrivenChannelAdapter<>(container,
ListenerMode.record);
kafkaMessageDrivenChannelAdapter.setOutputChannel(received());
return kafkaMessageDrivenChannelAdapter;

}

@Bean
public KafkaMessagelListenerContainer<String, String> container() throws Exception
{

ContainerProperties properties = new ContainerProperties(this.topic);

// set more properties

return new KafkaMessagelListenerContainer<>(consumerFactory(), properties);

}

@Bean

public ConsumerFactory<String, String> consumerFactory() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, this.brokerAddress);
// set more properties
return new DefaultKafkaConsumerFactory<>(props);

The following example shows how to configure a message-driven channel adapter with the Spring
Integration Java DSL:

106

©Bean
public IntegrationFlow topicilListenerFromKafkaFlow() {
return IntegrationFlows
.from(Kafka.messageDrivenChannelAdapter(consumerFactory(),
KafkaMessageDrivenChannelAdapter.ListenerMode.record,
TEST_TOPICT1)
.configureListenerContainer(c ->

c.ackMode(AbstractMessagelistenerContainer.AckMode.MANUAL)
.id("topiclListenerContainer"))
.recoveryCallback(new
ErrorMessageSendingRecoverer(errorChannel(),
new RawRecordHeaderErrorMessageStrategy()))
.retryTemplate(new RetryTemplate())
.filterInRetry(true))
.filter(Message.class, m ->
m.getHeaders().qget(KafkaHeaders.RECEIVED_MESSAGE_KEY,
Integer.class) < 101,
f -> f.throwExceptionOnRejection(true))
.<String, String>transform(String::toUpperCase)
.channel(c -> c.queue("listeningFromKafkaResults1"))
-get();

Received messages have certain headers populated. See the KafkaHeaders class for more
information.

The Consumer object (in the kafka_consumer header) is not thread-safe. You must
invoke its methods only on the thread that calls the listener within the adapter. If
you hand off the message to another thread, you must not call its methods.

When a retry-template is provided, delivery failures are retried according to its retry policy. An
error-channel is not allowed in this case. You can use the recovery-callback to handle the error
when retries are exhausted. In most cases, this is an ErrorMessageSendingRecoverer that sends the
ErrorMessage to a channel.

When building an ErrorMessage (for use in the error-channel or recovery-callback), you can
customize the error message by setting the error-message-strategy property. By default, a
RawRecordHeaderErrorMessageStrategy is used, to provide access to the converted message as well as
the raw ConsumerRecord.

Starting with Spring for Apache Kafka version 2.2 (Spring Integration Kafka 3.1), you can also use
the container factory that 1is wused for @Kafkalistener annotations to create
ConcurrentMessagelistenerContainer instances for other purposes. See Container factory for an
example.

With the Java DSL, the container does not have to be configured as a @Bean, because the DSL

107

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/support/KafkaHeaders.html
https://docs.spring.io/spring-kafka/api/org/springframework/kafka/support/KafkaHeaders.html

registers the container as a bean. The following example shows how to do so:

@Bean
public IntegrationFlow topic2ListenerFromKafkaFlow() {
return IntegrationFlows

.from(Kafka.messageDrivenChannelAdapter(kafkalListenerContainerFactory().createCont
ainer (TEST_TOPIC2),
KafkaMessageDrivenChannelAdapter.ListenerMode.record)
.id("topic2Adapter"))

get();

Notice that, in this case, the adapter is given an id (topic2Adapter). The container is registered in the
application context with a name of topic2Adapter.container. If the adapter does not have an id
property, the container’s bean name is the container’s fully qualified class name plus #n, where n is
incremented for each container.

5.1.3. Outbound Gateway

The outbound gateway is for request/reply operations. It differs from most Spring Integration
gateways in that the sending thread does not block in the gateway and the reply is processed on the
reply listener container thread. If your code invokes the gateway behind a synchronous Messaging
Gateway, the user thread blocks there until the reply is received (or a timeout occurs).

The gateway does not accept requests until the reply container has been assigned

o its topics and partitions. It is suggested that you add a ConsumerRebalancelistener to
the template’s reply container properties and wait for the onPartitionsAssigned
call before sending messages to the gateway.

The following example shows how to configure a gateway with Java:

@Bean
@ServiceActivator(inputChannel = "kafkaRequests", outputChannel = "kafkaReplies")
public KafkaProducerMessageHandler<String, String> outGateway(
ReplyingKafkaTemplate<String, String, String> kafkaTemplate) {
return new KafkaProducerMessageHandler<>(kafkaTemplate);

Notice that the same class as the outbound channel adapter is used, the only difference being that
the Kafka template passed into the constructor is a ReplyingKafkaTemplate. See Using
ReplyingKafkaTemplate for more information.

108

https://docs.spring.io/spring-integration/reference/html/messaging-endpoints-chapter.html#gateway
https://docs.spring.io/spring-integration/reference/html/messaging-endpoints-chapter.html#gateway

The outbound topic, partition, key, and so on are determined in the same way as the outbound
adapter. The reply topic is determined as follows:

1. A message header named KafkaHeaders.REPLY_TOPIC (if present, it must have a String or byte[]
value) is validated against the template’s reply container’s subscribed topics.

2. If the template’s replyContainer is subscribed to only one topic, it is used.

You can also specify a KafkaHeaders.REPLY_PARTITION header to determine a specific partition to be
used for replies. Again, this is validated against the template’s reply container’s subscriptions.

The following example shows how to configure an outbound gateway with the Java DSL:

@Bean
public IntegrationFlow outboundGateFlow(
ReplyingKafkaTemplate<String, String, String> kafkaTemplate) {
return IntegrationFlows.from("kafkaRequests")
.handle(Kafka.outboundGateway(kafkaTemplate))
.channel("kafkaReplies")
.get();

Alternatively, you can also use a configuration similar to the following bean:

@Bean
public IntegrationFlow outboundGateFlow() {
return IntegrationFlows.from("kafkaRequests")
.handle(Kafka.outboundGateway(producerFactory(), replyContainer())
.configureKafkaTemplate(t -> t.replyTimeout(30_000)))
.channel("kafkaReplies")

.get();
}
O XML configuration is not currently available for this component.
5.1.4. Inbound Gateway

The inbound gateway is for request/reply operations.

The following example shows how to configure an inbound gateway with Java:

109

@Bean

public KafkaInboundGateway<Integer, String, String> inboundGateway(
AbstractMessagelListenerContainer<Integer, String>container,
KafkaTemplate<Integer, String> replyTemplate) {

KafkaInboundGateway<Integer, String, String> gateway =
new KafkaInboundGateway<>(container, replyTemplate);

gateway.setRequestChannel(requests);

gateway.setReplyChannel(replies);

gateway.setReplyTimeout(30_000);

return gateway,

The following example shows how to configure a simple upper case converter with the Java DSL:

@Bean
public IntegrationFlow serverGateway(
ConcurrentMessagelistenerContainer<Integer, String> container,
KafkaTemplate<Integer, String> replyTemplate) {
return IntegrationFlows
.from(Kafka.inboundGateway(container, template)
.replyTimeout(30_000))
.<String, String>transform(String::toUpperCase)
-get();

Alternatively, you could configure an upper-case converter by using code similar to the following:

©Bean
public IntegrationFlow serverGateway() {
return IntegrationFlows
.from(Kafka.inboundGateway(consumerFactory(), containerProperties(),
producerFactory())
.replyTimeout(30_000))
.<String, String>transform(String::toUpperCase)
.get();

o XML configuration is not currently available for this component.

Starting with Spring for Apache Kafka version 2.2 (Spring Integration Kafka 3.1), you can also use
the container factory that is wused for @Kafkalistener annotations to create

110

ConcurrentMessagelistenerContainer instances for other purposes. See Container factory and
Message-driven Channel Adapter for examples.

5.1.5. Message Conversion

A StringlsonMessageConverter is provided. See Serialization, Deserialization, and Message
Conversion for more information.

When using this converter with a message-driven channel adapter, you can specify the type to
which you want the incoming payload to be converted. This is achieved by setting the payload-type
attribute (payloadType property) on the adapter. The following example shows how to do so in XML
configuration:

<int-kafka:message-driven-channel-adapter
id="kafkalistener"
listener-container="container1"
auto-startup="false"
phase="100"
send-timeout="5000"
channel="nul1Channel"
message-converter="messageConverter"
payload-type="com.example.Foo"
error-channel="errorChannel" />

<bean id="messageConverter"

class="org.springframework.kafka.support.converter.MessagingMessageConverter"/>

The following example shows how to set the payload-type attribute (payloadType property) on the
adapter in Java configuration:

@Bean
public KafkaMessageDrivenChannelAdapter<String, String>
adapter(KafkaMessagelListenerContainer<String, String> container) {
KafkaMessageDrivenChannelAdapter<String, String>
kafkaMessageDrivenChannelAdapter =
new KafkaMessageDrivenChannelAdapter<>(container,
ListenerMode.record);
kafkaMessageDrivenChannelAdapter.setOutputChannel(received());
kafkaMessageDrivenChannelAdapter.setMessageConverter(converter());
kafkaMessageDrivenChannelAdapter.setPayloadType(Foo.class);
return kafkaMessageDrivenChannelAdapter;

111

5.1.6. Null Payloads and Log Compaction 'Tombstone' Records

Spring Messaging Message<?> objects cannot have null payloads. When you use the Kafka endpoints,
null payloads (also known as tombstone records) are represented by a payload of type KafkaNull.
See Null Payloads and Log Compaction of 'Tombstone' Records for more information.

Starting with version 3.1 of Spring Integration Kafka, such records can now be received by Spring
Integration POJO methods with a true null value instead. To do so, mark the parameter with
@Payload(required = false). The following example shows how to do so:

@ServiceActivator(inputChannel = "fromSomeKafkaInboundEndpoint")
public void in(@Header (KafkaHeaders.RECEIVED_MESSAGE_KEY) String key,
@Payload(required = false) Customer customer) {
// customer is null if a tombstone record

5.1.7. What’s New in Spring Integration for Apache Kafka

See the Spring for Apache Kafka Project Page for a matrix of compatible spring-kafka and kafka-
clients versions.

2.1.x

The 2.1.x branch introduced the following changes:

» Update to spring-kafka 1.1.x, including support of batch payloads

» Support sync outbound requests in XML configuration

» Support payload-type for inbound channel adapters

» Support for enhanced error handling for the inbound channel adapter (2.1.1)
» Support for send success and failure messages (2.1.2)

2.2.X

The 2.2.x branch introduced the following changes:

» Update to spring-kafka 1.2.x

2.3.x

The 2.3.x branch introduced the following changes:

» Update to spring-kafka 1.3.x, including support for transactions and header mapping provided
by kafka-clients 0.11.0.0

» Support for record timestamps

112

https://projects.spring.io/spring-kafka/

3.0.x

Update to spring-kafka 2.1.x and kafka-clients 1.0.0
» Support ConsumerAwareMessagelistener (Consumer is available in a message header)
* Update to Spring Integration 5.0 and Java 8

* Moved Java DSL to the main project

Added inbound and outbound gateways (3.0.2)

3.1.x

» Update to spring-kafka 2.2.x and kafka-clients 2.0.0
» Support tombstones in EIP POJO Methods

113

Chapter 6. Other Resources

In addition to this reference documentation, we recommend a number of other resources that may
help you learn about Spring and Apache Kafka.

* Apache Kafka Project Home Page

» Spring for Apache Kafka Home Page

» Spring for Apache Kafka GitHub Repository

» Spring Integration Kafka Extension GitHub Repository

114

https://kafka.apache.org/
https://projects.spring.io/spring-kafka/
https://github.com/spring-projects/spring-kafka
https://github.com/spring-projects/spring-integration-kafka

Appendix A: Override Dependencies to use
the 2.1.x kafka-clients with an Embedded
Broker

When you use spring-kafka-test (version 2.2.x) with the 2.1.x kafka-clients jar, you need to
override certain transitive dependencies, as follows:

maven

115

<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>2.2.15.RELEASE</version>
</dependency>

<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka-test</artifactId>
<version>2.2.15.RELEASE</version>
<exclusions>
<exclusion>
<groupld>org.apache.kafka</groupld>
<artifactId>kafka_2.11</artifactId>
</exclusion>
</exclusions>
<scope>test</scope>
</dependency>

<dependency>
<groupId>org.apache.kafka</groupld>
<artifactId>kafka-clients</artifactId>
<version>2.1.1</version>

</dependency>

<dependency>
<groupld>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.1.1</version>
<classifier>test</classifier>
</dependency>

<dependency>
<groupIld>org.apache.kafka</groupIld>
<artifactId>kafka_2.12</artifactId>
<version>2.1.1</version>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.apache.kafka</groupIld>
<artifactId>kafka_2.12</artifactId>
<version>2.1.1</version>
<classifier>test</classifier>
<scope>test</scope>

</dependency>

gradle

116

dependencies {
implementation 'org.springframework.kafka:spring-kafka:2.2.15.RELEASE'

implementation 'org.apache.kafka:kafka-clients:2.1.1"

testImplementation ('org.springframework.kafka:spring-kafka-
test:2.2.15.RELEASE") {

exclude module: 'kafka_2.11'

}

testImplementation 'org.apache.kafka:kafka-clients:2.1.1:test’

testImplementation 'org.apache.kafka:kafka_2.12:2.1.1"

testImplementation 'org.apache.kafka:kafka_2.12:2.1.1:test’

Note that when switching to scala 2.12 (recommended for 2.1.x and higher), the 2.11 version must

be excluded from spring-kafka-test.

117

Appendix B: Change History

B.1. Changes between 2.0 and 2.1

B.1.1. Kafka Client Version

This version requires the 1.0.0 kafka-clients or higher.

ﬁ The 1.1.x client is supported with version 2.1.5, but you need to override
dependencies as described in [deps-for-11x].

The 1.1.x client is supported natively in version 2.2.

B.1.2. JSON Improvements

The StringJsonMessageConverter and JsonSerializer now add type information in Headers, letting the
converter and JsonDeserializer create specific types on reception, based on the message itself
rather than a fixed configured type. See Serialization, Deserialization, and Message Conversion for
more information.

B.1.3. Container Stopping Error Handlers

Container error handlers are now provided for both record and batch listeners that treat any
exceptions thrown by the listener as fatal. They stop the container. See Handling Exceptions for
more information.

B.1.4. Pausing and Resuming Containers

The listener containers now have pause() and resume() methods (since version 2.1.3). See Pausing
and Resuming Listener Containers for more information.

B.1.5. Stateful Retry

Starting with version 2.1.3, you can configure stateful retry. See Stateful Retry for more
information.

B.1.6. Client ID

Starting with version 2.1.1, you can now set the client.id prefix on @Kafkalistener. Previously, to
customize the client ID, you needed a separate consumer factory (and container factory) per
listener. The prefix is suffixed with -n to provide unique client IDs when you use concurrency.

B.1.7. Logging Offset Commits

By default, logging of topic offset commits is performed with the DEBUG logging level. Starting with
version 2.1.2, a new property in ContainerProperties called commitLoglevel lets you specify the log
level for these messages. See Using KafkaMessagelListenerContainer for more information.

118

B.1.8. Default @KafkaHandler

Starting with version 2.1.3, you can designate one of the @KafkaHandler annotations on a class-level
@KafkalListener as the default. See @Kafkalistener on a Class for more information.

B.1.9. ReplyingKafkaTemplate

Starting with version 2.1.3, a subclass of KafkaTemplate is provided to support request/reply
semantics. See Using ReplyingKafkaTemplate for more information.

B.1.10. ChainedKafkaTransactionManager

Version 2.1.3 introduced the ChainedKafkaTransactionManager. See Using
ChainedKafkaTransactionManager for more information.

B.1.11. Migration Guide from 2.0

See the 2.0 to 2.1 Migration guide.

B.2. Changes Between 1.3 and 2.0

B.2.1. Spring Framework and Java Versions

The Spring for Apache Kafka project now requires Spring Framework 5.0 and Java 8.

B.2.2. @KafkalListener Changes

You can now annotate @Kafkalistener methods (and classes and @KafkaHandler methods) with
@SendTo. If the method returns a result, it is forwarded to the specified topic. See Forwarding
Listener Results using @SendTo for more information.

B.2.3. Message Listeners

Message listeners can now be aware of the Consumer object. See Message Listeners for more
information.

B.2.4. Using ConsumerAwareRebalancelistener

Rebalance listeners can now access the Consumer object during rebalance notifications. See
Rebalancing Listeners for more information.

B.3. Changes Between 1.2 and 1.3

B.3.1. Support for Transactions

The 0.11.0.0 client library added support for transactions. The KafkaTransactionManager and other
support for transactions have been added. See Transactions for more information.

119

https://github.com/spring-projects/spring-kafka/wiki/Spring-for-Apache-Kafka-2.0-to-2.1-Migration-Guide

B.3.2. Support for Headers

The 0.11.0.0 client library added support for message headers. These can now be mapped to and
from spring-messaging MessageHeaders. See Message Headers for more information.

B.3.3. Creating Topics

The 0.11.0.0 client library provides an AdminClient, which you can use to create topics. The
KafkaAdmin uses this client to automatically add topics defined as @Bean instances.

B.3.4. Support for Kafka Timestamps

KafkaTemplate now supports an API to add records with timestamps. New KafkaHeaders have been
introduced regarding timestamp support. Also, new KafkaConditions.timestamp() and
KafkaMatchers.hasTimestamp() testing utilities have been added. See Using KafkaTemplate,
@Kafkalistener Annotation, and Testing Applications for more details.

B.3.5. @KafkalListener Changes

You can now configure a KafkalistenerErrorHandler to handle exceptions. See Handling Exceptions
for more information.

By default, the @KafkalListener id property is now used as the group.id property, overriding the
property configured in the consumer factory (if present). Further, you can explicitly configure the
groupId on the annotation. Previously, you would have needed a separate container factory (and
consumer factory) to use different group.id values for listeners. To restore the previous behavior of
using the factory configured group.id, set the idIsGroup property on the annotation to false.

B.3.6. @EmbeddedKafka Annotation

For convenience, a test class-level @EmbeddedKafka annotation is provided, to register KafkaEmbedded
as a bean. See Testing Applications for more information.

B.3.7. Kerberos Configuration

Support for configuring Kerberos is now provided. See Kerberos for more information.

B.4. Changes between 1.1 and 1.2

This version uses the 0.10.2.x client.

B.5. Changes between 1.0 and 1.1

B.5.1. Kafka Client

This version uses the Apache Kafka 0.10.x.x client.

120

B.5.2. Batch Listeners

Listeners can be configured to receive the entire batch of messages returned by the consumer.poll()
operation, rather than one at a time.

B.5.3. Null Payloads

Null payloads are used to “delete” keys when you use log compaction.

B.5.4. Initial Offset

When explicitly assigning partitions, you can now configure the initial offset relative to the current
position for the consumer group, rather than absolute or relative to the current end.

B.5.5. Seek

You can now seek the position of each topic or partition. You can use this to set the initial position
during initialization when group management is in use and Kafka assigns the partitions. You can
also seek when an idle container is detected or at any arbitrary point in your application’s
execution. See Seeking to a Specific Offset for more information.

121

	Spring for Apache Kafka
	Table of Contents
	Chapter 1. Preface
	Chapter 2. What’s new?
	2.1. What’s New in 2.2 Since 2.1
	2.1.1. Kafka Client Version
	2.1.2. Class and Package Changes
	2.1.3. After Rollback Processing
	2.1.4. ConcurrentKafkaListenerContainerFactory Changes
	2.1.5. Listener Container Changes
	2.1.6. @KafkaListener Changes
	2.1.7. Header Mapping Changes
	2.1.8. Embedded Kafka Changes
	2.1.9. JsonSerializer/Deserializer Enhancements
	2.1.10. Kafka Streams Changes
	2.1.11. Transactional ID

	Chapter 3. Introduction
	3.1. Quick Tour for the Impatient
	3.1.1. Compatibility
	3.1.2. A Very, Very Quick Example
	3.1.3. With Java Configuration
	3.1.4. Even Quicker, with Spring Boot

	Chapter 4. Reference
	4.1. Using Spring for Apache Kafka
	4.1.1. Configuring Topics
	4.1.2. Sending Messages
	Using KafkaTemplate
	Transactions
	Using ReplyingKafkaTemplate

	4.1.3. Receiving Messages
	Message Listeners
	Message Listener Containers
	@KafkaListener Annotation
	Container Thread Naming
	@KafkaListener as a Meta Annotation
	@KafkaListener on a Class
	@KafkaListener Lifecycle Management
	@KafkaListener @Payload Validation
	Rebalancing Listeners
	Forwarding Listener Results using @SendTo
	Filtering Messages
	Retrying Deliveries
	Stateful Retry
	Detecting Idle and Non-Responsive Consumers
	Topic/Partition Initial Offset
	Seeking to a Specific Offset
	Container factory
	Thread Safety

	4.1.4. Pausing and Resuming Listener Containers
	4.1.5. Events
	4.1.6. Serialization, Deserialization, and Message Conversion
	Mapping Types
	Spring Messaging Message Conversion
	Using ErrorHandlingDeserializer
	Payload Conversion with Batch Listeners
	ConversionService Customization

	4.1.7. Message Headers
	4.1.8. Null Payloads and Log Compaction of 'Tombstone' Records
	4.1.9. Handling Exceptions
	Listener Error Handlers
	Container Error Handlers
	Consumer-Aware Container Error Handlers
	Seek To Current Container Error Handlers
	Container Stopping Error Handlers
	After-rollback Processor
	Publishing Dead-letter Records

	4.1.10. Kerberos

	4.2. Kafka Streams Support
	4.2.1. Basics
	4.2.2. Spring Management
	4.2.3. JSON Serialization and Deserialization
	4.2.4. Using KafkaStreamBrancher
	4.2.5. Configuration
	4.2.6. Kafka Streams Example

	4.3. Testing Applications
	4.3.1. JUnit
	4.3.2. Configuring Topics
	4.3.3. Using the Same Brokers for Multiple Test Classes
	4.3.4. @EmbeddedKafka Annotation
	4.3.5. Embedded Broker in @SpringBootTest Annotations
	JUnit4 Class Rule
	@EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean

	4.3.6. Hamcrest Matchers
	4.3.7. AssertJ Conditions
	4.3.8. Example

	Chapter 5. Spring Integration
	5.1. Spring Integration for Apache Kafka
	5.1.1. Outbound Channel Adapter
	5.1.2. Message-driven Channel Adapter
	5.1.3. Outbound Gateway
	5.1.4. Inbound Gateway
	5.1.5. Message Conversion
	5.1.6. Null Payloads and Log Compaction 'Tombstone' Records
	5.1.7. What’s New in Spring Integration for Apache Kafka
	2.1.x
	2.2.x
	2.3.x
	3.0.x
	3.1.x

	Chapter 6. Other Resources
	Appendix A: Override Dependencies to use the 2.1.x kafka-clients with an Embedded Broker
	Appendix B: Change History
	B.1. Changes between 2.0 and 2.1
	B.1.1. Kafka Client Version
	B.1.2. JSON Improvements
	B.1.3. Container Stopping Error Handlers
	B.1.4. Pausing and Resuming Containers
	B.1.5. Stateful Retry
	B.1.6. Client ID
	B.1.7. Logging Offset Commits
	B.1.8. Default @KafkaHandler
	B.1.9. ReplyingKafkaTemplate
	B.1.10. ChainedKafkaTransactionManager
	B.1.11. Migration Guide from 2.0

	B.2. Changes Between 1.3 and 2.0
	B.2.1. Spring Framework and Java Versions
	B.2.2. @KafkaListener Changes
	B.2.3. Message Listeners
	B.2.4. Using ConsumerAwareRebalanceListener

	B.3. Changes Between 1.2 and 1.3
	B.3.1. Support for Transactions
	B.3.2. Support for Headers
	B.3.3. Creating Topics
	B.3.4. Support for Kafka Timestamps
	B.3.5. @KafkaListener Changes
	B.3.6. @EmbeddedKafka Annotation
	B.3.7. Kerberos Configuration

	B.4. Changes between 1.1 and 1.2
	B.5. Changes between 1.0 and 1.1
	B.5.1. Kafka Client
	B.5.2. Batch Listeners
	B.5.3. Null Payloads
	B.5.4. Initial Offset
	B.5.5. Seek

