Spring for Apache Kafka

Gary Russell, Artem Bilan, Biju Kunjummen, Jay Bryant

Version 2.5.5.RELEASE

Table of Contents

1. Preface
2. What’s new?
2.1. What’s New in 2.5 Since 2.4

2.1.1. Consumer/Producer Factory Changes
2.1.2. StreamsBuilderFactoryBean Changes
2.1.3. Kafka Client Version

2.1.4. Class/Package Changes

2.1.5. Delivery Attempts Header

2.1.6. @KafkaListener Changes

2.1.7. Listener Container Changes

2.1.8. KafkaTemplate Changes

2.1.9. Kafka String Serializer/Deserializer
2.1.10. JsonDeserializer

2.1.11. Delegating Serializer/Deserializer
2.1.12. Testing Changes

3. Introduction

3.1. Quick Tour for the Impatient

3.1.1. Compatibility

3.1.2. A Very, Very Quick Example
3.1.3. With Java Configuration

3.1.4. Even Quicker, with Spring Boot

4. Reference
4.1. Using Spring for Apache Kafka

4.1.1. Connecting to Kafka
Factory Listeners

4.1.2. Configuring Topics

4.1.3. Sending Messages
Using KafkaTemplate
Using RoutingKafkaTemplate
Using DefaultKafkaProducerFactory
Using ReplyingKafkaTemplate
Reply Type Message<?>
Aggregating Multiple Replies

4.1.4. Receiving Messages
Message Listeners
Message Listener Containers
@Kafkalistener Annotation

Obtaining the Consumer group.id

N 3 o0 O o U1 Ul Ul R W W W W W W W wN

BOR W W W W WNN DN R R R R R R R R
© Rk U1 W W R, O Ul U W g U s RN O

Container Thread Naming 50

@Kafkalistener as a Meta Annotation 50
@Kafkalistener on a Class 51
@KafkalListener Lifecycle Management 53
@Kafkalistener @Payload Validation 53
Rebalancing Listeners 55
Forwarding Listener Results using @SendTo 57
Filtering Messages 61
Retrying Deliveries 62
Stateful Retry 62
4.1.5. Listener Container Properties 64
4.1.6. Application Events 68
Detecting Idle and Non-Responsive Consumers 69
4.1.7. Topic/Partition Initial Offset 71
4.1.8. Seeking to a Specific Offset 72
4.1.9. Container factory 77
4.1.10. Thread Safety 78
4.1.11. Monitoring 79
Monitoring Listener Performance 79
Monitoring KafkaTemplate Performance 79
Micrometer Native Metrics 80
4.1.12. Transactions 81
Overview 81
Using KafkaTransactionManager 81
Transaction Synchronization 82
Using ChainedKafkaTransactionManager 83
KafkaTemplate Local Transactions 83
transactionIdPrefix 84
KafkaTemplate Transactional and non-Transactional Publishing 84
Transactions with Batch Listeners 84
4.1.13. Exactly Once Semantics 86
4.1.14. Wiring Spring Beans into Producer/Consumer Interceptors 87
4.1.15. Pausing and Resuming Listener Containers 91
4.1.16. Serialization, Deserialization, and Message Conversion 94
Overview 94
String serialization 94
JSON 95
Delegating Serializer and Deserializer 100
Retrying Deserializer 101
Spring Messaging Message Conversion 102

Using ErrorHandlingDeserializer 104

Payload Conversion with Batch Listeners 106

ConversionService Customization 107
Adding custom HandlerMethodArgumentResolver to @KafkalListener 107
4.1.17. Message Headers 108
4.1.18. Null Payloads and Log Compaction of 'Tombstone' Records 112
4.1.19. Handling Exceptions 113
Listener Error Handlers 113
Container Error Handlers 115
Consumer-Aware Container Error Handlers 117
Seek To Current Container Error Handlers 117
Retrying Batch Error Handler 120
Recovering Batch Error Handler 121
Container Stopping Error Handlers 123
After-rollback Processor 123
Delivery Attempts Header 124
Publishing Dead-letter Records 125
4.1.20. JAAS and Kerberos 127
4.2. Kafka Streams Support 128
4.2.1. Basics 128
4.2.2. Spring Management 129
4.2.3. KafkaStreams Micrometer Support 131
4.2.4. Streams JSON Serialization and Deserialization 131
4.2.5. Using KafkaStreamBrancher 132
4.2.6. Configuration 132
4.2.7. Header Enricher 133
4.2.8. MessagingTransformer 133
4.2.9. Recovery from Deserialization Exceptions 134
4.2.10. Kafka Streams Example 135
4.3. Testing Applications 138
4.3.1. JUnit 138
4.3.2. Configuring Topics 140
4.3.3. Using the Same Brokers for Multiple Test Classes 141
4.3.4. @EmbeddedKafka Annotation 142
4.3.5. @EmbeddedKafka Annotation with JUnit5 145
4.3.6. Embedded Broker in @SpringBootTest Annotations 146
JUnit4 Class Rule 146
@EmbeddedKafka Annotation or EmbeddedKafkaBroker Bean 147
4.3.7. Hamcrest Matchers 148
4.3.8. Assert] Conditions 149
4.3.9. Example 151

5. Tips, Tricks and Examples 154

5.1. Manually Assigning All Partitions
5.2. Example of Transaction Synchronization
6. Spring Integration
6.1. Spring Integration for Apache Kafka
6.1.1. Overview
6.1.2. What’s new in Spring Integration for Apache Kafka (version 3.3)
6.1.3. What’s new in Spring Integration for Apache Kafka (version 3.2)
6.1.4. Outbound Channel Adapter
Java Configuration
Java DSL Configuration
XML Configuration
6.1.5. Message-driven Channel Adapter
Java Configuration
Java DSL Configuration
XML Configuration
6.1.6. Inbound Channel Adapter
Java Configuration
Java DSL Configuration
XML Configuration
6.1.7. Outbound Gateway
Java Configuration
Java DSL Configuration
XML Configuration
6.1.8. Inbound Gateway
XML Configuration
6.1.9. Channels Backed by Kafka Topics
Java DSL Configuration
Java Configuration
XML Configuration
6.1.10. Message Conversion
6.1.11. Null Payloads and Log Compaction 'Tombstone' Records
6.1.12. Calling a Spring Integration flow from a KStream
6.1.13. What’s New in Spring Integration for Apache Kafka
3.2X
3.1x
3.0x
2.3.X
2.2.X
2.1.x
2.0.x

7. Other Resources

154
155
159
159
159
159
159
159
161
162
163
164
165
165
167
167
168
168
168
169
169
170
171
171
173
173
173
176
176
177
178
178
179
179
180
180
180
180
180
180
181

Appendix A: Override Spring Boot Dependencies 182

Appendix B: Change History 185
B.1. Changes between 2.3 and 2.4 185
B.1.1. Kafka Client Version 185
B.1.2. ConsumerAwareRebalanceListener 185
B.1.3. GenericErrorHandler 185
B.1.4. KafkaTemplate 185
B.1.5. AggregatingReplyingKafkaTemplate 185
B.1.6. Listener Container 185
B.1.7. @KafkaListener 185
B.1.8. Kafka Streams 186
B.2. Changes Between 2.2 and 2.3 186
B.2.1. Tips, Tricks and Examples 186
B.2.2. Kafka Client Version 186
B.2.3. Class/Package Changes 186
B.2.4. Configuration Changes 186
B.2.5. Producer and Consumer Factory Changes 186
B.2.6. Listener Container Changes 187
B.2.7. ErrorHandler Changes 188
B.2.8. TopicBuilder 188
B.2.9. Kafka Streams Changes 188
B.2.10. JSON Component Changes 188
B.2.11. ReplyingKafkaTemplate 189
B.2.12. AggregatingReplyingKafkaTemplate 189
B.2.13. Transaction Changes 189
B.2.14. New Delegating Serializer/Deserializer 189
B.2.15. New Retrying Deserializer 189
B.3. Changes Between 2.1 and 2.2 189
B.3.1. Kafka Client Version 189
B.3.2. Class and Package Changes 189
B.3.3. After Rollback Processing 190
B.3.4. ConcurrentKafkalistenerContainerFactory Changes 190
B.3.5. Listener Container Changes 190
B.3.6. @KafkaListener Changes 190
B.3.7. Header Mapping Changes 191
B.3.8. Embedded Kafka Changes 191
B.3.9. JsonSerializer/Deserializer Enhancements 191
B.3.10. Kafka Streams Changes 191
B.3.11. Transactional ID 192
B.4. Changes Between 2.0 and 2.1 192

B.4.1. Kafka Client Version 192

B.4.2. JSON Improvements 192

B.4.3. Container Stopping Error Handlers 192
B.4.4. Pausing and Resuming Containers 192
B.4.5. Stateful Retry 192
B.4.6. Client ID 193
B.4.7. Logging Offset Commits 193
B.4.8. Default @KafkaHandler 193
B.4.9. ReplyingKafkaTemplate 193
B.4.10. ChainedKafkaTransactionManager 193
B.4.11. Migration Guide from 2.0 193
B.5. Changes Between 1.3 and 2.0 193
B.5.1. Spring Framework and Java Versions 193
B.5.2. @Kafkalistener Changes 193
B.5.3. Message Listeners 193
B.5.4. Using ConsumerAwareRebalancelistener 194
B.6. Changes Between 1.2 and 1.3 194
B.6.1. Support for Transactions 194
B.6.2. Support for Headers 194
B.6.3. Creating Topics 194
B.6.4. Support for Kafka Timestamps 194
B.6.5. @KafkalListener Changes 194
B.6.6. 0EmbeddedKafka Annotation 194
B.6.7. Kerberos Configuration 194
B.7. Changes Between 1.1 and 1.2 195
B.8. Changes Between 1.0 and 1.1 195
B.8.1. Kafka Client 195
B.8.2. Batch Listeners 195
B.8.3. Null Payloads 195
B.8.4. Initial Offset 195

B.8.5. Seek 195

© 2016 - 2020 by Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Chapter 1. Preface

The Spring for Apache Kafka project applies core Spring concepts to the development of Kafka-
based messaging solutions. We provide a “template” as a high-level abstraction for sending

messages. We also provide support for Message-driven POJOs.

Chapter 2. What’s new?

2.1. What’s New in 2.5 Since 2.4

This section covers the changes made from version 2.4 to version 2.5. For changes in earlier
version, see Change History.

Also see What’s new in Spring Integration for Apache Kafka (version 3.3).

2.1.1. Consumer/Producer Factory Changes

The default consumer and producer factories can now invoke a callback whenever a consumer or
producer is created or closed. Implementations for native Micrometer metrics are provided. See
Factory Listeners for more information.

You can now change bootstrap server properties at runtime, enabling failover to another Kafka
cluster. See Connecting to Kafka for more information.

2.1.2. StreamsBuilderFactoryBean Changes

The factory bean can now invoke a callback whenever a KafkaStreams created or destroyed. An
Implementation for native Micrometer metrics is provided. See KafkaStreams Micrometer Support
for more information.

2.1.3. Kafka Client Version

This version requires the 2.5.0 kafka-clients.

2.1.4. Class/Package Changes

SeekUtils has been moved from the o.s.k.support package to o.s.k.listener.

2.1.5. Delivery Attempts Header

There is now an option to to add a header which tracks delivery attempts when using certain error
handlers and after rollback processors. See Delivery Attempts Header for more information.

2.1.6. @KafkaListener Changes

Default reply headers will now be populated automatically if needed when a @Kafkalistener return
type is Message<?>. See Reply Type Message<?> for more information.

The KafkaHeaders.RECEIVED_MESSAGE_KEY is no longer populated with a null value when the incoming
record has a null key; the header is omitted altogether.

@KafkalListener methods can now specify a ConsumerRecordMetadata parameter instead of using
discrete headers for metadata such as topic, partition, etc. See Consumer Record Metadata for more
information.

2.1.7. Listener Container Changes

The assignmentCommitOption container property is now LATEST_ONLY_NO_TX by default. See Listener
Container Properties for more information.

The subBatchPerPartition container property is now true by default when using transactions. See
Transactions for more information.

A new RecoveringBatchErrorHandler is now provided. See Recovering Batch Error Handler for more
information.

Static group membership is now supported. See Message Listener Containers for more information.

When incremental/cooperative rebalancing is configured, if offsets fail to commit with a non-fatal
RebalanceInProgressException, the container will attempt to re-commit the offsets for the partitions
that remain assigned to this instance after the rebalance is completed.

The default error handler is now the SeekToCurrentErrorHandler for record listeners and
RecoveringBatchErrorHandler for batch listeners. See Container Error Handlers for more
information.

You can now control the level at which exceptions intentionally thrown by standard error handlers
are logged. See Container Error Handlers for more information.

The getAssignmentsByClientId() method has been added, making it easier to determine which
consumers in a concurrent container are assigned which partition(s). See Listener Container
Properties for more information.

You can now suppress logging entire ConsumerRecord s in error, debug logs etc. See
onlyLogRecordMetadata in Listener Container Properties.

Various error handlers (that extend FailedRecordProcessor) and the DefaultAfterRollbackProcessor
now reset the BackOff if recovery fails. See Seek To Current Container Error Handlers, Recovering
Batch Error Handler, Publishing Dead-letter Records and After-rollback Processor for more
information.

2.1.8. KafkaTemplate Changes

The KafkaTemplate can now maintain micrometer timers. See Monitoring for more information.

The KafkaTemplate can now be configured with ProducerConfig properties to override those in the
producer factory. See Using KafkaTemplate for more information.

A RoutingKafkaTemplate has now been provided. See Using RoutingKafkaTemplate for more
information.

You can now use KafkaSendCallback instead of ListenerFutureCallback to get a narrower exception,
making it easier to extract the failed ProducerRecord. See Using KafkaTemplate for more information.

2.1.9. Kafka String Serializer/Deserializer

New ToStringSerializer/StringDeserializer s as well as an associated SerDe are now provided. See
String serialization for more information.

2.1.10. JsonDeserializer

The JsonDeserializer now has more flexibility to determine the deserialization type. See Using
Methods to Determine Types for more information.

2.1.11. Delegating Serializer/Deserializer

The DelegatingSerializer can now handle "standard" types, when the outbound record has no
header. See Delegating Serializer and Deserializer for more information.

2.1.12. Testing Changes

The KafkaTestUtils.consumerProps() helper record now sets
ConsumerConfig.AUTO_OFFSET_RESET_CONFIG to earliest by default. See JUnit for more information.

Chapter 3. Introduction

This first part of the reference documentation is a high-level overview of Spring for Apache Kafka
and the underlying concepts and some code snippets that can help you get up and running as
quickly as possible.

3.1. Quick Tour for the Impatient
This is the five-minute tour to get started with Spring Kafka.

Prerequisites: You must install and run Apache Kafka. Then you must grab the spring-kafka JAR
and all of its dependencies. The easiest way to do that is to declare a dependency in your build tool.
The following example shows how to do so with Maven:

<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>2.5.5.RELEASE</version>
</dependency>

The following example shows how to do so with Gradle:

compile 'org.springframework.kafka:spring-kafka:2.5.5.RELEASE’

o When using Spring Boot, omit the version and Boot will automatically bring in the
correct version that is compatible with your Boot version:

<dependency>
<groupld>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>

The following example shows how to do so with Gradle:

compile 'org.springframework.kafka:spring-kafka'

3.1.1. Compatibility
This quick tour works with the following versions:

» Apache Kafka Clients 2.4.1
* Spring Framework 5.3.x

* Minimum Java version: 8

3.1.2. A Very, Very Quick Example

As the following example shows, you can use plain Java to send and receive a message:

@Test
public void testAutoCommit() throws Exception {
logger.info("Start auto");
ContainerProperties containerProps = new ContainerProperties("topicl1",
topic2");
final CountDownLatch latch = new CountDownlLatch(4);
containerProps.setMessagelistener(new Messagelistener<Integer, String>() {

@0verride

public void onMessage(ConsumerRecord<Integer, String> message) {
logger.info("received: " + message);
latch.countDown();

3

KafkaMessagelistenerContainer<Integer, String> container = createContainer
(containerProps);

container.setBeanName("testAuto");

container.start();

Thread.sleep(1000); // wait a bit for the container to start

KafkaTemplate<Integer, String> template = createTemplate();

template.setDefaultTopic("topicl");

template.sendDefault(?, "foo");

template.sendDefault(2, "bar");

template.sendDefault(0, "baz");

template.sendDefault(2, "qux");

template.flush();

assertTrue(latch.await(60, TimeUnit.SECONDS));

container.stop();

logger.info("Stop auto");

private KafkaMessagelistenerContainer<Integer, String> createContainer(
ContainerProperties containerProps) {
Map<String, Object> props = consumerProps();
DefaultKafkaConsumerFactory<Integer, String> cf =
new DefaultKafkaConsumerFactory<Integer, String>(
props);
KafkaMessagelistenerContainer<Integer, String> container =
new KafkaMessagelListenerContainer<>(cf,
containerProps);
return container;

}

private KafkaTemplate<Integer, String> createTemplate() {
Map<String, Object> senderProps = senderProps();
ProducerFactory<Integer, String> pf =
new DefaultKafkaProducerFactory<Integer, String>(senderProps);
KafkaTemplate<Integer, String> template = new KafkaTemplate<>(pf);
return template;

}

private Map<String, Object> consumerProps() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG, group);
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true);
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "100");
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "15000");
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer
.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer
.class);
return props;

}

private Map<String, Object> senderProps() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.RETRIES_CONFIG, 0);
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class
)i
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.
class);
return props;

}

3.1.3. With Java Configuration

You can do the same work as appears in the previous example with Spring configuration in Java.
The following example shows how to do so:

10

private Listener listener;
private KafkaTemplate<Integer, String> template;

public void testSimple() throws Exception {
template.send("annotated1", 0, "foo");
template.flush();
assertTrue(this.listener.latch1.await(10, TimeUnit.SECONDS));

public class Config {

ConcurrentKafkalistenerContainerFactory<Integer, String>
kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
return factory;

public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());

}

public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka
.getBrokersAsString());

return props;

public Listener listener() {
return new Listener();

}

public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());

}

11

public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka
.getBrokersAsString());

return props;

public KafkaTemplate<Integer, String> kafkaTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory());

}

public class Listener {
private final CountDownlLatch latch1 = new CountDownLatch(1);
(id = "foo", topics = "annotated1")

public void listen1(String foo) {
this.latch1.countDown();

}

3.1.4. Even Quicker, with Spring Boot

Spring Boot can make things even simpler. The following Spring Boot application sends three
messages to a topic, receives them, and stops:

12

public class Application implements CommandLineRunner {
public static Logger logger = LoggerFactory.getlLogger(Application.class);

public static void main(String[] args) {
SpringApplication.run(Application.class, args).close();
}

private KafkaTemplate<String, String> template;

private final CountDownlLatch latch = new CountDownLatch(3);

public void run(String... args) throws Exception {
this.template.send("myTopic", "fool1");
this.template.send("myTopic", "foo2");
this.template.send("myTopic", "foo3");
latch.await(60, TimeUnit.SECONDS);
logger.info("All received");

(topics = "myTopic")
public void listen(ConsumerRecord<?, ?> cr) throws Exception {
logger.info(cr.toString());
latch.countDown();

Boot takes care of most of the configuration. When we use a local broker, the only properties we
need are the following:

Example 1. application.properties

spring.kafka.consumer.group-id=foo
spring.kafka.consumer.auto-offset-reset=earliest

We need the first property because we are using group management to assign topic partitions to
consumers, so we need a group. The second property ensures the new consumer group gets the
messages we sent, because the container might start after the sends have completed.

13

Chapter 4. Reference

This part of the reference documentation details the various components that comprise Spring for
Apache Kafka. The main chapter covers the core classes to develop a Kafka application with Spring.

4.1. Using Spring for Apache Kafka

This section offers detailed explanations of the various concerns that impact using Spring for
Apache Kafka. For a quick but less detailed introduction, see Quick Tour for the Impatient.

4.1.1. Connecting to Kafka

* KafkaAdmin - see Configuring Topics
* ProducerFactory - see Sending Messages

» ConsumerFactory - see Receiving Messages

Starting with version 2.5, each of these extends KafkaResourceFactory. This allows changing the
bootstrap servers at runtime by adding a Supplier<String> to their configuration:
setBootstrapServersSupplier(() »). This will be called for all new connections to get the list of
servers. Consumers and Producers are generally long-lived. To close existing Producers, call reset()
on the DefaultKafkaProducerFactory. To close existing Consumers, call stop() (and then start()) on
the KafkalistenerEndpointRegistry and/or stop() and start() on any other listener container beans.

For convenience, the framework also provides an ABSwitchCluster which supports two sets of
bootstrap servers; one of which is active at any time. Configure the ABSwitchCluster and add it to the
producer and consumer factories, and the KafkaAdmin, by calling setBootstrapServersSupplier().
When you want to switch, call primary() or secondary() and call reset() on the producer factory to
establish new connection(s); for consumers, stop() and start() all listener containers. When using
@KafkalListener s, stop() and start() the KafkalListenerEndpointRegistry bean.

See the Javadocs for more information.

Factory Listeners

Starting with version 2.5, the DefaultKafkaProducerFactory and DefaultKafkaConsumerFactory can be
configured with a Listener to receive notifications whenever a producer or consumer is created or
closed.

14

Producer Factory Listener
interface Listener<k, V> {

default void producerAdded(String id, Producer<K, V> producer) {
}

default void producerRemoved(String id, Producer<K, V> producer) {

}

Consumer Factory Listener
interface Listener<K, V> {

default void consumerAdded(String id, Consumer<K, V> consumer) {

}

default void consumerRemoved(String id, Consumer<K, V> consumer) {

}

In each case, the id is created by appending the client-id property (obtained from the metrics()
after creation) to the factory beanName property, separated by ..

These listeners can be used, for example, to create and bind a Micrometer KafkaClientMetrics
instance when a new client is created (and close it when the client is closed).

The framework provides listeners that do exactly that; see Micrometer Native Metrics.

4.1.2. Configuring Topics

If you define a KafkaAdmin bean in your application context, it can automatically add topics to the
broker. To do so, you can add a NewTopic @Bean for each topic to the application context. Version 2.3
introduced a new class TopicBuilder to make creation of such beans more convenient. The
following example shows how to do so:

15

public KafkaAdmin admin() {
Map<String, Object> configs = new HashMap<>();
configs.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, ...);
return new KafkaAdmin(configs);

public NewTopic topicl() {
return TopicBuilder.name("thing1")
.partitions(10)
.replicas(3)
.compact()
.build();

public NewTopic topic2() {
return TopicBuilder.name("thing2")
.partitions(10)
.replicas(3)
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")
.build();

public NewTopic topic3() {
return TopicBuilder.name("thing3")
.assignReplicas(0, Arrays.aslList(@, 1))
.assignReplicas(1, Arrays.asList(1, 2))
.assignReplicas(2, Arrays.aslList(2, 0))
.config(TopicConfig.COMPRESSION_TYPE_CONFIG, "zstd")

.build();
¥
o When using Spring Boot, a KafkaAdmin bean is automatically registered so you only
need the NewTopic @Bean s.

By default, if the broker is not available, a message is logged, but the context continues to load. You
can programmatically invoke the admin’s initialize() method to try again later. If you wish this
condition to be considered fatal, set the admin’s fatalIfBrokerNotAvailable property to true. The
context then fails to initialize.

If the broker supports it (1.0.0 or higher), the admin increases the number of

o partitions if it is found that an existing topic has fewer partitions than the
NewTopic.numPartitions.

16

For more advanced features, you can use the AdminClient directly. The following example shows
how to do so:

private KafkaAdmin admin;

AdminClient client = AdminClient.create(admin.getConfigurationProperties());

client.close();

4.1.3. Sending Messages

This section covers how to send messages.

Using KafkaTemplate

This section covers how to use KafkaTemplate to send messages.

Overview

The KafkaTemplate wraps a producer and provides convenience methods to send data to Kafka
topics. The following listing shows the relevant methods from KafkaTemplate:

17

ListenableFuture<SendResult<K, V>> sendDefault(V data);
ListenableFuture<SendResult<K, V>> sendDefault(K key, V data);
ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, K key, V data);

ListenableFuture<SendResult<K, V>> sendDefault(Integer partition, Long timestamp,
K key, V data);

ListenableFuture<SendResult<K, V>> send(String topic, V data);
ListenableFuture<SendResult<K, V>> send(String topic, K key, V data);

ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, K key, V
data);

ListenableFuture<SendResult<K, V>> send(String topic, Integer partition, Long
timestamp, K key, V data);

ListenableFuture<SendResult<K, V>> send(ProducerRecord<K, V> record);
ListenableFuture<SendResult<K, V>> send(Message<?> message);
Map<MetricName, ? extends Metric> metrics();

List<PartitionInfo> partitionsFor(String topic);

<T> T execute(ProducerCallback<K, V, T> callback);

// Flush the producer.

void flush();

interface ProducerCallback<K, V, T> {

T doInKafka(Producer<K, V> producer);

See the Javadoc for more detail.
The sendDefault API requires that a default topic has been provided to the template.

The API takes in a timestamp as a parameter and stores this timestamp in the record. How the user-
provided timestamp is stored depends on the timestamp type configured on the Kafka topic. If the
topic is configured to use CREATE_TIME, the user specified timestamp is recorded (or generated if not
specified). If the topic is configured to use LOG_APPEND_TIME, the user-specified timestamp is ignored
and the broker adds in the local broker time.

18

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/core/KafkaTemplate.html

The metrics and partitionsFor methods delegate to the same methods on the underlying Producer.
The execute method provides direct access to the underlying Producer.

To use the template, you can configure a producer factory and provide it in the template’s
constructor. The following example shows how to do so:

public ProducerFactory<Integer, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());

}

public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.
class);
// See https://kafka.apache.org/documentation/#producerconfigs for more
properties
return props;

}

public KafkaTemplate<Integer, String> kafkaTemplate() {
return new KafkaTemplate<Integer, String>(producerFactory());

}

Starting with version 2.5, you can now override the factory’s ProducerConfig properties to create
templates with different producer configurations from the same factory.

public KafkaTemplate<String, String> stringTemplate(ProducerFactory<String,
String> pf) {
return new KafkaTemplate<>(pf);

}

public KafkaTemplate<String, byte[]> bytesTemplate(ProducerFactory<String, byte[]>
pf) {
return new KafkaTemplate<>(pf,
Collections.singletonMap(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
ByteArraySerializer.class));

}

19

https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/producer/Producer.html
https://kafka.apache.org/20/javadoc/org/apache/kafka/clients/producer/Producer.html

Note that a bean of type ProducerFactory<?, 7> (such as the one auto-configured by Spring Boot) can
be referenced with different narrowed generic types.

You can also configure the template by using standard <bean/> definitions.
Then, to use the template, you can invoke one of its methods.

When you use the methods with a Message<?> parameter, the topic, partition, and key information is
provided in a message header that includes the following items:

* KafkaHeaders.TOPIC

e KafkaHeaders.PARTITION ID
e KafkaHeaders.MESSAGE_KEY
» KafkaHeaders.TIMESTAMP

The message payload is the data.

Optionally, you can configure the KafkaTemplate with a ProducerListener to get an asynchronous
callback with the results of the send (success or failure) instead of waiting for the Future to
complete. The following listing shows the definition of the ProducerListener interface:

public interface ProducerlListener<K, V> {

void onSuccess(ProducerRecord<K, V> producerRecord, RecordMetadata
recordMetadata);

void onError(ProducerRecord<K, V> producerRecord, Exception exception);

By default, the template is configured with a LoggingProducerListener, which logs errors and does
nothing when the send is successful.

For convenience, default method implementations are provided in case you want to implement
only one of the methods.

Notice that the send methods return a ListenableFuture<SendResult>. You can register a callback
with the listener to receive the result of the send asynchronously. The following example shows
how to do so:

20

ListenableFuture<SendResult<Integer, String>> future = template.send("myTopic",

"something");
future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() {

public void onSuccess(SendResult<Integer, String> result) {

}

public void onFailure(Throwable ex) {

}

1)

SendResult has two properties, a ProducerRecord and RecordMetadata. See the Kafka API
documentation for information about those objects.

The Throwable in onFailure can be cast to a KafkaProducerException; its failedProducerRecord
property contains the failed record.

Starting with version 2.5, you can use a KafkaSendCallback instead of a ListenableFutureCallback,
making it easier to extract the failed ProducerRecord, avoiding the need to cast the Throwable:

ListenableFuture<SendResult<Integer, String>> future = template.send("topic", 1,
"thing");
future.addCallback(new KafkaSendCallback<Integer, String>() {

public void onSuccess(SendResult<Integer, String> result) {

}

public void onFailure(KafkaProducerException ex) {
ProducerRecord<Integer, String> failed = ex.getFailedProducerRecord();

1

You can also use a pair of lambdas:

21

ListenableFuture<SendResult<Integer, String>> future = template.send("topic", 1,
"thing");
future.addCallback(result -> {

}, (KafkaFailureCallback<Integer, String>) ex -> {
ProducerRecord<Integer, String> failed = ex.getFailedProducerRecord();

1)

If you wish to block the sending thread to await the result, you can invoke the future’s get()
method; using the method with a timeout is recommended. You may wish to invoke flush() before
waiting or, for convenience, the template has a constructor with an autoFlush parameter that
causes the template to flush() on each send. Flushing is only needed if you have set the linger.ms
producer property and want to immediately send a partial batch.

Examples

This section shows examples of sending messages to Kafka:

22

Example 2. Non Blocking (Async)

public void sendToKafka(final MyOutputData data) {
final ProducerRecord<String, String> record = createRecord(data);

ListenableFuture<SendResult<Integer, String>> future = template.send(record);

future.addCallback(new KafkaSendCallback<SendResult<Integer, String>>() {

public void onSuccess(SendResult<Integer, String> result) {
handleSuccess(data);

}

public void onFailure(KafkaProducerException ex) {
handleFailure(data, record, ex);

}

1)

Blocking (Sync)

public void sendToKafka(final MyOutputData data) {
final ProducerRecord<String, String> record = createRecord(data);

try {
template.send(record).get(10, TimeUnit.SECONDS);
handleSuccess(data);

}

catch (ExecutionException e) {
handleFailure(data, record, e.getCause());

}

catch (TimeoutException | InterruptedException e) {
handleFailure(data, record, e);

}

Note that the cause of the ExecutionException is KafkaProducerException with
failedProducerRecord property.

Using RoutingKafkaTemplate

the

Starting with version 2.5, you can use a RoutingKafkaTemplate to select the producer at runtime,

based on the destination topic name.

23

o The routing template does not support transactions, execute, flush, or metrics

operations because the topic is not known for those operations.

The template requires a map of java.util.regex.Pattern to ProducerFactory<Object,

Object>

instances. This map should be ordered (e.g. a LinkedHashMap) because it is traversed in order; you

should add more specific patterns at the beginning.

The following simple Spring Boot application provides an example of how to use the same template

to send to different topics, each using a different value serializer.

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

public RoutingKafkaTemplate routingTemplate(GenericApplicationContext context,

ProducerFactory<Object, Object> pf) {

// Clone the PF with a different Serializer, register with Spring for
shutdown

Map<String, Object> configs = new HashMap<>(pf.getConfigurationProperties

));
configs.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,

ByteArraySerializer.class);
DefaultKafkaProducerFactory<Object, Object> bytesPF = new
DefaultKafkaProducerFactory<>(configs);
context.registerBean(DefaultKafkaProducerFactory.class, "bytesPF",
bytesPF);

Map<Pattern, ProducerFactory<Object, Object>> map = new LinkedHashMap<>();

map.put(Pattern.compile("two"), bytesPF);

map.put(Pattern.compile(".+"), pf); // Default PF with StringSerializer

return new RoutingKafkaTemplate(map);

public ApplicationRunner runner(RoutingKafkaTemplate routingTemplate) {
return args -> {
routingTemplate.send("one", "thing1");
routingTemplate.send("two", "thing2".getBytes());

b

24

The corresponding @Kafkalistener s for this example are shown in Annotation Properties.

For another technique to achieve similar results, but with the additional capability of sending
different types to the same topic, see Delegating Serializer and Deserializer.

Using DefaultKafkaProducerFactory

As seen in Using KafkaTemplate, a ProducerFactory is used to create the producer.

When not using Transactions, by default, the DefaultKafkaProducerFactory creates a singleton
producer used by all clients, as recommended in the KafkaProducer javadocs. However, if you call
flush() on the template, this can cause delays for other threads using the same producer. Starting
with version 2.3, the DefaultKafkaProducerFactory has a new property producerPerThread. When set
to true, the factory will create (and cache) a separate producer for each thread, to avoid this issue.

When producerPerThread is true, user code must call closeThreadBoundProducer() on

o the factory when the producer is no longer needed. This will physically close the
producer and remove it from the ThreadlLocal. Calling reset() or destroy() will not
clean up these producers.

Also see KafkaTemplate Transactional and non-Transactional Publishing.

When creating a DefaultKafkaProducerFactory, key and/or value Serializer classes can be picked up
from configuration by calling the constructor that only takes in a Map of properties (see example in
Using KafkaTemplate), or Serializer instances may be passed to the DefaultKafkaProducerFactory
constructor (in which case all Producer s share the same instances). Alternatively you can provide
Supplier<Serializer> s (starting with version 2.3) that will be used to obtain separate Serializer
instances for each Producer:

@Bean
public ProducerFactory<Integer, CustomValue> producerFactory() {

return new DefaultKafkaProducerFactory<>(producerConfigs(), null, () -> new
CustomValueSerializer());

}

@Bean
public KafkaTemplate<Integer, CustomValue> kafkaTemplate() {
return new KafkaTemplate<Integer, CustomValue>(producerFactory());

}

Using ReplyingKafkaTemplate

Version 2.1.3 introduced a subclass of KafkaTemplate to provide request/reply semantics. The class is
named ReplyingKafkaTemplate and has two additional methods; the following shows the method
signatures:

25

RequestReplyFuture<K, V, R> sendAndReceive(ProducerRecord<K, V> record);

RequestReplyFuture<K, V, R> sendAndReceive(ProducerRecord<K, V> record,
Duration replyTimeout);

The result is a ListenableFuture that is asynchronously populated with the result (or an exception,
for a timeout). The result also has a sendFuture property, which is the result of calling
KafkaTemplate.send(). You can use this future to determine the result of the send operation.

If the first method is used, or the replyTimeout argument is null, the template’s defaultReplyTimeout
property is used (5 seconds by default).

The following Spring Boot application shows an example of how to use the feature:

26

public class KRequestingApplication {

public static void main(String[] args) {
SpringApplication.run(KRequestingApplication.class, args).close();
}

public ApplicationRunner runner(ReplyingKafkaTemplate<String, String, String>
template) {
return args -> {
ProducerRecord<String, String> record = new ProducerRecord<>(
"kRequests", "foo");
RequestReplyFuture<String, String, String> replyFuture = template
.sendAndReceive(record);
SendResult<String, String> sendResult = replyFuture.getSendFuture()
.get(10, TimeUnit.SECONDS);
System.out.println("Sent ok: " + sendResult.getRecordMetadata());
ConsumerRecord<String, String> consumerRecord = replyFuture.get(10,
TimeUnit.SECONDS);
System.out.println("Return value:

+ consumerRecord.value());

};

public ReplyingKafkaTemplate<String, String, String> replyingTemplate(
ProducerFactory<String, String> pf,
ConcurrentMessagelListenerContainer<String, String> repliesContainer) {

return new ReplyingKafkaTemplate<>(pf, repliesContainer);

public ConcurrentMessagelistenerContainer<String, String> repliesContainer(
ConcurrentKafkalistenerContainerFactory<String, String>
containerFactory) {

ConcurrentMessagelistenerContainer<String, String> repliesContainer =
containerFactory.createContainer("replies");

repliesContainer.getContainerProperties().setGroupId("repliesGroup”);

repliesContainer.setAutoStartup(false);

return repliesContainer;

public NewTopic kRequests() {
return TopicBuilder.name("kRequests")
.partitions(10)
.replicas(2)

27

.build();

public NewTopic kReplies() {
return TopicBuilder.name("kReplies")
.partitions(10)
.replicas(2)
.build();

Note that we can use Boot’s auto-configured container factory to create the reply container.

If a non-trivial deserializer is being used for replies, consider using an ErrorHandlingDeserializer
that delegates to your configured deserializer. When so configured, the RequestReplyFuture will be
completed exceptionally and you can catch the ExecutionException, with the
DeserializationException in its cause property.

The template sets a header (named KafkaHeaders.CORRELATION_ID by default), which must be echoed
back by the server side.

In this case, the following @KafkalListener application responds:

28

@SpringBootApplication
public class KReplyingApplication {

public static void main(String[] args) {
SpringApplication.run(KReplyingApplication.class, args);
}

@Kafkalistener(id="server", topics = "kRequests")

@SendTo // use default replyTo expression

public String listen(String in) {
System.out.println("Server received:
return in.toUpperCase();

+1n);
}

@Bean
public NewTopic kRequests() {
return TopicBuilder.name("kRequests")
.partitions(10)
.replicas(2)
.build();
}

@Bean // not required if Jackson is on the classpath
public MessagingMessageConverter simpleMapperConverter() {
MessagingMessageConverter messagingMessageConverter = new
MessagingMessageConverter();
messagingMessageConverter.setHeaderMapper(new SimpleKafkaHeaderMapper());
return messagingMessageConverter;

The @Kafkalistener infrastructure echoes the correlation ID and determines the reply topic.

See Forwarding Listener Results using @SendTo for more information about sending replies. The
template uses the default header KafKaHeaders.REPLY_TOPIC to indicate the topic to which the reply
goes.

Starting with version 2.2, the template tries to detect the reply topic or partition from the
configured reply container. If the container is configured to listen to a single topic or a single
TopicPartitionOffset, it is used to set the reply headers. If the container is configured otherwise, the
user must set up the reply headers. In this case, an INFO log message is written during initialization.
The following example uses KafkaHeaders.REPLY_TOPIC:

29

record.headers().add(new RecordHeader (KafkaHeaders.REPLY_TOPIC, "kReplies"
.getBytes()));

When you configure with a single reply TopicPartitionOffset, you can use the same reply topic for
multiple templates, as long as each instance listens on a different partition. When configuring with
a single reply topic, each instance must use a different group.id. In this case, all instances receive
each reply, but only the instance that sent the request finds the correlation ID. This may be useful
for auto-scaling, but with the overhead of additional network traffic and the small cost of
discarding each unwanted reply. When you use this setting, we recommend that you set the
template’s sharedReplyTopic to true, which reduces the logging level of unexpected replies to DEBUG
instead of the default ERROR.

If you have multiple client instances and you do not configure them as discussed
in the preceding paragraph, each instance needs a dedicated reply topic. An
alternative is to set the KafkaHeaders.REPLY_PARTITION and use a dedicated partition

o for each instance. The Header contains a four-byte int (big-endian). The server must
use this header to route the reply to the correct topic (eKafkalListener does this). In
this case, though, the reply container must not use Kafka’s group management
feature and must be configured to listen on a fixed partition (by using a
TopicPartitionOffset in its ContainerProperties constructor).

The DefaultKafkaHeaderMapper requires Jackson to be on the classpath (for the

o @Kafkalistener). If it is not available, the message converter has no header mapper,
so you must configure a MessagingMessageConverter with a SimpleKafkaHeaderMapper,
as shown earlier.

By default, 3 headers are used:

» KafkaHeaders.CORRELATION_ID - used to correlate the reply to a request
» KafkaHeaders.REPLY_TOPIC - used to tell the server where to reply

» KafkaHeaders.REPLY_PARTITION - (optional) used to tell the server which partition to reply to
These header names are used by the @Kafkalistener infrastructure to route the reply.

Starting with version 2.3, you can customize the header names - the template has 3 properties
correlationHeaderName, replyTopicHeaderName, and replyPartitionHeaderName. This is useful if your
server is not a Spring application (or does not use the @Kafkalistener).

Reply Type Message<?>

When the @Kafkalistener returns a Message<?>, with versions before 2.5, it was necessary to
populate the reply topic and correlation id headers. In this example, we use the reply topic header
from the request:

30

(id = "requestor", topics = "request")

public Message<?> messageReturn(String in) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.TOPIC, replyTo)
.setHeader (KafkaHeaders.MESSAGE_KEY, 42)
.setHeader (KafkaHeaders.CORRELATION ID, correlation)
.build();

This also shows how to set a key on the reply record.

Starting with version 2.5, the framework will detect if these headers are missing and populate them
with the topic - either the topic determined from the @SendTo value or the incoming
KafkaHeaders.REPLY_TOPIC header (if present). It will also echo the incoming
KafkaHeaders.CORRELATION_ID and KafkaHeaders.REPLY_PARTITION, if present.

(id = "requestor", topics = "request")
// default REPLY_TOPIC header
public Message<?> messageReturn(String in) {
return MessageBuilder.withPayload(in.toUpperCase())
.setHeader (KafkaHeaders.MESSAGE KEY, 42)
.build();

Aggregating Multiple Replies

The template in Using ReplyingKafkaTemplate is strictly for a single request/reply scenario. For cases
where multiple receivers of a single message return a reply, you can use the
AggregatingReplyingKafkaTemplate. This is an implementation of the client-side of the Scatter-Gather
Enterprise Integration Pattern.

Like the ReplyingKafkaTemplate, the AggregatingReplyingKafkaTemplate constructor takes a producer
factory and a listener container to receive the replies; it has a third parameter
BiPredicate<List<ConsumerRecord<K, R>>, Boolean> releaseStrategy which is consulted each time a
reply is received; when the predicate returns true, the collection of ConsumerRecord s is used to
complete the Future returned by the sendAndReceive method.

There is an additional property returnPartialOnTimeout (default false). When this is set to true,
instead of completing the future with a KafkaReplyTimeoutException, a partial result completes the
future normally (as long as at least one reply record has been received).

Starting with version 2.3.5, the predicate is also called after a timeout (if returnPartialOnTimeout is
true). The first argument is the current list of records; the second is true if this call is due to a
timeout. The predicate can modify the list of records.

31

https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/BroadcastAggregate.html

AggregatingReplyingKafkaTemplate<Integer, String, String> template =
new AggregatingReplyingKafkaTemplate<>(producerFactory, container,
coll -> coll.size() == releaseSize);

RequestReplyFuture<Integer, String, Collection<ConsumerRecord<Integer, String>>>
future =

template.sendAndReceive(record);
future.getSendFuture().get(10, TimeUnit.SECONDS); // send ok
ConsumerRecord<Integer, Collection<ConsumerRecord<Integer, String>>>
consumerRecord =

future.qget(30, TimeUnit.SECONDS);

Notice that the return type is a ConsumerRecord with a value that is a collection of ConsumerRecord s.
The "outer" ConsumerRecord is not a "real" record, it is synthesized by the template, as a holder for
the actual reply records received for the request. When a normal release occurs (release strategy
returns true), the topic is set to aggregatedResults; if returnPartialOnTimeout is true, and timeout
occurs (and at least one reply record has been received), the topic is set to
partialResultsAfterTimeout. The template provides constant static variables for these "topic" names:

/**

* Pseudo topic name for the "outer" {@link ConsumerRecords} that has the
aggregated

* results in its value after a normal release by the release strategy.

*/

public static final String AGGREGATED_RESULTS_TOPIC = "aggregatedResults";

/**

* Pseudo topic name for the "outer" {@link ConsumerRecords} that has the
aggregated

* results in its value after a timeout.

*/

public static final String PARTIAL_RESULTS_AFTER_TIMEOUT_TOPIC =
"partialResultsAfterTimeout";

The real ConsumerRecord s in the Collection contain the actual topic(s) from which the replies are
received.

32

The listener container for the replies MUST be configured with AckMode.MANUAL or
AckMode .MANUAL_IMMEDIATE; the consumer property enable.auto.commit must be
false (the default since version 2.3). To avoid any possibility of losing messages,

o the template only commits offsets when there are zero requests outstanding, i.e.
when the last outstanding request is released by the release strategy. After a
rebalance, it is possible for duplicate reply deliveries; these will be ignored for any
in-flight requests; you may see error log messages when duplicate replies are
received for already released replies.

If you use an ErrorHandlingDeserializer with this aggregating template, the
framework will not automatically detect DeserializationException s. Instead, the
o record (with a null value) will be returned intact, with the deserialization
exception(s) in headers. It is recommended that applications call the utility method
ReplyingKafkaTemplate.checkDeserialization() method to determine if a
deserialization exception occurred. See its javadocs for more information.

4.1.4. Receiving Messages

You can receive messages by configuring a MessagelListenerContainer and providing a message
listener or by using the @Kafkalistener annotation.

Message Listeners

When you use a message listener container, you must provide a listener to receive data. There are
currently eight supported interfaces for message listeners. The following listing shows these
interfaces:

33

34

public interface Messagelistener<K, V> { @
void onMessage(ConsumerRecord<K, V> data);
}
public interface AcknowledgingMessagelistener<K, V> { @
void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment);

}

public interface ConsumerAwareMessagelistener<K, V> extends Messagelistener<K, V>

{®
void onMessage(ConsumerRecord<K, V> data, Consumer<?, 7> consumer);

}

public interface AcknowledgingConsumerAwareMessagelistener<K, V> extends
Messagelistener<K, V> { @

void onMessage(ConsumerRecord<K, V> data, Acknowledgment acknowledgment,
Consumer<?, ?> consumer);

}
public interface BatchMessagelistener<K, V> { ®
void onMessage(List<ConsumerRecord<K, V>> data);
}
public interface BatchAcknowledgingMessagelistener<K, V> { ®

void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment

)
}

public interface BatchConsumerAwareMessagelistener<K, V> extends
BatchMessagelListener<K, V> { @

void onMessage(List<ConsumerRecord<K, V>> data, Consumer<?, 7> consumer);

}

public interface BatchAcknowledgingConsumerAwareMessagelistener<K, V> extends
BatchMessagelistener<K, V> {

void onMessage(List<ConsumerRecord<K, V>> data, Acknowledgment acknowledgment,
Consumer<?, ?> consumer);

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using auto-commit or one of the container-
managed commit methods.

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using one of the manual commit methods.

® Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using auto-commit or one of the container-
managed commit methods. Access to the Consumer object is provided.

@ Use this interface for processing individual ConsumerRecord instances received from the
Kafka consumer poll() operation when using one of the manual commit methods. Access to
the Consumer object is provided.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using auto-commit or one of the container-managed
commit methods. AckMode.RECORD is not supported when you use this interface, since the
listener is given the complete batch.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using one of the manual commit methods.

@ Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using auto-commit or one of the container-managed
commit methods. AckMode.RECORD is not supported when you use this interface, since the
listener is given the complete batch. Access to the Consumer object is provided.

® Use this interface for processing all ConsumerRecord instances received from the Kafka
consumer poll() operation when using one of the manual commit methods. Access to the
Consumer object is provided.

o The Consumer object is not thread-safe. You must only invoke its methods on the
thread that calls the listener.

Message Listener Containers

Two MessagelistenerContainer implementations are provided:

» KafkaMessagelListenerContainer

* ConcurrentMessagelistenerContainer

The KafkaMessagelListenerContainer receives all message from all topics or partitions on a single
thread. The ConcurrentMessagelListenerContainer delegates to one or more
KafkaMessagelListenerContainer instances to provide multi-threaded consumption.

35

Starting with version 2.2.7, you can add a RecordInterceptor to the listener container; it will be
invoked before calling the listener allowing inspection or modification of the record. If the
interceptor returns null, the listener is not called. The interceptor is not invoked when the listener
is a batch listener.

Starting with version 2.3, the CompositeRecordInterceptor can be used to invoke multiple
interceptors.

By default, when using transactions, the interceptor is invoked after the transaction has started.
Starting with version 2.3.4, you can set the listener container’s interceptBeforeTx property to invoke
the interceptor before the transaction has started instead.

No interceptor is provided for batch Ilisteners because Kafka already provides a
ConsumerInterceptor.

Starting with versions 2.3.8, 2.4.6, the ConcurrentMessagelListenerContainer now supports Static
Membership when the concurrency is greater than one. The group.instance.id is suffixed with -n
with n starting at 1. This, together with an increased session.timeout.ms, can be used to reduce
rebalance events, for example, when application instances are restarted.

Using KafkaMessagelistenerContainer

The following constructor is available:

public KafkaMessagelistenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

It receives a ConsumerFactory and information about topics and partitions, as well as other
configuration, in a ContainerProperties object. ContainerProperties has the following constructors:

public ContainerProperties(TopicPartitionOffset... topicPartitions)
public ContainerProperties(String... topics)

public ContainerProperties(Pattern topicPattern)

The first constructor takes an array of TopicPartitionOffset arguments to explicitly instruct the
container about which partitions to use (using the consumer assign() method) and with an optional
initial offset. A positive value is an absolute offset by default. A negative value is relative to the
current last offset within a partition by default. A constructor for TopicPartitionOffset that takes an
additional boolean argument is provided. If this is true, the initial offsets (positive or negative) are
relative to the current position for this consumer. The offsets are applied when the container is
started. The second takes an array of topics, and Kafka allocates the partitions based on the
group.id property — distributing partitions across the group. The third uses a regex Pattern to select
the topics.

36

https://kafka.apache.org/documentation/#static_membership
https://kafka.apache.org/documentation/#static_membership

To assign a Messagelistener to a container, you can use the ContainerProps.setMessagelistener
method when creating the Container. The following example shows how to do so:

ContainerProperties containerProps = new ContainerProperties("topic1", "topic2");
containerProps.setMessagelistener(new Messagelistener<Integer, String>() {

3
DefaultKafkaConsumerFactory<Integer, String> cf =

new DefaultKafkaConsumerFactory<>(consumerProps());
KafkaMessagelistenerContainer<Integer, String> container =

new KafkaMessagelListenerContainer<>(cf, containerProps);
return container;

Note that when creating a DefaultKafkaConsumerFactory, using the constructor that just takes in the
properties as above means that key and value Deserializer classes are picked up from
configuration. Alternatively, Deserializer instances may be passed to the
DefaultKafkaConsumerFactory constructor for key and/or value, in which case all Consumers share
the same instances. Another option is to provide Supplier<Deserializer> s (starting with version 2.3)
that will be used to obtain separate Deserializer instances for each Consumer:

DefaultKafkaConsumerFactory<Integer, CustomValue> cf =

new DefaultKafkaConsumerFactory<>(consumerProps(), null,
() -> new CustomValueDeserializer());
KafkaMessagelistenerContainer<Integer, String> container =

new KafkaMessagelListenerContainer<>(cf, containerProps);
return container;

Refer to the Javadoc for ContainerProperties for more information about the various properties that
you can set.

Since version 2.1.1, a new property called logContainerConfig is available. When true and INFO
logging is enabled each listener container writes a log message summarizing its configuration
properties.

By default, logging of topic offset commits is performed at the DEBUG logging level. Starting with
version 2.1.2, a property in ContainerProperties called commitLogLevel lets you specify the log level
for these messages. For example, to change the log level to INFO, you can use
containerProperties.setCommitLoglevel(LogIfLevelEnabled.Level.INFO);.

Starting with version 2.2, a new container property called missingTopicsFatal has been added
(default: false since 2.3.4). This prevents the container from starting if any of the configured topics
are not present on the broker. It does not apply if the container is configured to listen to a topic
pattern (regex). Previously, the container threads looped within the consumer.poll() method
waiting for the topic to appear while logging many messages. Aside from the logs, there was no

37

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/listener/ContainerProperties.html

indication that there was a problem.

As of version 2.3.5, a new container property called authorizationExceptionRetryInterval has been
introduced. This causes the container to retry fetching messages after getting any
AuthorizationException from KafkaConsumer. This can happen when, for example, the configured
user is denied access to read certain topic. Defining authorizationExceptionRetryInterval should
help the application to recover as soon as proper permissions are granted.

o By default, no interval is configured - authorization errors are considered fatal,
which causes the container to stop.

Using ConcurrentMessagelistenerContainer

The single constructor is similar to the KafkalistenerContainer constructor. The following listing
shows the constructor’s signature:

public ConcurrentMessagelistenerContainer(ConsumerFactory<K, V> consumerFactory,
ContainerProperties containerProperties)

It also has a concurrency property. For example, container.setConcurrency(3) creates three
KafkaMessagelListenerContainer instances.

For the first constructor, Kafka distributes the partitions across the consumers using its group
management capabilities.

When listening to multiple topics, the default partition distribution may not be
what you expect. For example, if you have three topics with five partitions each
and you want to use concurrency=15, you see only five active consumers, each
assigned one partition from each topic, with the other 10 consumers being idle.
This is because the default Kafka PartitionAssignor is the RangeAssignor (see its
Javadoc). For this scenario, you may want to consider using the RoundRobinAssignor
instead, which distributes the partitions across all of the consumers. Then, each
consumer is assigned one topic or partition. To change the PartitionAssignor, you
can set the partition.assignment.strategy consumer property

o (ConsumerConfigs.PARTITION_ASSIGNMENT _STRATEGY_CONFIG) in the properties provided
to the DefaultKafkaConsumerFactory.

When using Spring Boot, you can assign set the strategy as follows:

spring.kafka.consumer.properties.partition.assignment.strategy=\
org.apache.kafka.clients.consumer.RoundRobinAssignor

When the container properties are configured with TopicPartitionOffset s, the
ConcurrentMessagelistenerContainer distributes the TopicPartitionOffset instances across the

38

delegate KafkaMessagelListenerContainer instances.

If, say, six TopicPartitionOffset instances are provided and the concurrency is 3; each container gets
two partitions. For five TopicPartitionOffset instances, two containers get two partitions, and the
third gets one. If the concurrency is greater than the number of TopicPartitions, the concurrency is
adjusted down such that each container gets one partition.

The client.id property (if set) is appended with -n where n is the consumer
0 instance that corresponds to the concurrency. This is required to provide unique
names for MBeans when JMX is enabled.

Starting with version 1.3, the MessagelistenerContainer provides access to the metrics of the
underlying KafkaConsumer. In the case of ConcurrentMessagelListenerContainer, the metrics() method
returns the metrics for all the target KafkaMessagelistenerContainer instances. The metrics are
grouped into the Map<MetricName, ? extends Metric> by the client-id provided for the underlying
KafkaConsumer.

Starting with version 2.3, the ContainerProperties provides an idleBetweenPolls option to let the
main loop in the listener container to sleep between KafkaConsumer.poll() calls. An actual sleep
interval is selected as the minimum from the provided option and difference between the
max.poll.interval.ms consumer config and the current records batch processing time.

Committing Offsets

Several options are provided for committing offsets. If the enable.auto.commit consumer property is
true, Kafka auto-commits the offsets according to its configuration. If it is false, the containers
support several AckMode settings (described in the next list). The default AckMode is BATCH. Starting
with version 2.3, the framework sets enable.auto.commit to false unless explicitly set in the
configuration. Previously, the Kafka default (true) was used if the property was not set.

The consumer poll() method returns one or more ConsumerRecords. The MessagelListener is called for
each record. The following lists describes the action taken by the container for each AckMode (when
transactions are not being used):

» RECORD: Commit the offset when the listener returns after processing the record.

* BATCH: Commit the offset when all the records returned by the pol1() have been processed.

* TIME: Commit the offset when all the records returned by the poll() have been processed, as
long as the ackTime since the last commit has been exceeded.

* COUNT: Commit the offset when all the records returned by the poll() have been processed, as
long as ackCount records have been received since the last commit.

o COUNT_TIME: Similar to TIME and COUNT, but the commit is performed if either condition is true.

» MANUAL: The message listener is responsible to acknowledge() the Acknowledgment. After that, the
same semantics as BATCH are applied.

o MANUAL_IMMEDIATE: Commit the offset immediately when the Acknowledgment.acknowledge()
method is called by the listener.

When using transactions, the offset(s) are sent to the transaction and the semantics are equivalent

39

to RECORD or BATCH, depending on the listener type (record or batch).

MANUAL, and MANUAL_IMMEDIATE require the listener to be an
AcknowledgingMessagelistener or a BatchAcknowledgingMessagelistener. See Message
Listeners.

Depending on the syncCommits container property, the commitSync() or commitAsync() method on the
consumer is used. syncCommits is true by default; also see setSyncCommitTimeout. See
setCommitCallback to get the results of asynchronous commits; the default callback is the
LoggingCommitCallback which logs errors (and successes at debug level).

Because the listener container has it’s own mechanism for committing offsets, it prefers the Kafka
ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG to be false. Starting with version 2.3, it unconditionally
sets it to false unless specifically set in the consumer factory or the container’s consumer property
overrides.

The Acknowledgment has the following method:

public interface Acknowledgment {

void acknowledge();

This method gives the listener control over when offsets are committed.

Starting with version 2.3, the Acknowledgment interface has two additional methods nack(long sleep)
and nack(int index, long sleep). The first one is used with a record listener, the second with a
batch listener. Calling the wrong method for your listener type will throw an I1legalStateException.

o nack() can only be called on the consumer thread that invokes your listener.

With a record listener, when nack() is called, any pending offsets are committed, the remaing
records from the last poll are discarded, and seeks are performed on their partitions so that the
failed record and unprocessed records are redelivered on the next poll(). The consumer thread
can be paused before redelivery, by setting the sleep argument. This is similar functionality to
throwing an exception when the container is configured with a SeekToCurrentErrorHandler.

When using a batch listener, you can specify the index within the batch where the failure occurred.
When nack() is called, offsets will be committed for records before the index and seeks are
performed on the partitions for the failed and discarded records so that they will be redelivered on
the next poll(). This is an improvement over the SeekToCurrentBatchErrorHandler, which can only
seek the entire batch for redelivery.

See Seek To Current Container Error Handlers for more information. Also see Retrying Batch Error
Handler.

40

When using partition assignment via group management, it is important to ensure
the sleep argument (plus the time spent processing records from the previous poll)
is less than the consumer max.poll.interval.ms property.

Listener Container Auto Startup

The listener containers implement Smartlifecycle, and autoStartup is true by default. The
containers are started in a late phase (Integer.MAX-VALUE - 100). Other components that implement
SmartLifecycle, to handle data from listeners, should be started in an earlier phase. The - 100
leaves room for later phases to enable components to be auto-started after the containers.

@Kafkalistener Annotation

The oKafkalistener annotation is used to designate a bean method as a listener for a listener
container. The bean is wrapped in a MessagingMessagelListenerAdapter configured with various
features, such as converters to convert the data, if necessary, to match the method parameters.

You can configure most attributes on the annotation with SpEL by using #{:-'} or property
placeholders (${::-}). See the Javadoc for more information.

Record Listeners

The @Kafkalistener annotation provides a mechanism for simple POJO listeners. The following
example shows how to use it:

public class Listener {

(id = "foo", topics = "myTopic", clientIdPrefix = "myClientId")
public void listen(String data) {

This mechanism requires an @EnableKafka annotation on one of your @Configuration classes and a
listener container factory, which is used to configure the underlying
ConcurrentMessagelListenerContainer. By default, a bean with name kafkalistenerContainerFactory is
expected. The following example shows how to use ConcurrentMessagelistenerContainer:

41

https://docs.spring.io/spring-kafka/api/org/springframework/kafka/annotation/KafkaListener.html

public class KafkaConfig {

KafkalListenerContainerFactory<ConcurrentMessagelistenerContainer<Integer,
String>>
kafkalistenerContainerFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setConcurrency(3);
factory.getContainerProperties().setPollTimeout(3000);
return factory;

public ConsumerFactory<Integer, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());

}

public Map<String, Object> consumerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, embeddedKafka
.getBrokersAsString());

return props;

Notice that, to set container properties, you must use the getContainerProperties() method on the
factory. It is used as a template for the actual properties injected into the container.

Starting with version 2.1.1, you can now set the client.id property for consumers created by the
annotation. The clientIdPrefix is suffixed with -n, where n is an integer representing the container
number when using concurrency.

Starting with version 2.2, you can now override the container factory’s concurrency and autoStartup
properties by using properties on the annotation itself. The properties can be simple values,
property placeholders, or SpEL expressions. The following example shows how to do so:

42

(id = "myListener", topics = "myTopic",
autoStartup = "${listen.auto.start:true}", concurrency =
"${listen.concurrency:3}")
public void listen(String data) {

}

Explicit Partition Assignment

You can also configure POJO listeners with explicit topics and partitions (and, optionally, their
initial offsets). The following example shows how to do so:

(id = "thing2", topicPartitions =

{ (topic = "topic1", partitions = { "0", "1" }),
(topic = "topic2", partitions = "0",
partitionOffsets = (partition = "1", initialOffset =
"100"))
})

public void listen(ConsumerRecord<?, ?> record) {

}

You can specify each partition in the partitions or partition0ffsets attribute but not both.

As with most annotation properties, you can use SpEL expressions; for an example of how to
generate a large list of partitions, see Manually Assigning All Partitions.

Starting with version 2.5.5, you can apply an initial offset to all assigned partitions:

(id = "thing3", topicPartitions =
{ (topic = "topic1", partitions = { "0", "1" },
partitionOffsets = (partition = "*", initialOffset =
"0"))
})

public void listen(ConsumerRecord<?, ?> record) {

}

The * wildcard represents all partitions in the partitions attribute. There must only be one
@Partition0ffset with the wildcard in each @TopicPartition.

In addition, when the listener implements ConsumerSeekAware, onPartitionsAssigned is now called,

43

even when using manual assignment. This allows, for example, any arbitrary seek operations at
that time.

Manual Acknowledgment

When using manual AckMode, you can also provide the listener with the Acknowledgment. The
following example also shows how to use a different container factory.

(id = "cat", topics = "myTopic",
containerFactory = "kafkaManualAckListenerContainerFactory")
public void listen(String data, Acknowledgment ack) {

ack.acknowledge();

Consumer Record Metadata

Finally, metadata about the record is available from message headers. You can use the following
header names to retrieve the headers of the message:

* KafkaHeaders.OFFSET
e KafkaHeaders.RECEIVED MESSAGE _KEY

KafkaHeaders.RECEIVED_TOPIC

KafkaHeaders.RECEIVED PARTITION_ID

KafkaHeaders.RECEIVED_TIMESTAMP
» KafkaHeaders.TIMESTAMP_TYPE

Starting with version 2.5 the RECEIVED_MESSAGE_KEY is not present if the incoming record has a null
key; previously the header was populated with a null value. This change is to make the framework
consistent with spring-messaging conventions where null valued headers are not present.

The following example shows how to use the headers:

(id = "qux", topicPattern = "myTopic1")
public void listen(String foo,
(name = KafkaHeaders.RECEIVED_MESSAGE_KEY, required = false)
Integer key,
(KafkaHeaders.RECEIVED_PARTITION_ID) int partition,
(KafkaHeaders.RECEIVED_TOPIC) String topic,
(KafkaHeaders.RECEIVED_TIMESTAMP) long ts

) {

44

Starting with version 2.5, instead of using discrete headers, you can receive record metadata in a
ConsumerRecordMetadata parameter.

(...)

public void listen(String str, ConsumerRecordMetadata meta) {

}

This contains all the data from the ConsumerRecord except the key and value.

Batch listeners

Starting with version 1.1, you can configure @Kafkalistener methods to receive the entire batch of
consumer records received from the consumer poll. To configure the listener container factory to
create batch listeners, you can set the batchListener property. The following example shows how to
do so:

public KafkalistenerContainerFactory<?, 7> batchFactory() {
ConcurrentKafkalistenerContainerFactory<Integer, String> factory =
new ConcurrentKafkalistenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setBatchListener(true); // <<<<<<<<<<<<<<<<<<<<<<<<d
return factory;

The following example shows how to receive a list of payloads:

(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> list) {

}

The topic, partition, offset, and so on are available in headers that parallel the payloads. The
following example shows how to use the headers:

45

(id = "list", topics = "myTopic", containerFactory = "batchFactory")
public void listen(List<String> list,
(KafkaHeaders.RECEIVED_MESSAGE_KEY) List<Integer> keys,
(KafkaHeaders.RECEIVED_PARTITION_ID) List<Integer> partitions,
(KafkaHeaders.RECEIVED_TOPIC) List<String> topics,
(KafkaHeaders.OFFSET) List<Long> offsets) {

Alternatively, you can receive a List of Message<?> objects with each offset and other details in each
message, but it must be the only parameter (aside from optional Acknowledgment, when using
manual commits, and/or Consumer<?, 7> parameters) defined on the method. The following example
shows how to do so:

(id = "listMsg", topics = "myTopic", containerFactory =
"batchFactory")
public void listen14(List<Message<?>> list) {

}

(id = "listMsqgAck", topics = "myTopic", containerFactory =
"batchFactory")
public void listen15(List<Message<?>> list, Acknowledgment ack) {

}

(id = "listMsgAckConsumer", topics = "myTopic", containerFactory =
"batchFactory")
public void listen16(List<Message<?>> list, Acknowledgment ack, Consumer<?, 7>
consumer) {

}

No conversion is performed on the payloads in this case.

If the BatchMessagingMessageConverter is configured with a RecordMessageConverter, you can also add
a generic type to the Message parameter and the payloads are converted. See Payload Conversion
with Batch Listeners for more information.

You can also receive a list of ConsumerRecord<?, 7> objects, but it must be the only parameter (aside
from optional Acknowledgment, when using manual commits and Consumer<?, 7> parameters) defined
on the method. The following example shows how to do so:

46

(id = "listCRs", topics = "myTopic", containerFactory =
"batchFactory")
public void listen(List<ConsumerRecord<Integer, String>> list) {

}

(id = "listCRsAck", topics = "myTopic", containerFactory =
"batchFactory")
public void listen(List<ConsumerRecord<Integer, String>> list, Acknowledgment ack)

{

Starting with version 2.2, the listener can receive the complete ConsumerRecords<?, 7> object
returned by the poll() method, letting the listener access additional methods, such as partitions()
(which returns the TopicPartition instances in the list) and records(TopicPartition) (which gets
selective records). Again, this must be the only parameter (aside from optional Acknowledgment,
when using manual commits or Consumer<?, 7> parameters) on the method. The following example
shows how to do so:

(id = "pollResults", topics = "myTopic", containerFactory =
"batchFactory")
public void pollResults(ConsumerRecords<?, 7> records) {

}

If the container factory has a RecordFilterStrategy configured, it is ignored for
ConsumerRecords<?, 7> listeners, with a WARN log message emitted. Records can only
be filtered with a batch listener if the <List<?>> form of listener is used.

Annotation Properties

Starting with version 2.0, the id property (if present) is used as the Kafka consumer group.id
property, overriding the configured property in the consumer factory, if present. You can also set
groupId explicitly or set idIsGroup to false to restore the previous behavior of using the consumer
factory group.id.

You can use property placeholders or SpEL expressions within most annotation properties, as the
following example shows:

47

@Kafkalistener(topics = "${some.property}")

@Kafkalistener(topics = "#{someBean.someProperty}",
groupIld = "#{someBean.someProperty}.group")

Starting with version 2.1.2, the SpEL expressions support a special token: __Tistener. It is a pseudo
bean name that represents the current bean instance within which this annotation exists.

Consider the following example:

@Bean
public Listener listener1() {
return new Listener("topic1");

}
@Bean
public Listener listener2() {

return new Listener("topic2");

}

Given the beans in the previous example, we can then use the following:

public class Listener {
private final String topic;
public Listener(String topic) {

this.topic = topic;
}

@Kafkalistener(topics = "#{__listener.topic}",
groupld = "#{__listener.topic}.group")
public void listen(...) {

}

public String getTopic() {
return this.topic;

}

48

If, in the unlikely event that you have an actual bean called __listener, you can change the
expression token byusing the beanRef attribute. The following example shows how to do so:

(beanRef = "__x", topics = "#{__x.topic}",
groupld = "#{__x.topic}.group")

Starting with version 2.2.4, you can specify Kafka consumer properties directly on the annotation,
these will override any properties with the same name configured in the consumer factory. You
cannot specify the group.id and client.id properties this way; they will be ignored; use the groupId
and clientIdPrefix annotation properties for those.

The properties are specified as individual strings with the normal Java Properties file format:
foo:bar, foo=bar, or foo bar.

(topics = "myTopic", groupId = "group", properties = {
"max.poll.interval.ms:60000",
ConsumerConfig.MAX_POLL_RECORDS_CONFIG + "=100"

1))

The following is an example of the corresponding listeners for the example in Using
RoutingKafkaTemplate.

(id = "one", topics = "one")
public void listen1(String in) {
System.out.println("1: " + in);
}

(id = "two", topics = "two",
properties